Merge master.kernel.org:/pub/scm/linux/kernel/git/brodo/pcmcia-2.6
[linux-drm-fsl-dcu.git] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_cmnd.h>
23 #include <scsi/scsi_dbg.h>
24 #include <scsi/scsi_device.h>
25 #include <scsi/scsi_driver.h>
26 #include <scsi/scsi_eh.h>
27 #include <scsi/scsi_host.h>
28
29 #include "scsi_priv.h"
30 #include "scsi_logging.h"
31
32
33 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
34 #define SG_MEMPOOL_SIZE         32
35
36 struct scsi_host_sg_pool {
37         size_t          size;
38         char            *name; 
39         kmem_cache_t    *slab;
40         mempool_t       *pool;
41 };
42
43 #if (SCSI_MAX_PHYS_SEGMENTS < 32)
44 #error SCSI_MAX_PHYS_SEGMENTS is too small
45 #endif
46
47 #define SP(x) { x, "sgpool-" #x } 
48 static struct scsi_host_sg_pool scsi_sg_pools[] = {
49         SP(8),
50         SP(16),
51         SP(32),
52 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
53         SP(64),
54 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
55         SP(128),
56 #if (SCSI_MAX_PHYS_SEGMENTS > 128)
57         SP(256),
58 #if (SCSI_MAX_PHYS_SEGMENTS > 256)
59 #error SCSI_MAX_PHYS_SEGMENTS is too large
60 #endif
61 #endif
62 #endif
63 #endif
64 };      
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the the scsi_cmnd result
177  * field.
178  **/
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static kmem_cache_t *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         if (!rq->bio)
267                 blk_rq_bio_prep(q, rq, bio);
268         else if (!q->back_merge_fn(q, rq, bio))
269                 return -EINVAL;
270         else {
271                 rq->biotail->bi_next = bio;
272                 rq->biotail = bio;
273                 rq->hard_nr_sectors += bio_sectors(bio);
274                 rq->nr_sectors = rq->hard_nr_sectors;
275         }
276
277         return 0;
278 }
279
280 static int scsi_bi_endio(struct bio *bio, unsigned int bytes_done, int error)
281 {
282         if (bio->bi_size)
283                 return 1;
284
285         bio_put(bio);
286         return 0;
287 }
288
289 /**
290  * scsi_req_map_sg - map a scatterlist into a request
291  * @rq:         request to fill
292  * @sg:         scatterlist
293  * @nsegs:      number of elements
294  * @bufflen:    len of buffer
295  * @gfp:        memory allocation flags
296  *
297  * scsi_req_map_sg maps a scatterlist into a request so that the
298  * request can be sent to the block layer. We do not trust the scatterlist
299  * sent to use, as some ULDs use that struct to only organize the pages.
300  */
301 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
302                            int nsegs, unsigned bufflen, gfp_t gfp)
303 {
304         struct request_queue *q = rq->q;
305         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
306         unsigned int data_len = 0, len, bytes, off;
307         struct page *page;
308         struct bio *bio = NULL;
309         int i, err, nr_vecs = 0;
310
311         for (i = 0; i < nsegs; i++) {
312                 page = sgl[i].page;
313                 off = sgl[i].offset;
314                 len = sgl[i].length;
315                 data_len += len;
316
317                 while (len > 0) {
318                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
319
320                         if (!bio) {
321                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
322                                 nr_pages -= nr_vecs;
323
324                                 bio = bio_alloc(gfp, nr_vecs);
325                                 if (!bio) {
326                                         err = -ENOMEM;
327                                         goto free_bios;
328                                 }
329                                 bio->bi_end_io = scsi_bi_endio;
330                         }
331
332                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
333                             bytes) {
334                                 bio_put(bio);
335                                 err = -EINVAL;
336                                 goto free_bios;
337                         }
338
339                         if (bio->bi_vcnt >= nr_vecs) {
340                                 err = scsi_merge_bio(rq, bio);
341                                 if (err) {
342                                         bio_endio(bio, bio->bi_size, 0);
343                                         goto free_bios;
344                                 }
345                                 bio = NULL;
346                         }
347
348                         page++;
349                         len -= bytes;
350                         off = 0;
351                 }
352         }
353
354         rq->buffer = rq->data = NULL;
355         rq->data_len = data_len;
356         return 0;
357
358 free_bios:
359         while ((bio = rq->bio) != NULL) {
360                 rq->bio = bio->bi_next;
361                 /*
362                  * call endio instead of bio_put incase it was bounced
363                  */
364                 bio_endio(bio, bio->bi_size, 0);
365         }
366
367         return err;
368 }
369
370 /**
371  * scsi_execute_async - insert request
372  * @sdev:       scsi device
373  * @cmd:        scsi command
374  * @cmd_len:    length of scsi cdb
375  * @data_direction: data direction
376  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
377  * @bufflen:    len of buffer
378  * @use_sg:     if buffer is a scatterlist this is the number of elements
379  * @timeout:    request timeout in seconds
380  * @retries:    number of times to retry request
381  * @flags:      or into request flags
382  **/
383 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
384                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
385                        int use_sg, int timeout, int retries, void *privdata,
386                        void (*done)(void *, char *, int, int), gfp_t gfp)
387 {
388         struct request *req;
389         struct scsi_io_context *sioc;
390         int err = 0;
391         int write = (data_direction == DMA_TO_DEVICE);
392
393         sioc = kmem_cache_alloc(scsi_io_context_cache, gfp);
394         if (!sioc)
395                 return DRIVER_ERROR << 24;
396         memset(sioc, 0, sizeof(*sioc));
397
398         req = blk_get_request(sdev->request_queue, write, gfp);
399         if (!req)
400                 goto free_sense;
401         req->cmd_type = REQ_TYPE_BLOCK_PC;
402         req->cmd_flags |= REQ_QUIET;
403
404         if (use_sg)
405                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
406         else if (bufflen)
407                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
408
409         if (err)
410                 goto free_req;
411
412         req->cmd_len = cmd_len;
413         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
414         memcpy(req->cmd, cmd, req->cmd_len);
415         req->sense = sioc->sense;
416         req->sense_len = 0;
417         req->timeout = timeout;
418         req->retries = retries;
419         req->end_io_data = sioc;
420
421         sioc->data = privdata;
422         sioc->done = done;
423
424         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
425         return 0;
426
427 free_req:
428         blk_put_request(req);
429 free_sense:
430         kmem_cache_free(scsi_io_context_cache, sioc);
431         return DRIVER_ERROR << 24;
432 }
433 EXPORT_SYMBOL_GPL(scsi_execute_async);
434
435 /*
436  * Function:    scsi_init_cmd_errh()
437  *
438  * Purpose:     Initialize cmd fields related to error handling.
439  *
440  * Arguments:   cmd     - command that is ready to be queued.
441  *
442  * Notes:       This function has the job of initializing a number of
443  *              fields related to error handling.   Typically this will
444  *              be called once for each command, as required.
445  */
446 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
447 {
448         cmd->serial_number = 0;
449         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
450         if (cmd->cmd_len == 0)
451                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
452 }
453
454 void scsi_device_unbusy(struct scsi_device *sdev)
455 {
456         struct Scsi_Host *shost = sdev->host;
457         unsigned long flags;
458
459         spin_lock_irqsave(shost->host_lock, flags);
460         shost->host_busy--;
461         if (unlikely(scsi_host_in_recovery(shost) &&
462                      (shost->host_failed || shost->host_eh_scheduled)))
463                 scsi_eh_wakeup(shost);
464         spin_unlock(shost->host_lock);
465         spin_lock(sdev->request_queue->queue_lock);
466         sdev->device_busy--;
467         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
468 }
469
470 /*
471  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
472  * and call blk_run_queue for all the scsi_devices on the target -
473  * including current_sdev first.
474  *
475  * Called with *no* scsi locks held.
476  */
477 static void scsi_single_lun_run(struct scsi_device *current_sdev)
478 {
479         struct Scsi_Host *shost = current_sdev->host;
480         struct scsi_device *sdev, *tmp;
481         struct scsi_target *starget = scsi_target(current_sdev);
482         unsigned long flags;
483
484         spin_lock_irqsave(shost->host_lock, flags);
485         starget->starget_sdev_user = NULL;
486         spin_unlock_irqrestore(shost->host_lock, flags);
487
488         /*
489          * Call blk_run_queue for all LUNs on the target, starting with
490          * current_sdev. We race with others (to set starget_sdev_user),
491          * but in most cases, we will be first. Ideally, each LU on the
492          * target would get some limited time or requests on the target.
493          */
494         blk_run_queue(current_sdev->request_queue);
495
496         spin_lock_irqsave(shost->host_lock, flags);
497         if (starget->starget_sdev_user)
498                 goto out;
499         list_for_each_entry_safe(sdev, tmp, &starget->devices,
500                         same_target_siblings) {
501                 if (sdev == current_sdev)
502                         continue;
503                 if (scsi_device_get(sdev))
504                         continue;
505
506                 spin_unlock_irqrestore(shost->host_lock, flags);
507                 blk_run_queue(sdev->request_queue);
508                 spin_lock_irqsave(shost->host_lock, flags);
509         
510                 scsi_device_put(sdev);
511         }
512  out:
513         spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515
516 /*
517  * Function:    scsi_run_queue()
518  *
519  * Purpose:     Select a proper request queue to serve next
520  *
521  * Arguments:   q       - last request's queue
522  *
523  * Returns:     Nothing
524  *
525  * Notes:       The previous command was completely finished, start
526  *              a new one if possible.
527  */
528 static void scsi_run_queue(struct request_queue *q)
529 {
530         struct scsi_device *sdev = q->queuedata;
531         struct Scsi_Host *shost = sdev->host;
532         unsigned long flags;
533
534         if (sdev->single_lun)
535                 scsi_single_lun_run(sdev);
536
537         spin_lock_irqsave(shost->host_lock, flags);
538         while (!list_empty(&shost->starved_list) &&
539                !shost->host_blocked && !shost->host_self_blocked &&
540                 !((shost->can_queue > 0) &&
541                   (shost->host_busy >= shost->can_queue))) {
542                 /*
543                  * As long as shost is accepting commands and we have
544                  * starved queues, call blk_run_queue. scsi_request_fn
545                  * drops the queue_lock and can add us back to the
546                  * starved_list.
547                  *
548                  * host_lock protects the starved_list and starved_entry.
549                  * scsi_request_fn must get the host_lock before checking
550                  * or modifying starved_list or starved_entry.
551                  */
552                 sdev = list_entry(shost->starved_list.next,
553                                           struct scsi_device, starved_entry);
554                 list_del_init(&sdev->starved_entry);
555                 spin_unlock_irqrestore(shost->host_lock, flags);
556
557
558                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559                     !test_and_set_bit(QUEUE_FLAG_REENTER,
560                                       &sdev->request_queue->queue_flags)) {
561                         blk_run_queue(sdev->request_queue);
562                         clear_bit(QUEUE_FLAG_REENTER,
563                                   &sdev->request_queue->queue_flags);
564                 } else
565                         blk_run_queue(sdev->request_queue);
566
567                 spin_lock_irqsave(shost->host_lock, flags);
568                 if (unlikely(!list_empty(&sdev->starved_entry)))
569                         /*
570                          * sdev lost a race, and was put back on the
571                          * starved list. This is unlikely but without this
572                          * in theory we could loop forever.
573                          */
574                         break;
575         }
576         spin_unlock_irqrestore(shost->host_lock, flags);
577
578         blk_run_queue(q);
579 }
580
581 /*
582  * Function:    scsi_requeue_command()
583  *
584  * Purpose:     Handle post-processing of completed commands.
585  *
586  * Arguments:   q       - queue to operate on
587  *              cmd     - command that may need to be requeued.
588  *
589  * Returns:     Nothing
590  *
591  * Notes:       After command completion, there may be blocks left
592  *              over which weren't finished by the previous command
593  *              this can be for a number of reasons - the main one is
594  *              I/O errors in the middle of the request, in which case
595  *              we need to request the blocks that come after the bad
596  *              sector.
597  * Notes:       Upon return, cmd is a stale pointer.
598  */
599 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
600 {
601         struct request *req = cmd->request;
602         unsigned long flags;
603
604         scsi_unprep_request(req);
605         spin_lock_irqsave(q->queue_lock, flags);
606         blk_requeue_request(q, req);
607         spin_unlock_irqrestore(q->queue_lock, flags);
608
609         scsi_run_queue(q);
610 }
611
612 void scsi_next_command(struct scsi_cmnd *cmd)
613 {
614         struct scsi_device *sdev = cmd->device;
615         struct request_queue *q = sdev->request_queue;
616
617         /* need to hold a reference on the device before we let go of the cmd */
618         get_device(&sdev->sdev_gendev);
619
620         scsi_put_command(cmd);
621         scsi_run_queue(q);
622
623         /* ok to remove device now */
624         put_device(&sdev->sdev_gendev);
625 }
626
627 void scsi_run_host_queues(struct Scsi_Host *shost)
628 {
629         struct scsi_device *sdev;
630
631         shost_for_each_device(sdev, shost)
632                 scsi_run_queue(sdev->request_queue);
633 }
634
635 /*
636  * Function:    scsi_end_request()
637  *
638  * Purpose:     Post-processing of completed commands (usually invoked at end
639  *              of upper level post-processing and scsi_io_completion).
640  *
641  * Arguments:   cmd      - command that is complete.
642  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
643  *              bytes    - number of bytes of completed I/O
644  *              requeue  - indicates whether we should requeue leftovers.
645  *
646  * Lock status: Assumed that lock is not held upon entry.
647  *
648  * Returns:     cmd if requeue required, NULL otherwise.
649  *
650  * Notes:       This is called for block device requests in order to
651  *              mark some number of sectors as complete.
652  * 
653  *              We are guaranteeing that the request queue will be goosed
654  *              at some point during this call.
655  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
656  */
657 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
658                                           int bytes, int requeue)
659 {
660         request_queue_t *q = cmd->device->request_queue;
661         struct request *req = cmd->request;
662         unsigned long flags;
663
664         /*
665          * If there are blocks left over at the end, set up the command
666          * to queue the remainder of them.
667          */
668         if (end_that_request_chunk(req, uptodate, bytes)) {
669                 int leftover = (req->hard_nr_sectors << 9);
670
671                 if (blk_pc_request(req))
672                         leftover = req->data_len;
673
674                 /* kill remainder if no retrys */
675                 if (!uptodate && blk_noretry_request(req))
676                         end_that_request_chunk(req, 0, leftover);
677                 else {
678                         if (requeue) {
679                                 /*
680                                  * Bleah.  Leftovers again.  Stick the
681                                  * leftovers in the front of the
682                                  * queue, and goose the queue again.
683                                  */
684                                 scsi_requeue_command(q, cmd);
685                                 cmd = NULL;
686                         }
687                         return cmd;
688                 }
689         }
690
691         add_disk_randomness(req->rq_disk);
692
693         spin_lock_irqsave(q->queue_lock, flags);
694         if (blk_rq_tagged(req))
695                 blk_queue_end_tag(q, req);
696         end_that_request_last(req, uptodate);
697         spin_unlock_irqrestore(q->queue_lock, flags);
698
699         /*
700          * This will goose the queue request function at the end, so we don't
701          * need to worry about launching another command.
702          */
703         scsi_next_command(cmd);
704         return NULL;
705 }
706
707 static struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
708 {
709         struct scsi_host_sg_pool *sgp;
710         struct scatterlist *sgl;
711
712         BUG_ON(!cmd->use_sg);
713
714         switch (cmd->use_sg) {
715         case 1 ... 8:
716                 cmd->sglist_len = 0;
717                 break;
718         case 9 ... 16:
719                 cmd->sglist_len = 1;
720                 break;
721         case 17 ... 32:
722                 cmd->sglist_len = 2;
723                 break;
724 #if (SCSI_MAX_PHYS_SEGMENTS > 32)
725         case 33 ... 64:
726                 cmd->sglist_len = 3;
727                 break;
728 #if (SCSI_MAX_PHYS_SEGMENTS > 64)
729         case 65 ... 128:
730                 cmd->sglist_len = 4;
731                 break;
732 #if (SCSI_MAX_PHYS_SEGMENTS  > 128)
733         case 129 ... 256:
734                 cmd->sglist_len = 5;
735                 break;
736 #endif
737 #endif
738 #endif
739         default:
740                 return NULL;
741         }
742
743         sgp = scsi_sg_pools + cmd->sglist_len;
744         sgl = mempool_alloc(sgp->pool, gfp_mask);
745         return sgl;
746 }
747
748 static void scsi_free_sgtable(struct scatterlist *sgl, int index)
749 {
750         struct scsi_host_sg_pool *sgp;
751
752         BUG_ON(index >= SG_MEMPOOL_NR);
753
754         sgp = scsi_sg_pools + index;
755         mempool_free(sgl, sgp->pool);
756 }
757
758 /*
759  * Function:    scsi_release_buffers()
760  *
761  * Purpose:     Completion processing for block device I/O requests.
762  *
763  * Arguments:   cmd     - command that we are bailing.
764  *
765  * Lock status: Assumed that no lock is held upon entry.
766  *
767  * Returns:     Nothing
768  *
769  * Notes:       In the event that an upper level driver rejects a
770  *              command, we must release resources allocated during
771  *              the __init_io() function.  Primarily this would involve
772  *              the scatter-gather table, and potentially any bounce
773  *              buffers.
774  */
775 static void scsi_release_buffers(struct scsi_cmnd *cmd)
776 {
777         if (cmd->use_sg)
778                 scsi_free_sgtable(cmd->request_buffer, cmd->sglist_len);
779
780         /*
781          * Zero these out.  They now point to freed memory, and it is
782          * dangerous to hang onto the pointers.
783          */
784         cmd->request_buffer = NULL;
785         cmd->request_bufflen = 0;
786 }
787
788 /*
789  * Function:    scsi_io_completion()
790  *
791  * Purpose:     Completion processing for block device I/O requests.
792  *
793  * Arguments:   cmd   - command that is finished.
794  *
795  * Lock status: Assumed that no lock is held upon entry.
796  *
797  * Returns:     Nothing
798  *
799  * Notes:       This function is matched in terms of capabilities to
800  *              the function that created the scatter-gather list.
801  *              In other words, if there are no bounce buffers
802  *              (the normal case for most drivers), we don't need
803  *              the logic to deal with cleaning up afterwards.
804  *
805  *              We must do one of several things here:
806  *
807  *              a) Call scsi_end_request.  This will finish off the
808  *                 specified number of sectors.  If we are done, the
809  *                 command block will be released, and the queue
810  *                 function will be goosed.  If we are not done, then
811  *                 scsi_end_request will directly goose the queue.
812  *
813  *              b) We can just use scsi_requeue_command() here.  This would
814  *                 be used if we just wanted to retry, for example.
815  */
816 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
817 {
818         int result = cmd->result;
819         int this_count = cmd->request_bufflen;
820         request_queue_t *q = cmd->device->request_queue;
821         struct request *req = cmd->request;
822         int clear_errors = 1;
823         struct scsi_sense_hdr sshdr;
824         int sense_valid = 0;
825         int sense_deferred = 0;
826
827         scsi_release_buffers(cmd);
828
829         if (result) {
830                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
831                 if (sense_valid)
832                         sense_deferred = scsi_sense_is_deferred(&sshdr);
833         }
834
835         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
836                 req->errors = result;
837                 if (result) {
838                         clear_errors = 0;
839                         if (sense_valid && req->sense) {
840                                 /*
841                                  * SG_IO wants current and deferred errors
842                                  */
843                                 int len = 8 + cmd->sense_buffer[7];
844
845                                 if (len > SCSI_SENSE_BUFFERSIZE)
846                                         len = SCSI_SENSE_BUFFERSIZE;
847                                 memcpy(req->sense, cmd->sense_buffer,  len);
848                                 req->sense_len = len;
849                         }
850                 } else
851                         req->data_len = cmd->resid;
852         }
853
854         /*
855          * Next deal with any sectors which we were able to correctly
856          * handle.
857          */
858         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
859                                       "%d bytes done.\n",
860                                       req->nr_sectors, good_bytes));
861         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
862
863         if (clear_errors)
864                 req->errors = 0;
865
866         /* A number of bytes were successfully read.  If there
867          * are leftovers and there is some kind of error
868          * (result != 0), retry the rest.
869          */
870         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
871                 return;
872
873         /* good_bytes = 0, or (inclusive) there were leftovers and
874          * result = 0, so scsi_end_request couldn't retry.
875          */
876         if (sense_valid && !sense_deferred) {
877                 switch (sshdr.sense_key) {
878                 case UNIT_ATTENTION:
879                         if (cmd->device->removable) {
880                                 /* Detected disc change.  Set a bit
881                                  * and quietly refuse further access.
882                                  */
883                                 cmd->device->changed = 1;
884                                 scsi_end_request(cmd, 0, this_count, 1);
885                                 return;
886                         } else {
887                                 /* Must have been a power glitch, or a
888                                  * bus reset.  Could not have been a
889                                  * media change, so we just retry the
890                                  * request and see what happens.
891                                  */
892                                 scsi_requeue_command(q, cmd);
893                                 return;
894                         }
895                         break;
896                 case ILLEGAL_REQUEST:
897                         /* If we had an ILLEGAL REQUEST returned, then
898                          * we may have performed an unsupported
899                          * command.  The only thing this should be
900                          * would be a ten byte read where only a six
901                          * byte read was supported.  Also, on a system
902                          * where READ CAPACITY failed, we may have
903                          * read past the end of the disk.
904                          */
905                         if ((cmd->device->use_10_for_rw &&
906                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
907                             (cmd->cmnd[0] == READ_10 ||
908                              cmd->cmnd[0] == WRITE_10)) {
909                                 cmd->device->use_10_for_rw = 0;
910                                 /* This will cause a retry with a
911                                  * 6-byte command.
912                                  */
913                                 scsi_requeue_command(q, cmd);
914                                 return;
915                         } else {
916                                 scsi_end_request(cmd, 0, this_count, 1);
917                                 return;
918                         }
919                         break;
920                 case NOT_READY:
921                         /* If the device is in the process of becoming
922                          * ready, or has a temporary blockage, retry.
923                          */
924                         if (sshdr.asc == 0x04) {
925                                 switch (sshdr.ascq) {
926                                 case 0x01: /* becoming ready */
927                                 case 0x04: /* format in progress */
928                                 case 0x05: /* rebuild in progress */
929                                 case 0x06: /* recalculation in progress */
930                                 case 0x07: /* operation in progress */
931                                 case 0x08: /* Long write in progress */
932                                 case 0x09: /* self test in progress */
933                                         scsi_requeue_command(q, cmd);
934                                         return;
935                                 default:
936                                         break;
937                                 }
938                         }
939                         if (!(req->cmd_flags & REQ_QUIET)) {
940                                 scmd_printk(KERN_INFO, cmd,
941                                             "Device not ready: ");
942                                 scsi_print_sense_hdr("", &sshdr);
943                         }
944                         scsi_end_request(cmd, 0, this_count, 1);
945                         return;
946                 case VOLUME_OVERFLOW:
947                         if (!(req->cmd_flags & REQ_QUIET)) {
948                                 scmd_printk(KERN_INFO, cmd,
949                                             "Volume overflow, CDB: ");
950                                 __scsi_print_command(cmd->cmnd);
951                                 scsi_print_sense("", cmd);
952                         }
953                         /* See SSC3rXX or current. */
954                         scsi_end_request(cmd, 0, this_count, 1);
955                         return;
956                 default:
957                         break;
958                 }
959         }
960         if (host_byte(result) == DID_RESET) {
961                 /* Third party bus reset or reset for error recovery
962                  * reasons.  Just retry the request and see what
963                  * happens.
964                  */
965                 scsi_requeue_command(q, cmd);
966                 return;
967         }
968         if (result) {
969                 if (!(req->cmd_flags & REQ_QUIET)) {
970                         scmd_printk(KERN_INFO, cmd,
971                                     "SCSI error: return code = 0x%08x\n",
972                                     result);
973                         if (driver_byte(result) & DRIVER_SENSE)
974                                 scsi_print_sense("", cmd);
975                 }
976         }
977         scsi_end_request(cmd, 0, this_count, !result);
978 }
979 EXPORT_SYMBOL(scsi_io_completion);
980
981 /*
982  * Function:    scsi_init_io()
983  *
984  * Purpose:     SCSI I/O initialize function.
985  *
986  * Arguments:   cmd   - Command descriptor we wish to initialize
987  *
988  * Returns:     0 on success
989  *              BLKPREP_DEFER if the failure is retryable
990  *              BLKPREP_KILL if the failure is fatal
991  */
992 static int scsi_init_io(struct scsi_cmnd *cmd)
993 {
994         struct request     *req = cmd->request;
995         struct scatterlist *sgpnt;
996         int                count;
997
998         /*
999          * if this is a rq->data based REQ_BLOCK_PC, setup for a non-sg xfer
1000          */
1001         if (blk_pc_request(req) && !req->bio) {
1002                 cmd->request_bufflen = req->data_len;
1003                 cmd->request_buffer = req->data;
1004                 req->buffer = req->data;
1005                 cmd->use_sg = 0;
1006                 return 0;
1007         }
1008
1009         /*
1010          * we used to not use scatter-gather for single segment request,
1011          * but now we do (it makes highmem I/O easier to support without
1012          * kmapping pages)
1013          */
1014         cmd->use_sg = req->nr_phys_segments;
1015
1016         /*
1017          * if sg table allocation fails, requeue request later.
1018          */
1019         sgpnt = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1020         if (unlikely(!sgpnt)) {
1021                 scsi_unprep_request(req);
1022                 return BLKPREP_DEFER;
1023         }
1024
1025         cmd->request_buffer = (char *) sgpnt;
1026         cmd->request_bufflen = req->nr_sectors << 9;
1027         if (blk_pc_request(req))
1028                 cmd->request_bufflen = req->data_len;
1029         req->buffer = NULL;
1030
1031         /* 
1032          * Next, walk the list, and fill in the addresses and sizes of
1033          * each segment.
1034          */
1035         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1036
1037         /*
1038          * mapped well, send it off
1039          */
1040         if (likely(count <= cmd->use_sg)) {
1041                 cmd->use_sg = count;
1042                 return 0;
1043         }
1044
1045         printk(KERN_ERR "Incorrect number of segments after building list\n");
1046         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1047         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1048                         req->current_nr_sectors);
1049
1050         /* release the command and kill it */
1051         scsi_release_buffers(cmd);
1052         scsi_put_command(cmd);
1053         return BLKPREP_KILL;
1054 }
1055
1056 static int scsi_issue_flush_fn(request_queue_t *q, struct gendisk *disk,
1057                                sector_t *error_sector)
1058 {
1059         struct scsi_device *sdev = q->queuedata;
1060         struct scsi_driver *drv;
1061
1062         if (sdev->sdev_state != SDEV_RUNNING)
1063                 return -ENXIO;
1064
1065         drv = *(struct scsi_driver **) disk->private_data;
1066         if (drv->issue_flush)
1067                 return drv->issue_flush(&sdev->sdev_gendev, error_sector);
1068
1069         return -EOPNOTSUPP;
1070 }
1071
1072 static void scsi_blk_pc_done(struct scsi_cmnd *cmd)
1073 {
1074         BUG_ON(!blk_pc_request(cmd->request));
1075         /*
1076          * This will complete the whole command with uptodate=1 so
1077          * as far as the block layer is concerned the command completed
1078          * successfully. Since this is a REQ_BLOCK_PC command the
1079          * caller should check the request's errors value
1080          */
1081         scsi_io_completion(cmd, cmd->request_bufflen);
1082 }
1083
1084 static void scsi_setup_blk_pc_cmnd(struct scsi_cmnd *cmd)
1085 {
1086         struct request *req = cmd->request;
1087
1088         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1089         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1090         cmd->cmd_len = req->cmd_len;
1091         if (!req->data_len)
1092                 cmd->sc_data_direction = DMA_NONE;
1093         else if (rq_data_dir(req) == WRITE)
1094                 cmd->sc_data_direction = DMA_TO_DEVICE;
1095         else
1096                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1097         
1098         cmd->transfersize = req->data_len;
1099         cmd->allowed = req->retries;
1100         cmd->timeout_per_command = req->timeout;
1101         cmd->done = scsi_blk_pc_done;
1102 }
1103
1104 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1105 {
1106         struct scsi_device *sdev = q->queuedata;
1107         struct scsi_cmnd *cmd;
1108         int specials_only = 0;
1109
1110         /*
1111          * Just check to see if the device is online.  If it isn't, we
1112          * refuse to process any commands.  The device must be brought
1113          * online before trying any recovery commands
1114          */
1115         if (unlikely(!scsi_device_online(sdev))) {
1116                 sdev_printk(KERN_ERR, sdev,
1117                             "rejecting I/O to offline device\n");
1118                 goto kill;
1119         }
1120         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1121                 /* OK, we're not in a running state don't prep
1122                  * user commands */
1123                 if (sdev->sdev_state == SDEV_DEL) {
1124                         /* Device is fully deleted, no commands
1125                          * at all allowed down */
1126                         sdev_printk(KERN_ERR, sdev,
1127                                     "rejecting I/O to dead device\n");
1128                         goto kill;
1129                 }
1130                 /* OK, we only allow special commands (i.e. not
1131                  * user initiated ones */
1132                 specials_only = sdev->sdev_state;
1133         }
1134
1135         /*
1136          * Find the actual device driver associated with this command.
1137          * The SPECIAL requests are things like character device or
1138          * ioctls, which did not originate from ll_rw_blk.  Note that
1139          * the special field is also used to indicate the cmd for
1140          * the remainder of a partially fulfilled request that can 
1141          * come up when there is a medium error.  We have to treat
1142          * these two cases differently.  We differentiate by looking
1143          * at request->cmd, as this tells us the real story.
1144          */
1145         if (blk_special_request(req) && req->special)
1146                 cmd = req->special;
1147         else if (blk_pc_request(req) || blk_fs_request(req)) {
1148                 if (unlikely(specials_only) && !(req->cmd_flags & REQ_PREEMPT)){
1149                         if (specials_only == SDEV_QUIESCE ||
1150                             specials_only == SDEV_BLOCK)
1151                                 goto defer;
1152                         
1153                         sdev_printk(KERN_ERR, sdev,
1154                                     "rejecting I/O to device being removed\n");
1155                         goto kill;
1156                 }
1157                         
1158                 /*
1159                  * Now try and find a command block that we can use.
1160                  */
1161                 if (!req->special) {
1162                         cmd = scsi_get_command(sdev, GFP_ATOMIC);
1163                         if (unlikely(!cmd))
1164                                 goto defer;
1165                 } else
1166                         cmd = req->special;
1167                 
1168                 /* pull a tag out of the request if we have one */
1169                 cmd->tag = req->tag;
1170         } else {
1171                 blk_dump_rq_flags(req, "SCSI bad req");
1172                 goto kill;
1173         }
1174         
1175         /* note the overloading of req->special.  When the tag
1176          * is active it always means cmd.  If the tag goes
1177          * back for re-queueing, it may be reset */
1178         req->special = cmd;
1179         cmd->request = req;
1180         
1181         /*
1182          * FIXME: drop the lock here because the functions below
1183          * expect to be called without the queue lock held.  Also,
1184          * previously, we dequeued the request before dropping the
1185          * lock.  We hope REQ_STARTED prevents anything untoward from
1186          * happening now.
1187          */
1188         if (blk_fs_request(req) || blk_pc_request(req)) {
1189                 int ret;
1190
1191                 /*
1192                  * This will do a couple of things:
1193                  *  1) Fill in the actual SCSI command.
1194                  *  2) Fill in any other upper-level specific fields
1195                  * (timeout).
1196                  *
1197                  * If this returns 0, it means that the request failed
1198                  * (reading past end of disk, reading offline device,
1199                  * etc).   This won't actually talk to the device, but
1200                  * some kinds of consistency checking may cause the     
1201                  * request to be rejected immediately.
1202                  */
1203
1204                 /* 
1205                  * This sets up the scatter-gather table (allocating if
1206                  * required).
1207                  */
1208                 ret = scsi_init_io(cmd);
1209                 switch(ret) {
1210                         /* For BLKPREP_KILL/DEFER the cmd was released */
1211                 case BLKPREP_KILL:
1212                         goto kill;
1213                 case BLKPREP_DEFER:
1214                         goto defer;
1215                 }
1216                 
1217                 /*
1218                  * Initialize the actual SCSI command for this request.
1219                  */
1220                 if (blk_pc_request(req)) {
1221                         scsi_setup_blk_pc_cmnd(cmd);
1222                 } else if (req->rq_disk) {
1223                         struct scsi_driver *drv;
1224
1225                         drv = *(struct scsi_driver **)req->rq_disk->private_data;
1226                         if (unlikely(!drv->init_command(cmd))) {
1227                                 scsi_release_buffers(cmd);
1228                                 scsi_put_command(cmd);
1229                                 goto kill;
1230                         }
1231                 }
1232         }
1233
1234         /*
1235          * The request is now prepped, no need to come back here
1236          */
1237         req->cmd_flags |= REQ_DONTPREP;
1238         return BLKPREP_OK;
1239
1240  defer:
1241         /* If we defer, the elv_next_request() returns NULL, but the
1242          * queue must be restarted, so we plug here if no returning
1243          * command will automatically do that. */
1244         if (sdev->device_busy == 0)
1245                 blk_plug_device(q);
1246         return BLKPREP_DEFER;
1247  kill:
1248         req->errors = DID_NO_CONNECT << 16;
1249         return BLKPREP_KILL;
1250 }
1251
1252 /*
1253  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1254  * return 0.
1255  *
1256  * Called with the queue_lock held.
1257  */
1258 static inline int scsi_dev_queue_ready(struct request_queue *q,
1259                                   struct scsi_device *sdev)
1260 {
1261         if (sdev->device_busy >= sdev->queue_depth)
1262                 return 0;
1263         if (sdev->device_busy == 0 && sdev->device_blocked) {
1264                 /*
1265                  * unblock after device_blocked iterates to zero
1266                  */
1267                 if (--sdev->device_blocked == 0) {
1268                         SCSI_LOG_MLQUEUE(3,
1269                                    sdev_printk(KERN_INFO, sdev,
1270                                    "unblocking device at zero depth\n"));
1271                 } else {
1272                         blk_plug_device(q);
1273                         return 0;
1274                 }
1275         }
1276         if (sdev->device_blocked)
1277                 return 0;
1278
1279         return 1;
1280 }
1281
1282 /*
1283  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1284  * return 0. We must end up running the queue again whenever 0 is
1285  * returned, else IO can hang.
1286  *
1287  * Called with host_lock held.
1288  */
1289 static inline int scsi_host_queue_ready(struct request_queue *q,
1290                                    struct Scsi_Host *shost,
1291                                    struct scsi_device *sdev)
1292 {
1293         if (scsi_host_in_recovery(shost))
1294                 return 0;
1295         if (shost->host_busy == 0 && shost->host_blocked) {
1296                 /*
1297                  * unblock after host_blocked iterates to zero
1298                  */
1299                 if (--shost->host_blocked == 0) {
1300                         SCSI_LOG_MLQUEUE(3,
1301                                 printk("scsi%d unblocking host at zero depth\n",
1302                                         shost->host_no));
1303                 } else {
1304                         blk_plug_device(q);
1305                         return 0;
1306                 }
1307         }
1308         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1309             shost->host_blocked || shost->host_self_blocked) {
1310                 if (list_empty(&sdev->starved_entry))
1311                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1312                 return 0;
1313         }
1314
1315         /* We're OK to process the command, so we can't be starved */
1316         if (!list_empty(&sdev->starved_entry))
1317                 list_del_init(&sdev->starved_entry);
1318
1319         return 1;
1320 }
1321
1322 /*
1323  * Kill a request for a dead device
1324  */
1325 static void scsi_kill_request(struct request *req, request_queue_t *q)
1326 {
1327         struct scsi_cmnd *cmd = req->special;
1328         struct scsi_device *sdev = cmd->device;
1329         struct Scsi_Host *shost = sdev->host;
1330
1331         blkdev_dequeue_request(req);
1332
1333         if (unlikely(cmd == NULL)) {
1334                 printk(KERN_CRIT "impossible request in %s.\n",
1335                                  __FUNCTION__);
1336                 BUG();
1337         }
1338
1339         scsi_init_cmd_errh(cmd);
1340         cmd->result = DID_NO_CONNECT << 16;
1341         atomic_inc(&cmd->device->iorequest_cnt);
1342
1343         /*
1344          * SCSI request completion path will do scsi_device_unbusy(),
1345          * bump busy counts.  To bump the counters, we need to dance
1346          * with the locks as normal issue path does.
1347          */
1348         sdev->device_busy++;
1349         spin_unlock(sdev->request_queue->queue_lock);
1350         spin_lock(shost->host_lock);
1351         shost->host_busy++;
1352         spin_unlock(shost->host_lock);
1353         spin_lock(sdev->request_queue->queue_lock);
1354
1355         __scsi_done(cmd);
1356 }
1357
1358 static void scsi_softirq_done(struct request *rq)
1359 {
1360         struct scsi_cmnd *cmd = rq->completion_data;
1361         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1362         int disposition;
1363
1364         INIT_LIST_HEAD(&cmd->eh_entry);
1365
1366         disposition = scsi_decide_disposition(cmd);
1367         if (disposition != SUCCESS &&
1368             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1369                 sdev_printk(KERN_ERR, cmd->device,
1370                             "timing out command, waited %lus\n",
1371                             wait_for/HZ);
1372                 disposition = SUCCESS;
1373         }
1374                         
1375         scsi_log_completion(cmd, disposition);
1376
1377         switch (disposition) {
1378                 case SUCCESS:
1379                         scsi_finish_command(cmd);
1380                         break;
1381                 case NEEDS_RETRY:
1382                         scsi_retry_command(cmd);
1383                         break;
1384                 case ADD_TO_MLQUEUE:
1385                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1386                         break;
1387                 default:
1388                         if (!scsi_eh_scmd_add(cmd, 0))
1389                                 scsi_finish_command(cmd);
1390         }
1391 }
1392
1393 /*
1394  * Function:    scsi_request_fn()
1395  *
1396  * Purpose:     Main strategy routine for SCSI.
1397  *
1398  * Arguments:   q       - Pointer to actual queue.
1399  *
1400  * Returns:     Nothing
1401  *
1402  * Lock status: IO request lock assumed to be held when called.
1403  */
1404 static void scsi_request_fn(struct request_queue *q)
1405 {
1406         struct scsi_device *sdev = q->queuedata;
1407         struct Scsi_Host *shost;
1408         struct scsi_cmnd *cmd;
1409         struct request *req;
1410
1411         if (!sdev) {
1412                 printk("scsi: killing requests for dead queue\n");
1413                 while ((req = elv_next_request(q)) != NULL)
1414                         scsi_kill_request(req, q);
1415                 return;
1416         }
1417
1418         if(!get_device(&sdev->sdev_gendev))
1419                 /* We must be tearing the block queue down already */
1420                 return;
1421
1422         /*
1423          * To start with, we keep looping until the queue is empty, or until
1424          * the host is no longer able to accept any more requests.
1425          */
1426         shost = sdev->host;
1427         while (!blk_queue_plugged(q)) {
1428                 int rtn;
1429                 /*
1430                  * get next queueable request.  We do this early to make sure
1431                  * that the request is fully prepared even if we cannot 
1432                  * accept it.
1433                  */
1434                 req = elv_next_request(q);
1435                 if (!req || !scsi_dev_queue_ready(q, sdev))
1436                         break;
1437
1438                 if (unlikely(!scsi_device_online(sdev))) {
1439                         sdev_printk(KERN_ERR, sdev,
1440                                     "rejecting I/O to offline device\n");
1441                         scsi_kill_request(req, q);
1442                         continue;
1443                 }
1444
1445
1446                 /*
1447                  * Remove the request from the request list.
1448                  */
1449                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1450                         blkdev_dequeue_request(req);
1451                 sdev->device_busy++;
1452
1453                 spin_unlock(q->queue_lock);
1454                 cmd = req->special;
1455                 if (unlikely(cmd == NULL)) {
1456                         printk(KERN_CRIT "impossible request in %s.\n"
1457                                          "please mail a stack trace to "
1458                                          "linux-scsi@vger.kernel.org\n",
1459                                          __FUNCTION__);
1460                         blk_dump_rq_flags(req, "foo");
1461                         BUG();
1462                 }
1463                 spin_lock(shost->host_lock);
1464
1465                 if (!scsi_host_queue_ready(q, shost, sdev))
1466                         goto not_ready;
1467                 if (sdev->single_lun) {
1468                         if (scsi_target(sdev)->starget_sdev_user &&
1469                             scsi_target(sdev)->starget_sdev_user != sdev)
1470                                 goto not_ready;
1471                         scsi_target(sdev)->starget_sdev_user = sdev;
1472                 }
1473                 shost->host_busy++;
1474
1475                 /*
1476                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1477                  *              take the lock again.
1478                  */
1479                 spin_unlock_irq(shost->host_lock);
1480
1481                 /*
1482                  * Finally, initialize any error handling parameters, and set up
1483                  * the timers for timeouts.
1484                  */
1485                 scsi_init_cmd_errh(cmd);
1486
1487                 /*
1488                  * Dispatch the command to the low-level driver.
1489                  */
1490                 rtn = scsi_dispatch_cmd(cmd);
1491                 spin_lock_irq(q->queue_lock);
1492                 if(rtn) {
1493                         /* we're refusing the command; because of
1494                          * the way locks get dropped, we need to 
1495                          * check here if plugging is required */
1496                         if(sdev->device_busy == 0)
1497                                 blk_plug_device(q);
1498
1499                         break;
1500                 }
1501         }
1502
1503         goto out;
1504
1505  not_ready:
1506         spin_unlock_irq(shost->host_lock);
1507
1508         /*
1509          * lock q, handle tag, requeue req, and decrement device_busy. We
1510          * must return with queue_lock held.
1511          *
1512          * Decrementing device_busy without checking it is OK, as all such
1513          * cases (host limits or settings) should run the queue at some
1514          * later time.
1515          */
1516         spin_lock_irq(q->queue_lock);
1517         blk_requeue_request(q, req);
1518         sdev->device_busy--;
1519         if(sdev->device_busy == 0)
1520                 blk_plug_device(q);
1521  out:
1522         /* must be careful here...if we trigger the ->remove() function
1523          * we cannot be holding the q lock */
1524         spin_unlock_irq(q->queue_lock);
1525         put_device(&sdev->sdev_gendev);
1526         spin_lock_irq(q->queue_lock);
1527 }
1528
1529 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1530 {
1531         struct device *host_dev;
1532         u64 bounce_limit = 0xffffffff;
1533
1534         if (shost->unchecked_isa_dma)
1535                 return BLK_BOUNCE_ISA;
1536         /*
1537          * Platforms with virtual-DMA translation
1538          * hardware have no practical limit.
1539          */
1540         if (!PCI_DMA_BUS_IS_PHYS)
1541                 return BLK_BOUNCE_ANY;
1542
1543         host_dev = scsi_get_device(shost);
1544         if (host_dev && host_dev->dma_mask)
1545                 bounce_limit = *host_dev->dma_mask;
1546
1547         return bounce_limit;
1548 }
1549 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1550
1551 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1552 {
1553         struct Scsi_Host *shost = sdev->host;
1554         struct request_queue *q;
1555
1556         q = blk_init_queue(scsi_request_fn, NULL);
1557         if (!q)
1558                 return NULL;
1559
1560         blk_queue_prep_rq(q, scsi_prep_fn);
1561
1562         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1563         blk_queue_max_phys_segments(q, SCSI_MAX_PHYS_SEGMENTS);
1564         blk_queue_max_sectors(q, shost->max_sectors);
1565         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1566         blk_queue_segment_boundary(q, shost->dma_boundary);
1567         blk_queue_issue_flush_fn(q, scsi_issue_flush_fn);
1568         blk_queue_softirq_done(q, scsi_softirq_done);
1569
1570         if (!shost->use_clustering)
1571                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1572         return q;
1573 }
1574
1575 void scsi_free_queue(struct request_queue *q)
1576 {
1577         blk_cleanup_queue(q);
1578 }
1579
1580 /*
1581  * Function:    scsi_block_requests()
1582  *
1583  * Purpose:     Utility function used by low-level drivers to prevent further
1584  *              commands from being queued to the device.
1585  *
1586  * Arguments:   shost       - Host in question
1587  *
1588  * Returns:     Nothing
1589  *
1590  * Lock status: No locks are assumed held.
1591  *
1592  * Notes:       There is no timer nor any other means by which the requests
1593  *              get unblocked other than the low-level driver calling
1594  *              scsi_unblock_requests().
1595  */
1596 void scsi_block_requests(struct Scsi_Host *shost)
1597 {
1598         shost->host_self_blocked = 1;
1599 }
1600 EXPORT_SYMBOL(scsi_block_requests);
1601
1602 /*
1603  * Function:    scsi_unblock_requests()
1604  *
1605  * Purpose:     Utility function used by low-level drivers to allow further
1606  *              commands from being queued to the device.
1607  *
1608  * Arguments:   shost       - Host in question
1609  *
1610  * Returns:     Nothing
1611  *
1612  * Lock status: No locks are assumed held.
1613  *
1614  * Notes:       There is no timer nor any other means by which the requests
1615  *              get unblocked other than the low-level driver calling
1616  *              scsi_unblock_requests().
1617  *
1618  *              This is done as an API function so that changes to the
1619  *              internals of the scsi mid-layer won't require wholesale
1620  *              changes to drivers that use this feature.
1621  */
1622 void scsi_unblock_requests(struct Scsi_Host *shost)
1623 {
1624         shost->host_self_blocked = 0;
1625         scsi_run_host_queues(shost);
1626 }
1627 EXPORT_SYMBOL(scsi_unblock_requests);
1628
1629 int __init scsi_init_queue(void)
1630 {
1631         int i;
1632
1633         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1634                                         sizeof(struct scsi_io_context),
1635                                         0, 0, NULL, NULL);
1636         if (!scsi_io_context_cache) {
1637                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1638                 return -ENOMEM;
1639         }
1640
1641         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1642                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1643                 int size = sgp->size * sizeof(struct scatterlist);
1644
1645                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1646                                 SLAB_HWCACHE_ALIGN, NULL, NULL);
1647                 if (!sgp->slab) {
1648                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1649                                         sgp->name);
1650                 }
1651
1652                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1653                                                      sgp->slab);
1654                 if (!sgp->pool) {
1655                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1656                                         sgp->name);
1657                 }
1658         }
1659
1660         return 0;
1661 }
1662
1663 void scsi_exit_queue(void)
1664 {
1665         int i;
1666
1667         kmem_cache_destroy(scsi_io_context_cache);
1668
1669         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1670                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1671                 mempool_destroy(sgp->pool);
1672                 kmem_cache_destroy(sgp->slab);
1673         }
1674 }
1675
1676 /**
1677  *      scsi_mode_select - issue a mode select
1678  *      @sdev:  SCSI device to be queried
1679  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1680  *      @sp:    Save page bit (0 == don't save, 1 == save)
1681  *      @modepage: mode page being requested
1682  *      @buffer: request buffer (may not be smaller than eight bytes)
1683  *      @len:   length of request buffer.
1684  *      @timeout: command timeout
1685  *      @retries: number of retries before failing
1686  *      @data: returns a structure abstracting the mode header data
1687  *      @sense: place to put sense data (or NULL if no sense to be collected).
1688  *              must be SCSI_SENSE_BUFFERSIZE big.
1689  *
1690  *      Returns zero if successful; negative error number or scsi
1691  *      status on error
1692  *
1693  */
1694 int
1695 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1696                  unsigned char *buffer, int len, int timeout, int retries,
1697                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1698 {
1699         unsigned char cmd[10];
1700         unsigned char *real_buffer;
1701         int ret;
1702
1703         memset(cmd, 0, sizeof(cmd));
1704         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1705
1706         if (sdev->use_10_for_ms) {
1707                 if (len > 65535)
1708                         return -EINVAL;
1709                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1710                 if (!real_buffer)
1711                         return -ENOMEM;
1712                 memcpy(real_buffer + 8, buffer, len);
1713                 len += 8;
1714                 real_buffer[0] = 0;
1715                 real_buffer[1] = 0;
1716                 real_buffer[2] = data->medium_type;
1717                 real_buffer[3] = data->device_specific;
1718                 real_buffer[4] = data->longlba ? 0x01 : 0;
1719                 real_buffer[5] = 0;
1720                 real_buffer[6] = data->block_descriptor_length >> 8;
1721                 real_buffer[7] = data->block_descriptor_length;
1722
1723                 cmd[0] = MODE_SELECT_10;
1724                 cmd[7] = len >> 8;
1725                 cmd[8] = len;
1726         } else {
1727                 if (len > 255 || data->block_descriptor_length > 255 ||
1728                     data->longlba)
1729                         return -EINVAL;
1730
1731                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1732                 if (!real_buffer)
1733                         return -ENOMEM;
1734                 memcpy(real_buffer + 4, buffer, len);
1735                 len += 4;
1736                 real_buffer[0] = 0;
1737                 real_buffer[1] = data->medium_type;
1738                 real_buffer[2] = data->device_specific;
1739                 real_buffer[3] = data->block_descriptor_length;
1740                 
1741
1742                 cmd[0] = MODE_SELECT;
1743                 cmd[4] = len;
1744         }
1745
1746         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1747                                sshdr, timeout, retries);
1748         kfree(real_buffer);
1749         return ret;
1750 }
1751 EXPORT_SYMBOL_GPL(scsi_mode_select);
1752
1753 /**
1754  *      scsi_mode_sense - issue a mode sense, falling back from 10 to 
1755  *              six bytes if necessary.
1756  *      @sdev:  SCSI device to be queried
1757  *      @dbd:   set if mode sense will allow block descriptors to be returned
1758  *      @modepage: mode page being requested
1759  *      @buffer: request buffer (may not be smaller than eight bytes)
1760  *      @len:   length of request buffer.
1761  *      @timeout: command timeout
1762  *      @retries: number of retries before failing
1763  *      @data: returns a structure abstracting the mode header data
1764  *      @sense: place to put sense data (or NULL if no sense to be collected).
1765  *              must be SCSI_SENSE_BUFFERSIZE big.
1766  *
1767  *      Returns zero if unsuccessful, or the header offset (either 4
1768  *      or 8 depending on whether a six or ten byte command was
1769  *      issued) if successful.
1770  **/
1771 int
1772 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1773                   unsigned char *buffer, int len, int timeout, int retries,
1774                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1775 {
1776         unsigned char cmd[12];
1777         int use_10_for_ms;
1778         int header_length;
1779         int result;
1780         struct scsi_sense_hdr my_sshdr;
1781
1782         memset(data, 0, sizeof(*data));
1783         memset(&cmd[0], 0, 12);
1784         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1785         cmd[2] = modepage;
1786
1787         /* caller might not be interested in sense, but we need it */
1788         if (!sshdr)
1789                 sshdr = &my_sshdr;
1790
1791  retry:
1792         use_10_for_ms = sdev->use_10_for_ms;
1793
1794         if (use_10_for_ms) {
1795                 if (len < 8)
1796                         len = 8;
1797
1798                 cmd[0] = MODE_SENSE_10;
1799                 cmd[8] = len;
1800                 header_length = 8;
1801         } else {
1802                 if (len < 4)
1803                         len = 4;
1804
1805                 cmd[0] = MODE_SENSE;
1806                 cmd[4] = len;
1807                 header_length = 4;
1808         }
1809
1810         memset(buffer, 0, len);
1811
1812         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1813                                   sshdr, timeout, retries);
1814
1815         /* This code looks awful: what it's doing is making sure an
1816          * ILLEGAL REQUEST sense return identifies the actual command
1817          * byte as the problem.  MODE_SENSE commands can return
1818          * ILLEGAL REQUEST if the code page isn't supported */
1819
1820         if (use_10_for_ms && !scsi_status_is_good(result) &&
1821             (driver_byte(result) & DRIVER_SENSE)) {
1822                 if (scsi_sense_valid(sshdr)) {
1823                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1824                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1825                                 /* 
1826                                  * Invalid command operation code
1827                                  */
1828                                 sdev->use_10_for_ms = 0;
1829                                 goto retry;
1830                         }
1831                 }
1832         }
1833
1834         if(scsi_status_is_good(result)) {
1835                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1836                              (modepage == 6 || modepage == 8))) {
1837                         /* Initio breakage? */
1838                         header_length = 0;
1839                         data->length = 13;
1840                         data->medium_type = 0;
1841                         data->device_specific = 0;
1842                         data->longlba = 0;
1843                         data->block_descriptor_length = 0;
1844                 } else if(use_10_for_ms) {
1845                         data->length = buffer[0]*256 + buffer[1] + 2;
1846                         data->medium_type = buffer[2];
1847                         data->device_specific = buffer[3];
1848                         data->longlba = buffer[4] & 0x01;
1849                         data->block_descriptor_length = buffer[6]*256
1850                                 + buffer[7];
1851                 } else {
1852                         data->length = buffer[0] + 1;
1853                         data->medium_type = buffer[1];
1854                         data->device_specific = buffer[2];
1855                         data->block_descriptor_length = buffer[3];
1856                 }
1857                 data->header_length = header_length;
1858         }
1859
1860         return result;
1861 }
1862 EXPORT_SYMBOL(scsi_mode_sense);
1863
1864 int
1865 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1866 {
1867         char cmd[] = {
1868                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1869         };
1870         struct scsi_sense_hdr sshdr;
1871         int result;
1872         
1873         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1874                                   timeout, retries);
1875
1876         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1877
1878                 if ((scsi_sense_valid(&sshdr)) &&
1879                     ((sshdr.sense_key == UNIT_ATTENTION) ||
1880                      (sshdr.sense_key == NOT_READY))) {
1881                         sdev->changed = 1;
1882                         result = 0;
1883                 }
1884         }
1885         return result;
1886 }
1887 EXPORT_SYMBOL(scsi_test_unit_ready);
1888
1889 /**
1890  *      scsi_device_set_state - Take the given device through the device
1891  *              state model.
1892  *      @sdev:  scsi device to change the state of.
1893  *      @state: state to change to.
1894  *
1895  *      Returns zero if unsuccessful or an error if the requested 
1896  *      transition is illegal.
1897  **/
1898 int
1899 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
1900 {
1901         enum scsi_device_state oldstate = sdev->sdev_state;
1902
1903         if (state == oldstate)
1904                 return 0;
1905
1906         switch (state) {
1907         case SDEV_CREATED:
1908                 /* There are no legal states that come back to
1909                  * created.  This is the manually initialised start
1910                  * state */
1911                 goto illegal;
1912                         
1913         case SDEV_RUNNING:
1914                 switch (oldstate) {
1915                 case SDEV_CREATED:
1916                 case SDEV_OFFLINE:
1917                 case SDEV_QUIESCE:
1918                 case SDEV_BLOCK:
1919                         break;
1920                 default:
1921                         goto illegal;
1922                 }
1923                 break;
1924
1925         case SDEV_QUIESCE:
1926                 switch (oldstate) {
1927                 case SDEV_RUNNING:
1928                 case SDEV_OFFLINE:
1929                         break;
1930                 default:
1931                         goto illegal;
1932                 }
1933                 break;
1934
1935         case SDEV_OFFLINE:
1936                 switch (oldstate) {
1937                 case SDEV_CREATED:
1938                 case SDEV_RUNNING:
1939                 case SDEV_QUIESCE:
1940                 case SDEV_BLOCK:
1941                         break;
1942                 default:
1943                         goto illegal;
1944                 }
1945                 break;
1946
1947         case SDEV_BLOCK:
1948                 switch (oldstate) {
1949                 case SDEV_CREATED:
1950                 case SDEV_RUNNING:
1951                         break;
1952                 default:
1953                         goto illegal;
1954                 }
1955                 break;
1956
1957         case SDEV_CANCEL:
1958                 switch (oldstate) {
1959                 case SDEV_CREATED:
1960                 case SDEV_RUNNING:
1961                 case SDEV_QUIESCE:
1962                 case SDEV_OFFLINE:
1963                 case SDEV_BLOCK:
1964                         break;
1965                 default:
1966                         goto illegal;
1967                 }
1968                 break;
1969
1970         case SDEV_DEL:
1971                 switch (oldstate) {
1972                 case SDEV_CREATED:
1973                 case SDEV_RUNNING:
1974                 case SDEV_OFFLINE:
1975                 case SDEV_CANCEL:
1976                         break;
1977                 default:
1978                         goto illegal;
1979                 }
1980                 break;
1981
1982         }
1983         sdev->sdev_state = state;
1984         return 0;
1985
1986  illegal:
1987         SCSI_LOG_ERROR_RECOVERY(1, 
1988                                 sdev_printk(KERN_ERR, sdev,
1989                                             "Illegal state transition %s->%s\n",
1990                                             scsi_device_state_name(oldstate),
1991                                             scsi_device_state_name(state))
1992                                 );
1993         return -EINVAL;
1994 }
1995 EXPORT_SYMBOL(scsi_device_set_state);
1996
1997 /**
1998  *      scsi_device_quiesce - Block user issued commands.
1999  *      @sdev:  scsi device to quiesce.
2000  *
2001  *      This works by trying to transition to the SDEV_QUIESCE state
2002  *      (which must be a legal transition).  When the device is in this
2003  *      state, only special requests will be accepted, all others will
2004  *      be deferred.  Since special requests may also be requeued requests,
2005  *      a successful return doesn't guarantee the device will be 
2006  *      totally quiescent.
2007  *
2008  *      Must be called with user context, may sleep.
2009  *
2010  *      Returns zero if unsuccessful or an error if not.
2011  **/
2012 int
2013 scsi_device_quiesce(struct scsi_device *sdev)
2014 {
2015         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2016         if (err)
2017                 return err;
2018
2019         scsi_run_queue(sdev->request_queue);
2020         while (sdev->device_busy) {
2021                 msleep_interruptible(200);
2022                 scsi_run_queue(sdev->request_queue);
2023         }
2024         return 0;
2025 }
2026 EXPORT_SYMBOL(scsi_device_quiesce);
2027
2028 /**
2029  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2030  *      @sdev:  scsi device to resume.
2031  *
2032  *      Moves the device from quiesced back to running and restarts the
2033  *      queues.
2034  *
2035  *      Must be called with user context, may sleep.
2036  **/
2037 void
2038 scsi_device_resume(struct scsi_device *sdev)
2039 {
2040         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2041                 return;
2042         scsi_run_queue(sdev->request_queue);
2043 }
2044 EXPORT_SYMBOL(scsi_device_resume);
2045
2046 static void
2047 device_quiesce_fn(struct scsi_device *sdev, void *data)
2048 {
2049         scsi_device_quiesce(sdev);
2050 }
2051
2052 void
2053 scsi_target_quiesce(struct scsi_target *starget)
2054 {
2055         starget_for_each_device(starget, NULL, device_quiesce_fn);
2056 }
2057 EXPORT_SYMBOL(scsi_target_quiesce);
2058
2059 static void
2060 device_resume_fn(struct scsi_device *sdev, void *data)
2061 {
2062         scsi_device_resume(sdev);
2063 }
2064
2065 void
2066 scsi_target_resume(struct scsi_target *starget)
2067 {
2068         starget_for_each_device(starget, NULL, device_resume_fn);
2069 }
2070 EXPORT_SYMBOL(scsi_target_resume);
2071
2072 /**
2073  * scsi_internal_device_block - internal function to put a device
2074  *                              temporarily into the SDEV_BLOCK state
2075  * @sdev:       device to block
2076  *
2077  * Block request made by scsi lld's to temporarily stop all
2078  * scsi commands on the specified device.  Called from interrupt
2079  * or normal process context.
2080  *
2081  * Returns zero if successful or error if not
2082  *
2083  * Notes:       
2084  *      This routine transitions the device to the SDEV_BLOCK state
2085  *      (which must be a legal transition).  When the device is in this
2086  *      state, all commands are deferred until the scsi lld reenables
2087  *      the device with scsi_device_unblock or device_block_tmo fires.
2088  *      This routine assumes the host_lock is held on entry.
2089  **/
2090 int
2091 scsi_internal_device_block(struct scsi_device *sdev)
2092 {
2093         request_queue_t *q = sdev->request_queue;
2094         unsigned long flags;
2095         int err = 0;
2096
2097         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2098         if (err)
2099                 return err;
2100
2101         /* 
2102          * The device has transitioned to SDEV_BLOCK.  Stop the
2103          * block layer from calling the midlayer with this device's
2104          * request queue. 
2105          */
2106         spin_lock_irqsave(q->queue_lock, flags);
2107         blk_stop_queue(q);
2108         spin_unlock_irqrestore(q->queue_lock, flags);
2109
2110         return 0;
2111 }
2112 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2113  
2114 /**
2115  * scsi_internal_device_unblock - resume a device after a block request
2116  * @sdev:       device to resume
2117  *
2118  * Called by scsi lld's or the midlayer to restart the device queue
2119  * for the previously suspended scsi device.  Called from interrupt or
2120  * normal process context.
2121  *
2122  * Returns zero if successful or error if not.
2123  *
2124  * Notes:       
2125  *      This routine transitions the device to the SDEV_RUNNING state
2126  *      (which must be a legal transition) allowing the midlayer to
2127  *      goose the queue for this device.  This routine assumes the 
2128  *      host_lock is held upon entry.
2129  **/
2130 int
2131 scsi_internal_device_unblock(struct scsi_device *sdev)
2132 {
2133         request_queue_t *q = sdev->request_queue; 
2134         int err;
2135         unsigned long flags;
2136         
2137         /* 
2138          * Try to transition the scsi device to SDEV_RUNNING
2139          * and goose the device queue if successful.  
2140          */
2141         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2142         if (err)
2143                 return err;
2144
2145         spin_lock_irqsave(q->queue_lock, flags);
2146         blk_start_queue(q);
2147         spin_unlock_irqrestore(q->queue_lock, flags);
2148
2149         return 0;
2150 }
2151 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2152
2153 static void
2154 device_block(struct scsi_device *sdev, void *data)
2155 {
2156         scsi_internal_device_block(sdev);
2157 }
2158
2159 static int
2160 target_block(struct device *dev, void *data)
2161 {
2162         if (scsi_is_target_device(dev))
2163                 starget_for_each_device(to_scsi_target(dev), NULL,
2164                                         device_block);
2165         return 0;
2166 }
2167
2168 void
2169 scsi_target_block(struct device *dev)
2170 {
2171         if (scsi_is_target_device(dev))
2172                 starget_for_each_device(to_scsi_target(dev), NULL,
2173                                         device_block);
2174         else
2175                 device_for_each_child(dev, NULL, target_block);
2176 }
2177 EXPORT_SYMBOL_GPL(scsi_target_block);
2178
2179 static void
2180 device_unblock(struct scsi_device *sdev, void *data)
2181 {
2182         scsi_internal_device_unblock(sdev);
2183 }
2184
2185 static int
2186 target_unblock(struct device *dev, void *data)
2187 {
2188         if (scsi_is_target_device(dev))
2189                 starget_for_each_device(to_scsi_target(dev), NULL,
2190                                         device_unblock);
2191         return 0;
2192 }
2193
2194 void
2195 scsi_target_unblock(struct device *dev)
2196 {
2197         if (scsi_is_target_device(dev))
2198                 starget_for_each_device(to_scsi_target(dev), NULL,
2199                                         device_unblock);
2200         else
2201                 device_for_each_child(dev, NULL, target_unblock);
2202 }
2203 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2204
2205 /**
2206  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2207  * @sg:         scatter-gather list
2208  * @sg_count:   number of segments in sg
2209  * @offset:     offset in bytes into sg, on return offset into the mapped area
2210  * @len:        bytes to map, on return number of bytes mapped
2211  *
2212  * Returns virtual address of the start of the mapped page
2213  */
2214 void *scsi_kmap_atomic_sg(struct scatterlist *sg, int sg_count,
2215                           size_t *offset, size_t *len)
2216 {
2217         int i;
2218         size_t sg_len = 0, len_complete = 0;
2219         struct page *page;
2220
2221         for (i = 0; i < sg_count; i++) {
2222                 len_complete = sg_len; /* Complete sg-entries */
2223                 sg_len += sg[i].length;
2224                 if (sg_len > *offset)
2225                         break;
2226         }
2227
2228         if (unlikely(i == sg_count)) {
2229                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2230                         "elements %d\n",
2231                        __FUNCTION__, sg_len, *offset, sg_count);
2232                 WARN_ON(1);
2233                 return NULL;
2234         }
2235
2236         /* Offset starting from the beginning of first page in this sg-entry */
2237         *offset = *offset - len_complete + sg[i].offset;
2238
2239         /* Assumption: contiguous pages can be accessed as "page + i" */
2240         page = nth_page(sg[i].page, (*offset >> PAGE_SHIFT));
2241         *offset &= ~PAGE_MASK;
2242
2243         /* Bytes in this sg-entry from *offset to the end of the page */
2244         sg_len = PAGE_SIZE - *offset;
2245         if (*len > sg_len)
2246                 *len = sg_len;
2247
2248         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2249 }
2250 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2251
2252 /**
2253  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously
2254  *                         mapped with scsi_kmap_atomic_sg
2255  * @virt:       virtual address to be unmapped
2256  */
2257 void scsi_kunmap_atomic_sg(void *virt)
2258 {
2259         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2260 }
2261 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);