Merge remote-tracking branches 'asoc/fix/tlv320aic3x' and 'asoc/fix/wm8962' into...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / ti / netcp_core.c
1 /*
2  * Keystone NetCP Core driver
3  *
4  * Copyright (C) 2014 Texas Instruments Incorporated
5  * Authors:     Sandeep Nair <sandeep_n@ti.com>
6  *              Sandeep Paulraj <s-paulraj@ti.com>
7  *              Cyril Chemparathy <cyril@ti.com>
8  *              Santosh Shilimkar <santosh.shilimkar@ti.com>
9  *              Murali Karicheri <m-karicheri2@ti.com>
10  *              Wingman Kwok <w-kwok2@ti.com>
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation version 2.
15  *
16  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
17  * kind, whether express or implied; without even the implied warranty
18  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 #include <linux/io.h>
23 #include <linux/module.h>
24 #include <linux/of_net.h>
25 #include <linux/of_address.h>
26 #include <linux/if_vlan.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/platform_device.h>
29 #include <linux/soc/ti/knav_qmss.h>
30 #include <linux/soc/ti/knav_dma.h>
31
32 #include "netcp.h"
33
34 #define NETCP_SOP_OFFSET        (NET_IP_ALIGN + NET_SKB_PAD)
35 #define NETCP_NAPI_WEIGHT       64
36 #define NETCP_TX_TIMEOUT        (5 * HZ)
37 #define NETCP_PACKET_SIZE       (ETH_FRAME_LEN + ETH_FCS_LEN)
38 #define NETCP_MIN_PACKET_SIZE   ETH_ZLEN
39 #define NETCP_MAX_MCAST_ADDR    16
40
41 #define NETCP_EFUSE_REG_INDEX   0
42
43 #define NETCP_MOD_PROBE_SKIPPED 1
44 #define NETCP_MOD_PROBE_FAILED  2
45
46 #define NETCP_DEBUG (NETIF_MSG_HW       | NETIF_MSG_WOL         |       \
47                     NETIF_MSG_DRV       | NETIF_MSG_LINK        |       \
48                     NETIF_MSG_IFUP      | NETIF_MSG_INTR        |       \
49                     NETIF_MSG_PROBE     | NETIF_MSG_TIMER       |       \
50                     NETIF_MSG_IFDOWN    | NETIF_MSG_RX_ERR      |       \
51                     NETIF_MSG_TX_ERR    | NETIF_MSG_TX_DONE     |       \
52                     NETIF_MSG_PKTDATA   | NETIF_MSG_TX_QUEUED   |       \
53                     NETIF_MSG_RX_STATUS)
54
55 #define NETCP_EFUSE_ADDR_SWAP   2
56
57 #define knav_queue_get_id(q)    knav_queue_device_control(q, \
58                                 KNAV_QUEUE_GET_ID, (unsigned long)NULL)
59
60 #define knav_queue_enable_notify(q) knav_queue_device_control(q,        \
61                                         KNAV_QUEUE_ENABLE_NOTIFY,       \
62                                         (unsigned long)NULL)
63
64 #define knav_queue_disable_notify(q) knav_queue_device_control(q,       \
65                                         KNAV_QUEUE_DISABLE_NOTIFY,      \
66                                         (unsigned long)NULL)
67
68 #define knav_queue_get_count(q) knav_queue_device_control(q, \
69                                 KNAV_QUEUE_GET_COUNT, (unsigned long)NULL)
70
71 #define for_each_netcp_module(module)                   \
72         list_for_each_entry(module, &netcp_modules, module_list)
73
74 #define for_each_netcp_device_module(netcp_device, inst_modpriv) \
75         list_for_each_entry(inst_modpriv, \
76                 &((netcp_device)->modpriv_head), inst_list)
77
78 #define for_each_module(netcp, intf_modpriv)                    \
79         list_for_each_entry(intf_modpriv, &netcp->module_head, intf_list)
80
81 /* Module management structures */
82 struct netcp_device {
83         struct list_head        device_list;
84         struct list_head        interface_head;
85         struct list_head        modpriv_head;
86         struct device           *device;
87 };
88
89 struct netcp_inst_modpriv {
90         struct netcp_device     *netcp_device;
91         struct netcp_module     *netcp_module;
92         struct list_head        inst_list;
93         void                    *module_priv;
94 };
95
96 struct netcp_intf_modpriv {
97         struct netcp_intf       *netcp_priv;
98         struct netcp_module     *netcp_module;
99         struct list_head        intf_list;
100         void                    *module_priv;
101 };
102
103 static LIST_HEAD(netcp_devices);
104 static LIST_HEAD(netcp_modules);
105 static DEFINE_MUTEX(netcp_modules_lock);
106
107 static int netcp_debug_level = -1;
108 module_param(netcp_debug_level, int, 0);
109 MODULE_PARM_DESC(netcp_debug_level, "Netcp debug level (NETIF_MSG bits) (0=none,...,16=all)");
110
111 /* Helper functions - Get/Set */
112 static void get_pkt_info(u32 *buff, u32 *buff_len, u32 *ndesc,
113                          struct knav_dma_desc *desc)
114 {
115         *buff_len = desc->buff_len;
116         *buff = desc->buff;
117         *ndesc = desc->next_desc;
118 }
119
120 static void get_pad_info(u32 *pad0, u32 *pad1, struct knav_dma_desc *desc)
121 {
122         *pad0 = desc->pad[0];
123         *pad1 = desc->pad[1];
124 }
125
126 static void get_org_pkt_info(u32 *buff, u32 *buff_len,
127                              struct knav_dma_desc *desc)
128 {
129         *buff = desc->orig_buff;
130         *buff_len = desc->orig_len;
131 }
132
133 static void get_words(u32 *words, int num_words, u32 *desc)
134 {
135         int i;
136
137         for (i = 0; i < num_words; i++)
138                 words[i] = desc[i];
139 }
140
141 static void set_pkt_info(u32 buff, u32 buff_len, u32 ndesc,
142                          struct knav_dma_desc *desc)
143 {
144         desc->buff_len = buff_len;
145         desc->buff = buff;
146         desc->next_desc = ndesc;
147 }
148
149 static void set_desc_info(u32 desc_info, u32 pkt_info,
150                           struct knav_dma_desc *desc)
151 {
152         desc->desc_info = desc_info;
153         desc->packet_info = pkt_info;
154 }
155
156 static void set_pad_info(u32 pad0, u32 pad1, struct knav_dma_desc *desc)
157 {
158         desc->pad[0] = pad0;
159         desc->pad[1] = pad1;
160 }
161
162 static void set_org_pkt_info(u32 buff, u32 buff_len,
163                              struct knav_dma_desc *desc)
164 {
165         desc->orig_buff = buff;
166         desc->orig_len = buff_len;
167 }
168
169 static void set_words(u32 *words, int num_words, u32 *desc)
170 {
171         int i;
172
173         for (i = 0; i < num_words; i++)
174                 desc[i] = words[i];
175 }
176
177 /* Read the e-fuse value as 32 bit values to be endian independent */
178 static int emac_arch_get_mac_addr(char *x, void __iomem *efuse_mac, u32 swap)
179 {
180         unsigned int addr0, addr1;
181
182         addr1 = readl(efuse_mac + 4);
183         addr0 = readl(efuse_mac);
184
185         switch (swap) {
186         case NETCP_EFUSE_ADDR_SWAP:
187                 addr0 = addr1;
188                 addr1 = readl(efuse_mac);
189                 break;
190         default:
191                 break;
192         }
193
194         x[0] = (addr1 & 0x0000ff00) >> 8;
195         x[1] = addr1 & 0x000000ff;
196         x[2] = (addr0 & 0xff000000) >> 24;
197         x[3] = (addr0 & 0x00ff0000) >> 16;
198         x[4] = (addr0 & 0x0000ff00) >> 8;
199         x[5] = addr0 & 0x000000ff;
200
201         return 0;
202 }
203
204 static const char *netcp_node_name(struct device_node *node)
205 {
206         const char *name;
207
208         if (of_property_read_string(node, "label", &name) < 0)
209                 name = node->name;
210         if (!name)
211                 name = "unknown";
212         return name;
213 }
214
215 /* Module management routines */
216 static int netcp_register_interface(struct netcp_intf *netcp)
217 {
218         int ret;
219
220         ret = register_netdev(netcp->ndev);
221         if (!ret)
222                 netcp->netdev_registered = true;
223         return ret;
224 }
225
226 static int netcp_module_probe(struct netcp_device *netcp_device,
227                               struct netcp_module *module)
228 {
229         struct device *dev = netcp_device->device;
230         struct device_node *devices, *interface, *node = dev->of_node;
231         struct device_node *child;
232         struct netcp_inst_modpriv *inst_modpriv;
233         struct netcp_intf *netcp_intf;
234         struct netcp_module *tmp;
235         bool primary_module_registered = false;
236         int ret;
237
238         /* Find this module in the sub-tree for this device */
239         devices = of_get_child_by_name(node, "netcp-devices");
240         if (!devices) {
241                 dev_err(dev, "could not find netcp-devices node\n");
242                 return NETCP_MOD_PROBE_SKIPPED;
243         }
244
245         for_each_available_child_of_node(devices, child) {
246                 const char *name = netcp_node_name(child);
247
248                 if (!strcasecmp(module->name, name))
249                         break;
250         }
251
252         of_node_put(devices);
253         /* If module not used for this device, skip it */
254         if (!child) {
255                 dev_warn(dev, "module(%s) not used for device\n", module->name);
256                 return NETCP_MOD_PROBE_SKIPPED;
257         }
258
259         inst_modpriv = devm_kzalloc(dev, sizeof(*inst_modpriv), GFP_KERNEL);
260         if (!inst_modpriv) {
261                 of_node_put(child);
262                 return -ENOMEM;
263         }
264
265         inst_modpriv->netcp_device = netcp_device;
266         inst_modpriv->netcp_module = module;
267         list_add_tail(&inst_modpriv->inst_list, &netcp_device->modpriv_head);
268
269         ret = module->probe(netcp_device, dev, child,
270                             &inst_modpriv->module_priv);
271         of_node_put(child);
272         if (ret) {
273                 dev_err(dev, "Probe of module(%s) failed with %d\n",
274                         module->name, ret);
275                 list_del(&inst_modpriv->inst_list);
276                 devm_kfree(dev, inst_modpriv);
277                 return NETCP_MOD_PROBE_FAILED;
278         }
279
280         /* Attach modules only if the primary module is probed */
281         for_each_netcp_module(tmp) {
282                 if (tmp->primary)
283                         primary_module_registered = true;
284         }
285
286         if (!primary_module_registered)
287                 return 0;
288
289         /* Attach module to interfaces */
290         list_for_each_entry(netcp_intf, &netcp_device->interface_head,
291                             interface_list) {
292                 struct netcp_intf_modpriv *intf_modpriv;
293
294                 intf_modpriv = devm_kzalloc(dev, sizeof(*intf_modpriv),
295                                             GFP_KERNEL);
296                 if (!intf_modpriv)
297                         return -ENOMEM;
298
299                 interface = of_parse_phandle(netcp_intf->node_interface,
300                                              module->name, 0);
301
302                 if (!interface) {
303                         devm_kfree(dev, intf_modpriv);
304                         continue;
305                 }
306
307                 intf_modpriv->netcp_priv = netcp_intf;
308                 intf_modpriv->netcp_module = module;
309                 list_add_tail(&intf_modpriv->intf_list,
310                               &netcp_intf->module_head);
311
312                 ret = module->attach(inst_modpriv->module_priv,
313                                      netcp_intf->ndev, interface,
314                                      &intf_modpriv->module_priv);
315                 of_node_put(interface);
316                 if (ret) {
317                         dev_dbg(dev, "Attach of module %s declined with %d\n",
318                                 module->name, ret);
319                         list_del(&intf_modpriv->intf_list);
320                         devm_kfree(dev, intf_modpriv);
321                         continue;
322                 }
323         }
324
325         /* Now register the interface with netdev */
326         list_for_each_entry(netcp_intf,
327                             &netcp_device->interface_head,
328                             interface_list) {
329                 /* If interface not registered then register now */
330                 if (!netcp_intf->netdev_registered) {
331                         ret = netcp_register_interface(netcp_intf);
332                         if (ret)
333                                 return -ENODEV;
334                 }
335         }
336         return 0;
337 }
338
339 int netcp_register_module(struct netcp_module *module)
340 {
341         struct netcp_device *netcp_device;
342         struct netcp_module *tmp;
343         int ret;
344
345         if (!module->name) {
346                 WARN(1, "error registering netcp module: no name\n");
347                 return -EINVAL;
348         }
349
350         if (!module->probe) {
351                 WARN(1, "error registering netcp module: no probe\n");
352                 return -EINVAL;
353         }
354
355         mutex_lock(&netcp_modules_lock);
356
357         for_each_netcp_module(tmp) {
358                 if (!strcasecmp(tmp->name, module->name)) {
359                         mutex_unlock(&netcp_modules_lock);
360                         return -EEXIST;
361                 }
362         }
363         list_add_tail(&module->module_list, &netcp_modules);
364
365         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
366                 ret = netcp_module_probe(netcp_device, module);
367                 if (ret < 0)
368                         goto fail;
369         }
370         mutex_unlock(&netcp_modules_lock);
371         return 0;
372
373 fail:
374         mutex_unlock(&netcp_modules_lock);
375         netcp_unregister_module(module);
376         return ret;
377 }
378 EXPORT_SYMBOL_GPL(netcp_register_module);
379
380 static void netcp_release_module(struct netcp_device *netcp_device,
381                                  struct netcp_module *module)
382 {
383         struct netcp_inst_modpriv *inst_modpriv, *inst_tmp;
384         struct netcp_intf *netcp_intf, *netcp_tmp;
385         struct device *dev = netcp_device->device;
386
387         /* Release the module from each interface */
388         list_for_each_entry_safe(netcp_intf, netcp_tmp,
389                                  &netcp_device->interface_head,
390                                  interface_list) {
391                 struct netcp_intf_modpriv *intf_modpriv, *intf_tmp;
392
393                 list_for_each_entry_safe(intf_modpriv, intf_tmp,
394                                          &netcp_intf->module_head,
395                                          intf_list) {
396                         if (intf_modpriv->netcp_module == module) {
397                                 module->release(intf_modpriv->module_priv);
398                                 list_del(&intf_modpriv->intf_list);
399                                 devm_kfree(dev, intf_modpriv);
400                                 break;
401                         }
402                 }
403         }
404
405         /* Remove the module from each instance */
406         list_for_each_entry_safe(inst_modpriv, inst_tmp,
407                                  &netcp_device->modpriv_head, inst_list) {
408                 if (inst_modpriv->netcp_module == module) {
409                         module->remove(netcp_device,
410                                        inst_modpriv->module_priv);
411                         list_del(&inst_modpriv->inst_list);
412                         devm_kfree(dev, inst_modpriv);
413                         break;
414                 }
415         }
416 }
417
418 void netcp_unregister_module(struct netcp_module *module)
419 {
420         struct netcp_device *netcp_device;
421         struct netcp_module *module_tmp;
422
423         mutex_lock(&netcp_modules_lock);
424
425         list_for_each_entry(netcp_device, &netcp_devices, device_list) {
426                 netcp_release_module(netcp_device, module);
427         }
428
429         /* Remove the module from the module list */
430         for_each_netcp_module(module_tmp) {
431                 if (module == module_tmp) {
432                         list_del(&module->module_list);
433                         break;
434                 }
435         }
436
437         mutex_unlock(&netcp_modules_lock);
438 }
439 EXPORT_SYMBOL_GPL(netcp_unregister_module);
440
441 void *netcp_module_get_intf_data(struct netcp_module *module,
442                                  struct netcp_intf *intf)
443 {
444         struct netcp_intf_modpriv *intf_modpriv;
445
446         list_for_each_entry(intf_modpriv, &intf->module_head, intf_list)
447                 if (intf_modpriv->netcp_module == module)
448                         return intf_modpriv->module_priv;
449         return NULL;
450 }
451 EXPORT_SYMBOL_GPL(netcp_module_get_intf_data);
452
453 /* Module TX and RX Hook management */
454 struct netcp_hook_list {
455         struct list_head         list;
456         netcp_hook_rtn          *hook_rtn;
457         void                    *hook_data;
458         int                      order;
459 };
460
461 int netcp_register_txhook(struct netcp_intf *netcp_priv, int order,
462                           netcp_hook_rtn *hook_rtn, void *hook_data)
463 {
464         struct netcp_hook_list *entry;
465         struct netcp_hook_list *next;
466         unsigned long flags;
467
468         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
469         if (!entry)
470                 return -ENOMEM;
471
472         entry->hook_rtn  = hook_rtn;
473         entry->hook_data = hook_data;
474         entry->order     = order;
475
476         spin_lock_irqsave(&netcp_priv->lock, flags);
477         list_for_each_entry(next, &netcp_priv->txhook_list_head, list) {
478                 if (next->order > order)
479                         break;
480         }
481         __list_add(&entry->list, next->list.prev, &next->list);
482         spin_unlock_irqrestore(&netcp_priv->lock, flags);
483
484         return 0;
485 }
486 EXPORT_SYMBOL_GPL(netcp_register_txhook);
487
488 int netcp_unregister_txhook(struct netcp_intf *netcp_priv, int order,
489                             netcp_hook_rtn *hook_rtn, void *hook_data)
490 {
491         struct netcp_hook_list *next, *n;
492         unsigned long flags;
493
494         spin_lock_irqsave(&netcp_priv->lock, flags);
495         list_for_each_entry_safe(next, n, &netcp_priv->txhook_list_head, list) {
496                 if ((next->order     == order) &&
497                     (next->hook_rtn  == hook_rtn) &&
498                     (next->hook_data == hook_data)) {
499                         list_del(&next->list);
500                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
501                         devm_kfree(netcp_priv->dev, next);
502                         return 0;
503                 }
504         }
505         spin_unlock_irqrestore(&netcp_priv->lock, flags);
506         return -ENOENT;
507 }
508 EXPORT_SYMBOL_GPL(netcp_unregister_txhook);
509
510 int netcp_register_rxhook(struct netcp_intf *netcp_priv, int order,
511                           netcp_hook_rtn *hook_rtn, void *hook_data)
512 {
513         struct netcp_hook_list *entry;
514         struct netcp_hook_list *next;
515         unsigned long flags;
516
517         entry = devm_kzalloc(netcp_priv->dev, sizeof(*entry), GFP_KERNEL);
518         if (!entry)
519                 return -ENOMEM;
520
521         entry->hook_rtn  = hook_rtn;
522         entry->hook_data = hook_data;
523         entry->order     = order;
524
525         spin_lock_irqsave(&netcp_priv->lock, flags);
526         list_for_each_entry(next, &netcp_priv->rxhook_list_head, list) {
527                 if (next->order > order)
528                         break;
529         }
530         __list_add(&entry->list, next->list.prev, &next->list);
531         spin_unlock_irqrestore(&netcp_priv->lock, flags);
532
533         return 0;
534 }
535
536 int netcp_unregister_rxhook(struct netcp_intf *netcp_priv, int order,
537                             netcp_hook_rtn *hook_rtn, void *hook_data)
538 {
539         struct netcp_hook_list *next, *n;
540         unsigned long flags;
541
542         spin_lock_irqsave(&netcp_priv->lock, flags);
543         list_for_each_entry_safe(next, n, &netcp_priv->rxhook_list_head, list) {
544                 if ((next->order     == order) &&
545                     (next->hook_rtn  == hook_rtn) &&
546                     (next->hook_data == hook_data)) {
547                         list_del(&next->list);
548                         spin_unlock_irqrestore(&netcp_priv->lock, flags);
549                         devm_kfree(netcp_priv->dev, next);
550                         return 0;
551                 }
552         }
553         spin_unlock_irqrestore(&netcp_priv->lock, flags);
554
555         return -ENOENT;
556 }
557
558 static void netcp_frag_free(bool is_frag, void *ptr)
559 {
560         if (is_frag)
561                 skb_free_frag(ptr);
562         else
563                 kfree(ptr);
564 }
565
566 static void netcp_free_rx_desc_chain(struct netcp_intf *netcp,
567                                      struct knav_dma_desc *desc)
568 {
569         struct knav_dma_desc *ndesc;
570         dma_addr_t dma_desc, dma_buf;
571         unsigned int buf_len, dma_sz = sizeof(*ndesc);
572         void *buf_ptr;
573         u32 tmp;
574
575         get_words(&dma_desc, 1, &desc->next_desc);
576
577         while (dma_desc) {
578                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
579                 if (unlikely(!ndesc)) {
580                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
581                         break;
582                 }
583                 get_pkt_info(&dma_buf, &tmp, &dma_desc, ndesc);
584                 get_pad_info((u32 *)&buf_ptr, &tmp, ndesc);
585                 dma_unmap_page(netcp->dev, dma_buf, PAGE_SIZE, DMA_FROM_DEVICE);
586                 __free_page(buf_ptr);
587                 knav_pool_desc_put(netcp->rx_pool, desc);
588         }
589
590         get_pad_info((u32 *)&buf_ptr, &buf_len, desc);
591         if (buf_ptr)
592                 netcp_frag_free(buf_len <= PAGE_SIZE, buf_ptr);
593         knav_pool_desc_put(netcp->rx_pool, desc);
594 }
595
596 static void netcp_empty_rx_queue(struct netcp_intf *netcp)
597 {
598         struct knav_dma_desc *desc;
599         unsigned int dma_sz;
600         dma_addr_t dma;
601
602         for (; ;) {
603                 dma = knav_queue_pop(netcp->rx_queue, &dma_sz);
604                 if (!dma)
605                         break;
606
607                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
608                 if (unlikely(!desc)) {
609                         dev_err(netcp->ndev_dev, "%s: failed to unmap Rx desc\n",
610                                 __func__);
611                         netcp->ndev->stats.rx_errors++;
612                         continue;
613                 }
614                 netcp_free_rx_desc_chain(netcp, desc);
615                 netcp->ndev->stats.rx_dropped++;
616         }
617 }
618
619 static int netcp_process_one_rx_packet(struct netcp_intf *netcp)
620 {
621         unsigned int dma_sz, buf_len, org_buf_len;
622         struct knav_dma_desc *desc, *ndesc;
623         unsigned int pkt_sz = 0, accum_sz;
624         struct netcp_hook_list *rx_hook;
625         dma_addr_t dma_desc, dma_buff;
626         struct netcp_packet p_info;
627         struct sk_buff *skb;
628         void *org_buf_ptr;
629         u32 tmp;
630
631         dma_desc = knav_queue_pop(netcp->rx_queue, &dma_sz);
632         if (!dma_desc)
633                 return -1;
634
635         desc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
636         if (unlikely(!desc)) {
637                 dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
638                 return 0;
639         }
640
641         get_pkt_info(&dma_buff, &buf_len, &dma_desc, desc);
642         get_pad_info((u32 *)&org_buf_ptr, &org_buf_len, desc);
643
644         if (unlikely(!org_buf_ptr)) {
645                 dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
646                 goto free_desc;
647         }
648
649         pkt_sz &= KNAV_DMA_DESC_PKT_LEN_MASK;
650         accum_sz = buf_len;
651         dma_unmap_single(netcp->dev, dma_buff, buf_len, DMA_FROM_DEVICE);
652
653         /* Build a new sk_buff for the primary buffer */
654         skb = build_skb(org_buf_ptr, org_buf_len);
655         if (unlikely(!skb)) {
656                 dev_err(netcp->ndev_dev, "build_skb() failed\n");
657                 goto free_desc;
658         }
659
660         /* update data, tail and len */
661         skb_reserve(skb, NETCP_SOP_OFFSET);
662         __skb_put(skb, buf_len);
663
664         /* Fill in the page fragment list */
665         while (dma_desc) {
666                 struct page *page;
667
668                 ndesc = knav_pool_desc_unmap(netcp->rx_pool, dma_desc, dma_sz);
669                 if (unlikely(!ndesc)) {
670                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
671                         goto free_desc;
672                 }
673
674                 get_pkt_info(&dma_buff, &buf_len, &dma_desc, ndesc);
675                 get_pad_info((u32 *)&page, &tmp, ndesc);
676
677                 if (likely(dma_buff && buf_len && page)) {
678                         dma_unmap_page(netcp->dev, dma_buff, PAGE_SIZE,
679                                        DMA_FROM_DEVICE);
680                 } else {
681                         dev_err(netcp->ndev_dev, "Bad Rx desc dma_buff(%p), len(%d), page(%p)\n",
682                                 (void *)dma_buff, buf_len, page);
683                         goto free_desc;
684                 }
685
686                 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
687                                 offset_in_page(dma_buff), buf_len, PAGE_SIZE);
688                 accum_sz += buf_len;
689
690                 /* Free the descriptor */
691                 knav_pool_desc_put(netcp->rx_pool, ndesc);
692         }
693
694         /* Free the primary descriptor */
695         knav_pool_desc_put(netcp->rx_pool, desc);
696
697         /* check for packet len and warn */
698         if (unlikely(pkt_sz != accum_sz))
699                 dev_dbg(netcp->ndev_dev, "mismatch in packet size(%d) & sum of fragments(%d)\n",
700                         pkt_sz, accum_sz);
701
702         /* Remove ethernet FCS from the packet */
703         __pskb_trim(skb, skb->len - ETH_FCS_LEN);
704
705         /* Call each of the RX hooks */
706         p_info.skb = skb;
707         p_info.rxtstamp_complete = false;
708         list_for_each_entry(rx_hook, &netcp->rxhook_list_head, list) {
709                 int ret;
710
711                 ret = rx_hook->hook_rtn(rx_hook->order, rx_hook->hook_data,
712                                         &p_info);
713                 if (unlikely(ret)) {
714                         dev_err(netcp->ndev_dev, "RX hook %d failed: %d\n",
715                                 rx_hook->order, ret);
716                         netcp->ndev->stats.rx_errors++;
717                         dev_kfree_skb(skb);
718                         return 0;
719                 }
720         }
721
722         netcp->ndev->stats.rx_packets++;
723         netcp->ndev->stats.rx_bytes += skb->len;
724
725         /* push skb up the stack */
726         skb->protocol = eth_type_trans(skb, netcp->ndev);
727         netif_receive_skb(skb);
728         return 0;
729
730 free_desc:
731         netcp_free_rx_desc_chain(netcp, desc);
732         netcp->ndev->stats.rx_errors++;
733         return 0;
734 }
735
736 static int netcp_process_rx_packets(struct netcp_intf *netcp,
737                                     unsigned int budget)
738 {
739         int i;
740
741         for (i = 0; (i < budget) && !netcp_process_one_rx_packet(netcp); i++)
742                 ;
743         return i;
744 }
745
746 /* Release descriptors and attached buffers from Rx FDQ */
747 static void netcp_free_rx_buf(struct netcp_intf *netcp, int fdq)
748 {
749         struct knav_dma_desc *desc;
750         unsigned int buf_len, dma_sz;
751         dma_addr_t dma;
752         void *buf_ptr;
753         u32 tmp;
754
755         /* Allocate descriptor */
756         while ((dma = knav_queue_pop(netcp->rx_fdq[fdq], &dma_sz))) {
757                 desc = knav_pool_desc_unmap(netcp->rx_pool, dma, dma_sz);
758                 if (unlikely(!desc)) {
759                         dev_err(netcp->ndev_dev, "failed to unmap Rx desc\n");
760                         continue;
761                 }
762
763                 get_org_pkt_info(&dma, &buf_len, desc);
764                 get_pad_info((u32 *)&buf_ptr, &tmp, desc);
765
766                 if (unlikely(!dma)) {
767                         dev_err(netcp->ndev_dev, "NULL orig_buff in desc\n");
768                         knav_pool_desc_put(netcp->rx_pool, desc);
769                         continue;
770                 }
771
772                 if (unlikely(!buf_ptr)) {
773                         dev_err(netcp->ndev_dev, "NULL bufptr in desc\n");
774                         knav_pool_desc_put(netcp->rx_pool, desc);
775                         continue;
776                 }
777
778                 if (fdq == 0) {
779                         dma_unmap_single(netcp->dev, dma, buf_len,
780                                          DMA_FROM_DEVICE);
781                         netcp_frag_free((buf_len <= PAGE_SIZE), buf_ptr);
782                 } else {
783                         dma_unmap_page(netcp->dev, dma, buf_len,
784                                        DMA_FROM_DEVICE);
785                         __free_page(buf_ptr);
786                 }
787
788                 knav_pool_desc_put(netcp->rx_pool, desc);
789         }
790 }
791
792 static void netcp_rxpool_free(struct netcp_intf *netcp)
793 {
794         int i;
795
796         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
797              !IS_ERR_OR_NULL(netcp->rx_fdq[i]); i++)
798                 netcp_free_rx_buf(netcp, i);
799
800         if (knav_pool_count(netcp->rx_pool) != netcp->rx_pool_size)
801                 dev_err(netcp->ndev_dev, "Lost Rx (%d) descriptors\n",
802                         netcp->rx_pool_size - knav_pool_count(netcp->rx_pool));
803
804         knav_pool_destroy(netcp->rx_pool);
805         netcp->rx_pool = NULL;
806 }
807
808 static int netcp_allocate_rx_buf(struct netcp_intf *netcp, int fdq)
809 {
810         struct knav_dma_desc *hwdesc;
811         unsigned int buf_len, dma_sz;
812         u32 desc_info, pkt_info;
813         struct page *page;
814         dma_addr_t dma;
815         void *bufptr;
816         u32 pad[2];
817
818         /* Allocate descriptor */
819         hwdesc = knav_pool_desc_get(netcp->rx_pool);
820         if (IS_ERR_OR_NULL(hwdesc)) {
821                 dev_dbg(netcp->ndev_dev, "out of rx pool desc\n");
822                 return -ENOMEM;
823         }
824
825         if (likely(fdq == 0)) {
826                 unsigned int primary_buf_len;
827                 /* Allocate a primary receive queue entry */
828                 buf_len = NETCP_PACKET_SIZE + NETCP_SOP_OFFSET;
829                 primary_buf_len = SKB_DATA_ALIGN(buf_len) +
830                                 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
831
832                 bufptr = netdev_alloc_frag(primary_buf_len);
833                 pad[1] = primary_buf_len;
834
835                 if (unlikely(!bufptr)) {
836                         dev_warn_ratelimited(netcp->ndev_dev,
837                                              "Primary RX buffer alloc failed\n");
838                         goto fail;
839                 }
840                 dma = dma_map_single(netcp->dev, bufptr, buf_len,
841                                      DMA_TO_DEVICE);
842                 if (unlikely(dma_mapping_error(netcp->dev, dma)))
843                         goto fail;
844
845                 pad[0] = (u32)bufptr;
846
847         } else {
848                 /* Allocate a secondary receive queue entry */
849                 page = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_COLD);
850                 if (unlikely(!page)) {
851                         dev_warn_ratelimited(netcp->ndev_dev, "Secondary page alloc failed\n");
852                         goto fail;
853                 }
854                 buf_len = PAGE_SIZE;
855                 dma = dma_map_page(netcp->dev, page, 0, buf_len, DMA_TO_DEVICE);
856                 pad[0] = (u32)page;
857                 pad[1] = 0;
858         }
859
860         desc_info =  KNAV_DMA_DESC_PS_INFO_IN_DESC;
861         desc_info |= buf_len & KNAV_DMA_DESC_PKT_LEN_MASK;
862         pkt_info =  KNAV_DMA_DESC_HAS_EPIB;
863         pkt_info |= KNAV_DMA_NUM_PS_WORDS << KNAV_DMA_DESC_PSLEN_SHIFT;
864         pkt_info |= (netcp->rx_queue_id & KNAV_DMA_DESC_RETQ_MASK) <<
865                     KNAV_DMA_DESC_RETQ_SHIFT;
866         set_org_pkt_info(dma, buf_len, hwdesc);
867         set_pad_info(pad[0], pad[1], hwdesc);
868         set_desc_info(desc_info, pkt_info, hwdesc);
869
870         /* Push to FDQs */
871         knav_pool_desc_map(netcp->rx_pool, hwdesc, sizeof(*hwdesc), &dma,
872                            &dma_sz);
873         knav_queue_push(netcp->rx_fdq[fdq], dma, sizeof(*hwdesc), 0);
874         return 0;
875
876 fail:
877         knav_pool_desc_put(netcp->rx_pool, hwdesc);
878         return -ENOMEM;
879 }
880
881 /* Refill Rx FDQ with descriptors & attached buffers */
882 static void netcp_rxpool_refill(struct netcp_intf *netcp)
883 {
884         u32 fdq_deficit[KNAV_DMA_FDQ_PER_CHAN] = {0};
885         int i, ret = 0;
886
887         /* Calculate the FDQ deficit and refill */
888         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_fdq[i]; i++) {
889                 fdq_deficit[i] = netcp->rx_queue_depths[i] -
890                                  knav_queue_get_count(netcp->rx_fdq[i]);
891
892                 while (fdq_deficit[i]-- && !ret)
893                         ret = netcp_allocate_rx_buf(netcp, i);
894         } /* end for fdqs */
895 }
896
897 /* NAPI poll */
898 static int netcp_rx_poll(struct napi_struct *napi, int budget)
899 {
900         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
901                                                 rx_napi);
902         unsigned int packets;
903
904         packets = netcp_process_rx_packets(netcp, budget);
905
906         netcp_rxpool_refill(netcp);
907         if (packets < budget) {
908                 napi_complete(&netcp->rx_napi);
909                 knav_queue_enable_notify(netcp->rx_queue);
910         }
911
912         return packets;
913 }
914
915 static void netcp_rx_notify(void *arg)
916 {
917         struct netcp_intf *netcp = arg;
918
919         knav_queue_disable_notify(netcp->rx_queue);
920         napi_schedule(&netcp->rx_napi);
921 }
922
923 static void netcp_free_tx_desc_chain(struct netcp_intf *netcp,
924                                      struct knav_dma_desc *desc,
925                                      unsigned int desc_sz)
926 {
927         struct knav_dma_desc *ndesc = desc;
928         dma_addr_t dma_desc, dma_buf;
929         unsigned int buf_len;
930
931         while (ndesc) {
932                 get_pkt_info(&dma_buf, &buf_len, &dma_desc, ndesc);
933
934                 if (dma_buf && buf_len)
935                         dma_unmap_single(netcp->dev, dma_buf, buf_len,
936                                          DMA_TO_DEVICE);
937                 else
938                         dev_warn(netcp->ndev_dev, "bad Tx desc buf(%p), len(%d)\n",
939                                  (void *)dma_buf, buf_len);
940
941                 knav_pool_desc_put(netcp->tx_pool, ndesc);
942                 ndesc = NULL;
943                 if (dma_desc) {
944                         ndesc = knav_pool_desc_unmap(netcp->tx_pool, dma_desc,
945                                                      desc_sz);
946                         if (!ndesc)
947                                 dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
948                 }
949         }
950 }
951
952 static int netcp_process_tx_compl_packets(struct netcp_intf *netcp,
953                                           unsigned int budget)
954 {
955         struct knav_dma_desc *desc;
956         struct sk_buff *skb;
957         unsigned int dma_sz;
958         dma_addr_t dma;
959         int pkts = 0;
960         u32 tmp;
961
962         while (budget--) {
963                 dma = knav_queue_pop(netcp->tx_compl_q, &dma_sz);
964                 if (!dma)
965                         break;
966                 desc = knav_pool_desc_unmap(netcp->tx_pool, dma, dma_sz);
967                 if (unlikely(!desc)) {
968                         dev_err(netcp->ndev_dev, "failed to unmap Tx desc\n");
969                         netcp->ndev->stats.tx_errors++;
970                         continue;
971                 }
972
973                 get_pad_info((u32 *)&skb, &tmp, desc);
974                 netcp_free_tx_desc_chain(netcp, desc, dma_sz);
975                 if (!skb) {
976                         dev_err(netcp->ndev_dev, "No skb in Tx desc\n");
977                         netcp->ndev->stats.tx_errors++;
978                         continue;
979                 }
980
981                 if (netif_subqueue_stopped(netcp->ndev, skb) &&
982                     netif_running(netcp->ndev) &&
983                     (knav_pool_count(netcp->tx_pool) >
984                     netcp->tx_resume_threshold)) {
985                         u16 subqueue = skb_get_queue_mapping(skb);
986
987                         netif_wake_subqueue(netcp->ndev, subqueue);
988                 }
989
990                 netcp->ndev->stats.tx_packets++;
991                 netcp->ndev->stats.tx_bytes += skb->len;
992                 dev_kfree_skb(skb);
993                 pkts++;
994         }
995         return pkts;
996 }
997
998 static int netcp_tx_poll(struct napi_struct *napi, int budget)
999 {
1000         int packets;
1001         struct netcp_intf *netcp = container_of(napi, struct netcp_intf,
1002                                                 tx_napi);
1003
1004         packets = netcp_process_tx_compl_packets(netcp, budget);
1005         if (packets < budget) {
1006                 napi_complete(&netcp->tx_napi);
1007                 knav_queue_enable_notify(netcp->tx_compl_q);
1008         }
1009
1010         return packets;
1011 }
1012
1013 static void netcp_tx_notify(void *arg)
1014 {
1015         struct netcp_intf *netcp = arg;
1016
1017         knav_queue_disable_notify(netcp->tx_compl_q);
1018         napi_schedule(&netcp->tx_napi);
1019 }
1020
1021 static struct knav_dma_desc*
1022 netcp_tx_map_skb(struct sk_buff *skb, struct netcp_intf *netcp)
1023 {
1024         struct knav_dma_desc *desc, *ndesc, *pdesc;
1025         unsigned int pkt_len = skb_headlen(skb);
1026         struct device *dev = netcp->dev;
1027         dma_addr_t dma_addr;
1028         unsigned int dma_sz;
1029         int i;
1030
1031         /* Map the linear buffer */
1032         dma_addr = dma_map_single(dev, skb->data, pkt_len, DMA_TO_DEVICE);
1033         if (unlikely(dma_mapping_error(dev, dma_addr))) {
1034                 dev_err(netcp->ndev_dev, "Failed to map skb buffer\n");
1035                 return NULL;
1036         }
1037
1038         desc = knav_pool_desc_get(netcp->tx_pool);
1039         if (unlikely(IS_ERR_OR_NULL(desc))) {
1040                 dev_err(netcp->ndev_dev, "out of TX desc\n");
1041                 dma_unmap_single(dev, dma_addr, pkt_len, DMA_TO_DEVICE);
1042                 return NULL;
1043         }
1044
1045         set_pkt_info(dma_addr, pkt_len, 0, desc);
1046         if (skb_is_nonlinear(skb)) {
1047                 prefetchw(skb_shinfo(skb));
1048         } else {
1049                 desc->next_desc = 0;
1050                 goto upd_pkt_len;
1051         }
1052
1053         pdesc = desc;
1054
1055         /* Handle the case where skb is fragmented in pages */
1056         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1057                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1058                 struct page *page = skb_frag_page(frag);
1059                 u32 page_offset = frag->page_offset;
1060                 u32 buf_len = skb_frag_size(frag);
1061                 dma_addr_t desc_dma;
1062                 u32 pkt_info;
1063
1064                 dma_addr = dma_map_page(dev, page, page_offset, buf_len,
1065                                         DMA_TO_DEVICE);
1066                 if (unlikely(!dma_addr)) {
1067                         dev_err(netcp->ndev_dev, "Failed to map skb page\n");
1068                         goto free_descs;
1069                 }
1070
1071                 ndesc = knav_pool_desc_get(netcp->tx_pool);
1072                 if (unlikely(IS_ERR_OR_NULL(ndesc))) {
1073                         dev_err(netcp->ndev_dev, "out of TX desc for frags\n");
1074                         dma_unmap_page(dev, dma_addr, buf_len, DMA_TO_DEVICE);
1075                         goto free_descs;
1076                 }
1077
1078                 desc_dma = knav_pool_desc_virt_to_dma(netcp->tx_pool,
1079                                                       (void *)ndesc);
1080                 pkt_info =
1081                         (netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1082                                 KNAV_DMA_DESC_RETQ_SHIFT;
1083                 set_pkt_info(dma_addr, buf_len, 0, ndesc);
1084                 set_words(&desc_dma, 1, &pdesc->next_desc);
1085                 pkt_len += buf_len;
1086                 if (pdesc != desc)
1087                         knav_pool_desc_map(netcp->tx_pool, pdesc,
1088                                            sizeof(*pdesc), &desc_dma, &dma_sz);
1089                 pdesc = ndesc;
1090         }
1091         if (pdesc != desc)
1092                 knav_pool_desc_map(netcp->tx_pool, pdesc, sizeof(*pdesc),
1093                                    &dma_addr, &dma_sz);
1094
1095         /* frag list based linkage is not supported for now. */
1096         if (skb_shinfo(skb)->frag_list) {
1097                 dev_err_ratelimited(netcp->ndev_dev, "NETIF_F_FRAGLIST not supported\n");
1098                 goto free_descs;
1099         }
1100
1101 upd_pkt_len:
1102         WARN_ON(pkt_len != skb->len);
1103
1104         pkt_len &= KNAV_DMA_DESC_PKT_LEN_MASK;
1105         set_words(&pkt_len, 1, &desc->desc_info);
1106         return desc;
1107
1108 free_descs:
1109         netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1110         return NULL;
1111 }
1112
1113 static int netcp_tx_submit_skb(struct netcp_intf *netcp,
1114                                struct sk_buff *skb,
1115                                struct knav_dma_desc *desc)
1116 {
1117         struct netcp_tx_pipe *tx_pipe = NULL;
1118         struct netcp_hook_list *tx_hook;
1119         struct netcp_packet p_info;
1120         unsigned int dma_sz;
1121         dma_addr_t dma;
1122         u32 tmp = 0;
1123         int ret = 0;
1124
1125         p_info.netcp = netcp;
1126         p_info.skb = skb;
1127         p_info.tx_pipe = NULL;
1128         p_info.psdata_len = 0;
1129         p_info.ts_context = NULL;
1130         p_info.txtstamp_complete = NULL;
1131         p_info.epib = desc->epib;
1132         p_info.psdata = desc->psdata;
1133         memset(p_info.epib, 0, KNAV_DMA_NUM_EPIB_WORDS * sizeof(u32));
1134
1135         /* Find out where to inject the packet for transmission */
1136         list_for_each_entry(tx_hook, &netcp->txhook_list_head, list) {
1137                 ret = tx_hook->hook_rtn(tx_hook->order, tx_hook->hook_data,
1138                                         &p_info);
1139                 if (unlikely(ret != 0)) {
1140                         dev_err(netcp->ndev_dev, "TX hook %d rejected the packet with reason(%d)\n",
1141                                 tx_hook->order, ret);
1142                         ret = (ret < 0) ? ret : NETDEV_TX_OK;
1143                         goto out;
1144                 }
1145         }
1146
1147         /* Make sure some TX hook claimed the packet */
1148         tx_pipe = p_info.tx_pipe;
1149         if (!tx_pipe) {
1150                 dev_err(netcp->ndev_dev, "No TX hook claimed the packet!\n");
1151                 ret = -ENXIO;
1152                 goto out;
1153         }
1154
1155         /* update descriptor */
1156         if (p_info.psdata_len) {
1157                 u32 *psdata = p_info.psdata;
1158
1159                 memmove(p_info.psdata, p_info.psdata + p_info.psdata_len,
1160                         p_info.psdata_len);
1161                 set_words(psdata, p_info.psdata_len, psdata);
1162                 tmp |= (p_info.psdata_len & KNAV_DMA_DESC_PSLEN_MASK) <<
1163                         KNAV_DMA_DESC_PSLEN_SHIFT;
1164         }
1165
1166         tmp |= KNAV_DMA_DESC_HAS_EPIB |
1167                 ((netcp->tx_compl_qid & KNAV_DMA_DESC_RETQ_MASK) <<
1168                 KNAV_DMA_DESC_RETQ_SHIFT);
1169
1170         if (!(tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO)) {
1171                 tmp |= ((tx_pipe->switch_to_port & KNAV_DMA_DESC_PSFLAG_MASK) <<
1172                         KNAV_DMA_DESC_PSFLAG_SHIFT);
1173         }
1174
1175         set_words(&tmp, 1, &desc->packet_info);
1176         set_words((u32 *)&skb, 1, &desc->pad[0]);
1177
1178         if (tx_pipe->flags & SWITCH_TO_PORT_IN_TAGINFO) {
1179                 tmp = tx_pipe->switch_to_port;
1180                 set_words((u32 *)&tmp, 1, &desc->tag_info);
1181         }
1182
1183         /* submit packet descriptor */
1184         ret = knav_pool_desc_map(netcp->tx_pool, desc, sizeof(*desc), &dma,
1185                                  &dma_sz);
1186         if (unlikely(ret)) {
1187                 dev_err(netcp->ndev_dev, "%s() failed to map desc\n", __func__);
1188                 ret = -ENOMEM;
1189                 goto out;
1190         }
1191         skb_tx_timestamp(skb);
1192         knav_queue_push(tx_pipe->dma_queue, dma, dma_sz, 0);
1193
1194 out:
1195         return ret;
1196 }
1197
1198 /* Submit the packet */
1199 static int netcp_ndo_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1200 {
1201         struct netcp_intf *netcp = netdev_priv(ndev);
1202         int subqueue = skb_get_queue_mapping(skb);
1203         struct knav_dma_desc *desc;
1204         int desc_count, ret = 0;
1205
1206         if (unlikely(skb->len <= 0)) {
1207                 dev_kfree_skb(skb);
1208                 return NETDEV_TX_OK;
1209         }
1210
1211         if (unlikely(skb->len < NETCP_MIN_PACKET_SIZE)) {
1212                 ret = skb_padto(skb, NETCP_MIN_PACKET_SIZE);
1213                 if (ret < 0) {
1214                         /* If we get here, the skb has already been dropped */
1215                         dev_warn(netcp->ndev_dev, "padding failed (%d), packet dropped\n",
1216                                  ret);
1217                         ndev->stats.tx_dropped++;
1218                         return ret;
1219                 }
1220                 skb->len = NETCP_MIN_PACKET_SIZE;
1221         }
1222
1223         desc = netcp_tx_map_skb(skb, netcp);
1224         if (unlikely(!desc)) {
1225                 netif_stop_subqueue(ndev, subqueue);
1226                 ret = -ENOBUFS;
1227                 goto drop;
1228         }
1229
1230         ret = netcp_tx_submit_skb(netcp, skb, desc);
1231         if (ret)
1232                 goto drop;
1233
1234         ndev->trans_start = jiffies;
1235
1236         /* Check Tx pool count & stop subqueue if needed */
1237         desc_count = knav_pool_count(netcp->tx_pool);
1238         if (desc_count < netcp->tx_pause_threshold) {
1239                 dev_dbg(netcp->ndev_dev, "pausing tx, count(%d)\n", desc_count);
1240                 netif_stop_subqueue(ndev, subqueue);
1241         }
1242         return NETDEV_TX_OK;
1243
1244 drop:
1245         ndev->stats.tx_dropped++;
1246         if (desc)
1247                 netcp_free_tx_desc_chain(netcp, desc, sizeof(*desc));
1248         dev_kfree_skb(skb);
1249         return ret;
1250 }
1251
1252 int netcp_txpipe_close(struct netcp_tx_pipe *tx_pipe)
1253 {
1254         if (tx_pipe->dma_channel) {
1255                 knav_dma_close_channel(tx_pipe->dma_channel);
1256                 tx_pipe->dma_channel = NULL;
1257         }
1258         return 0;
1259 }
1260 EXPORT_SYMBOL_GPL(netcp_txpipe_close);
1261
1262 int netcp_txpipe_open(struct netcp_tx_pipe *tx_pipe)
1263 {
1264         struct device *dev = tx_pipe->netcp_device->device;
1265         struct knav_dma_cfg config;
1266         int ret = 0;
1267         u8 name[16];
1268
1269         memset(&config, 0, sizeof(config));
1270         config.direction = DMA_MEM_TO_DEV;
1271         config.u.tx.filt_einfo = false;
1272         config.u.tx.filt_pswords = false;
1273         config.u.tx.priority = DMA_PRIO_MED_L;
1274
1275         tx_pipe->dma_channel = knav_dma_open_channel(dev,
1276                                 tx_pipe->dma_chan_name, &config);
1277         if (IS_ERR_OR_NULL(tx_pipe->dma_channel)) {
1278                 dev_err(dev, "failed opening tx chan(%s)\n",
1279                         tx_pipe->dma_chan_name);
1280                 goto err;
1281         }
1282
1283         snprintf(name, sizeof(name), "tx-pipe-%s", dev_name(dev));
1284         tx_pipe->dma_queue = knav_queue_open(name, tx_pipe->dma_queue_id,
1285                                              KNAV_QUEUE_SHARED);
1286         if (IS_ERR(tx_pipe->dma_queue)) {
1287                 dev_err(dev, "Could not open DMA queue for channel \"%s\": %d\n",
1288                         name, ret);
1289                 ret = PTR_ERR(tx_pipe->dma_queue);
1290                 goto err;
1291         }
1292
1293         dev_dbg(dev, "opened tx pipe %s\n", name);
1294         return 0;
1295
1296 err:
1297         if (!IS_ERR_OR_NULL(tx_pipe->dma_channel))
1298                 knav_dma_close_channel(tx_pipe->dma_channel);
1299         tx_pipe->dma_channel = NULL;
1300         return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(netcp_txpipe_open);
1303
1304 int netcp_txpipe_init(struct netcp_tx_pipe *tx_pipe,
1305                       struct netcp_device *netcp_device,
1306                       const char *dma_chan_name, unsigned int dma_queue_id)
1307 {
1308         memset(tx_pipe, 0, sizeof(*tx_pipe));
1309         tx_pipe->netcp_device = netcp_device;
1310         tx_pipe->dma_chan_name = dma_chan_name;
1311         tx_pipe->dma_queue_id = dma_queue_id;
1312         return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(netcp_txpipe_init);
1315
1316 static struct netcp_addr *netcp_addr_find(struct netcp_intf *netcp,
1317                                           const u8 *addr,
1318                                           enum netcp_addr_type type)
1319 {
1320         struct netcp_addr *naddr;
1321
1322         list_for_each_entry(naddr, &netcp->addr_list, node) {
1323                 if (naddr->type != type)
1324                         continue;
1325                 if (addr && memcmp(addr, naddr->addr, ETH_ALEN))
1326                         continue;
1327                 return naddr;
1328         }
1329
1330         return NULL;
1331 }
1332
1333 static struct netcp_addr *netcp_addr_add(struct netcp_intf *netcp,
1334                                          const u8 *addr,
1335                                          enum netcp_addr_type type)
1336 {
1337         struct netcp_addr *naddr;
1338
1339         naddr = devm_kmalloc(netcp->dev, sizeof(*naddr), GFP_ATOMIC);
1340         if (!naddr)
1341                 return NULL;
1342
1343         naddr->type = type;
1344         naddr->flags = 0;
1345         naddr->netcp = netcp;
1346         if (addr)
1347                 ether_addr_copy(naddr->addr, addr);
1348         else
1349                 eth_zero_addr(naddr->addr);
1350         list_add_tail(&naddr->node, &netcp->addr_list);
1351
1352         return naddr;
1353 }
1354
1355 static void netcp_addr_del(struct netcp_intf *netcp, struct netcp_addr *naddr)
1356 {
1357         list_del(&naddr->node);
1358         devm_kfree(netcp->dev, naddr);
1359 }
1360
1361 static void netcp_addr_clear_mark(struct netcp_intf *netcp)
1362 {
1363         struct netcp_addr *naddr;
1364
1365         list_for_each_entry(naddr, &netcp->addr_list, node)
1366                 naddr->flags = 0;
1367 }
1368
1369 static void netcp_addr_add_mark(struct netcp_intf *netcp, const u8 *addr,
1370                                 enum netcp_addr_type type)
1371 {
1372         struct netcp_addr *naddr;
1373
1374         naddr = netcp_addr_find(netcp, addr, type);
1375         if (naddr) {
1376                 naddr->flags |= ADDR_VALID;
1377                 return;
1378         }
1379
1380         naddr = netcp_addr_add(netcp, addr, type);
1381         if (!WARN_ON(!naddr))
1382                 naddr->flags |= ADDR_NEW;
1383 }
1384
1385 static void netcp_addr_sweep_del(struct netcp_intf *netcp)
1386 {
1387         struct netcp_addr *naddr, *tmp;
1388         struct netcp_intf_modpriv *priv;
1389         struct netcp_module *module;
1390         int error;
1391
1392         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1393                 if (naddr->flags & (ADDR_VALID | ADDR_NEW))
1394                         continue;
1395                 dev_dbg(netcp->ndev_dev, "deleting address %pM, type %x\n",
1396                         naddr->addr, naddr->type);
1397                 for_each_module(netcp, priv) {
1398                         module = priv->netcp_module;
1399                         if (!module->del_addr)
1400                                 continue;
1401                         error = module->del_addr(priv->module_priv,
1402                                                  naddr);
1403                         WARN_ON(error);
1404                 }
1405                 netcp_addr_del(netcp, naddr);
1406         }
1407 }
1408
1409 static void netcp_addr_sweep_add(struct netcp_intf *netcp)
1410 {
1411         struct netcp_addr *naddr, *tmp;
1412         struct netcp_intf_modpriv *priv;
1413         struct netcp_module *module;
1414         int error;
1415
1416         list_for_each_entry_safe(naddr, tmp, &netcp->addr_list, node) {
1417                 if (!(naddr->flags & ADDR_NEW))
1418                         continue;
1419                 dev_dbg(netcp->ndev_dev, "adding address %pM, type %x\n",
1420                         naddr->addr, naddr->type);
1421
1422                 for_each_module(netcp, priv) {
1423                         module = priv->netcp_module;
1424                         if (!module->add_addr)
1425                                 continue;
1426                         error = module->add_addr(priv->module_priv, naddr);
1427                         WARN_ON(error);
1428                 }
1429         }
1430 }
1431
1432 static void netcp_set_rx_mode(struct net_device *ndev)
1433 {
1434         struct netcp_intf *netcp = netdev_priv(ndev);
1435         struct netdev_hw_addr *ndev_addr;
1436         bool promisc;
1437
1438         promisc = (ndev->flags & IFF_PROMISC ||
1439                    ndev->flags & IFF_ALLMULTI ||
1440                    netdev_mc_count(ndev) > NETCP_MAX_MCAST_ADDR);
1441
1442         spin_lock(&netcp->lock);
1443         /* first clear all marks */
1444         netcp_addr_clear_mark(netcp);
1445
1446         /* next add new entries, mark existing ones */
1447         netcp_addr_add_mark(netcp, ndev->broadcast, ADDR_BCAST);
1448         for_each_dev_addr(ndev, ndev_addr)
1449                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_DEV);
1450         netdev_for_each_uc_addr(ndev_addr, ndev)
1451                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_UCAST);
1452         netdev_for_each_mc_addr(ndev_addr, ndev)
1453                 netcp_addr_add_mark(netcp, ndev_addr->addr, ADDR_MCAST);
1454
1455         if (promisc)
1456                 netcp_addr_add_mark(netcp, NULL, ADDR_ANY);
1457
1458         /* finally sweep and callout into modules */
1459         netcp_addr_sweep_del(netcp);
1460         netcp_addr_sweep_add(netcp);
1461         spin_unlock(&netcp->lock);
1462 }
1463
1464 static void netcp_free_navigator_resources(struct netcp_intf *netcp)
1465 {
1466         int i;
1467
1468         if (netcp->rx_channel) {
1469                 knav_dma_close_channel(netcp->rx_channel);
1470                 netcp->rx_channel = NULL;
1471         }
1472
1473         if (!IS_ERR_OR_NULL(netcp->rx_pool))
1474                 netcp_rxpool_free(netcp);
1475
1476         if (!IS_ERR_OR_NULL(netcp->rx_queue)) {
1477                 knav_queue_close(netcp->rx_queue);
1478                 netcp->rx_queue = NULL;
1479         }
1480
1481         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN &&
1482              !IS_ERR_OR_NULL(netcp->rx_fdq[i]) ; ++i) {
1483                 knav_queue_close(netcp->rx_fdq[i]);
1484                 netcp->rx_fdq[i] = NULL;
1485         }
1486
1487         if (!IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1488                 knav_queue_close(netcp->tx_compl_q);
1489                 netcp->tx_compl_q = NULL;
1490         }
1491
1492         if (!IS_ERR_OR_NULL(netcp->tx_pool)) {
1493                 knav_pool_destroy(netcp->tx_pool);
1494                 netcp->tx_pool = NULL;
1495         }
1496 }
1497
1498 static int netcp_setup_navigator_resources(struct net_device *ndev)
1499 {
1500         struct netcp_intf *netcp = netdev_priv(ndev);
1501         struct knav_queue_notify_config notify_cfg;
1502         struct knav_dma_cfg config;
1503         u32 last_fdq = 0;
1504         u8 name[16];
1505         int ret;
1506         int i;
1507
1508         /* Create Rx/Tx descriptor pools */
1509         snprintf(name, sizeof(name), "rx-pool-%s", ndev->name);
1510         netcp->rx_pool = knav_pool_create(name, netcp->rx_pool_size,
1511                                                 netcp->rx_pool_region_id);
1512         if (IS_ERR_OR_NULL(netcp->rx_pool)) {
1513                 dev_err(netcp->ndev_dev, "Couldn't create rx pool\n");
1514                 ret = PTR_ERR(netcp->rx_pool);
1515                 goto fail;
1516         }
1517
1518         snprintf(name, sizeof(name), "tx-pool-%s", ndev->name);
1519         netcp->tx_pool = knav_pool_create(name, netcp->tx_pool_size,
1520                                                 netcp->tx_pool_region_id);
1521         if (IS_ERR_OR_NULL(netcp->tx_pool)) {
1522                 dev_err(netcp->ndev_dev, "Couldn't create tx pool\n");
1523                 ret = PTR_ERR(netcp->tx_pool);
1524                 goto fail;
1525         }
1526
1527         /* open Tx completion queue */
1528         snprintf(name, sizeof(name), "tx-compl-%s", ndev->name);
1529         netcp->tx_compl_q = knav_queue_open(name, netcp->tx_compl_qid, 0);
1530         if (IS_ERR_OR_NULL(netcp->tx_compl_q)) {
1531                 ret = PTR_ERR(netcp->tx_compl_q);
1532                 goto fail;
1533         }
1534         netcp->tx_compl_qid = knav_queue_get_id(netcp->tx_compl_q);
1535
1536         /* Set notification for Tx completion */
1537         notify_cfg.fn = netcp_tx_notify;
1538         notify_cfg.fn_arg = netcp;
1539         ret = knav_queue_device_control(netcp->tx_compl_q,
1540                                         KNAV_QUEUE_SET_NOTIFIER,
1541                                         (unsigned long)&notify_cfg);
1542         if (ret)
1543                 goto fail;
1544
1545         knav_queue_disable_notify(netcp->tx_compl_q);
1546
1547         /* open Rx completion queue */
1548         snprintf(name, sizeof(name), "rx-compl-%s", ndev->name);
1549         netcp->rx_queue = knav_queue_open(name, netcp->rx_queue_id, 0);
1550         if (IS_ERR_OR_NULL(netcp->rx_queue)) {
1551                 ret = PTR_ERR(netcp->rx_queue);
1552                 goto fail;
1553         }
1554         netcp->rx_queue_id = knav_queue_get_id(netcp->rx_queue);
1555
1556         /* Set notification for Rx completion */
1557         notify_cfg.fn = netcp_rx_notify;
1558         notify_cfg.fn_arg = netcp;
1559         ret = knav_queue_device_control(netcp->rx_queue,
1560                                         KNAV_QUEUE_SET_NOTIFIER,
1561                                         (unsigned long)&notify_cfg);
1562         if (ret)
1563                 goto fail;
1564
1565         knav_queue_disable_notify(netcp->rx_queue);
1566
1567         /* open Rx FDQs */
1568         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN && netcp->rx_queue_depths[i];
1569              ++i) {
1570                 snprintf(name, sizeof(name), "rx-fdq-%s-%d", ndev->name, i);
1571                 netcp->rx_fdq[i] = knav_queue_open(name, KNAV_QUEUE_GP, 0);
1572                 if (IS_ERR_OR_NULL(netcp->rx_fdq[i])) {
1573                         ret = PTR_ERR(netcp->rx_fdq[i]);
1574                         goto fail;
1575                 }
1576         }
1577
1578         memset(&config, 0, sizeof(config));
1579         config.direction                = DMA_DEV_TO_MEM;
1580         config.u.rx.einfo_present       = true;
1581         config.u.rx.psinfo_present      = true;
1582         config.u.rx.err_mode            = DMA_DROP;
1583         config.u.rx.desc_type           = DMA_DESC_HOST;
1584         config.u.rx.psinfo_at_sop       = false;
1585         config.u.rx.sop_offset          = NETCP_SOP_OFFSET;
1586         config.u.rx.dst_q               = netcp->rx_queue_id;
1587         config.u.rx.thresh              = DMA_THRESH_NONE;
1588
1589         for (i = 0; i < KNAV_DMA_FDQ_PER_CHAN; ++i) {
1590                 if (netcp->rx_fdq[i])
1591                         last_fdq = knav_queue_get_id(netcp->rx_fdq[i]);
1592                 config.u.rx.fdq[i] = last_fdq;
1593         }
1594
1595         netcp->rx_channel = knav_dma_open_channel(netcp->netcp_device->device,
1596                                         netcp->dma_chan_name, &config);
1597         if (IS_ERR_OR_NULL(netcp->rx_channel)) {
1598                 dev_err(netcp->ndev_dev, "failed opening rx chan(%s\n",
1599                         netcp->dma_chan_name);
1600                 goto fail;
1601         }
1602
1603         dev_dbg(netcp->ndev_dev, "opened RX channel: %p\n", netcp->rx_channel);
1604         return 0;
1605
1606 fail:
1607         netcp_free_navigator_resources(netcp);
1608         return ret;
1609 }
1610
1611 /* Open the device */
1612 static int netcp_ndo_open(struct net_device *ndev)
1613 {
1614         struct netcp_intf *netcp = netdev_priv(ndev);
1615         struct netcp_intf_modpriv *intf_modpriv;
1616         struct netcp_module *module;
1617         int ret;
1618
1619         netif_carrier_off(ndev);
1620         ret = netcp_setup_navigator_resources(ndev);
1621         if (ret) {
1622                 dev_err(netcp->ndev_dev, "Failed to setup navigator resources\n");
1623                 goto fail;
1624         }
1625
1626         for_each_module(netcp, intf_modpriv) {
1627                 module = intf_modpriv->netcp_module;
1628                 if (module->open) {
1629                         ret = module->open(intf_modpriv->module_priv, ndev);
1630                         if (ret != 0) {
1631                                 dev_err(netcp->ndev_dev, "module open failed\n");
1632                                 goto fail_open;
1633                         }
1634                 }
1635         }
1636
1637         napi_enable(&netcp->rx_napi);
1638         napi_enable(&netcp->tx_napi);
1639         knav_queue_enable_notify(netcp->tx_compl_q);
1640         knav_queue_enable_notify(netcp->rx_queue);
1641         netcp_rxpool_refill(netcp);
1642         netif_tx_wake_all_queues(ndev);
1643         dev_dbg(netcp->ndev_dev, "netcp device %s opened\n", ndev->name);
1644         return 0;
1645
1646 fail_open:
1647         for_each_module(netcp, intf_modpriv) {
1648                 module = intf_modpriv->netcp_module;
1649                 if (module->close)
1650                         module->close(intf_modpriv->module_priv, ndev);
1651         }
1652
1653 fail:
1654         netcp_free_navigator_resources(netcp);
1655         return ret;
1656 }
1657
1658 /* Close the device */
1659 static int netcp_ndo_stop(struct net_device *ndev)
1660 {
1661         struct netcp_intf *netcp = netdev_priv(ndev);
1662         struct netcp_intf_modpriv *intf_modpriv;
1663         struct netcp_module *module;
1664         int err = 0;
1665
1666         netif_tx_stop_all_queues(ndev);
1667         netif_carrier_off(ndev);
1668         netcp_addr_clear_mark(netcp);
1669         netcp_addr_sweep_del(netcp);
1670         knav_queue_disable_notify(netcp->rx_queue);
1671         knav_queue_disable_notify(netcp->tx_compl_q);
1672         napi_disable(&netcp->rx_napi);
1673         napi_disable(&netcp->tx_napi);
1674
1675         for_each_module(netcp, intf_modpriv) {
1676                 module = intf_modpriv->netcp_module;
1677                 if (module->close) {
1678                         err = module->close(intf_modpriv->module_priv, ndev);
1679                         if (err != 0)
1680                                 dev_err(netcp->ndev_dev, "Close failed\n");
1681                 }
1682         }
1683
1684         /* Recycle Rx descriptors from completion queue */
1685         netcp_empty_rx_queue(netcp);
1686
1687         /* Recycle Tx descriptors from completion queue */
1688         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1689
1690         if (knav_pool_count(netcp->tx_pool) != netcp->tx_pool_size)
1691                 dev_err(netcp->ndev_dev, "Lost (%d) Tx descs\n",
1692                         netcp->tx_pool_size - knav_pool_count(netcp->tx_pool));
1693
1694         netcp_free_navigator_resources(netcp);
1695         dev_dbg(netcp->ndev_dev, "netcp device %s stopped\n", ndev->name);
1696         return 0;
1697 }
1698
1699 static int netcp_ndo_ioctl(struct net_device *ndev,
1700                            struct ifreq *req, int cmd)
1701 {
1702         struct netcp_intf *netcp = netdev_priv(ndev);
1703         struct netcp_intf_modpriv *intf_modpriv;
1704         struct netcp_module *module;
1705         int ret = -1, err = -EOPNOTSUPP;
1706
1707         if (!netif_running(ndev))
1708                 return -EINVAL;
1709
1710         for_each_module(netcp, intf_modpriv) {
1711                 module = intf_modpriv->netcp_module;
1712                 if (!module->ioctl)
1713                         continue;
1714
1715                 err = module->ioctl(intf_modpriv->module_priv, req, cmd);
1716                 if ((err < 0) && (err != -EOPNOTSUPP)) {
1717                         ret = err;
1718                         goto out;
1719                 }
1720                 if (err == 0)
1721                         ret = err;
1722         }
1723
1724 out:
1725         return (ret == 0) ? 0 : err;
1726 }
1727
1728 static int netcp_ndo_change_mtu(struct net_device *ndev, int new_mtu)
1729 {
1730         struct netcp_intf *netcp = netdev_priv(ndev);
1731
1732         /* MTU < 68 is an error for IPv4 traffic */
1733         if ((new_mtu < 68) ||
1734             (new_mtu > (NETCP_MAX_FRAME_SIZE - ETH_HLEN - ETH_FCS_LEN))) {
1735                 dev_err(netcp->ndev_dev, "Invalid mtu size = %d\n", new_mtu);
1736                 return -EINVAL;
1737         }
1738
1739         ndev->mtu = new_mtu;
1740         return 0;
1741 }
1742
1743 static void netcp_ndo_tx_timeout(struct net_device *ndev)
1744 {
1745         struct netcp_intf *netcp = netdev_priv(ndev);
1746         unsigned int descs = knav_pool_count(netcp->tx_pool);
1747
1748         dev_err(netcp->ndev_dev, "transmit timed out tx descs(%d)\n", descs);
1749         netcp_process_tx_compl_packets(netcp, netcp->tx_pool_size);
1750         ndev->trans_start = jiffies;
1751         netif_tx_wake_all_queues(ndev);
1752 }
1753
1754 static int netcp_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
1755 {
1756         struct netcp_intf *netcp = netdev_priv(ndev);
1757         struct netcp_intf_modpriv *intf_modpriv;
1758         struct netcp_module *module;
1759         unsigned long flags;
1760         int err = 0;
1761
1762         dev_dbg(netcp->ndev_dev, "adding rx vlan id: %d\n", vid);
1763
1764         spin_lock_irqsave(&netcp->lock, flags);
1765         for_each_module(netcp, intf_modpriv) {
1766                 module = intf_modpriv->netcp_module;
1767                 if ((module->add_vid) && (vid != 0)) {
1768                         err = module->add_vid(intf_modpriv->module_priv, vid);
1769                         if (err != 0) {
1770                                 dev_err(netcp->ndev_dev, "Could not add vlan id = %d\n",
1771                                         vid);
1772                                 break;
1773                         }
1774                 }
1775         }
1776         spin_unlock_irqrestore(&netcp->lock, flags);
1777
1778         return err;
1779 }
1780
1781 static int netcp_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
1782 {
1783         struct netcp_intf *netcp = netdev_priv(ndev);
1784         struct netcp_intf_modpriv *intf_modpriv;
1785         struct netcp_module *module;
1786         unsigned long flags;
1787         int err = 0;
1788
1789         dev_dbg(netcp->ndev_dev, "removing rx vlan id: %d\n", vid);
1790
1791         spin_lock_irqsave(&netcp->lock, flags);
1792         for_each_module(netcp, intf_modpriv) {
1793                 module = intf_modpriv->netcp_module;
1794                 if (module->del_vid) {
1795                         err = module->del_vid(intf_modpriv->module_priv, vid);
1796                         if (err != 0) {
1797                                 dev_err(netcp->ndev_dev, "Could not delete vlan id = %d\n",
1798                                         vid);
1799                                 break;
1800                         }
1801                 }
1802         }
1803         spin_unlock_irqrestore(&netcp->lock, flags);
1804         return err;
1805 }
1806
1807 static u16 netcp_select_queue(struct net_device *dev, struct sk_buff *skb,
1808                               void *accel_priv,
1809                               select_queue_fallback_t fallback)
1810 {
1811         return 0;
1812 }
1813
1814 static int netcp_setup_tc(struct net_device *dev, u8 num_tc)
1815 {
1816         int i;
1817
1818         /* setup tc must be called under rtnl lock */
1819         ASSERT_RTNL();
1820
1821         /* Sanity-check the number of traffic classes requested */
1822         if ((dev->real_num_tx_queues <= 1) ||
1823             (dev->real_num_tx_queues < num_tc))
1824                 return -EINVAL;
1825
1826         /* Configure traffic class to queue mappings */
1827         if (num_tc) {
1828                 netdev_set_num_tc(dev, num_tc);
1829                 for (i = 0; i < num_tc; i++)
1830                         netdev_set_tc_queue(dev, i, 1, i);
1831         } else {
1832                 netdev_reset_tc(dev);
1833         }
1834
1835         return 0;
1836 }
1837
1838 static const struct net_device_ops netcp_netdev_ops = {
1839         .ndo_open               = netcp_ndo_open,
1840         .ndo_stop               = netcp_ndo_stop,
1841         .ndo_start_xmit         = netcp_ndo_start_xmit,
1842         .ndo_set_rx_mode        = netcp_set_rx_mode,
1843         .ndo_do_ioctl           = netcp_ndo_ioctl,
1844         .ndo_change_mtu         = netcp_ndo_change_mtu,
1845         .ndo_set_mac_address    = eth_mac_addr,
1846         .ndo_validate_addr      = eth_validate_addr,
1847         .ndo_vlan_rx_add_vid    = netcp_rx_add_vid,
1848         .ndo_vlan_rx_kill_vid   = netcp_rx_kill_vid,
1849         .ndo_tx_timeout         = netcp_ndo_tx_timeout,
1850         .ndo_select_queue       = netcp_select_queue,
1851         .ndo_setup_tc           = netcp_setup_tc,
1852 };
1853
1854 static int netcp_create_interface(struct netcp_device *netcp_device,
1855                                   struct device_node *node_interface)
1856 {
1857         struct device *dev = netcp_device->device;
1858         struct device_node *node = dev->of_node;
1859         struct netcp_intf *netcp;
1860         struct net_device *ndev;
1861         resource_size_t size;
1862         struct resource res;
1863         void __iomem *efuse = NULL;
1864         u32 efuse_mac = 0;
1865         const void *mac_addr;
1866         u8 efuse_mac_addr[6];
1867         u32 temp[2];
1868         int ret = 0;
1869
1870         ndev = alloc_etherdev_mqs(sizeof(*netcp), 1, 1);
1871         if (!ndev) {
1872                 dev_err(dev, "Error allocating netdev\n");
1873                 return -ENOMEM;
1874         }
1875
1876         ndev->features |= NETIF_F_SG;
1877         ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
1878         ndev->hw_features = ndev->features;
1879         ndev->vlan_features |=  NETIF_F_SG;
1880
1881         netcp = netdev_priv(ndev);
1882         spin_lock_init(&netcp->lock);
1883         INIT_LIST_HEAD(&netcp->module_head);
1884         INIT_LIST_HEAD(&netcp->txhook_list_head);
1885         INIT_LIST_HEAD(&netcp->rxhook_list_head);
1886         INIT_LIST_HEAD(&netcp->addr_list);
1887         netcp->netcp_device = netcp_device;
1888         netcp->dev = netcp_device->device;
1889         netcp->ndev = ndev;
1890         netcp->ndev_dev  = &ndev->dev;
1891         netcp->msg_enable = netif_msg_init(netcp_debug_level, NETCP_DEBUG);
1892         netcp->tx_pause_threshold = MAX_SKB_FRAGS;
1893         netcp->tx_resume_threshold = netcp->tx_pause_threshold;
1894         netcp->node_interface = node_interface;
1895
1896         ret = of_property_read_u32(node_interface, "efuse-mac", &efuse_mac);
1897         if (efuse_mac) {
1898                 if (of_address_to_resource(node, NETCP_EFUSE_REG_INDEX, &res)) {
1899                         dev_err(dev, "could not find efuse-mac reg resource\n");
1900                         ret = -ENODEV;
1901                         goto quit;
1902                 }
1903                 size = resource_size(&res);
1904
1905                 if (!devm_request_mem_region(dev, res.start, size,
1906                                              dev_name(dev))) {
1907                         dev_err(dev, "could not reserve resource\n");
1908                         ret = -ENOMEM;
1909                         goto quit;
1910                 }
1911
1912                 efuse = devm_ioremap_nocache(dev, res.start, size);
1913                 if (!efuse) {
1914                         dev_err(dev, "could not map resource\n");
1915                         devm_release_mem_region(dev, res.start, size);
1916                         ret = -ENOMEM;
1917                         goto quit;
1918                 }
1919
1920                 emac_arch_get_mac_addr(efuse_mac_addr, efuse, efuse_mac);
1921                 if (is_valid_ether_addr(efuse_mac_addr))
1922                         ether_addr_copy(ndev->dev_addr, efuse_mac_addr);
1923                 else
1924                         random_ether_addr(ndev->dev_addr);
1925
1926                 devm_iounmap(dev, efuse);
1927                 devm_release_mem_region(dev, res.start, size);
1928         } else {
1929                 mac_addr = of_get_mac_address(node_interface);
1930                 if (mac_addr)
1931                         ether_addr_copy(ndev->dev_addr, mac_addr);
1932                 else
1933                         random_ether_addr(ndev->dev_addr);
1934         }
1935
1936         ret = of_property_read_string(node_interface, "rx-channel",
1937                                       &netcp->dma_chan_name);
1938         if (ret < 0) {
1939                 dev_err(dev, "missing \"rx-channel\" parameter\n");
1940                 ret = -ENODEV;
1941                 goto quit;
1942         }
1943
1944         ret = of_property_read_u32(node_interface, "rx-queue",
1945                                    &netcp->rx_queue_id);
1946         if (ret < 0) {
1947                 dev_warn(dev, "missing \"rx-queue\" parameter\n");
1948                 netcp->rx_queue_id = KNAV_QUEUE_QPEND;
1949         }
1950
1951         ret = of_property_read_u32_array(node_interface, "rx-queue-depth",
1952                                          netcp->rx_queue_depths,
1953                                          KNAV_DMA_FDQ_PER_CHAN);
1954         if (ret < 0) {
1955                 dev_err(dev, "missing \"rx-queue-depth\" parameter\n");
1956                 netcp->rx_queue_depths[0] = 128;
1957         }
1958
1959         ret = of_property_read_u32_array(node_interface, "rx-pool", temp, 2);
1960         if (ret < 0) {
1961                 dev_err(dev, "missing \"rx-pool\" parameter\n");
1962                 ret = -ENODEV;
1963                 goto quit;
1964         }
1965         netcp->rx_pool_size = temp[0];
1966         netcp->rx_pool_region_id = temp[1];
1967
1968         ret = of_property_read_u32_array(node_interface, "tx-pool", temp, 2);
1969         if (ret < 0) {
1970                 dev_err(dev, "missing \"tx-pool\" parameter\n");
1971                 ret = -ENODEV;
1972                 goto quit;
1973         }
1974         netcp->tx_pool_size = temp[0];
1975         netcp->tx_pool_region_id = temp[1];
1976
1977         if (netcp->tx_pool_size < MAX_SKB_FRAGS) {
1978                 dev_err(dev, "tx-pool size too small, must be atleast(%ld)\n",
1979                         MAX_SKB_FRAGS);
1980                 ret = -ENODEV;
1981                 goto quit;
1982         }
1983
1984         ret = of_property_read_u32(node_interface, "tx-completion-queue",
1985                                    &netcp->tx_compl_qid);
1986         if (ret < 0) {
1987                 dev_warn(dev, "missing \"tx-completion-queue\" parameter\n");
1988                 netcp->tx_compl_qid = KNAV_QUEUE_QPEND;
1989         }
1990
1991         /* NAPI register */
1992         netif_napi_add(ndev, &netcp->rx_napi, netcp_rx_poll, NETCP_NAPI_WEIGHT);
1993         netif_napi_add(ndev, &netcp->tx_napi, netcp_tx_poll, NETCP_NAPI_WEIGHT);
1994
1995         /* Register the network device */
1996         ndev->dev_id            = 0;
1997         ndev->watchdog_timeo    = NETCP_TX_TIMEOUT;
1998         ndev->netdev_ops        = &netcp_netdev_ops;
1999         SET_NETDEV_DEV(ndev, dev);
2000
2001         list_add_tail(&netcp->interface_list, &netcp_device->interface_head);
2002         return 0;
2003
2004 quit:
2005         free_netdev(ndev);
2006         return ret;
2007 }
2008
2009 static void netcp_delete_interface(struct netcp_device *netcp_device,
2010                                    struct net_device *ndev)
2011 {
2012         struct netcp_intf_modpriv *intf_modpriv, *tmp;
2013         struct netcp_intf *netcp = netdev_priv(ndev);
2014         struct netcp_module *module;
2015
2016         dev_dbg(netcp_device->device, "Removing interface \"%s\"\n",
2017                 ndev->name);
2018
2019         /* Notify each of the modules that the interface is going away */
2020         list_for_each_entry_safe(intf_modpriv, tmp, &netcp->module_head,
2021                                  intf_list) {
2022                 module = intf_modpriv->netcp_module;
2023                 dev_dbg(netcp_device->device, "Releasing module \"%s\"\n",
2024                         module->name);
2025                 if (module->release)
2026                         module->release(intf_modpriv->module_priv);
2027                 list_del(&intf_modpriv->intf_list);
2028                 kfree(intf_modpriv);
2029         }
2030         WARN(!list_empty(&netcp->module_head), "%s interface module list is not empty!\n",
2031              ndev->name);
2032
2033         list_del(&netcp->interface_list);
2034
2035         of_node_put(netcp->node_interface);
2036         unregister_netdev(ndev);
2037         netif_napi_del(&netcp->rx_napi);
2038         free_netdev(ndev);
2039 }
2040
2041 static int netcp_probe(struct platform_device *pdev)
2042 {
2043         struct device_node *node = pdev->dev.of_node;
2044         struct netcp_intf *netcp_intf, *netcp_tmp;
2045         struct device_node *child, *interfaces;
2046         struct netcp_device *netcp_device;
2047         struct device *dev = &pdev->dev;
2048         int ret;
2049
2050         if (!node) {
2051                 dev_err(dev, "could not find device info\n");
2052                 return -ENODEV;
2053         }
2054
2055         /* Allocate a new NETCP device instance */
2056         netcp_device = devm_kzalloc(dev, sizeof(*netcp_device), GFP_KERNEL);
2057         if (!netcp_device)
2058                 return -ENOMEM;
2059
2060         pm_runtime_enable(&pdev->dev);
2061         ret = pm_runtime_get_sync(&pdev->dev);
2062         if (ret < 0) {
2063                 dev_err(dev, "Failed to enable NETCP power-domain\n");
2064                 pm_runtime_disable(&pdev->dev);
2065                 return ret;
2066         }
2067
2068         /* Initialize the NETCP device instance */
2069         INIT_LIST_HEAD(&netcp_device->interface_head);
2070         INIT_LIST_HEAD(&netcp_device->modpriv_head);
2071         netcp_device->device = dev;
2072         platform_set_drvdata(pdev, netcp_device);
2073
2074         /* create interfaces */
2075         interfaces = of_get_child_by_name(node, "netcp-interfaces");
2076         if (!interfaces) {
2077                 dev_err(dev, "could not find netcp-interfaces node\n");
2078                 ret = -ENODEV;
2079                 goto probe_quit;
2080         }
2081
2082         for_each_available_child_of_node(interfaces, child) {
2083                 ret = netcp_create_interface(netcp_device, child);
2084                 if (ret) {
2085                         dev_err(dev, "could not create interface(%s)\n",
2086                                 child->name);
2087                         goto probe_quit_interface;
2088                 }
2089         }
2090
2091         /* Add the device instance to the list */
2092         list_add_tail(&netcp_device->device_list, &netcp_devices);
2093
2094         return 0;
2095
2096 probe_quit_interface:
2097         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2098                                  &netcp_device->interface_head,
2099                                  interface_list) {
2100                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2101         }
2102
2103 probe_quit:
2104         pm_runtime_put_sync(&pdev->dev);
2105         pm_runtime_disable(&pdev->dev);
2106         platform_set_drvdata(pdev, NULL);
2107         return ret;
2108 }
2109
2110 static int netcp_remove(struct platform_device *pdev)
2111 {
2112         struct netcp_device *netcp_device = platform_get_drvdata(pdev);
2113         struct netcp_intf *netcp_intf, *netcp_tmp;
2114         struct netcp_inst_modpriv *inst_modpriv, *tmp;
2115         struct netcp_module *module;
2116
2117         list_for_each_entry_safe(inst_modpriv, tmp, &netcp_device->modpriv_head,
2118                                  inst_list) {
2119                 module = inst_modpriv->netcp_module;
2120                 dev_dbg(&pdev->dev, "Removing module \"%s\"\n", module->name);
2121                 module->remove(netcp_device, inst_modpriv->module_priv);
2122                 list_del(&inst_modpriv->inst_list);
2123                 kfree(inst_modpriv);
2124         }
2125
2126         /* now that all modules are removed, clean up the interfaces */
2127         list_for_each_entry_safe(netcp_intf, netcp_tmp,
2128                                  &netcp_device->interface_head,
2129                                  interface_list) {
2130                 netcp_delete_interface(netcp_device, netcp_intf->ndev);
2131         }
2132
2133         WARN(!list_empty(&netcp_device->interface_head),
2134              "%s interface list not empty!\n", pdev->name);
2135
2136         pm_runtime_put_sync(&pdev->dev);
2137         pm_runtime_disable(&pdev->dev);
2138         platform_set_drvdata(pdev, NULL);
2139         return 0;
2140 }
2141
2142 static const struct of_device_id of_match[] = {
2143         { .compatible = "ti,netcp-1.0", },
2144         {},
2145 };
2146 MODULE_DEVICE_TABLE(of, of_match);
2147
2148 static struct platform_driver netcp_driver = {
2149         .driver = {
2150                 .name           = "netcp-1.0",
2151                 .of_match_table = of_match,
2152         },
2153         .probe = netcp_probe,
2154         .remove = netcp_remove,
2155 };
2156 module_platform_driver(netcp_driver);
2157
2158 MODULE_LICENSE("GPL v2");
2159 MODULE_DESCRIPTION("TI NETCP driver for Keystone SOCs");
2160 MODULE_AUTHOR("Sandeep Nair <sandeep_n@ti.com");