Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2  * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3  * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4  *
5  * Right now, I am very wasteful with the buffers.  I allocate memory
6  * pages and then divide them into 2K frame buffers.  This way I know I
7  * have buffers large enough to hold one frame within one buffer descriptor.
8  * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9  * will be much more memory efficient and will easily handle lots of
10  * small packets.
11  *
12  * Much better multiple PHY support by Magnus Damm.
13  * Copyright (c) 2000 Ericsson Radio Systems AB.
14  *
15  * Support for FEC controller of ColdFire processors.
16  * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17  *
18  * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19  * Copyright (c) 2004-2006 Macq Electronique SA.
20  *
21  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/phy.h>
52 #include <linux/fec.h>
53 #include <linux/of.h>
54 #include <linux/of_device.h>
55 #include <linux/of_gpio.h>
56 #include <linux/of_mdio.h>
57 #include <linux/of_net.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/if_vlan.h>
60 #include <linux/pinctrl/consumer.h>
61 #include <linux/prefetch.h>
62
63 #include <asm/cacheflush.h>
64
65 #include "fec.h"
66
67 static void set_multicast_list(struct net_device *ndev);
68 static void fec_enet_itr_coal_init(struct net_device *ndev);
69
70 #define DRIVER_NAME     "fec"
71
72 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
73
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE    (1 << 5)
76 #define FEC_ENET_RSEM_V 0x84
77 #define FEC_ENET_RSFL_V 16
78 #define FEC_ENET_RAEM_V 0x8
79 #define FEC_ENET_RAFL_V 0x8
80 #define FEC_ENET_OPD_V  0xFFF0
81 #define FEC_MDIO_PM_TIMEOUT  100 /* ms */
82
83 static struct platform_device_id fec_devtype[] = {
84         {
85                 /* keep it for coldfire */
86                 .name = DRIVER_NAME,
87                 .driver_data = 0,
88         }, {
89                 .name = "imx25-fec",
90                 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
91         }, {
92                 .name = "imx27-fec",
93                 .driver_data = FEC_QUIRK_HAS_RACC,
94         }, {
95                 .name = "imx28-fec",
96                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
97                                 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
98         }, {
99                 .name = "imx6q-fec",
100                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
101                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
102                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
103                                 FEC_QUIRK_HAS_RACC,
104         }, {
105                 .name = "mvf600-fec",
106                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
107         }, {
108                 .name = "imx6sx-fec",
109                 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
110                                 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
111                                 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
112                                 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
113                                 FEC_QUIRK_HAS_RACC,
114         }, {
115                 /* sentinel */
116         }
117 };
118 MODULE_DEVICE_TABLE(platform, fec_devtype);
119
120 enum imx_fec_type {
121         IMX25_FEC = 1,  /* runs on i.mx25/50/53 */
122         IMX27_FEC,      /* runs on i.mx27/35/51 */
123         IMX28_FEC,
124         IMX6Q_FEC,
125         MVF600_FEC,
126         IMX6SX_FEC,
127 };
128
129 static const struct of_device_id fec_dt_ids[] = {
130         { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
131         { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
132         { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
133         { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
134         { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
135         { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
136         { /* sentinel */ }
137 };
138 MODULE_DEVICE_TABLE(of, fec_dt_ids);
139
140 static unsigned char macaddr[ETH_ALEN];
141 module_param_array(macaddr, byte, NULL, 0);
142 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
143
144 #if defined(CONFIG_M5272)
145 /*
146  * Some hardware gets it MAC address out of local flash memory.
147  * if this is non-zero then assume it is the address to get MAC from.
148  */
149 #if defined(CONFIG_NETtel)
150 #define FEC_FLASHMAC    0xf0006006
151 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
152 #define FEC_FLASHMAC    0xf0006000
153 #elif defined(CONFIG_CANCam)
154 #define FEC_FLASHMAC    0xf0020000
155 #elif defined (CONFIG_M5272C3)
156 #define FEC_FLASHMAC    (0xffe04000 + 4)
157 #elif defined(CONFIG_MOD5272)
158 #define FEC_FLASHMAC    0xffc0406b
159 #else
160 #define FEC_FLASHMAC    0
161 #endif
162 #endif /* CONFIG_M5272 */
163
164 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
165  */
166 #define PKT_MAXBUF_SIZE         1522
167 #define PKT_MINBUF_SIZE         64
168 #define PKT_MAXBLR_SIZE         1536
169
170 /* FEC receive acceleration */
171 #define FEC_RACC_IPDIS          (1 << 1)
172 #define FEC_RACC_PRODIS         (1 << 2)
173 #define FEC_RACC_OPTIONS        (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
174
175 /*
176  * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
177  * size bits. Other FEC hardware does not, so we need to take that into
178  * account when setting it.
179  */
180 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
181     defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
182 #define OPT_FRAME_SIZE  (PKT_MAXBUF_SIZE << 16)
183 #else
184 #define OPT_FRAME_SIZE  0
185 #endif
186
187 /* FEC MII MMFR bits definition */
188 #define FEC_MMFR_ST             (1 << 30)
189 #define FEC_MMFR_OP_READ        (2 << 28)
190 #define FEC_MMFR_OP_WRITE       (1 << 28)
191 #define FEC_MMFR_PA(v)          ((v & 0x1f) << 23)
192 #define FEC_MMFR_RA(v)          ((v & 0x1f) << 18)
193 #define FEC_MMFR_TA             (2 << 16)
194 #define FEC_MMFR_DATA(v)        (v & 0xffff)
195 /* FEC ECR bits definition */
196 #define FEC_ECR_MAGICEN         (1 << 2)
197 #define FEC_ECR_SLEEP           (1 << 3)
198
199 #define FEC_MII_TIMEOUT         30000 /* us */
200
201 /* Transmitter timeout */
202 #define TX_TIMEOUT (2 * HZ)
203
204 #define FEC_PAUSE_FLAG_AUTONEG  0x1
205 #define FEC_PAUSE_FLAG_ENABLE   0x2
206 #define FEC_WOL_HAS_MAGIC_PACKET        (0x1 << 0)
207 #define FEC_WOL_FLAG_ENABLE             (0x1 << 1)
208 #define FEC_WOL_FLAG_SLEEP_ON           (0x1 << 2)
209
210 #define COPYBREAK_DEFAULT       256
211
212 #define TSO_HEADER_SIZE         128
213 /* Max number of allowed TCP segments for software TSO */
214 #define FEC_MAX_TSO_SEGS        100
215 #define FEC_MAX_SKB_DESCS       (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
216
217 #define IS_TSO_HEADER(txq, addr) \
218         ((addr >= txq->tso_hdrs_dma) && \
219         (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
220
221 static int mii_cnt;
222
223 static inline
224 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225                                       struct fec_enet_private *fep,
226                                       int queue_id)
227 {
228         struct bufdesc *new_bd = bdp + 1;
229         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
230         struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
231         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
232         struct bufdesc_ex *ex_base;
233         struct bufdesc *base;
234         int ring_size;
235
236         if (bdp >= txq->tx_bd_base) {
237                 base = txq->tx_bd_base;
238                 ring_size = txq->tx_ring_size;
239                 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
240         } else {
241                 base = rxq->rx_bd_base;
242                 ring_size = rxq->rx_ring_size;
243                 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
244         }
245
246         if (fep->bufdesc_ex)
247                 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
248                         ex_base : ex_new_bd);
249         else
250                 return (new_bd >= (base + ring_size)) ?
251                         base : new_bd;
252 }
253
254 static inline
255 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
256                                       struct fec_enet_private *fep,
257                                       int queue_id)
258 {
259         struct bufdesc *new_bd = bdp - 1;
260         struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
261         struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
262         struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
263         struct bufdesc_ex *ex_base;
264         struct bufdesc *base;
265         int ring_size;
266
267         if (bdp >= txq->tx_bd_base) {
268                 base = txq->tx_bd_base;
269                 ring_size = txq->tx_ring_size;
270                 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
271         } else {
272                 base = rxq->rx_bd_base;
273                 ring_size = rxq->rx_ring_size;
274                 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
275         }
276
277         if (fep->bufdesc_ex)
278                 return (struct bufdesc *)((ex_new_bd < ex_base) ?
279                         (ex_new_bd + ring_size) : ex_new_bd);
280         else
281                 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
282 }
283
284 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
285                                 struct fec_enet_private *fep)
286 {
287         return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
288 }
289
290 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
291                                         struct fec_enet_priv_tx_q *txq)
292 {
293         int entries;
294
295         entries = ((const char *)txq->dirty_tx -
296                         (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
297
298         return entries > 0 ? entries : entries + txq->tx_ring_size;
299 }
300
301 static void swap_buffer(void *bufaddr, int len)
302 {
303         int i;
304         unsigned int *buf = bufaddr;
305
306         for (i = 0; i < len; i += 4, buf++)
307                 swab32s(buf);
308 }
309
310 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
311 {
312         int i;
313         unsigned int *src = src_buf;
314         unsigned int *dst = dst_buf;
315
316         for (i = 0; i < len; i += 4, src++, dst++)
317                 *dst = swab32p(src);
318 }
319
320 static void fec_dump(struct net_device *ndev)
321 {
322         struct fec_enet_private *fep = netdev_priv(ndev);
323         struct bufdesc *bdp;
324         struct fec_enet_priv_tx_q *txq;
325         int index = 0;
326
327         netdev_info(ndev, "TX ring dump\n");
328         pr_info("Nr     SC     addr       len  SKB\n");
329
330         txq = fep->tx_queue[0];
331         bdp = txq->tx_bd_base;
332
333         do {
334                 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
335                         index,
336                         bdp == txq->cur_tx ? 'S' : ' ',
337                         bdp == txq->dirty_tx ? 'H' : ' ',
338                         bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
339                         txq->tx_skbuff[index]);
340                 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
341                 index++;
342         } while (bdp != txq->tx_bd_base);
343 }
344
345 static inline bool is_ipv4_pkt(struct sk_buff *skb)
346 {
347         return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
348 }
349
350 static int
351 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
352 {
353         /* Only run for packets requiring a checksum. */
354         if (skb->ip_summed != CHECKSUM_PARTIAL)
355                 return 0;
356
357         if (unlikely(skb_cow_head(skb, 0)))
358                 return -1;
359
360         if (is_ipv4_pkt(skb))
361                 ip_hdr(skb)->check = 0;
362         *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
363
364         return 0;
365 }
366
367 static int
368 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
369                              struct sk_buff *skb,
370                              struct net_device *ndev)
371 {
372         struct fec_enet_private *fep = netdev_priv(ndev);
373         struct bufdesc *bdp = txq->cur_tx;
374         struct bufdesc_ex *ebdp;
375         int nr_frags = skb_shinfo(skb)->nr_frags;
376         unsigned short queue = skb_get_queue_mapping(skb);
377         int frag, frag_len;
378         unsigned short status;
379         unsigned int estatus = 0;
380         skb_frag_t *this_frag;
381         unsigned int index;
382         void *bufaddr;
383         dma_addr_t addr;
384         int i;
385
386         for (frag = 0; frag < nr_frags; frag++) {
387                 this_frag = &skb_shinfo(skb)->frags[frag];
388                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
389                 ebdp = (struct bufdesc_ex *)bdp;
390
391                 status = bdp->cbd_sc;
392                 status &= ~BD_ENET_TX_STATS;
393                 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
394                 frag_len = skb_shinfo(skb)->frags[frag].size;
395
396                 /* Handle the last BD specially */
397                 if (frag == nr_frags - 1) {
398                         status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
399                         if (fep->bufdesc_ex) {
400                                 estatus |= BD_ENET_TX_INT;
401                                 if (unlikely(skb_shinfo(skb)->tx_flags &
402                                         SKBTX_HW_TSTAMP && fep->hwts_tx_en))
403                                         estatus |= BD_ENET_TX_TS;
404                         }
405                 }
406
407                 if (fep->bufdesc_ex) {
408                         if (fep->quirks & FEC_QUIRK_HAS_AVB)
409                                 estatus |= FEC_TX_BD_FTYPE(queue);
410                         if (skb->ip_summed == CHECKSUM_PARTIAL)
411                                 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
412                         ebdp->cbd_bdu = 0;
413                         ebdp->cbd_esc = estatus;
414                 }
415
416                 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
417
418                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
419                 if (((unsigned long) bufaddr) & fep->tx_align ||
420                         fep->quirks & FEC_QUIRK_SWAP_FRAME) {
421                         memcpy(txq->tx_bounce[index], bufaddr, frag_len);
422                         bufaddr = txq->tx_bounce[index];
423
424                         if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
425                                 swap_buffer(bufaddr, frag_len);
426                 }
427
428                 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
429                                       DMA_TO_DEVICE);
430                 if (dma_mapping_error(&fep->pdev->dev, addr)) {
431                         dev_kfree_skb_any(skb);
432                         if (net_ratelimit())
433                                 netdev_err(ndev, "Tx DMA memory map failed\n");
434                         goto dma_mapping_error;
435                 }
436
437                 bdp->cbd_bufaddr = addr;
438                 bdp->cbd_datlen = frag_len;
439                 bdp->cbd_sc = status;
440         }
441
442         txq->cur_tx = bdp;
443
444         return 0;
445
446 dma_mapping_error:
447         bdp = txq->cur_tx;
448         for (i = 0; i < frag; i++) {
449                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
450                 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
451                                 bdp->cbd_datlen, DMA_TO_DEVICE);
452         }
453         return NETDEV_TX_OK;
454 }
455
456 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
457                                    struct sk_buff *skb, struct net_device *ndev)
458 {
459         struct fec_enet_private *fep = netdev_priv(ndev);
460         int nr_frags = skb_shinfo(skb)->nr_frags;
461         struct bufdesc *bdp, *last_bdp;
462         void *bufaddr;
463         dma_addr_t addr;
464         unsigned short status;
465         unsigned short buflen;
466         unsigned short queue;
467         unsigned int estatus = 0;
468         unsigned int index;
469         int entries_free;
470         int ret;
471
472         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
473         if (entries_free < MAX_SKB_FRAGS + 1) {
474                 dev_kfree_skb_any(skb);
475                 if (net_ratelimit())
476                         netdev_err(ndev, "NOT enough BD for SG!\n");
477                 return NETDEV_TX_OK;
478         }
479
480         /* Protocol checksum off-load for TCP and UDP. */
481         if (fec_enet_clear_csum(skb, ndev)) {
482                 dev_kfree_skb_any(skb);
483                 return NETDEV_TX_OK;
484         }
485
486         /* Fill in a Tx ring entry */
487         bdp = txq->cur_tx;
488         status = bdp->cbd_sc;
489         status &= ~BD_ENET_TX_STATS;
490
491         /* Set buffer length and buffer pointer */
492         bufaddr = skb->data;
493         buflen = skb_headlen(skb);
494
495         queue = skb_get_queue_mapping(skb);
496         index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
497         if (((unsigned long) bufaddr) & fep->tx_align ||
498                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
499                 memcpy(txq->tx_bounce[index], skb->data, buflen);
500                 bufaddr = txq->tx_bounce[index];
501
502                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
503                         swap_buffer(bufaddr, buflen);
504         }
505
506         /* Push the data cache so the CPM does not get stale memory data. */
507         addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
508         if (dma_mapping_error(&fep->pdev->dev, addr)) {
509                 dev_kfree_skb_any(skb);
510                 if (net_ratelimit())
511                         netdev_err(ndev, "Tx DMA memory map failed\n");
512                 return NETDEV_TX_OK;
513         }
514
515         if (nr_frags) {
516                 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
517                 if (ret)
518                         return ret;
519         } else {
520                 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
521                 if (fep->bufdesc_ex) {
522                         estatus = BD_ENET_TX_INT;
523                         if (unlikely(skb_shinfo(skb)->tx_flags &
524                                 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
525                                 estatus |= BD_ENET_TX_TS;
526                 }
527         }
528
529         if (fep->bufdesc_ex) {
530
531                 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
532
533                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
534                         fep->hwts_tx_en))
535                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
536
537                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
538                         estatus |= FEC_TX_BD_FTYPE(queue);
539
540                 if (skb->ip_summed == CHECKSUM_PARTIAL)
541                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
542
543                 ebdp->cbd_bdu = 0;
544                 ebdp->cbd_esc = estatus;
545         }
546
547         last_bdp = txq->cur_tx;
548         index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
549         /* Save skb pointer */
550         txq->tx_skbuff[index] = skb;
551
552         bdp->cbd_datlen = buflen;
553         bdp->cbd_bufaddr = addr;
554
555         /* Send it on its way.  Tell FEC it's ready, interrupt when done,
556          * it's the last BD of the frame, and to put the CRC on the end.
557          */
558         status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
559         bdp->cbd_sc = status;
560
561         /* If this was the last BD in the ring, start at the beginning again. */
562         bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
563
564         skb_tx_timestamp(skb);
565
566         txq->cur_tx = bdp;
567
568         /* Trigger transmission start */
569         writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
570
571         return 0;
572 }
573
574 static int
575 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
576                           struct net_device *ndev,
577                           struct bufdesc *bdp, int index, char *data,
578                           int size, bool last_tcp, bool is_last)
579 {
580         struct fec_enet_private *fep = netdev_priv(ndev);
581         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
582         unsigned short queue = skb_get_queue_mapping(skb);
583         unsigned short status;
584         unsigned int estatus = 0;
585         dma_addr_t addr;
586
587         status = bdp->cbd_sc;
588         status &= ~BD_ENET_TX_STATS;
589
590         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
591
592         if (((unsigned long) data) & fep->tx_align ||
593                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
594                 memcpy(txq->tx_bounce[index], data, size);
595                 data = txq->tx_bounce[index];
596
597                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
598                         swap_buffer(data, size);
599         }
600
601         addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
602         if (dma_mapping_error(&fep->pdev->dev, addr)) {
603                 dev_kfree_skb_any(skb);
604                 if (net_ratelimit())
605                         netdev_err(ndev, "Tx DMA memory map failed\n");
606                 return NETDEV_TX_BUSY;
607         }
608
609         bdp->cbd_datlen = size;
610         bdp->cbd_bufaddr = addr;
611
612         if (fep->bufdesc_ex) {
613                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
614                         estatus |= FEC_TX_BD_FTYPE(queue);
615                 if (skb->ip_summed == CHECKSUM_PARTIAL)
616                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
617                 ebdp->cbd_bdu = 0;
618                 ebdp->cbd_esc = estatus;
619         }
620
621         /* Handle the last BD specially */
622         if (last_tcp)
623                 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
624         if (is_last) {
625                 status |= BD_ENET_TX_INTR;
626                 if (fep->bufdesc_ex)
627                         ebdp->cbd_esc |= BD_ENET_TX_INT;
628         }
629
630         bdp->cbd_sc = status;
631
632         return 0;
633 }
634
635 static int
636 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
637                          struct sk_buff *skb, struct net_device *ndev,
638                          struct bufdesc *bdp, int index)
639 {
640         struct fec_enet_private *fep = netdev_priv(ndev);
641         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
642         struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
643         unsigned short queue = skb_get_queue_mapping(skb);
644         void *bufaddr;
645         unsigned long dmabuf;
646         unsigned short status;
647         unsigned int estatus = 0;
648
649         status = bdp->cbd_sc;
650         status &= ~BD_ENET_TX_STATS;
651         status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
652
653         bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
654         dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
655         if (((unsigned long)bufaddr) & fep->tx_align ||
656                 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
657                 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
658                 bufaddr = txq->tx_bounce[index];
659
660                 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
661                         swap_buffer(bufaddr, hdr_len);
662
663                 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
664                                         hdr_len, DMA_TO_DEVICE);
665                 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
666                         dev_kfree_skb_any(skb);
667                         if (net_ratelimit())
668                                 netdev_err(ndev, "Tx DMA memory map failed\n");
669                         return NETDEV_TX_BUSY;
670                 }
671         }
672
673         bdp->cbd_bufaddr = dmabuf;
674         bdp->cbd_datlen = hdr_len;
675
676         if (fep->bufdesc_ex) {
677                 if (fep->quirks & FEC_QUIRK_HAS_AVB)
678                         estatus |= FEC_TX_BD_FTYPE(queue);
679                 if (skb->ip_summed == CHECKSUM_PARTIAL)
680                         estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
681                 ebdp->cbd_bdu = 0;
682                 ebdp->cbd_esc = estatus;
683         }
684
685         bdp->cbd_sc = status;
686
687         return 0;
688 }
689
690 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
691                                    struct sk_buff *skb,
692                                    struct net_device *ndev)
693 {
694         struct fec_enet_private *fep = netdev_priv(ndev);
695         int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
696         int total_len, data_left;
697         struct bufdesc *bdp = txq->cur_tx;
698         unsigned short queue = skb_get_queue_mapping(skb);
699         struct tso_t tso;
700         unsigned int index = 0;
701         int ret;
702
703         if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
704                 dev_kfree_skb_any(skb);
705                 if (net_ratelimit())
706                         netdev_err(ndev, "NOT enough BD for TSO!\n");
707                 return NETDEV_TX_OK;
708         }
709
710         /* Protocol checksum off-load for TCP and UDP. */
711         if (fec_enet_clear_csum(skb, ndev)) {
712                 dev_kfree_skb_any(skb);
713                 return NETDEV_TX_OK;
714         }
715
716         /* Initialize the TSO handler, and prepare the first payload */
717         tso_start(skb, &tso);
718
719         total_len = skb->len - hdr_len;
720         while (total_len > 0) {
721                 char *hdr;
722
723                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
724                 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
725                 total_len -= data_left;
726
727                 /* prepare packet headers: MAC + IP + TCP */
728                 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
729                 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
730                 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
731                 if (ret)
732                         goto err_release;
733
734                 while (data_left > 0) {
735                         int size;
736
737                         size = min_t(int, tso.size, data_left);
738                         bdp = fec_enet_get_nextdesc(bdp, fep, queue);
739                         index = fec_enet_get_bd_index(txq->tx_bd_base,
740                                                       bdp, fep);
741                         ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
742                                                         bdp, index,
743                                                         tso.data, size,
744                                                         size == data_left,
745                                                         total_len == 0);
746                         if (ret)
747                                 goto err_release;
748
749                         data_left -= size;
750                         tso_build_data(skb, &tso, size);
751                 }
752
753                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
754         }
755
756         /* Save skb pointer */
757         txq->tx_skbuff[index] = skb;
758
759         skb_tx_timestamp(skb);
760         txq->cur_tx = bdp;
761
762         /* Trigger transmission start */
763         if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
764             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
765             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
766             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
767             !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
768                 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
769
770         return 0;
771
772 err_release:
773         /* TODO: Release all used data descriptors for TSO */
774         return ret;
775 }
776
777 static netdev_tx_t
778 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
779 {
780         struct fec_enet_private *fep = netdev_priv(ndev);
781         int entries_free;
782         unsigned short queue;
783         struct fec_enet_priv_tx_q *txq;
784         struct netdev_queue *nq;
785         int ret;
786
787         queue = skb_get_queue_mapping(skb);
788         txq = fep->tx_queue[queue];
789         nq = netdev_get_tx_queue(ndev, queue);
790
791         if (skb_is_gso(skb))
792                 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
793         else
794                 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
795         if (ret)
796                 return ret;
797
798         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
799         if (entries_free <= txq->tx_stop_threshold)
800                 netif_tx_stop_queue(nq);
801
802         return NETDEV_TX_OK;
803 }
804
805 /* Init RX & TX buffer descriptors
806  */
807 static void fec_enet_bd_init(struct net_device *dev)
808 {
809         struct fec_enet_private *fep = netdev_priv(dev);
810         struct fec_enet_priv_tx_q *txq;
811         struct fec_enet_priv_rx_q *rxq;
812         struct bufdesc *bdp;
813         unsigned int i;
814         unsigned int q;
815
816         for (q = 0; q < fep->num_rx_queues; q++) {
817                 /* Initialize the receive buffer descriptors. */
818                 rxq = fep->rx_queue[q];
819                 bdp = rxq->rx_bd_base;
820
821                 for (i = 0; i < rxq->rx_ring_size; i++) {
822
823                         /* Initialize the BD for every fragment in the page. */
824                         if (bdp->cbd_bufaddr)
825                                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
826                         else
827                                 bdp->cbd_sc = 0;
828                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
829                 }
830
831                 /* Set the last buffer to wrap */
832                 bdp = fec_enet_get_prevdesc(bdp, fep, q);
833                 bdp->cbd_sc |= BD_SC_WRAP;
834
835                 rxq->cur_rx = rxq->rx_bd_base;
836         }
837
838         for (q = 0; q < fep->num_tx_queues; q++) {
839                 /* ...and the same for transmit */
840                 txq = fep->tx_queue[q];
841                 bdp = txq->tx_bd_base;
842                 txq->cur_tx = bdp;
843
844                 for (i = 0; i < txq->tx_ring_size; i++) {
845                         /* Initialize the BD for every fragment in the page. */
846                         bdp->cbd_sc = 0;
847                         if (txq->tx_skbuff[i]) {
848                                 dev_kfree_skb_any(txq->tx_skbuff[i]);
849                                 txq->tx_skbuff[i] = NULL;
850                         }
851                         bdp->cbd_bufaddr = 0;
852                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
853                 }
854
855                 /* Set the last buffer to wrap */
856                 bdp = fec_enet_get_prevdesc(bdp, fep, q);
857                 bdp->cbd_sc |= BD_SC_WRAP;
858                 txq->dirty_tx = bdp;
859         }
860 }
861
862 static void fec_enet_active_rxring(struct net_device *ndev)
863 {
864         struct fec_enet_private *fep = netdev_priv(ndev);
865         int i;
866
867         for (i = 0; i < fep->num_rx_queues; i++)
868                 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
869 }
870
871 static void fec_enet_enable_ring(struct net_device *ndev)
872 {
873         struct fec_enet_private *fep = netdev_priv(ndev);
874         struct fec_enet_priv_tx_q *txq;
875         struct fec_enet_priv_rx_q *rxq;
876         int i;
877
878         for (i = 0; i < fep->num_rx_queues; i++) {
879                 rxq = fep->rx_queue[i];
880                 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
881                 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
882
883                 /* enable DMA1/2 */
884                 if (i)
885                         writel(RCMR_MATCHEN | RCMR_CMP(i),
886                                fep->hwp + FEC_RCMR(i));
887         }
888
889         for (i = 0; i < fep->num_tx_queues; i++) {
890                 txq = fep->tx_queue[i];
891                 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
892
893                 /* enable DMA1/2 */
894                 if (i)
895                         writel(DMA_CLASS_EN | IDLE_SLOPE(i),
896                                fep->hwp + FEC_DMA_CFG(i));
897         }
898 }
899
900 static void fec_enet_reset_skb(struct net_device *ndev)
901 {
902         struct fec_enet_private *fep = netdev_priv(ndev);
903         struct fec_enet_priv_tx_q *txq;
904         int i, j;
905
906         for (i = 0; i < fep->num_tx_queues; i++) {
907                 txq = fep->tx_queue[i];
908
909                 for (j = 0; j < txq->tx_ring_size; j++) {
910                         if (txq->tx_skbuff[j]) {
911                                 dev_kfree_skb_any(txq->tx_skbuff[j]);
912                                 txq->tx_skbuff[j] = NULL;
913                         }
914                 }
915         }
916 }
917
918 /*
919  * This function is called to start or restart the FEC during a link
920  * change, transmit timeout, or to reconfigure the FEC.  The network
921  * packet processing for this device must be stopped before this call.
922  */
923 static void
924 fec_restart(struct net_device *ndev)
925 {
926         struct fec_enet_private *fep = netdev_priv(ndev);
927         u32 val;
928         u32 temp_mac[2];
929         u32 rcntl = OPT_FRAME_SIZE | 0x04;
930         u32 ecntl = 0x2; /* ETHEREN */
931
932         /* Whack a reset.  We should wait for this.
933          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
934          * instead of reset MAC itself.
935          */
936         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
937                 writel(0, fep->hwp + FEC_ECNTRL);
938         } else {
939                 writel(1, fep->hwp + FEC_ECNTRL);
940                 udelay(10);
941         }
942
943         /*
944          * enet-mac reset will reset mac address registers too,
945          * so need to reconfigure it.
946          */
947         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
948                 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
949                 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
950                 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
951         }
952
953         /* Clear any outstanding interrupt. */
954         writel(0xffffffff, fep->hwp + FEC_IEVENT);
955
956         fec_enet_bd_init(ndev);
957
958         fec_enet_enable_ring(ndev);
959
960         /* Reset tx SKB buffers. */
961         fec_enet_reset_skb(ndev);
962
963         /* Enable MII mode */
964         if (fep->full_duplex == DUPLEX_FULL) {
965                 /* FD enable */
966                 writel(0x04, fep->hwp + FEC_X_CNTRL);
967         } else {
968                 /* No Rcv on Xmit */
969                 rcntl |= 0x02;
970                 writel(0x0, fep->hwp + FEC_X_CNTRL);
971         }
972
973         /* Set MII speed */
974         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
975
976 #if !defined(CONFIG_M5272)
977         if (fep->quirks & FEC_QUIRK_HAS_RACC) {
978                 /* set RX checksum */
979                 val = readl(fep->hwp + FEC_RACC);
980                 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
981                         val |= FEC_RACC_OPTIONS;
982                 else
983                         val &= ~FEC_RACC_OPTIONS;
984                 writel(val, fep->hwp + FEC_RACC);
985         }
986 #endif
987
988         /*
989          * The phy interface and speed need to get configured
990          * differently on enet-mac.
991          */
992         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
993                 /* Enable flow control and length check */
994                 rcntl |= 0x40000000 | 0x00000020;
995
996                 /* RGMII, RMII or MII */
997                 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
998                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
999                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1000                     fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
1001                         rcntl |= (1 << 6);
1002                 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1003                         rcntl |= (1 << 8);
1004                 else
1005                         rcntl &= ~(1 << 8);
1006
1007                 /* 1G, 100M or 10M */
1008                 if (fep->phy_dev) {
1009                         if (fep->phy_dev->speed == SPEED_1000)
1010                                 ecntl |= (1 << 5);
1011                         else if (fep->phy_dev->speed == SPEED_100)
1012                                 rcntl &= ~(1 << 9);
1013                         else
1014                                 rcntl |= (1 << 9);
1015                 }
1016         } else {
1017 #ifdef FEC_MIIGSK_ENR
1018                 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1019                         u32 cfgr;
1020                         /* disable the gasket and wait */
1021                         writel(0, fep->hwp + FEC_MIIGSK_ENR);
1022                         while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1023                                 udelay(1);
1024
1025                         /*
1026                          * configure the gasket:
1027                          *   RMII, 50 MHz, no loopback, no echo
1028                          *   MII, 25 MHz, no loopback, no echo
1029                          */
1030                         cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1031                                 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1032                         if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1033                                 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1034                         writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1035
1036                         /* re-enable the gasket */
1037                         writel(2, fep->hwp + FEC_MIIGSK_ENR);
1038                 }
1039 #endif
1040         }
1041
1042 #if !defined(CONFIG_M5272)
1043         /* enable pause frame*/
1044         if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1045             ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1046              fep->phy_dev && fep->phy_dev->pause)) {
1047                 rcntl |= FEC_ENET_FCE;
1048
1049                 /* set FIFO threshold parameter to reduce overrun */
1050                 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1051                 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1052                 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1053                 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1054
1055                 /* OPD */
1056                 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1057         } else {
1058                 rcntl &= ~FEC_ENET_FCE;
1059         }
1060 #endif /* !defined(CONFIG_M5272) */
1061
1062         writel(rcntl, fep->hwp + FEC_R_CNTRL);
1063
1064         /* Setup multicast filter. */
1065         set_multicast_list(ndev);
1066 #ifndef CONFIG_M5272
1067         writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1068         writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1069 #endif
1070
1071         if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1072                 /* enable ENET endian swap */
1073                 ecntl |= (1 << 8);
1074                 /* enable ENET store and forward mode */
1075                 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1076         }
1077
1078         if (fep->bufdesc_ex)
1079                 ecntl |= (1 << 4);
1080
1081 #ifndef CONFIG_M5272
1082         /* Enable the MIB statistic event counters */
1083         writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1084 #endif
1085
1086         /* And last, enable the transmit and receive processing */
1087         writel(ecntl, fep->hwp + FEC_ECNTRL);
1088         fec_enet_active_rxring(ndev);
1089
1090         if (fep->bufdesc_ex)
1091                 fec_ptp_start_cyclecounter(ndev);
1092
1093         /* Enable interrupts we wish to service */
1094         if (fep->link)
1095                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1096         else
1097                 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1098
1099         /* Init the interrupt coalescing */
1100         fec_enet_itr_coal_init(ndev);
1101
1102 }
1103
1104 static void
1105 fec_stop(struct net_device *ndev)
1106 {
1107         struct fec_enet_private *fep = netdev_priv(ndev);
1108         struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1109         u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1110         u32 val;
1111
1112         /* We cannot expect a graceful transmit stop without link !!! */
1113         if (fep->link) {
1114                 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1115                 udelay(10);
1116                 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1117                         netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1118         }
1119
1120         /* Whack a reset.  We should wait for this.
1121          * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1122          * instead of reset MAC itself.
1123          */
1124         if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1125                 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1126                         writel(0, fep->hwp + FEC_ECNTRL);
1127                 } else {
1128                         writel(1, fep->hwp + FEC_ECNTRL);
1129                         udelay(10);
1130                 }
1131                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1132         } else {
1133                 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1134                 val = readl(fep->hwp + FEC_ECNTRL);
1135                 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1136                 writel(val, fep->hwp + FEC_ECNTRL);
1137
1138                 if (pdata && pdata->sleep_mode_enable)
1139                         pdata->sleep_mode_enable(true);
1140         }
1141         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1142
1143         /* We have to keep ENET enabled to have MII interrupt stay working */
1144         if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1145                 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1146                 writel(2, fep->hwp + FEC_ECNTRL);
1147                 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1148         }
1149 }
1150
1151
1152 static void
1153 fec_timeout(struct net_device *ndev)
1154 {
1155         struct fec_enet_private *fep = netdev_priv(ndev);
1156
1157         fec_dump(ndev);
1158
1159         ndev->stats.tx_errors++;
1160
1161         schedule_work(&fep->tx_timeout_work);
1162 }
1163
1164 static void fec_enet_timeout_work(struct work_struct *work)
1165 {
1166         struct fec_enet_private *fep =
1167                 container_of(work, struct fec_enet_private, tx_timeout_work);
1168         struct net_device *ndev = fep->netdev;
1169
1170         rtnl_lock();
1171         if (netif_device_present(ndev) || netif_running(ndev)) {
1172                 napi_disable(&fep->napi);
1173                 netif_tx_lock_bh(ndev);
1174                 fec_restart(ndev);
1175                 netif_wake_queue(ndev);
1176                 netif_tx_unlock_bh(ndev);
1177                 napi_enable(&fep->napi);
1178         }
1179         rtnl_unlock();
1180 }
1181
1182 static void
1183 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1184         struct skb_shared_hwtstamps *hwtstamps)
1185 {
1186         unsigned long flags;
1187         u64 ns;
1188
1189         spin_lock_irqsave(&fep->tmreg_lock, flags);
1190         ns = timecounter_cyc2time(&fep->tc, ts);
1191         spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1192
1193         memset(hwtstamps, 0, sizeof(*hwtstamps));
1194         hwtstamps->hwtstamp = ns_to_ktime(ns);
1195 }
1196
1197 static void
1198 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1199 {
1200         struct  fec_enet_private *fep;
1201         struct bufdesc *bdp;
1202         unsigned short status;
1203         struct  sk_buff *skb;
1204         struct fec_enet_priv_tx_q *txq;
1205         struct netdev_queue *nq;
1206         int     index = 0;
1207         int     entries_free;
1208
1209         fep = netdev_priv(ndev);
1210
1211         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1212
1213         txq = fep->tx_queue[queue_id];
1214         /* get next bdp of dirty_tx */
1215         nq = netdev_get_tx_queue(ndev, queue_id);
1216         bdp = txq->dirty_tx;
1217
1218         /* get next bdp of dirty_tx */
1219         bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1220
1221         while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1222
1223                 /* current queue is empty */
1224                 if (bdp == txq->cur_tx)
1225                         break;
1226
1227                 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1228
1229                 skb = txq->tx_skbuff[index];
1230                 txq->tx_skbuff[index] = NULL;
1231                 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1232                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1233                                         bdp->cbd_datlen, DMA_TO_DEVICE);
1234                 bdp->cbd_bufaddr = 0;
1235                 if (!skb) {
1236                         bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1237                         continue;
1238                 }
1239
1240                 /* Check for errors. */
1241                 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1242                                    BD_ENET_TX_RL | BD_ENET_TX_UN |
1243                                    BD_ENET_TX_CSL)) {
1244                         ndev->stats.tx_errors++;
1245                         if (status & BD_ENET_TX_HB)  /* No heartbeat */
1246                                 ndev->stats.tx_heartbeat_errors++;
1247                         if (status & BD_ENET_TX_LC)  /* Late collision */
1248                                 ndev->stats.tx_window_errors++;
1249                         if (status & BD_ENET_TX_RL)  /* Retrans limit */
1250                                 ndev->stats.tx_aborted_errors++;
1251                         if (status & BD_ENET_TX_UN)  /* Underrun */
1252                                 ndev->stats.tx_fifo_errors++;
1253                         if (status & BD_ENET_TX_CSL) /* Carrier lost */
1254                                 ndev->stats.tx_carrier_errors++;
1255                 } else {
1256                         ndev->stats.tx_packets++;
1257                         ndev->stats.tx_bytes += skb->len;
1258                 }
1259
1260                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1261                         fep->bufdesc_ex) {
1262                         struct skb_shared_hwtstamps shhwtstamps;
1263                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1264
1265                         fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1266                         skb_tstamp_tx(skb, &shhwtstamps);
1267                 }
1268
1269                 /* Deferred means some collisions occurred during transmit,
1270                  * but we eventually sent the packet OK.
1271                  */
1272                 if (status & BD_ENET_TX_DEF)
1273                         ndev->stats.collisions++;
1274
1275                 /* Free the sk buffer associated with this last transmit */
1276                 dev_kfree_skb_any(skb);
1277
1278                 txq->dirty_tx = bdp;
1279
1280                 /* Update pointer to next buffer descriptor to be transmitted */
1281                 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1282
1283                 /* Since we have freed up a buffer, the ring is no longer full
1284                  */
1285                 if (netif_queue_stopped(ndev)) {
1286                         entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1287                         if (entries_free >= txq->tx_wake_threshold)
1288                                 netif_tx_wake_queue(nq);
1289                 }
1290         }
1291
1292         /* ERR006538: Keep the transmitter going */
1293         if (bdp != txq->cur_tx &&
1294             readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1295                 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1296 }
1297
1298 static void
1299 fec_enet_tx(struct net_device *ndev)
1300 {
1301         struct fec_enet_private *fep = netdev_priv(ndev);
1302         u16 queue_id;
1303         /* First process class A queue, then Class B and Best Effort queue */
1304         for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1305                 clear_bit(queue_id, &fep->work_tx);
1306                 fec_enet_tx_queue(ndev, queue_id);
1307         }
1308         return;
1309 }
1310
1311 static int
1312 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1313 {
1314         struct  fec_enet_private *fep = netdev_priv(ndev);
1315         int off;
1316
1317         off = ((unsigned long)skb->data) & fep->rx_align;
1318         if (off)
1319                 skb_reserve(skb, fep->rx_align + 1 - off);
1320
1321         bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1322                                           FEC_ENET_RX_FRSIZE - fep->rx_align,
1323                                           DMA_FROM_DEVICE);
1324         if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1325                 if (net_ratelimit())
1326                         netdev_err(ndev, "Rx DMA memory map failed\n");
1327                 return -ENOMEM;
1328         }
1329
1330         return 0;
1331 }
1332
1333 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1334                                struct bufdesc *bdp, u32 length, bool swap)
1335 {
1336         struct  fec_enet_private *fep = netdev_priv(ndev);
1337         struct sk_buff *new_skb;
1338
1339         if (length > fep->rx_copybreak)
1340                 return false;
1341
1342         new_skb = netdev_alloc_skb(ndev, length);
1343         if (!new_skb)
1344                 return false;
1345
1346         dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1347                                 FEC_ENET_RX_FRSIZE - fep->rx_align,
1348                                 DMA_FROM_DEVICE);
1349         if (!swap)
1350                 memcpy(new_skb->data, (*skb)->data, length);
1351         else
1352                 swap_buffer2(new_skb->data, (*skb)->data, length);
1353         *skb = new_skb;
1354
1355         return true;
1356 }
1357
1358 /* During a receive, the cur_rx points to the current incoming buffer.
1359  * When we update through the ring, if the next incoming buffer has
1360  * not been given to the system, we just set the empty indicator,
1361  * effectively tossing the packet.
1362  */
1363 static int
1364 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1365 {
1366         struct fec_enet_private *fep = netdev_priv(ndev);
1367         struct fec_enet_priv_rx_q *rxq;
1368         struct bufdesc *bdp;
1369         unsigned short status;
1370         struct  sk_buff *skb_new = NULL;
1371         struct  sk_buff *skb;
1372         ushort  pkt_len;
1373         __u8 *data;
1374         int     pkt_received = 0;
1375         struct  bufdesc_ex *ebdp = NULL;
1376         bool    vlan_packet_rcvd = false;
1377         u16     vlan_tag;
1378         int     index = 0;
1379         bool    is_copybreak;
1380         bool    need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1381
1382 #ifdef CONFIG_M532x
1383         flush_cache_all();
1384 #endif
1385         queue_id = FEC_ENET_GET_QUQUE(queue_id);
1386         rxq = fep->rx_queue[queue_id];
1387
1388         /* First, grab all of the stats for the incoming packet.
1389          * These get messed up if we get called due to a busy condition.
1390          */
1391         bdp = rxq->cur_rx;
1392
1393         while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1394
1395                 if (pkt_received >= budget)
1396                         break;
1397                 pkt_received++;
1398
1399                 /* Since we have allocated space to hold a complete frame,
1400                  * the last indicator should be set.
1401                  */
1402                 if ((status & BD_ENET_RX_LAST) == 0)
1403                         netdev_err(ndev, "rcv is not +last\n");
1404
1405
1406                 /* Check for errors. */
1407                 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1408                            BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1409                         ndev->stats.rx_errors++;
1410                         if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1411                                 /* Frame too long or too short. */
1412                                 ndev->stats.rx_length_errors++;
1413                         }
1414                         if (status & BD_ENET_RX_NO)     /* Frame alignment */
1415                                 ndev->stats.rx_frame_errors++;
1416                         if (status & BD_ENET_RX_CR)     /* CRC Error */
1417                                 ndev->stats.rx_crc_errors++;
1418                         if (status & BD_ENET_RX_OV)     /* FIFO overrun */
1419                                 ndev->stats.rx_fifo_errors++;
1420                 }
1421
1422                 /* Report late collisions as a frame error.
1423                  * On this error, the BD is closed, but we don't know what we
1424                  * have in the buffer.  So, just drop this frame on the floor.
1425                  */
1426                 if (status & BD_ENET_RX_CL) {
1427                         ndev->stats.rx_errors++;
1428                         ndev->stats.rx_frame_errors++;
1429                         goto rx_processing_done;
1430                 }
1431
1432                 /* Process the incoming frame. */
1433                 ndev->stats.rx_packets++;
1434                 pkt_len = bdp->cbd_datlen;
1435                 ndev->stats.rx_bytes += pkt_len;
1436
1437                 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1438                 skb = rxq->rx_skbuff[index];
1439
1440                 /* The packet length includes FCS, but we don't want to
1441                  * include that when passing upstream as it messes up
1442                  * bridging applications.
1443                  */
1444                 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1445                                                   need_swap);
1446                 if (!is_copybreak) {
1447                         skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1448                         if (unlikely(!skb_new)) {
1449                                 ndev->stats.rx_dropped++;
1450                                 goto rx_processing_done;
1451                         }
1452                         dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1453                                          FEC_ENET_RX_FRSIZE - fep->rx_align,
1454                                          DMA_FROM_DEVICE);
1455                 }
1456
1457                 prefetch(skb->data - NET_IP_ALIGN);
1458                 skb_put(skb, pkt_len - 4);
1459                 data = skb->data;
1460                 if (!is_copybreak && need_swap)
1461                         swap_buffer(data, pkt_len);
1462
1463                 /* Extract the enhanced buffer descriptor */
1464                 ebdp = NULL;
1465                 if (fep->bufdesc_ex)
1466                         ebdp = (struct bufdesc_ex *)bdp;
1467
1468                 /* If this is a VLAN packet remove the VLAN Tag */
1469                 vlan_packet_rcvd = false;
1470                 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1471                         fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1472                         /* Push and remove the vlan tag */
1473                         struct vlan_hdr *vlan_header =
1474                                         (struct vlan_hdr *) (data + ETH_HLEN);
1475                         vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1476
1477                         vlan_packet_rcvd = true;
1478
1479                         memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1480                         skb_pull(skb, VLAN_HLEN);
1481                 }
1482
1483                 skb->protocol = eth_type_trans(skb, ndev);
1484
1485                 /* Get receive timestamp from the skb */
1486                 if (fep->hwts_rx_en && fep->bufdesc_ex)
1487                         fec_enet_hwtstamp(fep, ebdp->ts,
1488                                           skb_hwtstamps(skb));
1489
1490                 if (fep->bufdesc_ex &&
1491                     (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1492                         if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1493                                 /* don't check it */
1494                                 skb->ip_summed = CHECKSUM_UNNECESSARY;
1495                         } else {
1496                                 skb_checksum_none_assert(skb);
1497                         }
1498                 }
1499
1500                 /* Handle received VLAN packets */
1501                 if (vlan_packet_rcvd)
1502                         __vlan_hwaccel_put_tag(skb,
1503                                                htons(ETH_P_8021Q),
1504                                                vlan_tag);
1505
1506                 napi_gro_receive(&fep->napi, skb);
1507
1508                 if (is_copybreak) {
1509                         dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1510                                                    FEC_ENET_RX_FRSIZE - fep->rx_align,
1511                                                    DMA_FROM_DEVICE);
1512                 } else {
1513                         rxq->rx_skbuff[index] = skb_new;
1514                         fec_enet_new_rxbdp(ndev, bdp, skb_new);
1515                 }
1516
1517 rx_processing_done:
1518                 /* Clear the status flags for this buffer */
1519                 status &= ~BD_ENET_RX_STATS;
1520
1521                 /* Mark the buffer empty */
1522                 status |= BD_ENET_RX_EMPTY;
1523                 bdp->cbd_sc = status;
1524
1525                 if (fep->bufdesc_ex) {
1526                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1527
1528                         ebdp->cbd_esc = BD_ENET_RX_INT;
1529                         ebdp->cbd_prot = 0;
1530                         ebdp->cbd_bdu = 0;
1531                 }
1532
1533                 /* Update BD pointer to next entry */
1534                 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1535
1536                 /* Doing this here will keep the FEC running while we process
1537                  * incoming frames.  On a heavily loaded network, we should be
1538                  * able to keep up at the expense of system resources.
1539                  */
1540                 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1541         }
1542         rxq->cur_rx = bdp;
1543         return pkt_received;
1544 }
1545
1546 static int
1547 fec_enet_rx(struct net_device *ndev, int budget)
1548 {
1549         int     pkt_received = 0;
1550         u16     queue_id;
1551         struct fec_enet_private *fep = netdev_priv(ndev);
1552
1553         for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1554                 clear_bit(queue_id, &fep->work_rx);
1555                 pkt_received += fec_enet_rx_queue(ndev,
1556                                         budget - pkt_received, queue_id);
1557         }
1558         return pkt_received;
1559 }
1560
1561 static bool
1562 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1563 {
1564         if (int_events == 0)
1565                 return false;
1566
1567         if (int_events & FEC_ENET_RXF)
1568                 fep->work_rx |= (1 << 2);
1569         if (int_events & FEC_ENET_RXF_1)
1570                 fep->work_rx |= (1 << 0);
1571         if (int_events & FEC_ENET_RXF_2)
1572                 fep->work_rx |= (1 << 1);
1573
1574         if (int_events & FEC_ENET_TXF)
1575                 fep->work_tx |= (1 << 2);
1576         if (int_events & FEC_ENET_TXF_1)
1577                 fep->work_tx |= (1 << 0);
1578         if (int_events & FEC_ENET_TXF_2)
1579                 fep->work_tx |= (1 << 1);
1580
1581         return true;
1582 }
1583
1584 static irqreturn_t
1585 fec_enet_interrupt(int irq, void *dev_id)
1586 {
1587         struct net_device *ndev = dev_id;
1588         struct fec_enet_private *fep = netdev_priv(ndev);
1589         uint int_events;
1590         irqreturn_t ret = IRQ_NONE;
1591
1592         int_events = readl(fep->hwp + FEC_IEVENT);
1593         writel(int_events, fep->hwp + FEC_IEVENT);
1594         fec_enet_collect_events(fep, int_events);
1595
1596         if ((fep->work_tx || fep->work_rx) && fep->link) {
1597                 ret = IRQ_HANDLED;
1598
1599                 if (napi_schedule_prep(&fep->napi)) {
1600                         /* Disable the NAPI interrupts */
1601                         writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1602                         __napi_schedule(&fep->napi);
1603                 }
1604         }
1605
1606         if (int_events & FEC_ENET_MII) {
1607                 ret = IRQ_HANDLED;
1608                 complete(&fep->mdio_done);
1609         }
1610
1611         if (fep->ptp_clock)
1612                 fec_ptp_check_pps_event(fep);
1613
1614         return ret;
1615 }
1616
1617 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1618 {
1619         struct net_device *ndev = napi->dev;
1620         struct fec_enet_private *fep = netdev_priv(ndev);
1621         int pkts;
1622
1623         pkts = fec_enet_rx(ndev, budget);
1624
1625         fec_enet_tx(ndev);
1626
1627         if (pkts < budget) {
1628                 napi_complete(napi);
1629                 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1630         }
1631         return pkts;
1632 }
1633
1634 /* ------------------------------------------------------------------------- */
1635 static void fec_get_mac(struct net_device *ndev)
1636 {
1637         struct fec_enet_private *fep = netdev_priv(ndev);
1638         struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1639         unsigned char *iap, tmpaddr[ETH_ALEN];
1640
1641         /*
1642          * try to get mac address in following order:
1643          *
1644          * 1) module parameter via kernel command line in form
1645          *    fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1646          */
1647         iap = macaddr;
1648
1649         /*
1650          * 2) from device tree data
1651          */
1652         if (!is_valid_ether_addr(iap)) {
1653                 struct device_node *np = fep->pdev->dev.of_node;
1654                 if (np) {
1655                         const char *mac = of_get_mac_address(np);
1656                         if (mac)
1657                                 iap = (unsigned char *) mac;
1658                 }
1659         }
1660
1661         /*
1662          * 3) from flash or fuse (via platform data)
1663          */
1664         if (!is_valid_ether_addr(iap)) {
1665 #ifdef CONFIG_M5272
1666                 if (FEC_FLASHMAC)
1667                         iap = (unsigned char *)FEC_FLASHMAC;
1668 #else
1669                 if (pdata)
1670                         iap = (unsigned char *)&pdata->mac;
1671 #endif
1672         }
1673
1674         /*
1675          * 4) FEC mac registers set by bootloader
1676          */
1677         if (!is_valid_ether_addr(iap)) {
1678                 *((__be32 *) &tmpaddr[0]) =
1679                         cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1680                 *((__be16 *) &tmpaddr[4]) =
1681                         cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1682                 iap = &tmpaddr[0];
1683         }
1684
1685         /*
1686          * 5) random mac address
1687          */
1688         if (!is_valid_ether_addr(iap)) {
1689                 /* Report it and use a random ethernet address instead */
1690                 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1691                 eth_hw_addr_random(ndev);
1692                 netdev_info(ndev, "Using random MAC address: %pM\n",
1693                             ndev->dev_addr);
1694                 return;
1695         }
1696
1697         memcpy(ndev->dev_addr, iap, ETH_ALEN);
1698
1699         /* Adjust MAC if using macaddr */
1700         if (iap == macaddr)
1701                  ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1702 }
1703
1704 /* ------------------------------------------------------------------------- */
1705
1706 /*
1707  * Phy section
1708  */
1709 static void fec_enet_adjust_link(struct net_device *ndev)
1710 {
1711         struct fec_enet_private *fep = netdev_priv(ndev);
1712         struct phy_device *phy_dev = fep->phy_dev;
1713         int status_change = 0;
1714
1715         /* Prevent a state halted on mii error */
1716         if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1717                 phy_dev->state = PHY_RESUMING;
1718                 return;
1719         }
1720
1721         /*
1722          * If the netdev is down, or is going down, we're not interested
1723          * in link state events, so just mark our idea of the link as down
1724          * and ignore the event.
1725          */
1726         if (!netif_running(ndev) || !netif_device_present(ndev)) {
1727                 fep->link = 0;
1728         } else if (phy_dev->link) {
1729                 if (!fep->link) {
1730                         fep->link = phy_dev->link;
1731                         status_change = 1;
1732                 }
1733
1734                 if (fep->full_duplex != phy_dev->duplex) {
1735                         fep->full_duplex = phy_dev->duplex;
1736                         status_change = 1;
1737                 }
1738
1739                 if (phy_dev->speed != fep->speed) {
1740                         fep->speed = phy_dev->speed;
1741                         status_change = 1;
1742                 }
1743
1744                 /* if any of the above changed restart the FEC */
1745                 if (status_change) {
1746                         napi_disable(&fep->napi);
1747                         netif_tx_lock_bh(ndev);
1748                         fec_restart(ndev);
1749                         netif_wake_queue(ndev);
1750                         netif_tx_unlock_bh(ndev);
1751                         napi_enable(&fep->napi);
1752                 }
1753         } else {
1754                 if (fep->link) {
1755                         napi_disable(&fep->napi);
1756                         netif_tx_lock_bh(ndev);
1757                         fec_stop(ndev);
1758                         netif_tx_unlock_bh(ndev);
1759                         napi_enable(&fep->napi);
1760                         fep->link = phy_dev->link;
1761                         status_change = 1;
1762                 }
1763         }
1764
1765         if (status_change)
1766                 phy_print_status(phy_dev);
1767 }
1768
1769 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1770 {
1771         struct fec_enet_private *fep = bus->priv;
1772         struct device *dev = &fep->pdev->dev;
1773         unsigned long time_left;
1774         int ret = 0;
1775
1776         ret = pm_runtime_get_sync(dev);
1777         if (IS_ERR_VALUE(ret))
1778                 return ret;
1779
1780         fep->mii_timeout = 0;
1781         init_completion(&fep->mdio_done);
1782
1783         /* start a read op */
1784         writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1785                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1786                 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1787
1788         /* wait for end of transfer */
1789         time_left = wait_for_completion_timeout(&fep->mdio_done,
1790                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1791         if (time_left == 0) {
1792                 fep->mii_timeout = 1;
1793                 netdev_err(fep->netdev, "MDIO read timeout\n");
1794                 ret = -ETIMEDOUT;
1795                 goto out;
1796         }
1797
1798         ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1799
1800 out:
1801         pm_runtime_mark_last_busy(dev);
1802         pm_runtime_put_autosuspend(dev);
1803
1804         return ret;
1805 }
1806
1807 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1808                            u16 value)
1809 {
1810         struct fec_enet_private *fep = bus->priv;
1811         struct device *dev = &fep->pdev->dev;
1812         unsigned long time_left;
1813         int ret = 0;
1814
1815         ret = pm_runtime_get_sync(dev);
1816         if (IS_ERR_VALUE(ret))
1817                 return ret;
1818
1819         fep->mii_timeout = 0;
1820         init_completion(&fep->mdio_done);
1821
1822         /* start a write op */
1823         writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1824                 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1825                 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1826                 fep->hwp + FEC_MII_DATA);
1827
1828         /* wait for end of transfer */
1829         time_left = wait_for_completion_timeout(&fep->mdio_done,
1830                         usecs_to_jiffies(FEC_MII_TIMEOUT));
1831         if (time_left == 0) {
1832                 fep->mii_timeout = 1;
1833                 netdev_err(fep->netdev, "MDIO write timeout\n");
1834                 ret  = -ETIMEDOUT;
1835         }
1836
1837         pm_runtime_mark_last_busy(dev);
1838         pm_runtime_put_autosuspend(dev);
1839
1840         return ret;
1841 }
1842
1843 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1844 {
1845         struct fec_enet_private *fep = netdev_priv(ndev);
1846         int ret;
1847
1848         if (enable) {
1849                 ret = clk_prepare_enable(fep->clk_ahb);
1850                 if (ret)
1851                         return ret;
1852                 if (fep->clk_enet_out) {
1853                         ret = clk_prepare_enable(fep->clk_enet_out);
1854                         if (ret)
1855                                 goto failed_clk_enet_out;
1856                 }
1857                 if (fep->clk_ptp) {
1858                         mutex_lock(&fep->ptp_clk_mutex);
1859                         ret = clk_prepare_enable(fep->clk_ptp);
1860                         if (ret) {
1861                                 mutex_unlock(&fep->ptp_clk_mutex);
1862                                 goto failed_clk_ptp;
1863                         } else {
1864                                 fep->ptp_clk_on = true;
1865                         }
1866                         mutex_unlock(&fep->ptp_clk_mutex);
1867                 }
1868                 if (fep->clk_ref) {
1869                         ret = clk_prepare_enable(fep->clk_ref);
1870                         if (ret)
1871                                 goto failed_clk_ref;
1872                 }
1873         } else {
1874                 clk_disable_unprepare(fep->clk_ahb);
1875                 if (fep->clk_enet_out)
1876                         clk_disable_unprepare(fep->clk_enet_out);
1877                 if (fep->clk_ptp) {
1878                         mutex_lock(&fep->ptp_clk_mutex);
1879                         clk_disable_unprepare(fep->clk_ptp);
1880                         fep->ptp_clk_on = false;
1881                         mutex_unlock(&fep->ptp_clk_mutex);
1882                 }
1883                 if (fep->clk_ref)
1884                         clk_disable_unprepare(fep->clk_ref);
1885         }
1886
1887         return 0;
1888
1889 failed_clk_ref:
1890         if (fep->clk_ref)
1891                 clk_disable_unprepare(fep->clk_ref);
1892 failed_clk_ptp:
1893         if (fep->clk_enet_out)
1894                 clk_disable_unprepare(fep->clk_enet_out);
1895 failed_clk_enet_out:
1896                 clk_disable_unprepare(fep->clk_ahb);
1897
1898         return ret;
1899 }
1900
1901 static int fec_enet_mii_probe(struct net_device *ndev)
1902 {
1903         struct fec_enet_private *fep = netdev_priv(ndev);
1904         struct phy_device *phy_dev = NULL;
1905         char mdio_bus_id[MII_BUS_ID_SIZE];
1906         char phy_name[MII_BUS_ID_SIZE + 3];
1907         int phy_id;
1908         int dev_id = fep->dev_id;
1909
1910         fep->phy_dev = NULL;
1911
1912         if (fep->phy_node) {
1913                 phy_dev = of_phy_connect(ndev, fep->phy_node,
1914                                          &fec_enet_adjust_link, 0,
1915                                          fep->phy_interface);
1916                 if (!phy_dev)
1917                         return -ENODEV;
1918         } else {
1919                 /* check for attached phy */
1920                 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1921                         if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1922                                 continue;
1923                         if (fep->mii_bus->phy_map[phy_id] == NULL)
1924                                 continue;
1925                         if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1926                                 continue;
1927                         if (dev_id--)
1928                                 continue;
1929                         strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1930                         break;
1931                 }
1932
1933                 if (phy_id >= PHY_MAX_ADDR) {
1934                         netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1935                         strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1936                         phy_id = 0;
1937                 }
1938
1939                 snprintf(phy_name, sizeof(phy_name),
1940                          PHY_ID_FMT, mdio_bus_id, phy_id);
1941                 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1942                                       fep->phy_interface);
1943         }
1944
1945         if (IS_ERR(phy_dev)) {
1946                 netdev_err(ndev, "could not attach to PHY\n");
1947                 return PTR_ERR(phy_dev);
1948         }
1949
1950         /* mask with MAC supported features */
1951         if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1952                 phy_dev->supported &= PHY_GBIT_FEATURES;
1953                 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1954 #if !defined(CONFIG_M5272)
1955                 phy_dev->supported |= SUPPORTED_Pause;
1956 #endif
1957         }
1958         else
1959                 phy_dev->supported &= PHY_BASIC_FEATURES;
1960
1961         phy_dev->advertising = phy_dev->supported;
1962
1963         fep->phy_dev = phy_dev;
1964         fep->link = 0;
1965         fep->full_duplex = 0;
1966
1967         netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1968                     fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1969                     fep->phy_dev->irq);
1970
1971         return 0;
1972 }
1973
1974 static int fec_enet_mii_init(struct platform_device *pdev)
1975 {
1976         static struct mii_bus *fec0_mii_bus;
1977         struct net_device *ndev = platform_get_drvdata(pdev);
1978         struct fec_enet_private *fep = netdev_priv(ndev);
1979         struct device_node *node;
1980         int err = -ENXIO, i;
1981         u32 mii_speed, holdtime;
1982
1983         /*
1984          * The i.MX28 dual fec interfaces are not equal.
1985          * Here are the differences:
1986          *
1987          *  - fec0 supports MII & RMII modes while fec1 only supports RMII
1988          *  - fec0 acts as the 1588 time master while fec1 is slave
1989          *  - external phys can only be configured by fec0
1990          *
1991          * That is to say fec1 can not work independently. It only works
1992          * when fec0 is working. The reason behind this design is that the
1993          * second interface is added primarily for Switch mode.
1994          *
1995          * Because of the last point above, both phys are attached on fec0
1996          * mdio interface in board design, and need to be configured by
1997          * fec0 mii_bus.
1998          */
1999         if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
2000                 /* fec1 uses fec0 mii_bus */
2001                 if (mii_cnt && fec0_mii_bus) {
2002                         fep->mii_bus = fec0_mii_bus;
2003                         mii_cnt++;
2004                         return 0;
2005                 }
2006                 return -ENOENT;
2007         }
2008
2009         fep->mii_timeout = 0;
2010
2011         /*
2012          * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2013          *
2014          * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2015          * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'.  The i.MX28
2016          * Reference Manual has an error on this, and gets fixed on i.MX6Q
2017          * document.
2018          */
2019         mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2020         if (fep->quirks & FEC_QUIRK_ENET_MAC)
2021                 mii_speed--;
2022         if (mii_speed > 63) {
2023                 dev_err(&pdev->dev,
2024                         "fec clock (%lu) to fast to get right mii speed\n",
2025                         clk_get_rate(fep->clk_ipg));
2026                 err = -EINVAL;
2027                 goto err_out;
2028         }
2029
2030         /*
2031          * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2032          * MII_SPEED) register that defines the MDIO output hold time. Earlier
2033          * versions are RAZ there, so just ignore the difference and write the
2034          * register always.
2035          * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2036          * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2037          * output.
2038          * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2039          * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2040          * holdtime cannot result in a value greater than 3.
2041          */
2042         holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2043
2044         fep->phy_speed = mii_speed << 1 | holdtime << 8;
2045
2046         writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2047
2048         fep->mii_bus = mdiobus_alloc();
2049         if (fep->mii_bus == NULL) {
2050                 err = -ENOMEM;
2051                 goto err_out;
2052         }
2053
2054         fep->mii_bus->name = "fec_enet_mii_bus";
2055         fep->mii_bus->read = fec_enet_mdio_read;
2056         fep->mii_bus->write = fec_enet_mdio_write;
2057         snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2058                 pdev->name, fep->dev_id + 1);
2059         fep->mii_bus->priv = fep;
2060         fep->mii_bus->parent = &pdev->dev;
2061
2062         fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2063         if (!fep->mii_bus->irq) {
2064                 err = -ENOMEM;
2065                 goto err_out_free_mdiobus;
2066         }
2067
2068         for (i = 0; i < PHY_MAX_ADDR; i++)
2069                 fep->mii_bus->irq[i] = PHY_POLL;
2070
2071         node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2072         if (node) {
2073                 err = of_mdiobus_register(fep->mii_bus, node);
2074                 of_node_put(node);
2075         } else {
2076                 err = mdiobus_register(fep->mii_bus);
2077         }
2078
2079         if (err)
2080                 goto err_out_free_mdio_irq;
2081
2082         mii_cnt++;
2083
2084         /* save fec0 mii_bus */
2085         if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2086                 fec0_mii_bus = fep->mii_bus;
2087
2088         return 0;
2089
2090 err_out_free_mdio_irq:
2091         kfree(fep->mii_bus->irq);
2092 err_out_free_mdiobus:
2093         mdiobus_free(fep->mii_bus);
2094 err_out:
2095         return err;
2096 }
2097
2098 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2099 {
2100         if (--mii_cnt == 0) {
2101                 mdiobus_unregister(fep->mii_bus);
2102                 kfree(fep->mii_bus->irq);
2103                 mdiobus_free(fep->mii_bus);
2104         }
2105 }
2106
2107 static int fec_enet_get_settings(struct net_device *ndev,
2108                                   struct ethtool_cmd *cmd)
2109 {
2110         struct fec_enet_private *fep = netdev_priv(ndev);
2111         struct phy_device *phydev = fep->phy_dev;
2112
2113         if (!phydev)
2114                 return -ENODEV;
2115
2116         return phy_ethtool_gset(phydev, cmd);
2117 }
2118
2119 static int fec_enet_set_settings(struct net_device *ndev,
2120                                  struct ethtool_cmd *cmd)
2121 {
2122         struct fec_enet_private *fep = netdev_priv(ndev);
2123         struct phy_device *phydev = fep->phy_dev;
2124
2125         if (!phydev)
2126                 return -ENODEV;
2127
2128         return phy_ethtool_sset(phydev, cmd);
2129 }
2130
2131 static void fec_enet_get_drvinfo(struct net_device *ndev,
2132                                  struct ethtool_drvinfo *info)
2133 {
2134         struct fec_enet_private *fep = netdev_priv(ndev);
2135
2136         strlcpy(info->driver, fep->pdev->dev.driver->name,
2137                 sizeof(info->driver));
2138         strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2139         strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2140 }
2141
2142 static int fec_enet_get_regs_len(struct net_device *ndev)
2143 {
2144         struct fec_enet_private *fep = netdev_priv(ndev);
2145         struct resource *r;
2146         int s = 0;
2147
2148         r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2149         if (r)
2150                 s = resource_size(r);
2151
2152         return s;
2153 }
2154
2155 /* List of registers that can be safety be read to dump them with ethtool */
2156 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2157         defined(CONFIG_M520x) || defined(CONFIG_M532x) ||               \
2158         defined(CONFIG_ARCH_MXC) || defined(CONFIG_SOC_IMX28)
2159 static u32 fec_enet_register_offset[] = {
2160         FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2161         FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2162         FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2163         FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2164         FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2165         FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2166         FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2167         FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2168         FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2169         FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2170         FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2171         FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2172         RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2173         RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2174         RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2175         RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2176         RMON_T_P_GTE2048, RMON_T_OCTETS,
2177         IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2178         IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2179         IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2180         RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2181         RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2182         RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2183         RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2184         RMON_R_P_GTE2048, RMON_R_OCTETS,
2185         IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2186         IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2187 };
2188 #else
2189 static u32 fec_enet_register_offset[] = {
2190         FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2191         FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2192         FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2193         FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2194         FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2195         FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2196         FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2197         FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2198         FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2199 };
2200 #endif
2201
2202 static void fec_enet_get_regs(struct net_device *ndev,
2203                               struct ethtool_regs *regs, void *regbuf)
2204 {
2205         struct fec_enet_private *fep = netdev_priv(ndev);
2206         u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2207         u32 *buf = (u32 *)regbuf;
2208         u32 i, off;
2209
2210         memset(buf, 0, regs->len);
2211
2212         for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2213                 off = fec_enet_register_offset[i] / 4;
2214                 buf[off] = readl(&theregs[off]);
2215         }
2216 }
2217
2218 static int fec_enet_get_ts_info(struct net_device *ndev,
2219                                 struct ethtool_ts_info *info)
2220 {
2221         struct fec_enet_private *fep = netdev_priv(ndev);
2222
2223         if (fep->bufdesc_ex) {
2224
2225                 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2226                                         SOF_TIMESTAMPING_RX_SOFTWARE |
2227                                         SOF_TIMESTAMPING_SOFTWARE |
2228                                         SOF_TIMESTAMPING_TX_HARDWARE |
2229                                         SOF_TIMESTAMPING_RX_HARDWARE |
2230                                         SOF_TIMESTAMPING_RAW_HARDWARE;
2231                 if (fep->ptp_clock)
2232                         info->phc_index = ptp_clock_index(fep->ptp_clock);
2233                 else
2234                         info->phc_index = -1;
2235
2236                 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2237                                  (1 << HWTSTAMP_TX_ON);
2238
2239                 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2240                                    (1 << HWTSTAMP_FILTER_ALL);
2241                 return 0;
2242         } else {
2243                 return ethtool_op_get_ts_info(ndev, info);
2244         }
2245 }
2246
2247 #if !defined(CONFIG_M5272)
2248
2249 static void fec_enet_get_pauseparam(struct net_device *ndev,
2250                                     struct ethtool_pauseparam *pause)
2251 {
2252         struct fec_enet_private *fep = netdev_priv(ndev);
2253
2254         pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2255         pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2256         pause->rx_pause = pause->tx_pause;
2257 }
2258
2259 static int fec_enet_set_pauseparam(struct net_device *ndev,
2260                                    struct ethtool_pauseparam *pause)
2261 {
2262         struct fec_enet_private *fep = netdev_priv(ndev);
2263
2264         if (!fep->phy_dev)
2265                 return -ENODEV;
2266
2267         if (pause->tx_pause != pause->rx_pause) {
2268                 netdev_info(ndev,
2269                         "hardware only support enable/disable both tx and rx");
2270                 return -EINVAL;
2271         }
2272
2273         fep->pause_flag = 0;
2274
2275         /* tx pause must be same as rx pause */
2276         fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2277         fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2278
2279         if (pause->rx_pause || pause->autoneg) {
2280                 fep->phy_dev->supported |= ADVERTISED_Pause;
2281                 fep->phy_dev->advertising |= ADVERTISED_Pause;
2282         } else {
2283                 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2284                 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2285         }
2286
2287         if (pause->autoneg) {
2288                 if (netif_running(ndev))
2289                         fec_stop(ndev);
2290                 phy_start_aneg(fep->phy_dev);
2291         }
2292         if (netif_running(ndev)) {
2293                 napi_disable(&fep->napi);
2294                 netif_tx_lock_bh(ndev);
2295                 fec_restart(ndev);
2296                 netif_wake_queue(ndev);
2297                 netif_tx_unlock_bh(ndev);
2298                 napi_enable(&fep->napi);
2299         }
2300
2301         return 0;
2302 }
2303
2304 static const struct fec_stat {
2305         char name[ETH_GSTRING_LEN];
2306         u16 offset;
2307 } fec_stats[] = {
2308         /* RMON TX */
2309         { "tx_dropped", RMON_T_DROP },
2310         { "tx_packets", RMON_T_PACKETS },
2311         { "tx_broadcast", RMON_T_BC_PKT },
2312         { "tx_multicast", RMON_T_MC_PKT },
2313         { "tx_crc_errors", RMON_T_CRC_ALIGN },
2314         { "tx_undersize", RMON_T_UNDERSIZE },
2315         { "tx_oversize", RMON_T_OVERSIZE },
2316         { "tx_fragment", RMON_T_FRAG },
2317         { "tx_jabber", RMON_T_JAB },
2318         { "tx_collision", RMON_T_COL },
2319         { "tx_64byte", RMON_T_P64 },
2320         { "tx_65to127byte", RMON_T_P65TO127 },
2321         { "tx_128to255byte", RMON_T_P128TO255 },
2322         { "tx_256to511byte", RMON_T_P256TO511 },
2323         { "tx_512to1023byte", RMON_T_P512TO1023 },
2324         { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2325         { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2326         { "tx_octets", RMON_T_OCTETS },
2327
2328         /* IEEE TX */
2329         { "IEEE_tx_drop", IEEE_T_DROP },
2330         { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2331         { "IEEE_tx_1col", IEEE_T_1COL },
2332         { "IEEE_tx_mcol", IEEE_T_MCOL },
2333         { "IEEE_tx_def", IEEE_T_DEF },
2334         { "IEEE_tx_lcol", IEEE_T_LCOL },
2335         { "IEEE_tx_excol", IEEE_T_EXCOL },
2336         { "IEEE_tx_macerr", IEEE_T_MACERR },
2337         { "IEEE_tx_cserr", IEEE_T_CSERR },
2338         { "IEEE_tx_sqe", IEEE_T_SQE },
2339         { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2340         { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2341
2342         /* RMON RX */
2343         { "rx_packets", RMON_R_PACKETS },
2344         { "rx_broadcast", RMON_R_BC_PKT },
2345         { "rx_multicast", RMON_R_MC_PKT },
2346         { "rx_crc_errors", RMON_R_CRC_ALIGN },
2347         { "rx_undersize", RMON_R_UNDERSIZE },
2348         { "rx_oversize", RMON_R_OVERSIZE },
2349         { "rx_fragment", RMON_R_FRAG },
2350         { "rx_jabber", RMON_R_JAB },
2351         { "rx_64byte", RMON_R_P64 },
2352         { "rx_65to127byte", RMON_R_P65TO127 },
2353         { "rx_128to255byte", RMON_R_P128TO255 },
2354         { "rx_256to511byte", RMON_R_P256TO511 },
2355         { "rx_512to1023byte", RMON_R_P512TO1023 },
2356         { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2357         { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2358         { "rx_octets", RMON_R_OCTETS },
2359
2360         /* IEEE RX */
2361         { "IEEE_rx_drop", IEEE_R_DROP },
2362         { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2363         { "IEEE_rx_crc", IEEE_R_CRC },
2364         { "IEEE_rx_align", IEEE_R_ALIGN },
2365         { "IEEE_rx_macerr", IEEE_R_MACERR },
2366         { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2367         { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2368 };
2369
2370 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2371         struct ethtool_stats *stats, u64 *data)
2372 {
2373         struct fec_enet_private *fep = netdev_priv(dev);
2374         int i;
2375
2376         for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2377                 data[i] = readl(fep->hwp + fec_stats[i].offset);
2378 }
2379
2380 static void fec_enet_get_strings(struct net_device *netdev,
2381         u32 stringset, u8 *data)
2382 {
2383         int i;
2384         switch (stringset) {
2385         case ETH_SS_STATS:
2386                 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2387                         memcpy(data + i * ETH_GSTRING_LEN,
2388                                 fec_stats[i].name, ETH_GSTRING_LEN);
2389                 break;
2390         }
2391 }
2392
2393 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2394 {
2395         switch (sset) {
2396         case ETH_SS_STATS:
2397                 return ARRAY_SIZE(fec_stats);
2398         default:
2399                 return -EOPNOTSUPP;
2400         }
2401 }
2402 #endif /* !defined(CONFIG_M5272) */
2403
2404 static int fec_enet_nway_reset(struct net_device *dev)
2405 {
2406         struct fec_enet_private *fep = netdev_priv(dev);
2407         struct phy_device *phydev = fep->phy_dev;
2408
2409         if (!phydev)
2410                 return -ENODEV;
2411
2412         return genphy_restart_aneg(phydev);
2413 }
2414
2415 /* ITR clock source is enet system clock (clk_ahb).
2416  * TCTT unit is cycle_ns * 64 cycle
2417  * So, the ICTT value = X us / (cycle_ns * 64)
2418  */
2419 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2420 {
2421         struct fec_enet_private *fep = netdev_priv(ndev);
2422
2423         return us * (fep->itr_clk_rate / 64000) / 1000;
2424 }
2425
2426 /* Set threshold for interrupt coalescing */
2427 static void fec_enet_itr_coal_set(struct net_device *ndev)
2428 {
2429         struct fec_enet_private *fep = netdev_priv(ndev);
2430         int rx_itr, tx_itr;
2431
2432         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2433                 return;
2434
2435         /* Must be greater than zero to avoid unpredictable behavior */
2436         if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2437             !fep->tx_time_itr || !fep->tx_pkts_itr)
2438                 return;
2439
2440         /* Select enet system clock as Interrupt Coalescing
2441          * timer Clock Source
2442          */
2443         rx_itr = FEC_ITR_CLK_SEL;
2444         tx_itr = FEC_ITR_CLK_SEL;
2445
2446         /* set ICFT and ICTT */
2447         rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2448         rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2449         tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2450         tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2451
2452         rx_itr |= FEC_ITR_EN;
2453         tx_itr |= FEC_ITR_EN;
2454
2455         writel(tx_itr, fep->hwp + FEC_TXIC0);
2456         writel(rx_itr, fep->hwp + FEC_RXIC0);
2457         writel(tx_itr, fep->hwp + FEC_TXIC1);
2458         writel(rx_itr, fep->hwp + FEC_RXIC1);
2459         writel(tx_itr, fep->hwp + FEC_TXIC2);
2460         writel(rx_itr, fep->hwp + FEC_RXIC2);
2461 }
2462
2463 static int
2464 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2465 {
2466         struct fec_enet_private *fep = netdev_priv(ndev);
2467
2468         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2469                 return -EOPNOTSUPP;
2470
2471         ec->rx_coalesce_usecs = fep->rx_time_itr;
2472         ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2473
2474         ec->tx_coalesce_usecs = fep->tx_time_itr;
2475         ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2476
2477         return 0;
2478 }
2479
2480 static int
2481 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2482 {
2483         struct fec_enet_private *fep = netdev_priv(ndev);
2484         unsigned int cycle;
2485
2486         if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2487                 return -EOPNOTSUPP;
2488
2489         if (ec->rx_max_coalesced_frames > 255) {
2490                 pr_err("Rx coalesced frames exceed hardware limiation");
2491                 return -EINVAL;
2492         }
2493
2494         if (ec->tx_max_coalesced_frames > 255) {
2495                 pr_err("Tx coalesced frame exceed hardware limiation");
2496                 return -EINVAL;
2497         }
2498
2499         cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2500         if (cycle > 0xFFFF) {
2501                 pr_err("Rx coalesed usec exceeed hardware limiation");
2502                 return -EINVAL;
2503         }
2504
2505         cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2506         if (cycle > 0xFFFF) {
2507                 pr_err("Rx coalesed usec exceeed hardware limiation");
2508                 return -EINVAL;
2509         }
2510
2511         fep->rx_time_itr = ec->rx_coalesce_usecs;
2512         fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2513
2514         fep->tx_time_itr = ec->tx_coalesce_usecs;
2515         fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2516
2517         fec_enet_itr_coal_set(ndev);
2518
2519         return 0;
2520 }
2521
2522 static void fec_enet_itr_coal_init(struct net_device *ndev)
2523 {
2524         struct ethtool_coalesce ec;
2525
2526         ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2527         ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2528
2529         ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2530         ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2531
2532         fec_enet_set_coalesce(ndev, &ec);
2533 }
2534
2535 static int fec_enet_get_tunable(struct net_device *netdev,
2536                                 const struct ethtool_tunable *tuna,
2537                                 void *data)
2538 {
2539         struct fec_enet_private *fep = netdev_priv(netdev);
2540         int ret = 0;
2541
2542         switch (tuna->id) {
2543         case ETHTOOL_RX_COPYBREAK:
2544                 *(u32 *)data = fep->rx_copybreak;
2545                 break;
2546         default:
2547                 ret = -EINVAL;
2548                 break;
2549         }
2550
2551         return ret;
2552 }
2553
2554 static int fec_enet_set_tunable(struct net_device *netdev,
2555                                 const struct ethtool_tunable *tuna,
2556                                 const void *data)
2557 {
2558         struct fec_enet_private *fep = netdev_priv(netdev);
2559         int ret = 0;
2560
2561         switch (tuna->id) {
2562         case ETHTOOL_RX_COPYBREAK:
2563                 fep->rx_copybreak = *(u32 *)data;
2564                 break;
2565         default:
2566                 ret = -EINVAL;
2567                 break;
2568         }
2569
2570         return ret;
2571 }
2572
2573 static void
2574 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2575 {
2576         struct fec_enet_private *fep = netdev_priv(ndev);
2577
2578         if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2579                 wol->supported = WAKE_MAGIC;
2580                 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2581         } else {
2582                 wol->supported = wol->wolopts = 0;
2583         }
2584 }
2585
2586 static int
2587 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2588 {
2589         struct fec_enet_private *fep = netdev_priv(ndev);
2590
2591         if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2592                 return -EINVAL;
2593
2594         if (wol->wolopts & ~WAKE_MAGIC)
2595                 return -EINVAL;
2596
2597         device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2598         if (device_may_wakeup(&ndev->dev)) {
2599                 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2600                 if (fep->irq[0] > 0)
2601                         enable_irq_wake(fep->irq[0]);
2602         } else {
2603                 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2604                 if (fep->irq[0] > 0)
2605                         disable_irq_wake(fep->irq[0]);
2606         }
2607
2608         return 0;
2609 }
2610
2611 static const struct ethtool_ops fec_enet_ethtool_ops = {
2612         .get_settings           = fec_enet_get_settings,
2613         .set_settings           = fec_enet_set_settings,
2614         .get_drvinfo            = fec_enet_get_drvinfo,
2615         .get_regs_len           = fec_enet_get_regs_len,
2616         .get_regs               = fec_enet_get_regs,
2617         .nway_reset             = fec_enet_nway_reset,
2618         .get_link               = ethtool_op_get_link,
2619         .get_coalesce           = fec_enet_get_coalesce,
2620         .set_coalesce           = fec_enet_set_coalesce,
2621 #ifndef CONFIG_M5272
2622         .get_pauseparam         = fec_enet_get_pauseparam,
2623         .set_pauseparam         = fec_enet_set_pauseparam,
2624         .get_strings            = fec_enet_get_strings,
2625         .get_ethtool_stats      = fec_enet_get_ethtool_stats,
2626         .get_sset_count         = fec_enet_get_sset_count,
2627 #endif
2628         .get_ts_info            = fec_enet_get_ts_info,
2629         .get_tunable            = fec_enet_get_tunable,
2630         .set_tunable            = fec_enet_set_tunable,
2631         .get_wol                = fec_enet_get_wol,
2632         .set_wol                = fec_enet_set_wol,
2633 };
2634
2635 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2636 {
2637         struct fec_enet_private *fep = netdev_priv(ndev);
2638         struct phy_device *phydev = fep->phy_dev;
2639
2640         if (!netif_running(ndev))
2641                 return -EINVAL;
2642
2643         if (!phydev)
2644                 return -ENODEV;
2645
2646         if (fep->bufdesc_ex) {
2647                 if (cmd == SIOCSHWTSTAMP)
2648                         return fec_ptp_set(ndev, rq);
2649                 if (cmd == SIOCGHWTSTAMP)
2650                         return fec_ptp_get(ndev, rq);
2651         }
2652
2653         return phy_mii_ioctl(phydev, rq, cmd);
2654 }
2655
2656 static void fec_enet_free_buffers(struct net_device *ndev)
2657 {
2658         struct fec_enet_private *fep = netdev_priv(ndev);
2659         unsigned int i;
2660         struct sk_buff *skb;
2661         struct bufdesc  *bdp;
2662         struct fec_enet_priv_tx_q *txq;
2663         struct fec_enet_priv_rx_q *rxq;
2664         unsigned int q;
2665
2666         for (q = 0; q < fep->num_rx_queues; q++) {
2667                 rxq = fep->rx_queue[q];
2668                 bdp = rxq->rx_bd_base;
2669                 for (i = 0; i < rxq->rx_ring_size; i++) {
2670                         skb = rxq->rx_skbuff[i];
2671                         rxq->rx_skbuff[i] = NULL;
2672                         if (skb) {
2673                                 dma_unmap_single(&fep->pdev->dev,
2674                                                  bdp->cbd_bufaddr,
2675                                                  FEC_ENET_RX_FRSIZE - fep->rx_align,
2676                                                  DMA_FROM_DEVICE);
2677                                 dev_kfree_skb(skb);
2678                         }
2679                         bdp = fec_enet_get_nextdesc(bdp, fep, q);
2680                 }
2681         }
2682
2683         for (q = 0; q < fep->num_tx_queues; q++) {
2684                 txq = fep->tx_queue[q];
2685                 bdp = txq->tx_bd_base;
2686                 for (i = 0; i < txq->tx_ring_size; i++) {
2687                         kfree(txq->tx_bounce[i]);
2688                         txq->tx_bounce[i] = NULL;
2689                         skb = txq->tx_skbuff[i];
2690                         txq->tx_skbuff[i] = NULL;
2691                         dev_kfree_skb(skb);
2692                 }
2693         }
2694 }
2695
2696 static void fec_enet_free_queue(struct net_device *ndev)
2697 {
2698         struct fec_enet_private *fep = netdev_priv(ndev);
2699         int i;
2700         struct fec_enet_priv_tx_q *txq;
2701
2702         for (i = 0; i < fep->num_tx_queues; i++)
2703                 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2704                         txq = fep->tx_queue[i];
2705                         dma_free_coherent(NULL,
2706                                           txq->tx_ring_size * TSO_HEADER_SIZE,
2707                                           txq->tso_hdrs,
2708                                           txq->tso_hdrs_dma);
2709                 }
2710
2711         for (i = 0; i < fep->num_rx_queues; i++)
2712                 kfree(fep->rx_queue[i]);
2713         for (i = 0; i < fep->num_tx_queues; i++)
2714                 kfree(fep->tx_queue[i]);
2715 }
2716
2717 static int fec_enet_alloc_queue(struct net_device *ndev)
2718 {
2719         struct fec_enet_private *fep = netdev_priv(ndev);
2720         int i;
2721         int ret = 0;
2722         struct fec_enet_priv_tx_q *txq;
2723
2724         for (i = 0; i < fep->num_tx_queues; i++) {
2725                 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2726                 if (!txq) {
2727                         ret = -ENOMEM;
2728                         goto alloc_failed;
2729                 }
2730
2731                 fep->tx_queue[i] = txq;
2732                 txq->tx_ring_size = TX_RING_SIZE;
2733                 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2734
2735                 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2736                 txq->tx_wake_threshold =
2737                                 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2738
2739                 txq->tso_hdrs = dma_alloc_coherent(NULL,
2740                                         txq->tx_ring_size * TSO_HEADER_SIZE,
2741                                         &txq->tso_hdrs_dma,
2742                                         GFP_KERNEL);
2743                 if (!txq->tso_hdrs) {
2744                         ret = -ENOMEM;
2745                         goto alloc_failed;
2746                 }
2747         }
2748
2749         for (i = 0; i < fep->num_rx_queues; i++) {
2750                 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2751                                            GFP_KERNEL);
2752                 if (!fep->rx_queue[i]) {
2753                         ret = -ENOMEM;
2754                         goto alloc_failed;
2755                 }
2756
2757                 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2758                 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2759         }
2760         return ret;
2761
2762 alloc_failed:
2763         fec_enet_free_queue(ndev);
2764         return ret;
2765 }
2766
2767 static int
2768 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2769 {
2770         struct fec_enet_private *fep = netdev_priv(ndev);
2771         unsigned int i;
2772         struct sk_buff *skb;
2773         struct bufdesc  *bdp;
2774         struct fec_enet_priv_rx_q *rxq;
2775
2776         rxq = fep->rx_queue[queue];
2777         bdp = rxq->rx_bd_base;
2778         for (i = 0; i < rxq->rx_ring_size; i++) {
2779                 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2780                 if (!skb)
2781                         goto err_alloc;
2782
2783                 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2784                         dev_kfree_skb(skb);
2785                         goto err_alloc;
2786                 }
2787
2788                 rxq->rx_skbuff[i] = skb;
2789                 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2790
2791                 if (fep->bufdesc_ex) {
2792                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2793                         ebdp->cbd_esc = BD_ENET_RX_INT;
2794                 }
2795
2796                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2797         }
2798
2799         /* Set the last buffer to wrap. */
2800         bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2801         bdp->cbd_sc |= BD_SC_WRAP;
2802         return 0;
2803
2804  err_alloc:
2805         fec_enet_free_buffers(ndev);
2806         return -ENOMEM;
2807 }
2808
2809 static int
2810 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2811 {
2812         struct fec_enet_private *fep = netdev_priv(ndev);
2813         unsigned int i;
2814         struct bufdesc  *bdp;
2815         struct fec_enet_priv_tx_q *txq;
2816
2817         txq = fep->tx_queue[queue];
2818         bdp = txq->tx_bd_base;
2819         for (i = 0; i < txq->tx_ring_size; i++) {
2820                 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2821                 if (!txq->tx_bounce[i])
2822                         goto err_alloc;
2823
2824                 bdp->cbd_sc = 0;
2825                 bdp->cbd_bufaddr = 0;
2826
2827                 if (fep->bufdesc_ex) {
2828                         struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2829                         ebdp->cbd_esc = BD_ENET_TX_INT;
2830                 }
2831
2832                 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2833         }
2834
2835         /* Set the last buffer to wrap. */
2836         bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2837         bdp->cbd_sc |= BD_SC_WRAP;
2838
2839         return 0;
2840
2841  err_alloc:
2842         fec_enet_free_buffers(ndev);
2843         return -ENOMEM;
2844 }
2845
2846 static int fec_enet_alloc_buffers(struct net_device *ndev)
2847 {
2848         struct fec_enet_private *fep = netdev_priv(ndev);
2849         unsigned int i;
2850
2851         for (i = 0; i < fep->num_rx_queues; i++)
2852                 if (fec_enet_alloc_rxq_buffers(ndev, i))
2853                         return -ENOMEM;
2854
2855         for (i = 0; i < fep->num_tx_queues; i++)
2856                 if (fec_enet_alloc_txq_buffers(ndev, i))
2857                         return -ENOMEM;
2858         return 0;
2859 }
2860
2861 static int
2862 fec_enet_open(struct net_device *ndev)
2863 {
2864         struct fec_enet_private *fep = netdev_priv(ndev);
2865         int ret;
2866
2867         ret = pm_runtime_get_sync(&fep->pdev->dev);
2868         if (IS_ERR_VALUE(ret))
2869                 return ret;
2870
2871         pinctrl_pm_select_default_state(&fep->pdev->dev);
2872         ret = fec_enet_clk_enable(ndev, true);
2873         if (ret)
2874                 goto clk_enable;
2875
2876         /* I should reset the ring buffers here, but I don't yet know
2877          * a simple way to do that.
2878          */
2879
2880         ret = fec_enet_alloc_buffers(ndev);
2881         if (ret)
2882                 goto err_enet_alloc;
2883
2884         /* Init MAC prior to mii bus probe */
2885         fec_restart(ndev);
2886
2887         /* Probe and connect to PHY when open the interface */
2888         ret = fec_enet_mii_probe(ndev);
2889         if (ret)
2890                 goto err_enet_mii_probe;
2891
2892         napi_enable(&fep->napi);
2893         phy_start(fep->phy_dev);
2894         netif_tx_start_all_queues(ndev);
2895
2896         device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2897                                  FEC_WOL_FLAG_ENABLE);
2898
2899         return 0;
2900
2901 err_enet_mii_probe:
2902         fec_enet_free_buffers(ndev);
2903 err_enet_alloc:
2904         fec_enet_clk_enable(ndev, false);
2905 clk_enable:
2906         pm_runtime_mark_last_busy(&fep->pdev->dev);
2907         pm_runtime_put_autosuspend(&fep->pdev->dev);
2908         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2909         return ret;
2910 }
2911
2912 static int
2913 fec_enet_close(struct net_device *ndev)
2914 {
2915         struct fec_enet_private *fep = netdev_priv(ndev);
2916
2917         phy_stop(fep->phy_dev);
2918
2919         if (netif_device_present(ndev)) {
2920                 napi_disable(&fep->napi);
2921                 netif_tx_disable(ndev);
2922                 fec_stop(ndev);
2923         }
2924
2925         phy_disconnect(fep->phy_dev);
2926         fep->phy_dev = NULL;
2927
2928         fec_enet_clk_enable(ndev, false);
2929         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2930         pm_runtime_mark_last_busy(&fep->pdev->dev);
2931         pm_runtime_put_autosuspend(&fep->pdev->dev);
2932
2933         fec_enet_free_buffers(ndev);
2934
2935         return 0;
2936 }
2937
2938 /* Set or clear the multicast filter for this adaptor.
2939  * Skeleton taken from sunlance driver.
2940  * The CPM Ethernet implementation allows Multicast as well as individual
2941  * MAC address filtering.  Some of the drivers check to make sure it is
2942  * a group multicast address, and discard those that are not.  I guess I
2943  * will do the same for now, but just remove the test if you want
2944  * individual filtering as well (do the upper net layers want or support
2945  * this kind of feature?).
2946  */
2947
2948 #define HASH_BITS       6               /* #bits in hash */
2949 #define CRC32_POLY      0xEDB88320
2950
2951 static void set_multicast_list(struct net_device *ndev)
2952 {
2953         struct fec_enet_private *fep = netdev_priv(ndev);
2954         struct netdev_hw_addr *ha;
2955         unsigned int i, bit, data, crc, tmp;
2956         unsigned char hash;
2957
2958         if (ndev->flags & IFF_PROMISC) {
2959                 tmp = readl(fep->hwp + FEC_R_CNTRL);
2960                 tmp |= 0x8;
2961                 writel(tmp, fep->hwp + FEC_R_CNTRL);
2962                 return;
2963         }
2964
2965         tmp = readl(fep->hwp + FEC_R_CNTRL);
2966         tmp &= ~0x8;
2967         writel(tmp, fep->hwp + FEC_R_CNTRL);
2968
2969         if (ndev->flags & IFF_ALLMULTI) {
2970                 /* Catch all multicast addresses, so set the
2971                  * filter to all 1's
2972                  */
2973                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2974                 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2975
2976                 return;
2977         }
2978
2979         /* Clear filter and add the addresses in hash register
2980          */
2981         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2982         writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2983
2984         netdev_for_each_mc_addr(ha, ndev) {
2985                 /* calculate crc32 value of mac address */
2986                 crc = 0xffffffff;
2987
2988                 for (i = 0; i < ndev->addr_len; i++) {
2989                         data = ha->addr[i];
2990                         for (bit = 0; bit < 8; bit++, data >>= 1) {
2991                                 crc = (crc >> 1) ^
2992                                 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2993                         }
2994                 }
2995
2996                 /* only upper 6 bits (HASH_BITS) are used
2997                  * which point to specific bit in he hash registers
2998                  */
2999                 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
3000
3001                 if (hash > 31) {
3002                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3003                         tmp |= 1 << (hash - 32);
3004                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
3005                 } else {
3006                         tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3007                         tmp |= 1 << hash;
3008                         writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
3009                 }
3010         }
3011 }
3012
3013 /* Set a MAC change in hardware. */
3014 static int
3015 fec_set_mac_address(struct net_device *ndev, void *p)
3016 {
3017         struct fec_enet_private *fep = netdev_priv(ndev);
3018         struct sockaddr *addr = p;
3019
3020         if (addr) {
3021                 if (!is_valid_ether_addr(addr->sa_data))
3022                         return -EADDRNOTAVAIL;
3023                 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3024         }
3025
3026         writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
3027                 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
3028                 fep->hwp + FEC_ADDR_LOW);
3029         writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
3030                 fep->hwp + FEC_ADDR_HIGH);
3031         return 0;
3032 }
3033
3034 #ifdef CONFIG_NET_POLL_CONTROLLER
3035 /**
3036  * fec_poll_controller - FEC Poll controller function
3037  * @dev: The FEC network adapter
3038  *
3039  * Polled functionality used by netconsole and others in non interrupt mode
3040  *
3041  */
3042 static void fec_poll_controller(struct net_device *dev)
3043 {
3044         int i;
3045         struct fec_enet_private *fep = netdev_priv(dev);
3046
3047         for (i = 0; i < FEC_IRQ_NUM; i++) {
3048                 if (fep->irq[i] > 0) {
3049                         disable_irq(fep->irq[i]);
3050                         fec_enet_interrupt(fep->irq[i], dev);
3051                         enable_irq(fep->irq[i]);
3052                 }
3053         }
3054 }
3055 #endif
3056
3057 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
3058 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
3059         netdev_features_t features)
3060 {
3061         struct fec_enet_private *fep = netdev_priv(netdev);
3062         netdev_features_t changed = features ^ netdev->features;
3063
3064         netdev->features = features;
3065
3066         /* Receive checksum has been changed */
3067         if (changed & NETIF_F_RXCSUM) {
3068                 if (features & NETIF_F_RXCSUM)
3069                         fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3070                 else
3071                         fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3072         }
3073 }
3074
3075 static int fec_set_features(struct net_device *netdev,
3076         netdev_features_t features)
3077 {
3078         struct fec_enet_private *fep = netdev_priv(netdev);
3079         netdev_features_t changed = features ^ netdev->features;
3080
3081         if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
3082                 napi_disable(&fep->napi);
3083                 netif_tx_lock_bh(netdev);
3084                 fec_stop(netdev);
3085                 fec_enet_set_netdev_features(netdev, features);
3086                 fec_restart(netdev);
3087                 netif_tx_wake_all_queues(netdev);
3088                 netif_tx_unlock_bh(netdev);
3089                 napi_enable(&fep->napi);
3090         } else {
3091                 fec_enet_set_netdev_features(netdev, features);
3092         }
3093
3094         return 0;
3095 }
3096
3097 static const struct net_device_ops fec_netdev_ops = {
3098         .ndo_open               = fec_enet_open,
3099         .ndo_stop               = fec_enet_close,
3100         .ndo_start_xmit         = fec_enet_start_xmit,
3101         .ndo_set_rx_mode        = set_multicast_list,
3102         .ndo_change_mtu         = eth_change_mtu,
3103         .ndo_validate_addr      = eth_validate_addr,
3104         .ndo_tx_timeout         = fec_timeout,
3105         .ndo_set_mac_address    = fec_set_mac_address,
3106         .ndo_do_ioctl           = fec_enet_ioctl,
3107 #ifdef CONFIG_NET_POLL_CONTROLLER
3108         .ndo_poll_controller    = fec_poll_controller,
3109 #endif
3110         .ndo_set_features       = fec_set_features,
3111 };
3112
3113  /*
3114   * XXX:  We need to clean up on failure exits here.
3115   *
3116   */
3117 static int fec_enet_init(struct net_device *ndev)
3118 {
3119         struct fec_enet_private *fep = netdev_priv(ndev);
3120         struct fec_enet_priv_tx_q *txq;
3121         struct fec_enet_priv_rx_q *rxq;
3122         struct bufdesc *cbd_base;
3123         dma_addr_t bd_dma;
3124         int bd_size;
3125         unsigned int i;
3126
3127 #if defined(CONFIG_ARM)
3128         fep->rx_align = 0xf;
3129         fep->tx_align = 0xf;
3130 #else
3131         fep->rx_align = 0x3;
3132         fep->tx_align = 0x3;
3133 #endif
3134
3135         fec_enet_alloc_queue(ndev);
3136
3137         if (fep->bufdesc_ex)
3138                 fep->bufdesc_size = sizeof(struct bufdesc_ex);
3139         else
3140                 fep->bufdesc_size = sizeof(struct bufdesc);
3141         bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3142                         fep->bufdesc_size;
3143
3144         /* Allocate memory for buffer descriptors. */
3145         cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3146                                       GFP_KERNEL);
3147         if (!cbd_base) {
3148                 return -ENOMEM;
3149         }
3150
3151         memset(cbd_base, 0, bd_size);
3152
3153         /* Get the Ethernet address */
3154         fec_get_mac(ndev);
3155         /* make sure MAC we just acquired is programmed into the hw */
3156         fec_set_mac_address(ndev, NULL);
3157
3158         /* Set receive and transmit descriptor base. */
3159         for (i = 0; i < fep->num_rx_queues; i++) {
3160                 rxq = fep->rx_queue[i];
3161                 rxq->index = i;
3162                 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3163                 rxq->bd_dma = bd_dma;
3164                 if (fep->bufdesc_ex) {
3165                         bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3166                         cbd_base = (struct bufdesc *)
3167                                 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3168                 } else {
3169                         bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3170                         cbd_base += rxq->rx_ring_size;
3171                 }
3172         }
3173
3174         for (i = 0; i < fep->num_tx_queues; i++) {
3175                 txq = fep->tx_queue[i];
3176                 txq->index = i;
3177                 txq->tx_bd_base = (struct bufdesc *)cbd_base;
3178                 txq->bd_dma = bd_dma;
3179                 if (fep->bufdesc_ex) {
3180                         bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3181                         cbd_base = (struct bufdesc *)
3182                          (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3183                 } else {
3184                         bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3185                         cbd_base += txq->tx_ring_size;
3186                 }
3187         }
3188
3189
3190         /* The FEC Ethernet specific entries in the device structure */
3191         ndev->watchdog_timeo = TX_TIMEOUT;
3192         ndev->netdev_ops = &fec_netdev_ops;
3193         ndev->ethtool_ops = &fec_enet_ethtool_ops;
3194
3195         writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3196         netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3197
3198         if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3199                 /* enable hw VLAN support */
3200                 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3201
3202         if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3203                 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3204
3205                 /* enable hw accelerator */
3206                 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3207                                 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3208                 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3209         }
3210
3211         if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3212                 fep->tx_align = 0;
3213                 fep->rx_align = 0x3f;
3214         }
3215
3216         ndev->hw_features = ndev->features;
3217
3218         fec_restart(ndev);
3219
3220         return 0;
3221 }
3222
3223 #ifdef CONFIG_OF
3224 static void fec_reset_phy(struct platform_device *pdev)
3225 {
3226         int err, phy_reset;
3227         int msec = 1;
3228         struct device_node *np = pdev->dev.of_node;
3229
3230         if (!np)
3231                 return;
3232
3233         of_property_read_u32(np, "phy-reset-duration", &msec);
3234         /* A sane reset duration should not be longer than 1s */
3235         if (msec > 1000)
3236                 msec = 1;
3237
3238         phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3239         if (!gpio_is_valid(phy_reset))
3240                 return;
3241
3242         err = devm_gpio_request_one(&pdev->dev, phy_reset,
3243                                     GPIOF_OUT_INIT_LOW, "phy-reset");
3244         if (err) {
3245                 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3246                 return;
3247         }
3248         msleep(msec);
3249         gpio_set_value(phy_reset, 1);
3250 }
3251 #else /* CONFIG_OF */
3252 static void fec_reset_phy(struct platform_device *pdev)
3253 {
3254         /*
3255          * In case of platform probe, the reset has been done
3256          * by machine code.
3257          */
3258 }
3259 #endif /* CONFIG_OF */
3260
3261 static void
3262 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3263 {
3264         struct device_node *np = pdev->dev.of_node;
3265         int err;
3266
3267         *num_tx = *num_rx = 1;
3268
3269         if (!np || !of_device_is_available(np))
3270                 return;
3271
3272         /* parse the num of tx and rx queues */
3273         err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3274         if (err)
3275                 *num_tx = 1;
3276
3277         err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3278         if (err)
3279                 *num_rx = 1;
3280
3281         if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3282                 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3283                          *num_tx);
3284                 *num_tx = 1;
3285                 return;
3286         }
3287
3288         if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3289                 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3290                          *num_rx);
3291                 *num_rx = 1;
3292                 return;
3293         }
3294
3295 }
3296
3297 static int
3298 fec_probe(struct platform_device *pdev)
3299 {
3300         struct fec_enet_private *fep;
3301         struct fec_platform_data *pdata;
3302         struct net_device *ndev;
3303         int i, irq, ret = 0;
3304         struct resource *r;
3305         const struct of_device_id *of_id;
3306         static int dev_id;
3307         struct device_node *np = pdev->dev.of_node, *phy_node;
3308         int num_tx_qs;
3309         int num_rx_qs;
3310
3311         fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3312
3313         /* Init network device */
3314         ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3315                                   num_tx_qs, num_rx_qs);
3316         if (!ndev)
3317                 return -ENOMEM;
3318
3319         SET_NETDEV_DEV(ndev, &pdev->dev);
3320
3321         /* setup board info structure */
3322         fep = netdev_priv(ndev);
3323
3324         of_id = of_match_device(fec_dt_ids, &pdev->dev);
3325         if (of_id)
3326                 pdev->id_entry = of_id->data;
3327         fep->quirks = pdev->id_entry->driver_data;
3328
3329         fep->netdev = ndev;
3330         fep->num_rx_queues = num_rx_qs;
3331         fep->num_tx_queues = num_tx_qs;
3332
3333 #if !defined(CONFIG_M5272)
3334         /* default enable pause frame auto negotiation */
3335         if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3336                 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3337 #endif
3338
3339         /* Select default pin state */
3340         pinctrl_pm_select_default_state(&pdev->dev);
3341
3342         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3343         fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3344         if (IS_ERR(fep->hwp)) {
3345                 ret = PTR_ERR(fep->hwp);
3346                 goto failed_ioremap;
3347         }
3348
3349         fep->pdev = pdev;
3350         fep->dev_id = dev_id++;
3351
3352         platform_set_drvdata(pdev, ndev);
3353
3354         if (of_get_property(np, "fsl,magic-packet", NULL))
3355                 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3356
3357         phy_node = of_parse_phandle(np, "phy-handle", 0);
3358         if (!phy_node && of_phy_is_fixed_link(np)) {
3359                 ret = of_phy_register_fixed_link(np);
3360                 if (ret < 0) {
3361                         dev_err(&pdev->dev,
3362                                 "broken fixed-link specification\n");
3363                         goto failed_phy;
3364                 }
3365                 phy_node = of_node_get(np);
3366         }
3367         fep->phy_node = phy_node;
3368
3369         ret = of_get_phy_mode(pdev->dev.of_node);
3370         if (ret < 0) {
3371                 pdata = dev_get_platdata(&pdev->dev);
3372                 if (pdata)
3373                         fep->phy_interface = pdata->phy;
3374                 else
3375                         fep->phy_interface = PHY_INTERFACE_MODE_MII;
3376         } else {
3377                 fep->phy_interface = ret;
3378         }
3379
3380         fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3381         if (IS_ERR(fep->clk_ipg)) {
3382                 ret = PTR_ERR(fep->clk_ipg);
3383                 goto failed_clk;
3384         }
3385
3386         fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3387         if (IS_ERR(fep->clk_ahb)) {
3388                 ret = PTR_ERR(fep->clk_ahb);
3389                 goto failed_clk;
3390         }
3391
3392         fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3393
3394         /* enet_out is optional, depends on board */
3395         fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3396         if (IS_ERR(fep->clk_enet_out))
3397                 fep->clk_enet_out = NULL;
3398
3399         fep->ptp_clk_on = false;
3400         mutex_init(&fep->ptp_clk_mutex);
3401
3402         /* clk_ref is optional, depends on board */
3403         fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3404         if (IS_ERR(fep->clk_ref))
3405                 fep->clk_ref = NULL;
3406
3407         fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3408         fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3409         if (IS_ERR(fep->clk_ptp)) {
3410                 fep->clk_ptp = NULL;
3411                 fep->bufdesc_ex = false;
3412         }
3413
3414         ret = fec_enet_clk_enable(ndev, true);
3415         if (ret)
3416                 goto failed_clk;
3417
3418         ret = clk_prepare_enable(fep->clk_ipg);
3419         if (ret)
3420                 goto failed_clk_ipg;
3421
3422         fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3423         if (!IS_ERR(fep->reg_phy)) {
3424                 ret = regulator_enable(fep->reg_phy);
3425                 if (ret) {
3426                         dev_err(&pdev->dev,
3427                                 "Failed to enable phy regulator: %d\n", ret);
3428                         goto failed_regulator;
3429                 }
3430         } else {
3431                 fep->reg_phy = NULL;
3432         }
3433
3434         fec_reset_phy(pdev);
3435
3436         if (fep->bufdesc_ex)
3437                 fec_ptp_init(pdev);
3438
3439         ret = fec_enet_init(ndev);
3440         if (ret)
3441                 goto failed_init;
3442
3443         for (i = 0; i < FEC_IRQ_NUM; i++) {
3444                 irq = platform_get_irq(pdev, i);
3445                 if (irq < 0) {
3446                         if (i)
3447                                 break;
3448                         ret = irq;
3449                         goto failed_irq;
3450                 }
3451                 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3452                                        0, pdev->name, ndev);
3453                 if (ret)
3454                         goto failed_irq;
3455
3456                 fep->irq[i] = irq;
3457         }
3458
3459         init_completion(&fep->mdio_done);
3460         ret = fec_enet_mii_init(pdev);
3461         if (ret)
3462                 goto failed_mii_init;
3463
3464         /* Carrier starts down, phylib will bring it up */
3465         netif_carrier_off(ndev);
3466         fec_enet_clk_enable(ndev, false);
3467         pinctrl_pm_select_sleep_state(&pdev->dev);
3468         pm_runtime_set_active(&pdev->dev);
3469         pm_runtime_enable(&pdev->dev);
3470
3471         ret = register_netdev(ndev);
3472         if (ret)
3473                 goto failed_register;
3474
3475         device_init_wakeup(&ndev->dev, fep->wol_flag &
3476                            FEC_WOL_HAS_MAGIC_PACKET);
3477
3478         if (fep->bufdesc_ex && fep->ptp_clock)
3479                 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3480
3481         fep->rx_copybreak = COPYBREAK_DEFAULT;
3482         INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3483
3484         pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3485         pm_runtime_use_autosuspend(&pdev->dev);
3486         pm_runtime_mark_last_busy(&pdev->dev);
3487         pm_runtime_put_autosuspend(&pdev->dev);
3488
3489         return 0;
3490
3491 failed_register:
3492         fec_enet_mii_remove(fep);
3493 failed_mii_init:
3494 failed_irq:
3495 failed_init:
3496         if (fep->reg_phy)
3497                 regulator_disable(fep->reg_phy);
3498 failed_regulator:
3499         clk_disable_unprepare(fep->clk_ipg);
3500 failed_clk_ipg:
3501         fec_enet_clk_enable(ndev, false);
3502 failed_clk:
3503 failed_phy:
3504         of_node_put(phy_node);
3505 failed_ioremap:
3506         free_netdev(ndev);
3507
3508         return ret;
3509 }
3510
3511 static int
3512 fec_drv_remove(struct platform_device *pdev)
3513 {
3514         struct net_device *ndev = platform_get_drvdata(pdev);
3515         struct fec_enet_private *fep = netdev_priv(ndev);
3516
3517         cancel_delayed_work_sync(&fep->time_keep);
3518         cancel_work_sync(&fep->tx_timeout_work);
3519         unregister_netdev(ndev);
3520         fec_enet_mii_remove(fep);
3521         if (fep->reg_phy)
3522                 regulator_disable(fep->reg_phy);
3523         if (fep->ptp_clock)
3524                 ptp_clock_unregister(fep->ptp_clock);
3525         of_node_put(fep->phy_node);
3526         free_netdev(ndev);
3527
3528         return 0;
3529 }
3530
3531 static int __maybe_unused fec_suspend(struct device *dev)
3532 {
3533         struct net_device *ndev = dev_get_drvdata(dev);
3534         struct fec_enet_private *fep = netdev_priv(ndev);
3535
3536         rtnl_lock();
3537         if (netif_running(ndev)) {
3538                 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3539                         fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3540                 phy_stop(fep->phy_dev);
3541                 napi_disable(&fep->napi);
3542                 netif_tx_lock_bh(ndev);
3543                 netif_device_detach(ndev);
3544                 netif_tx_unlock_bh(ndev);
3545                 fec_stop(ndev);
3546                 fec_enet_clk_enable(ndev, false);
3547                 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3548                         pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3549         }
3550         rtnl_unlock();
3551
3552         if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3553                 regulator_disable(fep->reg_phy);
3554
3555         /* SOC supply clock to phy, when clock is disabled, phy link down
3556          * SOC control phy regulator, when regulator is disabled, phy link down
3557          */
3558         if (fep->clk_enet_out || fep->reg_phy)
3559                 fep->link = 0;
3560
3561         return 0;
3562 }
3563
3564 static int __maybe_unused fec_resume(struct device *dev)
3565 {
3566         struct net_device *ndev = dev_get_drvdata(dev);
3567         struct fec_enet_private *fep = netdev_priv(ndev);
3568         struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3569         int ret;
3570         int val;
3571
3572         if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3573                 ret = regulator_enable(fep->reg_phy);
3574                 if (ret)
3575                         return ret;
3576         }
3577
3578         rtnl_lock();
3579         if (netif_running(ndev)) {
3580                 ret = fec_enet_clk_enable(ndev, true);
3581                 if (ret) {
3582                         rtnl_unlock();
3583                         goto failed_clk;
3584                 }
3585                 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3586                         if (pdata && pdata->sleep_mode_enable)
3587                                 pdata->sleep_mode_enable(false);
3588                         val = readl(fep->hwp + FEC_ECNTRL);
3589                         val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3590                         writel(val, fep->hwp + FEC_ECNTRL);
3591                         fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3592                 } else {
3593                         pinctrl_pm_select_default_state(&fep->pdev->dev);
3594                 }
3595                 fec_restart(ndev);
3596                 netif_tx_lock_bh(ndev);
3597                 netif_device_attach(ndev);
3598                 netif_tx_unlock_bh(ndev);
3599                 napi_enable(&fep->napi);
3600                 phy_start(fep->phy_dev);
3601         }
3602         rtnl_unlock();
3603
3604         return 0;
3605
3606 failed_clk:
3607         if (fep->reg_phy)
3608                 regulator_disable(fep->reg_phy);
3609         return ret;
3610 }
3611
3612 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3613 {
3614         struct net_device *ndev = dev_get_drvdata(dev);
3615         struct fec_enet_private *fep = netdev_priv(ndev);
3616
3617         clk_disable_unprepare(fep->clk_ipg);
3618
3619         return 0;
3620 }
3621
3622 static int __maybe_unused fec_runtime_resume(struct device *dev)
3623 {
3624         struct net_device *ndev = dev_get_drvdata(dev);
3625         struct fec_enet_private *fep = netdev_priv(ndev);
3626
3627         return clk_prepare_enable(fep->clk_ipg);
3628 }
3629
3630 static const struct dev_pm_ops fec_pm_ops = {
3631         SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3632         SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3633 };
3634
3635 static struct platform_driver fec_driver = {
3636         .driver = {
3637                 .name   = DRIVER_NAME,
3638                 .pm     = &fec_pm_ops,
3639                 .of_match_table = fec_dt_ids,
3640         },
3641         .id_table = fec_devtype,
3642         .probe  = fec_probe,
3643         .remove = fec_drv_remove,
3644 };
3645
3646 module_platform_driver(fec_driver);
3647
3648 MODULE_ALIAS("platform:"DRIVER_NAME);
3649 MODULE_LICENSE("GPL");