Merge tag 'sunxi-fixes-for-4.3' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-drm-fsl-dcu.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/kernel.h>
25 #include <linux/device.h>  /* for dev_info() */
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/ioport.h>
29 #include <linux/slab.h>
30 #include <linux/interrupt.h>
31 #include <linux/pci.h>
32 #include <linux/aer.h>
33 #include <linux/init.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/bitops.h>
39 #include <linux/irq.h>
40 #include <linux/delay.h>
41 #include <asm/byteorder.h>
42 #include <linux/time.h>
43 #include <linux/ethtool.h>
44 #include <linux/mii.h>
45 #include <linux/if_vlan.h>
46 #include <linux/crash_dump.h>
47 #include <net/ip.h>
48 #include <net/ipv6.h>
49 #include <net/tcp.h>
50 #include <net/vxlan.h>
51 #include <net/checksum.h>
52 #include <net/ip6_checksum.h>
53 #include <linux/workqueue.h>
54 #include <linux/crc32.h>
55 #include <linux/crc32c.h>
56 #include <linux/prefetch.h>
57 #include <linux/zlib.h>
58 #include <linux/io.h>
59 #include <linux/semaphore.h>
60 #include <linux/stringify.h>
61 #include <linux/vmalloc.h>
62
63 #include "bnx2x.h"
64 #include "bnx2x_init.h"
65 #include "bnx2x_init_ops.h"
66 #include "bnx2x_cmn.h"
67 #include "bnx2x_vfpf.h"
68 #include "bnx2x_dcb.h"
69 #include "bnx2x_sp.h"
70 #include <linux/firmware.h>
71 #include "bnx2x_fw_file_hdr.h"
72 /* FW files */
73 #define FW_FILE_VERSION                                 \
74         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
75         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
76         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
77         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
78 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
79 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
80 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
81
82 /* Time in jiffies before concluding the transmitter is hung */
83 #define TX_TIMEOUT              (5*HZ)
84
85 static char version[] =
86         "QLogic 5771x/578xx 10/20-Gigabit Ethernet Driver "
87         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
88
89 MODULE_AUTHOR("Eliezer Tamir");
90 MODULE_DESCRIPTION("QLogic "
91                    "BCM57710/57711/57711E/"
92                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
93                    "57840/57840_MF Driver");
94 MODULE_LICENSE("GPL");
95 MODULE_VERSION(DRV_MODULE_VERSION);
96 MODULE_FIRMWARE(FW_FILE_NAME_E1);
97 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
98 MODULE_FIRMWARE(FW_FILE_NAME_E2);
99
100 int bnx2x_num_queues;
101 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
102 MODULE_PARM_DESC(num_queues,
103                  " Set number of queues (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, S_IRUGO);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 static int int_mode;
110 module_param(int_mode, int, S_IRUGO);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112                                 "(1 INT#x; 2 MSI)");
113
114 static int dropless_fc;
115 module_param(dropless_fc, int, S_IRUGO);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117
118 static int mrrs = -1;
119 module_param(mrrs, int, S_IRUGO);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121
122 static int debug;
123 module_param(debug, int, S_IRUGO);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125
126 static struct workqueue_struct *bnx2x_wq;
127 struct workqueue_struct *bnx2x_iov_wq;
128
129 struct bnx2x_mac_vals {
130         u32 xmac_addr;
131         u32 xmac_val;
132         u32 emac_addr;
133         u32 emac_val;
134         u32 umac_addr[2];
135         u32 umac_val[2];
136         u32 bmac_addr;
137         u32 bmac_val[2];
138 };
139
140 enum bnx2x_board_type {
141         BCM57710 = 0,
142         BCM57711,
143         BCM57711E,
144         BCM57712,
145         BCM57712_MF,
146         BCM57712_VF,
147         BCM57800,
148         BCM57800_MF,
149         BCM57800_VF,
150         BCM57810,
151         BCM57810_MF,
152         BCM57810_VF,
153         BCM57840_4_10,
154         BCM57840_2_20,
155         BCM57840_MF,
156         BCM57840_VF,
157         BCM57811,
158         BCM57811_MF,
159         BCM57840_O,
160         BCM57840_MFO,
161         BCM57811_VF
162 };
163
164 /* indexed by board_type, above */
165 static struct {
166         char *name;
167 } board_info[] = {
168         [BCM57710]      = { "QLogic BCM57710 10 Gigabit PCIe [Everest]" },
169         [BCM57711]      = { "QLogic BCM57711 10 Gigabit PCIe" },
170         [BCM57711E]     = { "QLogic BCM57711E 10 Gigabit PCIe" },
171         [BCM57712]      = { "QLogic BCM57712 10 Gigabit Ethernet" },
172         [BCM57712_MF]   = { "QLogic BCM57712 10 Gigabit Ethernet Multi Function" },
173         [BCM57712_VF]   = { "QLogic BCM57712 10 Gigabit Ethernet Virtual Function" },
174         [BCM57800]      = { "QLogic BCM57800 10 Gigabit Ethernet" },
175         [BCM57800_MF]   = { "QLogic BCM57800 10 Gigabit Ethernet Multi Function" },
176         [BCM57800_VF]   = { "QLogic BCM57800 10 Gigabit Ethernet Virtual Function" },
177         [BCM57810]      = { "QLogic BCM57810 10 Gigabit Ethernet" },
178         [BCM57810_MF]   = { "QLogic BCM57810 10 Gigabit Ethernet Multi Function" },
179         [BCM57810_VF]   = { "QLogic BCM57810 10 Gigabit Ethernet Virtual Function" },
180         [BCM57840_4_10] = { "QLogic BCM57840 10 Gigabit Ethernet" },
181         [BCM57840_2_20] = { "QLogic BCM57840 20 Gigabit Ethernet" },
182         [BCM57840_MF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
183         [BCM57840_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" },
184         [BCM57811]      = { "QLogic BCM57811 10 Gigabit Ethernet" },
185         [BCM57811_MF]   = { "QLogic BCM57811 10 Gigabit Ethernet Multi Function" },
186         [BCM57840_O]    = { "QLogic BCM57840 10/20 Gigabit Ethernet" },
187         [BCM57840_MFO]  = { "QLogic BCM57840 10/20 Gigabit Ethernet Multi Function" },
188         [BCM57811_VF]   = { "QLogic BCM57840 10/20 Gigabit Ethernet Virtual Function" }
189 };
190
191 #ifndef PCI_DEVICE_ID_NX2_57710
192 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711
195 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57711E
198 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712
201 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_MF
204 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57712_VF
207 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800
210 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_MF
213 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57800_VF
216 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810
219 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57810_MF
222 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57840_O
225 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57810_VF
228 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
231 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
234 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
237 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_MF
240 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57840_VF
243 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811
246 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_MF
249 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
250 #endif
251 #ifndef PCI_DEVICE_ID_NX2_57811_VF
252 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
253 #endif
254
255 static const struct pci_device_id bnx2x_pci_tbl[] = {
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
269         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
274         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
275         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
276         { PCI_VDEVICE(QLOGIC,   PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
277         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
278         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
279         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
280         { 0 }
281 };
282
283 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
284
285 /* Global resources for unloading a previously loaded device */
286 #define BNX2X_PREV_WAIT_NEEDED 1
287 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
288 static LIST_HEAD(bnx2x_prev_list);
289
290 /* Forward declaration */
291 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
292 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
293 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
294
295 /****************************************************************************
296 * General service functions
297 ****************************************************************************/
298
299 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr);
300
301 static void __storm_memset_dma_mapping(struct bnx2x *bp,
302                                        u32 addr, dma_addr_t mapping)
303 {
304         REG_WR(bp,  addr, U64_LO(mapping));
305         REG_WR(bp,  addr + 4, U64_HI(mapping));
306 }
307
308 static void storm_memset_spq_addr(struct bnx2x *bp,
309                                   dma_addr_t mapping, u16 abs_fid)
310 {
311         u32 addr = XSEM_REG_FAST_MEMORY +
312                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
313
314         __storm_memset_dma_mapping(bp, addr, mapping);
315 }
316
317 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
318                                   u16 pf_id)
319 {
320         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
321                 pf_id);
322         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
323                 pf_id);
324         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
325                 pf_id);
326         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
327                 pf_id);
328 }
329
330 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
331                                  u8 enable)
332 {
333         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
334                 enable);
335         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
336                 enable);
337         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
338                 enable);
339         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
340                 enable);
341 }
342
343 static void storm_memset_eq_data(struct bnx2x *bp,
344                                  struct event_ring_data *eq_data,
345                                 u16 pfid)
346 {
347         size_t size = sizeof(struct event_ring_data);
348
349         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
350
351         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
352 }
353
354 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
355                                  u16 pfid)
356 {
357         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
358         REG_WR16(bp, addr, eq_prod);
359 }
360
361 /* used only at init
362  * locking is done by mcp
363  */
364 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
365 {
366         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
367         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
368         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
369                                PCICFG_VENDOR_ID_OFFSET);
370 }
371
372 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
373 {
374         u32 val;
375
376         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
377         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
378         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
379                                PCICFG_VENDOR_ID_OFFSET);
380
381         return val;
382 }
383
384 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
385 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
386 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
387 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
388 #define DMAE_DP_DST_NONE        "dst_addr [none]"
389
390 static void bnx2x_dp_dmae(struct bnx2x *bp,
391                           struct dmae_command *dmae, int msglvl)
392 {
393         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
394         int i;
395
396         switch (dmae->opcode & DMAE_COMMAND_DST) {
397         case DMAE_CMD_DST_PCI:
398                 if (src_type == DMAE_CMD_SRC_PCI)
399                         DP(msglvl, "DMAE: opcode 0x%08x\n"
400                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
401                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
402                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
403                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404                            dmae->comp_addr_hi, dmae->comp_addr_lo,
405                            dmae->comp_val);
406                 else
407                         DP(msglvl, "DMAE: opcode 0x%08x\n"
408                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
409                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
410                            dmae->opcode, dmae->src_addr_lo >> 2,
411                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
412                            dmae->comp_addr_hi, dmae->comp_addr_lo,
413                            dmae->comp_val);
414                 break;
415         case DMAE_CMD_DST_GRC:
416                 if (src_type == DMAE_CMD_SRC_PCI)
417                         DP(msglvl, "DMAE: opcode 0x%08x\n"
418                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
419                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
420                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
421                            dmae->len, dmae->dst_addr_lo >> 2,
422                            dmae->comp_addr_hi, dmae->comp_addr_lo,
423                            dmae->comp_val);
424                 else
425                         DP(msglvl, "DMAE: opcode 0x%08x\n"
426                            "src [%08x], len [%d*4], dst [%08x]\n"
427                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
428                            dmae->opcode, dmae->src_addr_lo >> 2,
429                            dmae->len, dmae->dst_addr_lo >> 2,
430                            dmae->comp_addr_hi, dmae->comp_addr_lo,
431                            dmae->comp_val);
432                 break;
433         default:
434                 if (src_type == DMAE_CMD_SRC_PCI)
435                         DP(msglvl, "DMAE: opcode 0x%08x\n"
436                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
437                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
438                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
439                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
440                            dmae->comp_val);
441                 else
442                         DP(msglvl, "DMAE: opcode 0x%08x\n"
443                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
444                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
445                            dmae->opcode, dmae->src_addr_lo >> 2,
446                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
447                            dmae->comp_val);
448                 break;
449         }
450
451         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
452                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
453                    i, *(((u32 *)dmae) + i));
454 }
455
456 /* copy command into DMAE command memory and set DMAE command go */
457 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
458 {
459         u32 cmd_offset;
460         int i;
461
462         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
463         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
464                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
465         }
466         REG_WR(bp, dmae_reg_go_c[idx], 1);
467 }
468
469 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
470 {
471         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
472                            DMAE_CMD_C_ENABLE);
473 }
474
475 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
476 {
477         return opcode & ~DMAE_CMD_SRC_RESET;
478 }
479
480 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
481                              bool with_comp, u8 comp_type)
482 {
483         u32 opcode = 0;
484
485         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
486                    (dst_type << DMAE_COMMAND_DST_SHIFT));
487
488         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
489
490         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
491         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
492                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
493         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
494
495 #ifdef __BIG_ENDIAN
496         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
497 #else
498         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
499 #endif
500         if (with_comp)
501                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
502         return opcode;
503 }
504
505 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
506                                       struct dmae_command *dmae,
507                                       u8 src_type, u8 dst_type)
508 {
509         memset(dmae, 0, sizeof(struct dmae_command));
510
511         /* set the opcode */
512         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
513                                          true, DMAE_COMP_PCI);
514
515         /* fill in the completion parameters */
516         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
517         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
518         dmae->comp_val = DMAE_COMP_VAL;
519 }
520
521 /* issue a dmae command over the init-channel and wait for completion */
522 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
523                                u32 *comp)
524 {
525         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
526         int rc = 0;
527
528         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
529
530         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
531          * as long as this code is called both from syscall context and
532          * from ndo_set_rx_mode() flow that may be called from BH.
533          */
534
535         spin_lock_bh(&bp->dmae_lock);
536
537         /* reset completion */
538         *comp = 0;
539
540         /* post the command on the channel used for initializations */
541         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
542
543         /* wait for completion */
544         udelay(5);
545         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
546
547                 if (!cnt ||
548                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
549                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
550                         BNX2X_ERR("DMAE timeout!\n");
551                         rc = DMAE_TIMEOUT;
552                         goto unlock;
553                 }
554                 cnt--;
555                 udelay(50);
556         }
557         if (*comp & DMAE_PCI_ERR_FLAG) {
558                 BNX2X_ERR("DMAE PCI error!\n");
559                 rc = DMAE_PCI_ERROR;
560         }
561
562 unlock:
563
564         spin_unlock_bh(&bp->dmae_lock);
565
566         return rc;
567 }
568
569 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
570                       u32 len32)
571 {
572         int rc;
573         struct dmae_command dmae;
574
575         if (!bp->dmae_ready) {
576                 u32 *data = bnx2x_sp(bp, wb_data[0]);
577
578                 if (CHIP_IS_E1(bp))
579                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
580                 else
581                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
582                 return;
583         }
584
585         /* set opcode and fixed command fields */
586         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
587
588         /* fill in addresses and len */
589         dmae.src_addr_lo = U64_LO(dma_addr);
590         dmae.src_addr_hi = U64_HI(dma_addr);
591         dmae.dst_addr_lo = dst_addr >> 2;
592         dmae.dst_addr_hi = 0;
593         dmae.len = len32;
594
595         /* issue the command and wait for completion */
596         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
597         if (rc) {
598                 BNX2X_ERR("DMAE returned failure %d\n", rc);
599 #ifdef BNX2X_STOP_ON_ERROR
600                 bnx2x_panic();
601 #endif
602         }
603 }
604
605 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
606 {
607         int rc;
608         struct dmae_command dmae;
609
610         if (!bp->dmae_ready) {
611                 u32 *data = bnx2x_sp(bp, wb_data[0]);
612                 int i;
613
614                 if (CHIP_IS_E1(bp))
615                         for (i = 0; i < len32; i++)
616                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
617                 else
618                         for (i = 0; i < len32; i++)
619                                 data[i] = REG_RD(bp, src_addr + i*4);
620
621                 return;
622         }
623
624         /* set opcode and fixed command fields */
625         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
626
627         /* fill in addresses and len */
628         dmae.src_addr_lo = src_addr >> 2;
629         dmae.src_addr_hi = 0;
630         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
631         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
632         dmae.len = len32;
633
634         /* issue the command and wait for completion */
635         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
636         if (rc) {
637                 BNX2X_ERR("DMAE returned failure %d\n", rc);
638 #ifdef BNX2X_STOP_ON_ERROR
639                 bnx2x_panic();
640 #endif
641         }
642 }
643
644 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
645                                       u32 addr, u32 len)
646 {
647         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
648         int offset = 0;
649
650         while (len > dmae_wr_max) {
651                 bnx2x_write_dmae(bp, phys_addr + offset,
652                                  addr + offset, dmae_wr_max);
653                 offset += dmae_wr_max * 4;
654                 len -= dmae_wr_max;
655         }
656
657         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
658 }
659
660 enum storms {
661            XSTORM,
662            TSTORM,
663            CSTORM,
664            USTORM,
665            MAX_STORMS
666 };
667
668 #define STORMS_NUM 4
669 #define REGS_IN_ENTRY 4
670
671 static inline int bnx2x_get_assert_list_entry(struct bnx2x *bp,
672                                               enum storms storm,
673                                               int entry)
674 {
675         switch (storm) {
676         case XSTORM:
677                 return XSTORM_ASSERT_LIST_OFFSET(entry);
678         case TSTORM:
679                 return TSTORM_ASSERT_LIST_OFFSET(entry);
680         case CSTORM:
681                 return CSTORM_ASSERT_LIST_OFFSET(entry);
682         case USTORM:
683                 return USTORM_ASSERT_LIST_OFFSET(entry);
684         case MAX_STORMS:
685         default:
686                 BNX2X_ERR("unknown storm\n");
687         }
688         return -EINVAL;
689 }
690
691 static int bnx2x_mc_assert(struct bnx2x *bp)
692 {
693         char last_idx;
694         int i, j, rc = 0;
695         enum storms storm;
696         u32 regs[REGS_IN_ENTRY];
697         u32 bar_storm_intmem[STORMS_NUM] = {
698                 BAR_XSTRORM_INTMEM,
699                 BAR_TSTRORM_INTMEM,
700                 BAR_CSTRORM_INTMEM,
701                 BAR_USTRORM_INTMEM
702         };
703         u32 storm_assert_list_index[STORMS_NUM] = {
704                 XSTORM_ASSERT_LIST_INDEX_OFFSET,
705                 TSTORM_ASSERT_LIST_INDEX_OFFSET,
706                 CSTORM_ASSERT_LIST_INDEX_OFFSET,
707                 USTORM_ASSERT_LIST_INDEX_OFFSET
708         };
709         char *storms_string[STORMS_NUM] = {
710                 "XSTORM",
711                 "TSTORM",
712                 "CSTORM",
713                 "USTORM"
714         };
715
716         for (storm = XSTORM; storm < MAX_STORMS; storm++) {
717                 last_idx = REG_RD8(bp, bar_storm_intmem[storm] +
718                                    storm_assert_list_index[storm]);
719                 if (last_idx)
720                         BNX2X_ERR("%s_ASSERT_LIST_INDEX 0x%x\n",
721                                   storms_string[storm], last_idx);
722
723                 /* print the asserts */
724                 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
725                         /* read a single assert entry */
726                         for (j = 0; j < REGS_IN_ENTRY; j++)
727                                 regs[j] = REG_RD(bp, bar_storm_intmem[storm] +
728                                           bnx2x_get_assert_list_entry(bp,
729                                                                       storm,
730                                                                       i) +
731                                           sizeof(u32) * j);
732
733                         /* log entry if it contains a valid assert */
734                         if (regs[0] != COMMON_ASM_INVALID_ASSERT_OPCODE) {
735                                 BNX2X_ERR("%s_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
736                                           storms_string[storm], i, regs[3],
737                                           regs[2], regs[1], regs[0]);
738                                 rc++;
739                         } else {
740                                 break;
741                         }
742                 }
743         }
744
745         BNX2X_ERR("Chip Revision: %s, FW Version: %d_%d_%d\n",
746                   CHIP_IS_E1(bp) ? "everest1" :
747                   CHIP_IS_E1H(bp) ? "everest1h" :
748                   CHIP_IS_E2(bp) ? "everest2" : "everest3",
749                   BCM_5710_FW_MAJOR_VERSION,
750                   BCM_5710_FW_MINOR_VERSION,
751                   BCM_5710_FW_REVISION_VERSION);
752
753         return rc;
754 }
755
756 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
757 #define SCRATCH_BUFFER_SIZE(bp) \
758         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
759
760 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
761 {
762         u32 addr, val;
763         u32 mark, offset;
764         __be32 data[9];
765         int word;
766         u32 trace_shmem_base;
767         if (BP_NOMCP(bp)) {
768                 BNX2X_ERR("NO MCP - can not dump\n");
769                 return;
770         }
771         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
772                 (bp->common.bc_ver & 0xff0000) >> 16,
773                 (bp->common.bc_ver & 0xff00) >> 8,
774                 (bp->common.bc_ver & 0xff));
775
776         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
777         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
778                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
779
780         if (BP_PATH(bp) == 0)
781                 trace_shmem_base = bp->common.shmem_base;
782         else
783                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
784
785         /* sanity */
786         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
787             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
788                                 SCRATCH_BUFFER_SIZE(bp)) {
789                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
790                           trace_shmem_base);
791                 return;
792         }
793
794         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
795
796         /* validate TRCB signature */
797         mark = REG_RD(bp, addr);
798         if (mark != MFW_TRACE_SIGNATURE) {
799                 BNX2X_ERR("Trace buffer signature is missing.");
800                 return ;
801         }
802
803         /* read cyclic buffer pointer */
804         addr += 4;
805         mark = REG_RD(bp, addr);
806         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
807         if (mark >= trace_shmem_base || mark < addr + 4) {
808                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
809                 return;
810         }
811         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
812
813         printk("%s", lvl);
814
815         /* dump buffer after the mark */
816         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
817                 for (word = 0; word < 8; word++)
818                         data[word] = htonl(REG_RD(bp, offset + 4*word));
819                 data[8] = 0x0;
820                 pr_cont("%s", (char *)data);
821         }
822
823         /* dump buffer before the mark */
824         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
825                 for (word = 0; word < 8; word++)
826                         data[word] = htonl(REG_RD(bp, offset + 4*word));
827                 data[8] = 0x0;
828                 pr_cont("%s", (char *)data);
829         }
830         printk("%s" "end of fw dump\n", lvl);
831 }
832
833 static void bnx2x_fw_dump(struct bnx2x *bp)
834 {
835         bnx2x_fw_dump_lvl(bp, KERN_ERR);
836 }
837
838 static void bnx2x_hc_int_disable(struct bnx2x *bp)
839 {
840         int port = BP_PORT(bp);
841         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
842         u32 val = REG_RD(bp, addr);
843
844         /* in E1 we must use only PCI configuration space to disable
845          * MSI/MSIX capability
846          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
847          */
848         if (CHIP_IS_E1(bp)) {
849                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
850                  * Use mask register to prevent from HC sending interrupts
851                  * after we exit the function
852                  */
853                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
854
855                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
856                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
857                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
858         } else
859                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
860                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
861                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
862                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
863
864         DP(NETIF_MSG_IFDOWN,
865            "write %x to HC %d (addr 0x%x)\n",
866            val, port, addr);
867
868         /* flush all outstanding writes */
869         mmiowb();
870
871         REG_WR(bp, addr, val);
872         if (REG_RD(bp, addr) != val)
873                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
874 }
875
876 static void bnx2x_igu_int_disable(struct bnx2x *bp)
877 {
878         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
879
880         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
881                  IGU_PF_CONF_INT_LINE_EN |
882                  IGU_PF_CONF_ATTN_BIT_EN);
883
884         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
885
886         /* flush all outstanding writes */
887         mmiowb();
888
889         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
890         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
891                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
892 }
893
894 static void bnx2x_int_disable(struct bnx2x *bp)
895 {
896         if (bp->common.int_block == INT_BLOCK_HC)
897                 bnx2x_hc_int_disable(bp);
898         else
899                 bnx2x_igu_int_disable(bp);
900 }
901
902 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
903 {
904         int i;
905         u16 j;
906         struct hc_sp_status_block_data sp_sb_data;
907         int func = BP_FUNC(bp);
908 #ifdef BNX2X_STOP_ON_ERROR
909         u16 start = 0, end = 0;
910         u8 cos;
911 #endif
912         if (IS_PF(bp) && disable_int)
913                 bnx2x_int_disable(bp);
914
915         bp->stats_state = STATS_STATE_DISABLED;
916         bp->eth_stats.unrecoverable_error++;
917         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
918
919         BNX2X_ERR("begin crash dump -----------------\n");
920
921         /* Indices */
922         /* Common */
923         if (IS_PF(bp)) {
924                 struct host_sp_status_block *def_sb = bp->def_status_blk;
925                 int data_size, cstorm_offset;
926
927                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
928                           bp->def_idx, bp->def_att_idx, bp->attn_state,
929                           bp->spq_prod_idx, bp->stats_counter);
930                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
931                           def_sb->atten_status_block.attn_bits,
932                           def_sb->atten_status_block.attn_bits_ack,
933                           def_sb->atten_status_block.status_block_id,
934                           def_sb->atten_status_block.attn_bits_index);
935                 BNX2X_ERR("     def (");
936                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
937                         pr_cont("0x%x%s",
938                                 def_sb->sp_sb.index_values[i],
939                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
940
941                 data_size = sizeof(struct hc_sp_status_block_data) /
942                             sizeof(u32);
943                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
944                 for (i = 0; i < data_size; i++)
945                         *((u32 *)&sp_sb_data + i) =
946                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
947                                            i * sizeof(u32));
948
949                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
950                         sp_sb_data.igu_sb_id,
951                         sp_sb_data.igu_seg_id,
952                         sp_sb_data.p_func.pf_id,
953                         sp_sb_data.p_func.vnic_id,
954                         sp_sb_data.p_func.vf_id,
955                         sp_sb_data.p_func.vf_valid,
956                         sp_sb_data.state);
957         }
958
959         for_each_eth_queue(bp, i) {
960                 struct bnx2x_fastpath *fp = &bp->fp[i];
961                 int loop;
962                 struct hc_status_block_data_e2 sb_data_e2;
963                 struct hc_status_block_data_e1x sb_data_e1x;
964                 struct hc_status_block_sm  *hc_sm_p =
965                         CHIP_IS_E1x(bp) ?
966                         sb_data_e1x.common.state_machine :
967                         sb_data_e2.common.state_machine;
968                 struct hc_index_data *hc_index_p =
969                         CHIP_IS_E1x(bp) ?
970                         sb_data_e1x.index_data :
971                         sb_data_e2.index_data;
972                 u8 data_size, cos;
973                 u32 *sb_data_p;
974                 struct bnx2x_fp_txdata txdata;
975
976                 if (!bp->fp)
977                         break;
978
979                 if (!fp->rx_cons_sb)
980                         continue;
981
982                 /* Rx */
983                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
984                           i, fp->rx_bd_prod, fp->rx_bd_cons,
985                           fp->rx_comp_prod,
986                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
987                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
988                           fp->rx_sge_prod, fp->last_max_sge,
989                           le16_to_cpu(fp->fp_hc_idx));
990
991                 /* Tx */
992                 for_each_cos_in_tx_queue(fp, cos)
993                 {
994                         if (!fp->txdata_ptr[cos])
995                                 break;
996
997                         txdata = *fp->txdata_ptr[cos];
998
999                         if (!txdata.tx_cons_sb)
1000                                 continue;
1001
1002                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1003                                   i, txdata.tx_pkt_prod,
1004                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1005                                   txdata.tx_bd_cons,
1006                                   le16_to_cpu(*txdata.tx_cons_sb));
1007                 }
1008
1009                 loop = CHIP_IS_E1x(bp) ?
1010                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1011
1012                 /* host sb data */
1013
1014                 if (IS_FCOE_FP(fp))
1015                         continue;
1016
1017                 BNX2X_ERR("     run indexes (");
1018                 for (j = 0; j < HC_SB_MAX_SM; j++)
1019                         pr_cont("0x%x%s",
1020                                fp->sb_running_index[j],
1021                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1022
1023                 BNX2X_ERR("     indexes (");
1024                 for (j = 0; j < loop; j++)
1025                         pr_cont("0x%x%s",
1026                                fp->sb_index_values[j],
1027                                (j == loop - 1) ? ")" : " ");
1028
1029                 /* VF cannot access FW refelection for status block */
1030                 if (IS_VF(bp))
1031                         continue;
1032
1033                 /* fw sb data */
1034                 data_size = CHIP_IS_E1x(bp) ?
1035                         sizeof(struct hc_status_block_data_e1x) :
1036                         sizeof(struct hc_status_block_data_e2);
1037                 data_size /= sizeof(u32);
1038                 sb_data_p = CHIP_IS_E1x(bp) ?
1039                         (u32 *)&sb_data_e1x :
1040                         (u32 *)&sb_data_e2;
1041                 /* copy sb data in here */
1042                 for (j = 0; j < data_size; j++)
1043                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1044                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1045                                 j * sizeof(u32));
1046
1047                 if (!CHIP_IS_E1x(bp)) {
1048                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1049                                 sb_data_e2.common.p_func.pf_id,
1050                                 sb_data_e2.common.p_func.vf_id,
1051                                 sb_data_e2.common.p_func.vf_valid,
1052                                 sb_data_e2.common.p_func.vnic_id,
1053                                 sb_data_e2.common.same_igu_sb_1b,
1054                                 sb_data_e2.common.state);
1055                 } else {
1056                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1057                                 sb_data_e1x.common.p_func.pf_id,
1058                                 sb_data_e1x.common.p_func.vf_id,
1059                                 sb_data_e1x.common.p_func.vf_valid,
1060                                 sb_data_e1x.common.p_func.vnic_id,
1061                                 sb_data_e1x.common.same_igu_sb_1b,
1062                                 sb_data_e1x.common.state);
1063                 }
1064
1065                 /* SB_SMs data */
1066                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1067                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1068                                 j, hc_sm_p[j].__flags,
1069                                 hc_sm_p[j].igu_sb_id,
1070                                 hc_sm_p[j].igu_seg_id,
1071                                 hc_sm_p[j].time_to_expire,
1072                                 hc_sm_p[j].timer_value);
1073                 }
1074
1075                 /* Indices data */
1076                 for (j = 0; j < loop; j++) {
1077                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1078                                hc_index_p[j].flags,
1079                                hc_index_p[j].timeout);
1080                 }
1081         }
1082
1083 #ifdef BNX2X_STOP_ON_ERROR
1084         if (IS_PF(bp)) {
1085                 /* event queue */
1086                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1087                 for (i = 0; i < NUM_EQ_DESC; i++) {
1088                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1089
1090                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1091                                   i, bp->eq_ring[i].message.opcode,
1092                                   bp->eq_ring[i].message.error);
1093                         BNX2X_ERR("data: %x %x %x\n",
1094                                   data[0], data[1], data[2]);
1095                 }
1096         }
1097
1098         /* Rings */
1099         /* Rx */
1100         for_each_valid_rx_queue(bp, i) {
1101                 struct bnx2x_fastpath *fp = &bp->fp[i];
1102
1103                 if (!bp->fp)
1104                         break;
1105
1106                 if (!fp->rx_cons_sb)
1107                         continue;
1108
1109                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1110                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1111                 for (j = start; j != end; j = RX_BD(j + 1)) {
1112                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1113                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1114
1115                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1116                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1117                 }
1118
1119                 start = RX_SGE(fp->rx_sge_prod);
1120                 end = RX_SGE(fp->last_max_sge);
1121                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1122                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1123                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1124
1125                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1126                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1127                 }
1128
1129                 start = RCQ_BD(fp->rx_comp_cons - 10);
1130                 end = RCQ_BD(fp->rx_comp_cons + 503);
1131                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1132                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1133
1134                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1135                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1136                 }
1137         }
1138
1139         /* Tx */
1140         for_each_valid_tx_queue(bp, i) {
1141                 struct bnx2x_fastpath *fp = &bp->fp[i];
1142
1143                 if (!bp->fp)
1144                         break;
1145
1146                 for_each_cos_in_tx_queue(fp, cos) {
1147                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1148
1149                         if (!fp->txdata_ptr[cos])
1150                                 break;
1151
1152                         if (!txdata->tx_cons_sb)
1153                                 continue;
1154
1155                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1156                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1157                         for (j = start; j != end; j = TX_BD(j + 1)) {
1158                                 struct sw_tx_bd *sw_bd =
1159                                         &txdata->tx_buf_ring[j];
1160
1161                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1162                                           i, cos, j, sw_bd->skb,
1163                                           sw_bd->first_bd);
1164                         }
1165
1166                         start = TX_BD(txdata->tx_bd_cons - 10);
1167                         end = TX_BD(txdata->tx_bd_cons + 254);
1168                         for (j = start; j != end; j = TX_BD(j + 1)) {
1169                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1170
1171                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1172                                           i, cos, j, tx_bd[0], tx_bd[1],
1173                                           tx_bd[2], tx_bd[3]);
1174                         }
1175                 }
1176         }
1177 #endif
1178         if (IS_PF(bp)) {
1179                 bnx2x_fw_dump(bp);
1180                 bnx2x_mc_assert(bp);
1181         }
1182         BNX2X_ERR("end crash dump -----------------\n");
1183 }
1184
1185 /*
1186  * FLR Support for E2
1187  *
1188  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1189  * initialization.
1190  */
1191 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1192 #define FLR_WAIT_INTERVAL       50      /* usec */
1193 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1194
1195 struct pbf_pN_buf_regs {
1196         int pN;
1197         u32 init_crd;
1198         u32 crd;
1199         u32 crd_freed;
1200 };
1201
1202 struct pbf_pN_cmd_regs {
1203         int pN;
1204         u32 lines_occup;
1205         u32 lines_freed;
1206 };
1207
1208 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1209                                      struct pbf_pN_buf_regs *regs,
1210                                      u32 poll_count)
1211 {
1212         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1213         u32 cur_cnt = poll_count;
1214
1215         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1216         crd = crd_start = REG_RD(bp, regs->crd);
1217         init_crd = REG_RD(bp, regs->init_crd);
1218
1219         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1220         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1221         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1222
1223         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1224                (init_crd - crd_start))) {
1225                 if (cur_cnt--) {
1226                         udelay(FLR_WAIT_INTERVAL);
1227                         crd = REG_RD(bp, regs->crd);
1228                         crd_freed = REG_RD(bp, regs->crd_freed);
1229                 } else {
1230                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1231                            regs->pN);
1232                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1233                            regs->pN, crd);
1234                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1235                            regs->pN, crd_freed);
1236                         break;
1237                 }
1238         }
1239         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1240            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1241 }
1242
1243 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1244                                      struct pbf_pN_cmd_regs *regs,
1245                                      u32 poll_count)
1246 {
1247         u32 occup, to_free, freed, freed_start;
1248         u32 cur_cnt = poll_count;
1249
1250         occup = to_free = REG_RD(bp, regs->lines_occup);
1251         freed = freed_start = REG_RD(bp, regs->lines_freed);
1252
1253         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1254         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1255
1256         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1257                 if (cur_cnt--) {
1258                         udelay(FLR_WAIT_INTERVAL);
1259                         occup = REG_RD(bp, regs->lines_occup);
1260                         freed = REG_RD(bp, regs->lines_freed);
1261                 } else {
1262                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1263                            regs->pN);
1264                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1265                            regs->pN, occup);
1266                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1267                            regs->pN, freed);
1268                         break;
1269                 }
1270         }
1271         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1272            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1273 }
1274
1275 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1276                                     u32 expected, u32 poll_count)
1277 {
1278         u32 cur_cnt = poll_count;
1279         u32 val;
1280
1281         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1282                 udelay(FLR_WAIT_INTERVAL);
1283
1284         return val;
1285 }
1286
1287 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1288                                     char *msg, u32 poll_cnt)
1289 {
1290         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1291         if (val != 0) {
1292                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1293                 return 1;
1294         }
1295         return 0;
1296 }
1297
1298 /* Common routines with VF FLR cleanup */
1299 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1300 {
1301         /* adjust polling timeout */
1302         if (CHIP_REV_IS_EMUL(bp))
1303                 return FLR_POLL_CNT * 2000;
1304
1305         if (CHIP_REV_IS_FPGA(bp))
1306                 return FLR_POLL_CNT * 120;
1307
1308         return FLR_POLL_CNT;
1309 }
1310
1311 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1312 {
1313         struct pbf_pN_cmd_regs cmd_regs[] = {
1314                 {0, (CHIP_IS_E3B0(bp)) ?
1315                         PBF_REG_TQ_OCCUPANCY_Q0 :
1316                         PBF_REG_P0_TQ_OCCUPANCY,
1317                     (CHIP_IS_E3B0(bp)) ?
1318                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1319                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1320                 {1, (CHIP_IS_E3B0(bp)) ?
1321                         PBF_REG_TQ_OCCUPANCY_Q1 :
1322                         PBF_REG_P1_TQ_OCCUPANCY,
1323                     (CHIP_IS_E3B0(bp)) ?
1324                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1325                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1326                 {4, (CHIP_IS_E3B0(bp)) ?
1327                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1328                         PBF_REG_P4_TQ_OCCUPANCY,
1329                     (CHIP_IS_E3B0(bp)) ?
1330                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1331                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1332         };
1333
1334         struct pbf_pN_buf_regs buf_regs[] = {
1335                 {0, (CHIP_IS_E3B0(bp)) ?
1336                         PBF_REG_INIT_CRD_Q0 :
1337                         PBF_REG_P0_INIT_CRD ,
1338                     (CHIP_IS_E3B0(bp)) ?
1339                         PBF_REG_CREDIT_Q0 :
1340                         PBF_REG_P0_CREDIT,
1341                     (CHIP_IS_E3B0(bp)) ?
1342                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1343                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1344                 {1, (CHIP_IS_E3B0(bp)) ?
1345                         PBF_REG_INIT_CRD_Q1 :
1346                         PBF_REG_P1_INIT_CRD,
1347                     (CHIP_IS_E3B0(bp)) ?
1348                         PBF_REG_CREDIT_Q1 :
1349                         PBF_REG_P1_CREDIT,
1350                     (CHIP_IS_E3B0(bp)) ?
1351                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1352                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1353                 {4, (CHIP_IS_E3B0(bp)) ?
1354                         PBF_REG_INIT_CRD_LB_Q :
1355                         PBF_REG_P4_INIT_CRD,
1356                     (CHIP_IS_E3B0(bp)) ?
1357                         PBF_REG_CREDIT_LB_Q :
1358                         PBF_REG_P4_CREDIT,
1359                     (CHIP_IS_E3B0(bp)) ?
1360                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1361                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1362         };
1363
1364         int i;
1365
1366         /* Verify the command queues are flushed P0, P1, P4 */
1367         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1368                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1369
1370         /* Verify the transmission buffers are flushed P0, P1, P4 */
1371         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1372                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1373 }
1374
1375 #define OP_GEN_PARAM(param) \
1376         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1377
1378 #define OP_GEN_TYPE(type) \
1379         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1380
1381 #define OP_GEN_AGG_VECT(index) \
1382         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1383
1384 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1385 {
1386         u32 op_gen_command = 0;
1387         u32 comp_addr = BAR_CSTRORM_INTMEM +
1388                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1389         int ret = 0;
1390
1391         if (REG_RD(bp, comp_addr)) {
1392                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1393                 return 1;
1394         }
1395
1396         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1397         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1398         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1399         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1400
1401         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1402         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1403
1404         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1405                 BNX2X_ERR("FW final cleanup did not succeed\n");
1406                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1407                    (REG_RD(bp, comp_addr)));
1408                 bnx2x_panic();
1409                 return 1;
1410         }
1411         /* Zero completion for next FLR */
1412         REG_WR(bp, comp_addr, 0);
1413
1414         return ret;
1415 }
1416
1417 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1418 {
1419         u16 status;
1420
1421         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1422         return status & PCI_EXP_DEVSTA_TRPND;
1423 }
1424
1425 /* PF FLR specific routines
1426 */
1427 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1428 {
1429         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1430         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1431                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1432                         "CFC PF usage counter timed out",
1433                         poll_cnt))
1434                 return 1;
1435
1436         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1437         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438                         DORQ_REG_PF_USAGE_CNT,
1439                         "DQ PF usage counter timed out",
1440                         poll_cnt))
1441                 return 1;
1442
1443         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1444         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1446                         "QM PF usage counter timed out",
1447                         poll_cnt))
1448                 return 1;
1449
1450         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1451         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1452                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1453                         "Timers VNIC usage counter timed out",
1454                         poll_cnt))
1455                 return 1;
1456         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1457                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1458                         "Timers NUM_SCANS usage counter timed out",
1459                         poll_cnt))
1460                 return 1;
1461
1462         /* Wait DMAE PF usage counter to zero */
1463         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1464                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1465                         "DMAE command register timed out",
1466                         poll_cnt))
1467                 return 1;
1468
1469         return 0;
1470 }
1471
1472 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1473 {
1474         u32 val;
1475
1476         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1477         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1478
1479         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1480         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1481
1482         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1483         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1484
1485         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1486         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1487
1488         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1489         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1490
1491         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1492         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1493
1494         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1495         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1496
1497         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1498         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1499            val);
1500 }
1501
1502 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1503 {
1504         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1505
1506         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1507
1508         /* Re-enable PF target read access */
1509         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1510
1511         /* Poll HW usage counters */
1512         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1513         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1514                 return -EBUSY;
1515
1516         /* Zero the igu 'trailing edge' and 'leading edge' */
1517
1518         /* Send the FW cleanup command */
1519         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1520                 return -EBUSY;
1521
1522         /* ATC cleanup */
1523
1524         /* Verify TX hw is flushed */
1525         bnx2x_tx_hw_flushed(bp, poll_cnt);
1526
1527         /* Wait 100ms (not adjusted according to platform) */
1528         msleep(100);
1529
1530         /* Verify no pending pci transactions */
1531         if (bnx2x_is_pcie_pending(bp->pdev))
1532                 BNX2X_ERR("PCIE Transactions still pending\n");
1533
1534         /* Debug */
1535         bnx2x_hw_enable_status(bp);
1536
1537         /*
1538          * Master enable - Due to WB DMAE writes performed before this
1539          * register is re-initialized as part of the regular function init
1540          */
1541         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1542
1543         return 0;
1544 }
1545
1546 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1547 {
1548         int port = BP_PORT(bp);
1549         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1550         u32 val = REG_RD(bp, addr);
1551         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1552         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1553         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1554
1555         if (msix) {
1556                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1557                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1558                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1559                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1560                 if (single_msix)
1561                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1562         } else if (msi) {
1563                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1564                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1565                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1566                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1567         } else {
1568                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1569                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1570                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1571                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1572
1573                 if (!CHIP_IS_E1(bp)) {
1574                         DP(NETIF_MSG_IFUP,
1575                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1576
1577                         REG_WR(bp, addr, val);
1578
1579                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1580                 }
1581         }
1582
1583         if (CHIP_IS_E1(bp))
1584                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1585
1586         DP(NETIF_MSG_IFUP,
1587            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1588            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1589
1590         REG_WR(bp, addr, val);
1591         /*
1592          * Ensure that HC_CONFIG is written before leading/trailing edge config
1593          */
1594         mmiowb();
1595         barrier();
1596
1597         if (!CHIP_IS_E1(bp)) {
1598                 /* init leading/trailing edge */
1599                 if (IS_MF(bp)) {
1600                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1601                         if (bp->port.pmf)
1602                                 /* enable nig and gpio3 attention */
1603                                 val |= 0x1100;
1604                 } else
1605                         val = 0xffff;
1606
1607                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1608                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1609         }
1610
1611         /* Make sure that interrupts are indeed enabled from here on */
1612         mmiowb();
1613 }
1614
1615 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1616 {
1617         u32 val;
1618         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1619         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1620         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1621
1622         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1623
1624         if (msix) {
1625                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1626                          IGU_PF_CONF_SINGLE_ISR_EN);
1627                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1628                         IGU_PF_CONF_ATTN_BIT_EN);
1629
1630                 if (single_msix)
1631                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1632         } else if (msi) {
1633                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1634                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1635                         IGU_PF_CONF_ATTN_BIT_EN |
1636                         IGU_PF_CONF_SINGLE_ISR_EN);
1637         } else {
1638                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1639                 val |= (IGU_PF_CONF_INT_LINE_EN |
1640                         IGU_PF_CONF_ATTN_BIT_EN |
1641                         IGU_PF_CONF_SINGLE_ISR_EN);
1642         }
1643
1644         /* Clean previous status - need to configure igu prior to ack*/
1645         if ((!msix) || single_msix) {
1646                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1647                 bnx2x_ack_int(bp);
1648         }
1649
1650         val |= IGU_PF_CONF_FUNC_EN;
1651
1652         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1653            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1654
1655         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1656
1657         if (val & IGU_PF_CONF_INT_LINE_EN)
1658                 pci_intx(bp->pdev, true);
1659
1660         barrier();
1661
1662         /* init leading/trailing edge */
1663         if (IS_MF(bp)) {
1664                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1665                 if (bp->port.pmf)
1666                         /* enable nig and gpio3 attention */
1667                         val |= 0x1100;
1668         } else
1669                 val = 0xffff;
1670
1671         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1672         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1673
1674         /* Make sure that interrupts are indeed enabled from here on */
1675         mmiowb();
1676 }
1677
1678 void bnx2x_int_enable(struct bnx2x *bp)
1679 {
1680         if (bp->common.int_block == INT_BLOCK_HC)
1681                 bnx2x_hc_int_enable(bp);
1682         else
1683                 bnx2x_igu_int_enable(bp);
1684 }
1685
1686 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1687 {
1688         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1689         int i, offset;
1690
1691         if (disable_hw)
1692                 /* prevent the HW from sending interrupts */
1693                 bnx2x_int_disable(bp);
1694
1695         /* make sure all ISRs are done */
1696         if (msix) {
1697                 synchronize_irq(bp->msix_table[0].vector);
1698                 offset = 1;
1699                 if (CNIC_SUPPORT(bp))
1700                         offset++;
1701                 for_each_eth_queue(bp, i)
1702                         synchronize_irq(bp->msix_table[offset++].vector);
1703         } else
1704                 synchronize_irq(bp->pdev->irq);
1705
1706         /* make sure sp_task is not running */
1707         cancel_delayed_work(&bp->sp_task);
1708         cancel_delayed_work(&bp->period_task);
1709         flush_workqueue(bnx2x_wq);
1710 }
1711
1712 /* fast path */
1713
1714 /*
1715  * General service functions
1716  */
1717
1718 /* Return true if succeeded to acquire the lock */
1719 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1720 {
1721         u32 lock_status;
1722         u32 resource_bit = (1 << resource);
1723         int func = BP_FUNC(bp);
1724         u32 hw_lock_control_reg;
1725
1726         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1727            "Trying to take a lock on resource %d\n", resource);
1728
1729         /* Validating that the resource is within range */
1730         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1731                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1732                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1733                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1734                 return false;
1735         }
1736
1737         if (func <= 5)
1738                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1739         else
1740                 hw_lock_control_reg =
1741                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1742
1743         /* Try to acquire the lock */
1744         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1745         lock_status = REG_RD(bp, hw_lock_control_reg);
1746         if (lock_status & resource_bit)
1747                 return true;
1748
1749         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1750            "Failed to get a lock on resource %d\n", resource);
1751         return false;
1752 }
1753
1754 /**
1755  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1756  *
1757  * @bp: driver handle
1758  *
1759  * Returns the recovery leader resource id according to the engine this function
1760  * belongs to. Currently only only 2 engines is supported.
1761  */
1762 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1763 {
1764         if (BP_PATH(bp))
1765                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1766         else
1767                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1768 }
1769
1770 /**
1771  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1772  *
1773  * @bp: driver handle
1774  *
1775  * Tries to acquire a leader lock for current engine.
1776  */
1777 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1778 {
1779         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1780 }
1781
1782 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1783
1784 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1785 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1786 {
1787         /* Set the interrupt occurred bit for the sp-task to recognize it
1788          * must ack the interrupt and transition according to the IGU
1789          * state machine.
1790          */
1791         atomic_set(&bp->interrupt_occurred, 1);
1792
1793         /* The sp_task must execute only after this bit
1794          * is set, otherwise we will get out of sync and miss all
1795          * further interrupts. Hence, the barrier.
1796          */
1797         smp_wmb();
1798
1799         /* schedule sp_task to workqueue */
1800         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1801 }
1802
1803 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1804 {
1805         struct bnx2x *bp = fp->bp;
1806         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1807         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1808         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1809         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1810
1811         DP(BNX2X_MSG_SP,
1812            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1813            fp->index, cid, command, bp->state,
1814            rr_cqe->ramrod_cqe.ramrod_type);
1815
1816         /* If cid is within VF range, replace the slowpath object with the
1817          * one corresponding to this VF
1818          */
1819         if (cid >= BNX2X_FIRST_VF_CID  &&
1820             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1821                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1822
1823         switch (command) {
1824         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1825                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1826                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1827                 break;
1828
1829         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1830                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1831                 drv_cmd = BNX2X_Q_CMD_SETUP;
1832                 break;
1833
1834         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1835                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1836                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1837                 break;
1838
1839         case (RAMROD_CMD_ID_ETH_HALT):
1840                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1841                 drv_cmd = BNX2X_Q_CMD_HALT;
1842                 break;
1843
1844         case (RAMROD_CMD_ID_ETH_TERMINATE):
1845                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1846                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1847                 break;
1848
1849         case (RAMROD_CMD_ID_ETH_EMPTY):
1850                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1851                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1852                 break;
1853
1854         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1855                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1856                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1857                 break;
1858
1859         default:
1860                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1861                           command, fp->index);
1862                 return;
1863         }
1864
1865         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1866             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1867                 /* q_obj->complete_cmd() failure means that this was
1868                  * an unexpected completion.
1869                  *
1870                  * In this case we don't want to increase the bp->spq_left
1871                  * because apparently we haven't sent this command the first
1872                  * place.
1873                  */
1874 #ifdef BNX2X_STOP_ON_ERROR
1875                 bnx2x_panic();
1876 #else
1877                 return;
1878 #endif
1879
1880         smp_mb__before_atomic();
1881         atomic_inc(&bp->cq_spq_left);
1882         /* push the change in bp->spq_left and towards the memory */
1883         smp_mb__after_atomic();
1884
1885         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1886
1887         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1888             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1889                 /* if Q update ramrod is completed for last Q in AFEX vif set
1890                  * flow, then ACK MCP at the end
1891                  *
1892                  * mark pending ACK to MCP bit.
1893                  * prevent case that both bits are cleared.
1894                  * At the end of load/unload driver checks that
1895                  * sp_state is cleared, and this order prevents
1896                  * races
1897                  */
1898                 smp_mb__before_atomic();
1899                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1900                 wmb();
1901                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1902                 smp_mb__after_atomic();
1903
1904                 /* schedule the sp task as mcp ack is required */
1905                 bnx2x_schedule_sp_task(bp);
1906         }
1907
1908         return;
1909 }
1910
1911 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1912 {
1913         struct bnx2x *bp = netdev_priv(dev_instance);
1914         u16 status = bnx2x_ack_int(bp);
1915         u16 mask;
1916         int i;
1917         u8 cos;
1918
1919         /* Return here if interrupt is shared and it's not for us */
1920         if (unlikely(status == 0)) {
1921                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1922                 return IRQ_NONE;
1923         }
1924         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1925
1926 #ifdef BNX2X_STOP_ON_ERROR
1927         if (unlikely(bp->panic))
1928                 return IRQ_HANDLED;
1929 #endif
1930
1931         for_each_eth_queue(bp, i) {
1932                 struct bnx2x_fastpath *fp = &bp->fp[i];
1933
1934                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1935                 if (status & mask) {
1936                         /* Handle Rx or Tx according to SB id */
1937                         for_each_cos_in_tx_queue(fp, cos)
1938                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1939                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1940                         napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1941                         status &= ~mask;
1942                 }
1943         }
1944
1945         if (CNIC_SUPPORT(bp)) {
1946                 mask = 0x2;
1947                 if (status & (mask | 0x1)) {
1948                         struct cnic_ops *c_ops = NULL;
1949
1950                         rcu_read_lock();
1951                         c_ops = rcu_dereference(bp->cnic_ops);
1952                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1953                                       CNIC_DRV_STATE_HANDLES_IRQ))
1954                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1955                         rcu_read_unlock();
1956
1957                         status &= ~mask;
1958                 }
1959         }
1960
1961         if (unlikely(status & 0x1)) {
1962
1963                 /* schedule sp task to perform default status block work, ack
1964                  * attentions and enable interrupts.
1965                  */
1966                 bnx2x_schedule_sp_task(bp);
1967
1968                 status &= ~0x1;
1969                 if (!status)
1970                         return IRQ_HANDLED;
1971         }
1972
1973         if (unlikely(status))
1974                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1975                    status);
1976
1977         return IRQ_HANDLED;
1978 }
1979
1980 /* Link */
1981
1982 /*
1983  * General service functions
1984  */
1985
1986 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1987 {
1988         u32 lock_status;
1989         u32 resource_bit = (1 << resource);
1990         int func = BP_FUNC(bp);
1991         u32 hw_lock_control_reg;
1992         int cnt;
1993
1994         /* Validating that the resource is within range */
1995         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1996                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1997                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1998                 return -EINVAL;
1999         }
2000
2001         if (func <= 5) {
2002                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2003         } else {
2004                 hw_lock_control_reg =
2005                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2006         }
2007
2008         /* Validating that the resource is not already taken */
2009         lock_status = REG_RD(bp, hw_lock_control_reg);
2010         if (lock_status & resource_bit) {
2011                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
2012                    lock_status, resource_bit);
2013                 return -EEXIST;
2014         }
2015
2016         /* Try for 5 second every 5ms */
2017         for (cnt = 0; cnt < 1000; cnt++) {
2018                 /* Try to acquire the lock */
2019                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2020                 lock_status = REG_RD(bp, hw_lock_control_reg);
2021                 if (lock_status & resource_bit)
2022                         return 0;
2023
2024                 usleep_range(5000, 10000);
2025         }
2026         BNX2X_ERR("Timeout\n");
2027         return -EAGAIN;
2028 }
2029
2030 int bnx2x_release_leader_lock(struct bnx2x *bp)
2031 {
2032         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2033 }
2034
2035 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2036 {
2037         u32 lock_status;
2038         u32 resource_bit = (1 << resource);
2039         int func = BP_FUNC(bp);
2040         u32 hw_lock_control_reg;
2041
2042         /* Validating that the resource is within range */
2043         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2044                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2045                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2046                 return -EINVAL;
2047         }
2048
2049         if (func <= 5) {
2050                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2051         } else {
2052                 hw_lock_control_reg =
2053                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2054         }
2055
2056         /* Validating that the resource is currently taken */
2057         lock_status = REG_RD(bp, hw_lock_control_reg);
2058         if (!(lock_status & resource_bit)) {
2059                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2060                           lock_status, resource_bit);
2061                 return -EFAULT;
2062         }
2063
2064         REG_WR(bp, hw_lock_control_reg, resource_bit);
2065         return 0;
2066 }
2067
2068 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2069 {
2070         /* The GPIO should be swapped if swap register is set and active */
2071         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2072                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2073         int gpio_shift = gpio_num +
2074                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2075         u32 gpio_mask = (1 << gpio_shift);
2076         u32 gpio_reg;
2077         int value;
2078
2079         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2080                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2081                 return -EINVAL;
2082         }
2083
2084         /* read GPIO value */
2085         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2086
2087         /* get the requested pin value */
2088         if ((gpio_reg & gpio_mask) == gpio_mask)
2089                 value = 1;
2090         else
2091                 value = 0;
2092
2093         return value;
2094 }
2095
2096 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2097 {
2098         /* The GPIO should be swapped if swap register is set and active */
2099         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2100                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2101         int gpio_shift = gpio_num +
2102                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2103         u32 gpio_mask = (1 << gpio_shift);
2104         u32 gpio_reg;
2105
2106         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2107                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2108                 return -EINVAL;
2109         }
2110
2111         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2112         /* read GPIO and mask except the float bits */
2113         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2114
2115         switch (mode) {
2116         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2117                 DP(NETIF_MSG_LINK,
2118                    "Set GPIO %d (shift %d) -> output low\n",
2119                    gpio_num, gpio_shift);
2120                 /* clear FLOAT and set CLR */
2121                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2122                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2123                 break;
2124
2125         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2126                 DP(NETIF_MSG_LINK,
2127                    "Set GPIO %d (shift %d) -> output high\n",
2128                    gpio_num, gpio_shift);
2129                 /* clear FLOAT and set SET */
2130                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2131                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2132                 break;
2133
2134         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2135                 DP(NETIF_MSG_LINK,
2136                    "Set GPIO %d (shift %d) -> input\n",
2137                    gpio_num, gpio_shift);
2138                 /* set FLOAT */
2139                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2140                 break;
2141
2142         default:
2143                 break;
2144         }
2145
2146         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2147         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2148
2149         return 0;
2150 }
2151
2152 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2153 {
2154         u32 gpio_reg = 0;
2155         int rc = 0;
2156
2157         /* Any port swapping should be handled by caller. */
2158
2159         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2160         /* read GPIO and mask except the float bits */
2161         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2162         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2163         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2164         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2165
2166         switch (mode) {
2167         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2168                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2169                 /* set CLR */
2170                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2171                 break;
2172
2173         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2174                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2175                 /* set SET */
2176                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2177                 break;
2178
2179         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2180                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2181                 /* set FLOAT */
2182                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2183                 break;
2184
2185         default:
2186                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2187                 rc = -EINVAL;
2188                 break;
2189         }
2190
2191         if (rc == 0)
2192                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2193
2194         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2195
2196         return rc;
2197 }
2198
2199 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2200 {
2201         /* The GPIO should be swapped if swap register is set and active */
2202         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2203                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2204         int gpio_shift = gpio_num +
2205                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2206         u32 gpio_mask = (1 << gpio_shift);
2207         u32 gpio_reg;
2208
2209         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2210                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2211                 return -EINVAL;
2212         }
2213
2214         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2215         /* read GPIO int */
2216         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2217
2218         switch (mode) {
2219         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2220                 DP(NETIF_MSG_LINK,
2221                    "Clear GPIO INT %d (shift %d) -> output low\n",
2222                    gpio_num, gpio_shift);
2223                 /* clear SET and set CLR */
2224                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2225                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2226                 break;
2227
2228         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2229                 DP(NETIF_MSG_LINK,
2230                    "Set GPIO INT %d (shift %d) -> output high\n",
2231                    gpio_num, gpio_shift);
2232                 /* clear CLR and set SET */
2233                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2234                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2235                 break;
2236
2237         default:
2238                 break;
2239         }
2240
2241         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2242         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2243
2244         return 0;
2245 }
2246
2247 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2248 {
2249         u32 spio_reg;
2250
2251         /* Only 2 SPIOs are configurable */
2252         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2253                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2254                 return -EINVAL;
2255         }
2256
2257         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2258         /* read SPIO and mask except the float bits */
2259         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2260
2261         switch (mode) {
2262         case MISC_SPIO_OUTPUT_LOW:
2263                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2264                 /* clear FLOAT and set CLR */
2265                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2266                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2267                 break;
2268
2269         case MISC_SPIO_OUTPUT_HIGH:
2270                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2271                 /* clear FLOAT and set SET */
2272                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2273                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2274                 break;
2275
2276         case MISC_SPIO_INPUT_HI_Z:
2277                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2278                 /* set FLOAT */
2279                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2280                 break;
2281
2282         default:
2283                 break;
2284         }
2285
2286         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2287         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2288
2289         return 0;
2290 }
2291
2292 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2293 {
2294         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2295
2296         bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2297                                            ADVERTISED_Pause);
2298         switch (bp->link_vars.ieee_fc &
2299                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2300         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2301                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2302                                                   ADVERTISED_Pause);
2303                 break;
2304
2305         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2306                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2307                 break;
2308
2309         default:
2310                 break;
2311         }
2312 }
2313
2314 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2315 {
2316         /* Initialize link parameters structure variables
2317          * It is recommended to turn off RX FC for jumbo frames
2318          *  for better performance
2319          */
2320         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2321                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2322         else
2323                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2324 }
2325
2326 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2327 {
2328         u32 pause_enabled = 0;
2329
2330         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2331                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2332                         pause_enabled = 1;
2333
2334                 REG_WR(bp, BAR_USTRORM_INTMEM +
2335                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2336                        pause_enabled);
2337         }
2338
2339         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2340            pause_enabled ? "enabled" : "disabled");
2341 }
2342
2343 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2344 {
2345         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2346         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2347
2348         if (!BP_NOMCP(bp)) {
2349                 bnx2x_set_requested_fc(bp);
2350                 bnx2x_acquire_phy_lock(bp);
2351
2352                 if (load_mode == LOAD_DIAG) {
2353                         struct link_params *lp = &bp->link_params;
2354                         lp->loopback_mode = LOOPBACK_XGXS;
2355                         /* Prefer doing PHY loopback at highest speed */
2356                         if (lp->req_line_speed[cfx_idx] < SPEED_20000) {
2357                                 if (lp->speed_cap_mask[cfx_idx] &
2358                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)
2359                                         lp->req_line_speed[cfx_idx] =
2360                                         SPEED_20000;
2361                                 else if (lp->speed_cap_mask[cfx_idx] &
2362                                             PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2363                                                 lp->req_line_speed[cfx_idx] =
2364                                                 SPEED_10000;
2365                                 else
2366                                         lp->req_line_speed[cfx_idx] =
2367                                         SPEED_1000;
2368                         }
2369                 }
2370
2371                 if (load_mode == LOAD_LOOPBACK_EXT) {
2372                         struct link_params *lp = &bp->link_params;
2373                         lp->loopback_mode = LOOPBACK_EXT;
2374                 }
2375
2376                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2377
2378                 bnx2x_release_phy_lock(bp);
2379
2380                 bnx2x_init_dropless_fc(bp);
2381
2382                 bnx2x_calc_fc_adv(bp);
2383
2384                 if (bp->link_vars.link_up) {
2385                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2386                         bnx2x_link_report(bp);
2387                 }
2388                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2389                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2390                 return rc;
2391         }
2392         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2393         return -EINVAL;
2394 }
2395
2396 void bnx2x_link_set(struct bnx2x *bp)
2397 {
2398         if (!BP_NOMCP(bp)) {
2399                 bnx2x_acquire_phy_lock(bp);
2400                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2401                 bnx2x_release_phy_lock(bp);
2402
2403                 bnx2x_init_dropless_fc(bp);
2404
2405                 bnx2x_calc_fc_adv(bp);
2406         } else
2407                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2408 }
2409
2410 static void bnx2x__link_reset(struct bnx2x *bp)
2411 {
2412         if (!BP_NOMCP(bp)) {
2413                 bnx2x_acquire_phy_lock(bp);
2414                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2415                 bnx2x_release_phy_lock(bp);
2416         } else
2417                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2418 }
2419
2420 void bnx2x_force_link_reset(struct bnx2x *bp)
2421 {
2422         bnx2x_acquire_phy_lock(bp);
2423         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2424         bnx2x_release_phy_lock(bp);
2425 }
2426
2427 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2428 {
2429         u8 rc = 0;
2430
2431         if (!BP_NOMCP(bp)) {
2432                 bnx2x_acquire_phy_lock(bp);
2433                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2434                                      is_serdes);
2435                 bnx2x_release_phy_lock(bp);
2436         } else
2437                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2438
2439         return rc;
2440 }
2441
2442 /* Calculates the sum of vn_min_rates.
2443    It's needed for further normalizing of the min_rates.
2444    Returns:
2445      sum of vn_min_rates.
2446        or
2447      0 - if all the min_rates are 0.
2448      In the later case fairness algorithm should be deactivated.
2449      If not all min_rates are zero then those that are zeroes will be set to 1.
2450  */
2451 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2452                                       struct cmng_init_input *input)
2453 {
2454         int all_zero = 1;
2455         int vn;
2456
2457         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2458                 u32 vn_cfg = bp->mf_config[vn];
2459                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2460                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2461
2462                 /* Skip hidden vns */
2463                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2464                         vn_min_rate = 0;
2465                 /* If min rate is zero - set it to 1 */
2466                 else if (!vn_min_rate)
2467                         vn_min_rate = DEF_MIN_RATE;
2468                 else
2469                         all_zero = 0;
2470
2471                 input->vnic_min_rate[vn] = vn_min_rate;
2472         }
2473
2474         /* if ETS or all min rates are zeros - disable fairness */
2475         if (BNX2X_IS_ETS_ENABLED(bp)) {
2476                 input->flags.cmng_enables &=
2477                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2478                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2479         } else if (all_zero) {
2480                 input->flags.cmng_enables &=
2481                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2482                 DP(NETIF_MSG_IFUP,
2483                    "All MIN values are zeroes fairness will be disabled\n");
2484         } else
2485                 input->flags.cmng_enables |=
2486                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2487 }
2488
2489 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2490                                     struct cmng_init_input *input)
2491 {
2492         u16 vn_max_rate;
2493         u32 vn_cfg = bp->mf_config[vn];
2494
2495         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2496                 vn_max_rate = 0;
2497         else {
2498                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2499
2500                 if (IS_MF_PERCENT_BW(bp)) {
2501                         /* maxCfg in percents of linkspeed */
2502                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2503                 } else /* SD modes */
2504                         /* maxCfg is absolute in 100Mb units */
2505                         vn_max_rate = maxCfg * 100;
2506         }
2507
2508         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2509
2510         input->vnic_max_rate[vn] = vn_max_rate;
2511 }
2512
2513 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2514 {
2515         if (CHIP_REV_IS_SLOW(bp))
2516                 return CMNG_FNS_NONE;
2517         if (IS_MF(bp))
2518                 return CMNG_FNS_MINMAX;
2519
2520         return CMNG_FNS_NONE;
2521 }
2522
2523 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2524 {
2525         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2526
2527         if (BP_NOMCP(bp))
2528                 return; /* what should be the default value in this case */
2529
2530         /* For 2 port configuration the absolute function number formula
2531          * is:
2532          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2533          *
2534          *      and there are 4 functions per port
2535          *
2536          * For 4 port configuration it is
2537          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2538          *
2539          *      and there are 2 functions per port
2540          */
2541         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2542                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2543
2544                 if (func >= E1H_FUNC_MAX)
2545                         break;
2546
2547                 bp->mf_config[vn] =
2548                         MF_CFG_RD(bp, func_mf_config[func].config);
2549         }
2550         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2551                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2552                 bp->flags |= MF_FUNC_DIS;
2553         } else {
2554                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2555                 bp->flags &= ~MF_FUNC_DIS;
2556         }
2557 }
2558
2559 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2560 {
2561         struct cmng_init_input input;
2562         memset(&input, 0, sizeof(struct cmng_init_input));
2563
2564         input.port_rate = bp->link_vars.line_speed;
2565
2566         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2567                 int vn;
2568
2569                 /* read mf conf from shmem */
2570                 if (read_cfg)
2571                         bnx2x_read_mf_cfg(bp);
2572
2573                 /* vn_weight_sum and enable fairness if not 0 */
2574                 bnx2x_calc_vn_min(bp, &input);
2575
2576                 /* calculate and set min-max rate for each vn */
2577                 if (bp->port.pmf)
2578                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2579                                 bnx2x_calc_vn_max(bp, vn, &input);
2580
2581                 /* always enable rate shaping and fairness */
2582                 input.flags.cmng_enables |=
2583                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2584
2585                 bnx2x_init_cmng(&input, &bp->cmng);
2586                 return;
2587         }
2588
2589         /* rate shaping and fairness are disabled */
2590         DP(NETIF_MSG_IFUP,
2591            "rate shaping and fairness are disabled\n");
2592 }
2593
2594 static void storm_memset_cmng(struct bnx2x *bp,
2595                               struct cmng_init *cmng,
2596                               u8 port)
2597 {
2598         int vn;
2599         size_t size = sizeof(struct cmng_struct_per_port);
2600
2601         u32 addr = BAR_XSTRORM_INTMEM +
2602                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2603
2604         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2605
2606         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2607                 int func = func_by_vn(bp, vn);
2608
2609                 addr = BAR_XSTRORM_INTMEM +
2610                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2611                 size = sizeof(struct rate_shaping_vars_per_vn);
2612                 __storm_memset_struct(bp, addr, size,
2613                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2614
2615                 addr = BAR_XSTRORM_INTMEM +
2616                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2617                 size = sizeof(struct fairness_vars_per_vn);
2618                 __storm_memset_struct(bp, addr, size,
2619                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2620         }
2621 }
2622
2623 /* init cmng mode in HW according to local configuration */
2624 void bnx2x_set_local_cmng(struct bnx2x *bp)
2625 {
2626         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2627
2628         if (cmng_fns != CMNG_FNS_NONE) {
2629                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2630                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2631         } else {
2632                 /* rate shaping and fairness are disabled */
2633                 DP(NETIF_MSG_IFUP,
2634                    "single function mode without fairness\n");
2635         }
2636 }
2637
2638 /* This function is called upon link interrupt */
2639 static void bnx2x_link_attn(struct bnx2x *bp)
2640 {
2641         /* Make sure that we are synced with the current statistics */
2642         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2643
2644         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2645
2646         bnx2x_init_dropless_fc(bp);
2647
2648         if (bp->link_vars.link_up) {
2649
2650                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2651                         struct host_port_stats *pstats;
2652
2653                         pstats = bnx2x_sp(bp, port_stats);
2654                         /* reset old mac stats */
2655                         memset(&(pstats->mac_stx[0]), 0,
2656                                sizeof(struct mac_stx));
2657                 }
2658                 if (bp->state == BNX2X_STATE_OPEN)
2659                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2660         }
2661
2662         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2663                 bnx2x_set_local_cmng(bp);
2664
2665         __bnx2x_link_report(bp);
2666
2667         if (IS_MF(bp))
2668                 bnx2x_link_sync_notify(bp);
2669 }
2670
2671 void bnx2x__link_status_update(struct bnx2x *bp)
2672 {
2673         if (bp->state != BNX2X_STATE_OPEN)
2674                 return;
2675
2676         /* read updated dcb configuration */
2677         if (IS_PF(bp)) {
2678                 bnx2x_dcbx_pmf_update(bp);
2679                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2680                 if (bp->link_vars.link_up)
2681                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2682                 else
2683                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2684                         /* indicate link status */
2685                 bnx2x_link_report(bp);
2686
2687         } else { /* VF */
2688                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2689                                           SUPPORTED_10baseT_Full |
2690                                           SUPPORTED_100baseT_Half |
2691                                           SUPPORTED_100baseT_Full |
2692                                           SUPPORTED_1000baseT_Full |
2693                                           SUPPORTED_2500baseX_Full |
2694                                           SUPPORTED_10000baseT_Full |
2695                                           SUPPORTED_TP |
2696                                           SUPPORTED_FIBRE |
2697                                           SUPPORTED_Autoneg |
2698                                           SUPPORTED_Pause |
2699                                           SUPPORTED_Asym_Pause);
2700                 bp->port.advertising[0] = bp->port.supported[0];
2701
2702                 bp->link_params.bp = bp;
2703                 bp->link_params.port = BP_PORT(bp);
2704                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2705                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2706                 bp->link_params.req_line_speed[0] = SPEED_10000;
2707                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2708                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2709                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2710                 bp->link_vars.line_speed = SPEED_10000;
2711                 bp->link_vars.link_status =
2712                         (LINK_STATUS_LINK_UP |
2713                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2714                 bp->link_vars.link_up = 1;
2715                 bp->link_vars.duplex = DUPLEX_FULL;
2716                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2717                 __bnx2x_link_report(bp);
2718
2719                 bnx2x_sample_bulletin(bp);
2720
2721                 /* if bulletin board did not have an update for link status
2722                  * __bnx2x_link_report will report current status
2723                  * but it will NOT duplicate report in case of already reported
2724                  * during sampling bulletin board.
2725                  */
2726                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2727         }
2728 }
2729
2730 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2731                                   u16 vlan_val, u8 allowed_prio)
2732 {
2733         struct bnx2x_func_state_params func_params = {NULL};
2734         struct bnx2x_func_afex_update_params *f_update_params =
2735                 &func_params.params.afex_update;
2736
2737         func_params.f_obj = &bp->func_obj;
2738         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2739
2740         /* no need to wait for RAMROD completion, so don't
2741          * set RAMROD_COMP_WAIT flag
2742          */
2743
2744         f_update_params->vif_id = vifid;
2745         f_update_params->afex_default_vlan = vlan_val;
2746         f_update_params->allowed_priorities = allowed_prio;
2747
2748         /* if ramrod can not be sent, response to MCP immediately */
2749         if (bnx2x_func_state_change(bp, &func_params) < 0)
2750                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2751
2752         return 0;
2753 }
2754
2755 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2756                                           u16 vif_index, u8 func_bit_map)
2757 {
2758         struct bnx2x_func_state_params func_params = {NULL};
2759         struct bnx2x_func_afex_viflists_params *update_params =
2760                 &func_params.params.afex_viflists;
2761         int rc;
2762         u32 drv_msg_code;
2763
2764         /* validate only LIST_SET and LIST_GET are received from switch */
2765         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2766                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2767                           cmd_type);
2768
2769         func_params.f_obj = &bp->func_obj;
2770         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2771
2772         /* set parameters according to cmd_type */
2773         update_params->afex_vif_list_command = cmd_type;
2774         update_params->vif_list_index = vif_index;
2775         update_params->func_bit_map =
2776                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2777         update_params->func_to_clear = 0;
2778         drv_msg_code =
2779                 (cmd_type == VIF_LIST_RULE_GET) ?
2780                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2781                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2782
2783         /* if ramrod can not be sent, respond to MCP immediately for
2784          * SET and GET requests (other are not triggered from MCP)
2785          */
2786         rc = bnx2x_func_state_change(bp, &func_params);
2787         if (rc < 0)
2788                 bnx2x_fw_command(bp, drv_msg_code, 0);
2789
2790         return 0;
2791 }
2792
2793 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2794 {
2795         struct afex_stats afex_stats;
2796         u32 func = BP_ABS_FUNC(bp);
2797         u32 mf_config;
2798         u16 vlan_val;
2799         u32 vlan_prio;
2800         u16 vif_id;
2801         u8 allowed_prio;
2802         u8 vlan_mode;
2803         u32 addr_to_write, vifid, addrs, stats_type, i;
2804
2805         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2806                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2807                 DP(BNX2X_MSG_MCP,
2808                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2809                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2810         }
2811
2812         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2813                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2814                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2815                 DP(BNX2X_MSG_MCP,
2816                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2817                    vifid, addrs);
2818                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2819                                                addrs);
2820         }
2821
2822         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2823                 addr_to_write = SHMEM2_RD(bp,
2824                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2825                 stats_type = SHMEM2_RD(bp,
2826                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2827
2828                 DP(BNX2X_MSG_MCP,
2829                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2830                    addr_to_write);
2831
2832                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2833
2834                 /* write response to scratchpad, for MCP */
2835                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2836                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2837                                *(((u32 *)(&afex_stats))+i));
2838
2839                 /* send ack message to MCP */
2840                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2841         }
2842
2843         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2844                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2845                 bp->mf_config[BP_VN(bp)] = mf_config;
2846                 DP(BNX2X_MSG_MCP,
2847                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2848                    mf_config);
2849
2850                 /* if VIF_SET is "enabled" */
2851                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2852                         /* set rate limit directly to internal RAM */
2853                         struct cmng_init_input cmng_input;
2854                         struct rate_shaping_vars_per_vn m_rs_vn;
2855                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2856                         u32 addr = BAR_XSTRORM_INTMEM +
2857                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2858
2859                         bp->mf_config[BP_VN(bp)] = mf_config;
2860
2861                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2862                         m_rs_vn.vn_counter.rate =
2863                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2864                         m_rs_vn.vn_counter.quota =
2865                                 (m_rs_vn.vn_counter.rate *
2866                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2867
2868                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2869
2870                         /* read relevant values from mf_cfg struct in shmem */
2871                         vif_id =
2872                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2873                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2874                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2875                         vlan_val =
2876                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2877                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2878                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2879                         vlan_prio = (mf_config &
2880                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2881                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2882                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2883                         vlan_mode =
2884                                 (MF_CFG_RD(bp,
2885                                            func_mf_config[func].afex_config) &
2886                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2887                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2888                         allowed_prio =
2889                                 (MF_CFG_RD(bp,
2890                                            func_mf_config[func].afex_config) &
2891                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2892                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2893
2894                         /* send ramrod to FW, return in case of failure */
2895                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2896                                                    allowed_prio))
2897                                 return;
2898
2899                         bp->afex_def_vlan_tag = vlan_val;
2900                         bp->afex_vlan_mode = vlan_mode;
2901                 } else {
2902                         /* notify link down because BP->flags is disabled */
2903                         bnx2x_link_report(bp);
2904
2905                         /* send INVALID VIF ramrod to FW */
2906                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2907
2908                         /* Reset the default afex VLAN */
2909                         bp->afex_def_vlan_tag = -1;
2910                 }
2911         }
2912 }
2913
2914 static void bnx2x_handle_update_svid_cmd(struct bnx2x *bp)
2915 {
2916         struct bnx2x_func_switch_update_params *switch_update_params;
2917         struct bnx2x_func_state_params func_params;
2918
2919         memset(&func_params, 0, sizeof(struct bnx2x_func_state_params));
2920         switch_update_params = &func_params.params.switch_update;
2921         func_params.f_obj = &bp->func_obj;
2922         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
2923
2924         if (IS_MF_UFP(bp) || IS_MF_BD(bp)) {
2925                 int func = BP_ABS_FUNC(bp);
2926                 u32 val;
2927
2928                 /* Re-learn the S-tag from shmem */
2929                 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2930                                 FUNC_MF_CFG_E1HOV_TAG_MASK;
2931                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
2932                         bp->mf_ov = val;
2933                 } else {
2934                         BNX2X_ERR("Got an SVID event, but no tag is configured in shmem\n");
2935                         goto fail;
2936                 }
2937
2938                 /* Configure new S-tag in LLH */
2939                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + BP_PORT(bp) * 8,
2940                        bp->mf_ov);
2941
2942                 /* Send Ramrod to update FW of change */
2943                 __set_bit(BNX2X_F_UPDATE_SD_VLAN_TAG_CHNG,
2944                           &switch_update_params->changes);
2945                 switch_update_params->vlan = bp->mf_ov;
2946
2947                 if (bnx2x_func_state_change(bp, &func_params) < 0) {
2948                         BNX2X_ERR("Failed to configure FW of S-tag Change to %02x\n",
2949                                   bp->mf_ov);
2950                         goto fail;
2951                 } else {
2952                         DP(BNX2X_MSG_MCP, "Configured S-tag %02x\n",
2953                            bp->mf_ov);
2954                 }
2955         } else {
2956                 goto fail;
2957         }
2958
2959         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_OK, 0);
2960         return;
2961 fail:
2962         bnx2x_fw_command(bp, DRV_MSG_CODE_OEM_UPDATE_SVID_FAILURE, 0);
2963 }
2964
2965 static void bnx2x_pmf_update(struct bnx2x *bp)
2966 {
2967         int port = BP_PORT(bp);
2968         u32 val;
2969
2970         bp->port.pmf = 1;
2971         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2972
2973         /*
2974          * We need the mb() to ensure the ordering between the writing to
2975          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2976          */
2977         smp_mb();
2978
2979         /* queue a periodic task */
2980         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2981
2982         bnx2x_dcbx_pmf_update(bp);
2983
2984         /* enable nig attention */
2985         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2986         if (bp->common.int_block == INT_BLOCK_HC) {
2987                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2988                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2989         } else if (!CHIP_IS_E1x(bp)) {
2990                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2991                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2992         }
2993
2994         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2995 }
2996
2997 /* end of Link */
2998
2999 /* slow path */
3000
3001 /*
3002  * General service functions
3003  */
3004
3005 /* send the MCP a request, block until there is a reply */
3006 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
3007 {
3008         int mb_idx = BP_FW_MB_IDX(bp);
3009         u32 seq;
3010         u32 rc = 0;
3011         u32 cnt = 1;
3012         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
3013
3014         mutex_lock(&bp->fw_mb_mutex);
3015         seq = ++bp->fw_seq;
3016         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
3017         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
3018
3019         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
3020                         (command | seq), param);
3021
3022         do {
3023                 /* let the FW do it's magic ... */
3024                 msleep(delay);
3025
3026                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
3027
3028                 /* Give the FW up to 5 second (500*10ms) */
3029         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
3030
3031         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
3032            cnt*delay, rc, seq);
3033
3034         /* is this a reply to our command? */
3035         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
3036                 rc &= FW_MSG_CODE_MASK;
3037         else {
3038                 /* FW BUG! */
3039                 BNX2X_ERR("FW failed to respond!\n");
3040                 bnx2x_fw_dump(bp);
3041                 rc = 0;
3042         }
3043         mutex_unlock(&bp->fw_mb_mutex);
3044
3045         return rc;
3046 }
3047
3048 static void storm_memset_func_cfg(struct bnx2x *bp,
3049                                  struct tstorm_eth_function_common_config *tcfg,
3050                                  u16 abs_fid)
3051 {
3052         size_t size = sizeof(struct tstorm_eth_function_common_config);
3053
3054         u32 addr = BAR_TSTRORM_INTMEM +
3055                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
3056
3057         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
3058 }
3059
3060 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
3061 {
3062         if (CHIP_IS_E1x(bp)) {
3063                 struct tstorm_eth_function_common_config tcfg = {0};
3064
3065                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
3066         }
3067
3068         /* Enable the function in the FW */
3069         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
3070         storm_memset_func_en(bp, p->func_id, 1);
3071
3072         /* spq */
3073         if (p->spq_active) {
3074                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
3075                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3076                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3077         }
3078 }
3079
3080 /**
3081  * bnx2x_get_common_flags - Return common flags
3082  *
3083  * @bp          device handle
3084  * @fp          queue handle
3085  * @zero_stats  TRUE if statistics zeroing is needed
3086  *
3087  * Return the flags that are common for the Tx-only and not normal connections.
3088  */
3089 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3090                                             struct bnx2x_fastpath *fp,
3091                                             bool zero_stats)
3092 {
3093         unsigned long flags = 0;
3094
3095         /* PF driver will always initialize the Queue to an ACTIVE state */
3096         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3097
3098         /* tx only connections collect statistics (on the same index as the
3099          * parent connection). The statistics are zeroed when the parent
3100          * connection is initialized.
3101          */
3102
3103         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3104         if (zero_stats)
3105                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3106
3107         if (bp->flags & TX_SWITCHING)
3108                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3109
3110         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3111         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3112
3113 #ifdef BNX2X_STOP_ON_ERROR
3114         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3115 #endif
3116
3117         return flags;
3118 }
3119
3120 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3121                                        struct bnx2x_fastpath *fp,
3122                                        bool leading)
3123 {
3124         unsigned long flags = 0;
3125
3126         /* calculate other queue flags */
3127         if (IS_MF_SD(bp))
3128                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3129
3130         if (IS_FCOE_FP(fp)) {
3131                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3132                 /* For FCoE - force usage of default priority (for afex) */
3133                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3134         }
3135
3136         if (fp->mode != TPA_MODE_DISABLED) {
3137                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3138                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3139                 if (fp->mode == TPA_MODE_GRO)
3140                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3141         }
3142
3143         if (leading) {
3144                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3145                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3146         }
3147
3148         /* Always set HW VLAN stripping */
3149         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3150
3151         /* configure silent vlan removal */
3152         if (IS_MF_AFEX(bp))
3153                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3154
3155         return flags | bnx2x_get_common_flags(bp, fp, true);
3156 }
3157
3158 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3159         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3160         u8 cos)
3161 {
3162         gen_init->stat_id = bnx2x_stats_id(fp);
3163         gen_init->spcl_id = fp->cl_id;
3164
3165         /* Always use mini-jumbo MTU for FCoE L2 ring */
3166         if (IS_FCOE_FP(fp))
3167                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3168         else
3169                 gen_init->mtu = bp->dev->mtu;
3170
3171         gen_init->cos = cos;
3172
3173         gen_init->fp_hsi = ETH_FP_HSI_VERSION;
3174 }
3175
3176 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3177         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3178         struct bnx2x_rxq_setup_params *rxq_init)
3179 {
3180         u8 max_sge = 0;
3181         u16 sge_sz = 0;
3182         u16 tpa_agg_size = 0;
3183
3184         if (fp->mode != TPA_MODE_DISABLED) {
3185                 pause->sge_th_lo = SGE_TH_LO(bp);
3186                 pause->sge_th_hi = SGE_TH_HI(bp);
3187
3188                 /* validate SGE ring has enough to cross high threshold */
3189                 WARN_ON(bp->dropless_fc &&
3190                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3191                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3192
3193                 tpa_agg_size = TPA_AGG_SIZE;
3194                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3195                         SGE_PAGE_SHIFT;
3196                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3197                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3198                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3199         }
3200
3201         /* pause - not for e1 */
3202         if (!CHIP_IS_E1(bp)) {
3203                 pause->bd_th_lo = BD_TH_LO(bp);
3204                 pause->bd_th_hi = BD_TH_HI(bp);
3205
3206                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3207                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3208                 /*
3209                  * validate that rings have enough entries to cross
3210                  * high thresholds
3211                  */
3212                 WARN_ON(bp->dropless_fc &&
3213                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3214                                 bp->rx_ring_size);
3215                 WARN_ON(bp->dropless_fc &&
3216                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3217                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3218
3219                 pause->pri_map = 1;
3220         }
3221
3222         /* rxq setup */
3223         rxq_init->dscr_map = fp->rx_desc_mapping;
3224         rxq_init->sge_map = fp->rx_sge_mapping;
3225         rxq_init->rcq_map = fp->rx_comp_mapping;
3226         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3227
3228         /* This should be a maximum number of data bytes that may be
3229          * placed on the BD (not including paddings).
3230          */
3231         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3232                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3233
3234         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3235         rxq_init->tpa_agg_sz = tpa_agg_size;
3236         rxq_init->sge_buf_sz = sge_sz;
3237         rxq_init->max_sges_pkt = max_sge;
3238         rxq_init->rss_engine_id = BP_FUNC(bp);
3239         rxq_init->mcast_engine_id = BP_FUNC(bp);
3240
3241         /* Maximum number or simultaneous TPA aggregation for this Queue.
3242          *
3243          * For PF Clients it should be the maximum available number.
3244          * VF driver(s) may want to define it to a smaller value.
3245          */
3246         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3247
3248         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3249         rxq_init->fw_sb_id = fp->fw_sb_id;
3250
3251         if (IS_FCOE_FP(fp))
3252                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3253         else
3254                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3255         /* configure silent vlan removal
3256          * if multi function mode is afex, then mask default vlan
3257          */
3258         if (IS_MF_AFEX(bp)) {
3259                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3260                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3261         }
3262 }
3263
3264 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3265         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3266         u8 cos)
3267 {
3268         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3269         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3270         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3271         txq_init->fw_sb_id = fp->fw_sb_id;
3272
3273         /*
3274          * set the tss leading client id for TX classification ==
3275          * leading RSS client id
3276          */
3277         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3278
3279         if (IS_FCOE_FP(fp)) {
3280                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3281                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3282         }
3283 }
3284
3285 static void bnx2x_pf_init(struct bnx2x *bp)
3286 {
3287         struct bnx2x_func_init_params func_init = {0};
3288         struct event_ring_data eq_data = { {0} };
3289
3290         if (!CHIP_IS_E1x(bp)) {
3291                 /* reset IGU PF statistics: MSIX + ATTN */
3292                 /* PF */
3293                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3294                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3295                            (CHIP_MODE_IS_4_PORT(bp) ?
3296                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3297                 /* ATTN */
3298                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3299                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3300                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3301                            (CHIP_MODE_IS_4_PORT(bp) ?
3302                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3303         }
3304
3305         func_init.spq_active = true;
3306         func_init.pf_id = BP_FUNC(bp);
3307         func_init.func_id = BP_FUNC(bp);
3308         func_init.spq_map = bp->spq_mapping;
3309         func_init.spq_prod = bp->spq_prod_idx;
3310
3311         bnx2x_func_init(bp, &func_init);
3312
3313         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3314
3315         /*
3316          * Congestion management values depend on the link rate
3317          * There is no active link so initial link rate is set to 10 Gbps.
3318          * When the link comes up The congestion management values are
3319          * re-calculated according to the actual link rate.
3320          */
3321         bp->link_vars.line_speed = SPEED_10000;
3322         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3323
3324         /* Only the PMF sets the HW */
3325         if (bp->port.pmf)
3326                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3327
3328         /* init Event Queue - PCI bus guarantees correct endianity*/
3329         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3330         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3331         eq_data.producer = bp->eq_prod;
3332         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3333         eq_data.sb_id = DEF_SB_ID;
3334         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3335 }
3336
3337 static void bnx2x_e1h_disable(struct bnx2x *bp)
3338 {
3339         int port = BP_PORT(bp);
3340
3341         bnx2x_tx_disable(bp);
3342
3343         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3344 }
3345
3346 static void bnx2x_e1h_enable(struct bnx2x *bp)
3347 {
3348         int port = BP_PORT(bp);
3349
3350         if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
3351                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
3352
3353         /* Tx queue should be only re-enabled */
3354         netif_tx_wake_all_queues(bp->dev);
3355
3356         /*
3357          * Should not call netif_carrier_on since it will be called if the link
3358          * is up when checking for link state
3359          */
3360 }
3361
3362 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3363
3364 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3365 {
3366         struct eth_stats_info *ether_stat =
3367                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3368         struct bnx2x_vlan_mac_obj *mac_obj =
3369                 &bp->sp_objs->mac_obj;
3370         int i;
3371
3372         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3373                 ETH_STAT_INFO_VERSION_LEN);
3374
3375         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3376          * mac_local field in ether_stat struct. The base address is offset by 2
3377          * bytes to account for the field being 8 bytes but a mac address is
3378          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3379          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3380          * allocated by the ether_stat struct, so the macs will land in their
3381          * proper positions.
3382          */
3383         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3384                 memset(ether_stat->mac_local + i, 0,
3385                        sizeof(ether_stat->mac_local[0]));
3386         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3387                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3388                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3389                                 ETH_ALEN);
3390         ether_stat->mtu_size = bp->dev->mtu;
3391         if (bp->dev->features & NETIF_F_RXCSUM)
3392                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3393         if (bp->dev->features & NETIF_F_TSO)
3394                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3395         ether_stat->feature_flags |= bp->common.boot_mode;
3396
3397         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3398
3399         ether_stat->txq_size = bp->tx_ring_size;
3400         ether_stat->rxq_size = bp->rx_ring_size;
3401
3402 #ifdef CONFIG_BNX2X_SRIOV
3403         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3404 #endif
3405 }
3406
3407 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3408 {
3409         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3410         struct fcoe_stats_info *fcoe_stat =
3411                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3412
3413         if (!CNIC_LOADED(bp))
3414                 return;
3415
3416         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3417
3418         fcoe_stat->qos_priority =
3419                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3420
3421         /* insert FCoE stats from ramrod response */
3422         if (!NO_FCOE(bp)) {
3423                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3424                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3425                         tstorm_queue_statistics;
3426
3427                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3428                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3429                         xstorm_queue_statistics;
3430
3431                 struct fcoe_statistics_params *fw_fcoe_stat =
3432                         &bp->fw_stats_data->fcoe;
3433
3434                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3435                           fcoe_stat->rx_bytes_lo,
3436                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3437
3438                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3439                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3440                           fcoe_stat->rx_bytes_lo,
3441                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3442
3443                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3444                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3445                           fcoe_stat->rx_bytes_lo,
3446                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3447
3448                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3449                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3450                           fcoe_stat->rx_bytes_lo,
3451                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3452
3453                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3454                           fcoe_stat->rx_frames_lo,
3455                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3456
3457                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3458                           fcoe_stat->rx_frames_lo,
3459                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3460
3461                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3462                           fcoe_stat->rx_frames_lo,
3463                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3464
3465                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3466                           fcoe_stat->rx_frames_lo,
3467                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3468
3469                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3470                           fcoe_stat->tx_bytes_lo,
3471                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3472
3473                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3474                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3475                           fcoe_stat->tx_bytes_lo,
3476                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3477
3478                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3479                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3480                           fcoe_stat->tx_bytes_lo,
3481                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3482
3483                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3484                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3485                           fcoe_stat->tx_bytes_lo,
3486                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3487
3488                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3489                           fcoe_stat->tx_frames_lo,
3490                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3491
3492                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3493                           fcoe_stat->tx_frames_lo,
3494                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3495
3496                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3497                           fcoe_stat->tx_frames_lo,
3498                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3499
3500                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3501                           fcoe_stat->tx_frames_lo,
3502                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3503         }
3504
3505         /* ask L5 driver to add data to the struct */
3506         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3507 }
3508
3509 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3510 {
3511         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3512         struct iscsi_stats_info *iscsi_stat =
3513                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3514
3515         if (!CNIC_LOADED(bp))
3516                 return;
3517
3518         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3519                ETH_ALEN);
3520
3521         iscsi_stat->qos_priority =
3522                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3523
3524         /* ask L5 driver to add data to the struct */
3525         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3526 }
3527
3528 /* called due to MCP event (on pmf):
3529  *      reread new bandwidth configuration
3530  *      configure FW
3531  *      notify others function about the change
3532  */
3533 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3534 {
3535         if (bp->link_vars.link_up) {
3536                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3537                 bnx2x_link_sync_notify(bp);
3538         }
3539         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3540 }
3541
3542 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3543 {
3544         bnx2x_config_mf_bw(bp);
3545         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3546 }
3547
3548 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3549 {
3550         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3551         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3552 }
3553
3554 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3555 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3556
3557 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3558 {
3559         enum drv_info_opcode op_code;
3560         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3561         bool release = false;
3562         int wait;
3563
3564         /* if drv_info version supported by MFW doesn't match - send NACK */
3565         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3566                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3567                 return;
3568         }
3569
3570         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3571                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3572
3573         /* Must prevent other flows from accessing drv_info_to_mcp */
3574         mutex_lock(&bp->drv_info_mutex);
3575
3576         memset(&bp->slowpath->drv_info_to_mcp, 0,
3577                sizeof(union drv_info_to_mcp));
3578
3579         switch (op_code) {
3580         case ETH_STATS_OPCODE:
3581                 bnx2x_drv_info_ether_stat(bp);
3582                 break;
3583         case FCOE_STATS_OPCODE:
3584                 bnx2x_drv_info_fcoe_stat(bp);
3585                 break;
3586         case ISCSI_STATS_OPCODE:
3587                 bnx2x_drv_info_iscsi_stat(bp);
3588                 break;
3589         default:
3590                 /* if op code isn't supported - send NACK */
3591                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3592                 goto out;
3593         }
3594
3595         /* if we got drv_info attn from MFW then these fields are defined in
3596          * shmem2 for sure
3597          */
3598         SHMEM2_WR(bp, drv_info_host_addr_lo,
3599                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3600         SHMEM2_WR(bp, drv_info_host_addr_hi,
3601                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3602
3603         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3604
3605         /* Since possible management wants both this and get_driver_version
3606          * need to wait until management notifies us it finished utilizing
3607          * the buffer.
3608          */
3609         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3610                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3611         } else if (!bp->drv_info_mng_owner) {
3612                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3613
3614                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3615                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3616
3617                         /* Management is done; need to clear indication */
3618                         if (indication & bit) {
3619                                 SHMEM2_WR(bp, mfw_drv_indication,
3620                                           indication & ~bit);
3621                                 release = true;
3622                                 break;
3623                         }
3624
3625                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3626                 }
3627         }
3628         if (!release) {
3629                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3630                 bp->drv_info_mng_owner = true;
3631         }
3632
3633 out:
3634         mutex_unlock(&bp->drv_info_mutex);
3635 }
3636
3637 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3638 {
3639         u8 vals[4];
3640         int i = 0;
3641
3642         if (bnx2x_format) {
3643                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3644                            &vals[0], &vals[1], &vals[2], &vals[3]);
3645                 if (i > 0)
3646                         vals[0] -= '0';
3647         } else {
3648                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3649                            &vals[0], &vals[1], &vals[2], &vals[3]);
3650         }
3651
3652         while (i < 4)
3653                 vals[i++] = 0;
3654
3655         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3656 }
3657
3658 void bnx2x_update_mng_version(struct bnx2x *bp)
3659 {
3660         u32 iscsiver = DRV_VER_NOT_LOADED;
3661         u32 fcoever = DRV_VER_NOT_LOADED;
3662         u32 ethver = DRV_VER_NOT_LOADED;
3663         int idx = BP_FW_MB_IDX(bp);
3664         u8 *version;
3665
3666         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3667                 return;
3668
3669         mutex_lock(&bp->drv_info_mutex);
3670         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3671         if (bp->drv_info_mng_owner)
3672                 goto out;
3673
3674         if (bp->state != BNX2X_STATE_OPEN)
3675                 goto out;
3676
3677         /* Parse ethernet driver version */
3678         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3679         if (!CNIC_LOADED(bp))
3680                 goto out;
3681
3682         /* Try getting storage driver version via cnic */
3683         memset(&bp->slowpath->drv_info_to_mcp, 0,
3684                sizeof(union drv_info_to_mcp));
3685         bnx2x_drv_info_iscsi_stat(bp);
3686         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3687         iscsiver = bnx2x_update_mng_version_utility(version, false);
3688
3689         memset(&bp->slowpath->drv_info_to_mcp, 0,
3690                sizeof(union drv_info_to_mcp));
3691         bnx2x_drv_info_fcoe_stat(bp);
3692         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3693         fcoever = bnx2x_update_mng_version_utility(version, false);
3694
3695 out:
3696         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3697         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3698         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3699
3700         mutex_unlock(&bp->drv_info_mutex);
3701
3702         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3703            ethver, iscsiver, fcoever);
3704 }
3705
3706 void bnx2x_update_mfw_dump(struct bnx2x *bp)
3707 {
3708         u32 drv_ver;
3709         u32 valid_dump;
3710
3711         if (!SHMEM2_HAS(bp, drv_info))
3712                 return;
3713
3714         /* Update Driver load time, possibly broken in y2038 */
3715         SHMEM2_WR(bp, drv_info.epoc, (u32)ktime_get_real_seconds());
3716
3717         drv_ver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3718         SHMEM2_WR(bp, drv_info.drv_ver, drv_ver);
3719
3720         SHMEM2_WR(bp, drv_info.fw_ver, REG_RD(bp, XSEM_REG_PRAM));
3721
3722         /* Check & notify On-Chip dump. */
3723         valid_dump = SHMEM2_RD(bp, drv_info.valid_dump);
3724
3725         if (valid_dump & FIRST_DUMP_VALID)
3726                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 1st partition\n");
3727
3728         if (valid_dump & SECOND_DUMP_VALID)
3729                 DP(NETIF_MSG_IFUP, "A valid On-Chip MFW dump found on 2nd partition\n");
3730 }
3731
3732 static void bnx2x_oem_event(struct bnx2x *bp, u32 event)
3733 {
3734         u32 cmd_ok, cmd_fail;
3735
3736         /* sanity */
3737         if (event & DRV_STATUS_DCC_EVENT_MASK &&
3738             event & DRV_STATUS_OEM_EVENT_MASK) {
3739                 BNX2X_ERR("Received simultaneous events %08x\n", event);
3740                 return;
3741         }
3742
3743         if (event & DRV_STATUS_DCC_EVENT_MASK) {
3744                 cmd_fail = DRV_MSG_CODE_DCC_FAILURE;
3745                 cmd_ok = DRV_MSG_CODE_DCC_OK;
3746         } else /* if (event & DRV_STATUS_OEM_EVENT_MASK) */ {
3747                 cmd_fail = DRV_MSG_CODE_OEM_FAILURE;
3748                 cmd_ok = DRV_MSG_CODE_OEM_OK;
3749         }
3750
3751         DP(BNX2X_MSG_MCP, "oem_event 0x%x\n", event);
3752
3753         if (event & (DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3754                      DRV_STATUS_OEM_DISABLE_ENABLE_PF)) {
3755                 /* This is the only place besides the function initialization
3756                  * where the bp->flags can change so it is done without any
3757                  * locks
3758                  */
3759                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3760                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3761                         bp->flags |= MF_FUNC_DIS;
3762
3763                         bnx2x_e1h_disable(bp);
3764                 } else {
3765                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3766                         bp->flags &= ~MF_FUNC_DIS;
3767
3768                         bnx2x_e1h_enable(bp);
3769                 }
3770                 event &= ~(DRV_STATUS_DCC_DISABLE_ENABLE_PF |
3771                            DRV_STATUS_OEM_DISABLE_ENABLE_PF);
3772         }
3773
3774         if (event & (DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3775                      DRV_STATUS_OEM_BANDWIDTH_ALLOCATION)) {
3776                 bnx2x_config_mf_bw(bp);
3777                 event &= ~(DRV_STATUS_DCC_BANDWIDTH_ALLOCATION |
3778                            DRV_STATUS_OEM_BANDWIDTH_ALLOCATION);
3779         }
3780
3781         /* Report results to MCP */
3782         if (event)
3783                 bnx2x_fw_command(bp, cmd_fail, 0);
3784         else
3785                 bnx2x_fw_command(bp, cmd_ok, 0);
3786 }
3787
3788 /* must be called under the spq lock */
3789 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3790 {
3791         struct eth_spe *next_spe = bp->spq_prod_bd;
3792
3793         if (bp->spq_prod_bd == bp->spq_last_bd) {
3794                 bp->spq_prod_bd = bp->spq;
3795                 bp->spq_prod_idx = 0;
3796                 DP(BNX2X_MSG_SP, "end of spq\n");
3797         } else {
3798                 bp->spq_prod_bd++;
3799                 bp->spq_prod_idx++;
3800         }
3801         return next_spe;
3802 }
3803
3804 /* must be called under the spq lock */
3805 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3806 {
3807         int func = BP_FUNC(bp);
3808
3809         /*
3810          * Make sure that BD data is updated before writing the producer:
3811          * BD data is written to the memory, the producer is read from the
3812          * memory, thus we need a full memory barrier to ensure the ordering.
3813          */
3814         mb();
3815
3816         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3817                  bp->spq_prod_idx);
3818         mmiowb();
3819 }
3820
3821 /**
3822  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3823  *
3824  * @cmd:        command to check
3825  * @cmd_type:   command type
3826  */
3827 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3828 {
3829         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3830             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3831             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3832             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3833             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3834             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3835             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3836                 return true;
3837         else
3838                 return false;
3839 }
3840
3841 /**
3842  * bnx2x_sp_post - place a single command on an SP ring
3843  *
3844  * @bp:         driver handle
3845  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3846  * @cid:        SW CID the command is related to
3847  * @data_hi:    command private data address (high 32 bits)
3848  * @data_lo:    command private data address (low 32 bits)
3849  * @cmd_type:   command type (e.g. NONE, ETH)
3850  *
3851  * SP data is handled as if it's always an address pair, thus data fields are
3852  * not swapped to little endian in upper functions. Instead this function swaps
3853  * data as if it's two u32 fields.
3854  */
3855 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3856                   u32 data_hi, u32 data_lo, int cmd_type)
3857 {
3858         struct eth_spe *spe;
3859         u16 type;
3860         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3861
3862 #ifdef BNX2X_STOP_ON_ERROR
3863         if (unlikely(bp->panic)) {
3864                 BNX2X_ERR("Can't post SP when there is panic\n");
3865                 return -EIO;
3866         }
3867 #endif
3868
3869         spin_lock_bh(&bp->spq_lock);
3870
3871         if (common) {
3872                 if (!atomic_read(&bp->eq_spq_left)) {
3873                         BNX2X_ERR("BUG! EQ ring full!\n");
3874                         spin_unlock_bh(&bp->spq_lock);
3875                         bnx2x_panic();
3876                         return -EBUSY;
3877                 }
3878         } else if (!atomic_read(&bp->cq_spq_left)) {
3879                         BNX2X_ERR("BUG! SPQ ring full!\n");
3880                         spin_unlock_bh(&bp->spq_lock);
3881                         bnx2x_panic();
3882                         return -EBUSY;
3883         }
3884
3885         spe = bnx2x_sp_get_next(bp);
3886
3887         /* CID needs port number to be encoded int it */
3888         spe->hdr.conn_and_cmd_data =
3889                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3890                                     HW_CID(bp, cid));
3891
3892         /* In some cases, type may already contain the func-id
3893          * mainly in SRIOV related use cases, so we add it here only
3894          * if it's not already set.
3895          */
3896         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3897                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3898                         SPE_HDR_CONN_TYPE;
3899                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3900                          SPE_HDR_FUNCTION_ID);
3901         } else {
3902                 type = cmd_type;
3903         }
3904
3905         spe->hdr.type = cpu_to_le16(type);
3906
3907         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3908         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3909
3910         /*
3911          * It's ok if the actual decrement is issued towards the memory
3912          * somewhere between the spin_lock and spin_unlock. Thus no
3913          * more explicit memory barrier is needed.
3914          */
3915         if (common)
3916                 atomic_dec(&bp->eq_spq_left);
3917         else
3918                 atomic_dec(&bp->cq_spq_left);
3919
3920         DP(BNX2X_MSG_SP,
3921            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3922            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3923            (u32)(U64_LO(bp->spq_mapping) +
3924            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3925            HW_CID(bp, cid), data_hi, data_lo, type,
3926            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3927
3928         bnx2x_sp_prod_update(bp);
3929         spin_unlock_bh(&bp->spq_lock);
3930         return 0;
3931 }
3932
3933 /* acquire split MCP access lock register */
3934 static int bnx2x_acquire_alr(struct bnx2x *bp)
3935 {
3936         u32 j, val;
3937         int rc = 0;
3938
3939         might_sleep();
3940         for (j = 0; j < 1000; j++) {
3941                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3942                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3943                 if (val & MCPR_ACCESS_LOCK_LOCK)
3944                         break;
3945
3946                 usleep_range(5000, 10000);
3947         }
3948         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3949                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3950                 rc = -EBUSY;
3951         }
3952
3953         return rc;
3954 }
3955
3956 /* release split MCP access lock register */
3957 static void bnx2x_release_alr(struct bnx2x *bp)
3958 {
3959         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3960 }
3961
3962 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3963 #define BNX2X_DEF_SB_IDX        0x0002
3964
3965 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3966 {
3967         struct host_sp_status_block *def_sb = bp->def_status_blk;
3968         u16 rc = 0;
3969
3970         barrier(); /* status block is written to by the chip */
3971         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3972                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3973                 rc |= BNX2X_DEF_SB_ATT_IDX;
3974         }
3975
3976         if (bp->def_idx != def_sb->sp_sb.running_index) {
3977                 bp->def_idx = def_sb->sp_sb.running_index;
3978                 rc |= BNX2X_DEF_SB_IDX;
3979         }
3980
3981         /* Do not reorder: indices reading should complete before handling */
3982         barrier();
3983         return rc;
3984 }
3985
3986 /*
3987  * slow path service functions
3988  */
3989
3990 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3991 {
3992         int port = BP_PORT(bp);
3993         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3994                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3995         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3996                                        NIG_REG_MASK_INTERRUPT_PORT0;
3997         u32 aeu_mask;
3998         u32 nig_mask = 0;
3999         u32 reg_addr;
4000
4001         if (bp->attn_state & asserted)
4002                 BNX2X_ERR("IGU ERROR\n");
4003
4004         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4005         aeu_mask = REG_RD(bp, aeu_addr);
4006
4007         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
4008            aeu_mask, asserted);
4009         aeu_mask &= ~(asserted & 0x3ff);
4010         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4011
4012         REG_WR(bp, aeu_addr, aeu_mask);
4013         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4014
4015         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4016         bp->attn_state |= asserted;
4017         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4018
4019         if (asserted & ATTN_HARD_WIRED_MASK) {
4020                 if (asserted & ATTN_NIG_FOR_FUNC) {
4021
4022                         bnx2x_acquire_phy_lock(bp);
4023
4024                         /* save nig interrupt mask */
4025                         nig_mask = REG_RD(bp, nig_int_mask_addr);
4026
4027                         /* If nig_mask is not set, no need to call the update
4028                          * function.
4029                          */
4030                         if (nig_mask) {
4031                                 REG_WR(bp, nig_int_mask_addr, 0);
4032
4033                                 bnx2x_link_attn(bp);
4034                         }
4035
4036                         /* handle unicore attn? */
4037                 }
4038                 if (asserted & ATTN_SW_TIMER_4_FUNC)
4039                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
4040
4041                 if (asserted & GPIO_2_FUNC)
4042                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
4043
4044                 if (asserted & GPIO_3_FUNC)
4045                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
4046
4047                 if (asserted & GPIO_4_FUNC)
4048                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
4049
4050                 if (port == 0) {
4051                         if (asserted & ATTN_GENERAL_ATTN_1) {
4052                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
4053                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
4054                         }
4055                         if (asserted & ATTN_GENERAL_ATTN_2) {
4056                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
4057                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
4058                         }
4059                         if (asserted & ATTN_GENERAL_ATTN_3) {
4060                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
4061                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
4062                         }
4063                 } else {
4064                         if (asserted & ATTN_GENERAL_ATTN_4) {
4065                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
4066                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
4067                         }
4068                         if (asserted & ATTN_GENERAL_ATTN_5) {
4069                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
4070                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
4071                         }
4072                         if (asserted & ATTN_GENERAL_ATTN_6) {
4073                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
4074                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
4075                         }
4076                 }
4077
4078         } /* if hardwired */
4079
4080         if (bp->common.int_block == INT_BLOCK_HC)
4081                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4082                             COMMAND_REG_ATTN_BITS_SET);
4083         else
4084                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
4085
4086         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
4087            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4088         REG_WR(bp, reg_addr, asserted);
4089
4090         /* now set back the mask */
4091         if (asserted & ATTN_NIG_FOR_FUNC) {
4092                 /* Verify that IGU ack through BAR was written before restoring
4093                  * NIG mask. This loop should exit after 2-3 iterations max.
4094                  */
4095                 if (bp->common.int_block != INT_BLOCK_HC) {
4096                         u32 cnt = 0, igu_acked;
4097                         do {
4098                                 igu_acked = REG_RD(bp,
4099                                                    IGU_REG_ATTENTION_ACK_BITS);
4100                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
4101                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
4102                         if (!igu_acked)
4103                                 DP(NETIF_MSG_HW,
4104                                    "Failed to verify IGU ack on time\n");
4105                         barrier();
4106                 }
4107                 REG_WR(bp, nig_int_mask_addr, nig_mask);
4108                 bnx2x_release_phy_lock(bp);
4109         }
4110 }
4111
4112 static void bnx2x_fan_failure(struct bnx2x *bp)
4113 {
4114         int port = BP_PORT(bp);
4115         u32 ext_phy_config;
4116         /* mark the failure */
4117         ext_phy_config =
4118                 SHMEM_RD(bp,
4119                          dev_info.port_hw_config[port].external_phy_config);
4120
4121         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4122         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4123         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4124                  ext_phy_config);
4125
4126         /* log the failure */
4127         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4128                             "Please contact OEM Support for assistance\n");
4129
4130         /* Schedule device reset (unload)
4131          * This is due to some boards consuming sufficient power when driver is
4132          * up to overheat if fan fails.
4133          */
4134         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4135 }
4136
4137 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4138 {
4139         int port = BP_PORT(bp);
4140         int reg_offset;
4141         u32 val;
4142
4143         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4144                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4145
4146         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4147
4148                 val = REG_RD(bp, reg_offset);
4149                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4150                 REG_WR(bp, reg_offset, val);
4151
4152                 BNX2X_ERR("SPIO5 hw attention\n");
4153
4154                 /* Fan failure attention */
4155                 bnx2x_hw_reset_phy(&bp->link_params);
4156                 bnx2x_fan_failure(bp);
4157         }
4158
4159         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4160                 bnx2x_acquire_phy_lock(bp);
4161                 bnx2x_handle_module_detect_int(&bp->link_params);
4162                 bnx2x_release_phy_lock(bp);
4163         }
4164
4165         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4166
4167                 val = REG_RD(bp, reg_offset);
4168                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4169                 REG_WR(bp, reg_offset, val);
4170
4171                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4172                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4173                 bnx2x_panic();
4174         }
4175 }
4176
4177 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4178 {
4179         u32 val;
4180
4181         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4182
4183                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4184                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4185                 /* DORQ discard attention */
4186                 if (val & 0x2)
4187                         BNX2X_ERR("FATAL error from DORQ\n");
4188         }
4189
4190         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4191
4192                 int port = BP_PORT(bp);
4193                 int reg_offset;
4194
4195                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4196                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4197
4198                 val = REG_RD(bp, reg_offset);
4199                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4200                 REG_WR(bp, reg_offset, val);
4201
4202                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4203                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4204                 bnx2x_panic();
4205         }
4206 }
4207
4208 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4209 {
4210         u32 val;
4211
4212         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4213
4214                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4215                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4216                 /* CFC error attention */
4217                 if (val & 0x2)
4218                         BNX2X_ERR("FATAL error from CFC\n");
4219         }
4220
4221         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4222                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4223                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4224                 /* RQ_USDMDP_FIFO_OVERFLOW */
4225                 if (val & 0x18000)
4226                         BNX2X_ERR("FATAL error from PXP\n");
4227
4228                 if (!CHIP_IS_E1x(bp)) {
4229                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4230                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4231                 }
4232         }
4233
4234         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4235
4236                 int port = BP_PORT(bp);
4237                 int reg_offset;
4238
4239                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4240                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4241
4242                 val = REG_RD(bp, reg_offset);
4243                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4244                 REG_WR(bp, reg_offset, val);
4245
4246                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4247                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4248                 bnx2x_panic();
4249         }
4250 }
4251
4252 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4253 {
4254         u32 val;
4255
4256         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4257
4258                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4259                         int func = BP_FUNC(bp);
4260
4261                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4262                         bnx2x_read_mf_cfg(bp);
4263                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4264                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4265                         val = SHMEM_RD(bp,
4266                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4267
4268                         if (val & (DRV_STATUS_DCC_EVENT_MASK |
4269                                    DRV_STATUS_OEM_EVENT_MASK))
4270                                 bnx2x_oem_event(bp,
4271                                         (val & (DRV_STATUS_DCC_EVENT_MASK |
4272                                                 DRV_STATUS_OEM_EVENT_MASK)));
4273
4274                         if (val & DRV_STATUS_SET_MF_BW)
4275                                 bnx2x_set_mf_bw(bp);
4276
4277                         if (val & DRV_STATUS_DRV_INFO_REQ)
4278                                 bnx2x_handle_drv_info_req(bp);
4279
4280                         if (val & DRV_STATUS_VF_DISABLED)
4281                                 bnx2x_schedule_iov_task(bp,
4282                                                         BNX2X_IOV_HANDLE_FLR);
4283
4284                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4285                                 bnx2x_pmf_update(bp);
4286
4287                         if (bp->port.pmf &&
4288                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4289                                 bp->dcbx_enabled > 0)
4290                                 /* start dcbx state machine */
4291                                 bnx2x_dcbx_set_params(bp,
4292                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4293                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4294                                 bnx2x_handle_afex_cmd(bp,
4295                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4296                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4297                                 bnx2x_handle_eee_event(bp);
4298
4299                         if (val & DRV_STATUS_OEM_UPDATE_SVID)
4300                                 bnx2x_handle_update_svid_cmd(bp);
4301
4302                         if (bp->link_vars.periodic_flags &
4303                             PERIODIC_FLAGS_LINK_EVENT) {
4304                                 /*  sync with link */
4305                                 bnx2x_acquire_phy_lock(bp);
4306                                 bp->link_vars.periodic_flags &=
4307                                         ~PERIODIC_FLAGS_LINK_EVENT;
4308                                 bnx2x_release_phy_lock(bp);
4309                                 if (IS_MF(bp))
4310                                         bnx2x_link_sync_notify(bp);
4311                                 bnx2x_link_report(bp);
4312                         }
4313                         /* Always call it here: bnx2x_link_report() will
4314                          * prevent the link indication duplication.
4315                          */
4316                         bnx2x__link_status_update(bp);
4317                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4318
4319                         BNX2X_ERR("MC assert!\n");
4320                         bnx2x_mc_assert(bp);
4321                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4322                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4323                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4324                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4325                         bnx2x_panic();
4326
4327                 } else if (attn & BNX2X_MCP_ASSERT) {
4328
4329                         BNX2X_ERR("MCP assert!\n");
4330                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4331                         bnx2x_fw_dump(bp);
4332
4333                 } else
4334                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4335         }
4336
4337         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4338                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4339                 if (attn & BNX2X_GRC_TIMEOUT) {
4340                         val = CHIP_IS_E1(bp) ? 0 :
4341                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4342                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4343                 }
4344                 if (attn & BNX2X_GRC_RSV) {
4345                         val = CHIP_IS_E1(bp) ? 0 :
4346                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4347                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4348                 }
4349                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4350         }
4351 }
4352
4353 /*
4354  * Bits map:
4355  * 0-7   - Engine0 load counter.
4356  * 8-15  - Engine1 load counter.
4357  * 16    - Engine0 RESET_IN_PROGRESS bit.
4358  * 17    - Engine1 RESET_IN_PROGRESS bit.
4359  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4360  *         on the engine
4361  * 19    - Engine1 ONE_IS_LOADED.
4362  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4363  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4364  *         just the one belonging to its engine).
4365  *
4366  */
4367 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4368
4369 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4370 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4371 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4372 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4373 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4374 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4375 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4376
4377 /*
4378  * Set the GLOBAL_RESET bit.
4379  *
4380  * Should be run under rtnl lock
4381  */
4382 void bnx2x_set_reset_global(struct bnx2x *bp)
4383 {
4384         u32 val;
4385         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4386         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4387         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4388         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4389 }
4390
4391 /*
4392  * Clear the GLOBAL_RESET bit.
4393  *
4394  * Should be run under rtnl lock
4395  */
4396 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4397 {
4398         u32 val;
4399         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4402         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4403 }
4404
4405 /*
4406  * Checks the GLOBAL_RESET bit.
4407  *
4408  * should be run under rtnl lock
4409  */
4410 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4411 {
4412         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4413
4414         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4415         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4416 }
4417
4418 /*
4419  * Clear RESET_IN_PROGRESS bit for the current engine.
4420  *
4421  * Should be run under rtnl lock
4422  */
4423 static void bnx2x_set_reset_done(struct bnx2x *bp)
4424 {
4425         u32 val;
4426         u32 bit = BP_PATH(bp) ?
4427                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4428         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4429         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4430
4431         /* Clear the bit */
4432         val &= ~bit;
4433         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4434
4435         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4436 }
4437
4438 /*
4439  * Set RESET_IN_PROGRESS for the current engine.
4440  *
4441  * should be run under rtnl lock
4442  */
4443 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4444 {
4445         u32 val;
4446         u32 bit = BP_PATH(bp) ?
4447                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4448         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4449         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4450
4451         /* Set the bit */
4452         val |= bit;
4453         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4454         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4455 }
4456
4457 /*
4458  * Checks the RESET_IN_PROGRESS bit for the given engine.
4459  * should be run under rtnl lock
4460  */
4461 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4462 {
4463         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4464         u32 bit = engine ?
4465                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4466
4467         /* return false if bit is set */
4468         return (val & bit) ? false : true;
4469 }
4470
4471 /*
4472  * set pf load for the current pf.
4473  *
4474  * should be run under rtnl lock
4475  */
4476 void bnx2x_set_pf_load(struct bnx2x *bp)
4477 {
4478         u32 val1, val;
4479         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4480                              BNX2X_PATH0_LOAD_CNT_MASK;
4481         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4482                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4483
4484         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4485         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4486
4487         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4488
4489         /* get the current counter value */
4490         val1 = (val & mask) >> shift;
4491
4492         /* set bit of that PF */
4493         val1 |= (1 << bp->pf_num);
4494
4495         /* clear the old value */
4496         val &= ~mask;
4497
4498         /* set the new one */
4499         val |= ((val1 << shift) & mask);
4500
4501         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4502         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4503 }
4504
4505 /**
4506  * bnx2x_clear_pf_load - clear pf load mark
4507  *
4508  * @bp:         driver handle
4509  *
4510  * Should be run under rtnl lock.
4511  * Decrements the load counter for the current engine. Returns
4512  * whether other functions are still loaded
4513  */
4514 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4515 {
4516         u32 val1, val;
4517         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4518                              BNX2X_PATH0_LOAD_CNT_MASK;
4519         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4520                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4521
4522         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4523         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4524         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4525
4526         /* get the current counter value */
4527         val1 = (val & mask) >> shift;
4528
4529         /* clear bit of that PF */
4530         val1 &= ~(1 << bp->pf_num);
4531
4532         /* clear the old value */
4533         val &= ~mask;
4534
4535         /* set the new one */
4536         val |= ((val1 << shift) & mask);
4537
4538         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4539         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4540         return val1 != 0;
4541 }
4542
4543 /*
4544  * Read the load status for the current engine.
4545  *
4546  * should be run under rtnl lock
4547  */
4548 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4549 {
4550         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4551                              BNX2X_PATH0_LOAD_CNT_MASK);
4552         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4553                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4554         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4555
4556         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4557
4558         val = (val & mask) >> shift;
4559
4560         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4561            engine, val);
4562
4563         return val != 0;
4564 }
4565
4566 static void _print_parity(struct bnx2x *bp, u32 reg)
4567 {
4568         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4569 }
4570
4571 static void _print_next_block(int idx, const char *blk)
4572 {
4573         pr_cont("%s%s", idx ? ", " : "", blk);
4574 }
4575
4576 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4577                                             int *par_num, bool print)
4578 {
4579         u32 cur_bit;
4580         bool res;
4581         int i;
4582
4583         res = false;
4584
4585         for (i = 0; sig; i++) {
4586                 cur_bit = (0x1UL << i);
4587                 if (sig & cur_bit) {
4588                         res |= true; /* Each bit is real error! */
4589
4590                         if (print) {
4591                                 switch (cur_bit) {
4592                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4593                                         _print_next_block((*par_num)++, "BRB");
4594                                         _print_parity(bp,
4595                                                       BRB1_REG_BRB1_PRTY_STS);
4596                                         break;
4597                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4598                                         _print_next_block((*par_num)++,
4599                                                           "PARSER");
4600                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4601                                         break;
4602                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4603                                         _print_next_block((*par_num)++, "TSDM");
4604                                         _print_parity(bp,
4605                                                       TSDM_REG_TSDM_PRTY_STS);
4606                                         break;
4607                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4608                                         _print_next_block((*par_num)++,
4609                                                           "SEARCHER");
4610                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4611                                         break;
4612                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4613                                         _print_next_block((*par_num)++, "TCM");
4614                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4615                                         break;
4616                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4617                                         _print_next_block((*par_num)++,
4618                                                           "TSEMI");
4619                                         _print_parity(bp,
4620                                                       TSEM_REG_TSEM_PRTY_STS_0);
4621                                         _print_parity(bp,
4622                                                       TSEM_REG_TSEM_PRTY_STS_1);
4623                                         break;
4624                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4625                                         _print_next_block((*par_num)++, "XPB");
4626                                         _print_parity(bp, GRCBASE_XPB +
4627                                                           PB_REG_PB_PRTY_STS);
4628                                         break;
4629                                 }
4630                         }
4631
4632                         /* Clear the bit */
4633                         sig &= ~cur_bit;
4634                 }
4635         }
4636
4637         return res;
4638 }
4639
4640 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4641                                             int *par_num, bool *global,
4642                                             bool print)
4643 {
4644         u32 cur_bit;
4645         bool res;
4646         int i;
4647
4648         res = false;
4649
4650         for (i = 0; sig; i++) {
4651                 cur_bit = (0x1UL << i);
4652                 if (sig & cur_bit) {
4653                         res |= true; /* Each bit is real error! */
4654                         switch (cur_bit) {
4655                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4656                                 if (print) {
4657                                         _print_next_block((*par_num)++, "PBF");
4658                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4659                                 }
4660                                 break;
4661                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4662                                 if (print) {
4663                                         _print_next_block((*par_num)++, "QM");
4664                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4665                                 }
4666                                 break;
4667                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4668                                 if (print) {
4669                                         _print_next_block((*par_num)++, "TM");
4670                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4671                                 }
4672                                 break;
4673                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4674                                 if (print) {
4675                                         _print_next_block((*par_num)++, "XSDM");
4676                                         _print_parity(bp,
4677                                                       XSDM_REG_XSDM_PRTY_STS);
4678                                 }
4679                                 break;
4680                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4681                                 if (print) {
4682                                         _print_next_block((*par_num)++, "XCM");
4683                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4684                                 }
4685                                 break;
4686                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4687                                 if (print) {
4688                                         _print_next_block((*par_num)++,
4689                                                           "XSEMI");
4690                                         _print_parity(bp,
4691                                                       XSEM_REG_XSEM_PRTY_STS_0);
4692                                         _print_parity(bp,
4693                                                       XSEM_REG_XSEM_PRTY_STS_1);
4694                                 }
4695                                 break;
4696                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4697                                 if (print) {
4698                                         _print_next_block((*par_num)++,
4699                                                           "DOORBELLQ");
4700                                         _print_parity(bp,
4701                                                       DORQ_REG_DORQ_PRTY_STS);
4702                                 }
4703                                 break;
4704                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4705                                 if (print) {
4706                                         _print_next_block((*par_num)++, "NIG");
4707                                         if (CHIP_IS_E1x(bp)) {
4708                                                 _print_parity(bp,
4709                                                         NIG_REG_NIG_PRTY_STS);
4710                                         } else {
4711                                                 _print_parity(bp,
4712                                                         NIG_REG_NIG_PRTY_STS_0);
4713                                                 _print_parity(bp,
4714                                                         NIG_REG_NIG_PRTY_STS_1);
4715                                         }
4716                                 }
4717                                 break;
4718                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4719                                 if (print)
4720                                         _print_next_block((*par_num)++,
4721                                                           "VAUX PCI CORE");
4722                                 *global = true;
4723                                 break;
4724                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4725                                 if (print) {
4726                                         _print_next_block((*par_num)++,
4727                                                           "DEBUG");
4728                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4729                                 }
4730                                 break;
4731                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4732                                 if (print) {
4733                                         _print_next_block((*par_num)++, "USDM");
4734                                         _print_parity(bp,
4735                                                       USDM_REG_USDM_PRTY_STS);
4736                                 }
4737                                 break;
4738                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4739                                 if (print) {
4740                                         _print_next_block((*par_num)++, "UCM");
4741                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4742                                 }
4743                                 break;
4744                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4745                                 if (print) {
4746                                         _print_next_block((*par_num)++,
4747                                                           "USEMI");
4748                                         _print_parity(bp,
4749                                                       USEM_REG_USEM_PRTY_STS_0);
4750                                         _print_parity(bp,
4751                                                       USEM_REG_USEM_PRTY_STS_1);
4752                                 }
4753                                 break;
4754                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4755                                 if (print) {
4756                                         _print_next_block((*par_num)++, "UPB");
4757                                         _print_parity(bp, GRCBASE_UPB +
4758                                                           PB_REG_PB_PRTY_STS);
4759                                 }
4760                                 break;
4761                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4762                                 if (print) {
4763                                         _print_next_block((*par_num)++, "CSDM");
4764                                         _print_parity(bp,
4765                                                       CSDM_REG_CSDM_PRTY_STS);
4766                                 }
4767                                 break;
4768                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4769                                 if (print) {
4770                                         _print_next_block((*par_num)++, "CCM");
4771                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4772                                 }
4773                                 break;
4774                         }
4775
4776                         /* Clear the bit */
4777                         sig &= ~cur_bit;
4778                 }
4779         }
4780
4781         return res;
4782 }
4783
4784 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4785                                             int *par_num, bool print)
4786 {
4787         u32 cur_bit;
4788         bool res;
4789         int i;
4790
4791         res = false;
4792
4793         for (i = 0; sig; i++) {
4794                 cur_bit = (0x1UL << i);
4795                 if (sig & cur_bit) {
4796                         res = true; /* Each bit is real error! */
4797                         if (print) {
4798                                 switch (cur_bit) {
4799                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4800                                         _print_next_block((*par_num)++,
4801                                                           "CSEMI");
4802                                         _print_parity(bp,
4803                                                       CSEM_REG_CSEM_PRTY_STS_0);
4804                                         _print_parity(bp,
4805                                                       CSEM_REG_CSEM_PRTY_STS_1);
4806                                         break;
4807                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4808                                         _print_next_block((*par_num)++, "PXP");
4809                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4810                                         _print_parity(bp,
4811                                                       PXP2_REG_PXP2_PRTY_STS_0);
4812                                         _print_parity(bp,
4813                                                       PXP2_REG_PXP2_PRTY_STS_1);
4814                                         break;
4815                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4816                                         _print_next_block((*par_num)++,
4817                                                           "PXPPCICLOCKCLIENT");
4818                                         break;
4819                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4820                                         _print_next_block((*par_num)++, "CFC");
4821                                         _print_parity(bp,
4822                                                       CFC_REG_CFC_PRTY_STS);
4823                                         break;
4824                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4825                                         _print_next_block((*par_num)++, "CDU");
4826                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4827                                         break;
4828                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4829                                         _print_next_block((*par_num)++, "DMAE");
4830                                         _print_parity(bp,
4831                                                       DMAE_REG_DMAE_PRTY_STS);
4832                                         break;
4833                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4834                                         _print_next_block((*par_num)++, "IGU");
4835                                         if (CHIP_IS_E1x(bp))
4836                                                 _print_parity(bp,
4837                                                         HC_REG_HC_PRTY_STS);
4838                                         else
4839                                                 _print_parity(bp,
4840                                                         IGU_REG_IGU_PRTY_STS);
4841                                         break;
4842                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4843                                         _print_next_block((*par_num)++, "MISC");
4844                                         _print_parity(bp,
4845                                                       MISC_REG_MISC_PRTY_STS);
4846                                         break;
4847                                 }
4848                         }
4849
4850                         /* Clear the bit */
4851                         sig &= ~cur_bit;
4852                 }
4853         }
4854
4855         return res;
4856 }
4857
4858 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4859                                             int *par_num, bool *global,
4860                                             bool print)
4861 {
4862         bool res = false;
4863         u32 cur_bit;
4864         int i;
4865
4866         for (i = 0; sig; i++) {
4867                 cur_bit = (0x1UL << i);
4868                 if (sig & cur_bit) {
4869                         switch (cur_bit) {
4870                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4871                                 if (print)
4872                                         _print_next_block((*par_num)++,
4873                                                           "MCP ROM");
4874                                 *global = true;
4875                                 res = true;
4876                                 break;
4877                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4878                                 if (print)
4879                                         _print_next_block((*par_num)++,
4880                                                           "MCP UMP RX");
4881                                 *global = true;
4882                                 res = true;
4883                                 break;
4884                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4885                                 if (print)
4886                                         _print_next_block((*par_num)++,
4887                                                           "MCP UMP TX");
4888                                 *global = true;
4889                                 res = true;
4890                                 break;
4891                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4892                                 (*par_num)++;
4893                                 /* clear latched SCPAD PATIRY from MCP */
4894                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4895                                        1UL << 10);
4896                                 break;
4897                         }
4898
4899                         /* Clear the bit */
4900                         sig &= ~cur_bit;
4901                 }
4902         }
4903
4904         return res;
4905 }
4906
4907 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4908                                             int *par_num, bool print)
4909 {
4910         u32 cur_bit;
4911         bool res;
4912         int i;
4913
4914         res = false;
4915
4916         for (i = 0; sig; i++) {
4917                 cur_bit = (0x1UL << i);
4918                 if (sig & cur_bit) {
4919                         res = true; /* Each bit is real error! */
4920                         if (print) {
4921                                 switch (cur_bit) {
4922                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4923                                         _print_next_block((*par_num)++,
4924                                                           "PGLUE_B");
4925                                         _print_parity(bp,
4926                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4927                                         break;
4928                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4929                                         _print_next_block((*par_num)++, "ATC");
4930                                         _print_parity(bp,
4931                                                       ATC_REG_ATC_PRTY_STS);
4932                                         break;
4933                                 }
4934                         }
4935                         /* Clear the bit */
4936                         sig &= ~cur_bit;
4937                 }
4938         }
4939
4940         return res;
4941 }
4942
4943 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4944                               u32 *sig)
4945 {
4946         bool res = false;
4947
4948         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4949             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4950             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4951             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4952             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4953                 int par_num = 0;
4954
4955                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4956                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4957                           sig[0] & HW_PRTY_ASSERT_SET_0,
4958                           sig[1] & HW_PRTY_ASSERT_SET_1,
4959                           sig[2] & HW_PRTY_ASSERT_SET_2,
4960                           sig[3] & HW_PRTY_ASSERT_SET_3,
4961                           sig[4] & HW_PRTY_ASSERT_SET_4);
4962                 if (print) {
4963                         if (((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4964                              (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4965                              (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4966                              (sig[4] & HW_PRTY_ASSERT_SET_4)) ||
4967                              (sig[3] & HW_PRTY_ASSERT_SET_3_WITHOUT_SCPAD)) {
4968                                 netdev_err(bp->dev,
4969                                            "Parity errors detected in blocks: ");
4970                         } else {
4971                                 print = false;
4972                         }
4973                 }
4974                 res |= bnx2x_check_blocks_with_parity0(bp,
4975                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4976                 res |= bnx2x_check_blocks_with_parity1(bp,
4977                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4978                 res |= bnx2x_check_blocks_with_parity2(bp,
4979                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4980                 res |= bnx2x_check_blocks_with_parity3(bp,
4981                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4982                 res |= bnx2x_check_blocks_with_parity4(bp,
4983                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4984
4985                 if (print)
4986                         pr_cont("\n");
4987         }
4988
4989         return res;
4990 }
4991
4992 /**
4993  * bnx2x_chk_parity_attn - checks for parity attentions.
4994  *
4995  * @bp:         driver handle
4996  * @global:     true if there was a global attention
4997  * @print:      show parity attention in syslog
4998  */
4999 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
5000 {
5001         struct attn_route attn = { {0} };
5002         int port = BP_PORT(bp);
5003
5004         attn.sig[0] = REG_RD(bp,
5005                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
5006                              port*4);
5007         attn.sig[1] = REG_RD(bp,
5008                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
5009                              port*4);
5010         attn.sig[2] = REG_RD(bp,
5011                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
5012                              port*4);
5013         attn.sig[3] = REG_RD(bp,
5014                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
5015                              port*4);
5016         /* Since MCP attentions can't be disabled inside the block, we need to
5017          * read AEU registers to see whether they're currently disabled
5018          */
5019         attn.sig[3] &= ((REG_RD(bp,
5020                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
5021                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
5022                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
5023                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
5024
5025         if (!CHIP_IS_E1x(bp))
5026                 attn.sig[4] = REG_RD(bp,
5027                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
5028                                      port*4);
5029
5030         return bnx2x_parity_attn(bp, global, print, attn.sig);
5031 }
5032
5033 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
5034 {
5035         u32 val;
5036         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
5037
5038                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
5039                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
5040                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
5041                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
5042                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
5043                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
5044                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
5045                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
5046                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
5047                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
5048                 if (val &
5049                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
5050                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
5051                 if (val &
5052                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
5053                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
5054                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
5055                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
5056                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
5057                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
5058                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
5059                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
5060         }
5061         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
5062                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
5063                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
5064                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
5065                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
5066                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
5067                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
5068                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
5069                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
5070                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
5071                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
5072                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
5073                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
5074                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
5075                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
5076         }
5077
5078         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5079                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
5080                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
5081                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
5082                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
5083         }
5084 }
5085
5086 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
5087 {
5088         struct attn_route attn, *group_mask;
5089         int port = BP_PORT(bp);
5090         int index;
5091         u32 reg_addr;
5092         u32 val;
5093         u32 aeu_mask;
5094         bool global = false;
5095
5096         /* need to take HW lock because MCP or other port might also
5097            try to handle this event */
5098         bnx2x_acquire_alr(bp);
5099
5100         if (bnx2x_chk_parity_attn(bp, &global, true)) {
5101 #ifndef BNX2X_STOP_ON_ERROR
5102                 bp->recovery_state = BNX2X_RECOVERY_INIT;
5103                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
5104                 /* Disable HW interrupts */
5105                 bnx2x_int_disable(bp);
5106                 /* In case of parity errors don't handle attentions so that
5107                  * other function would "see" parity errors.
5108                  */
5109 #else
5110                 bnx2x_panic();
5111 #endif
5112                 bnx2x_release_alr(bp);
5113                 return;
5114         }
5115
5116         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
5117         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
5118         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
5119         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
5120         if (!CHIP_IS_E1x(bp))
5121                 attn.sig[4] =
5122                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
5123         else
5124                 attn.sig[4] = 0;
5125
5126         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
5127            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
5128
5129         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5130                 if (deasserted & (1 << index)) {
5131                         group_mask = &bp->attn_group[index];
5132
5133                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5134                            index,
5135                            group_mask->sig[0], group_mask->sig[1],
5136                            group_mask->sig[2], group_mask->sig[3],
5137                            group_mask->sig[4]);
5138
5139                         bnx2x_attn_int_deasserted4(bp,
5140                                         attn.sig[4] & group_mask->sig[4]);
5141                         bnx2x_attn_int_deasserted3(bp,
5142                                         attn.sig[3] & group_mask->sig[3]);
5143                         bnx2x_attn_int_deasserted1(bp,
5144                                         attn.sig[1] & group_mask->sig[1]);
5145                         bnx2x_attn_int_deasserted2(bp,
5146                                         attn.sig[2] & group_mask->sig[2]);
5147                         bnx2x_attn_int_deasserted0(bp,
5148                                         attn.sig[0] & group_mask->sig[0]);
5149                 }
5150         }
5151
5152         bnx2x_release_alr(bp);
5153
5154         if (bp->common.int_block == INT_BLOCK_HC)
5155                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5156                             COMMAND_REG_ATTN_BITS_CLR);
5157         else
5158                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5159
5160         val = ~deasserted;
5161         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5162            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5163         REG_WR(bp, reg_addr, val);
5164
5165         if (~bp->attn_state & deasserted)
5166                 BNX2X_ERR("IGU ERROR\n");
5167
5168         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5169                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5170
5171         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5172         aeu_mask = REG_RD(bp, reg_addr);
5173
5174         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5175            aeu_mask, deasserted);
5176         aeu_mask |= (deasserted & 0x3ff);
5177         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5178
5179         REG_WR(bp, reg_addr, aeu_mask);
5180         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5181
5182         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5183         bp->attn_state &= ~deasserted;
5184         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5185 }
5186
5187 static void bnx2x_attn_int(struct bnx2x *bp)
5188 {
5189         /* read local copy of bits */
5190         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5191                                                                 attn_bits);
5192         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5193                                                                 attn_bits_ack);
5194         u32 attn_state = bp->attn_state;
5195
5196         /* look for changed bits */
5197         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5198         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5199
5200         DP(NETIF_MSG_HW,
5201            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5202            attn_bits, attn_ack, asserted, deasserted);
5203
5204         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5205                 BNX2X_ERR("BAD attention state\n");
5206
5207         /* handle bits that were raised */
5208         if (asserted)
5209                 bnx2x_attn_int_asserted(bp, asserted);
5210
5211         if (deasserted)
5212                 bnx2x_attn_int_deasserted(bp, deasserted);
5213 }
5214
5215 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5216                       u16 index, u8 op, u8 update)
5217 {
5218         u32 igu_addr = bp->igu_base_addr;
5219         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5220         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5221                              igu_addr);
5222 }
5223
5224 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5225 {
5226         /* No memory barriers */
5227         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5228         mmiowb(); /* keep prod updates ordered */
5229 }
5230
5231 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5232                                       union event_ring_elem *elem)
5233 {
5234         u8 err = elem->message.error;
5235
5236         if (!bp->cnic_eth_dev.starting_cid  ||
5237             (cid < bp->cnic_eth_dev.starting_cid &&
5238             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5239                 return 1;
5240
5241         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5242
5243         if (unlikely(err)) {
5244
5245                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5246                           cid);
5247                 bnx2x_panic_dump(bp, false);
5248         }
5249         bnx2x_cnic_cfc_comp(bp, cid, err);
5250         return 0;
5251 }
5252
5253 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5254 {
5255         struct bnx2x_mcast_ramrod_params rparam;
5256         int rc;
5257
5258         memset(&rparam, 0, sizeof(rparam));
5259
5260         rparam.mcast_obj = &bp->mcast_obj;
5261
5262         netif_addr_lock_bh(bp->dev);
5263
5264         /* Clear pending state for the last command */
5265         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5266
5267         /* If there are pending mcast commands - send them */
5268         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5269                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5270                 if (rc < 0)
5271                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5272                                   rc);
5273         }
5274
5275         netif_addr_unlock_bh(bp->dev);
5276 }
5277
5278 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5279                                             union event_ring_elem *elem)
5280 {
5281         unsigned long ramrod_flags = 0;
5282         int rc = 0;
5283         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5284         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5285
5286         /* Always push next commands out, don't wait here */
5287         __set_bit(RAMROD_CONT, &ramrod_flags);
5288
5289         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5290                             >> BNX2X_SWCID_SHIFT) {
5291         case BNX2X_FILTER_MAC_PENDING:
5292                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5293                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5294                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5295                 else
5296                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5297
5298                 break;
5299         case BNX2X_FILTER_VLAN_PENDING:
5300                 DP(BNX2X_MSG_SP, "Got SETUP_VLAN completions\n");
5301                 vlan_mac_obj = &bp->sp_objs[cid].vlan_obj;
5302                 break;
5303         case BNX2X_FILTER_MCAST_PENDING:
5304                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5305                 /* This is only relevant for 57710 where multicast MACs are
5306                  * configured as unicast MACs using the same ramrod.
5307                  */
5308                 bnx2x_handle_mcast_eqe(bp);
5309                 return;
5310         default:
5311                 BNX2X_ERR("Unsupported classification command: %d\n",
5312                           elem->message.data.eth_event.echo);
5313                 return;
5314         }
5315
5316         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5317
5318         if (rc < 0)
5319                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5320         else if (rc > 0)
5321                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5322 }
5323
5324 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5325
5326 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5327 {
5328         netif_addr_lock_bh(bp->dev);
5329
5330         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5331
5332         /* Send rx_mode command again if was requested */
5333         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5334                 bnx2x_set_storm_rx_mode(bp);
5335         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5336                                     &bp->sp_state))
5337                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5338         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5339                                     &bp->sp_state))
5340                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5341
5342         netif_addr_unlock_bh(bp->dev);
5343 }
5344
5345 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5346                                               union event_ring_elem *elem)
5347 {
5348         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5349                 DP(BNX2X_MSG_SP,
5350                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5351                    elem->message.data.vif_list_event.func_bit_map);
5352                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5353                         elem->message.data.vif_list_event.func_bit_map);
5354         } else if (elem->message.data.vif_list_event.echo ==
5355                    VIF_LIST_RULE_SET) {
5356                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5357                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5358         }
5359 }
5360
5361 /* called with rtnl_lock */
5362 static void bnx2x_after_function_update(struct bnx2x *bp)
5363 {
5364         int q, rc;
5365         struct bnx2x_fastpath *fp;
5366         struct bnx2x_queue_state_params queue_params = {NULL};
5367         struct bnx2x_queue_update_params *q_update_params =
5368                 &queue_params.params.update;
5369
5370         /* Send Q update command with afex vlan removal values for all Qs */
5371         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5372
5373         /* set silent vlan removal values according to vlan mode */
5374         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5375                   &q_update_params->update_flags);
5376         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5377                   &q_update_params->update_flags);
5378         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5379
5380         /* in access mode mark mask and value are 0 to strip all vlans */
5381         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5382                 q_update_params->silent_removal_value = 0;
5383                 q_update_params->silent_removal_mask = 0;
5384         } else {
5385                 q_update_params->silent_removal_value =
5386                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5387                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5388         }
5389
5390         for_each_eth_queue(bp, q) {
5391                 /* Set the appropriate Queue object */
5392                 fp = &bp->fp[q];
5393                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5394
5395                 /* send the ramrod */
5396                 rc = bnx2x_queue_state_change(bp, &queue_params);
5397                 if (rc < 0)
5398                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5399                                   q);
5400         }
5401
5402         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5403                 fp = &bp->fp[FCOE_IDX(bp)];
5404                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5405
5406                 /* clear pending completion bit */
5407                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5408
5409                 /* mark latest Q bit */
5410                 smp_mb__before_atomic();
5411                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5412                 smp_mb__after_atomic();
5413
5414                 /* send Q update ramrod for FCoE Q */
5415                 rc = bnx2x_queue_state_change(bp, &queue_params);
5416                 if (rc < 0)
5417                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5418                                   q);
5419         } else {
5420                 /* If no FCoE ring - ACK MCP now */
5421                 bnx2x_link_report(bp);
5422                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5423         }
5424 }
5425
5426 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5427         struct bnx2x *bp, u32 cid)
5428 {
5429         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5430
5431         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5432                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5433         else
5434                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5435 }
5436
5437 static void bnx2x_eq_int(struct bnx2x *bp)
5438 {
5439         u16 hw_cons, sw_cons, sw_prod;
5440         union event_ring_elem *elem;
5441         u8 echo;
5442         u32 cid;
5443         u8 opcode;
5444         int rc, spqe_cnt = 0;
5445         struct bnx2x_queue_sp_obj *q_obj;
5446         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5447         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5448
5449         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5450
5451         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5452          * when we get the next-page we need to adjust so the loop
5453          * condition below will be met. The next element is the size of a
5454          * regular element and hence incrementing by 1
5455          */
5456         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5457                 hw_cons++;
5458
5459         /* This function may never run in parallel with itself for a
5460          * specific bp, thus there is no need in "paired" read memory
5461          * barrier here.
5462          */
5463         sw_cons = bp->eq_cons;
5464         sw_prod = bp->eq_prod;
5465
5466         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5467                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5468
5469         for (; sw_cons != hw_cons;
5470               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5471
5472                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5473
5474                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5475                 if (!rc) {
5476                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5477                            rc);
5478                         goto next_spqe;
5479                 }
5480
5481                 /* elem CID originates from FW; actually LE */
5482                 cid = SW_CID((__force __le32)
5483                              elem->message.data.cfc_del_event.cid);
5484                 opcode = elem->message.opcode;
5485
5486                 /* handle eq element */
5487                 switch (opcode) {
5488                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5489                         bnx2x_vf_mbx_schedule(bp,
5490                                               &elem->message.data.vf_pf_event);
5491                         continue;
5492
5493                 case EVENT_RING_OPCODE_STAT_QUERY:
5494                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5495                                "got statistics comp event %d\n",
5496                                bp->stats_comp++);
5497                         /* nothing to do with stats comp */
5498                         goto next_spqe;
5499
5500                 case EVENT_RING_OPCODE_CFC_DEL:
5501                         /* handle according to cid range */
5502                         /*
5503                          * we may want to verify here that the bp state is
5504                          * HALTING
5505                          */
5506                         DP(BNX2X_MSG_SP,
5507                            "got delete ramrod for MULTI[%d]\n", cid);
5508
5509                         if (CNIC_LOADED(bp) &&
5510                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5511                                 goto next_spqe;
5512
5513                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5514
5515                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5516                                 break;
5517
5518                         goto next_spqe;
5519
5520                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5521                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5522                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5523                         if (f_obj->complete_cmd(bp, f_obj,
5524                                                 BNX2X_F_CMD_TX_STOP))
5525                                 break;
5526                         goto next_spqe;
5527
5528                 case EVENT_RING_OPCODE_START_TRAFFIC:
5529                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5530                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5531                         if (f_obj->complete_cmd(bp, f_obj,
5532                                                 BNX2X_F_CMD_TX_START))
5533                                 break;
5534                         goto next_spqe;
5535
5536                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5537                         echo = elem->message.data.function_update_event.echo;
5538                         if (echo == SWITCH_UPDATE) {
5539                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5540                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5541                                 if (f_obj->complete_cmd(
5542                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5543                                         break;
5544
5545                         } else {
5546                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5547
5548                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5549                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5550                                 f_obj->complete_cmd(bp, f_obj,
5551                                                     BNX2X_F_CMD_AFEX_UPDATE);
5552
5553                                 /* We will perform the Queues update from
5554                                  * sp_rtnl task as all Queue SP operations
5555                                  * should run under rtnl_lock.
5556                                  */
5557                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5558                         }
5559
5560                         goto next_spqe;
5561
5562                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5563                         f_obj->complete_cmd(bp, f_obj,
5564                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5565                         bnx2x_after_afex_vif_lists(bp, elem);
5566                         goto next_spqe;
5567                 case EVENT_RING_OPCODE_FUNCTION_START:
5568                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5569                            "got FUNC_START ramrod\n");
5570                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5571                                 break;
5572
5573                         goto next_spqe;
5574
5575                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5576                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5577                            "got FUNC_STOP ramrod\n");
5578                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5579                                 break;
5580
5581                         goto next_spqe;
5582
5583                 case EVENT_RING_OPCODE_SET_TIMESYNC:
5584                         DP(BNX2X_MSG_SP | BNX2X_MSG_PTP,
5585                            "got set_timesync ramrod completion\n");
5586                         if (f_obj->complete_cmd(bp, f_obj,
5587                                                 BNX2X_F_CMD_SET_TIMESYNC))
5588                                 break;
5589                         goto next_spqe;
5590                 }
5591
5592                 switch (opcode | bp->state) {
5593                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5594                       BNX2X_STATE_OPEN):
5595                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5596                       BNX2X_STATE_OPENING_WAIT4_PORT):
5597                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5598                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5599                         cid = elem->message.data.eth_event.echo &
5600                                 BNX2X_SWCID_MASK;
5601                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5602                            cid);
5603                         rss_raw->clear_pending(rss_raw);
5604                         break;
5605
5606                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5607                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5608                 case (EVENT_RING_OPCODE_SET_MAC |
5609                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5610                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5611                       BNX2X_STATE_OPEN):
5612                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5613                       BNX2X_STATE_DIAG):
5614                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5615                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5616                         DP(BNX2X_MSG_SP, "got (un)set vlan/mac ramrod\n");
5617                         bnx2x_handle_classification_eqe(bp, elem);
5618                         break;
5619
5620                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5621                       BNX2X_STATE_OPEN):
5622                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5623                       BNX2X_STATE_DIAG):
5624                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5625                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5626                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5627                         bnx2x_handle_mcast_eqe(bp);
5628                         break;
5629
5630                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5631                       BNX2X_STATE_OPEN):
5632                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5633                       BNX2X_STATE_DIAG):
5634                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5635                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5636                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5637                         bnx2x_handle_rx_mode_eqe(bp);
5638                         break;
5639                 default:
5640                         /* unknown event log error and continue */
5641                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5642                                   elem->message.opcode, bp->state);
5643                 }
5644 next_spqe:
5645                 spqe_cnt++;
5646         } /* for */
5647
5648         smp_mb__before_atomic();
5649         atomic_add(spqe_cnt, &bp->eq_spq_left);
5650
5651         bp->eq_cons = sw_cons;
5652         bp->eq_prod = sw_prod;
5653         /* Make sure that above mem writes were issued towards the memory */
5654         smp_wmb();
5655
5656         /* update producer */
5657         bnx2x_update_eq_prod(bp, bp->eq_prod);
5658 }
5659
5660 static void bnx2x_sp_task(struct work_struct *work)
5661 {
5662         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5663
5664         DP(BNX2X_MSG_SP, "sp task invoked\n");
5665
5666         /* make sure the atomic interrupt_occurred has been written */
5667         smp_rmb();
5668         if (atomic_read(&bp->interrupt_occurred)) {
5669
5670                 /* what work needs to be performed? */
5671                 u16 status = bnx2x_update_dsb_idx(bp);
5672
5673                 DP(BNX2X_MSG_SP, "status %x\n", status);
5674                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5675                 atomic_set(&bp->interrupt_occurred, 0);
5676
5677                 /* HW attentions */
5678                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5679                         bnx2x_attn_int(bp);
5680                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5681                 }
5682
5683                 /* SP events: STAT_QUERY and others */
5684                 if (status & BNX2X_DEF_SB_IDX) {
5685                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5686
5687                 if (FCOE_INIT(bp) &&
5688                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5689                                 /* Prevent local bottom-halves from running as
5690                                  * we are going to change the local NAPI list.
5691                                  */
5692                                 local_bh_disable();
5693                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5694                                 local_bh_enable();
5695                         }
5696
5697                         /* Handle EQ completions */
5698                         bnx2x_eq_int(bp);
5699                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5700                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5701
5702                         status &= ~BNX2X_DEF_SB_IDX;
5703                 }
5704
5705                 /* if status is non zero then perhaps something went wrong */
5706                 if (unlikely(status))
5707                         DP(BNX2X_MSG_SP,
5708                            "got an unknown interrupt! (status 0x%x)\n", status);
5709
5710                 /* ack status block only if something was actually handled */
5711                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5712                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5713         }
5714
5715         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5716         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5717                                &bp->sp_state)) {
5718                 bnx2x_link_report(bp);
5719                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5720         }
5721 }
5722
5723 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5724 {
5725         struct net_device *dev = dev_instance;
5726         struct bnx2x *bp = netdev_priv(dev);
5727
5728         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5729                      IGU_INT_DISABLE, 0);
5730
5731 #ifdef BNX2X_STOP_ON_ERROR
5732         if (unlikely(bp->panic))
5733                 return IRQ_HANDLED;
5734 #endif
5735
5736         if (CNIC_LOADED(bp)) {
5737                 struct cnic_ops *c_ops;
5738
5739                 rcu_read_lock();
5740                 c_ops = rcu_dereference(bp->cnic_ops);
5741                 if (c_ops)
5742                         c_ops->cnic_handler(bp->cnic_data, NULL);
5743                 rcu_read_unlock();
5744         }
5745
5746         /* schedule sp task to perform default status block work, ack
5747          * attentions and enable interrupts.
5748          */
5749         bnx2x_schedule_sp_task(bp);
5750
5751         return IRQ_HANDLED;
5752 }
5753
5754 /* end of slow path */
5755
5756 void bnx2x_drv_pulse(struct bnx2x *bp)
5757 {
5758         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5759                  bp->fw_drv_pulse_wr_seq);
5760 }
5761
5762 static void bnx2x_timer(unsigned long data)
5763 {
5764         struct bnx2x *bp = (struct bnx2x *) data;
5765
5766         if (!netif_running(bp->dev))
5767                 return;
5768
5769         if (IS_PF(bp) &&
5770             !BP_NOMCP(bp)) {
5771                 int mb_idx = BP_FW_MB_IDX(bp);
5772                 u16 drv_pulse;
5773                 u16 mcp_pulse;
5774
5775                 ++bp->fw_drv_pulse_wr_seq;
5776                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5777                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5778                 bnx2x_drv_pulse(bp);
5779
5780                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5781                              MCP_PULSE_SEQ_MASK);
5782                 /* The delta between driver pulse and mcp response
5783                  * should not get too big. If the MFW is more than 5 pulses
5784                  * behind, we should worry about it enough to generate an error
5785                  * log.
5786                  */
5787                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5788                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5789                                   drv_pulse, mcp_pulse);
5790         }
5791
5792         if (bp->state == BNX2X_STATE_OPEN)
5793                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5794
5795         /* sample pf vf bulletin board for new posts from pf */
5796         if (IS_VF(bp))
5797                 bnx2x_timer_sriov(bp);
5798
5799         mod_timer(&bp->timer, jiffies + bp->current_interval);
5800 }
5801
5802 /* end of Statistics */
5803
5804 /* nic init */
5805
5806 /*
5807  * nic init service functions
5808  */
5809
5810 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5811 {
5812         u32 i;
5813         if (!(len%4) && !(addr%4))
5814                 for (i = 0; i < len; i += 4)
5815                         REG_WR(bp, addr + i, fill);
5816         else
5817                 for (i = 0; i < len; i++)
5818                         REG_WR8(bp, addr + i, fill);
5819 }
5820
5821 /* helper: writes FP SP data to FW - data_size in dwords */
5822 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5823                                 int fw_sb_id,
5824                                 u32 *sb_data_p,
5825                                 u32 data_size)
5826 {
5827         int index;
5828         for (index = 0; index < data_size; index++)
5829                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5830                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5831                         sizeof(u32)*index,
5832                         *(sb_data_p + index));
5833 }
5834
5835 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5836 {
5837         u32 *sb_data_p;
5838         u32 data_size = 0;
5839         struct hc_status_block_data_e2 sb_data_e2;
5840         struct hc_status_block_data_e1x sb_data_e1x;
5841
5842         /* disable the function first */
5843         if (!CHIP_IS_E1x(bp)) {
5844                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5845                 sb_data_e2.common.state = SB_DISABLED;
5846                 sb_data_e2.common.p_func.vf_valid = false;
5847                 sb_data_p = (u32 *)&sb_data_e2;
5848                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5849         } else {
5850                 memset(&sb_data_e1x, 0,
5851                        sizeof(struct hc_status_block_data_e1x));
5852                 sb_data_e1x.common.state = SB_DISABLED;
5853                 sb_data_e1x.common.p_func.vf_valid = false;
5854                 sb_data_p = (u32 *)&sb_data_e1x;
5855                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5856         }
5857         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5858
5859         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5860                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5861                         CSTORM_STATUS_BLOCK_SIZE);
5862         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5863                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5864                         CSTORM_SYNC_BLOCK_SIZE);
5865 }
5866
5867 /* helper:  writes SP SB data to FW */
5868 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5869                 struct hc_sp_status_block_data *sp_sb_data)
5870 {
5871         int func = BP_FUNC(bp);
5872         int i;
5873         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5874                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5875                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5876                         i*sizeof(u32),
5877                         *((u32 *)sp_sb_data + i));
5878 }
5879
5880 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5881 {
5882         int func = BP_FUNC(bp);
5883         struct hc_sp_status_block_data sp_sb_data;
5884         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5885
5886         sp_sb_data.state = SB_DISABLED;
5887         sp_sb_data.p_func.vf_valid = false;
5888
5889         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5890
5891         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5892                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5893                         CSTORM_SP_STATUS_BLOCK_SIZE);
5894         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5895                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5896                         CSTORM_SP_SYNC_BLOCK_SIZE);
5897 }
5898
5899 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5900                                            int igu_sb_id, int igu_seg_id)
5901 {
5902         hc_sm->igu_sb_id = igu_sb_id;
5903         hc_sm->igu_seg_id = igu_seg_id;
5904         hc_sm->timer_value = 0xFF;
5905         hc_sm->time_to_expire = 0xFFFFFFFF;
5906 }
5907
5908 /* allocates state machine ids. */
5909 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5910 {
5911         /* zero out state machine indices */
5912         /* rx indices */
5913         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5914
5915         /* tx indices */
5916         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5917         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5918         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5919         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5920
5921         /* map indices */
5922         /* rx indices */
5923         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5924                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5925
5926         /* tx indices */
5927         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5928                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5929         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5930                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5931         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5932                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5933         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5934                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5935 }
5936
5937 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5938                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5939 {
5940         int igu_seg_id;
5941
5942         struct hc_status_block_data_e2 sb_data_e2;
5943         struct hc_status_block_data_e1x sb_data_e1x;
5944         struct hc_status_block_sm  *hc_sm_p;
5945         int data_size;
5946         u32 *sb_data_p;
5947
5948         if (CHIP_INT_MODE_IS_BC(bp))
5949                 igu_seg_id = HC_SEG_ACCESS_NORM;
5950         else
5951                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5952
5953         bnx2x_zero_fp_sb(bp, fw_sb_id);
5954
5955         if (!CHIP_IS_E1x(bp)) {
5956                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5957                 sb_data_e2.common.state = SB_ENABLED;
5958                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5959                 sb_data_e2.common.p_func.vf_id = vfid;
5960                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5961                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5962                 sb_data_e2.common.same_igu_sb_1b = true;
5963                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5964                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5965                 hc_sm_p = sb_data_e2.common.state_machine;
5966                 sb_data_p = (u32 *)&sb_data_e2;
5967                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5968                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5969         } else {
5970                 memset(&sb_data_e1x, 0,
5971                        sizeof(struct hc_status_block_data_e1x));
5972                 sb_data_e1x.common.state = SB_ENABLED;
5973                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5974                 sb_data_e1x.common.p_func.vf_id = 0xff;
5975                 sb_data_e1x.common.p_func.vf_valid = false;
5976                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5977                 sb_data_e1x.common.same_igu_sb_1b = true;
5978                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5979                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5980                 hc_sm_p = sb_data_e1x.common.state_machine;
5981                 sb_data_p = (u32 *)&sb_data_e1x;
5982                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5983                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5984         }
5985
5986         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5987                                        igu_sb_id, igu_seg_id);
5988         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5989                                        igu_sb_id, igu_seg_id);
5990
5991         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5992
5993         /* write indices to HW - PCI guarantees endianity of regpairs */
5994         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5995 }
5996
5997 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5998                                      u16 tx_usec, u16 rx_usec)
5999 {
6000         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
6001                                     false, rx_usec);
6002         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6003                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
6004                                        tx_usec);
6005         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6006                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
6007                                        tx_usec);
6008         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
6009                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
6010                                        tx_usec);
6011 }
6012
6013 static void bnx2x_init_def_sb(struct bnx2x *bp)
6014 {
6015         struct host_sp_status_block *def_sb = bp->def_status_blk;
6016         dma_addr_t mapping = bp->def_status_blk_mapping;
6017         int igu_sp_sb_index;
6018         int igu_seg_id;
6019         int port = BP_PORT(bp);
6020         int func = BP_FUNC(bp);
6021         int reg_offset, reg_offset_en5;
6022         u64 section;
6023         int index;
6024         struct hc_sp_status_block_data sp_sb_data;
6025         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
6026
6027         if (CHIP_INT_MODE_IS_BC(bp)) {
6028                 igu_sp_sb_index = DEF_SB_IGU_ID;
6029                 igu_seg_id = HC_SEG_ACCESS_DEF;
6030         } else {
6031                 igu_sp_sb_index = bp->igu_dsb_id;
6032                 igu_seg_id = IGU_SEG_ACCESS_DEF;
6033         }
6034
6035         /* ATTN */
6036         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6037                                             atten_status_block);
6038         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
6039
6040         bp->attn_state = 0;
6041
6042         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6043                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6044         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
6045                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
6046         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
6047                 int sindex;
6048                 /* take care of sig[0]..sig[4] */
6049                 for (sindex = 0; sindex < 4; sindex++)
6050                         bp->attn_group[index].sig[sindex] =
6051                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
6052
6053                 if (!CHIP_IS_E1x(bp))
6054                         /*
6055                          * enable5 is separate from the rest of the registers,
6056                          * and therefore the address skip is 4
6057                          * and not 16 between the different groups
6058                          */
6059                         bp->attn_group[index].sig[4] = REG_RD(bp,
6060                                         reg_offset_en5 + 0x4*index);
6061                 else
6062                         bp->attn_group[index].sig[4] = 0;
6063         }
6064
6065         if (bp->common.int_block == INT_BLOCK_HC) {
6066                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
6067                                      HC_REG_ATTN_MSG0_ADDR_L);
6068
6069                 REG_WR(bp, reg_offset, U64_LO(section));
6070                 REG_WR(bp, reg_offset + 4, U64_HI(section));
6071         } else if (!CHIP_IS_E1x(bp)) {
6072                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
6073                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
6074         }
6075
6076         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
6077                                             sp_sb);
6078
6079         bnx2x_zero_sp_sb(bp);
6080
6081         /* PCI guarantees endianity of regpairs */
6082         sp_sb_data.state                = SB_ENABLED;
6083         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
6084         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
6085         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
6086         sp_sb_data.igu_seg_id           = igu_seg_id;
6087         sp_sb_data.p_func.pf_id         = func;
6088         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
6089         sp_sb_data.p_func.vf_id         = 0xff;
6090
6091         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
6092
6093         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
6094 }
6095
6096 void bnx2x_update_coalesce(struct bnx2x *bp)
6097 {
6098         int i;
6099
6100         for_each_eth_queue(bp, i)
6101                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
6102                                          bp->tx_ticks, bp->rx_ticks);
6103 }
6104
6105 static void bnx2x_init_sp_ring(struct bnx2x *bp)
6106 {
6107         spin_lock_init(&bp->spq_lock);
6108         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
6109
6110         bp->spq_prod_idx = 0;
6111         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
6112         bp->spq_prod_bd = bp->spq;
6113         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
6114 }
6115
6116 static void bnx2x_init_eq_ring(struct bnx2x *bp)
6117 {
6118         int i;
6119         for (i = 1; i <= NUM_EQ_PAGES; i++) {
6120                 union event_ring_elem *elem =
6121                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
6122
6123                 elem->next_page.addr.hi =
6124                         cpu_to_le32(U64_HI(bp->eq_mapping +
6125                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
6126                 elem->next_page.addr.lo =
6127                         cpu_to_le32(U64_LO(bp->eq_mapping +
6128                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
6129         }
6130         bp->eq_cons = 0;
6131         bp->eq_prod = NUM_EQ_DESC;
6132         bp->eq_cons_sb = BNX2X_EQ_INDEX;
6133         /* we want a warning message before it gets wrought... */
6134         atomic_set(&bp->eq_spq_left,
6135                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
6136 }
6137
6138 /* called with netif_addr_lock_bh() */
6139 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
6140                                unsigned long rx_mode_flags,
6141                                unsigned long rx_accept_flags,
6142                                unsigned long tx_accept_flags,
6143                                unsigned long ramrod_flags)
6144 {
6145         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6146         int rc;
6147
6148         memset(&ramrod_param, 0, sizeof(ramrod_param));
6149
6150         /* Prepare ramrod parameters */
6151         ramrod_param.cid = 0;
6152         ramrod_param.cl_id = cl_id;
6153         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6154         ramrod_param.func_id = BP_FUNC(bp);
6155
6156         ramrod_param.pstate = &bp->sp_state;
6157         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6158
6159         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6160         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6161
6162         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6163
6164         ramrod_param.ramrod_flags = ramrod_flags;
6165         ramrod_param.rx_mode_flags = rx_mode_flags;
6166
6167         ramrod_param.rx_accept_flags = rx_accept_flags;
6168         ramrod_param.tx_accept_flags = tx_accept_flags;
6169
6170         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6171         if (rc < 0) {
6172                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6173                 return rc;
6174         }
6175
6176         return 0;
6177 }
6178
6179 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6180                                    unsigned long *rx_accept_flags,
6181                                    unsigned long *tx_accept_flags)
6182 {
6183         /* Clear the flags first */
6184         *rx_accept_flags = 0;
6185         *tx_accept_flags = 0;
6186
6187         switch (rx_mode) {
6188         case BNX2X_RX_MODE_NONE:
6189                 /*
6190                  * 'drop all' supersedes any accept flags that may have been
6191                  * passed to the function.
6192                  */
6193                 break;
6194         case BNX2X_RX_MODE_NORMAL:
6195                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6196                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6197                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6198
6199                 /* internal switching mode */
6200                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6201                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6202                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6203
6204                 if (bp->accept_any_vlan) {
6205                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6206                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6207                 }
6208
6209                 break;
6210         case BNX2X_RX_MODE_ALLMULTI:
6211                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6212                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6213                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6214
6215                 /* internal switching mode */
6216                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6217                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6218                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6219
6220                 if (bp->accept_any_vlan) {
6221                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6222                         __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6223                 }
6224
6225                 break;
6226         case BNX2X_RX_MODE_PROMISC:
6227                 /* According to definition of SI mode, iface in promisc mode
6228                  * should receive matched and unmatched (in resolution of port)
6229                  * unicast packets.
6230                  */
6231                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6232                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6233                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6234                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6235
6236                 /* internal switching mode */
6237                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6238                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6239
6240                 if (IS_MF_SI(bp))
6241                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6242                 else
6243                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6244
6245                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6246                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6247
6248                 break;
6249         default:
6250                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6251                 return -EINVAL;
6252         }
6253
6254         return 0;
6255 }
6256
6257 /* called with netif_addr_lock_bh() */
6258 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6259 {
6260         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6261         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6262         int rc;
6263
6264         if (!NO_FCOE(bp))
6265                 /* Configure rx_mode of FCoE Queue */
6266                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6267
6268         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6269                                      &tx_accept_flags);
6270         if (rc)
6271                 return rc;
6272
6273         __set_bit(RAMROD_RX, &ramrod_flags);
6274         __set_bit(RAMROD_TX, &ramrod_flags);
6275
6276         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6277                                    rx_accept_flags, tx_accept_flags,
6278                                    ramrod_flags);
6279 }
6280
6281 static void bnx2x_init_internal_common(struct bnx2x *bp)
6282 {
6283         int i;
6284
6285         /* Zero this manually as its initialization is
6286            currently missing in the initTool */
6287         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6288                 REG_WR(bp, BAR_USTRORM_INTMEM +
6289                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6290         if (!CHIP_IS_E1x(bp)) {
6291                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6292                         CHIP_INT_MODE_IS_BC(bp) ?
6293                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6294         }
6295 }
6296
6297 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6298 {
6299         switch (load_code) {
6300         case FW_MSG_CODE_DRV_LOAD_COMMON:
6301         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6302                 bnx2x_init_internal_common(bp);
6303                 /* no break */
6304
6305         case FW_MSG_CODE_DRV_LOAD_PORT:
6306                 /* nothing to do */
6307                 /* no break */
6308
6309         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6310                 /* internal memory per function is
6311                    initialized inside bnx2x_pf_init */
6312                 break;
6313
6314         default:
6315                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6316                 break;
6317         }
6318 }
6319
6320 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6321 {
6322         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6323 }
6324
6325 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6326 {
6327         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6328 }
6329
6330 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6331 {
6332         if (CHIP_IS_E1x(fp->bp))
6333                 return BP_L_ID(fp->bp) + fp->index;
6334         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6335                 return bnx2x_fp_igu_sb_id(fp);
6336 }
6337
6338 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6339 {
6340         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6341         u8 cos;
6342         unsigned long q_type = 0;
6343         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6344         fp->rx_queue = fp_idx;
6345         fp->cid = fp_idx;
6346         fp->cl_id = bnx2x_fp_cl_id(fp);
6347         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6348         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6349         /* qZone id equals to FW (per path) client id */
6350         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6351
6352         /* init shortcut */
6353         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6354
6355         /* Setup SB indices */
6356         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6357
6358         /* Configure Queue State object */
6359         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6360         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6361
6362         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6363
6364         /* init tx data */
6365         for_each_cos_in_tx_queue(fp, cos) {
6366                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6367                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6368                                   FP_COS_TO_TXQ(fp, cos, bp),
6369                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6370                 cids[cos] = fp->txdata_ptr[cos]->cid;
6371         }
6372
6373         /* nothing more for vf to do here */
6374         if (IS_VF(bp))
6375                 return;
6376
6377         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6378                       fp->fw_sb_id, fp->igu_sb_id);
6379         bnx2x_update_fpsb_idx(fp);
6380         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6381                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6382                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6383
6384         /**
6385          * Configure classification DBs: Always enable Tx switching
6386          */
6387         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6388
6389         DP(NETIF_MSG_IFUP,
6390            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6391            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6392            fp->igu_sb_id);
6393 }
6394
6395 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6396 {
6397         int i;
6398
6399         for (i = 1; i <= NUM_TX_RINGS; i++) {
6400                 struct eth_tx_next_bd *tx_next_bd =
6401                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6402
6403                 tx_next_bd->addr_hi =
6404                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6405                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6406                 tx_next_bd->addr_lo =
6407                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6408                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6409         }
6410
6411         *txdata->tx_cons_sb = cpu_to_le16(0);
6412
6413         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6414         txdata->tx_db.data.zero_fill1 = 0;
6415         txdata->tx_db.data.prod = 0;
6416
6417         txdata->tx_pkt_prod = 0;
6418         txdata->tx_pkt_cons = 0;
6419         txdata->tx_bd_prod = 0;
6420         txdata->tx_bd_cons = 0;
6421         txdata->tx_pkt = 0;
6422 }
6423
6424 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6425 {
6426         int i;
6427
6428         for_each_tx_queue_cnic(bp, i)
6429                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6430 }
6431
6432 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6433 {
6434         int i;
6435         u8 cos;
6436
6437         for_each_eth_queue(bp, i)
6438                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6439                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6440 }
6441
6442 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6443 {
6444         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6445         unsigned long q_type = 0;
6446
6447         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6448         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6449                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6450         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6451         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6452         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6453         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6454         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6455                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6456                           fp);
6457
6458         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6459
6460         /* qZone id equals to FW (per path) client id */
6461         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6462         /* init shortcut */
6463         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6464                 bnx2x_rx_ustorm_prods_offset(fp);
6465
6466         /* Configure Queue State object */
6467         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6468         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6469
6470         /* No multi-CoS for FCoE L2 client */
6471         BUG_ON(fp->max_cos != 1);
6472
6473         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6474                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6475                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6476
6477         DP(NETIF_MSG_IFUP,
6478            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6479            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6480            fp->igu_sb_id);
6481 }
6482
6483 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6484 {
6485         if (!NO_FCOE(bp))
6486                 bnx2x_init_fcoe_fp(bp);
6487
6488         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6489                       BNX2X_VF_ID_INVALID, false,
6490                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6491
6492         /* ensure status block indices were read */
6493         rmb();
6494         bnx2x_init_rx_rings_cnic(bp);
6495         bnx2x_init_tx_rings_cnic(bp);
6496
6497         /* flush all */
6498         mb();
6499         mmiowb();
6500 }
6501
6502 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6503 {
6504         int i;
6505
6506         /* Setup NIC internals and enable interrupts */
6507         for_each_eth_queue(bp, i)
6508                 bnx2x_init_eth_fp(bp, i);
6509
6510         /* ensure status block indices were read */
6511         rmb();
6512         bnx2x_init_rx_rings(bp);
6513         bnx2x_init_tx_rings(bp);
6514
6515         if (IS_PF(bp)) {
6516                 /* Initialize MOD_ABS interrupts */
6517                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6518                                        bp->common.shmem_base,
6519                                        bp->common.shmem2_base, BP_PORT(bp));
6520
6521                 /* initialize the default status block and sp ring */
6522                 bnx2x_init_def_sb(bp);
6523                 bnx2x_update_dsb_idx(bp);
6524                 bnx2x_init_sp_ring(bp);
6525         } else {
6526                 bnx2x_memset_stats(bp);
6527         }
6528 }
6529
6530 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6531 {
6532         bnx2x_init_eq_ring(bp);
6533         bnx2x_init_internal(bp, load_code);
6534         bnx2x_pf_init(bp);
6535         bnx2x_stats_init(bp);
6536
6537         /* flush all before enabling interrupts */
6538         mb();
6539         mmiowb();
6540
6541         bnx2x_int_enable(bp);
6542
6543         /* Check for SPIO5 */
6544         bnx2x_attn_int_deasserted0(bp,
6545                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6546                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6547 }
6548
6549 /* gzip service functions */
6550 static int bnx2x_gunzip_init(struct bnx2x *bp)
6551 {
6552         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6553                                             &bp->gunzip_mapping, GFP_KERNEL);
6554         if (bp->gunzip_buf  == NULL)
6555                 goto gunzip_nomem1;
6556
6557         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6558         if (bp->strm  == NULL)
6559                 goto gunzip_nomem2;
6560
6561         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6562         if (bp->strm->workspace == NULL)
6563                 goto gunzip_nomem3;
6564
6565         return 0;
6566
6567 gunzip_nomem3:
6568         kfree(bp->strm);
6569         bp->strm = NULL;
6570
6571 gunzip_nomem2:
6572         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6573                           bp->gunzip_mapping);
6574         bp->gunzip_buf = NULL;
6575
6576 gunzip_nomem1:
6577         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6578         return -ENOMEM;
6579 }
6580
6581 static void bnx2x_gunzip_end(struct bnx2x *bp)
6582 {
6583         if (bp->strm) {
6584                 vfree(bp->strm->workspace);
6585                 kfree(bp->strm);
6586                 bp->strm = NULL;
6587         }
6588
6589         if (bp->gunzip_buf) {
6590                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6591                                   bp->gunzip_mapping);
6592                 bp->gunzip_buf = NULL;
6593         }
6594 }
6595
6596 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6597 {
6598         int n, rc;
6599
6600         /* check gzip header */
6601         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6602                 BNX2X_ERR("Bad gzip header\n");
6603                 return -EINVAL;
6604         }
6605
6606         n = 10;
6607
6608 #define FNAME                           0x8
6609
6610         if (zbuf[3] & FNAME)
6611                 while ((zbuf[n++] != 0) && (n < len));
6612
6613         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6614         bp->strm->avail_in = len - n;
6615         bp->strm->next_out = bp->gunzip_buf;
6616         bp->strm->avail_out = FW_BUF_SIZE;
6617
6618         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6619         if (rc != Z_OK)
6620                 return rc;
6621
6622         rc = zlib_inflate(bp->strm, Z_FINISH);
6623         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6624                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6625                            bp->strm->msg);
6626
6627         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6628         if (bp->gunzip_outlen & 0x3)
6629                 netdev_err(bp->dev,
6630                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6631                                 bp->gunzip_outlen);
6632         bp->gunzip_outlen >>= 2;
6633
6634         zlib_inflateEnd(bp->strm);
6635
6636         if (rc == Z_STREAM_END)
6637                 return 0;
6638
6639         return rc;
6640 }
6641
6642 /* nic load/unload */
6643
6644 /*
6645  * General service functions
6646  */
6647
6648 /* send a NIG loopback debug packet */
6649 static void bnx2x_lb_pckt(struct bnx2x *bp)
6650 {
6651         u32 wb_write[3];
6652
6653         /* Ethernet source and destination addresses */
6654         wb_write[0] = 0x55555555;
6655         wb_write[1] = 0x55555555;
6656         wb_write[2] = 0x20;             /* SOP */
6657         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6658
6659         /* NON-IP protocol */
6660         wb_write[0] = 0x09000000;
6661         wb_write[1] = 0x55555555;
6662         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6663         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6664 }
6665
6666 /* some of the internal memories
6667  * are not directly readable from the driver
6668  * to test them we send debug packets
6669  */
6670 static int bnx2x_int_mem_test(struct bnx2x *bp)
6671 {
6672         int factor;
6673         int count, i;
6674         u32 val = 0;
6675
6676         if (CHIP_REV_IS_FPGA(bp))
6677                 factor = 120;
6678         else if (CHIP_REV_IS_EMUL(bp))
6679                 factor = 200;
6680         else
6681                 factor = 1;
6682
6683         /* Disable inputs of parser neighbor blocks */
6684         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6685         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6686         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6687         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6688
6689         /*  Write 0 to parser credits for CFC search request */
6690         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6691
6692         /* send Ethernet packet */
6693         bnx2x_lb_pckt(bp);
6694
6695         /* TODO do i reset NIG statistic? */
6696         /* Wait until NIG register shows 1 packet of size 0x10 */
6697         count = 1000 * factor;
6698         while (count) {
6699
6700                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6701                 val = *bnx2x_sp(bp, wb_data[0]);
6702                 if (val == 0x10)
6703                         break;
6704
6705                 usleep_range(10000, 20000);
6706                 count--;
6707         }
6708         if (val != 0x10) {
6709                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6710                 return -1;
6711         }
6712
6713         /* Wait until PRS register shows 1 packet */
6714         count = 1000 * factor;
6715         while (count) {
6716                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6717                 if (val == 1)
6718                         break;
6719
6720                 usleep_range(10000, 20000);
6721                 count--;
6722         }
6723         if (val != 0x1) {
6724                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6725                 return -2;
6726         }
6727
6728         /* Reset and init BRB, PRS */
6729         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6730         msleep(50);
6731         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6732         msleep(50);
6733         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6734         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6735
6736         DP(NETIF_MSG_HW, "part2\n");
6737
6738         /* Disable inputs of parser neighbor blocks */
6739         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6740         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6741         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6742         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6743
6744         /* Write 0 to parser credits for CFC search request */
6745         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6746
6747         /* send 10 Ethernet packets */
6748         for (i = 0; i < 10; i++)
6749                 bnx2x_lb_pckt(bp);
6750
6751         /* Wait until NIG register shows 10 + 1
6752            packets of size 11*0x10 = 0xb0 */
6753         count = 1000 * factor;
6754         while (count) {
6755
6756                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6757                 val = *bnx2x_sp(bp, wb_data[0]);
6758                 if (val == 0xb0)
6759                         break;
6760
6761                 usleep_range(10000, 20000);
6762                 count--;
6763         }
6764         if (val != 0xb0) {
6765                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6766                 return -3;
6767         }
6768
6769         /* Wait until PRS register shows 2 packets */
6770         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6771         if (val != 2)
6772                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6773
6774         /* Write 1 to parser credits for CFC search request */
6775         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6776
6777         /* Wait until PRS register shows 3 packets */
6778         msleep(10 * factor);
6779         /* Wait until NIG register shows 1 packet of size 0x10 */
6780         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6781         if (val != 3)
6782                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6783
6784         /* clear NIG EOP FIFO */
6785         for (i = 0; i < 11; i++)
6786                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6787         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6788         if (val != 1) {
6789                 BNX2X_ERR("clear of NIG failed\n");
6790                 return -4;
6791         }
6792
6793         /* Reset and init BRB, PRS, NIG */
6794         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6795         msleep(50);
6796         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6797         msleep(50);
6798         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6799         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6800         if (!CNIC_SUPPORT(bp))
6801                 /* set NIC mode */
6802                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6803
6804         /* Enable inputs of parser neighbor blocks */
6805         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6806         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6807         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6808         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6809
6810         DP(NETIF_MSG_HW, "done\n");
6811
6812         return 0; /* OK */
6813 }
6814
6815 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6816 {
6817         u32 val;
6818
6819         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6820         if (!CHIP_IS_E1x(bp))
6821                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6822         else
6823                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6824         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6825         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6826         /*
6827          * mask read length error interrupts in brb for parser
6828          * (parsing unit and 'checksum and crc' unit)
6829          * these errors are legal (PU reads fixed length and CAC can cause
6830          * read length error on truncated packets)
6831          */
6832         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6833         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6834         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6835         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6836         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6837         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6838 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6839 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6840         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6841         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6842         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6843 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6844 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6845         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6846         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6847         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6848         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6849 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6850 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6851
6852         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6853                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6854                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6855         if (!CHIP_IS_E1x(bp))
6856                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6857                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6858         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6859
6860         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6861         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6862         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6863 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6864
6865         if (!CHIP_IS_E1x(bp))
6866                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6867                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6868
6869         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6870         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6871 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6872         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6873 }
6874
6875 static void bnx2x_reset_common(struct bnx2x *bp)
6876 {
6877         u32 val = 0x1400;
6878
6879         /* reset_common */
6880         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6881                0xd3ffff7f);
6882
6883         if (CHIP_IS_E3(bp)) {
6884                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6885                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6886         }
6887
6888         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6889 }
6890
6891 static void bnx2x_setup_dmae(struct bnx2x *bp)
6892 {
6893         bp->dmae_ready = 0;
6894         spin_lock_init(&bp->dmae_lock);
6895 }
6896
6897 static void bnx2x_init_pxp(struct bnx2x *bp)
6898 {
6899         u16 devctl;
6900         int r_order, w_order;
6901
6902         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6903         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6904         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6905         if (bp->mrrs == -1)
6906                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6907         else {
6908                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6909                 r_order = bp->mrrs;
6910         }
6911
6912         bnx2x_init_pxp_arb(bp, r_order, w_order);
6913 }
6914
6915 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6916 {
6917         int is_required;
6918         u32 val;
6919         int port;
6920
6921         if (BP_NOMCP(bp))
6922                 return;
6923
6924         is_required = 0;
6925         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6926               SHARED_HW_CFG_FAN_FAILURE_MASK;
6927
6928         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6929                 is_required = 1;
6930
6931         /*
6932          * The fan failure mechanism is usually related to the PHY type since
6933          * the power consumption of the board is affected by the PHY. Currently,
6934          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6935          */
6936         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6937                 for (port = PORT_0; port < PORT_MAX; port++) {
6938                         is_required |=
6939                                 bnx2x_fan_failure_det_req(
6940                                         bp,
6941                                         bp->common.shmem_base,
6942                                         bp->common.shmem2_base,
6943                                         port);
6944                 }
6945
6946         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6947
6948         if (is_required == 0)
6949                 return;
6950
6951         /* Fan failure is indicated by SPIO 5 */
6952         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6953
6954         /* set to active low mode */
6955         val = REG_RD(bp, MISC_REG_SPIO_INT);
6956         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6957         REG_WR(bp, MISC_REG_SPIO_INT, val);
6958
6959         /* enable interrupt to signal the IGU */
6960         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6961         val |= MISC_SPIO_SPIO5;
6962         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6963 }
6964
6965 void bnx2x_pf_disable(struct bnx2x *bp)
6966 {
6967         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6968         val &= ~IGU_PF_CONF_FUNC_EN;
6969
6970         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6971         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6972         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6973 }
6974
6975 static void bnx2x__common_init_phy(struct bnx2x *bp)
6976 {
6977         u32 shmem_base[2], shmem2_base[2];
6978         /* Avoid common init in case MFW supports LFA */
6979         if (SHMEM2_RD(bp, size) >
6980             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6981                 return;
6982         shmem_base[0] =  bp->common.shmem_base;
6983         shmem2_base[0] = bp->common.shmem2_base;
6984         if (!CHIP_IS_E1x(bp)) {
6985                 shmem_base[1] =
6986                         SHMEM2_RD(bp, other_shmem_base_addr);
6987                 shmem2_base[1] =
6988                         SHMEM2_RD(bp, other_shmem2_base_addr);
6989         }
6990         bnx2x_acquire_phy_lock(bp);
6991         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6992                               bp->common.chip_id);
6993         bnx2x_release_phy_lock(bp);
6994 }
6995
6996 static void bnx2x_config_endianity(struct bnx2x *bp, u32 val)
6997 {
6998         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, val);
6999         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, val);
7000         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, val);
7001         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, val);
7002         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, val);
7003
7004         /* make sure this value is 0 */
7005         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
7006
7007         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, val);
7008         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, val);
7009         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, val);
7010         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, val);
7011 }
7012
7013 static void bnx2x_set_endianity(struct bnx2x *bp)
7014 {
7015 #ifdef __BIG_ENDIAN
7016         bnx2x_config_endianity(bp, 1);
7017 #else
7018         bnx2x_config_endianity(bp, 0);
7019 #endif
7020 }
7021
7022 static void bnx2x_reset_endianity(struct bnx2x *bp)
7023 {
7024         bnx2x_config_endianity(bp, 0);
7025 }
7026
7027 /**
7028  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
7029  *
7030  * @bp:         driver handle
7031  */
7032 static int bnx2x_init_hw_common(struct bnx2x *bp)
7033 {
7034         u32 val;
7035
7036         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
7037
7038         /*
7039          * take the RESET lock to protect undi_unload flow from accessing
7040          * registers while we're resetting the chip
7041          */
7042         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7043
7044         bnx2x_reset_common(bp);
7045         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
7046
7047         val = 0xfffc;
7048         if (CHIP_IS_E3(bp)) {
7049                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
7050                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
7051         }
7052         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
7053
7054         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
7055
7056         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
7057
7058         if (!CHIP_IS_E1x(bp)) {
7059                 u8 abs_func_id;
7060
7061                 /**
7062                  * 4-port mode or 2-port mode we need to turn of master-enable
7063                  * for everyone, after that, turn it back on for self.
7064                  * so, we disregard multi-function or not, and always disable
7065                  * for all functions on the given path, this means 0,2,4,6 for
7066                  * path 0 and 1,3,5,7 for path 1
7067                  */
7068                 for (abs_func_id = BP_PATH(bp);
7069                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
7070                         if (abs_func_id == BP_ABS_FUNC(bp)) {
7071                                 REG_WR(bp,
7072                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
7073                                     1);
7074                                 continue;
7075                         }
7076
7077                         bnx2x_pretend_func(bp, abs_func_id);
7078                         /* clear pf enable */
7079                         bnx2x_pf_disable(bp);
7080                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7081                 }
7082         }
7083
7084         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
7085         if (CHIP_IS_E1(bp)) {
7086                 /* enable HW interrupt from PXP on USDM overflow
7087                    bit 16 on INT_MASK_0 */
7088                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
7089         }
7090
7091         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
7092         bnx2x_init_pxp(bp);
7093         bnx2x_set_endianity(bp);
7094         bnx2x_ilt_init_page_size(bp, INITOP_SET);
7095
7096         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
7097                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
7098
7099         /* let the HW do it's magic ... */
7100         msleep(100);
7101         /* finish PXP init */
7102         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
7103         if (val != 1) {
7104                 BNX2X_ERR("PXP2 CFG failed\n");
7105                 return -EBUSY;
7106         }
7107         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
7108         if (val != 1) {
7109                 BNX2X_ERR("PXP2 RD_INIT failed\n");
7110                 return -EBUSY;
7111         }
7112
7113         /* Timers bug workaround E2 only. We need to set the entire ILT to
7114          * have entries with value "0" and valid bit on.
7115          * This needs to be done by the first PF that is loaded in a path
7116          * (i.e. common phase)
7117          */
7118         if (!CHIP_IS_E1x(bp)) {
7119 /* In E2 there is a bug in the timers block that can cause function 6 / 7
7120  * (i.e. vnic3) to start even if it is marked as "scan-off".
7121  * This occurs when a different function (func2,3) is being marked
7122  * as "scan-off". Real-life scenario for example: if a driver is being
7123  * load-unloaded while func6,7 are down. This will cause the timer to access
7124  * the ilt, translate to a logical address and send a request to read/write.
7125  * Since the ilt for the function that is down is not valid, this will cause
7126  * a translation error which is unrecoverable.
7127  * The Workaround is intended to make sure that when this happens nothing fatal
7128  * will occur. The workaround:
7129  *      1.  First PF driver which loads on a path will:
7130  *              a.  After taking the chip out of reset, by using pretend,
7131  *                  it will write "0" to the following registers of
7132  *                  the other vnics.
7133  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
7134  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
7135  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
7136  *                  And for itself it will write '1' to
7137  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
7138  *                  dmae-operations (writing to pram for example.)
7139  *                  note: can be done for only function 6,7 but cleaner this
7140  *                        way.
7141  *              b.  Write zero+valid to the entire ILT.
7142  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
7143  *                  VNIC3 (of that port). The range allocated will be the
7144  *                  entire ILT. This is needed to prevent  ILT range error.
7145  *      2.  Any PF driver load flow:
7146  *              a.  ILT update with the physical addresses of the allocated
7147  *                  logical pages.
7148  *              b.  Wait 20msec. - note that this timeout is needed to make
7149  *                  sure there are no requests in one of the PXP internal
7150  *                  queues with "old" ILT addresses.
7151  *              c.  PF enable in the PGLC.
7152  *              d.  Clear the was_error of the PF in the PGLC. (could have
7153  *                  occurred while driver was down)
7154  *              e.  PF enable in the CFC (WEAK + STRONG)
7155  *              f.  Timers scan enable
7156  *      3.  PF driver unload flow:
7157  *              a.  Clear the Timers scan_en.
7158  *              b.  Polling for scan_on=0 for that PF.
7159  *              c.  Clear the PF enable bit in the PXP.
7160  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
7161  *              e.  Write zero+valid to all ILT entries (The valid bit must
7162  *                  stay set)
7163  *              f.  If this is VNIC 3 of a port then also init
7164  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
7165  *                  to the last entry in the ILT.
7166  *
7167  *      Notes:
7168  *      Currently the PF error in the PGLC is non recoverable.
7169  *      In the future the there will be a recovery routine for this error.
7170  *      Currently attention is masked.
7171  *      Having an MCP lock on the load/unload process does not guarantee that
7172  *      there is no Timer disable during Func6/7 enable. This is because the
7173  *      Timers scan is currently being cleared by the MCP on FLR.
7174  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7175  *      there is error before clearing it. But the flow above is simpler and
7176  *      more general.
7177  *      All ILT entries are written by zero+valid and not just PF6/7
7178  *      ILT entries since in the future the ILT entries allocation for
7179  *      PF-s might be dynamic.
7180  */
7181                 struct ilt_client_info ilt_cli;
7182                 struct bnx2x_ilt ilt;
7183                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7184                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7185
7186                 /* initialize dummy TM client */
7187                 ilt_cli.start = 0;
7188                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7189                 ilt_cli.client_num = ILT_CLIENT_TM;
7190
7191                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7192                  * Step 2: set the timers first/last ilt entry to point
7193                  * to the entire range to prevent ILT range error for 3rd/4th
7194                  * vnic (this code assumes existence of the vnic)
7195                  *
7196                  * both steps performed by call to bnx2x_ilt_client_init_op()
7197                  * with dummy TM client
7198                  *
7199                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7200                  * and his brother are split registers
7201                  */
7202                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7203                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7204                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7205
7206                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7207                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7208                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7209         }
7210
7211         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7212         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7213
7214         if (!CHIP_IS_E1x(bp)) {
7215                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7216                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7217                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7218
7219                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7220
7221                 /* let the HW do it's magic ... */
7222                 do {
7223                         msleep(200);
7224                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7225                 } while (factor-- && (val != 1));
7226
7227                 if (val != 1) {
7228                         BNX2X_ERR("ATC_INIT failed\n");
7229                         return -EBUSY;
7230                 }
7231         }
7232
7233         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7234
7235         bnx2x_iov_init_dmae(bp);
7236
7237         /* clean the DMAE memory */
7238         bp->dmae_ready = 1;
7239         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7240
7241         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7242
7243         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7244
7245         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7246
7247         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7248
7249         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7250         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7251         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7252         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7253
7254         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7255
7256         /* QM queues pointers table */
7257         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7258
7259         /* soft reset pulse */
7260         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7261         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7262
7263         if (CNIC_SUPPORT(bp))
7264                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7265
7266         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7267
7268         if (!CHIP_REV_IS_SLOW(bp))
7269                 /* enable hw interrupt from doorbell Q */
7270                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7271
7272         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7273
7274         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7275         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7276
7277         if (!CHIP_IS_E1(bp))
7278                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7279
7280         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7281                 if (IS_MF_AFEX(bp)) {
7282                         /* configure that VNTag and VLAN headers must be
7283                          * received in afex mode
7284                          */
7285                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7286                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7287                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7288                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7289                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7290                 } else {
7291                         /* Bit-map indicating which L2 hdrs may appear
7292                          * after the basic Ethernet header
7293                          */
7294                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7295                                bp->path_has_ovlan ? 7 : 6);
7296                 }
7297         }
7298
7299         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7300         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7301         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7302         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7303
7304         if (!CHIP_IS_E1x(bp)) {
7305                 /* reset VFC memories */
7306                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7307                            VFC_MEMORIES_RST_REG_CAM_RST |
7308                            VFC_MEMORIES_RST_REG_RAM_RST);
7309                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7310                            VFC_MEMORIES_RST_REG_CAM_RST |
7311                            VFC_MEMORIES_RST_REG_RAM_RST);
7312
7313                 msleep(20);
7314         }
7315
7316         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7317         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7318         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7319         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7320
7321         /* sync semi rtc */
7322         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7323                0x80000000);
7324         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7325                0x80000000);
7326
7327         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7328         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7329         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7330
7331         if (!CHIP_IS_E1x(bp)) {
7332                 if (IS_MF_AFEX(bp)) {
7333                         /* configure that VNTag and VLAN headers must be
7334                          * sent in afex mode
7335                          */
7336                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7337                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7338                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7339                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7340                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7341                 } else {
7342                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7343                                bp->path_has_ovlan ? 7 : 6);
7344                 }
7345         }
7346
7347         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7348
7349         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7350
7351         if (CNIC_SUPPORT(bp)) {
7352                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7353                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7354                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7355                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7356                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7357                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7358                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7359                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7360                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7361                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7362         }
7363         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7364
7365         if (sizeof(union cdu_context) != 1024)
7366                 /* we currently assume that a context is 1024 bytes */
7367                 dev_alert(&bp->pdev->dev,
7368                           "please adjust the size of cdu_context(%ld)\n",
7369                           (long)sizeof(union cdu_context));
7370
7371         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7372         val = (4 << 24) + (0 << 12) + 1024;
7373         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7374
7375         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7376         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7377         /* enable context validation interrupt from CFC */
7378         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7379
7380         /* set the thresholds to prevent CFC/CDU race */
7381         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7382
7383         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7384
7385         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7386                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7387
7388         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7389         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7390
7391         /* Reset PCIE errors for debug */
7392         REG_WR(bp, 0x2814, 0xffffffff);
7393         REG_WR(bp, 0x3820, 0xffffffff);
7394
7395         if (!CHIP_IS_E1x(bp)) {
7396                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7397                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7398                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7399                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7400                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7401                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7402                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7403                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7404                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7405                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7406                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7407         }
7408
7409         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7410         if (!CHIP_IS_E1(bp)) {
7411                 /* in E3 this done in per-port section */
7412                 if (!CHIP_IS_E3(bp))
7413                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7414         }
7415         if (CHIP_IS_E1H(bp))
7416                 /* not applicable for E2 (and above ...) */
7417                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7418
7419         if (CHIP_REV_IS_SLOW(bp))
7420                 msleep(200);
7421
7422         /* finish CFC init */
7423         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7424         if (val != 1) {
7425                 BNX2X_ERR("CFC LL_INIT failed\n");
7426                 return -EBUSY;
7427         }
7428         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7429         if (val != 1) {
7430                 BNX2X_ERR("CFC AC_INIT failed\n");
7431                 return -EBUSY;
7432         }
7433         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7434         if (val != 1) {
7435                 BNX2X_ERR("CFC CAM_INIT failed\n");
7436                 return -EBUSY;
7437         }
7438         REG_WR(bp, CFC_REG_DEBUG0, 0);
7439
7440         if (CHIP_IS_E1(bp)) {
7441                 /* read NIG statistic
7442                    to see if this is our first up since powerup */
7443                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7444                 val = *bnx2x_sp(bp, wb_data[0]);
7445
7446                 /* do internal memory self test */
7447                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7448                         BNX2X_ERR("internal mem self test failed\n");
7449                         return -EBUSY;
7450                 }
7451         }
7452
7453         bnx2x_setup_fan_failure_detection(bp);
7454
7455         /* clear PXP2 attentions */
7456         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7457
7458         bnx2x_enable_blocks_attention(bp);
7459         bnx2x_enable_blocks_parity(bp);
7460
7461         if (!BP_NOMCP(bp)) {
7462                 if (CHIP_IS_E1x(bp))
7463                         bnx2x__common_init_phy(bp);
7464         } else
7465                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7466
7467         if (SHMEM2_HAS(bp, netproc_fw_ver))
7468                 SHMEM2_WR(bp, netproc_fw_ver, REG_RD(bp, XSEM_REG_PRAM));
7469
7470         return 0;
7471 }
7472
7473 /**
7474  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7475  *
7476  * @bp:         driver handle
7477  */
7478 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7479 {
7480         int rc = bnx2x_init_hw_common(bp);
7481
7482         if (rc)
7483                 return rc;
7484
7485         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7486         if (!BP_NOMCP(bp))
7487                 bnx2x__common_init_phy(bp);
7488
7489         return 0;
7490 }
7491
7492 static int bnx2x_init_hw_port(struct bnx2x *bp)
7493 {
7494         int port = BP_PORT(bp);
7495         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7496         u32 low, high;
7497         u32 val, reg;
7498
7499         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7500
7501         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7502
7503         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7504         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7505         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7506
7507         /* Timers bug workaround: disables the pf_master bit in pglue at
7508          * common phase, we need to enable it here before any dmae access are
7509          * attempted. Therefore we manually added the enable-master to the
7510          * port phase (it also happens in the function phase)
7511          */
7512         if (!CHIP_IS_E1x(bp))
7513                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7514
7515         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7516         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7517         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7518         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7519
7520         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7521         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7522         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7523         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7524
7525         /* QM cid (connection) count */
7526         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7527
7528         if (CNIC_SUPPORT(bp)) {
7529                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7530                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7531                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7532         }
7533
7534         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7535
7536         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7537
7538         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7539
7540                 if (IS_MF(bp))
7541                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7542                 else if (bp->dev->mtu > 4096) {
7543                         if (bp->flags & ONE_PORT_FLAG)
7544                                 low = 160;
7545                         else {
7546                                 val = bp->dev->mtu;
7547                                 /* (24*1024 + val*4)/256 */
7548                                 low = 96 + (val/64) +
7549                                                 ((val % 64) ? 1 : 0);
7550                         }
7551                 } else
7552                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7553                 high = low + 56;        /* 14*1024/256 */
7554                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7555                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7556         }
7557
7558         if (CHIP_MODE_IS_4_PORT(bp))
7559                 REG_WR(bp, (BP_PORT(bp) ?
7560                             BRB1_REG_MAC_GUARANTIED_1 :
7561                             BRB1_REG_MAC_GUARANTIED_0), 40);
7562
7563         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7564         if (CHIP_IS_E3B0(bp)) {
7565                 if (IS_MF_AFEX(bp)) {
7566                         /* configure headers for AFEX mode */
7567                         REG_WR(bp, BP_PORT(bp) ?
7568                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7569                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7570                         REG_WR(bp, BP_PORT(bp) ?
7571                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7572                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7573                         REG_WR(bp, BP_PORT(bp) ?
7574                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7575                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7576                 } else {
7577                         /* Ovlan exists only if we are in multi-function +
7578                          * switch-dependent mode, in switch-independent there
7579                          * is no ovlan headers
7580                          */
7581                         REG_WR(bp, BP_PORT(bp) ?
7582                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7583                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7584                                (bp->path_has_ovlan ? 7 : 6));
7585                 }
7586         }
7587
7588         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7589         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7590         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7591         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7592
7593         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7594         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7595         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7596         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7597
7598         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7599         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7600
7601         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7602
7603         if (CHIP_IS_E1x(bp)) {
7604                 /* configure PBF to work without PAUSE mtu 9000 */
7605                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7606
7607                 /* update threshold */
7608                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7609                 /* update init credit */
7610                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7611
7612                 /* probe changes */
7613                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7614                 udelay(50);
7615                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7616         }
7617
7618         if (CNIC_SUPPORT(bp))
7619                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7620
7621         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7622         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7623
7624         if (CHIP_IS_E1(bp)) {
7625                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7626                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7627         }
7628         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7629
7630         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7631
7632         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7633         /* init aeu_mask_attn_func_0/1:
7634          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7635          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7636          *             bits 4-7 are used for "per vn group attention" */
7637         val = IS_MF(bp) ? 0xF7 : 0x7;
7638         /* Enable DCBX attention for all but E1 */
7639         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7640         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7641
7642         /* SCPAD_PARITY should NOT trigger close the gates */
7643         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7644         REG_WR(bp, reg,
7645                REG_RD(bp, reg) &
7646                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7647
7648         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7649         REG_WR(bp, reg,
7650                REG_RD(bp, reg) &
7651                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7652
7653         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7654
7655         if (!CHIP_IS_E1x(bp)) {
7656                 /* Bit-map indicating which L2 hdrs may appear after the
7657                  * basic Ethernet header
7658                  */
7659                 if (IS_MF_AFEX(bp))
7660                         REG_WR(bp, BP_PORT(bp) ?
7661                                NIG_REG_P1_HDRS_AFTER_BASIC :
7662                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7663                 else
7664                         REG_WR(bp, BP_PORT(bp) ?
7665                                NIG_REG_P1_HDRS_AFTER_BASIC :
7666                                NIG_REG_P0_HDRS_AFTER_BASIC,
7667                                IS_MF_SD(bp) ? 7 : 6);
7668
7669                 if (CHIP_IS_E3(bp))
7670                         REG_WR(bp, BP_PORT(bp) ?
7671                                    NIG_REG_LLH1_MF_MODE :
7672                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7673         }
7674         if (!CHIP_IS_E3(bp))
7675                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7676
7677         if (!CHIP_IS_E1(bp)) {
7678                 /* 0x2 disable mf_ov, 0x1 enable */
7679                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7680                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7681
7682                 if (!CHIP_IS_E1x(bp)) {
7683                         val = 0;
7684                         switch (bp->mf_mode) {
7685                         case MULTI_FUNCTION_SD:
7686                                 val = 1;
7687                                 break;
7688                         case MULTI_FUNCTION_SI:
7689                         case MULTI_FUNCTION_AFEX:
7690                                 val = 2;
7691                                 break;
7692                         }
7693
7694                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7695                                                   NIG_REG_LLH0_CLS_TYPE), val);
7696                 }
7697                 {
7698                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7699                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7700                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7701                 }
7702         }
7703
7704         /* If SPIO5 is set to generate interrupts, enable it for this port */
7705         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7706         if (val & MISC_SPIO_SPIO5) {
7707                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7708                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7709                 val = REG_RD(bp, reg_addr);
7710                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7711                 REG_WR(bp, reg_addr, val);
7712         }
7713
7714         return 0;
7715 }
7716
7717 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7718 {
7719         int reg;
7720         u32 wb_write[2];
7721
7722         if (CHIP_IS_E1(bp))
7723                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7724         else
7725                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7726
7727         wb_write[0] = ONCHIP_ADDR1(addr);
7728         wb_write[1] = ONCHIP_ADDR2(addr);
7729         REG_WR_DMAE(bp, reg, wb_write, 2);
7730 }
7731
7732 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7733 {
7734         u32 data, ctl, cnt = 100;
7735         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7736         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7737         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7738         u32 sb_bit =  1 << (idu_sb_id%32);
7739         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7740         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7741
7742         /* Not supported in BC mode */
7743         if (CHIP_INT_MODE_IS_BC(bp))
7744                 return;
7745
7746         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7747                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7748                 IGU_REGULAR_CLEANUP_SET                         |
7749                 IGU_REGULAR_BCLEANUP;
7750
7751         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7752               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7753               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7754
7755         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7756                          data, igu_addr_data);
7757         REG_WR(bp, igu_addr_data, data);
7758         mmiowb();
7759         barrier();
7760         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7761                           ctl, igu_addr_ctl);
7762         REG_WR(bp, igu_addr_ctl, ctl);
7763         mmiowb();
7764         barrier();
7765
7766         /* wait for clean up to finish */
7767         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7768                 msleep(20);
7769
7770         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7771                 DP(NETIF_MSG_HW,
7772                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7773                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7774         }
7775 }
7776
7777 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7778 {
7779         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7780 }
7781
7782 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7783 {
7784         u32 i, base = FUNC_ILT_BASE(func);
7785         for (i = base; i < base + ILT_PER_FUNC; i++)
7786                 bnx2x_ilt_wr(bp, i, 0);
7787 }
7788
7789 static void bnx2x_init_searcher(struct bnx2x *bp)
7790 {
7791         int port = BP_PORT(bp);
7792         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7793         /* T1 hash bits value determines the T1 number of entries */
7794         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7795 }
7796
7797 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7798 {
7799         int rc;
7800         struct bnx2x_func_state_params func_params = {NULL};
7801         struct bnx2x_func_switch_update_params *switch_update_params =
7802                 &func_params.params.switch_update;
7803
7804         /* Prepare parameters for function state transitions */
7805         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7806         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7807
7808         func_params.f_obj = &bp->func_obj;
7809         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7810
7811         /* Function parameters */
7812         __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND_CHNG,
7813                   &switch_update_params->changes);
7814         if (suspend)
7815                 __set_bit(BNX2X_F_UPDATE_TX_SWITCH_SUSPEND,
7816                           &switch_update_params->changes);
7817
7818         rc = bnx2x_func_state_change(bp, &func_params);
7819
7820         return rc;
7821 }
7822
7823 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7824 {
7825         int rc, i, port = BP_PORT(bp);
7826         int vlan_en = 0, mac_en[NUM_MACS];
7827
7828         /* Close input from network */
7829         if (bp->mf_mode == SINGLE_FUNCTION) {
7830                 bnx2x_set_rx_filter(&bp->link_params, 0);
7831         } else {
7832                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7833                                    NIG_REG_LLH0_FUNC_EN);
7834                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7835                           NIG_REG_LLH0_FUNC_EN, 0);
7836                 for (i = 0; i < NUM_MACS; i++) {
7837                         mac_en[i] = REG_RD(bp, port ?
7838                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7839                                               4 * i) :
7840                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7841                                               4 * i));
7842                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7843                                               4 * i) :
7844                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7845                 }
7846         }
7847
7848         /* Close BMC to host */
7849         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7850                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7851
7852         /* Suspend Tx switching to the PF. Completion of this ramrod
7853          * further guarantees that all the packets of that PF / child
7854          * VFs in BRB were processed by the Parser, so it is safe to
7855          * change the NIC_MODE register.
7856          */
7857         rc = bnx2x_func_switch_update(bp, 1);
7858         if (rc) {
7859                 BNX2X_ERR("Can't suspend tx-switching!\n");
7860                 return rc;
7861         }
7862
7863         /* Change NIC_MODE register */
7864         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7865
7866         /* Open input from network */
7867         if (bp->mf_mode == SINGLE_FUNCTION) {
7868                 bnx2x_set_rx_filter(&bp->link_params, 1);
7869         } else {
7870                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7871                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7872                 for (i = 0; i < NUM_MACS; i++) {
7873                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7874                                               4 * i) :
7875                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7876                                   mac_en[i]);
7877                 }
7878         }
7879
7880         /* Enable BMC to host */
7881         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7882                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7883
7884         /* Resume Tx switching to the PF */
7885         rc = bnx2x_func_switch_update(bp, 0);
7886         if (rc) {
7887                 BNX2X_ERR("Can't resume tx-switching!\n");
7888                 return rc;
7889         }
7890
7891         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7892         return 0;
7893 }
7894
7895 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7896 {
7897         int rc;
7898
7899         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7900
7901         if (CONFIGURE_NIC_MODE(bp)) {
7902                 /* Configure searcher as part of function hw init */
7903                 bnx2x_init_searcher(bp);
7904
7905                 /* Reset NIC mode */
7906                 rc = bnx2x_reset_nic_mode(bp);
7907                 if (rc)
7908                         BNX2X_ERR("Can't change NIC mode!\n");
7909                 return rc;
7910         }
7911
7912         return 0;
7913 }
7914
7915 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
7916  * and boot began, or when kdump kernel was loaded. Either case would invalidate
7917  * the addresses of the transaction, resulting in was-error bit set in the pci
7918  * causing all hw-to-host pcie transactions to timeout. If this happened we want
7919  * to clear the interrupt which detected this from the pglueb and the was done
7920  * bit
7921  */
7922 static void bnx2x_clean_pglue_errors(struct bnx2x *bp)
7923 {
7924         if (!CHIP_IS_E1x(bp))
7925                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
7926                        1 << BP_ABS_FUNC(bp));
7927 }
7928
7929 static int bnx2x_init_hw_func(struct bnx2x *bp)
7930 {
7931         int port = BP_PORT(bp);
7932         int func = BP_FUNC(bp);
7933         int init_phase = PHASE_PF0 + func;
7934         struct bnx2x_ilt *ilt = BP_ILT(bp);
7935         u16 cdu_ilt_start;
7936         u32 addr, val;
7937         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7938         int i, main_mem_width, rc;
7939
7940         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7941
7942         /* FLR cleanup - hmmm */
7943         if (!CHIP_IS_E1x(bp)) {
7944                 rc = bnx2x_pf_flr_clnup(bp);
7945                 if (rc) {
7946                         bnx2x_fw_dump(bp);
7947                         return rc;
7948                 }
7949         }
7950
7951         /* set MSI reconfigure capability */
7952         if (bp->common.int_block == INT_BLOCK_HC) {
7953                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7954                 val = REG_RD(bp, addr);
7955                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7956                 REG_WR(bp, addr, val);
7957         }
7958
7959         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7960         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7961
7962         ilt = BP_ILT(bp);
7963         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7964
7965         if (IS_SRIOV(bp))
7966                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7967         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7968
7969         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7970          * those of the VFs, so start line should be reset
7971          */
7972         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7973         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7974                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7975                 ilt->lines[cdu_ilt_start + i].page_mapping =
7976                         bp->context[i].cxt_mapping;
7977                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7978         }
7979
7980         bnx2x_ilt_init_op(bp, INITOP_SET);
7981
7982         if (!CONFIGURE_NIC_MODE(bp)) {
7983                 bnx2x_init_searcher(bp);
7984                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7985                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7986         } else {
7987                 /* Set NIC mode */
7988                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7989                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7990         }
7991
7992         if (!CHIP_IS_E1x(bp)) {
7993                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7994
7995                 /* Turn on a single ISR mode in IGU if driver is going to use
7996                  * INT#x or MSI
7997                  */
7998                 if (!(bp->flags & USING_MSIX_FLAG))
7999                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
8000                 /*
8001                  * Timers workaround bug: function init part.
8002                  * Need to wait 20msec after initializing ILT,
8003                  * needed to make sure there are no requests in
8004                  * one of the PXP internal queues with "old" ILT addresses
8005                  */
8006                 msleep(20);
8007                 /*
8008                  * Master enable - Due to WB DMAE writes performed before this
8009                  * register is re-initialized as part of the regular function
8010                  * init
8011                  */
8012                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
8013                 /* Enable the function in IGU */
8014                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
8015         }
8016
8017         bp->dmae_ready = 1;
8018
8019         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
8020
8021         bnx2x_clean_pglue_errors(bp);
8022
8023         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
8024         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
8025         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
8026         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
8027         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
8028         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
8029         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
8030         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
8031         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
8032         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
8033         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
8034         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
8035         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
8036
8037         if (!CHIP_IS_E1x(bp))
8038                 REG_WR(bp, QM_REG_PF_EN, 1);
8039
8040         if (!CHIP_IS_E1x(bp)) {
8041                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8042                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8043                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8044                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
8045         }
8046         bnx2x_init_block(bp, BLOCK_QM, init_phase);
8047
8048         bnx2x_init_block(bp, BLOCK_TM, init_phase);
8049         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
8050         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
8051
8052         bnx2x_iov_init_dq(bp);
8053
8054         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
8055         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
8056         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
8057         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
8058         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
8059         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
8060         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
8061         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
8062         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
8063         if (!CHIP_IS_E1x(bp))
8064                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
8065
8066         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
8067
8068         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
8069
8070         if (!CHIP_IS_E1x(bp))
8071                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
8072
8073         if (IS_MF(bp)) {
8074                 if (!(IS_MF_UFP(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))) {
8075                         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port * 8, 1);
8076                         REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port * 8,
8077                                bp->mf_ov);
8078                 }
8079         }
8080
8081         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
8082
8083         /* HC init per function */
8084         if (bp->common.int_block == INT_BLOCK_HC) {
8085                 if (CHIP_IS_E1H(bp)) {
8086                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8087
8088                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8089                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8090                 }
8091                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
8092
8093         } else {
8094                 int num_segs, sb_idx, prod_offset;
8095
8096                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
8097
8098                 if (!CHIP_IS_E1x(bp)) {
8099                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8100                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8101                 }
8102
8103                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
8104
8105                 if (!CHIP_IS_E1x(bp)) {
8106                         int dsb_idx = 0;
8107                         /**
8108                          * Producer memory:
8109                          * E2 mode: address 0-135 match to the mapping memory;
8110                          * 136 - PF0 default prod; 137 - PF1 default prod;
8111                          * 138 - PF2 default prod; 139 - PF3 default prod;
8112                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
8113                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
8114                          * 144-147 reserved.
8115                          *
8116                          * E1.5 mode - In backward compatible mode;
8117                          * for non default SB; each even line in the memory
8118                          * holds the U producer and each odd line hold
8119                          * the C producer. The first 128 producers are for
8120                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
8121                          * producers are for the DSB for each PF.
8122                          * Each PF has five segments: (the order inside each
8123                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
8124                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
8125                          * 144-147 attn prods;
8126                          */
8127                         /* non-default-status-blocks */
8128                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8129                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
8130                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
8131                                 prod_offset = (bp->igu_base_sb + sb_idx) *
8132                                         num_segs;
8133
8134                                 for (i = 0; i < num_segs; i++) {
8135                                         addr = IGU_REG_PROD_CONS_MEMORY +
8136                                                         (prod_offset + i) * 4;
8137                                         REG_WR(bp, addr, 0);
8138                                 }
8139                                 /* send consumer update with value 0 */
8140                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
8141                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8142                                 bnx2x_igu_clear_sb(bp,
8143                                                    bp->igu_base_sb + sb_idx);
8144                         }
8145
8146                         /* default-status-blocks */
8147                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
8148                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
8149
8150                         if (CHIP_MODE_IS_4_PORT(bp))
8151                                 dsb_idx = BP_FUNC(bp);
8152                         else
8153                                 dsb_idx = BP_VN(bp);
8154
8155                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
8156                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
8157                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
8158
8159                         /*
8160                          * igu prods come in chunks of E1HVN_MAX (4) -
8161                          * does not matters what is the current chip mode
8162                          */
8163                         for (i = 0; i < (num_segs * E1HVN_MAX);
8164                              i += E1HVN_MAX) {
8165                                 addr = IGU_REG_PROD_CONS_MEMORY +
8166                                                         (prod_offset + i)*4;
8167                                 REG_WR(bp, addr, 0);
8168                         }
8169                         /* send consumer update with 0 */
8170                         if (CHIP_INT_MODE_IS_BC(bp)) {
8171                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8172                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8173                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8174                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
8175                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8176                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
8177                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8178                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
8179                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8180                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8181                         } else {
8182                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8183                                              USTORM_ID, 0, IGU_INT_NOP, 1);
8184                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
8185                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
8186                         }
8187                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
8188
8189                         /* !!! These should become driver const once
8190                            rf-tool supports split-68 const */
8191                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8192                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8193                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8194                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8195                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8196                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8197                 }
8198         }
8199
8200         /* Reset PCIE errors for debug */
8201         REG_WR(bp, 0x2114, 0xffffffff);
8202         REG_WR(bp, 0x2120, 0xffffffff);
8203
8204         if (CHIP_IS_E1x(bp)) {
8205                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8206                 main_mem_base = HC_REG_MAIN_MEMORY +
8207                                 BP_PORT(bp) * (main_mem_size * 4);
8208                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8209                 main_mem_width = 8;
8210
8211                 val = REG_RD(bp, main_mem_prty_clr);
8212                 if (val)
8213                         DP(NETIF_MSG_HW,
8214                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8215                            val);
8216
8217                 /* Clear "false" parity errors in MSI-X table */
8218                 for (i = main_mem_base;
8219                      i < main_mem_base + main_mem_size * 4;
8220                      i += main_mem_width) {
8221                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8222                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8223                                          i, main_mem_width / 4);
8224                 }
8225                 /* Clear HC parity attention */
8226                 REG_RD(bp, main_mem_prty_clr);
8227         }
8228
8229 #ifdef BNX2X_STOP_ON_ERROR
8230         /* Enable STORMs SP logging */
8231         REG_WR8(bp, BAR_USTRORM_INTMEM +
8232                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8233         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8234                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8235         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8236                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8237         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8238                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8239 #endif
8240
8241         bnx2x_phy_probe(&bp->link_params);
8242
8243         return 0;
8244 }
8245
8246 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8247 {
8248         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8249
8250         if (!CHIP_IS_E1x(bp))
8251                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8252                                sizeof(struct host_hc_status_block_e2));
8253         else
8254                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8255                                sizeof(struct host_hc_status_block_e1x));
8256
8257         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8258 }
8259
8260 void bnx2x_free_mem(struct bnx2x *bp)
8261 {
8262         int i;
8263
8264         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8265                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8266
8267         if (IS_VF(bp))
8268                 return;
8269
8270         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8271                        sizeof(struct host_sp_status_block));
8272
8273         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8274                        sizeof(struct bnx2x_slowpath));
8275
8276         for (i = 0; i < L2_ILT_LINES(bp); i++)
8277                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8278                                bp->context[i].size);
8279         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8280
8281         BNX2X_FREE(bp->ilt->lines);
8282
8283         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8284
8285         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8286                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8287
8288         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8289
8290         bnx2x_iov_free_mem(bp);
8291 }
8292
8293 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8294 {
8295         if (!CHIP_IS_E1x(bp)) {
8296                 /* size = the status block + ramrod buffers */
8297                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8298                                                     sizeof(struct host_hc_status_block_e2));
8299                 if (!bp->cnic_sb.e2_sb)
8300                         goto alloc_mem_err;
8301         } else {
8302                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8303                                                      sizeof(struct host_hc_status_block_e1x));
8304                 if (!bp->cnic_sb.e1x_sb)
8305                         goto alloc_mem_err;
8306         }
8307
8308         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8309                 /* allocate searcher T2 table, as it wasn't allocated before */
8310                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8311                 if (!bp->t2)
8312                         goto alloc_mem_err;
8313         }
8314
8315         /* write address to which L5 should insert its values */
8316         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8317                 &bp->slowpath->drv_info_to_mcp;
8318
8319         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8320                 goto alloc_mem_err;
8321
8322         return 0;
8323
8324 alloc_mem_err:
8325         bnx2x_free_mem_cnic(bp);
8326         BNX2X_ERR("Can't allocate memory\n");
8327         return -ENOMEM;
8328 }
8329
8330 int bnx2x_alloc_mem(struct bnx2x *bp)
8331 {
8332         int i, allocated, context_size;
8333
8334         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8335                 /* allocate searcher T2 table */
8336                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8337                 if (!bp->t2)
8338                         goto alloc_mem_err;
8339         }
8340
8341         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8342                                              sizeof(struct host_sp_status_block));
8343         if (!bp->def_status_blk)
8344                 goto alloc_mem_err;
8345
8346         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8347                                        sizeof(struct bnx2x_slowpath));
8348         if (!bp->slowpath)
8349                 goto alloc_mem_err;
8350
8351         /* Allocate memory for CDU context:
8352          * This memory is allocated separately and not in the generic ILT
8353          * functions because CDU differs in few aspects:
8354          * 1. There are multiple entities allocating memory for context -
8355          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8356          * its own ILT lines.
8357          * 2. Since CDU page-size is not a single 4KB page (which is the case
8358          * for the other ILT clients), to be efficient we want to support
8359          * allocation of sub-page-size in the last entry.
8360          * 3. Context pointers are used by the driver to pass to FW / update
8361          * the context (for the other ILT clients the pointers are used just to
8362          * free the memory during unload).
8363          */
8364         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8365
8366         for (i = 0, allocated = 0; allocated < context_size; i++) {
8367                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8368                                           (context_size - allocated));
8369                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8370                                                       bp->context[i].size);
8371                 if (!bp->context[i].vcxt)
8372                         goto alloc_mem_err;
8373                 allocated += bp->context[i].size;
8374         }
8375         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8376                                  GFP_KERNEL);
8377         if (!bp->ilt->lines)
8378                 goto alloc_mem_err;
8379
8380         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8381                 goto alloc_mem_err;
8382
8383         if (bnx2x_iov_alloc_mem(bp))
8384                 goto alloc_mem_err;
8385
8386         /* Slow path ring */
8387         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8388         if (!bp->spq)
8389                 goto alloc_mem_err;
8390
8391         /* EQ */
8392         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8393                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8394         if (!bp->eq_ring)
8395                 goto alloc_mem_err;
8396
8397         return 0;
8398
8399 alloc_mem_err:
8400         bnx2x_free_mem(bp);
8401         BNX2X_ERR("Can't allocate memory\n");
8402         return -ENOMEM;
8403 }
8404
8405 /*
8406  * Init service functions
8407  */
8408
8409 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8410                       struct bnx2x_vlan_mac_obj *obj, bool set,
8411                       int mac_type, unsigned long *ramrod_flags)
8412 {
8413         int rc;
8414         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8415
8416         memset(&ramrod_param, 0, sizeof(ramrod_param));
8417
8418         /* Fill general parameters */
8419         ramrod_param.vlan_mac_obj = obj;
8420         ramrod_param.ramrod_flags = *ramrod_flags;
8421
8422         /* Fill a user request section if needed */
8423         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8424                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8425
8426                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8427
8428                 /* Set the command: ADD or DEL */
8429                 if (set)
8430                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8431                 else
8432                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8433         }
8434
8435         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8436
8437         if (rc == -EEXIST) {
8438                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8439                 /* do not treat adding same MAC as error */
8440                 rc = 0;
8441         } else if (rc < 0)
8442                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8443
8444         return rc;
8445 }
8446
8447 int bnx2x_set_vlan_one(struct bnx2x *bp, u16 vlan,
8448                        struct bnx2x_vlan_mac_obj *obj, bool set,
8449                        unsigned long *ramrod_flags)
8450 {
8451         int rc;
8452         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8453
8454         memset(&ramrod_param, 0, sizeof(ramrod_param));
8455
8456         /* Fill general parameters */
8457         ramrod_param.vlan_mac_obj = obj;
8458         ramrod_param.ramrod_flags = *ramrod_flags;
8459
8460         /* Fill a user request section if needed */
8461         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8462                 ramrod_param.user_req.u.vlan.vlan = vlan;
8463                 /* Set the command: ADD or DEL */
8464                 if (set)
8465                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8466                 else
8467                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8468         }
8469
8470         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8471
8472         if (rc == -EEXIST) {
8473                 /* Do not treat adding same vlan as error. */
8474                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8475                 rc = 0;
8476         } else if (rc < 0) {
8477                 BNX2X_ERR("%s VLAN failed\n", (set ? "Set" : "Del"));
8478         }
8479
8480         return rc;
8481 }
8482
8483 int bnx2x_del_all_macs(struct bnx2x *bp,
8484                        struct bnx2x_vlan_mac_obj *mac_obj,
8485                        int mac_type, bool wait_for_comp)
8486 {
8487         int rc;
8488         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8489
8490         /* Wait for completion of requested */
8491         if (wait_for_comp)
8492                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8493
8494         /* Set the mac type of addresses we want to clear */
8495         __set_bit(mac_type, &vlan_mac_flags);
8496
8497         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8498         if (rc < 0)
8499                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8500
8501         return rc;
8502 }
8503
8504 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8505 {
8506         if (IS_PF(bp)) {
8507                 unsigned long ramrod_flags = 0;
8508
8509                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8510                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8511                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8512                                          &bp->sp_objs->mac_obj, set,
8513                                          BNX2X_ETH_MAC, &ramrod_flags);
8514         } else { /* vf */
8515                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8516                                              bp->fp->index, set);
8517         }
8518 }
8519
8520 int bnx2x_setup_leading(struct bnx2x *bp)
8521 {
8522         if (IS_PF(bp))
8523                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8524         else /* VF */
8525                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8526 }
8527
8528 /**
8529  * bnx2x_set_int_mode - configure interrupt mode
8530  *
8531  * @bp:         driver handle
8532  *
8533  * In case of MSI-X it will also try to enable MSI-X.
8534  */
8535 int bnx2x_set_int_mode(struct bnx2x *bp)
8536 {
8537         int rc = 0;
8538
8539         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8540                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8541                 return -EINVAL;
8542         }
8543
8544         switch (int_mode) {
8545         case BNX2X_INT_MODE_MSIX:
8546                 /* attempt to enable msix */
8547                 rc = bnx2x_enable_msix(bp);
8548
8549                 /* msix attained */
8550                 if (!rc)
8551                         return 0;
8552
8553                 /* vfs use only msix */
8554                 if (rc && IS_VF(bp))
8555                         return rc;
8556
8557                 /* failed to enable multiple MSI-X */
8558                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8559                                bp->num_queues,
8560                                1 + bp->num_cnic_queues);
8561
8562                 /* falling through... */
8563         case BNX2X_INT_MODE_MSI:
8564                 bnx2x_enable_msi(bp);
8565
8566                 /* falling through... */
8567         case BNX2X_INT_MODE_INTX:
8568                 bp->num_ethernet_queues = 1;
8569                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8570                 BNX2X_DEV_INFO("set number of queues to 1\n");
8571                 break;
8572         default:
8573                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8574                 return -EINVAL;
8575         }
8576         return 0;
8577 }
8578
8579 /* must be called prior to any HW initializations */
8580 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8581 {
8582         if (IS_SRIOV(bp))
8583                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8584         return L2_ILT_LINES(bp);
8585 }
8586
8587 void bnx2x_ilt_set_info(struct bnx2x *bp)
8588 {
8589         struct ilt_client_info *ilt_client;
8590         struct bnx2x_ilt *ilt = BP_ILT(bp);
8591         u16 line = 0;
8592
8593         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8594         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8595
8596         /* CDU */
8597         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8598         ilt_client->client_num = ILT_CLIENT_CDU;
8599         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8600         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8601         ilt_client->start = line;
8602         line += bnx2x_cid_ilt_lines(bp);
8603
8604         if (CNIC_SUPPORT(bp))
8605                 line += CNIC_ILT_LINES;
8606         ilt_client->end = line - 1;
8607
8608         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8609            ilt_client->start,
8610            ilt_client->end,
8611            ilt_client->page_size,
8612            ilt_client->flags,
8613            ilog2(ilt_client->page_size >> 12));
8614
8615         /* QM */
8616         if (QM_INIT(bp->qm_cid_count)) {
8617                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8618                 ilt_client->client_num = ILT_CLIENT_QM;
8619                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8620                 ilt_client->flags = 0;
8621                 ilt_client->start = line;
8622
8623                 /* 4 bytes for each cid */
8624                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8625                                                          QM_ILT_PAGE_SZ);
8626
8627                 ilt_client->end = line - 1;
8628
8629                 DP(NETIF_MSG_IFUP,
8630                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8631                    ilt_client->start,
8632                    ilt_client->end,
8633                    ilt_client->page_size,
8634                    ilt_client->flags,
8635                    ilog2(ilt_client->page_size >> 12));
8636         }
8637
8638         if (CNIC_SUPPORT(bp)) {
8639                 /* SRC */
8640                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8641                 ilt_client->client_num = ILT_CLIENT_SRC;
8642                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8643                 ilt_client->flags = 0;
8644                 ilt_client->start = line;
8645                 line += SRC_ILT_LINES;
8646                 ilt_client->end = line - 1;
8647
8648                 DP(NETIF_MSG_IFUP,
8649                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8650                    ilt_client->start,
8651                    ilt_client->end,
8652                    ilt_client->page_size,
8653                    ilt_client->flags,
8654                    ilog2(ilt_client->page_size >> 12));
8655
8656                 /* TM */
8657                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8658                 ilt_client->client_num = ILT_CLIENT_TM;
8659                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8660                 ilt_client->flags = 0;
8661                 ilt_client->start = line;
8662                 line += TM_ILT_LINES;
8663                 ilt_client->end = line - 1;
8664
8665                 DP(NETIF_MSG_IFUP,
8666                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8667                    ilt_client->start,
8668                    ilt_client->end,
8669                    ilt_client->page_size,
8670                    ilt_client->flags,
8671                    ilog2(ilt_client->page_size >> 12));
8672         }
8673
8674         BUG_ON(line > ILT_MAX_LINES);
8675 }
8676
8677 /**
8678  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8679  *
8680  * @bp:                 driver handle
8681  * @fp:                 pointer to fastpath
8682  * @init_params:        pointer to parameters structure
8683  *
8684  * parameters configured:
8685  *      - HC configuration
8686  *      - Queue's CDU context
8687  */
8688 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8689         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8690 {
8691         u8 cos;
8692         int cxt_index, cxt_offset;
8693
8694         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8695         if (!IS_FCOE_FP(fp)) {
8696                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8697                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8698
8699                 /* If HC is supported, enable host coalescing in the transition
8700                  * to INIT state.
8701                  */
8702                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8703                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8704
8705                 /* HC rate */
8706                 init_params->rx.hc_rate = bp->rx_ticks ?
8707                         (1000000 / bp->rx_ticks) : 0;
8708                 init_params->tx.hc_rate = bp->tx_ticks ?
8709                         (1000000 / bp->tx_ticks) : 0;
8710
8711                 /* FW SB ID */
8712                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8713                         fp->fw_sb_id;
8714
8715                 /*
8716                  * CQ index among the SB indices: FCoE clients uses the default
8717                  * SB, therefore it's different.
8718                  */
8719                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8720                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8721         }
8722
8723         /* set maximum number of COSs supported by this queue */
8724         init_params->max_cos = fp->max_cos;
8725
8726         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8727             fp->index, init_params->max_cos);
8728
8729         /* set the context pointers queue object */
8730         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8731                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8732                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8733                                 ILT_PAGE_CIDS);
8734                 init_params->cxts[cos] =
8735                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8736         }
8737 }
8738
8739 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8740                         struct bnx2x_queue_state_params *q_params,
8741                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8742                         int tx_index, bool leading)
8743 {
8744         memset(tx_only_params, 0, sizeof(*tx_only_params));
8745
8746         /* Set the command */
8747         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8748
8749         /* Set tx-only QUEUE flags: don't zero statistics */
8750         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8751
8752         /* choose the index of the cid to send the slow path on */
8753         tx_only_params->cid_index = tx_index;
8754
8755         /* Set general TX_ONLY_SETUP parameters */
8756         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8757
8758         /* Set Tx TX_ONLY_SETUP parameters */
8759         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8760
8761         DP(NETIF_MSG_IFUP,
8762            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8763            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8764            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8765            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8766
8767         /* send the ramrod */
8768         return bnx2x_queue_state_change(bp, q_params);
8769 }
8770
8771 /**
8772  * bnx2x_setup_queue - setup queue
8773  *
8774  * @bp:         driver handle
8775  * @fp:         pointer to fastpath
8776  * @leading:    is leading
8777  *
8778  * This function performs 2 steps in a Queue state machine
8779  *      actually: 1) RESET->INIT 2) INIT->SETUP
8780  */
8781
8782 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8783                        bool leading)
8784 {
8785         struct bnx2x_queue_state_params q_params = {NULL};
8786         struct bnx2x_queue_setup_params *setup_params =
8787                                                 &q_params.params.setup;
8788         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8789                                                 &q_params.params.tx_only;
8790         int rc;
8791         u8 tx_index;
8792
8793         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8794
8795         /* reset IGU state skip FCoE L2 queue */
8796         if (!IS_FCOE_FP(fp))
8797                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8798                              IGU_INT_ENABLE, 0);
8799
8800         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8801         /* We want to wait for completion in this context */
8802         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8803
8804         /* Prepare the INIT parameters */
8805         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8806
8807         /* Set the command */
8808         q_params.cmd = BNX2X_Q_CMD_INIT;
8809
8810         /* Change the state to INIT */
8811         rc = bnx2x_queue_state_change(bp, &q_params);
8812         if (rc) {
8813                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8814                 return rc;
8815         }
8816
8817         DP(NETIF_MSG_IFUP, "init complete\n");
8818
8819         /* Now move the Queue to the SETUP state... */
8820         memset(setup_params, 0, sizeof(*setup_params));
8821
8822         /* Set QUEUE flags */
8823         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8824
8825         /* Set general SETUP parameters */
8826         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8827                                 FIRST_TX_COS_INDEX);
8828
8829         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8830                             &setup_params->rxq_params);
8831
8832         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8833                            FIRST_TX_COS_INDEX);
8834
8835         /* Set the command */
8836         q_params.cmd = BNX2X_Q_CMD_SETUP;
8837
8838         if (IS_FCOE_FP(fp))
8839                 bp->fcoe_init = true;
8840
8841         /* Change the state to SETUP */
8842         rc = bnx2x_queue_state_change(bp, &q_params);
8843         if (rc) {
8844                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8845                 return rc;
8846         }
8847
8848         /* loop through the relevant tx-only indices */
8849         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8850               tx_index < fp->max_cos;
8851               tx_index++) {
8852
8853                 /* prepare and send tx-only ramrod*/
8854                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8855                                           tx_only_params, tx_index, leading);
8856                 if (rc) {
8857                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8858                                   fp->index, tx_index);
8859                         return rc;
8860                 }
8861         }
8862
8863         return rc;
8864 }
8865
8866 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8867 {
8868         struct bnx2x_fastpath *fp = &bp->fp[index];
8869         struct bnx2x_fp_txdata *txdata;
8870         struct bnx2x_queue_state_params q_params = {NULL};
8871         int rc, tx_index;
8872
8873         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8874
8875         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8876         /* We want to wait for completion in this context */
8877         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8878
8879         /* close tx-only connections */
8880         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8881              tx_index < fp->max_cos;
8882              tx_index++){
8883
8884                 /* ascertain this is a normal queue*/
8885                 txdata = fp->txdata_ptr[tx_index];
8886
8887                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8888                                                         txdata->txq_index);
8889
8890                 /* send halt terminate on tx-only connection */
8891                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8892                 memset(&q_params.params.terminate, 0,
8893                        sizeof(q_params.params.terminate));
8894                 q_params.params.terminate.cid_index = tx_index;
8895
8896                 rc = bnx2x_queue_state_change(bp, &q_params);
8897                 if (rc)
8898                         return rc;
8899
8900                 /* send halt terminate on tx-only connection */
8901                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8902                 memset(&q_params.params.cfc_del, 0,
8903                        sizeof(q_params.params.cfc_del));
8904                 q_params.params.cfc_del.cid_index = tx_index;
8905                 rc = bnx2x_queue_state_change(bp, &q_params);
8906                 if (rc)
8907                         return rc;
8908         }
8909         /* Stop the primary connection: */
8910         /* ...halt the connection */
8911         q_params.cmd = BNX2X_Q_CMD_HALT;
8912         rc = bnx2x_queue_state_change(bp, &q_params);
8913         if (rc)
8914                 return rc;
8915
8916         /* ...terminate the connection */
8917         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8918         memset(&q_params.params.terminate, 0,
8919                sizeof(q_params.params.terminate));
8920         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8921         rc = bnx2x_queue_state_change(bp, &q_params);
8922         if (rc)
8923                 return rc;
8924         /* ...delete cfc entry */
8925         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8926         memset(&q_params.params.cfc_del, 0,
8927                sizeof(q_params.params.cfc_del));
8928         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8929         return bnx2x_queue_state_change(bp, &q_params);
8930 }
8931
8932 static void bnx2x_reset_func(struct bnx2x *bp)
8933 {
8934         int port = BP_PORT(bp);
8935         int func = BP_FUNC(bp);
8936         int i;
8937
8938         /* Disable the function in the FW */
8939         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8940         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8941         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8942         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8943
8944         /* FP SBs */
8945         for_each_eth_queue(bp, i) {
8946                 struct bnx2x_fastpath *fp = &bp->fp[i];
8947                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8948                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8949                            SB_DISABLED);
8950         }
8951
8952         if (CNIC_LOADED(bp))
8953                 /* CNIC SB */
8954                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8955                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8956                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8957
8958         /* SP SB */
8959         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8960                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8961                 SB_DISABLED);
8962
8963         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8964                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8965                        0);
8966
8967         /* Configure IGU */
8968         if (bp->common.int_block == INT_BLOCK_HC) {
8969                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8970                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8971         } else {
8972                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8973                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8974         }
8975
8976         if (CNIC_LOADED(bp)) {
8977                 /* Disable Timer scan */
8978                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8979                 /*
8980                  * Wait for at least 10ms and up to 2 second for the timers
8981                  * scan to complete
8982                  */
8983                 for (i = 0; i < 200; i++) {
8984                         usleep_range(10000, 20000);
8985                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8986                                 break;
8987                 }
8988         }
8989         /* Clear ILT */
8990         bnx2x_clear_func_ilt(bp, func);
8991
8992         /* Timers workaround bug for E2: if this is vnic-3,
8993          * we need to set the entire ilt range for this timers.
8994          */
8995         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8996                 struct ilt_client_info ilt_cli;
8997                 /* use dummy TM client */
8998                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8999                 ilt_cli.start = 0;
9000                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
9001                 ilt_cli.client_num = ILT_CLIENT_TM;
9002
9003                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
9004         }
9005
9006         /* this assumes that reset_port() called before reset_func()*/
9007         if (!CHIP_IS_E1x(bp))
9008                 bnx2x_pf_disable(bp);
9009
9010         bp->dmae_ready = 0;
9011 }
9012
9013 static void bnx2x_reset_port(struct bnx2x *bp)
9014 {
9015         int port = BP_PORT(bp);
9016         u32 val;
9017
9018         /* Reset physical Link */
9019         bnx2x__link_reset(bp);
9020
9021         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
9022
9023         /* Do not rcv packets to BRB */
9024         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
9025         /* Do not direct rcv packets that are not for MCP to the BRB */
9026         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
9027                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
9028
9029         /* Configure AEU */
9030         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
9031
9032         msleep(100);
9033         /* Check for BRB port occupancy */
9034         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
9035         if (val)
9036                 DP(NETIF_MSG_IFDOWN,
9037                    "BRB1 is not empty  %d blocks are occupied\n", val);
9038
9039         /* TODO: Close Doorbell port? */
9040 }
9041
9042 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
9043 {
9044         struct bnx2x_func_state_params func_params = {NULL};
9045
9046         /* Prepare parameters for function state transitions */
9047         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9048
9049         func_params.f_obj = &bp->func_obj;
9050         func_params.cmd = BNX2X_F_CMD_HW_RESET;
9051
9052         func_params.params.hw_init.load_phase = load_code;
9053
9054         return bnx2x_func_state_change(bp, &func_params);
9055 }
9056
9057 static int bnx2x_func_stop(struct bnx2x *bp)
9058 {
9059         struct bnx2x_func_state_params func_params = {NULL};
9060         int rc;
9061
9062         /* Prepare parameters for function state transitions */
9063         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
9064         func_params.f_obj = &bp->func_obj;
9065         func_params.cmd = BNX2X_F_CMD_STOP;
9066
9067         /*
9068          * Try to stop the function the 'good way'. If fails (in case
9069          * of a parity error during bnx2x_chip_cleanup()) and we are
9070          * not in a debug mode, perform a state transaction in order to
9071          * enable further HW_RESET transaction.
9072          */
9073         rc = bnx2x_func_state_change(bp, &func_params);
9074         if (rc) {
9075 #ifdef BNX2X_STOP_ON_ERROR
9076                 return rc;
9077 #else
9078                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
9079                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
9080                 return bnx2x_func_state_change(bp, &func_params);
9081 #endif
9082         }
9083
9084         return 0;
9085 }
9086
9087 /**
9088  * bnx2x_send_unload_req - request unload mode from the MCP.
9089  *
9090  * @bp:                 driver handle
9091  * @unload_mode:        requested function's unload mode
9092  *
9093  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
9094  */
9095 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
9096 {
9097         u32 reset_code = 0;
9098         int port = BP_PORT(bp);
9099
9100         /* Select the UNLOAD request mode */
9101         if (unload_mode == UNLOAD_NORMAL)
9102                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9103
9104         else if (bp->flags & NO_WOL_FLAG)
9105                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
9106
9107         else if (bp->wol) {
9108                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
9109                 u8 *mac_addr = bp->dev->dev_addr;
9110                 struct pci_dev *pdev = bp->pdev;
9111                 u32 val;
9112                 u16 pmc;
9113
9114                 /* The mac address is written to entries 1-4 to
9115                  * preserve entry 0 which is used by the PMF
9116                  */
9117                 u8 entry = (BP_VN(bp) + 1)*8;
9118
9119                 val = (mac_addr[0] << 8) | mac_addr[1];
9120                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
9121
9122                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
9123                       (mac_addr[4] << 8) | mac_addr[5];
9124                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
9125
9126                 /* Enable the PME and clear the status */
9127                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
9128                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
9129                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
9130
9131                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
9132
9133         } else
9134                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
9135
9136         /* Send the request to the MCP */
9137         if (!BP_NOMCP(bp))
9138                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
9139         else {
9140                 int path = BP_PATH(bp);
9141
9142                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
9143                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9144                    bnx2x_load_count[path][2]);
9145                 bnx2x_load_count[path][0]--;
9146                 bnx2x_load_count[path][1 + port]--;
9147                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
9148                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
9149                    bnx2x_load_count[path][2]);
9150                 if (bnx2x_load_count[path][0] == 0)
9151                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
9152                 else if (bnx2x_load_count[path][1 + port] == 0)
9153                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
9154                 else
9155                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
9156         }
9157
9158         return reset_code;
9159 }
9160
9161 /**
9162  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
9163  *
9164  * @bp:         driver handle
9165  * @keep_link:          true iff link should be kept up
9166  */
9167 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
9168 {
9169         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
9170
9171         /* Report UNLOAD_DONE to MCP */
9172         if (!BP_NOMCP(bp))
9173                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
9174 }
9175
9176 static int bnx2x_func_wait_started(struct bnx2x *bp)
9177 {
9178         int tout = 50;
9179         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
9180
9181         if (!bp->port.pmf)
9182                 return 0;
9183
9184         /*
9185          * (assumption: No Attention from MCP at this stage)
9186          * PMF probably in the middle of TX disable/enable transaction
9187          * 1. Sync IRS for default SB
9188          * 2. Sync SP queue - this guarantees us that attention handling started
9189          * 3. Wait, that TX disable/enable transaction completes
9190          *
9191          * 1+2 guarantee that if DCBx attention was scheduled it already changed
9192          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
9193          * received completion for the transaction the state is TX_STOPPED.
9194          * State will return to STARTED after completion of TX_STOPPED-->STARTED
9195          * transaction.
9196          */
9197
9198         /* make sure default SB ISR is done */
9199         if (msix)
9200                 synchronize_irq(bp->msix_table[0].vector);
9201         else
9202                 synchronize_irq(bp->pdev->irq);
9203
9204         flush_workqueue(bnx2x_wq);
9205         flush_workqueue(bnx2x_iov_wq);
9206
9207         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
9208                                 BNX2X_F_STATE_STARTED && tout--)
9209                 msleep(20);
9210
9211         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
9212                                                 BNX2X_F_STATE_STARTED) {
9213 #ifdef BNX2X_STOP_ON_ERROR
9214                 BNX2X_ERR("Wrong function state\n");
9215                 return -EBUSY;
9216 #else
9217                 /*
9218                  * Failed to complete the transaction in a "good way"
9219                  * Force both transactions with CLR bit
9220                  */
9221                 struct bnx2x_func_state_params func_params = {NULL};
9222
9223                 DP(NETIF_MSG_IFDOWN,
9224                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_STOPPED-->STARTED\n");
9225
9226                 func_params.f_obj = &bp->func_obj;
9227                 __set_bit(RAMROD_DRV_CLR_ONLY,
9228                                         &func_params.ramrod_flags);
9229
9230                 /* STARTED-->TX_ST0PPED */
9231                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9232                 bnx2x_func_state_change(bp, &func_params);
9233
9234                 /* TX_ST0PPED-->STARTED */
9235                 func_params.cmd = BNX2X_F_CMD_TX_START;
9236                 return bnx2x_func_state_change(bp, &func_params);
9237 #endif
9238         }
9239
9240         return 0;
9241 }
9242
9243 static void bnx2x_disable_ptp(struct bnx2x *bp)
9244 {
9245         int port = BP_PORT(bp);
9246
9247         /* Disable sending PTP packets to host */
9248         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
9249                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
9250
9251         /* Reset PTP event detection rules */
9252         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
9253                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
9254         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
9255                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
9256         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
9257                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
9258         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
9259                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
9260
9261         /* Disable the PTP feature */
9262         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
9263                NIG_REG_P0_PTP_EN, 0x0);
9264 }
9265
9266 /* Called during unload, to stop PTP-related stuff */
9267 static void bnx2x_stop_ptp(struct bnx2x *bp)
9268 {
9269         /* Cancel PTP work queue. Should be done after the Tx queues are
9270          * drained to prevent additional scheduling.
9271          */
9272         cancel_work_sync(&bp->ptp_task);
9273
9274         if (bp->ptp_tx_skb) {
9275                 dev_kfree_skb_any(bp->ptp_tx_skb);
9276                 bp->ptp_tx_skb = NULL;
9277         }
9278
9279         /* Disable PTP in HW */
9280         bnx2x_disable_ptp(bp);
9281
9282         DP(BNX2X_MSG_PTP, "PTP stop ended successfully\n");
9283 }
9284
9285 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9286 {
9287         int port = BP_PORT(bp);
9288         int i, rc = 0;
9289         u8 cos;
9290         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9291         u32 reset_code;
9292
9293         /* Wait until tx fastpath tasks complete */
9294         for_each_tx_queue(bp, i) {
9295                 struct bnx2x_fastpath *fp = &bp->fp[i];
9296
9297                 for_each_cos_in_tx_queue(fp, cos)
9298                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9299 #ifdef BNX2X_STOP_ON_ERROR
9300                 if (rc)
9301                         return;
9302 #endif
9303         }
9304
9305         /* Give HW time to discard old tx messages */
9306         usleep_range(1000, 2000);
9307
9308         /* Clean all ETH MACs */
9309         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9310                                 false);
9311         if (rc < 0)
9312                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9313
9314         /* Clean up UC list  */
9315         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9316                                 true);
9317         if (rc < 0)
9318                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9319                           rc);
9320
9321         /* Disable LLH */
9322         if (!CHIP_IS_E1(bp))
9323                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9324
9325         /* Set "drop all" (stop Rx).
9326          * We need to take a netif_addr_lock() here in order to prevent
9327          * a race between the completion code and this code.
9328          */
9329         netif_addr_lock_bh(bp->dev);
9330         /* Schedule the rx_mode command */
9331         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9332                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9333         else
9334                 bnx2x_set_storm_rx_mode(bp);
9335
9336         /* Cleanup multicast configuration */
9337         rparam.mcast_obj = &bp->mcast_obj;
9338         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9339         if (rc < 0)
9340                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9341
9342         netif_addr_unlock_bh(bp->dev);
9343
9344         bnx2x_iov_chip_cleanup(bp);
9345
9346         /*
9347          * Send the UNLOAD_REQUEST to the MCP. This will return if
9348          * this function should perform FUNC, PORT or COMMON HW
9349          * reset.
9350          */
9351         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9352
9353         /*
9354          * (assumption: No Attention from MCP at this stage)
9355          * PMF probably in the middle of TX disable/enable transaction
9356          */
9357         rc = bnx2x_func_wait_started(bp);
9358         if (rc) {
9359                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9360 #ifdef BNX2X_STOP_ON_ERROR
9361                 return;
9362 #endif
9363         }
9364
9365         /* Close multi and leading connections
9366          * Completions for ramrods are collected in a synchronous way
9367          */
9368         for_each_eth_queue(bp, i)
9369                 if (bnx2x_stop_queue(bp, i))
9370 #ifdef BNX2X_STOP_ON_ERROR
9371                         return;
9372 #else
9373                         goto unload_error;
9374 #endif
9375
9376         if (CNIC_LOADED(bp)) {
9377                 for_each_cnic_queue(bp, i)
9378                         if (bnx2x_stop_queue(bp, i))
9379 #ifdef BNX2X_STOP_ON_ERROR
9380                                 return;
9381 #else
9382                                 goto unload_error;
9383 #endif
9384         }
9385
9386         /* If SP settings didn't get completed so far - something
9387          * very wrong has happen.
9388          */
9389         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9390                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9391
9392 #ifndef BNX2X_STOP_ON_ERROR
9393 unload_error:
9394 #endif
9395         rc = bnx2x_func_stop(bp);
9396         if (rc) {
9397                 BNX2X_ERR("Function stop failed!\n");
9398 #ifdef BNX2X_STOP_ON_ERROR
9399                 return;
9400 #endif
9401         }
9402
9403         /* stop_ptp should be after the Tx queues are drained to prevent
9404          * scheduling to the cancelled PTP work queue. It should also be after
9405          * function stop ramrod is sent, since as part of this ramrod FW access
9406          * PTP registers.
9407          */
9408         if (bp->flags & PTP_SUPPORTED)
9409                 bnx2x_stop_ptp(bp);
9410
9411         /* Disable HW interrupts, NAPI */
9412         bnx2x_netif_stop(bp, 1);
9413         /* Delete all NAPI objects */
9414         bnx2x_del_all_napi(bp);
9415         if (CNIC_LOADED(bp))
9416                 bnx2x_del_all_napi_cnic(bp);
9417
9418         /* Release IRQs */
9419         bnx2x_free_irq(bp);
9420
9421         /* Reset the chip */
9422         rc = bnx2x_reset_hw(bp, reset_code);
9423         if (rc)
9424                 BNX2X_ERR("HW_RESET failed\n");
9425
9426         /* Report UNLOAD_DONE to MCP */
9427         bnx2x_send_unload_done(bp, keep_link);
9428 }
9429
9430 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9431 {
9432         u32 val;
9433
9434         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9435
9436         if (CHIP_IS_E1(bp)) {
9437                 int port = BP_PORT(bp);
9438                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9439                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9440
9441                 val = REG_RD(bp, addr);
9442                 val &= ~(0x300);
9443                 REG_WR(bp, addr, val);
9444         } else {
9445                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9446                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9447                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9448                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9449         }
9450 }
9451
9452 /* Close gates #2, #3 and #4: */
9453 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9454 {
9455         u32 val;
9456
9457         /* Gates #2 and #4a are closed/opened for "not E1" only */
9458         if (!CHIP_IS_E1(bp)) {
9459                 /* #4 */
9460                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9461                 /* #2 */
9462                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9463         }
9464
9465         /* #3 */
9466         if (CHIP_IS_E1x(bp)) {
9467                 /* Prevent interrupts from HC on both ports */
9468                 val = REG_RD(bp, HC_REG_CONFIG_1);
9469                 REG_WR(bp, HC_REG_CONFIG_1,
9470                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9471                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9472
9473                 val = REG_RD(bp, HC_REG_CONFIG_0);
9474                 REG_WR(bp, HC_REG_CONFIG_0,
9475                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9476                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9477         } else {
9478                 /* Prevent incoming interrupts in IGU */
9479                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9480
9481                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9482                        (!close) ?
9483                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9484                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9485         }
9486
9487         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9488                 close ? "closing" : "opening");
9489         mmiowb();
9490 }
9491
9492 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9493
9494 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9495 {
9496         /* Do some magic... */
9497         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9498         *magic_val = val & SHARED_MF_CLP_MAGIC;
9499         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9500 }
9501
9502 /**
9503  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9504  *
9505  * @bp:         driver handle
9506  * @magic_val:  old value of the `magic' bit.
9507  */
9508 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9509 {
9510         /* Restore the `magic' bit value... */
9511         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9512         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9513                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9514 }
9515
9516 /**
9517  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9518  *
9519  * @bp:         driver handle
9520  * @magic_val:  old value of 'magic' bit.
9521  *
9522  * Takes care of CLP configurations.
9523  */
9524 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9525 {
9526         u32 shmem;
9527         u32 validity_offset;
9528
9529         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9530
9531         /* Set `magic' bit in order to save MF config */
9532         if (!CHIP_IS_E1(bp))
9533                 bnx2x_clp_reset_prep(bp, magic_val);
9534
9535         /* Get shmem offset */
9536         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9537         validity_offset =
9538                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9539
9540         /* Clear validity map flags */
9541         if (shmem > 0)
9542                 REG_WR(bp, shmem + validity_offset, 0);
9543 }
9544
9545 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9546 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9547
9548 /**
9549  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9550  *
9551  * @bp: driver handle
9552  */
9553 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9554 {
9555         /* special handling for emulation and FPGA,
9556            wait 10 times longer */
9557         if (CHIP_REV_IS_SLOW(bp))
9558                 msleep(MCP_ONE_TIMEOUT*10);
9559         else
9560                 msleep(MCP_ONE_TIMEOUT);
9561 }
9562
9563 /*
9564  * initializes bp->common.shmem_base and waits for validity signature to appear
9565  */
9566 static int bnx2x_init_shmem(struct bnx2x *bp)
9567 {
9568         int cnt = 0;
9569         u32 val = 0;
9570
9571         do {
9572                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9573                 if (bp->common.shmem_base) {
9574                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9575                         if (val & SHR_MEM_VALIDITY_MB)
9576                                 return 0;
9577                 }
9578
9579                 bnx2x_mcp_wait_one(bp);
9580
9581         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9582
9583         BNX2X_ERR("BAD MCP validity signature\n");
9584
9585         return -ENODEV;
9586 }
9587
9588 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9589 {
9590         int rc = bnx2x_init_shmem(bp);
9591
9592         /* Restore the `magic' bit value */
9593         if (!CHIP_IS_E1(bp))
9594                 bnx2x_clp_reset_done(bp, magic_val);
9595
9596         return rc;
9597 }
9598
9599 static void bnx2x_pxp_prep(struct bnx2x *bp)
9600 {
9601         if (!CHIP_IS_E1(bp)) {
9602                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9603                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9604                 mmiowb();
9605         }
9606 }
9607
9608 /*
9609  * Reset the whole chip except for:
9610  *      - PCIE core
9611  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9612  *              one reset bit)
9613  *      - IGU
9614  *      - MISC (including AEU)
9615  *      - GRC
9616  *      - RBCN, RBCP
9617  */
9618 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9619 {
9620         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9621         u32 global_bits2, stay_reset2;
9622
9623         /*
9624          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9625          * (per chip) blocks.
9626          */
9627         global_bits2 =
9628                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9629                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9630
9631         /* Don't reset the following blocks.
9632          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9633          *            reset, as in 4 port device they might still be owned
9634          *            by the MCP (there is only one leader per path).
9635          */
9636         not_reset_mask1 =
9637                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9638                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9639                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9640
9641         not_reset_mask2 =
9642                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9643                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9644                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9645                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9646                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9647                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9648                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9649                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9650                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9651                 MISC_REGISTERS_RESET_REG_2_PGLC |
9652                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9653                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9654                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9655                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9656                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9657                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9658
9659         /*
9660          * Keep the following blocks in reset:
9661          *  - all xxMACs are handled by the bnx2x_link code.
9662          */
9663         stay_reset2 =
9664                 MISC_REGISTERS_RESET_REG_2_XMAC |
9665                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9666
9667         /* Full reset masks according to the chip */
9668         reset_mask1 = 0xffffffff;
9669
9670         if (CHIP_IS_E1(bp))
9671                 reset_mask2 = 0xffff;
9672         else if (CHIP_IS_E1H(bp))
9673                 reset_mask2 = 0x1ffff;
9674         else if (CHIP_IS_E2(bp))
9675                 reset_mask2 = 0xfffff;
9676         else /* CHIP_IS_E3 */
9677                 reset_mask2 = 0x3ffffff;
9678
9679         /* Don't reset global blocks unless we need to */
9680         if (!global)
9681                 reset_mask2 &= ~global_bits2;
9682
9683         /*
9684          * In case of attention in the QM, we need to reset PXP
9685          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9686          * because otherwise QM reset would release 'close the gates' shortly
9687          * before resetting the PXP, then the PSWRQ would send a write
9688          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9689          * read the payload data from PSWWR, but PSWWR would not
9690          * respond. The write queue in PGLUE would stuck, dmae commands
9691          * would not return. Therefore it's important to reset the second
9692          * reset register (containing the
9693          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9694          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9695          * bit).
9696          */
9697         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9698                reset_mask2 & (~not_reset_mask2));
9699
9700         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9701                reset_mask1 & (~not_reset_mask1));
9702
9703         barrier();
9704         mmiowb();
9705
9706         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9707                reset_mask2 & (~stay_reset2));
9708
9709         barrier();
9710         mmiowb();
9711
9712         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9713         mmiowb();
9714 }
9715
9716 /**
9717  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9718  * It should get cleared in no more than 1s.
9719  *
9720  * @bp: driver handle
9721  *
9722  * It should get cleared in no more than 1s. Returns 0 if
9723  * pending writes bit gets cleared.
9724  */
9725 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9726 {
9727         u32 cnt = 1000;
9728         u32 pend_bits = 0;
9729
9730         do {
9731                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9732
9733                 if (pend_bits == 0)
9734                         break;
9735
9736                 usleep_range(1000, 2000);
9737         } while (cnt-- > 0);
9738
9739         if (cnt <= 0) {
9740                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9741                           pend_bits);
9742                 return -EBUSY;
9743         }
9744
9745         return 0;
9746 }
9747
9748 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9749 {
9750         int cnt = 1000;
9751         u32 val = 0;
9752         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9753         u32 tags_63_32 = 0;
9754
9755         /* Empty the Tetris buffer, wait for 1s */
9756         do {
9757                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9758                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9759                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9760                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9761                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9762                 if (CHIP_IS_E3(bp))
9763                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9764
9765                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9766                     ((port_is_idle_0 & 0x1) == 0x1) &&
9767                     ((port_is_idle_1 & 0x1) == 0x1) &&
9768                     (pgl_exp_rom2 == 0xffffffff) &&
9769                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9770                         break;
9771                 usleep_range(1000, 2000);
9772         } while (cnt-- > 0);
9773
9774         if (cnt <= 0) {
9775                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9776                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9777                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9778                           pgl_exp_rom2);
9779                 return -EAGAIN;
9780         }
9781
9782         barrier();
9783
9784         /* Close gates #2, #3 and #4 */
9785         bnx2x_set_234_gates(bp, true);
9786
9787         /* Poll for IGU VQs for 57712 and newer chips */
9788         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9789                 return -EAGAIN;
9790
9791         /* TBD: Indicate that "process kill" is in progress to MCP */
9792
9793         /* Clear "unprepared" bit */
9794         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9795         barrier();
9796
9797         /* Make sure all is written to the chip before the reset */
9798         mmiowb();
9799
9800         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9801          * PSWHST, GRC and PSWRD Tetris buffer.
9802          */
9803         usleep_range(1000, 2000);
9804
9805         /* Prepare to chip reset: */
9806         /* MCP */
9807         if (global)
9808                 bnx2x_reset_mcp_prep(bp, &val);
9809
9810         /* PXP */
9811         bnx2x_pxp_prep(bp);
9812         barrier();
9813
9814         /* reset the chip */
9815         bnx2x_process_kill_chip_reset(bp, global);
9816         barrier();
9817
9818         /* clear errors in PGB */
9819         if (!CHIP_IS_E1x(bp))
9820                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9821
9822         /* Recover after reset: */
9823         /* MCP */
9824         if (global && bnx2x_reset_mcp_comp(bp, val))
9825                 return -EAGAIN;
9826
9827         /* TBD: Add resetting the NO_MCP mode DB here */
9828
9829         /* Open the gates #2, #3 and #4 */
9830         bnx2x_set_234_gates(bp, false);
9831
9832         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9833          * reset state, re-enable attentions. */
9834
9835         return 0;
9836 }
9837
9838 static int bnx2x_leader_reset(struct bnx2x *bp)
9839 {
9840         int rc = 0;
9841         bool global = bnx2x_reset_is_global(bp);
9842         u32 load_code;
9843
9844         /* if not going to reset MCP - load "fake" driver to reset HW while
9845          * driver is owner of the HW
9846          */
9847         if (!global && !BP_NOMCP(bp)) {
9848                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9849                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9850                 if (!load_code) {
9851                         BNX2X_ERR("MCP response failure, aborting\n");
9852                         rc = -EAGAIN;
9853                         goto exit_leader_reset;
9854                 }
9855                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9856                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9857                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9858                         rc = -EAGAIN;
9859                         goto exit_leader_reset2;
9860                 }
9861                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9862                 if (!load_code) {
9863                         BNX2X_ERR("MCP response failure, aborting\n");
9864                         rc = -EAGAIN;
9865                         goto exit_leader_reset2;
9866                 }
9867         }
9868
9869         /* Try to recover after the failure */
9870         if (bnx2x_process_kill(bp, global)) {
9871                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9872                           BP_PATH(bp));
9873                 rc = -EAGAIN;
9874                 goto exit_leader_reset2;
9875         }
9876
9877         /*
9878          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9879          * state.
9880          */
9881         bnx2x_set_reset_done(bp);
9882         if (global)
9883                 bnx2x_clear_reset_global(bp);
9884
9885 exit_leader_reset2:
9886         /* unload "fake driver" if it was loaded */
9887         if (!global && !BP_NOMCP(bp)) {
9888                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9889                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9890         }
9891 exit_leader_reset:
9892         bp->is_leader = 0;
9893         bnx2x_release_leader_lock(bp);
9894         smp_mb();
9895         return rc;
9896 }
9897
9898 static void bnx2x_recovery_failed(struct bnx2x *bp)
9899 {
9900         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9901
9902         /* Disconnect this device */
9903         netif_device_detach(bp->dev);
9904
9905         /*
9906          * Block ifup for all function on this engine until "process kill"
9907          * or power cycle.
9908          */
9909         bnx2x_set_reset_in_progress(bp);
9910
9911         /* Shut down the power */
9912         bnx2x_set_power_state(bp, PCI_D3hot);
9913
9914         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9915
9916         smp_mb();
9917 }
9918
9919 /*
9920  * Assumption: runs under rtnl lock. This together with the fact
9921  * that it's called only from bnx2x_sp_rtnl() ensure that it
9922  * will never be called when netif_running(bp->dev) is false.
9923  */
9924 static void bnx2x_parity_recover(struct bnx2x *bp)
9925 {
9926         bool global = false;
9927         u32 error_recovered, error_unrecovered;
9928         bool is_parity;
9929
9930         DP(NETIF_MSG_HW, "Handling parity\n");
9931         while (1) {
9932                 switch (bp->recovery_state) {
9933                 case BNX2X_RECOVERY_INIT:
9934                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9935                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9936                         WARN_ON(!is_parity);
9937
9938                         /* Try to get a LEADER_LOCK HW lock */
9939                         if (bnx2x_trylock_leader_lock(bp)) {
9940                                 bnx2x_set_reset_in_progress(bp);
9941                                 /*
9942                                  * Check if there is a global attention and if
9943                                  * there was a global attention, set the global
9944                                  * reset bit.
9945                                  */
9946
9947                                 if (global)
9948                                         bnx2x_set_reset_global(bp);
9949
9950                                 bp->is_leader = 1;
9951                         }
9952
9953                         /* Stop the driver */
9954                         /* If interface has been removed - break */
9955                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9956                                 return;
9957
9958                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9959
9960                         /* Ensure "is_leader", MCP command sequence and
9961                          * "recovery_state" update values are seen on other
9962                          * CPUs.
9963                          */
9964                         smp_mb();
9965                         break;
9966
9967                 case BNX2X_RECOVERY_WAIT:
9968                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9969                         if (bp->is_leader) {
9970                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9971                                 bool other_load_status =
9972                                         bnx2x_get_load_status(bp, other_engine);
9973                                 bool load_status =
9974                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9975                                 global = bnx2x_reset_is_global(bp);
9976
9977                                 /*
9978                                  * In case of a parity in a global block, let
9979                                  * the first leader that performs a
9980                                  * leader_reset() reset the global blocks in
9981                                  * order to clear global attentions. Otherwise
9982                                  * the gates will remain closed for that
9983                                  * engine.
9984                                  */
9985                                 if (load_status ||
9986                                     (global && other_load_status)) {
9987                                         /* Wait until all other functions get
9988                                          * down.
9989                                          */
9990                                         schedule_delayed_work(&bp->sp_rtnl_task,
9991                                                                 HZ/10);
9992                                         return;
9993                                 } else {
9994                                         /* If all other functions got down -
9995                                          * try to bring the chip back to
9996                                          * normal. In any case it's an exit
9997                                          * point for a leader.
9998                                          */
9999                                         if (bnx2x_leader_reset(bp)) {
10000                                                 bnx2x_recovery_failed(bp);
10001                                                 return;
10002                                         }
10003
10004                                         /* If we are here, means that the
10005                                          * leader has succeeded and doesn't
10006                                          * want to be a leader any more. Try
10007                                          * to continue as a none-leader.
10008                                          */
10009                                         break;
10010                                 }
10011                         } else { /* non-leader */
10012                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
10013                                         /* Try to get a LEADER_LOCK HW lock as
10014                                          * long as a former leader may have
10015                                          * been unloaded by the user or
10016                                          * released a leadership by another
10017                                          * reason.
10018                                          */
10019                                         if (bnx2x_trylock_leader_lock(bp)) {
10020                                                 /* I'm a leader now! Restart a
10021                                                  * switch case.
10022                                                  */
10023                                                 bp->is_leader = 1;
10024                                                 break;
10025                                         }
10026
10027                                         schedule_delayed_work(&bp->sp_rtnl_task,
10028                                                                 HZ/10);
10029                                         return;
10030
10031                                 } else {
10032                                         /*
10033                                          * If there was a global attention, wait
10034                                          * for it to be cleared.
10035                                          */
10036                                         if (bnx2x_reset_is_global(bp)) {
10037                                                 schedule_delayed_work(
10038                                                         &bp->sp_rtnl_task,
10039                                                         HZ/10);
10040                                                 return;
10041                                         }
10042
10043                                         error_recovered =
10044                                           bp->eth_stats.recoverable_error;
10045                                         error_unrecovered =
10046                                           bp->eth_stats.unrecoverable_error;
10047                                         bp->recovery_state =
10048                                                 BNX2X_RECOVERY_NIC_LOADING;
10049                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
10050                                                 error_unrecovered++;
10051                                                 netdev_err(bp->dev,
10052                                                            "Recovery failed. Power cycle needed\n");
10053                                                 /* Disconnect this device */
10054                                                 netif_device_detach(bp->dev);
10055                                                 /* Shut down the power */
10056                                                 bnx2x_set_power_state(
10057                                                         bp, PCI_D3hot);
10058                                                 smp_mb();
10059                                         } else {
10060                                                 bp->recovery_state =
10061                                                         BNX2X_RECOVERY_DONE;
10062                                                 error_recovered++;
10063                                                 smp_mb();
10064                                         }
10065                                         bp->eth_stats.recoverable_error =
10066                                                 error_recovered;
10067                                         bp->eth_stats.unrecoverable_error =
10068                                                 error_unrecovered;
10069
10070                                         return;
10071                                 }
10072                         }
10073                 default:
10074                         return;
10075                 }
10076         }
10077 }
10078
10079 #ifdef CONFIG_BNX2X_VXLAN
10080 static int bnx2x_vxlan_port_update(struct bnx2x *bp, u16 port)
10081 {
10082         struct bnx2x_func_switch_update_params *switch_update_params;
10083         struct bnx2x_func_state_params func_params = {NULL};
10084         int rc;
10085
10086         switch_update_params = &func_params.params.switch_update;
10087
10088         /* Prepare parameters for function state transitions */
10089         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
10090         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
10091
10092         func_params.f_obj = &bp->func_obj;
10093         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
10094
10095         /* Function parameters */
10096         __set_bit(BNX2X_F_UPDATE_TUNNEL_CFG_CHNG,
10097                   &switch_update_params->changes);
10098         switch_update_params->vxlan_dst_port = port;
10099         rc = bnx2x_func_state_change(bp, &func_params);
10100         if (rc)
10101                 BNX2X_ERR("failed to change vxlan dst port to %d (rc = 0x%x)\n",
10102                           port, rc);
10103         return rc;
10104 }
10105
10106 static void __bnx2x_add_vxlan_port(struct bnx2x *bp, u16 port)
10107 {
10108         if (!netif_running(bp->dev))
10109                 return;
10110
10111         if (bp->vxlan_dst_port_count && bp->vxlan_dst_port == port) {
10112                 bp->vxlan_dst_port_count++;
10113                 return;
10114         }
10115
10116         if (bp->vxlan_dst_port_count || !IS_PF(bp)) {
10117                 DP(BNX2X_MSG_SP, "Vxlan destination port limit reached\n");
10118                 return;
10119         }
10120
10121         bp->vxlan_dst_port = port;
10122         bp->vxlan_dst_port_count = 1;
10123         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_ADD_VXLAN_PORT, 0);
10124 }
10125
10126 static void bnx2x_add_vxlan_port(struct net_device *netdev,
10127                                  sa_family_t sa_family, __be16 port)
10128 {
10129         struct bnx2x *bp = netdev_priv(netdev);
10130         u16 t_port = ntohs(port);
10131
10132         __bnx2x_add_vxlan_port(bp, t_port);
10133 }
10134
10135 static void __bnx2x_del_vxlan_port(struct bnx2x *bp, u16 port)
10136 {
10137         if (!bp->vxlan_dst_port_count || bp->vxlan_dst_port != port ||
10138             !IS_PF(bp)) {
10139                 DP(BNX2X_MSG_SP, "Invalid vxlan port\n");
10140                 return;
10141         }
10142         bp->vxlan_dst_port--;
10143         if (bp->vxlan_dst_port)
10144                 return;
10145
10146         if (netif_running(bp->dev)) {
10147                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_DEL_VXLAN_PORT, 0);
10148         } else {
10149                 bp->vxlan_dst_port = 0;
10150                 netdev_info(bp->dev, "Deleted vxlan dest port %d", port);
10151         }
10152 }
10153
10154 static void bnx2x_del_vxlan_port(struct net_device *netdev,
10155                                  sa_family_t sa_family, __be16 port)
10156 {
10157         struct bnx2x *bp = netdev_priv(netdev);
10158         u16 t_port = ntohs(port);
10159
10160         __bnx2x_del_vxlan_port(bp, t_port);
10161 }
10162 #endif
10163
10164 static int bnx2x_close(struct net_device *dev);
10165
10166 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
10167  * scheduled on a general queue in order to prevent a dead lock.
10168  */
10169 static void bnx2x_sp_rtnl_task(struct work_struct *work)
10170 {
10171         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
10172 #ifdef CONFIG_BNX2X_VXLAN
10173         u16 port;
10174 #endif
10175
10176         rtnl_lock();
10177
10178         if (!netif_running(bp->dev)) {
10179                 rtnl_unlock();
10180                 return;
10181         }
10182
10183         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
10184 #ifdef BNX2X_STOP_ON_ERROR
10185                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10186                           "you will need to reboot when done\n");
10187                 goto sp_rtnl_not_reset;
10188 #endif
10189                 /*
10190                  * Clear all pending SP commands as we are going to reset the
10191                  * function anyway.
10192                  */
10193                 bp->sp_rtnl_state = 0;
10194                 smp_mb();
10195
10196                 bnx2x_parity_recover(bp);
10197
10198                 rtnl_unlock();
10199                 return;
10200         }
10201
10202         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
10203 #ifdef BNX2X_STOP_ON_ERROR
10204                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
10205                           "you will need to reboot when done\n");
10206                 goto sp_rtnl_not_reset;
10207 #endif
10208
10209                 /*
10210                  * Clear all pending SP commands as we are going to reset the
10211                  * function anyway.
10212                  */
10213                 bp->sp_rtnl_state = 0;
10214                 smp_mb();
10215
10216                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
10217                 bnx2x_nic_load(bp, LOAD_NORMAL);
10218
10219                 rtnl_unlock();
10220                 return;
10221         }
10222 #ifdef BNX2X_STOP_ON_ERROR
10223 sp_rtnl_not_reset:
10224 #endif
10225         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
10226                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
10227         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
10228                 bnx2x_after_function_update(bp);
10229         /*
10230          * in case of fan failure we need to reset id if the "stop on error"
10231          * debug flag is set, since we trying to prevent permanent overheating
10232          * damage
10233          */
10234         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
10235                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
10236                 netif_device_detach(bp->dev);
10237                 bnx2x_close(bp->dev);
10238                 rtnl_unlock();
10239                 return;
10240         }
10241
10242         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
10243                 DP(BNX2X_MSG_SP,
10244                    "sending set mcast vf pf channel message from rtnl sp-task\n");
10245                 bnx2x_vfpf_set_mcast(bp->dev);
10246         }
10247         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
10248                                &bp->sp_rtnl_state)){
10249                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
10250                         bnx2x_tx_disable(bp);
10251                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
10252                 }
10253         }
10254
10255         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
10256                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
10257                 bnx2x_set_rx_mode_inner(bp);
10258         }
10259
10260         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
10261                                &bp->sp_rtnl_state))
10262                 bnx2x_pf_set_vfs_vlan(bp);
10263
10264         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
10265                 bnx2x_dcbx_stop_hw_tx(bp);
10266                 bnx2x_dcbx_resume_hw_tx(bp);
10267         }
10268
10269         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
10270                                &bp->sp_rtnl_state))
10271                 bnx2x_update_mng_version(bp);
10272
10273 #ifdef CONFIG_BNX2X_VXLAN
10274         port = bp->vxlan_dst_port;
10275         if (test_and_clear_bit(BNX2X_SP_RTNL_ADD_VXLAN_PORT,
10276                                &bp->sp_rtnl_state)) {
10277                 if (!bnx2x_vxlan_port_update(bp, port))
10278                         netdev_info(bp->dev, "Added vxlan dest port %d", port);
10279                 else
10280                         bp->vxlan_dst_port = 0;
10281         }
10282
10283         if (test_and_clear_bit(BNX2X_SP_RTNL_DEL_VXLAN_PORT,
10284                                &bp->sp_rtnl_state)) {
10285                 if (!bnx2x_vxlan_port_update(bp, 0)) {
10286                         netdev_info(bp->dev,
10287                                     "Deleted vxlan dest port %d", port);
10288                         bp->vxlan_dst_port = 0;
10289                         vxlan_get_rx_port(bp->dev);
10290                 }
10291         }
10292 #endif
10293
10294         /* work which needs rtnl lock not-taken (as it takes the lock itself and
10295          * can be called from other contexts as well)
10296          */
10297         rtnl_unlock();
10298
10299         /* enable SR-IOV if applicable */
10300         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
10301                                                &bp->sp_rtnl_state)) {
10302                 bnx2x_disable_sriov(bp);
10303                 bnx2x_enable_sriov(bp);
10304         }
10305 }
10306
10307 static void bnx2x_period_task(struct work_struct *work)
10308 {
10309         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
10310
10311         if (!netif_running(bp->dev))
10312                 goto period_task_exit;
10313
10314         if (CHIP_REV_IS_SLOW(bp)) {
10315                 BNX2X_ERR("period task called on emulation, ignoring\n");
10316                 goto period_task_exit;
10317         }
10318
10319         bnx2x_acquire_phy_lock(bp);
10320         /*
10321          * The barrier is needed to ensure the ordering between the writing to
10322          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
10323          * the reading here.
10324          */
10325         smp_mb();
10326         if (bp->port.pmf) {
10327                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
10328
10329                 /* Re-queue task in 1 sec */
10330                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
10331         }
10332
10333         bnx2x_release_phy_lock(bp);
10334 period_task_exit:
10335         return;
10336 }
10337
10338 /*
10339  * Init service functions
10340  */
10341
10342 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
10343 {
10344         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
10345         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
10346         return base + (BP_ABS_FUNC(bp)) * stride;
10347 }
10348
10349 static bool bnx2x_prev_unload_close_umac(struct bnx2x *bp,
10350                                          u8 port, u32 reset_reg,
10351                                          struct bnx2x_mac_vals *vals)
10352 {
10353         u32 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10354         u32 base_addr;
10355
10356         if (!(mask & reset_reg))
10357                 return false;
10358
10359         BNX2X_DEV_INFO("Disable umac Rx %02x\n", port);
10360         base_addr = port ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10361         vals->umac_addr[port] = base_addr + UMAC_REG_COMMAND_CONFIG;
10362         vals->umac_val[port] = REG_RD(bp, vals->umac_addr[port]);
10363         REG_WR(bp, vals->umac_addr[port], 0);
10364
10365         return true;
10366 }
10367
10368 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
10369                                         struct bnx2x_mac_vals *vals)
10370 {
10371         u32 val, base_addr, offset, mask, reset_reg;
10372         bool mac_stopped = false;
10373         u8 port = BP_PORT(bp);
10374
10375         /* reset addresses as they also mark which values were changed */
10376         memset(vals, 0, sizeof(*vals));
10377
10378         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
10379
10380         if (!CHIP_IS_E3(bp)) {
10381                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
10382                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
10383                 if ((mask & reset_reg) && val) {
10384                         u32 wb_data[2];
10385                         BNX2X_DEV_INFO("Disable bmac Rx\n");
10386                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
10387                                                 : NIG_REG_INGRESS_BMAC0_MEM;
10388                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
10389                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
10390
10391                         /*
10392                          * use rd/wr since we cannot use dmae. This is safe
10393                          * since MCP won't access the bus due to the request
10394                          * to unload, and no function on the path can be
10395                          * loaded at this time.
10396                          */
10397                         wb_data[0] = REG_RD(bp, base_addr + offset);
10398                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10399                         vals->bmac_addr = base_addr + offset;
10400                         vals->bmac_val[0] = wb_data[0];
10401                         vals->bmac_val[1] = wb_data[1];
10402                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10403                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10404                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10405                 }
10406                 BNX2X_DEV_INFO("Disable emac Rx\n");
10407                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10408                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10409                 REG_WR(bp, vals->emac_addr, 0);
10410                 mac_stopped = true;
10411         } else {
10412                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10413                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10414                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10415                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10416                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10417                                val & ~(1 << 1));
10418                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10419                                val | (1 << 1));
10420                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10421                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10422                         REG_WR(bp, vals->xmac_addr, 0);
10423                         mac_stopped = true;
10424                 }
10425
10426                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 0,
10427                                                             reset_reg, vals);
10428                 mac_stopped |= bnx2x_prev_unload_close_umac(bp, 1,
10429                                                             reset_reg, vals);
10430         }
10431
10432         if (mac_stopped)
10433                 msleep(20);
10434 }
10435
10436 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10437 #define BNX2X_PREV_UNDI_PROD_ADDR_H(f) (BAR_TSTRORM_INTMEM + \
10438                                         0x1848 + ((f) << 4))
10439 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10440 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10441 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10442
10443 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10444 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10445 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10446
10447 static bool bnx2x_prev_is_after_undi(struct bnx2x *bp)
10448 {
10449         /* UNDI marks its presence in DORQ -
10450          * it initializes CID offset for normal bell to 0x7
10451          */
10452         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10453             MISC_REGISTERS_RESET_REG_1_RST_DORQ))
10454                 return false;
10455
10456         if (REG_RD(bp, DORQ_REG_NORM_CID_OFST) == 0x7) {
10457                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10458                 return true;
10459         }
10460
10461         return false;
10462 }
10463
10464 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 inc)
10465 {
10466         u16 rcq, bd;
10467         u32 addr, tmp_reg;
10468
10469         if (BP_FUNC(bp) < 2)
10470                 addr = BNX2X_PREV_UNDI_PROD_ADDR(BP_PORT(bp));
10471         else
10472                 addr = BNX2X_PREV_UNDI_PROD_ADDR_H(BP_FUNC(bp) - 2);
10473
10474         tmp_reg = REG_RD(bp, addr);
10475         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10476         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10477
10478         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10479         REG_WR(bp, addr, tmp_reg);
10480
10481         BNX2X_DEV_INFO("UNDI producer [%d/%d][%08x] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10482                        BP_PORT(bp), BP_FUNC(bp), addr, bd, rcq);
10483 }
10484
10485 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10486 {
10487         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10488                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10489         if (!rc) {
10490                 BNX2X_ERR("MCP response failure, aborting\n");
10491                 return -EBUSY;
10492         }
10493
10494         return 0;
10495 }
10496
10497 static struct bnx2x_prev_path_list *
10498                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10499 {
10500         struct bnx2x_prev_path_list *tmp_list;
10501
10502         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10503                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10504                     bp->pdev->bus->number == tmp_list->bus &&
10505                     BP_PATH(bp) == tmp_list->path)
10506                         return tmp_list;
10507
10508         return NULL;
10509 }
10510
10511 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10512 {
10513         struct bnx2x_prev_path_list *tmp_list;
10514         int rc;
10515
10516         rc = down_interruptible(&bnx2x_prev_sem);
10517         if (rc) {
10518                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10519                 return rc;
10520         }
10521
10522         tmp_list = bnx2x_prev_path_get_entry(bp);
10523         if (tmp_list) {
10524                 tmp_list->aer = 1;
10525                 rc = 0;
10526         } else {
10527                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10528                           BP_PATH(bp));
10529         }
10530
10531         up(&bnx2x_prev_sem);
10532
10533         return rc;
10534 }
10535
10536 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10537 {
10538         struct bnx2x_prev_path_list *tmp_list;
10539         bool rc = false;
10540
10541         if (down_trylock(&bnx2x_prev_sem))
10542                 return false;
10543
10544         tmp_list = bnx2x_prev_path_get_entry(bp);
10545         if (tmp_list) {
10546                 if (tmp_list->aer) {
10547                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10548                            BP_PATH(bp));
10549                 } else {
10550                         rc = true;
10551                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10552                                        BP_PATH(bp));
10553                 }
10554         }
10555
10556         up(&bnx2x_prev_sem);
10557
10558         return rc;
10559 }
10560
10561 bool bnx2x_port_after_undi(struct bnx2x *bp)
10562 {
10563         struct bnx2x_prev_path_list *entry;
10564         bool val;
10565
10566         down(&bnx2x_prev_sem);
10567
10568         entry = bnx2x_prev_path_get_entry(bp);
10569         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10570
10571         up(&bnx2x_prev_sem);
10572
10573         return val;
10574 }
10575
10576 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10577 {
10578         struct bnx2x_prev_path_list *tmp_list;
10579         int rc;
10580
10581         rc = down_interruptible(&bnx2x_prev_sem);
10582         if (rc) {
10583                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10584                 return rc;
10585         }
10586
10587         /* Check whether the entry for this path already exists */
10588         tmp_list = bnx2x_prev_path_get_entry(bp);
10589         if (tmp_list) {
10590                 if (!tmp_list->aer) {
10591                         BNX2X_ERR("Re-Marking the path.\n");
10592                 } else {
10593                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10594                            BP_PATH(bp));
10595                         tmp_list->aer = 0;
10596                 }
10597                 up(&bnx2x_prev_sem);
10598                 return 0;
10599         }
10600         up(&bnx2x_prev_sem);
10601
10602         /* Create an entry for this path and add it */
10603         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10604         if (!tmp_list) {
10605                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10606                 return -ENOMEM;
10607         }
10608
10609         tmp_list->bus = bp->pdev->bus->number;
10610         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10611         tmp_list->path = BP_PATH(bp);
10612         tmp_list->aer = 0;
10613         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10614
10615         rc = down_interruptible(&bnx2x_prev_sem);
10616         if (rc) {
10617                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10618                 kfree(tmp_list);
10619         } else {
10620                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10621                    BP_PATH(bp));
10622                 list_add(&tmp_list->list, &bnx2x_prev_list);
10623                 up(&bnx2x_prev_sem);
10624         }
10625
10626         return rc;
10627 }
10628
10629 static int bnx2x_do_flr(struct bnx2x *bp)
10630 {
10631         struct pci_dev *dev = bp->pdev;
10632
10633         if (CHIP_IS_E1x(bp)) {
10634                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10635                 return -EINVAL;
10636         }
10637
10638         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10639         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10640                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10641                           bp->common.bc_ver);
10642                 return -EINVAL;
10643         }
10644
10645         if (!pci_wait_for_pending_transaction(dev))
10646                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10647
10648         BNX2X_DEV_INFO("Initiating FLR\n");
10649         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10650
10651         return 0;
10652 }
10653
10654 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10655 {
10656         int rc;
10657
10658         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10659
10660         /* Test if previous unload process was already finished for this path */
10661         if (bnx2x_prev_is_path_marked(bp))
10662                 return bnx2x_prev_mcp_done(bp);
10663
10664         BNX2X_DEV_INFO("Path is unmarked\n");
10665
10666         /* Cannot proceed with FLR if UNDI is loaded, since FW does not match */
10667         if (bnx2x_prev_is_after_undi(bp))
10668                 goto out;
10669
10670         /* If function has FLR capabilities, and existing FW version matches
10671          * the one required, then FLR will be sufficient to clean any residue
10672          * left by previous driver
10673          */
10674         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10675
10676         if (!rc) {
10677                 /* fw version is good */
10678                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10679                 rc = bnx2x_do_flr(bp);
10680         }
10681
10682         if (!rc) {
10683                 /* FLR was performed */
10684                 BNX2X_DEV_INFO("FLR successful\n");
10685                 return 0;
10686         }
10687
10688         BNX2X_DEV_INFO("Could not FLR\n");
10689
10690 out:
10691         /* Close the MCP request, return failure*/
10692         rc = bnx2x_prev_mcp_done(bp);
10693         if (!rc)
10694                 rc = BNX2X_PREV_WAIT_NEEDED;
10695
10696         return rc;
10697 }
10698
10699 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10700 {
10701         u32 reset_reg, tmp_reg = 0, rc;
10702         bool prev_undi = false;
10703         struct bnx2x_mac_vals mac_vals;
10704
10705         /* It is possible a previous function received 'common' answer,
10706          * but hasn't loaded yet, therefore creating a scenario of
10707          * multiple functions receiving 'common' on the same path.
10708          */
10709         BNX2X_DEV_INFO("Common unload Flow\n");
10710
10711         memset(&mac_vals, 0, sizeof(mac_vals));
10712
10713         if (bnx2x_prev_is_path_marked(bp))
10714                 return bnx2x_prev_mcp_done(bp);
10715
10716         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10717
10718         /* Reset should be performed after BRB is emptied */
10719         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10720                 u32 timer_count = 1000;
10721
10722                 /* Close the MAC Rx to prevent BRB from filling up */
10723                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10724
10725                 /* close LLH filters for both ports towards the BRB */
10726                 bnx2x_set_rx_filter(&bp->link_params, 0);
10727                 bp->link_params.port ^= 1;
10728                 bnx2x_set_rx_filter(&bp->link_params, 0);
10729                 bp->link_params.port ^= 1;
10730
10731                 /* Check if the UNDI driver was previously loaded */
10732                 if (bnx2x_prev_is_after_undi(bp)) {
10733                         prev_undi = true;
10734                         /* clear the UNDI indication */
10735                         REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10736                         /* clear possible idle check errors */
10737                         REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10738                 }
10739                 if (!CHIP_IS_E1x(bp))
10740                         /* block FW from writing to host */
10741                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10742
10743                 /* wait until BRB is empty */
10744                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10745                 while (timer_count) {
10746                         u32 prev_brb = tmp_reg;
10747
10748                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10749                         if (!tmp_reg)
10750                                 break;
10751
10752                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10753
10754                         /* reset timer as long as BRB actually gets emptied */
10755                         if (prev_brb > tmp_reg)
10756                                 timer_count = 1000;
10757                         else
10758                                 timer_count--;
10759
10760                         /* If UNDI resides in memory, manually increment it */
10761                         if (prev_undi)
10762                                 bnx2x_prev_unload_undi_inc(bp, 1);
10763
10764                         udelay(10);
10765                 }
10766
10767                 if (!timer_count)
10768                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10769         }
10770
10771         /* No packets are in the pipeline, path is ready for reset */
10772         bnx2x_reset_common(bp);
10773
10774         if (mac_vals.xmac_addr)
10775                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10776         if (mac_vals.umac_addr[0])
10777                 REG_WR(bp, mac_vals.umac_addr[0], mac_vals.umac_val[0]);
10778         if (mac_vals.umac_addr[1])
10779                 REG_WR(bp, mac_vals.umac_addr[1], mac_vals.umac_val[1]);
10780         if (mac_vals.emac_addr)
10781                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10782         if (mac_vals.bmac_addr) {
10783                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10784                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10785         }
10786
10787         rc = bnx2x_prev_mark_path(bp, prev_undi);
10788         if (rc) {
10789                 bnx2x_prev_mcp_done(bp);
10790                 return rc;
10791         }
10792
10793         return bnx2x_prev_mcp_done(bp);
10794 }
10795
10796 static int bnx2x_prev_unload(struct bnx2x *bp)
10797 {
10798         int time_counter = 10;
10799         u32 rc, fw, hw_lock_reg, hw_lock_val;
10800         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10801
10802         /* clear hw from errors which may have resulted from an interrupted
10803          * dmae transaction.
10804          */
10805         bnx2x_clean_pglue_errors(bp);
10806
10807         /* Release previously held locks */
10808         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10809                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10810                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10811
10812         hw_lock_val = REG_RD(bp, hw_lock_reg);
10813         if (hw_lock_val) {
10814                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10815                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10816                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10817                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10818                 }
10819
10820                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10821                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10822         } else
10823                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10824
10825         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10826                 BNX2X_DEV_INFO("Release previously held alr\n");
10827                 bnx2x_release_alr(bp);
10828         }
10829
10830         do {
10831                 int aer = 0;
10832                 /* Lock MCP using an unload request */
10833                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10834                 if (!fw) {
10835                         BNX2X_ERR("MCP response failure, aborting\n");
10836                         rc = -EBUSY;
10837                         break;
10838                 }
10839
10840                 rc = down_interruptible(&bnx2x_prev_sem);
10841                 if (rc) {
10842                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10843                                   rc);
10844                 } else {
10845                         /* If Path is marked by EEH, ignore unload status */
10846                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10847                                  bnx2x_prev_path_get_entry(bp)->aer);
10848                         up(&bnx2x_prev_sem);
10849                 }
10850
10851                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10852                         rc = bnx2x_prev_unload_common(bp);
10853                         break;
10854                 }
10855
10856                 /* non-common reply from MCP might require looping */
10857                 rc = bnx2x_prev_unload_uncommon(bp);
10858                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10859                         break;
10860
10861                 msleep(20);
10862         } while (--time_counter);
10863
10864         if (!time_counter || rc) {
10865                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10866                 rc = -EPROBE_DEFER;
10867         }
10868
10869         /* Mark function if its port was used to boot from SAN */
10870         if (bnx2x_port_after_undi(bp))
10871                 bp->link_params.feature_config_flags |=
10872                         FEATURE_CONFIG_BOOT_FROM_SAN;
10873
10874         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10875
10876         return rc;
10877 }
10878
10879 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10880 {
10881         u32 val, val2, val3, val4, id, boot_mode;
10882         u16 pmc;
10883
10884         /* Get the chip revision id and number. */
10885         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10886         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10887         id = ((val & 0xffff) << 16);
10888         val = REG_RD(bp, MISC_REG_CHIP_REV);
10889         id |= ((val & 0xf) << 12);
10890
10891         /* Metal is read from PCI regs, but we can't access >=0x400 from
10892          * the configuration space (so we need to reg_rd)
10893          */
10894         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10895         id |= (((val >> 24) & 0xf) << 4);
10896         val = REG_RD(bp, MISC_REG_BOND_ID);
10897         id |= (val & 0xf);
10898         bp->common.chip_id = id;
10899
10900         /* force 57811 according to MISC register */
10901         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10902                 if (CHIP_IS_57810(bp))
10903                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10904                                 (bp->common.chip_id & 0x0000FFFF);
10905                 else if (CHIP_IS_57810_MF(bp))
10906                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10907                                 (bp->common.chip_id & 0x0000FFFF);
10908                 bp->common.chip_id |= 0x1;
10909         }
10910
10911         /* Set doorbell size */
10912         bp->db_size = (1 << BNX2X_DB_SHIFT);
10913
10914         if (!CHIP_IS_E1x(bp)) {
10915                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10916                 if ((val & 1) == 0)
10917                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10918                 else
10919                         val = (val >> 1) & 1;
10920                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10921                                                        "2_PORT_MODE");
10922                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10923                                                  CHIP_2_PORT_MODE;
10924
10925                 if (CHIP_MODE_IS_4_PORT(bp))
10926                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10927                 else
10928                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10929         } else {
10930                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10931                 bp->pfid = bp->pf_num;                  /* 0..7 */
10932         }
10933
10934         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10935
10936         bp->link_params.chip_id = bp->common.chip_id;
10937         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10938
10939         val = (REG_RD(bp, 0x2874) & 0x55);
10940         if ((bp->common.chip_id & 0x1) ||
10941             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10942                 bp->flags |= ONE_PORT_FLAG;
10943                 BNX2X_DEV_INFO("single port device\n");
10944         }
10945
10946         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10947         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10948                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10949         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10950                        bp->common.flash_size, bp->common.flash_size);
10951
10952         bnx2x_init_shmem(bp);
10953
10954         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10955                                         MISC_REG_GENERIC_CR_1 :
10956                                         MISC_REG_GENERIC_CR_0));
10957
10958         bp->link_params.shmem_base = bp->common.shmem_base;
10959         bp->link_params.shmem2_base = bp->common.shmem2_base;
10960         if (SHMEM2_RD(bp, size) >
10961             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10962                 bp->link_params.lfa_base =
10963                 REG_RD(bp, bp->common.shmem2_base +
10964                        (u32)offsetof(struct shmem2_region,
10965                                      lfa_host_addr[BP_PORT(bp)]));
10966         else
10967                 bp->link_params.lfa_base = 0;
10968         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10969                        bp->common.shmem_base, bp->common.shmem2_base);
10970
10971         if (!bp->common.shmem_base) {
10972                 BNX2X_DEV_INFO("MCP not active\n");
10973                 bp->flags |= NO_MCP_FLAG;
10974                 return;
10975         }
10976
10977         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10978         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10979
10980         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10981                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10982                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10983
10984         bp->link_params.feature_config_flags = 0;
10985         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10986         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10987                 bp->link_params.feature_config_flags |=
10988                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10989         else
10990                 bp->link_params.feature_config_flags &=
10991                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10992
10993         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10994         bp->common.bc_ver = val;
10995         BNX2X_DEV_INFO("bc_ver %X\n", val);
10996         if (val < BNX2X_BC_VER) {
10997                 /* for now only warn
10998                  * later we might need to enforce this */
10999                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
11000                           BNX2X_BC_VER, val);
11001         }
11002         bp->link_params.feature_config_flags |=
11003                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
11004                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
11005
11006         bp->link_params.feature_config_flags |=
11007                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
11008                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
11009         bp->link_params.feature_config_flags |=
11010                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
11011                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
11012         bp->link_params.feature_config_flags |=
11013                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
11014                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
11015
11016         bp->link_params.feature_config_flags |=
11017                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
11018                 FEATURE_CONFIG_MT_SUPPORT : 0;
11019
11020         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
11021                         BC_SUPPORTS_PFC_STATS : 0;
11022
11023         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
11024                         BC_SUPPORTS_FCOE_FEATURES : 0;
11025
11026         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
11027                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
11028
11029         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
11030                         BC_SUPPORTS_RMMOD_CMD : 0;
11031
11032         boot_mode = SHMEM_RD(bp,
11033                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
11034                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
11035         switch (boot_mode) {
11036         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
11037                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
11038                 break;
11039         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
11040                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
11041                 break;
11042         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
11043                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
11044                 break;
11045         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
11046                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
11047                 break;
11048         }
11049
11050         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
11051         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
11052
11053         BNX2X_DEV_INFO("%sWoL capable\n",
11054                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
11055
11056         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
11057         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
11058         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
11059         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
11060
11061         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
11062                  val, val2, val3, val4);
11063 }
11064
11065 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
11066 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
11067
11068 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
11069 {
11070         int pfid = BP_FUNC(bp);
11071         int igu_sb_id;
11072         u32 val;
11073         u8 fid, igu_sb_cnt = 0;
11074
11075         bp->igu_base_sb = 0xff;
11076         if (CHIP_INT_MODE_IS_BC(bp)) {
11077                 int vn = BP_VN(bp);
11078                 igu_sb_cnt = bp->igu_sb_cnt;
11079                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
11080                         FP_SB_MAX_E1x;
11081
11082                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
11083                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
11084
11085                 return 0;
11086         }
11087
11088         /* IGU in normal mode - read CAM */
11089         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
11090              igu_sb_id++) {
11091                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
11092                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
11093                         continue;
11094                 fid = IGU_FID(val);
11095                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
11096                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
11097                                 continue;
11098                         if (IGU_VEC(val) == 0)
11099                                 /* default status block */
11100                                 bp->igu_dsb_id = igu_sb_id;
11101                         else {
11102                                 if (bp->igu_base_sb == 0xff)
11103                                         bp->igu_base_sb = igu_sb_id;
11104                                 igu_sb_cnt++;
11105                         }
11106                 }
11107         }
11108
11109 #ifdef CONFIG_PCI_MSI
11110         /* Due to new PF resource allocation by MFW T7.4 and above, it's
11111          * optional that number of CAM entries will not be equal to the value
11112          * advertised in PCI.
11113          * Driver should use the minimal value of both as the actual status
11114          * block count
11115          */
11116         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
11117 #endif
11118
11119         if (igu_sb_cnt == 0) {
11120                 BNX2X_ERR("CAM configuration error\n");
11121                 return -EINVAL;
11122         }
11123
11124         return 0;
11125 }
11126
11127 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
11128 {
11129         int cfg_size = 0, idx, port = BP_PORT(bp);
11130
11131         /* Aggregation of supported attributes of all external phys */
11132         bp->port.supported[0] = 0;
11133         bp->port.supported[1] = 0;
11134         switch (bp->link_params.num_phys) {
11135         case 1:
11136                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
11137                 cfg_size = 1;
11138                 break;
11139         case 2:
11140                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
11141                 cfg_size = 1;
11142                 break;
11143         case 3:
11144                 if (bp->link_params.multi_phy_config &
11145                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11146                         bp->port.supported[1] =
11147                                 bp->link_params.phy[EXT_PHY1].supported;
11148                         bp->port.supported[0] =
11149                                 bp->link_params.phy[EXT_PHY2].supported;
11150                 } else {
11151                         bp->port.supported[0] =
11152                                 bp->link_params.phy[EXT_PHY1].supported;
11153                         bp->port.supported[1] =
11154                                 bp->link_params.phy[EXT_PHY2].supported;
11155                 }
11156                 cfg_size = 2;
11157                 break;
11158         }
11159
11160         if (!(bp->port.supported[0] || bp->port.supported[1])) {
11161                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
11162                            SHMEM_RD(bp,
11163                            dev_info.port_hw_config[port].external_phy_config),
11164                            SHMEM_RD(bp,
11165                            dev_info.port_hw_config[port].external_phy_config2));
11166                         return;
11167         }
11168
11169         if (CHIP_IS_E3(bp))
11170                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
11171         else {
11172                 switch (switch_cfg) {
11173                 case SWITCH_CFG_1G:
11174                         bp->port.phy_addr = REG_RD(
11175                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
11176                         break;
11177                 case SWITCH_CFG_10G:
11178                         bp->port.phy_addr = REG_RD(
11179                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
11180                         break;
11181                 default:
11182                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
11183                                   bp->port.link_config[0]);
11184                         return;
11185                 }
11186         }
11187         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
11188         /* mask what we support according to speed_cap_mask per configuration */
11189         for (idx = 0; idx < cfg_size; idx++) {
11190                 if (!(bp->link_params.speed_cap_mask[idx] &
11191                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
11192                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
11193
11194                 if (!(bp->link_params.speed_cap_mask[idx] &
11195                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
11196                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
11197
11198                 if (!(bp->link_params.speed_cap_mask[idx] &
11199                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
11200                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
11201
11202                 if (!(bp->link_params.speed_cap_mask[idx] &
11203                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
11204                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
11205
11206                 if (!(bp->link_params.speed_cap_mask[idx] &
11207                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
11208                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
11209                                                      SUPPORTED_1000baseT_Full);
11210
11211                 if (!(bp->link_params.speed_cap_mask[idx] &
11212                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
11213                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
11214
11215                 if (!(bp->link_params.speed_cap_mask[idx] &
11216                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
11217                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
11218
11219                 if (!(bp->link_params.speed_cap_mask[idx] &
11220                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
11221                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
11222         }
11223
11224         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
11225                        bp->port.supported[1]);
11226 }
11227
11228 static void bnx2x_link_settings_requested(struct bnx2x *bp)
11229 {
11230         u32 link_config, idx, cfg_size = 0;
11231         bp->port.advertising[0] = 0;
11232         bp->port.advertising[1] = 0;
11233         switch (bp->link_params.num_phys) {
11234         case 1:
11235         case 2:
11236                 cfg_size = 1;
11237                 break;
11238         case 3:
11239                 cfg_size = 2;
11240                 break;
11241         }
11242         for (idx = 0; idx < cfg_size; idx++) {
11243                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
11244                 link_config = bp->port.link_config[idx];
11245                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
11246                 case PORT_FEATURE_LINK_SPEED_AUTO:
11247                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
11248                                 bp->link_params.req_line_speed[idx] =
11249                                         SPEED_AUTO_NEG;
11250                                 bp->port.advertising[idx] |=
11251                                         bp->port.supported[idx];
11252                                 if (bp->link_params.phy[EXT_PHY1].type ==
11253                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
11254                                         bp->port.advertising[idx] |=
11255                                         (SUPPORTED_100baseT_Half |
11256                                          SUPPORTED_100baseT_Full);
11257                         } else {
11258                                 /* force 10G, no AN */
11259                                 bp->link_params.req_line_speed[idx] =
11260                                         SPEED_10000;
11261                                 bp->port.advertising[idx] |=
11262                                         (ADVERTISED_10000baseT_Full |
11263                                          ADVERTISED_FIBRE);
11264                                 continue;
11265                         }
11266                         break;
11267
11268                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
11269                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
11270                                 bp->link_params.req_line_speed[idx] =
11271                                         SPEED_10;
11272                                 bp->port.advertising[idx] |=
11273                                         (ADVERTISED_10baseT_Full |
11274                                          ADVERTISED_TP);
11275                         } else {
11276                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11277                                             link_config,
11278                                     bp->link_params.speed_cap_mask[idx]);
11279                                 return;
11280                         }
11281                         break;
11282
11283                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
11284                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
11285                                 bp->link_params.req_line_speed[idx] =
11286                                         SPEED_10;
11287                                 bp->link_params.req_duplex[idx] =
11288                                         DUPLEX_HALF;
11289                                 bp->port.advertising[idx] |=
11290                                         (ADVERTISED_10baseT_Half |
11291                                          ADVERTISED_TP);
11292                         } else {
11293                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11294                                             link_config,
11295                                           bp->link_params.speed_cap_mask[idx]);
11296                                 return;
11297                         }
11298                         break;
11299
11300                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
11301                         if (bp->port.supported[idx] &
11302                             SUPPORTED_100baseT_Full) {
11303                                 bp->link_params.req_line_speed[idx] =
11304                                         SPEED_100;
11305                                 bp->port.advertising[idx] |=
11306                                         (ADVERTISED_100baseT_Full |
11307                                          ADVERTISED_TP);
11308                         } else {
11309                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11310                                             link_config,
11311                                           bp->link_params.speed_cap_mask[idx]);
11312                                 return;
11313                         }
11314                         break;
11315
11316                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
11317                         if (bp->port.supported[idx] &
11318                             SUPPORTED_100baseT_Half) {
11319                                 bp->link_params.req_line_speed[idx] =
11320                                                                 SPEED_100;
11321                                 bp->link_params.req_duplex[idx] =
11322                                                                 DUPLEX_HALF;
11323                                 bp->port.advertising[idx] |=
11324                                         (ADVERTISED_100baseT_Half |
11325                                          ADVERTISED_TP);
11326                         } else {
11327                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11328                                     link_config,
11329                                     bp->link_params.speed_cap_mask[idx]);
11330                                 return;
11331                         }
11332                         break;
11333
11334                 case PORT_FEATURE_LINK_SPEED_1G:
11335                         if (bp->port.supported[idx] &
11336                             SUPPORTED_1000baseT_Full) {
11337                                 bp->link_params.req_line_speed[idx] =
11338                                         SPEED_1000;
11339                                 bp->port.advertising[idx] |=
11340                                         (ADVERTISED_1000baseT_Full |
11341                                          ADVERTISED_TP);
11342                         } else if (bp->port.supported[idx] &
11343                                    SUPPORTED_1000baseKX_Full) {
11344                                 bp->link_params.req_line_speed[idx] =
11345                                         SPEED_1000;
11346                                 bp->port.advertising[idx] |=
11347                                         ADVERTISED_1000baseKX_Full;
11348                         } else {
11349                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11350                                     link_config,
11351                                     bp->link_params.speed_cap_mask[idx]);
11352                                 return;
11353                         }
11354                         break;
11355
11356                 case PORT_FEATURE_LINK_SPEED_2_5G:
11357                         if (bp->port.supported[idx] &
11358                             SUPPORTED_2500baseX_Full) {
11359                                 bp->link_params.req_line_speed[idx] =
11360                                         SPEED_2500;
11361                                 bp->port.advertising[idx] |=
11362                                         (ADVERTISED_2500baseX_Full |
11363                                                 ADVERTISED_TP);
11364                         } else {
11365                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11366                                     link_config,
11367                                     bp->link_params.speed_cap_mask[idx]);
11368                                 return;
11369                         }
11370                         break;
11371
11372                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11373                         if (bp->port.supported[idx] &
11374                             SUPPORTED_10000baseT_Full) {
11375                                 bp->link_params.req_line_speed[idx] =
11376                                         SPEED_10000;
11377                                 bp->port.advertising[idx] |=
11378                                         (ADVERTISED_10000baseT_Full |
11379                                                 ADVERTISED_FIBRE);
11380                         } else if (bp->port.supported[idx] &
11381                                    SUPPORTED_10000baseKR_Full) {
11382                                 bp->link_params.req_line_speed[idx] =
11383                                         SPEED_10000;
11384                                 bp->port.advertising[idx] |=
11385                                         (ADVERTISED_10000baseKR_Full |
11386                                                 ADVERTISED_FIBRE);
11387                         } else {
11388                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11389                                     link_config,
11390                                     bp->link_params.speed_cap_mask[idx]);
11391                                 return;
11392                         }
11393                         break;
11394                 case PORT_FEATURE_LINK_SPEED_20G:
11395                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11396
11397                         break;
11398                 default:
11399                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11400                                   link_config);
11401                                 bp->link_params.req_line_speed[idx] =
11402                                                         SPEED_AUTO_NEG;
11403                                 bp->port.advertising[idx] =
11404                                                 bp->port.supported[idx];
11405                         break;
11406                 }
11407
11408                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11409                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11410                 if (bp->link_params.req_flow_ctrl[idx] ==
11411                     BNX2X_FLOW_CTRL_AUTO) {
11412                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11413                                 bp->link_params.req_flow_ctrl[idx] =
11414                                                         BNX2X_FLOW_CTRL_NONE;
11415                         else
11416                                 bnx2x_set_requested_fc(bp);
11417                 }
11418
11419                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11420                                bp->link_params.req_line_speed[idx],
11421                                bp->link_params.req_duplex[idx],
11422                                bp->link_params.req_flow_ctrl[idx],
11423                                bp->port.advertising[idx]);
11424         }
11425 }
11426
11427 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11428 {
11429         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11430         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11431         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11432         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11433 }
11434
11435 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11436 {
11437         int port = BP_PORT(bp);
11438         u32 config;
11439         u32 ext_phy_type, ext_phy_config, eee_mode;
11440
11441         bp->link_params.bp = bp;
11442         bp->link_params.port = port;
11443
11444         bp->link_params.lane_config =
11445                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11446
11447         bp->link_params.speed_cap_mask[0] =
11448                 SHMEM_RD(bp,
11449                          dev_info.port_hw_config[port].speed_capability_mask) &
11450                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11451         bp->link_params.speed_cap_mask[1] =
11452                 SHMEM_RD(bp,
11453                          dev_info.port_hw_config[port].speed_capability_mask2) &
11454                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11455         bp->port.link_config[0] =
11456                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11457
11458         bp->port.link_config[1] =
11459                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11460
11461         bp->link_params.multi_phy_config =
11462                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11463         /* If the device is capable of WoL, set the default state according
11464          * to the HW
11465          */
11466         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11467         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11468                    (config & PORT_FEATURE_WOL_ENABLED));
11469
11470         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11471             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11472                 bp->flags |= NO_ISCSI_FLAG;
11473         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11474             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11475                 bp->flags |= NO_FCOE_FLAG;
11476
11477         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11478                        bp->link_params.lane_config,
11479                        bp->link_params.speed_cap_mask[0],
11480                        bp->port.link_config[0]);
11481
11482         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11483                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11484         bnx2x_phy_probe(&bp->link_params);
11485         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11486
11487         bnx2x_link_settings_requested(bp);
11488
11489         /*
11490          * If connected directly, work with the internal PHY, otherwise, work
11491          * with the external PHY
11492          */
11493         ext_phy_config =
11494                 SHMEM_RD(bp,
11495                          dev_info.port_hw_config[port].external_phy_config);
11496         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11497         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11498                 bp->mdio.prtad = bp->port.phy_addr;
11499
11500         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11501                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11502                 bp->mdio.prtad =
11503                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11504
11505         /* Configure link feature according to nvram value */
11506         eee_mode = (((SHMEM_RD(bp, dev_info.
11507                       port_feature_config[port].eee_power_mode)) &
11508                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11509                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11510         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11511                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11512                                            EEE_MODE_ENABLE_LPI |
11513                                            EEE_MODE_OUTPUT_TIME;
11514         } else {
11515                 bp->link_params.eee_mode = 0;
11516         }
11517 }
11518
11519 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11520 {
11521         u32 no_flags = NO_ISCSI_FLAG;
11522         int port = BP_PORT(bp);
11523         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11524                                 drv_lic_key[port].max_iscsi_conn);
11525
11526         if (!CNIC_SUPPORT(bp)) {
11527                 bp->flags |= no_flags;
11528                 return;
11529         }
11530
11531         /* Get the number of maximum allowed iSCSI connections */
11532         bp->cnic_eth_dev.max_iscsi_conn =
11533                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11534                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11535
11536         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11537                        bp->cnic_eth_dev.max_iscsi_conn);
11538
11539         /*
11540          * If maximum allowed number of connections is zero -
11541          * disable the feature.
11542          */
11543         if (!bp->cnic_eth_dev.max_iscsi_conn)
11544                 bp->flags |= no_flags;
11545 }
11546
11547 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11548 {
11549         /* Port info */
11550         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11551                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11552         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11553                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11554
11555         /* Node info */
11556         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11557                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11558         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11559                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11560 }
11561
11562 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11563 {
11564         u8 count = 0;
11565
11566         if (IS_MF(bp)) {
11567                 u8 fid;
11568
11569                 /* iterate over absolute function ids for this path: */
11570                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11571                         if (IS_MF_SD(bp)) {
11572                                 u32 cfg = MF_CFG_RD(bp,
11573                                                     func_mf_config[fid].config);
11574
11575                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11576                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11577                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11578                                         count++;
11579                         } else {
11580                                 u32 cfg = MF_CFG_RD(bp,
11581                                                     func_ext_config[fid].
11582                                                                       func_cfg);
11583
11584                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11585                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11586                                         count++;
11587                         }
11588                 }
11589         } else { /* SF */
11590                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11591
11592                 for (port = 0; port < port_cnt; port++) {
11593                         u32 lic = SHMEM_RD(bp,
11594                                            drv_lic_key[port].max_fcoe_conn) ^
11595                                   FW_ENCODE_32BIT_PATTERN;
11596                         if (lic)
11597                                 count++;
11598                 }
11599         }
11600
11601         return count;
11602 }
11603
11604 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11605 {
11606         int port = BP_PORT(bp);
11607         int func = BP_ABS_FUNC(bp);
11608         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11609                                 drv_lic_key[port].max_fcoe_conn);
11610         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11611
11612         if (!CNIC_SUPPORT(bp)) {
11613                 bp->flags |= NO_FCOE_FLAG;
11614                 return;
11615         }
11616
11617         /* Get the number of maximum allowed FCoE connections */
11618         bp->cnic_eth_dev.max_fcoe_conn =
11619                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11620                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11621
11622         /* Calculate the number of maximum allowed FCoE tasks */
11623         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11624
11625         /* check if FCoE resources must be shared between different functions */
11626         if (num_fcoe_func)
11627                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11628
11629         /* Read the WWN: */
11630         if (!IS_MF(bp)) {
11631                 /* Port info */
11632                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11633                         SHMEM_RD(bp,
11634                                  dev_info.port_hw_config[port].
11635                                  fcoe_wwn_port_name_upper);
11636                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11637                         SHMEM_RD(bp,
11638                                  dev_info.port_hw_config[port].
11639                                  fcoe_wwn_port_name_lower);
11640
11641                 /* Node info */
11642                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11643                         SHMEM_RD(bp,
11644                                  dev_info.port_hw_config[port].
11645                                  fcoe_wwn_node_name_upper);
11646                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11647                         SHMEM_RD(bp,
11648                                  dev_info.port_hw_config[port].
11649                                  fcoe_wwn_node_name_lower);
11650         } else if (!IS_MF_SD(bp)) {
11651                 /* Read the WWN info only if the FCoE feature is enabled for
11652                  * this function.
11653                  */
11654                 if (BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp))
11655                         bnx2x_get_ext_wwn_info(bp, func);
11656         } else {
11657                 if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11658                         bnx2x_get_ext_wwn_info(bp, func);
11659         }
11660
11661         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11662
11663         /*
11664          * If maximum allowed number of connections is zero -
11665          * disable the feature.
11666          */
11667         if (!bp->cnic_eth_dev.max_fcoe_conn)
11668                 bp->flags |= NO_FCOE_FLAG;
11669 }
11670
11671 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11672 {
11673         /*
11674          * iSCSI may be dynamically disabled but reading
11675          * info here we will decrease memory usage by driver
11676          * if the feature is disabled for good
11677          */
11678         bnx2x_get_iscsi_info(bp);
11679         bnx2x_get_fcoe_info(bp);
11680 }
11681
11682 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11683 {
11684         u32 val, val2;
11685         int func = BP_ABS_FUNC(bp);
11686         int port = BP_PORT(bp);
11687         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11688         u8 *fip_mac = bp->fip_mac;
11689
11690         if (IS_MF(bp)) {
11691                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11692                  * FCoE MAC then the appropriate feature should be disabled.
11693                  * In non SD mode features configuration comes from struct
11694                  * func_ext_config.
11695                  */
11696                 if (!IS_MF_SD(bp)) {
11697                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11698                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11699                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11700                                                  iscsi_mac_addr_upper);
11701                                 val = MF_CFG_RD(bp, func_ext_config[func].
11702                                                 iscsi_mac_addr_lower);
11703                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11704                                 BNX2X_DEV_INFO
11705                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11706                         } else {
11707                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11708                         }
11709
11710                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11711                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11712                                                  fcoe_mac_addr_upper);
11713                                 val = MF_CFG_RD(bp, func_ext_config[func].
11714                                                 fcoe_mac_addr_lower);
11715                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11716                                 BNX2X_DEV_INFO
11717                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11718                         } else {
11719                                 bp->flags |= NO_FCOE_FLAG;
11720                         }
11721
11722                         bp->mf_ext_config = cfg;
11723
11724                 } else { /* SD MODE */
11725                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11726                                 /* use primary mac as iscsi mac */
11727                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11728
11729                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11730                                 BNX2X_DEV_INFO
11731                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11732                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11733                                 /* use primary mac as fip mac */
11734                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11735                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11736                                 BNX2X_DEV_INFO
11737                                         ("Read FIP MAC: %pM\n", fip_mac);
11738                         }
11739                 }
11740
11741                 /* If this is a storage-only interface, use SAN mac as
11742                  * primary MAC. Notice that for SD this is already the case,
11743                  * as the SAN mac was copied from the primary MAC.
11744                  */
11745                 if (IS_MF_FCOE_AFEX(bp))
11746                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11747         } else {
11748                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11749                                 iscsi_mac_upper);
11750                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11751                                iscsi_mac_lower);
11752                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11753
11754                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11755                                 fcoe_fip_mac_upper);
11756                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11757                                fcoe_fip_mac_lower);
11758                 bnx2x_set_mac_buf(fip_mac, val, val2);
11759         }
11760
11761         /* Disable iSCSI OOO if MAC configuration is invalid. */
11762         if (!is_valid_ether_addr(iscsi_mac)) {
11763                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11764                 eth_zero_addr(iscsi_mac);
11765         }
11766
11767         /* Disable FCoE if MAC configuration is invalid. */
11768         if (!is_valid_ether_addr(fip_mac)) {
11769                 bp->flags |= NO_FCOE_FLAG;
11770                 eth_zero_addr(bp->fip_mac);
11771         }
11772 }
11773
11774 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11775 {
11776         u32 val, val2;
11777         int func = BP_ABS_FUNC(bp);
11778         int port = BP_PORT(bp);
11779
11780         /* Zero primary MAC configuration */
11781         eth_zero_addr(bp->dev->dev_addr);
11782
11783         if (BP_NOMCP(bp)) {
11784                 BNX2X_ERROR("warning: random MAC workaround active\n");
11785                 eth_hw_addr_random(bp->dev);
11786         } else if (IS_MF(bp)) {
11787                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11788                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11789                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11790                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11791                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11792
11793                 if (CNIC_SUPPORT(bp))
11794                         bnx2x_get_cnic_mac_hwinfo(bp);
11795         } else {
11796                 /* in SF read MACs from port configuration */
11797                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11798                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11799                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11800
11801                 if (CNIC_SUPPORT(bp))
11802                         bnx2x_get_cnic_mac_hwinfo(bp);
11803         }
11804
11805         if (!BP_NOMCP(bp)) {
11806                 /* Read physical port identifier from shmem */
11807                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11808                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11809                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11810                 bp->flags |= HAS_PHYS_PORT_ID;
11811         }
11812
11813         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11814
11815         if (!is_valid_ether_addr(bp->dev->dev_addr))
11816                 dev_err(&bp->pdev->dev,
11817                         "bad Ethernet MAC address configuration: %pM\n"
11818                         "change it manually before bringing up the appropriate network interface\n",
11819                         bp->dev->dev_addr);
11820 }
11821
11822 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11823 {
11824         int tmp;
11825         u32 cfg;
11826
11827         if (IS_VF(bp))
11828                 return false;
11829
11830         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11831                 /* Take function: tmp = func */
11832                 tmp = BP_ABS_FUNC(bp);
11833                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11834                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11835         } else {
11836                 /* Take port: tmp = port */
11837                 tmp = BP_PORT(bp);
11838                 cfg = SHMEM_RD(bp,
11839                                dev_info.port_hw_config[tmp].generic_features);
11840                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11841         }
11842         return cfg;
11843 }
11844
11845 static void validate_set_si_mode(struct bnx2x *bp)
11846 {
11847         u8 func = BP_ABS_FUNC(bp);
11848         u32 val;
11849
11850         val = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11851
11852         /* check for legal mac (upper bytes) */
11853         if (val != 0xffff) {
11854                 bp->mf_mode = MULTI_FUNCTION_SI;
11855                 bp->mf_config[BP_VN(bp)] =
11856                         MF_CFG_RD(bp, func_mf_config[func].config);
11857         } else
11858                 BNX2X_DEV_INFO("illegal MAC address for SI\n");
11859 }
11860
11861 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11862 {
11863         int /*abs*/func = BP_ABS_FUNC(bp);
11864         int vn, mfw_vn;
11865         u32 val = 0, val2 = 0;
11866         int rc = 0;
11867
11868         /* Validate that chip access is feasible */
11869         if (REG_RD(bp, MISC_REG_CHIP_NUM) == 0xffffffff) {
11870                 dev_err(&bp->pdev->dev,
11871                         "Chip read returns all Fs. Preventing probe from continuing\n");
11872                 return -EINVAL;
11873         }
11874
11875         bnx2x_get_common_hwinfo(bp);
11876
11877         /*
11878          * initialize IGU parameters
11879          */
11880         if (CHIP_IS_E1x(bp)) {
11881                 bp->common.int_block = INT_BLOCK_HC;
11882
11883                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11884                 bp->igu_base_sb = 0;
11885         } else {
11886                 bp->common.int_block = INT_BLOCK_IGU;
11887
11888                 /* do not allow device reset during IGU info processing */
11889                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11890
11891                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11892
11893                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11894                         int tout = 5000;
11895
11896                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11897
11898                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11899                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11900                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11901
11902                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11903                                 tout--;
11904                                 usleep_range(1000, 2000);
11905                         }
11906
11907                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11908                                 dev_err(&bp->pdev->dev,
11909                                         "FORCING Normal Mode failed!!!\n");
11910                                 bnx2x_release_hw_lock(bp,
11911                                                       HW_LOCK_RESOURCE_RESET);
11912                                 return -EPERM;
11913                         }
11914                 }
11915
11916                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11917                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11918                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11919                 } else
11920                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11921
11922                 rc = bnx2x_get_igu_cam_info(bp);
11923                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11924                 if (rc)
11925                         return rc;
11926         }
11927
11928         /*
11929          * set base FW non-default (fast path) status block id, this value is
11930          * used to initialize the fw_sb_id saved on the fp/queue structure to
11931          * determine the id used by the FW.
11932          */
11933         if (CHIP_IS_E1x(bp))
11934                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11935         else /*
11936               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11937               * the same queue are indicated on the same IGU SB). So we prefer
11938               * FW and IGU SBs to be the same value.
11939               */
11940                 bp->base_fw_ndsb = bp->igu_base_sb;
11941
11942         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11943                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11944                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11945
11946         /*
11947          * Initialize MF configuration
11948          */
11949
11950         bp->mf_ov = 0;
11951         bp->mf_mode = 0;
11952         bp->mf_sub_mode = 0;
11953         vn = BP_VN(bp);
11954         mfw_vn = BP_FW_MB_IDX(bp);
11955
11956         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11957                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11958                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11959                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11960
11961                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11962                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11963                 else
11964                         bp->common.mf_cfg_base = bp->common.shmem_base +
11965                                 offsetof(struct shmem_region, func_mb) +
11966                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11967                 /*
11968                  * get mf configuration:
11969                  * 1. Existence of MF configuration
11970                  * 2. MAC address must be legal (check only upper bytes)
11971                  *    for  Switch-Independent mode;
11972                  *    OVLAN must be legal for Switch-Dependent mode
11973                  * 3. SF_MODE configures specific MF mode
11974                  */
11975                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11976                         /* get mf configuration */
11977                         val = SHMEM_RD(bp,
11978                                        dev_info.shared_feature_config.config);
11979                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11980
11981                         switch (val) {
11982                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11983                                 validate_set_si_mode(bp);
11984                                 break;
11985                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11986                                 if ((!CHIP_IS_E1x(bp)) &&
11987                                     (MF_CFG_RD(bp, func_mf_config[func].
11988                                                mac_upper) != 0xffff) &&
11989                                     (SHMEM2_HAS(bp,
11990                                                 afex_driver_support))) {
11991                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11992                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11993                                                 func_mf_config[func].config);
11994                                 } else {
11995                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11996                                 }
11997                                 break;
11998                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11999                                 /* get OV configuration */
12000                                 val = MF_CFG_RD(bp,
12001                                         func_mf_config[FUNC_0].e1hov_tag);
12002                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
12003
12004                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12005                                         bp->mf_mode = MULTI_FUNCTION_SD;
12006                                         bp->mf_config[vn] = MF_CFG_RD(bp,
12007                                                 func_mf_config[func].config);
12008                                 } else
12009                                         BNX2X_DEV_INFO("illegal OV for SD\n");
12010                                 break;
12011                         case SHARED_FEAT_CFG_FORCE_SF_MODE_BD_MODE:
12012                                 bp->mf_mode = MULTI_FUNCTION_SD;
12013                                 bp->mf_sub_mode = SUB_MF_MODE_BD;
12014                                 bp->mf_config[vn] =
12015                                         MF_CFG_RD(bp,
12016                                                   func_mf_config[func].config);
12017
12018                                 if (SHMEM2_HAS(bp, mtu_size)) {
12019                                         int mtu_idx = BP_FW_MB_IDX(bp);
12020                                         u16 mtu_size;
12021                                         u32 mtu;
12022
12023                                         mtu = SHMEM2_RD(bp, mtu_size[mtu_idx]);
12024                                         mtu_size = (u16)mtu;
12025                                         DP(NETIF_MSG_IFUP, "Read MTU size %04x [%08x]\n",
12026                                            mtu_size, mtu);
12027
12028                                         /* if valid: update device mtu */
12029                                         if (((mtu_size + ETH_HLEN) >=
12030                                              ETH_MIN_PACKET_SIZE) &&
12031                                             (mtu_size <=
12032                                              ETH_MAX_JUMBO_PACKET_SIZE))
12033                                                 bp->dev->mtu = mtu_size;
12034                                 }
12035                                 break;
12036                         case SHARED_FEAT_CFG_FORCE_SF_MODE_UFP_MODE:
12037                                 bp->mf_mode = MULTI_FUNCTION_SD;
12038                                 bp->mf_sub_mode = SUB_MF_MODE_UFP;
12039                                 bp->mf_config[vn] =
12040                                         MF_CFG_RD(bp,
12041                                                   func_mf_config[func].config);
12042                                 break;
12043                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
12044                                 bp->mf_config[vn] = 0;
12045                                 break;
12046                         case SHARED_FEAT_CFG_FORCE_SF_MODE_EXTENDED_MODE:
12047                                 val2 = SHMEM_RD(bp,
12048                                         dev_info.shared_hw_config.config_3);
12049                                 val2 &= SHARED_HW_CFG_EXTENDED_MF_MODE_MASK;
12050                                 switch (val2) {
12051                                 case SHARED_HW_CFG_EXTENDED_MF_MODE_NPAR1_DOT_5:
12052                                         validate_set_si_mode(bp);
12053                                         bp->mf_sub_mode =
12054                                                         SUB_MF_MODE_NPAR1_DOT_5;
12055                                         break;
12056                                 default:
12057                                         /* Unknown configuration */
12058                                         bp->mf_config[vn] = 0;
12059                                         BNX2X_DEV_INFO("unknown extended MF mode 0x%x\n",
12060                                                        val);
12061                                 }
12062                                 break;
12063                         default:
12064                                 /* Unknown configuration: reset mf_config */
12065                                 bp->mf_config[vn] = 0;
12066                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
12067                         }
12068                 }
12069
12070                 BNX2X_DEV_INFO("%s function mode\n",
12071                                IS_MF(bp) ? "multi" : "single");
12072
12073                 switch (bp->mf_mode) {
12074                 case MULTI_FUNCTION_SD:
12075                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
12076                               FUNC_MF_CFG_E1HOV_TAG_MASK;
12077                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
12078                                 bp->mf_ov = val;
12079                                 bp->path_has_ovlan = true;
12080
12081                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
12082                                                func, bp->mf_ov, bp->mf_ov);
12083                         } else if ((bp->mf_sub_mode == SUB_MF_MODE_UFP) ||
12084                                    (bp->mf_sub_mode == SUB_MF_MODE_BD)) {
12085                                 dev_err(&bp->pdev->dev,
12086                                         "Unexpected - no valid MF OV for func %d in UFP/BD mode\n",
12087                                         func);
12088                                 bp->path_has_ovlan = true;
12089                         } else {
12090                                 dev_err(&bp->pdev->dev,
12091                                         "No valid MF OV for func %d, aborting\n",
12092                                         func);
12093                                 return -EPERM;
12094                         }
12095                         break;
12096                 case MULTI_FUNCTION_AFEX:
12097                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
12098                         break;
12099                 case MULTI_FUNCTION_SI:
12100                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
12101                                        func);
12102                         break;
12103                 default:
12104                         if (vn) {
12105                                 dev_err(&bp->pdev->dev,
12106                                         "VN %d is in a single function mode, aborting\n",
12107                                         vn);
12108                                 return -EPERM;
12109                         }
12110                         break;
12111                 }
12112
12113                 /* check if other port on the path needs ovlan:
12114                  * Since MF configuration is shared between ports
12115                  * Possible mixed modes are only
12116                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
12117                  */
12118                 if (CHIP_MODE_IS_4_PORT(bp) &&
12119                     !bp->path_has_ovlan &&
12120                     !IS_MF(bp) &&
12121                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
12122                         u8 other_port = !BP_PORT(bp);
12123                         u8 other_func = BP_PATH(bp) + 2*other_port;
12124                         val = MF_CFG_RD(bp,
12125                                         func_mf_config[other_func].e1hov_tag);
12126                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
12127                                 bp->path_has_ovlan = true;
12128                 }
12129         }
12130
12131         /* adjust igu_sb_cnt to MF for E1H */
12132         if (CHIP_IS_E1H(bp) && IS_MF(bp))
12133                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
12134
12135         /* port info */
12136         bnx2x_get_port_hwinfo(bp);
12137
12138         /* Get MAC addresses */
12139         bnx2x_get_mac_hwinfo(bp);
12140
12141         bnx2x_get_cnic_info(bp);
12142
12143         return rc;
12144 }
12145
12146 static void bnx2x_read_fwinfo(struct bnx2x *bp)
12147 {
12148         int cnt, i, block_end, rodi;
12149         char vpd_start[BNX2X_VPD_LEN+1];
12150         char str_id_reg[VENDOR_ID_LEN+1];
12151         char str_id_cap[VENDOR_ID_LEN+1];
12152         char *vpd_data;
12153         char *vpd_extended_data = NULL;
12154         u8 len;
12155
12156         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
12157         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
12158
12159         if (cnt < BNX2X_VPD_LEN)
12160                 goto out_not_found;
12161
12162         /* VPD RO tag should be first tag after identifier string, hence
12163          * we should be able to find it in first BNX2X_VPD_LEN chars
12164          */
12165         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
12166                              PCI_VPD_LRDT_RO_DATA);
12167         if (i < 0)
12168                 goto out_not_found;
12169
12170         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
12171                     pci_vpd_lrdt_size(&vpd_start[i]);
12172
12173         i += PCI_VPD_LRDT_TAG_SIZE;
12174
12175         if (block_end > BNX2X_VPD_LEN) {
12176                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
12177                 if (vpd_extended_data  == NULL)
12178                         goto out_not_found;
12179
12180                 /* read rest of vpd image into vpd_extended_data */
12181                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
12182                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
12183                                    block_end - BNX2X_VPD_LEN,
12184                                    vpd_extended_data + BNX2X_VPD_LEN);
12185                 if (cnt < (block_end - BNX2X_VPD_LEN))
12186                         goto out_not_found;
12187                 vpd_data = vpd_extended_data;
12188         } else
12189                 vpd_data = vpd_start;
12190
12191         /* now vpd_data holds full vpd content in both cases */
12192
12193         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12194                                    PCI_VPD_RO_KEYWORD_MFR_ID);
12195         if (rodi < 0)
12196                 goto out_not_found;
12197
12198         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12199
12200         if (len != VENDOR_ID_LEN)
12201                 goto out_not_found;
12202
12203         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12204
12205         /* vendor specific info */
12206         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
12207         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
12208         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
12209             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
12210
12211                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
12212                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
12213                 if (rodi >= 0) {
12214                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
12215
12216                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
12217
12218                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
12219                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
12220                                 bp->fw_ver[len] = ' ';
12221                         }
12222                 }
12223                 kfree(vpd_extended_data);
12224                 return;
12225         }
12226 out_not_found:
12227         kfree(vpd_extended_data);
12228         return;
12229 }
12230
12231 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
12232 {
12233         u32 flags = 0;
12234
12235         if (CHIP_REV_IS_FPGA(bp))
12236                 SET_FLAGS(flags, MODE_FPGA);
12237         else if (CHIP_REV_IS_EMUL(bp))
12238                 SET_FLAGS(flags, MODE_EMUL);
12239         else
12240                 SET_FLAGS(flags, MODE_ASIC);
12241
12242         if (CHIP_MODE_IS_4_PORT(bp))
12243                 SET_FLAGS(flags, MODE_PORT4);
12244         else
12245                 SET_FLAGS(flags, MODE_PORT2);
12246
12247         if (CHIP_IS_E2(bp))
12248                 SET_FLAGS(flags, MODE_E2);
12249         else if (CHIP_IS_E3(bp)) {
12250                 SET_FLAGS(flags, MODE_E3);
12251                 if (CHIP_REV(bp) == CHIP_REV_Ax)
12252                         SET_FLAGS(flags, MODE_E3_A0);
12253                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
12254                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
12255         }
12256
12257         if (IS_MF(bp)) {
12258                 SET_FLAGS(flags, MODE_MF);
12259                 switch (bp->mf_mode) {
12260                 case MULTI_FUNCTION_SD:
12261                         SET_FLAGS(flags, MODE_MF_SD);
12262                         break;
12263                 case MULTI_FUNCTION_SI:
12264                         SET_FLAGS(flags, MODE_MF_SI);
12265                         break;
12266                 case MULTI_FUNCTION_AFEX:
12267                         SET_FLAGS(flags, MODE_MF_AFEX);
12268                         break;
12269                 }
12270         } else
12271                 SET_FLAGS(flags, MODE_SF);
12272
12273 #if defined(__LITTLE_ENDIAN)
12274         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
12275 #else /*(__BIG_ENDIAN)*/
12276         SET_FLAGS(flags, MODE_BIG_ENDIAN);
12277 #endif
12278         INIT_MODE_FLAGS(bp) = flags;
12279 }
12280
12281 static int bnx2x_init_bp(struct bnx2x *bp)
12282 {
12283         int func;
12284         int rc;
12285
12286         mutex_init(&bp->port.phy_mutex);
12287         mutex_init(&bp->fw_mb_mutex);
12288         mutex_init(&bp->drv_info_mutex);
12289         sema_init(&bp->stats_lock, 1);
12290         bp->drv_info_mng_owner = false;
12291         INIT_LIST_HEAD(&bp->vlan_reg);
12292
12293         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
12294         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
12295         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
12296         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
12297         if (IS_PF(bp)) {
12298                 rc = bnx2x_get_hwinfo(bp);
12299                 if (rc)
12300                         return rc;
12301         } else {
12302                 eth_zero_addr(bp->dev->dev_addr);
12303         }
12304
12305         bnx2x_set_modes_bitmap(bp);
12306
12307         rc = bnx2x_alloc_mem_bp(bp);
12308         if (rc)
12309                 return rc;
12310
12311         bnx2x_read_fwinfo(bp);
12312
12313         func = BP_FUNC(bp);
12314
12315         /* need to reset chip if undi was active */
12316         if (IS_PF(bp) && !BP_NOMCP(bp)) {
12317                 /* init fw_seq */
12318                 bp->fw_seq =
12319                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
12320                                                         DRV_MSG_SEQ_NUMBER_MASK;
12321                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
12322
12323                 rc = bnx2x_prev_unload(bp);
12324                 if (rc) {
12325                         bnx2x_free_mem_bp(bp);
12326                         return rc;
12327                 }
12328         }
12329
12330         if (CHIP_REV_IS_FPGA(bp))
12331                 dev_err(&bp->pdev->dev, "FPGA detected\n");
12332
12333         if (BP_NOMCP(bp) && (func == 0))
12334                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
12335
12336         bp->disable_tpa = disable_tpa;
12337         bp->disable_tpa |= !!IS_MF_STORAGE_ONLY(bp);
12338         /* Reduce memory usage in kdump environment by disabling TPA */
12339         bp->disable_tpa |= is_kdump_kernel();
12340
12341         /* Set TPA flags */
12342         if (bp->disable_tpa) {
12343                 bp->dev->hw_features &= ~NETIF_F_LRO;
12344                 bp->dev->features &= ~NETIF_F_LRO;
12345         }
12346
12347         if (CHIP_IS_E1(bp))
12348                 bp->dropless_fc = 0;
12349         else
12350                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
12351
12352         bp->mrrs = mrrs;
12353
12354         bp->tx_ring_size = IS_MF_STORAGE_ONLY(bp) ? 0 : MAX_TX_AVAIL;
12355         if (IS_VF(bp))
12356                 bp->rx_ring_size = MAX_RX_AVAIL;
12357
12358         /* make sure that the numbers are in the right granularity */
12359         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
12360         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
12361
12362         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
12363
12364         init_timer(&bp->timer);
12365         bp->timer.expires = jiffies + bp->current_interval;
12366         bp->timer.data = (unsigned long) bp;
12367         bp->timer.function = bnx2x_timer;
12368
12369         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
12370             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
12371             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
12372             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
12373                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
12374                 bnx2x_dcbx_init_params(bp);
12375         } else {
12376                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
12377         }
12378
12379         if (CHIP_IS_E1x(bp))
12380                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
12381         else
12382                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
12383
12384         /* multiple tx priority */
12385         if (IS_VF(bp))
12386                 bp->max_cos = 1;
12387         else if (CHIP_IS_E1x(bp))
12388                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
12389         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
12390                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
12391         else if (CHIP_IS_E3B0(bp))
12392                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
12393         else
12394                 BNX2X_ERR("unknown chip %x revision %x\n",
12395                           CHIP_NUM(bp), CHIP_REV(bp));
12396         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
12397
12398         /* We need at least one default status block for slow-path events,
12399          * second status block for the L2 queue, and a third status block for
12400          * CNIC if supported.
12401          */
12402         if (IS_VF(bp))
12403                 bp->min_msix_vec_cnt = 1;
12404         else if (CNIC_SUPPORT(bp))
12405                 bp->min_msix_vec_cnt = 3;
12406         else /* PF w/o cnic */
12407                 bp->min_msix_vec_cnt = 2;
12408         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
12409
12410         bp->dump_preset_idx = 1;
12411
12412         if (CHIP_IS_E3B0(bp))
12413                 bp->flags |= PTP_SUPPORTED;
12414
12415         return rc;
12416 }
12417
12418 /****************************************************************************
12419 * General service functions
12420 ****************************************************************************/
12421
12422 /*
12423  * net_device service functions
12424  */
12425
12426 /* called with rtnl_lock */
12427 static int bnx2x_open(struct net_device *dev)
12428 {
12429         struct bnx2x *bp = netdev_priv(dev);
12430         int rc;
12431
12432         bp->stats_init = true;
12433
12434         netif_carrier_off(dev);
12435
12436         bnx2x_set_power_state(bp, PCI_D0);
12437
12438         /* If parity had happen during the unload, then attentions
12439          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12440          * want the first function loaded on the current engine to
12441          * complete the recovery.
12442          * Parity recovery is only relevant for PF driver.
12443          */
12444         if (IS_PF(bp)) {
12445                 int other_engine = BP_PATH(bp) ? 0 : 1;
12446                 bool other_load_status, load_status;
12447                 bool global = false;
12448
12449                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12450                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12451                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12452                     bnx2x_chk_parity_attn(bp, &global, true)) {
12453                         do {
12454                                 /* If there are attentions and they are in a
12455                                  * global blocks, set the GLOBAL_RESET bit
12456                                  * regardless whether it will be this function
12457                                  * that will complete the recovery or not.
12458                                  */
12459                                 if (global)
12460                                         bnx2x_set_reset_global(bp);
12461
12462                                 /* Only the first function on the current
12463                                  * engine should try to recover in open. In case
12464                                  * of attentions in global blocks only the first
12465                                  * in the chip should try to recover.
12466                                  */
12467                                 if ((!load_status &&
12468                                      (!global || !other_load_status)) &&
12469                                       bnx2x_trylock_leader_lock(bp) &&
12470                                       !bnx2x_leader_reset(bp)) {
12471                                         netdev_info(bp->dev,
12472                                                     "Recovered in open\n");
12473                                         break;
12474                                 }
12475
12476                                 /* recovery has failed... */
12477                                 bnx2x_set_power_state(bp, PCI_D3hot);
12478                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12479
12480                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12481                                           "If you still see this message after a few retries then power cycle is required.\n");
12482
12483                                 return -EAGAIN;
12484                         } while (0);
12485                 }
12486         }
12487
12488         bp->recovery_state = BNX2X_RECOVERY_DONE;
12489         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12490         if (rc)
12491                 return rc;
12492
12493 #ifdef CONFIG_BNX2X_VXLAN
12494         if (IS_PF(bp))
12495                 vxlan_get_rx_port(dev);
12496 #endif
12497
12498         return 0;
12499 }
12500
12501 /* called with rtnl_lock */
12502 static int bnx2x_close(struct net_device *dev)
12503 {
12504         struct bnx2x *bp = netdev_priv(dev);
12505
12506         /* Unload the driver, release IRQs */
12507         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12508
12509         return 0;
12510 }
12511
12512 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12513                                       struct bnx2x_mcast_ramrod_params *p)
12514 {
12515         int mc_count = netdev_mc_count(bp->dev);
12516         struct bnx2x_mcast_list_elem *mc_mac =
12517                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12518         struct netdev_hw_addr *ha;
12519
12520         if (!mc_mac)
12521                 return -ENOMEM;
12522
12523         INIT_LIST_HEAD(&p->mcast_list);
12524
12525         netdev_for_each_mc_addr(ha, bp->dev) {
12526                 mc_mac->mac = bnx2x_mc_addr(ha);
12527                 list_add_tail(&mc_mac->link, &p->mcast_list);
12528                 mc_mac++;
12529         }
12530
12531         p->mcast_list_len = mc_count;
12532
12533         return 0;
12534 }
12535
12536 static void bnx2x_free_mcast_macs_list(
12537         struct bnx2x_mcast_ramrod_params *p)
12538 {
12539         struct bnx2x_mcast_list_elem *mc_mac =
12540                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12541                                  link);
12542
12543         WARN_ON(!mc_mac);
12544         kfree(mc_mac);
12545 }
12546
12547 /**
12548  * bnx2x_set_uc_list - configure a new unicast MACs list.
12549  *
12550  * @bp: driver handle
12551  *
12552  * We will use zero (0) as a MAC type for these MACs.
12553  */
12554 static int bnx2x_set_uc_list(struct bnx2x *bp)
12555 {
12556         int rc;
12557         struct net_device *dev = bp->dev;
12558         struct netdev_hw_addr *ha;
12559         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12560         unsigned long ramrod_flags = 0;
12561
12562         /* First schedule a cleanup up of old configuration */
12563         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12564         if (rc < 0) {
12565                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12566                 return rc;
12567         }
12568
12569         netdev_for_each_uc_addr(ha, dev) {
12570                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12571                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12572                 if (rc == -EEXIST) {
12573                         DP(BNX2X_MSG_SP,
12574                            "Failed to schedule ADD operations: %d\n", rc);
12575                         /* do not treat adding same MAC as error */
12576                         rc = 0;
12577
12578                 } else if (rc < 0) {
12579
12580                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12581                                   rc);
12582                         return rc;
12583                 }
12584         }
12585
12586         /* Execute the pending commands */
12587         __set_bit(RAMROD_CONT, &ramrod_flags);
12588         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12589                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12590 }
12591
12592 static int bnx2x_set_mc_list(struct bnx2x *bp)
12593 {
12594         struct net_device *dev = bp->dev;
12595         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12596         int rc = 0;
12597
12598         rparam.mcast_obj = &bp->mcast_obj;
12599
12600         /* first, clear all configured multicast MACs */
12601         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12602         if (rc < 0) {
12603                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12604                 return rc;
12605         }
12606
12607         /* then, configure a new MACs list */
12608         if (netdev_mc_count(dev)) {
12609                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12610                 if (rc) {
12611                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12612                                   rc);
12613                         return rc;
12614                 }
12615
12616                 /* Now add the new MACs */
12617                 rc = bnx2x_config_mcast(bp, &rparam,
12618                                         BNX2X_MCAST_CMD_ADD);
12619                 if (rc < 0)
12620                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12621                                   rc);
12622
12623                 bnx2x_free_mcast_macs_list(&rparam);
12624         }
12625
12626         return rc;
12627 }
12628
12629 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12630 static void bnx2x_set_rx_mode(struct net_device *dev)
12631 {
12632         struct bnx2x *bp = netdev_priv(dev);
12633
12634         if (bp->state != BNX2X_STATE_OPEN) {
12635                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12636                 return;
12637         } else {
12638                 /* Schedule an SP task to handle rest of change */
12639                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12640                                        NETIF_MSG_IFUP);
12641         }
12642 }
12643
12644 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12645 {
12646         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12647
12648         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12649
12650         netif_addr_lock_bh(bp->dev);
12651
12652         if (bp->dev->flags & IFF_PROMISC) {
12653                 rx_mode = BNX2X_RX_MODE_PROMISC;
12654         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12655                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12656                     CHIP_IS_E1(bp))) {
12657                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12658         } else {
12659                 if (IS_PF(bp)) {
12660                         /* some multicasts */
12661                         if (bnx2x_set_mc_list(bp) < 0)
12662                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12663
12664                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12665                         netif_addr_unlock_bh(bp->dev);
12666                         if (bnx2x_set_uc_list(bp) < 0)
12667                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12668                         netif_addr_lock_bh(bp->dev);
12669                 } else {
12670                         /* configuring mcast to a vf involves sleeping (when we
12671                          * wait for the pf's response).
12672                          */
12673                         bnx2x_schedule_sp_rtnl(bp,
12674                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12675                 }
12676         }
12677
12678         bp->rx_mode = rx_mode;
12679         /* handle ISCSI SD mode */
12680         if (IS_MF_ISCSI_ONLY(bp))
12681                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12682
12683         /* Schedule the rx_mode command */
12684         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12685                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12686                 netif_addr_unlock_bh(bp->dev);
12687                 return;
12688         }
12689
12690         if (IS_PF(bp)) {
12691                 bnx2x_set_storm_rx_mode(bp);
12692                 netif_addr_unlock_bh(bp->dev);
12693         } else {
12694                 /* VF will need to request the PF to make this change, and so
12695                  * the VF needs to release the bottom-half lock prior to the
12696                  * request (as it will likely require sleep on the VF side)
12697                  */
12698                 netif_addr_unlock_bh(bp->dev);
12699                 bnx2x_vfpf_storm_rx_mode(bp);
12700         }
12701 }
12702
12703 /* called with rtnl_lock */
12704 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12705                            int devad, u16 addr)
12706 {
12707         struct bnx2x *bp = netdev_priv(netdev);
12708         u16 value;
12709         int rc;
12710
12711         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12712            prtad, devad, addr);
12713
12714         /* The HW expects different devad if CL22 is used */
12715         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12716
12717         bnx2x_acquire_phy_lock(bp);
12718         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12719         bnx2x_release_phy_lock(bp);
12720         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12721
12722         if (!rc)
12723                 rc = value;
12724         return rc;
12725 }
12726
12727 /* called with rtnl_lock */
12728 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12729                             u16 addr, u16 value)
12730 {
12731         struct bnx2x *bp = netdev_priv(netdev);
12732         int rc;
12733
12734         DP(NETIF_MSG_LINK,
12735            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12736            prtad, devad, addr, value);
12737
12738         /* The HW expects different devad if CL22 is used */
12739         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12740
12741         bnx2x_acquire_phy_lock(bp);
12742         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12743         bnx2x_release_phy_lock(bp);
12744         return rc;
12745 }
12746
12747 /* called with rtnl_lock */
12748 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12749 {
12750         struct bnx2x *bp = netdev_priv(dev);
12751         struct mii_ioctl_data *mdio = if_mii(ifr);
12752
12753         if (!netif_running(dev))
12754                 return -EAGAIN;
12755
12756         switch (cmd) {
12757         case SIOCSHWTSTAMP:
12758                 return bnx2x_hwtstamp_ioctl(bp, ifr);
12759         default:
12760                 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12761                    mdio->phy_id, mdio->reg_num, mdio->val_in);
12762                 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12763         }
12764 }
12765
12766 #ifdef CONFIG_NET_POLL_CONTROLLER
12767 static void poll_bnx2x(struct net_device *dev)
12768 {
12769         struct bnx2x *bp = netdev_priv(dev);
12770         int i;
12771
12772         for_each_eth_queue(bp, i) {
12773                 struct bnx2x_fastpath *fp = &bp->fp[i];
12774                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12775         }
12776 }
12777 #endif
12778
12779 static int bnx2x_validate_addr(struct net_device *dev)
12780 {
12781         struct bnx2x *bp = netdev_priv(dev);
12782
12783         /* query the bulletin board for mac address configured by the PF */
12784         if (IS_VF(bp))
12785                 bnx2x_sample_bulletin(bp);
12786
12787         if (!is_valid_ether_addr(dev->dev_addr)) {
12788                 BNX2X_ERR("Non-valid Ethernet address\n");
12789                 return -EADDRNOTAVAIL;
12790         }
12791         return 0;
12792 }
12793
12794 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12795                                   struct netdev_phys_item_id *ppid)
12796 {
12797         struct bnx2x *bp = netdev_priv(netdev);
12798
12799         if (!(bp->flags & HAS_PHYS_PORT_ID))
12800                 return -EOPNOTSUPP;
12801
12802         ppid->id_len = sizeof(bp->phys_port_id);
12803         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12804
12805         return 0;
12806 }
12807
12808 static netdev_features_t bnx2x_features_check(struct sk_buff *skb,
12809                                               struct net_device *dev,
12810                                               netdev_features_t features)
12811 {
12812         features = vlan_features_check(skb, features);
12813         return vxlan_features_check(skb, features);
12814 }
12815
12816 static int __bnx2x_vlan_configure_vid(struct bnx2x *bp, u16 vid, bool add)
12817 {
12818         int rc;
12819
12820         if (IS_PF(bp)) {
12821                 unsigned long ramrod_flags = 0;
12822
12823                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12824                 rc = bnx2x_set_vlan_one(bp, vid, &bp->sp_objs->vlan_obj,
12825                                         add, &ramrod_flags);
12826         } else {
12827                 rc = bnx2x_vfpf_update_vlan(bp, vid, bp->fp->index, add);
12828         }
12829
12830         return rc;
12831 }
12832
12833 int bnx2x_vlan_reconfigure_vid(struct bnx2x *bp)
12834 {
12835         struct bnx2x_vlan_entry *vlan;
12836         int rc = 0;
12837
12838         if (!bp->vlan_cnt) {
12839                 DP(NETIF_MSG_IFUP, "No need to re-configure vlan filters\n");
12840                 return 0;
12841         }
12842
12843         list_for_each_entry(vlan, &bp->vlan_reg, link) {
12844                 /* Prepare for cleanup in case of errors */
12845                 if (rc) {
12846                         vlan->hw = false;
12847                         continue;
12848                 }
12849
12850                 if (!vlan->hw)
12851                         continue;
12852
12853                 DP(NETIF_MSG_IFUP, "Re-configuring vlan 0x%04x\n", vlan->vid);
12854
12855                 rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12856                 if (rc) {
12857                         BNX2X_ERR("Unable to configure VLAN %d\n", vlan->vid);
12858                         vlan->hw = false;
12859                         rc = -EINVAL;
12860                         continue;
12861                 }
12862         }
12863
12864         return rc;
12865 }
12866
12867 static int bnx2x_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid)
12868 {
12869         struct bnx2x *bp = netdev_priv(dev);
12870         struct bnx2x_vlan_entry *vlan;
12871         bool hw = false;
12872         int rc = 0;
12873
12874         if (!netif_running(bp->dev)) {
12875                 DP(NETIF_MSG_IFUP,
12876                    "Ignoring VLAN configuration the interface is down\n");
12877                 return -EFAULT;
12878         }
12879
12880         DP(NETIF_MSG_IFUP, "Adding VLAN %d\n", vid);
12881
12882         vlan = kmalloc(sizeof(*vlan), GFP_KERNEL);
12883         if (!vlan)
12884                 return -ENOMEM;
12885
12886         bp->vlan_cnt++;
12887         if (bp->vlan_cnt > bp->vlan_credit && !bp->accept_any_vlan) {
12888                 DP(NETIF_MSG_IFUP, "Accept all VLAN raised\n");
12889                 bp->accept_any_vlan = true;
12890                 if (IS_PF(bp))
12891                         bnx2x_set_rx_mode_inner(bp);
12892                 else
12893                         bnx2x_vfpf_storm_rx_mode(bp);
12894         } else if (bp->vlan_cnt <= bp->vlan_credit) {
12895                 rc = __bnx2x_vlan_configure_vid(bp, vid, true);
12896                 hw = true;
12897         }
12898
12899         vlan->vid = vid;
12900         vlan->hw = hw;
12901
12902         if (!rc) {
12903                 list_add(&vlan->link, &bp->vlan_reg);
12904         } else {
12905                 bp->vlan_cnt--;
12906                 kfree(vlan);
12907         }
12908
12909         DP(NETIF_MSG_IFUP, "Adding VLAN result %d\n", rc);
12910
12911         return rc;
12912 }
12913
12914 static int bnx2x_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid)
12915 {
12916         struct bnx2x *bp = netdev_priv(dev);
12917         struct bnx2x_vlan_entry *vlan;
12918         int rc = 0;
12919
12920         if (!netif_running(bp->dev)) {
12921                 DP(NETIF_MSG_IFUP,
12922                    "Ignoring VLAN configuration the interface is down\n");
12923                 return -EFAULT;
12924         }
12925
12926         DP(NETIF_MSG_IFUP, "Removing VLAN %d\n", vid);
12927
12928         if (!bp->vlan_cnt) {
12929                 BNX2X_ERR("Unable to kill VLAN %d\n", vid);
12930                 return -EINVAL;
12931         }
12932
12933         list_for_each_entry(vlan, &bp->vlan_reg, link)
12934                 if (vlan->vid == vid)
12935                         break;
12936
12937         if (vlan->vid != vid) {
12938                 BNX2X_ERR("Unable to kill VLAN %d - not found\n", vid);
12939                 return -EINVAL;
12940         }
12941
12942         if (vlan->hw)
12943                 rc = __bnx2x_vlan_configure_vid(bp, vid, false);
12944
12945         list_del(&vlan->link);
12946         kfree(vlan);
12947
12948         bp->vlan_cnt--;
12949
12950         if (bp->vlan_cnt <= bp->vlan_credit && bp->accept_any_vlan) {
12951                 /* Configure all non-configured entries */
12952                 list_for_each_entry(vlan, &bp->vlan_reg, link) {
12953                         if (vlan->hw)
12954                                 continue;
12955
12956                         rc = __bnx2x_vlan_configure_vid(bp, vlan->vid, true);
12957                         if (rc) {
12958                                 BNX2X_ERR("Unable to config VLAN %d\n",
12959                                           vlan->vid);
12960                                 continue;
12961                         }
12962                         DP(NETIF_MSG_IFUP, "HW configured for VLAN %d\n",
12963                            vlan->vid);
12964                         vlan->hw = true;
12965                 }
12966                 DP(NETIF_MSG_IFUP, "Accept all VLAN Removed\n");
12967                 bp->accept_any_vlan = false;
12968                 if (IS_PF(bp))
12969                         bnx2x_set_rx_mode_inner(bp);
12970                 else
12971                         bnx2x_vfpf_storm_rx_mode(bp);
12972         }
12973
12974         DP(NETIF_MSG_IFUP, "Removing VLAN result %d\n", rc);
12975
12976         return rc;
12977 }
12978
12979 static const struct net_device_ops bnx2x_netdev_ops = {
12980         .ndo_open               = bnx2x_open,
12981         .ndo_stop               = bnx2x_close,
12982         .ndo_start_xmit         = bnx2x_start_xmit,
12983         .ndo_select_queue       = bnx2x_select_queue,
12984         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12985         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12986         .ndo_validate_addr      = bnx2x_validate_addr,
12987         .ndo_do_ioctl           = bnx2x_ioctl,
12988         .ndo_change_mtu         = bnx2x_change_mtu,
12989         .ndo_fix_features       = bnx2x_fix_features,
12990         .ndo_set_features       = bnx2x_set_features,
12991         .ndo_tx_timeout         = bnx2x_tx_timeout,
12992         .ndo_vlan_rx_add_vid    = bnx2x_vlan_rx_add_vid,
12993         .ndo_vlan_rx_kill_vid   = bnx2x_vlan_rx_kill_vid,
12994 #ifdef CONFIG_NET_POLL_CONTROLLER
12995         .ndo_poll_controller    = poll_bnx2x,
12996 #endif
12997         .ndo_setup_tc           = bnx2x_setup_tc,
12998 #ifdef CONFIG_BNX2X_SRIOV
12999         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
13000         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
13001         .ndo_get_vf_config      = bnx2x_get_vf_config,
13002 #endif
13003 #ifdef NETDEV_FCOE_WWNN
13004         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
13005 #endif
13006
13007 #ifdef CONFIG_NET_RX_BUSY_POLL
13008         .ndo_busy_poll          = bnx2x_low_latency_recv,
13009 #endif
13010         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
13011         .ndo_set_vf_link_state  = bnx2x_set_vf_link_state,
13012         .ndo_features_check     = bnx2x_features_check,
13013 #ifdef CONFIG_BNX2X_VXLAN
13014         .ndo_add_vxlan_port     = bnx2x_add_vxlan_port,
13015         .ndo_del_vxlan_port     = bnx2x_del_vxlan_port,
13016 #endif
13017 };
13018
13019 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
13020 {
13021         struct device *dev = &bp->pdev->dev;
13022
13023         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
13024             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
13025                 dev_err(dev, "System does not support DMA, aborting\n");
13026                 return -EIO;
13027         }
13028
13029         return 0;
13030 }
13031
13032 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
13033 {
13034         if (bp->flags & AER_ENABLED) {
13035                 pci_disable_pcie_error_reporting(bp->pdev);
13036                 bp->flags &= ~AER_ENABLED;
13037         }
13038 }
13039
13040 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
13041                           struct net_device *dev, unsigned long board_type)
13042 {
13043         int rc;
13044         u32 pci_cfg_dword;
13045         bool chip_is_e1x = (board_type == BCM57710 ||
13046                             board_type == BCM57711 ||
13047                             board_type == BCM57711E);
13048
13049         SET_NETDEV_DEV(dev, &pdev->dev);
13050
13051         bp->dev = dev;
13052         bp->pdev = pdev;
13053
13054         rc = pci_enable_device(pdev);
13055         if (rc) {
13056                 dev_err(&bp->pdev->dev,
13057                         "Cannot enable PCI device, aborting\n");
13058                 goto err_out;
13059         }
13060
13061         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
13062                 dev_err(&bp->pdev->dev,
13063                         "Cannot find PCI device base address, aborting\n");
13064                 rc = -ENODEV;
13065                 goto err_out_disable;
13066         }
13067
13068         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
13069                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
13070                 rc = -ENODEV;
13071                 goto err_out_disable;
13072         }
13073
13074         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
13075         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
13076             PCICFG_REVESION_ID_ERROR_VAL) {
13077                 pr_err("PCI device error, probably due to fan failure, aborting\n");
13078                 rc = -ENODEV;
13079                 goto err_out_disable;
13080         }
13081
13082         if (atomic_read(&pdev->enable_cnt) == 1) {
13083                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
13084                 if (rc) {
13085                         dev_err(&bp->pdev->dev,
13086                                 "Cannot obtain PCI resources, aborting\n");
13087                         goto err_out_disable;
13088                 }
13089
13090                 pci_set_master(pdev);
13091                 pci_save_state(pdev);
13092         }
13093
13094         if (IS_PF(bp)) {
13095                 if (!pdev->pm_cap) {
13096                         dev_err(&bp->pdev->dev,
13097                                 "Cannot find power management capability, aborting\n");
13098                         rc = -EIO;
13099                         goto err_out_release;
13100                 }
13101         }
13102
13103         if (!pci_is_pcie(pdev)) {
13104                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
13105                 rc = -EIO;
13106                 goto err_out_release;
13107         }
13108
13109         rc = bnx2x_set_coherency_mask(bp);
13110         if (rc)
13111                 goto err_out_release;
13112
13113         dev->mem_start = pci_resource_start(pdev, 0);
13114         dev->base_addr = dev->mem_start;
13115         dev->mem_end = pci_resource_end(pdev, 0);
13116
13117         dev->irq = pdev->irq;
13118
13119         bp->regview = pci_ioremap_bar(pdev, 0);
13120         if (!bp->regview) {
13121                 dev_err(&bp->pdev->dev,
13122                         "Cannot map register space, aborting\n");
13123                 rc = -ENOMEM;
13124                 goto err_out_release;
13125         }
13126
13127         /* In E1/E1H use pci device function given by kernel.
13128          * In E2/E3 read physical function from ME register since these chips
13129          * support Physical Device Assignment where kernel BDF maybe arbitrary
13130          * (depending on hypervisor).
13131          */
13132         if (chip_is_e1x) {
13133                 bp->pf_num = PCI_FUNC(pdev->devfn);
13134         } else {
13135                 /* chip is E2/3*/
13136                 pci_read_config_dword(bp->pdev,
13137                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
13138                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
13139                                   ME_REG_ABS_PF_NUM_SHIFT);
13140         }
13141         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
13142
13143         /* clean indirect addresses */
13144         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
13145                                PCICFG_VENDOR_ID_OFFSET);
13146
13147         /* Set PCIe reset type to fundamental for EEH recovery */
13148         pdev->needs_freset = 1;
13149
13150         /* AER (Advanced Error reporting) configuration */
13151         rc = pci_enable_pcie_error_reporting(pdev);
13152         if (!rc)
13153                 bp->flags |= AER_ENABLED;
13154         else
13155                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
13156
13157         /*
13158          * Clean the following indirect addresses for all functions since it
13159          * is not used by the driver.
13160          */
13161         if (IS_PF(bp)) {
13162                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
13163                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
13164                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
13165                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
13166
13167                 if (chip_is_e1x) {
13168                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
13169                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
13170                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
13171                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
13172                 }
13173
13174                 /* Enable internal target-read (in case we are probed after PF
13175                  * FLR). Must be done prior to any BAR read access. Only for
13176                  * 57712 and up
13177                  */
13178                 if (!chip_is_e1x)
13179                         REG_WR(bp,
13180                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
13181         }
13182
13183         dev->watchdog_timeo = TX_TIMEOUT;
13184
13185         dev->netdev_ops = &bnx2x_netdev_ops;
13186         bnx2x_set_ethtool_ops(bp, dev);
13187
13188         dev->priv_flags |= IFF_UNICAST_FLT;
13189
13190         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13191                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13192                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
13193                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
13194         if (!chip_is_e1x) {
13195                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
13196                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
13197                 dev->hw_enc_features =
13198                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
13199                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
13200                         NETIF_F_GSO_IPIP |
13201                         NETIF_F_GSO_SIT |
13202                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
13203         }
13204
13205         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
13206                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
13207
13208         /* VF with OLD Hypervisor or old PF do not support filtering */
13209         if (IS_PF(bp)) {
13210                 if (CHIP_IS_E1x(bp))
13211                         bp->accept_any_vlan = true;
13212                 else
13213                         dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13214 #ifdef CONFIG_BNX2X_SRIOV
13215         } else if (bp->acquire_resp.pfdev_info.pf_cap & PFVF_CAP_VLAN_FILTER) {
13216                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
13217 #endif
13218         }
13219
13220         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
13221         dev->features |= NETIF_F_HIGHDMA;
13222
13223         /* Add Loopback capability to the device */
13224         dev->hw_features |= NETIF_F_LOOPBACK;
13225
13226 #ifdef BCM_DCBNL
13227         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
13228 #endif
13229
13230         /* get_port_hwinfo() will set prtad and mmds properly */
13231         bp->mdio.prtad = MDIO_PRTAD_NONE;
13232         bp->mdio.mmds = 0;
13233         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
13234         bp->mdio.dev = dev;
13235         bp->mdio.mdio_read = bnx2x_mdio_read;
13236         bp->mdio.mdio_write = bnx2x_mdio_write;
13237
13238         return 0;
13239
13240 err_out_release:
13241         if (atomic_read(&pdev->enable_cnt) == 1)
13242                 pci_release_regions(pdev);
13243
13244 err_out_disable:
13245         pci_disable_device(pdev);
13246
13247 err_out:
13248         return rc;
13249 }
13250
13251 static int bnx2x_check_firmware(struct bnx2x *bp)
13252 {
13253         const struct firmware *firmware = bp->firmware;
13254         struct bnx2x_fw_file_hdr *fw_hdr;
13255         struct bnx2x_fw_file_section *sections;
13256         u32 offset, len, num_ops;
13257         __be16 *ops_offsets;
13258         int i;
13259         const u8 *fw_ver;
13260
13261         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
13262                 BNX2X_ERR("Wrong FW size\n");
13263                 return -EINVAL;
13264         }
13265
13266         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
13267         sections = (struct bnx2x_fw_file_section *)fw_hdr;
13268
13269         /* Make sure none of the offsets and sizes make us read beyond
13270          * the end of the firmware data */
13271         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
13272                 offset = be32_to_cpu(sections[i].offset);
13273                 len = be32_to_cpu(sections[i].len);
13274                 if (offset + len > firmware->size) {
13275                         BNX2X_ERR("Section %d length is out of bounds\n", i);
13276                         return -EINVAL;
13277                 }
13278         }
13279
13280         /* Likewise for the init_ops offsets */
13281         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
13282         ops_offsets = (__force __be16 *)(firmware->data + offset);
13283         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
13284
13285         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
13286                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
13287                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
13288                         return -EINVAL;
13289                 }
13290         }
13291
13292         /* Check FW version */
13293         offset = be32_to_cpu(fw_hdr->fw_version.offset);
13294         fw_ver = firmware->data + offset;
13295         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
13296             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
13297             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
13298             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
13299                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
13300                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
13301                        BCM_5710_FW_MAJOR_VERSION,
13302                        BCM_5710_FW_MINOR_VERSION,
13303                        BCM_5710_FW_REVISION_VERSION,
13304                        BCM_5710_FW_ENGINEERING_VERSION);
13305                 return -EINVAL;
13306         }
13307
13308         return 0;
13309 }
13310
13311 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13312 {
13313         const __be32 *source = (const __be32 *)_source;
13314         u32 *target = (u32 *)_target;
13315         u32 i;
13316
13317         for (i = 0; i < n/4; i++)
13318                 target[i] = be32_to_cpu(source[i]);
13319 }
13320
13321 /*
13322    Ops array is stored in the following format:
13323    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
13324  */
13325 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
13326 {
13327         const __be32 *source = (const __be32 *)_source;
13328         struct raw_op *target = (struct raw_op *)_target;
13329         u32 i, j, tmp;
13330
13331         for (i = 0, j = 0; i < n/8; i++, j += 2) {
13332                 tmp = be32_to_cpu(source[j]);
13333                 target[i].op = (tmp >> 24) & 0xff;
13334                 target[i].offset = tmp & 0xffffff;
13335                 target[i].raw_data = be32_to_cpu(source[j + 1]);
13336         }
13337 }
13338
13339 /* IRO array is stored in the following format:
13340  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
13341  */
13342 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
13343 {
13344         const __be32 *source = (const __be32 *)_source;
13345         struct iro *target = (struct iro *)_target;
13346         u32 i, j, tmp;
13347
13348         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
13349                 target[i].base = be32_to_cpu(source[j]);
13350                 j++;
13351                 tmp = be32_to_cpu(source[j]);
13352                 target[i].m1 = (tmp >> 16) & 0xffff;
13353                 target[i].m2 = tmp & 0xffff;
13354                 j++;
13355                 tmp = be32_to_cpu(source[j]);
13356                 target[i].m3 = (tmp >> 16) & 0xffff;
13357                 target[i].size = tmp & 0xffff;
13358                 j++;
13359         }
13360 }
13361
13362 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
13363 {
13364         const __be16 *source = (const __be16 *)_source;
13365         u16 *target = (u16 *)_target;
13366         u32 i;
13367
13368         for (i = 0; i < n/2; i++)
13369                 target[i] = be16_to_cpu(source[i]);
13370 }
13371
13372 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
13373 do {                                                                    \
13374         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
13375         bp->arr = kmalloc(len, GFP_KERNEL);                             \
13376         if (!bp->arr)                                                   \
13377                 goto lbl;                                               \
13378         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
13379              (u8 *)bp->arr, len);                                       \
13380 } while (0)
13381
13382 static int bnx2x_init_firmware(struct bnx2x *bp)
13383 {
13384         const char *fw_file_name;
13385         struct bnx2x_fw_file_hdr *fw_hdr;
13386         int rc;
13387
13388         if (bp->firmware)
13389                 return 0;
13390
13391         if (CHIP_IS_E1(bp))
13392                 fw_file_name = FW_FILE_NAME_E1;
13393         else if (CHIP_IS_E1H(bp))
13394                 fw_file_name = FW_FILE_NAME_E1H;
13395         else if (!CHIP_IS_E1x(bp))
13396                 fw_file_name = FW_FILE_NAME_E2;
13397         else {
13398                 BNX2X_ERR("Unsupported chip revision\n");
13399                 return -EINVAL;
13400         }
13401         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
13402
13403         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
13404         if (rc) {
13405                 BNX2X_ERR("Can't load firmware file %s\n",
13406                           fw_file_name);
13407                 goto request_firmware_exit;
13408         }
13409
13410         rc = bnx2x_check_firmware(bp);
13411         if (rc) {
13412                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
13413                 goto request_firmware_exit;
13414         }
13415
13416         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
13417
13418         /* Initialize the pointers to the init arrays */
13419         /* Blob */
13420         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
13421
13422         /* Opcodes */
13423         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
13424
13425         /* Offsets */
13426         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
13427                             be16_to_cpu_n);
13428
13429         /* STORMs firmware */
13430         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13431                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
13432         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
13433                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
13434         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13435                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
13436         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
13437                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
13438         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13439                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
13440         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
13441                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
13442         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
13443                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
13444         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
13445                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
13446         /* IRO */
13447         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
13448
13449         return 0;
13450
13451 iro_alloc_err:
13452         kfree(bp->init_ops_offsets);
13453 init_offsets_alloc_err:
13454         kfree(bp->init_ops);
13455 init_ops_alloc_err:
13456         kfree(bp->init_data);
13457 request_firmware_exit:
13458         release_firmware(bp->firmware);
13459         bp->firmware = NULL;
13460
13461         return rc;
13462 }
13463
13464 static void bnx2x_release_firmware(struct bnx2x *bp)
13465 {
13466         kfree(bp->init_ops_offsets);
13467         kfree(bp->init_ops);
13468         kfree(bp->init_data);
13469         release_firmware(bp->firmware);
13470         bp->firmware = NULL;
13471 }
13472
13473 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
13474         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
13475         .init_hw_cmn      = bnx2x_init_hw_common,
13476         .init_hw_port     = bnx2x_init_hw_port,
13477         .init_hw_func     = bnx2x_init_hw_func,
13478
13479         .reset_hw_cmn     = bnx2x_reset_common,
13480         .reset_hw_port    = bnx2x_reset_port,
13481         .reset_hw_func    = bnx2x_reset_func,
13482
13483         .gunzip_init      = bnx2x_gunzip_init,
13484         .gunzip_end       = bnx2x_gunzip_end,
13485
13486         .init_fw          = bnx2x_init_firmware,
13487         .release_fw       = bnx2x_release_firmware,
13488 };
13489
13490 void bnx2x__init_func_obj(struct bnx2x *bp)
13491 {
13492         /* Prepare DMAE related driver resources */
13493         bnx2x_setup_dmae(bp);
13494
13495         bnx2x_init_func_obj(bp, &bp->func_obj,
13496                             bnx2x_sp(bp, func_rdata),
13497                             bnx2x_sp_mapping(bp, func_rdata),
13498                             bnx2x_sp(bp, func_afex_rdata),
13499                             bnx2x_sp_mapping(bp, func_afex_rdata),
13500                             &bnx2x_func_sp_drv);
13501 }
13502
13503 /* must be called after sriov-enable */
13504 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
13505 {
13506         int cid_count = BNX2X_L2_MAX_CID(bp);
13507
13508         if (IS_SRIOV(bp))
13509                 cid_count += BNX2X_VF_CIDS;
13510
13511         if (CNIC_SUPPORT(bp))
13512                 cid_count += CNIC_CID_MAX;
13513
13514         return roundup(cid_count, QM_CID_ROUND);
13515 }
13516
13517 /**
13518  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
13519  *
13520  * @dev:        pci device
13521  *
13522  */
13523 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
13524 {
13525         int index;
13526         u16 control = 0;
13527
13528         /*
13529          * If MSI-X is not supported - return number of SBs needed to support
13530          * one fast path queue: one FP queue + SB for CNIC
13531          */
13532         if (!pdev->msix_cap) {
13533                 dev_info(&pdev->dev, "no msix capability found\n");
13534                 return 1 + cnic_cnt;
13535         }
13536         dev_info(&pdev->dev, "msix capability found\n");
13537
13538         /*
13539          * The value in the PCI configuration space is the index of the last
13540          * entry, namely one less than the actual size of the table, which is
13541          * exactly what we want to return from this function: number of all SBs
13542          * without the default SB.
13543          * For VFs there is no default SB, then we return (index+1).
13544          */
13545         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &control);
13546
13547         index = control & PCI_MSIX_FLAGS_QSIZE;
13548
13549         return index;
13550 }
13551
13552 static int set_max_cos_est(int chip_id)
13553 {
13554         switch (chip_id) {
13555         case BCM57710:
13556         case BCM57711:
13557         case BCM57711E:
13558                 return BNX2X_MULTI_TX_COS_E1X;
13559         case BCM57712:
13560         case BCM57712_MF:
13561                 return BNX2X_MULTI_TX_COS_E2_E3A0;
13562         case BCM57800:
13563         case BCM57800_MF:
13564         case BCM57810:
13565         case BCM57810_MF:
13566         case BCM57840_4_10:
13567         case BCM57840_2_20:
13568         case BCM57840_O:
13569         case BCM57840_MFO:
13570         case BCM57840_MF:
13571         case BCM57811:
13572         case BCM57811_MF:
13573                 return BNX2X_MULTI_TX_COS_E3B0;
13574         case BCM57712_VF:
13575         case BCM57800_VF:
13576         case BCM57810_VF:
13577         case BCM57840_VF:
13578         case BCM57811_VF:
13579                 return 1;
13580         default:
13581                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
13582                 return -ENODEV;
13583         }
13584 }
13585
13586 static int set_is_vf(int chip_id)
13587 {
13588         switch (chip_id) {
13589         case BCM57712_VF:
13590         case BCM57800_VF:
13591         case BCM57810_VF:
13592         case BCM57840_VF:
13593         case BCM57811_VF:
13594                 return true;
13595         default:
13596                 return false;
13597         }
13598 }
13599
13600 /* nig_tsgen registers relative address */
13601 #define tsgen_ctrl 0x0
13602 #define tsgen_freecount 0x10
13603 #define tsgen_synctime_t0 0x20
13604 #define tsgen_offset_t0 0x28
13605 #define tsgen_drift_t0 0x30
13606 #define tsgen_synctime_t1 0x58
13607 #define tsgen_offset_t1 0x60
13608 #define tsgen_drift_t1 0x68
13609
13610 /* FW workaround for setting drift */
13611 static int bnx2x_send_update_drift_ramrod(struct bnx2x *bp, int drift_dir,
13612                                           int best_val, int best_period)
13613 {
13614         struct bnx2x_func_state_params func_params = {NULL};
13615         struct bnx2x_func_set_timesync_params *set_timesync_params =
13616                 &func_params.params.set_timesync;
13617
13618         /* Prepare parameters for function state transitions */
13619         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
13620         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
13621
13622         func_params.f_obj = &bp->func_obj;
13623         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
13624
13625         /* Function parameters */
13626         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_SET;
13627         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
13628         set_timesync_params->add_sub_drift_adjust_value =
13629                 drift_dir ? TS_ADD_VALUE : TS_SUB_VALUE;
13630         set_timesync_params->drift_adjust_value = best_val;
13631         set_timesync_params->drift_adjust_period = best_period;
13632
13633         return bnx2x_func_state_change(bp, &func_params);
13634 }
13635
13636 static int bnx2x_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
13637 {
13638         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13639         int rc;
13640         int drift_dir = 1;
13641         int val, period, period1, period2, dif, dif1, dif2;
13642         int best_dif = BNX2X_MAX_PHC_DRIFT, best_period = 0, best_val = 0;
13643
13644         DP(BNX2X_MSG_PTP, "PTP adjfreq called, ppb = %d\n", ppb);
13645
13646         if (!netif_running(bp->dev)) {
13647                 DP(BNX2X_MSG_PTP,
13648                    "PTP adjfreq called while the interface is down\n");
13649                 return -EFAULT;
13650         }
13651
13652         if (ppb < 0) {
13653                 ppb = -ppb;
13654                 drift_dir = 0;
13655         }
13656
13657         if (ppb == 0) {
13658                 best_val = 1;
13659                 best_period = 0x1FFFFFF;
13660         } else if (ppb >= BNX2X_MAX_PHC_DRIFT) {
13661                 best_val = 31;
13662                 best_period = 1;
13663         } else {
13664                 /* Changed not to allow val = 8, 16, 24 as these values
13665                  * are not supported in workaround.
13666                  */
13667                 for (val = 0; val <= 31; val++) {
13668                         if ((val & 0x7) == 0)
13669                                 continue;
13670                         period1 = val * 1000000 / ppb;
13671                         period2 = period1 + 1;
13672                         if (period1 != 0)
13673                                 dif1 = ppb - (val * 1000000 / period1);
13674                         else
13675                                 dif1 = BNX2X_MAX_PHC_DRIFT;
13676                         if (dif1 < 0)
13677                                 dif1 = -dif1;
13678                         dif2 = ppb - (val * 1000000 / period2);
13679                         if (dif2 < 0)
13680                                 dif2 = -dif2;
13681                         dif = (dif1 < dif2) ? dif1 : dif2;
13682                         period = (dif1 < dif2) ? period1 : period2;
13683                         if (dif < best_dif) {
13684                                 best_dif = dif;
13685                                 best_val = val;
13686                                 best_period = period;
13687                         }
13688                 }
13689         }
13690
13691         rc = bnx2x_send_update_drift_ramrod(bp, drift_dir, best_val,
13692                                             best_period);
13693         if (rc) {
13694                 BNX2X_ERR("Failed to set drift\n");
13695                 return -EFAULT;
13696         }
13697
13698         DP(BNX2X_MSG_PTP, "Configured val = %d, period = %d\n", best_val,
13699            best_period);
13700
13701         return 0;
13702 }
13703
13704 static int bnx2x_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
13705 {
13706         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13707
13708         DP(BNX2X_MSG_PTP, "PTP adjtime called, delta = %llx\n", delta);
13709
13710         timecounter_adjtime(&bp->timecounter, delta);
13711
13712         return 0;
13713 }
13714
13715 static int bnx2x_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
13716 {
13717         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13718         u64 ns;
13719
13720         ns = timecounter_read(&bp->timecounter);
13721
13722         DP(BNX2X_MSG_PTP, "PTP gettime called, ns = %llu\n", ns);
13723
13724         *ts = ns_to_timespec64(ns);
13725
13726         return 0;
13727 }
13728
13729 static int bnx2x_ptp_settime(struct ptp_clock_info *ptp,
13730                              const struct timespec64 *ts)
13731 {
13732         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13733         u64 ns;
13734
13735         ns = timespec64_to_ns(ts);
13736
13737         DP(BNX2X_MSG_PTP, "PTP settime called, ns = %llu\n", ns);
13738
13739         /* Re-init the timecounter */
13740         timecounter_init(&bp->timecounter, &bp->cyclecounter, ns);
13741
13742         return 0;
13743 }
13744
13745 /* Enable (or disable) ancillary features of the phc subsystem */
13746 static int bnx2x_ptp_enable(struct ptp_clock_info *ptp,
13747                             struct ptp_clock_request *rq, int on)
13748 {
13749         struct bnx2x *bp = container_of(ptp, struct bnx2x, ptp_clock_info);
13750
13751         BNX2X_ERR("PHC ancillary features are not supported\n");
13752         return -ENOTSUPP;
13753 }
13754
13755 static void bnx2x_register_phc(struct bnx2x *bp)
13756 {
13757         /* Fill the ptp_clock_info struct and register PTP clock*/
13758         bp->ptp_clock_info.owner = THIS_MODULE;
13759         snprintf(bp->ptp_clock_info.name, 16, "%s", bp->dev->name);
13760         bp->ptp_clock_info.max_adj = BNX2X_MAX_PHC_DRIFT; /* In PPB */
13761         bp->ptp_clock_info.n_alarm = 0;
13762         bp->ptp_clock_info.n_ext_ts = 0;
13763         bp->ptp_clock_info.n_per_out = 0;
13764         bp->ptp_clock_info.pps = 0;
13765         bp->ptp_clock_info.adjfreq = bnx2x_ptp_adjfreq;
13766         bp->ptp_clock_info.adjtime = bnx2x_ptp_adjtime;
13767         bp->ptp_clock_info.gettime64 = bnx2x_ptp_gettime;
13768         bp->ptp_clock_info.settime64 = bnx2x_ptp_settime;
13769         bp->ptp_clock_info.enable = bnx2x_ptp_enable;
13770
13771         bp->ptp_clock = ptp_clock_register(&bp->ptp_clock_info, &bp->pdev->dev);
13772         if (IS_ERR(bp->ptp_clock)) {
13773                 bp->ptp_clock = NULL;
13774                 BNX2X_ERR("PTP clock registeration failed\n");
13775         }
13776 }
13777
13778 static int bnx2x_init_one(struct pci_dev *pdev,
13779                                     const struct pci_device_id *ent)
13780 {
13781         struct net_device *dev = NULL;
13782         struct bnx2x *bp;
13783         enum pcie_link_width pcie_width;
13784         enum pci_bus_speed pcie_speed;
13785         int rc, max_non_def_sbs;
13786         int rx_count, tx_count, rss_count, doorbell_size;
13787         int max_cos_est;
13788         bool is_vf;
13789         int cnic_cnt;
13790
13791         /* Management FW 'remembers' living interfaces. Allow it some time
13792          * to forget previously living interfaces, allowing a proper re-load.
13793          */
13794         if (is_kdump_kernel()) {
13795                 ktime_t now = ktime_get_boottime();
13796                 ktime_t fw_ready_time = ktime_set(5, 0);
13797
13798                 if (ktime_before(now, fw_ready_time))
13799                         msleep(ktime_ms_delta(fw_ready_time, now));
13800         }
13801
13802         /* An estimated maximum supported CoS number according to the chip
13803          * version.
13804          * We will try to roughly estimate the maximum number of CoSes this chip
13805          * may support in order to minimize the memory allocated for Tx
13806          * netdev_queue's. This number will be accurately calculated during the
13807          * initialization of bp->max_cos based on the chip versions AND chip
13808          * revision in the bnx2x_init_bp().
13809          */
13810         max_cos_est = set_max_cos_est(ent->driver_data);
13811         if (max_cos_est < 0)
13812                 return max_cos_est;
13813         is_vf = set_is_vf(ent->driver_data);
13814         cnic_cnt = is_vf ? 0 : 1;
13815
13816         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13817
13818         /* add another SB for VF as it has no default SB */
13819         max_non_def_sbs += is_vf ? 1 : 0;
13820
13821         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13822         rss_count = max_non_def_sbs - cnic_cnt;
13823
13824         if (rss_count < 1)
13825                 return -EINVAL;
13826
13827         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13828         rx_count = rss_count + cnic_cnt;
13829
13830         /* Maximum number of netdev Tx queues:
13831          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13832          */
13833         tx_count = rss_count * max_cos_est + cnic_cnt;
13834
13835         /* dev zeroed in init_etherdev */
13836         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13837         if (!dev)
13838                 return -ENOMEM;
13839
13840         bp = netdev_priv(dev);
13841
13842         bp->flags = 0;
13843         if (is_vf)
13844                 bp->flags |= IS_VF_FLAG;
13845
13846         bp->igu_sb_cnt = max_non_def_sbs;
13847         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13848         bp->msg_enable = debug;
13849         bp->cnic_support = cnic_cnt;
13850         bp->cnic_probe = bnx2x_cnic_probe;
13851
13852         pci_set_drvdata(pdev, dev);
13853
13854         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13855         if (rc < 0) {
13856                 free_netdev(dev);
13857                 return rc;
13858         }
13859
13860         BNX2X_DEV_INFO("This is a %s function\n",
13861                        IS_PF(bp) ? "physical" : "virtual");
13862         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13863         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13864         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13865                        tx_count, rx_count);
13866
13867         rc = bnx2x_init_bp(bp);
13868         if (rc)
13869                 goto init_one_exit;
13870
13871         /* Map doorbells here as we need the real value of bp->max_cos which
13872          * is initialized in bnx2x_init_bp() to determine the number of
13873          * l2 connections.
13874          */
13875         if (IS_VF(bp)) {
13876                 bp->doorbells = bnx2x_vf_doorbells(bp);
13877                 rc = bnx2x_vf_pci_alloc(bp);
13878                 if (rc)
13879                         goto init_one_exit;
13880         } else {
13881                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13882                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13883                         dev_err(&bp->pdev->dev,
13884                                 "Cannot map doorbells, bar size too small, aborting\n");
13885                         rc = -ENOMEM;
13886                         goto init_one_exit;
13887                 }
13888                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13889                                                 doorbell_size);
13890         }
13891         if (!bp->doorbells) {
13892                 dev_err(&bp->pdev->dev,
13893                         "Cannot map doorbell space, aborting\n");
13894                 rc = -ENOMEM;
13895                 goto init_one_exit;
13896         }
13897
13898         if (IS_VF(bp)) {
13899                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13900                 if (rc)
13901                         goto init_one_exit;
13902         }
13903
13904         /* Enable SRIOV if capability found in configuration space */
13905         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13906         if (rc)
13907                 goto init_one_exit;
13908
13909         /* calc qm_cid_count */
13910         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13911         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13912
13913         /* disable FCOE L2 queue for E1x*/
13914         if (CHIP_IS_E1x(bp))
13915                 bp->flags |= NO_FCOE_FLAG;
13916
13917         /* Set bp->num_queues for MSI-X mode*/
13918         bnx2x_set_num_queues(bp);
13919
13920         /* Configure interrupt mode: try to enable MSI-X/MSI if
13921          * needed.
13922          */
13923         rc = bnx2x_set_int_mode(bp);
13924         if (rc) {
13925                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13926                 goto init_one_exit;
13927         }
13928         BNX2X_DEV_INFO("set interrupts successfully\n");
13929
13930         /* register the net device */
13931         rc = register_netdev(dev);
13932         if (rc) {
13933                 dev_err(&pdev->dev, "Cannot register net device\n");
13934                 goto init_one_exit;
13935         }
13936         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13937
13938         if (!NO_FCOE(bp)) {
13939                 /* Add storage MAC address */
13940                 rtnl_lock();
13941                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13942                 rtnl_unlock();
13943         }
13944         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13945             pcie_speed == PCI_SPEED_UNKNOWN ||
13946             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13947                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13948         else
13949                 BNX2X_DEV_INFO(
13950                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13951                        board_info[ent->driver_data].name,
13952                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13953                        pcie_width,
13954                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13955                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13956                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13957                        "Unknown",
13958                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13959
13960         bnx2x_register_phc(bp);
13961
13962         if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
13963                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
13964
13965         return 0;
13966
13967 init_one_exit:
13968         bnx2x_disable_pcie_error_reporting(bp);
13969
13970         if (bp->regview)
13971                 iounmap(bp->regview);
13972
13973         if (IS_PF(bp) && bp->doorbells)
13974                 iounmap(bp->doorbells);
13975
13976         free_netdev(dev);
13977
13978         if (atomic_read(&pdev->enable_cnt) == 1)
13979                 pci_release_regions(pdev);
13980
13981         pci_disable_device(pdev);
13982
13983         return rc;
13984 }
13985
13986 static void __bnx2x_remove(struct pci_dev *pdev,
13987                            struct net_device *dev,
13988                            struct bnx2x *bp,
13989                            bool remove_netdev)
13990 {
13991         if (bp->ptp_clock) {
13992                 ptp_clock_unregister(bp->ptp_clock);
13993                 bp->ptp_clock = NULL;
13994         }
13995
13996         /* Delete storage MAC address */
13997         if (!NO_FCOE(bp)) {
13998                 rtnl_lock();
13999                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
14000                 rtnl_unlock();
14001         }
14002
14003 #ifdef BCM_DCBNL
14004         /* Delete app tlvs from dcbnl */
14005         bnx2x_dcbnl_update_applist(bp, true);
14006 #endif
14007
14008         if (IS_PF(bp) &&
14009             !BP_NOMCP(bp) &&
14010             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
14011                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
14012
14013         /* Close the interface - either directly or implicitly */
14014         if (remove_netdev) {
14015                 unregister_netdev(dev);
14016         } else {
14017                 rtnl_lock();
14018                 dev_close(dev);
14019                 rtnl_unlock();
14020         }
14021
14022         bnx2x_iov_remove_one(bp);
14023
14024         /* Power on: we can't let PCI layer write to us while we are in D3 */
14025         if (IS_PF(bp)) {
14026                 bnx2x_set_power_state(bp, PCI_D0);
14027                 bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_NOT_LOADED);
14028
14029                 /* Set endianity registers to reset values in case next driver
14030                  * boots in different endianty environment.
14031                  */
14032                 bnx2x_reset_endianity(bp);
14033         }
14034
14035         /* Disable MSI/MSI-X */
14036         bnx2x_disable_msi(bp);
14037
14038         /* Power off */
14039         if (IS_PF(bp))
14040                 bnx2x_set_power_state(bp, PCI_D3hot);
14041
14042         /* Make sure RESET task is not scheduled before continuing */
14043         cancel_delayed_work_sync(&bp->sp_rtnl_task);
14044
14045         /* send message via vfpf channel to release the resources of this vf */
14046         if (IS_VF(bp))
14047                 bnx2x_vfpf_release(bp);
14048
14049         /* Assumes no further PCIe PM changes will occur */
14050         if (system_state == SYSTEM_POWER_OFF) {
14051                 pci_wake_from_d3(pdev, bp->wol);
14052                 pci_set_power_state(pdev, PCI_D3hot);
14053         }
14054
14055         bnx2x_disable_pcie_error_reporting(bp);
14056         if (remove_netdev) {
14057                 if (bp->regview)
14058                         iounmap(bp->regview);
14059
14060                 /* For vfs, doorbells are part of the regview and were unmapped
14061                  * along with it. FW is only loaded by PF.
14062                  */
14063                 if (IS_PF(bp)) {
14064                         if (bp->doorbells)
14065                                 iounmap(bp->doorbells);
14066
14067                         bnx2x_release_firmware(bp);
14068                 } else {
14069                         bnx2x_vf_pci_dealloc(bp);
14070                 }
14071                 bnx2x_free_mem_bp(bp);
14072
14073                 free_netdev(dev);
14074
14075                 if (atomic_read(&pdev->enable_cnt) == 1)
14076                         pci_release_regions(pdev);
14077
14078                 pci_disable_device(pdev);
14079         }
14080 }
14081
14082 static void bnx2x_remove_one(struct pci_dev *pdev)
14083 {
14084         struct net_device *dev = pci_get_drvdata(pdev);
14085         struct bnx2x *bp;
14086
14087         if (!dev) {
14088                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
14089                 return;
14090         }
14091         bp = netdev_priv(dev);
14092
14093         __bnx2x_remove(pdev, dev, bp, true);
14094 }
14095
14096 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
14097 {
14098         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
14099
14100         bp->rx_mode = BNX2X_RX_MODE_NONE;
14101
14102         if (CNIC_LOADED(bp))
14103                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
14104
14105         /* Stop Tx */
14106         bnx2x_tx_disable(bp);
14107         /* Delete all NAPI objects */
14108         bnx2x_del_all_napi(bp);
14109         if (CNIC_LOADED(bp))
14110                 bnx2x_del_all_napi_cnic(bp);
14111         netdev_reset_tc(bp->dev);
14112
14113         del_timer_sync(&bp->timer);
14114         cancel_delayed_work_sync(&bp->sp_task);
14115         cancel_delayed_work_sync(&bp->period_task);
14116
14117         if (!down_timeout(&bp->stats_lock, HZ / 10)) {
14118                 bp->stats_state = STATS_STATE_DISABLED;
14119                 up(&bp->stats_lock);
14120         }
14121
14122         bnx2x_save_statistics(bp);
14123
14124         netif_carrier_off(bp->dev);
14125
14126         return 0;
14127 }
14128
14129 /**
14130  * bnx2x_io_error_detected - called when PCI error is detected
14131  * @pdev: Pointer to PCI device
14132  * @state: The current pci connection state
14133  *
14134  * This function is called after a PCI bus error affecting
14135  * this device has been detected.
14136  */
14137 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
14138                                                 pci_channel_state_t state)
14139 {
14140         struct net_device *dev = pci_get_drvdata(pdev);
14141         struct bnx2x *bp = netdev_priv(dev);
14142
14143         rtnl_lock();
14144
14145         BNX2X_ERR("IO error detected\n");
14146
14147         netif_device_detach(dev);
14148
14149         if (state == pci_channel_io_perm_failure) {
14150                 rtnl_unlock();
14151                 return PCI_ERS_RESULT_DISCONNECT;
14152         }
14153
14154         if (netif_running(dev))
14155                 bnx2x_eeh_nic_unload(bp);
14156
14157         bnx2x_prev_path_mark_eeh(bp);
14158
14159         pci_disable_device(pdev);
14160
14161         rtnl_unlock();
14162
14163         /* Request a slot reset */
14164         return PCI_ERS_RESULT_NEED_RESET;
14165 }
14166
14167 /**
14168  * bnx2x_io_slot_reset - called after the PCI bus has been reset
14169  * @pdev: Pointer to PCI device
14170  *
14171  * Restart the card from scratch, as if from a cold-boot.
14172  */
14173 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
14174 {
14175         struct net_device *dev = pci_get_drvdata(pdev);
14176         struct bnx2x *bp = netdev_priv(dev);
14177         int i;
14178
14179         rtnl_lock();
14180         BNX2X_ERR("IO slot reset initializing...\n");
14181         if (pci_enable_device(pdev)) {
14182                 dev_err(&pdev->dev,
14183                         "Cannot re-enable PCI device after reset\n");
14184                 rtnl_unlock();
14185                 return PCI_ERS_RESULT_DISCONNECT;
14186         }
14187
14188         pci_set_master(pdev);
14189         pci_restore_state(pdev);
14190         pci_save_state(pdev);
14191
14192         if (netif_running(dev))
14193                 bnx2x_set_power_state(bp, PCI_D0);
14194
14195         if (netif_running(dev)) {
14196                 BNX2X_ERR("IO slot reset --> driver unload\n");
14197
14198                 /* MCP should have been reset; Need to wait for validity */
14199                 bnx2x_init_shmem(bp);
14200
14201                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
14202                         u32 v;
14203
14204                         v = SHMEM2_RD(bp,
14205                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
14206                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
14207                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
14208                 }
14209                 bnx2x_drain_tx_queues(bp);
14210                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
14211                 bnx2x_netif_stop(bp, 1);
14212                 bnx2x_free_irq(bp);
14213
14214                 /* Report UNLOAD_DONE to MCP */
14215                 bnx2x_send_unload_done(bp, true);
14216
14217                 bp->sp_state = 0;
14218                 bp->port.pmf = 0;
14219
14220                 bnx2x_prev_unload(bp);
14221
14222                 /* We should have reseted the engine, so It's fair to
14223                  * assume the FW will no longer write to the bnx2x driver.
14224                  */
14225                 bnx2x_squeeze_objects(bp);
14226                 bnx2x_free_skbs(bp);
14227                 for_each_rx_queue(bp, i)
14228                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
14229                 bnx2x_free_fp_mem(bp);
14230                 bnx2x_free_mem(bp);
14231
14232                 bp->state = BNX2X_STATE_CLOSED;
14233         }
14234
14235         rtnl_unlock();
14236
14237         /* If AER, perform cleanup of the PCIe registers */
14238         if (bp->flags & AER_ENABLED) {
14239                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
14240                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
14241                 else
14242                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
14243         }
14244
14245         return PCI_ERS_RESULT_RECOVERED;
14246 }
14247
14248 /**
14249  * bnx2x_io_resume - called when traffic can start flowing again
14250  * @pdev: Pointer to PCI device
14251  *
14252  * This callback is called when the error recovery driver tells us that
14253  * its OK to resume normal operation.
14254  */
14255 static void bnx2x_io_resume(struct pci_dev *pdev)
14256 {
14257         struct net_device *dev = pci_get_drvdata(pdev);
14258         struct bnx2x *bp = netdev_priv(dev);
14259
14260         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
14261                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
14262                 return;
14263         }
14264
14265         rtnl_lock();
14266
14267         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
14268                                                         DRV_MSG_SEQ_NUMBER_MASK;
14269
14270         if (netif_running(dev))
14271                 bnx2x_nic_load(bp, LOAD_NORMAL);
14272
14273         netif_device_attach(dev);
14274
14275         rtnl_unlock();
14276 }
14277
14278 static const struct pci_error_handlers bnx2x_err_handler = {
14279         .error_detected = bnx2x_io_error_detected,
14280         .slot_reset     = bnx2x_io_slot_reset,
14281         .resume         = bnx2x_io_resume,
14282 };
14283
14284 static void bnx2x_shutdown(struct pci_dev *pdev)
14285 {
14286         struct net_device *dev = pci_get_drvdata(pdev);
14287         struct bnx2x *bp;
14288
14289         if (!dev)
14290                 return;
14291
14292         bp = netdev_priv(dev);
14293         if (!bp)
14294                 return;
14295
14296         rtnl_lock();
14297         netif_device_detach(dev);
14298         rtnl_unlock();
14299
14300         /* Don't remove the netdevice, as there are scenarios which will cause
14301          * the kernel to hang, e.g., when trying to remove bnx2i while the
14302          * rootfs is mounted from SAN.
14303          */
14304         __bnx2x_remove(pdev, dev, bp, false);
14305 }
14306
14307 static struct pci_driver bnx2x_pci_driver = {
14308         .name        = DRV_MODULE_NAME,
14309         .id_table    = bnx2x_pci_tbl,
14310         .probe       = bnx2x_init_one,
14311         .remove      = bnx2x_remove_one,
14312         .suspend     = bnx2x_suspend,
14313         .resume      = bnx2x_resume,
14314         .err_handler = &bnx2x_err_handler,
14315 #ifdef CONFIG_BNX2X_SRIOV
14316         .sriov_configure = bnx2x_sriov_configure,
14317 #endif
14318         .shutdown    = bnx2x_shutdown,
14319 };
14320
14321 static int __init bnx2x_init(void)
14322 {
14323         int ret;
14324
14325         pr_info("%s", version);
14326
14327         bnx2x_wq = create_singlethread_workqueue("bnx2x");
14328         if (bnx2x_wq == NULL) {
14329                 pr_err("Cannot create workqueue\n");
14330                 return -ENOMEM;
14331         }
14332         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
14333         if (!bnx2x_iov_wq) {
14334                 pr_err("Cannot create iov workqueue\n");
14335                 destroy_workqueue(bnx2x_wq);
14336                 return -ENOMEM;
14337         }
14338
14339         ret = pci_register_driver(&bnx2x_pci_driver);
14340         if (ret) {
14341                 pr_err("Cannot register driver\n");
14342                 destroy_workqueue(bnx2x_wq);
14343                 destroy_workqueue(bnx2x_iov_wq);
14344         }
14345         return ret;
14346 }
14347
14348 static void __exit bnx2x_cleanup(void)
14349 {
14350         struct list_head *pos, *q;
14351
14352         pci_unregister_driver(&bnx2x_pci_driver);
14353
14354         destroy_workqueue(bnx2x_wq);
14355         destroy_workqueue(bnx2x_iov_wq);
14356
14357         /* Free globally allocated resources */
14358         list_for_each_safe(pos, q, &bnx2x_prev_list) {
14359                 struct bnx2x_prev_path_list *tmp =
14360                         list_entry(pos, struct bnx2x_prev_path_list, list);
14361                 list_del(pos);
14362                 kfree(tmp);
14363         }
14364 }
14365
14366 void bnx2x_notify_link_changed(struct bnx2x *bp)
14367 {
14368         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
14369 }
14370
14371 module_init(bnx2x_init);
14372 module_exit(bnx2x_cleanup);
14373
14374 /**
14375  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
14376  *
14377  * @bp:         driver handle
14378  * @set:        set or clear the CAM entry
14379  *
14380  * This function will wait until the ramrod completion returns.
14381  * Return 0 if success, -ENODEV if ramrod doesn't return.
14382  */
14383 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
14384 {
14385         unsigned long ramrod_flags = 0;
14386
14387         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
14388         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
14389                                  &bp->iscsi_l2_mac_obj, true,
14390                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
14391 }
14392
14393 /* count denotes the number of new completions we have seen */
14394 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
14395 {
14396         struct eth_spe *spe;
14397         int cxt_index, cxt_offset;
14398
14399 #ifdef BNX2X_STOP_ON_ERROR
14400         if (unlikely(bp->panic))
14401                 return;
14402 #endif
14403
14404         spin_lock_bh(&bp->spq_lock);
14405         BUG_ON(bp->cnic_spq_pending < count);
14406         bp->cnic_spq_pending -= count;
14407
14408         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
14409                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
14410                                 & SPE_HDR_CONN_TYPE) >>
14411                                 SPE_HDR_CONN_TYPE_SHIFT;
14412                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
14413                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
14414
14415                 /* Set validation for iSCSI L2 client before sending SETUP
14416                  *  ramrod
14417                  */
14418                 if (type == ETH_CONNECTION_TYPE) {
14419                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
14420                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
14421                                         ILT_PAGE_CIDS;
14422                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
14423                                         (cxt_index * ILT_PAGE_CIDS);
14424                                 bnx2x_set_ctx_validation(bp,
14425                                         &bp->context[cxt_index].
14426                                                          vcxt[cxt_offset].eth,
14427                                         BNX2X_ISCSI_ETH_CID(bp));
14428                         }
14429                 }
14430
14431                 /*
14432                  * There may be not more than 8 L2, not more than 8 L5 SPEs
14433                  * and in the air. We also check that number of outstanding
14434                  * COMMON ramrods is not more than the EQ and SPQ can
14435                  * accommodate.
14436                  */
14437                 if (type == ETH_CONNECTION_TYPE) {
14438                         if (!atomic_read(&bp->cq_spq_left))
14439                                 break;
14440                         else
14441                                 atomic_dec(&bp->cq_spq_left);
14442                 } else if (type == NONE_CONNECTION_TYPE) {
14443                         if (!atomic_read(&bp->eq_spq_left))
14444                                 break;
14445                         else
14446                                 atomic_dec(&bp->eq_spq_left);
14447                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
14448                            (type == FCOE_CONNECTION_TYPE)) {
14449                         if (bp->cnic_spq_pending >=
14450                             bp->cnic_eth_dev.max_kwqe_pending)
14451                                 break;
14452                         else
14453                                 bp->cnic_spq_pending++;
14454                 } else {
14455                         BNX2X_ERR("Unknown SPE type: %d\n", type);
14456                         bnx2x_panic();
14457                         break;
14458                 }
14459
14460                 spe = bnx2x_sp_get_next(bp);
14461                 *spe = *bp->cnic_kwq_cons;
14462
14463                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
14464                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
14465
14466                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
14467                         bp->cnic_kwq_cons = bp->cnic_kwq;
14468                 else
14469                         bp->cnic_kwq_cons++;
14470         }
14471         bnx2x_sp_prod_update(bp);
14472         spin_unlock_bh(&bp->spq_lock);
14473 }
14474
14475 static int bnx2x_cnic_sp_queue(struct net_device *dev,
14476                                struct kwqe_16 *kwqes[], u32 count)
14477 {
14478         struct bnx2x *bp = netdev_priv(dev);
14479         int i;
14480
14481 #ifdef BNX2X_STOP_ON_ERROR
14482         if (unlikely(bp->panic)) {
14483                 BNX2X_ERR("Can't post to SP queue while panic\n");
14484                 return -EIO;
14485         }
14486 #endif
14487
14488         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
14489             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
14490                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
14491                 return -EAGAIN;
14492         }
14493
14494         spin_lock_bh(&bp->spq_lock);
14495
14496         for (i = 0; i < count; i++) {
14497                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
14498
14499                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
14500                         break;
14501
14502                 *bp->cnic_kwq_prod = *spe;
14503
14504                 bp->cnic_kwq_pending++;
14505
14506                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
14507                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
14508                    spe->data.update_data_addr.hi,
14509                    spe->data.update_data_addr.lo,
14510                    bp->cnic_kwq_pending);
14511
14512                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
14513                         bp->cnic_kwq_prod = bp->cnic_kwq;
14514                 else
14515                         bp->cnic_kwq_prod++;
14516         }
14517
14518         spin_unlock_bh(&bp->spq_lock);
14519
14520         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
14521                 bnx2x_cnic_sp_post(bp, 0);
14522
14523         return i;
14524 }
14525
14526 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14527 {
14528         struct cnic_ops *c_ops;
14529         int rc = 0;
14530
14531         mutex_lock(&bp->cnic_mutex);
14532         c_ops = rcu_dereference_protected(bp->cnic_ops,
14533                                           lockdep_is_held(&bp->cnic_mutex));
14534         if (c_ops)
14535                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14536         mutex_unlock(&bp->cnic_mutex);
14537
14538         return rc;
14539 }
14540
14541 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
14542 {
14543         struct cnic_ops *c_ops;
14544         int rc = 0;
14545
14546         rcu_read_lock();
14547         c_ops = rcu_dereference(bp->cnic_ops);
14548         if (c_ops)
14549                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
14550         rcu_read_unlock();
14551
14552         return rc;
14553 }
14554
14555 /*
14556  * for commands that have no data
14557  */
14558 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
14559 {
14560         struct cnic_ctl_info ctl = {0};
14561
14562         ctl.cmd = cmd;
14563
14564         return bnx2x_cnic_ctl_send(bp, &ctl);
14565 }
14566
14567 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
14568 {
14569         struct cnic_ctl_info ctl = {0};
14570
14571         /* first we tell CNIC and only then we count this as a completion */
14572         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
14573         ctl.data.comp.cid = cid;
14574         ctl.data.comp.error = err;
14575
14576         bnx2x_cnic_ctl_send_bh(bp, &ctl);
14577         bnx2x_cnic_sp_post(bp, 0);
14578 }
14579
14580 /* Called with netif_addr_lock_bh() taken.
14581  * Sets an rx_mode config for an iSCSI ETH client.
14582  * Doesn't block.
14583  * Completion should be checked outside.
14584  */
14585 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
14586 {
14587         unsigned long accept_flags = 0, ramrod_flags = 0;
14588         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14589         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
14590
14591         if (start) {
14592                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
14593                  * because it's the only way for UIO Queue to accept
14594                  * multicasts (in non-promiscuous mode only one Queue per
14595                  * function will receive multicast packets (leading in our
14596                  * case).
14597                  */
14598                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
14599                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
14600                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
14601                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
14602
14603                 /* Clear STOP_PENDING bit if START is requested */
14604                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
14605
14606                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
14607         } else
14608                 /* Clear START_PENDING bit if STOP is requested */
14609                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
14610
14611         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
14612                 set_bit(sched_state, &bp->sp_state);
14613         else {
14614                 __set_bit(RAMROD_RX, &ramrod_flags);
14615                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
14616                                     ramrod_flags);
14617         }
14618 }
14619
14620 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
14621 {
14622         struct bnx2x *bp = netdev_priv(dev);
14623         int rc = 0;
14624
14625         switch (ctl->cmd) {
14626         case DRV_CTL_CTXTBL_WR_CMD: {
14627                 u32 index = ctl->data.io.offset;
14628                 dma_addr_t addr = ctl->data.io.dma_addr;
14629
14630                 bnx2x_ilt_wr(bp, index, addr);
14631                 break;
14632         }
14633
14634         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
14635                 int count = ctl->data.credit.credit_count;
14636
14637                 bnx2x_cnic_sp_post(bp, count);
14638                 break;
14639         }
14640
14641         /* rtnl_lock is held.  */
14642         case DRV_CTL_START_L2_CMD: {
14643                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14644                 unsigned long sp_bits = 0;
14645
14646                 /* Configure the iSCSI classification object */
14647                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
14648                                    cp->iscsi_l2_client_id,
14649                                    cp->iscsi_l2_cid, BP_FUNC(bp),
14650                                    bnx2x_sp(bp, mac_rdata),
14651                                    bnx2x_sp_mapping(bp, mac_rdata),
14652                                    BNX2X_FILTER_MAC_PENDING,
14653                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
14654                                    &bp->macs_pool);
14655
14656                 /* Set iSCSI MAC address */
14657                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
14658                 if (rc)
14659                         break;
14660
14661                 mmiowb();
14662                 barrier();
14663
14664                 /* Start accepting on iSCSI L2 ring */
14665
14666                 netif_addr_lock_bh(dev);
14667                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
14668                 netif_addr_unlock_bh(dev);
14669
14670                 /* bits to wait on */
14671                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14672                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
14673
14674                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14675                         BNX2X_ERR("rx_mode completion timed out!\n");
14676
14677                 break;
14678         }
14679
14680         /* rtnl_lock is held.  */
14681         case DRV_CTL_STOP_L2_CMD: {
14682                 unsigned long sp_bits = 0;
14683
14684                 /* Stop accepting on iSCSI L2 ring */
14685                 netif_addr_lock_bh(dev);
14686                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
14687                 netif_addr_unlock_bh(dev);
14688
14689                 /* bits to wait on */
14690                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
14691                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
14692
14693                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
14694                         BNX2X_ERR("rx_mode completion timed out!\n");
14695
14696                 mmiowb();
14697                 barrier();
14698
14699                 /* Unset iSCSI L2 MAC */
14700                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
14701                                         BNX2X_ISCSI_ETH_MAC, true);
14702                 break;
14703         }
14704         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
14705                 int count = ctl->data.credit.credit_count;
14706
14707                 smp_mb__before_atomic();
14708                 atomic_add(count, &bp->cq_spq_left);
14709                 smp_mb__after_atomic();
14710                 break;
14711         }
14712         case DRV_CTL_ULP_REGISTER_CMD: {
14713                 int ulp_type = ctl->data.register_data.ulp_type;
14714
14715                 if (CHIP_IS_E3(bp)) {
14716                         int idx = BP_FW_MB_IDX(bp);
14717                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14718                         int path = BP_PATH(bp);
14719                         int port = BP_PORT(bp);
14720                         int i;
14721                         u32 scratch_offset;
14722                         u32 *host_addr;
14723
14724                         /* first write capability to shmem2 */
14725                         if (ulp_type == CNIC_ULP_ISCSI)
14726                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14727                         else if (ulp_type == CNIC_ULP_FCOE)
14728                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14729                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14730
14731                         if ((ulp_type != CNIC_ULP_FCOE) ||
14732                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
14733                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
14734                                 break;
14735
14736                         /* if reached here - should write fcoe capabilities */
14737                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
14738                         if (!scratch_offset)
14739                                 break;
14740                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
14741                                                    fcoe_features[path][port]);
14742                         host_addr = (u32 *) &(ctl->data.register_data.
14743                                               fcoe_features);
14744                         for (i = 0; i < sizeof(struct fcoe_capabilities);
14745                              i += 4)
14746                                 REG_WR(bp, scratch_offset + i,
14747                                        *(host_addr + i/4));
14748                 }
14749                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14750                 break;
14751         }
14752
14753         case DRV_CTL_ULP_UNREGISTER_CMD: {
14754                 int ulp_type = ctl->data.ulp_type;
14755
14756                 if (CHIP_IS_E3(bp)) {
14757                         int idx = BP_FW_MB_IDX(bp);
14758                         u32 cap;
14759
14760                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
14761                         if (ulp_type == CNIC_ULP_ISCSI)
14762                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
14763                         else if (ulp_type == CNIC_ULP_FCOE)
14764                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
14765                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
14766                 }
14767                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14768                 break;
14769         }
14770
14771         default:
14772                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
14773                 rc = -EINVAL;
14774         }
14775
14776         /* For storage-only interfaces, change driver state */
14777         if (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp)) {
14778                 switch (ctl->drv_state) {
14779                 case DRV_NOP:
14780                         break;
14781                 case DRV_ACTIVE:
14782                         bnx2x_set_os_driver_state(bp,
14783                                                   OS_DRIVER_STATE_ACTIVE);
14784                         break;
14785                 case DRV_INACTIVE:
14786                         bnx2x_set_os_driver_state(bp,
14787                                                   OS_DRIVER_STATE_DISABLED);
14788                         break;
14789                 case DRV_UNLOADED:
14790                         bnx2x_set_os_driver_state(bp,
14791                                                   OS_DRIVER_STATE_NOT_LOADED);
14792                         break;
14793                 default:
14794                 BNX2X_ERR("Unknown cnic driver state: %d\n", ctl->drv_state);
14795                 }
14796         }
14797
14798         return rc;
14799 }
14800
14801 static int bnx2x_get_fc_npiv(struct net_device *dev,
14802                              struct cnic_fc_npiv_tbl *cnic_tbl)
14803 {
14804         struct bnx2x *bp = netdev_priv(dev);
14805         struct bdn_fc_npiv_tbl *tbl = NULL;
14806         u32 offset, entries;
14807         int rc = -EINVAL;
14808         int i;
14809
14810         if (!SHMEM2_HAS(bp, fc_npiv_nvram_tbl_addr[0]))
14811                 goto out;
14812
14813         DP(BNX2X_MSG_MCP, "About to read the FC-NPIV table\n");
14814
14815         tbl = kmalloc(sizeof(*tbl), GFP_KERNEL);
14816         if (!tbl) {
14817                 BNX2X_ERR("Failed to allocate fc_npiv table\n");
14818                 goto out;
14819         }
14820
14821         offset = SHMEM2_RD(bp, fc_npiv_nvram_tbl_addr[BP_PORT(bp)]);
14822         DP(BNX2X_MSG_MCP, "Offset of FC-NPIV in NVRAM: %08x\n", offset);
14823
14824         /* Read the table contents from nvram */
14825         if (bnx2x_nvram_read(bp, offset, (u8 *)tbl, sizeof(*tbl))) {
14826                 BNX2X_ERR("Failed to read FC-NPIV table\n");
14827                 goto out;
14828         }
14829
14830         /* Since bnx2x_nvram_read() returns data in be32, we need to convert
14831          * the number of entries back to cpu endianness.
14832          */
14833         entries = tbl->fc_npiv_cfg.num_of_npiv;
14834         entries = (__force u32)be32_to_cpu((__force __be32)entries);
14835         tbl->fc_npiv_cfg.num_of_npiv = entries;
14836
14837         if (!tbl->fc_npiv_cfg.num_of_npiv) {
14838                 DP(BNX2X_MSG_MCP,
14839                    "No FC-NPIV table [valid, simply not present]\n");
14840                 goto out;
14841         } else if (tbl->fc_npiv_cfg.num_of_npiv > MAX_NUMBER_NPIV) {
14842                 BNX2X_ERR("FC-NPIV table with bad length 0x%08x\n",
14843                           tbl->fc_npiv_cfg.num_of_npiv);
14844                 goto out;
14845         } else {
14846                 DP(BNX2X_MSG_MCP, "Read 0x%08x entries from NVRAM\n",
14847                    tbl->fc_npiv_cfg.num_of_npiv);
14848         }
14849
14850         /* Copy the data into cnic-provided struct */
14851         cnic_tbl->count = tbl->fc_npiv_cfg.num_of_npiv;
14852         for (i = 0; i < cnic_tbl->count; i++) {
14853                 memcpy(cnic_tbl->wwpn[i], tbl->settings[i].npiv_wwpn, 8);
14854                 memcpy(cnic_tbl->wwnn[i], tbl->settings[i].npiv_wwnn, 8);
14855         }
14856
14857         rc = 0;
14858 out:
14859         kfree(tbl);
14860         return rc;
14861 }
14862
14863 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
14864 {
14865         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14866
14867         if (bp->flags & USING_MSIX_FLAG) {
14868                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
14869                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
14870                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
14871         } else {
14872                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
14873                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
14874         }
14875         if (!CHIP_IS_E1x(bp))
14876                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
14877         else
14878                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
14879
14880         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
14881         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
14882         cp->irq_arr[1].status_blk = bp->def_status_blk;
14883         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
14884         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
14885
14886         cp->num_irq = 2;
14887 }
14888
14889 void bnx2x_setup_cnic_info(struct bnx2x *bp)
14890 {
14891         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14892
14893         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14894                              bnx2x_cid_ilt_lines(bp);
14895         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14896         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14897         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14898
14899         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
14900            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
14901            cp->iscsi_l2_cid);
14902
14903         if (NO_ISCSI_OOO(bp))
14904                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14905 }
14906
14907 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
14908                                void *data)
14909 {
14910         struct bnx2x *bp = netdev_priv(dev);
14911         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14912         int rc;
14913
14914         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14915
14916         if (ops == NULL) {
14917                 BNX2X_ERR("NULL ops received\n");
14918                 return -EINVAL;
14919         }
14920
14921         if (!CNIC_SUPPORT(bp)) {
14922                 BNX2X_ERR("Can't register CNIC when not supported\n");
14923                 return -EOPNOTSUPP;
14924         }
14925
14926         if (!CNIC_LOADED(bp)) {
14927                 rc = bnx2x_load_cnic(bp);
14928                 if (rc) {
14929                         BNX2X_ERR("CNIC-related load failed\n");
14930                         return rc;
14931                 }
14932         }
14933
14934         bp->cnic_enabled = true;
14935
14936         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14937         if (!bp->cnic_kwq)
14938                 return -ENOMEM;
14939
14940         bp->cnic_kwq_cons = bp->cnic_kwq;
14941         bp->cnic_kwq_prod = bp->cnic_kwq;
14942         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14943
14944         bp->cnic_spq_pending = 0;
14945         bp->cnic_kwq_pending = 0;
14946
14947         bp->cnic_data = data;
14948
14949         cp->num_irq = 0;
14950         cp->drv_state |= CNIC_DRV_STATE_REGD;
14951         cp->iro_arr = bp->iro_arr;
14952
14953         bnx2x_setup_cnic_irq_info(bp);
14954
14955         rcu_assign_pointer(bp->cnic_ops, ops);
14956
14957         /* Schedule driver to read CNIC driver versions */
14958         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14959
14960         return 0;
14961 }
14962
14963 static int bnx2x_unregister_cnic(struct net_device *dev)
14964 {
14965         struct bnx2x *bp = netdev_priv(dev);
14966         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14967
14968         mutex_lock(&bp->cnic_mutex);
14969         cp->drv_state = 0;
14970         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14971         mutex_unlock(&bp->cnic_mutex);
14972         synchronize_rcu();
14973         bp->cnic_enabled = false;
14974         kfree(bp->cnic_kwq);
14975         bp->cnic_kwq = NULL;
14976
14977         return 0;
14978 }
14979
14980 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14981 {
14982         struct bnx2x *bp = netdev_priv(dev);
14983         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14984
14985         /* If both iSCSI and FCoE are disabled - return NULL in
14986          * order to indicate CNIC that it should not try to work
14987          * with this device.
14988          */
14989         if (NO_ISCSI(bp) && NO_FCOE(bp))
14990                 return NULL;
14991
14992         cp->drv_owner = THIS_MODULE;
14993         cp->chip_id = CHIP_ID(bp);
14994         cp->pdev = bp->pdev;
14995         cp->io_base = bp->regview;
14996         cp->io_base2 = bp->doorbells;
14997         cp->max_kwqe_pending = 8;
14998         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14999         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
15000                              bnx2x_cid_ilt_lines(bp);
15001         cp->ctx_tbl_len = CNIC_ILT_LINES;
15002         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
15003         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
15004         cp->drv_ctl = bnx2x_drv_ctl;
15005         cp->drv_get_fc_npiv_tbl = bnx2x_get_fc_npiv;
15006         cp->drv_register_cnic = bnx2x_register_cnic;
15007         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
15008         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
15009         cp->iscsi_l2_client_id =
15010                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
15011         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
15012
15013         if (NO_ISCSI_OOO(bp))
15014                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
15015
15016         if (NO_ISCSI(bp))
15017                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
15018
15019         if (NO_FCOE(bp))
15020                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
15021
15022         BNX2X_DEV_INFO(
15023                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
15024            cp->ctx_blk_size,
15025            cp->ctx_tbl_offset,
15026            cp->ctx_tbl_len,
15027            cp->starting_cid);
15028         return cp;
15029 }
15030
15031 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
15032 {
15033         struct bnx2x *bp = fp->bp;
15034         u32 offset = BAR_USTRORM_INTMEM;
15035
15036         if (IS_VF(bp))
15037                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
15038         else if (!CHIP_IS_E1x(bp))
15039                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
15040         else
15041                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
15042
15043         return offset;
15044 }
15045
15046 /* called only on E1H or E2.
15047  * When pretending to be PF, the pretend value is the function number 0...7
15048  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
15049  * combination
15050  */
15051 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
15052 {
15053         u32 pretend_reg;
15054
15055         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
15056                 return -1;
15057
15058         /* get my own pretend register */
15059         pretend_reg = bnx2x_get_pretend_reg(bp);
15060         REG_WR(bp, pretend_reg, pretend_func_val);
15061         REG_RD(bp, pretend_reg);
15062         return 0;
15063 }
15064
15065 static void bnx2x_ptp_task(struct work_struct *work)
15066 {
15067         struct bnx2x *bp = container_of(work, struct bnx2x, ptp_task);
15068         int port = BP_PORT(bp);
15069         u32 val_seq;
15070         u64 timestamp, ns;
15071         struct skb_shared_hwtstamps shhwtstamps;
15072
15073         /* Read Tx timestamp registers */
15074         val_seq = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15075                          NIG_REG_P0_TLLH_PTP_BUF_SEQID);
15076         if (val_seq & 0x10000) {
15077                 /* There is a valid timestamp value */
15078                 timestamp = REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_MSB :
15079                                    NIG_REG_P0_TLLH_PTP_BUF_TS_MSB);
15080                 timestamp <<= 32;
15081                 timestamp |= REG_RD(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_TS_LSB :
15082                                     NIG_REG_P0_TLLH_PTP_BUF_TS_LSB);
15083                 /* Reset timestamp register to allow new timestamp */
15084                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15085                        NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15086                 ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15087
15088                 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
15089                 shhwtstamps.hwtstamp = ns_to_ktime(ns);
15090                 skb_tstamp_tx(bp->ptp_tx_skb, &shhwtstamps);
15091                 dev_kfree_skb_any(bp->ptp_tx_skb);
15092                 bp->ptp_tx_skb = NULL;
15093
15094                 DP(BNX2X_MSG_PTP, "Tx timestamp, timestamp cycles = %llu, ns = %llu\n",
15095                    timestamp, ns);
15096         } else {
15097                 DP(BNX2X_MSG_PTP, "There is no valid Tx timestamp yet\n");
15098                 /* Reschedule to keep checking for a valid timestamp value */
15099                 schedule_work(&bp->ptp_task);
15100         }
15101 }
15102
15103 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb)
15104 {
15105         int port = BP_PORT(bp);
15106         u64 timestamp, ns;
15107
15108         timestamp = REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_MSB :
15109                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_MSB);
15110         timestamp <<= 32;
15111         timestamp |= REG_RD(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_TS_LSB :
15112                             NIG_REG_P0_LLH_PTP_HOST_BUF_TS_LSB);
15113
15114         /* Reset timestamp register to allow new timestamp */
15115         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15116                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15117
15118         ns = timecounter_cyc2time(&bp->timecounter, timestamp);
15119
15120         skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(ns);
15121
15122         DP(BNX2X_MSG_PTP, "Rx timestamp, timestamp cycles = %llu, ns = %llu\n",
15123            timestamp, ns);
15124 }
15125
15126 /* Read the PHC */
15127 static cycle_t bnx2x_cyclecounter_read(const struct cyclecounter *cc)
15128 {
15129         struct bnx2x *bp = container_of(cc, struct bnx2x, cyclecounter);
15130         int port = BP_PORT(bp);
15131         u32 wb_data[2];
15132         u64 phc_cycles;
15133
15134         REG_RD_DMAE(bp, port ? NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t1 :
15135                     NIG_REG_TIMESYNC_GEN_REG + tsgen_synctime_t0, wb_data, 2);
15136         phc_cycles = wb_data[1];
15137         phc_cycles = (phc_cycles << 32) + wb_data[0];
15138
15139         DP(BNX2X_MSG_PTP, "PHC read cycles = %llu\n", phc_cycles);
15140
15141         return phc_cycles;
15142 }
15143
15144 static void bnx2x_init_cyclecounter(struct bnx2x *bp)
15145 {
15146         memset(&bp->cyclecounter, 0, sizeof(bp->cyclecounter));
15147         bp->cyclecounter.read = bnx2x_cyclecounter_read;
15148         bp->cyclecounter.mask = CYCLECOUNTER_MASK(64);
15149         bp->cyclecounter.shift = 1;
15150         bp->cyclecounter.mult = 1;
15151 }
15152
15153 static int bnx2x_send_reset_timesync_ramrod(struct bnx2x *bp)
15154 {
15155         struct bnx2x_func_state_params func_params = {NULL};
15156         struct bnx2x_func_set_timesync_params *set_timesync_params =
15157                 &func_params.params.set_timesync;
15158
15159         /* Prepare parameters for function state transitions */
15160         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
15161         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
15162
15163         func_params.f_obj = &bp->func_obj;
15164         func_params.cmd = BNX2X_F_CMD_SET_TIMESYNC;
15165
15166         /* Function parameters */
15167         set_timesync_params->drift_adjust_cmd = TS_DRIFT_ADJUST_RESET;
15168         set_timesync_params->offset_cmd = TS_OFFSET_KEEP;
15169
15170         return bnx2x_func_state_change(bp, &func_params);
15171 }
15172
15173 static int bnx2x_enable_ptp_packets(struct bnx2x *bp)
15174 {
15175         struct bnx2x_queue_state_params q_params;
15176         int rc, i;
15177
15178         /* send queue update ramrod to enable PTP packets */
15179         memset(&q_params, 0, sizeof(q_params));
15180         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
15181         q_params.cmd = BNX2X_Q_CMD_UPDATE;
15182         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS_CHNG,
15183                   &q_params.params.update.update_flags);
15184         __set_bit(BNX2X_Q_UPDATE_PTP_PKTS,
15185                   &q_params.params.update.update_flags);
15186
15187         /* send the ramrod on all the queues of the PF */
15188         for_each_eth_queue(bp, i) {
15189                 struct bnx2x_fastpath *fp = &bp->fp[i];
15190
15191                 /* Set the appropriate Queue object */
15192                 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
15193
15194                 /* Update the Queue state */
15195                 rc = bnx2x_queue_state_change(bp, &q_params);
15196                 if (rc) {
15197                         BNX2X_ERR("Failed to enable PTP packets\n");
15198                         return rc;
15199                 }
15200         }
15201
15202         return 0;
15203 }
15204
15205 int bnx2x_configure_ptp_filters(struct bnx2x *bp)
15206 {
15207         int port = BP_PORT(bp);
15208         int rc;
15209
15210         if (!bp->hwtstamp_ioctl_called)
15211                 return 0;
15212
15213         switch (bp->tx_type) {
15214         case HWTSTAMP_TX_ON:
15215                 bp->flags |= TX_TIMESTAMPING_EN;
15216                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15217                        NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x6AA);
15218                 REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15219                        NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3EEE);
15220                 break;
15221         case HWTSTAMP_TX_ONESTEP_SYNC:
15222                 BNX2X_ERR("One-step timestamping is not supported\n");
15223                 return -ERANGE;
15224         }
15225
15226         switch (bp->rx_filter) {
15227         case HWTSTAMP_FILTER_NONE:
15228                 break;
15229         case HWTSTAMP_FILTER_ALL:
15230         case HWTSTAMP_FILTER_SOME:
15231                 bp->rx_filter = HWTSTAMP_FILTER_NONE;
15232                 break;
15233         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
15234         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
15235         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
15236                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
15237                 /* Initialize PTP detection for UDP/IPv4 events */
15238                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15239                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EE);
15240                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15241                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFE);
15242                 break;
15243         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
15244         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
15245         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
15246                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
15247                 /* Initialize PTP detection for UDP/IPv4 or UDP/IPv6 events */
15248                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15249                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7EA);
15250                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15251                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FEE);
15252                 break;
15253         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
15254         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
15255         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
15256                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
15257                 /* Initialize PTP detection L2 events */
15258                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15259                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6BF);
15260                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15261                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EFF);
15262
15263                 break;
15264         case HWTSTAMP_FILTER_PTP_V2_EVENT:
15265         case HWTSTAMP_FILTER_PTP_V2_SYNC:
15266         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
15267                 bp->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
15268                 /* Initialize PTP detection L2, UDP/IPv4 or UDP/IPv6 events */
15269                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15270                        NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x6AA);
15271                 REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15272                        NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3EEE);
15273                 break;
15274         }
15275
15276         /* Indicate to FW that this PF expects recorded PTP packets */
15277         rc = bnx2x_enable_ptp_packets(bp);
15278         if (rc)
15279                 return rc;
15280
15281         /* Enable sending PTP packets to host */
15282         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15283                NIG_REG_P0_LLH_PTP_TO_HOST, 0x1);
15284
15285         return 0;
15286 }
15287
15288 static int bnx2x_hwtstamp_ioctl(struct bnx2x *bp, struct ifreq *ifr)
15289 {
15290         struct hwtstamp_config config;
15291         int rc;
15292
15293         DP(BNX2X_MSG_PTP, "HWTSTAMP IOCTL called\n");
15294
15295         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
15296                 return -EFAULT;
15297
15298         DP(BNX2X_MSG_PTP, "Requested tx_type: %d, requested rx_filters = %d\n",
15299            config.tx_type, config.rx_filter);
15300
15301         if (config.flags) {
15302                 BNX2X_ERR("config.flags is reserved for future use\n");
15303                 return -EINVAL;
15304         }
15305
15306         bp->hwtstamp_ioctl_called = 1;
15307         bp->tx_type = config.tx_type;
15308         bp->rx_filter = config.rx_filter;
15309
15310         rc = bnx2x_configure_ptp_filters(bp);
15311         if (rc)
15312                 return rc;
15313
15314         config.rx_filter = bp->rx_filter;
15315
15316         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
15317                 -EFAULT : 0;
15318 }
15319
15320 /* Configures HW for PTP */
15321 static int bnx2x_configure_ptp(struct bnx2x *bp)
15322 {
15323         int rc, port = BP_PORT(bp);
15324         u32 wb_data[2];
15325
15326         /* Reset PTP event detection rules - will be configured in the IOCTL */
15327         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_PARAM_MASK :
15328                NIG_REG_P0_LLH_PTP_PARAM_MASK, 0x7FF);
15329         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_RULE_MASK :
15330                NIG_REG_P0_LLH_PTP_RULE_MASK, 0x3FFF);
15331         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_PARAM_MASK :
15332                NIG_REG_P0_TLLH_PTP_PARAM_MASK, 0x7FF);
15333         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_RULE_MASK :
15334                NIG_REG_P0_TLLH_PTP_RULE_MASK, 0x3FFF);
15335
15336         /* Disable PTP packets to host - will be configured in the IOCTL*/
15337         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_TO_HOST :
15338                NIG_REG_P0_LLH_PTP_TO_HOST, 0x0);
15339
15340         /* Enable the PTP feature */
15341         REG_WR(bp, port ? NIG_REG_P1_PTP_EN :
15342                NIG_REG_P0_PTP_EN, 0x3F);
15343
15344         /* Enable the free-running counter */
15345         wb_data[0] = 0;
15346         wb_data[1] = 0;
15347         REG_WR_DMAE(bp, NIG_REG_TIMESYNC_GEN_REG + tsgen_ctrl, wb_data, 2);
15348
15349         /* Reset drift register (offset register is not reset) */
15350         rc = bnx2x_send_reset_timesync_ramrod(bp);
15351         if (rc) {
15352                 BNX2X_ERR("Failed to reset PHC drift register\n");
15353                 return -EFAULT;
15354         }
15355
15356         /* Reset possibly old timestamps */
15357         REG_WR(bp, port ? NIG_REG_P1_LLH_PTP_HOST_BUF_SEQID :
15358                NIG_REG_P0_LLH_PTP_HOST_BUF_SEQID, 0x10000);
15359         REG_WR(bp, port ? NIG_REG_P1_TLLH_PTP_BUF_SEQID :
15360                NIG_REG_P0_TLLH_PTP_BUF_SEQID, 0x10000);
15361
15362         return 0;
15363 }
15364
15365 /* Called during load, to initialize PTP-related stuff */
15366 void bnx2x_init_ptp(struct bnx2x *bp)
15367 {
15368         int rc;
15369
15370         /* Configure PTP in HW */
15371         rc = bnx2x_configure_ptp(bp);
15372         if (rc) {
15373                 BNX2X_ERR("Stopping PTP initialization\n");
15374                 return;
15375         }
15376
15377         /* Init work queue for Tx timestamping */
15378         INIT_WORK(&bp->ptp_task, bnx2x_ptp_task);
15379
15380         /* Init cyclecounter and timecounter. This is done only in the first
15381          * load. If done in every load, PTP application will fail when doing
15382          * unload / load (e.g. MTU change) while it is running.
15383          */
15384         if (!bp->timecounter_init_done) {
15385                 bnx2x_init_cyclecounter(bp);
15386                 timecounter_init(&bp->timecounter, &bp->cyclecounter,
15387                                  ktime_to_ns(ktime_get_real()));
15388                 bp->timecounter_init_done = 1;
15389         }
15390
15391         DP(BNX2X_MSG_PTP, "PTP initialization ended successfully\n");
15392 }