Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[linux-drm-fsl-dcu.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #ifndef CONFIG_E1000_NAPI
35 #define DRIVERNAPI
36 #else
37 #define DRIVERNAPI "-NAPI"
38 #endif
39 #define DRV_VERSION "7.3.15-k2"DRIVERNAPI
40 char e1000_driver_version[] = DRV_VERSION;
41 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43 /* e1000_pci_tbl - PCI Device ID Table
44  *
45  * Last entry must be all 0s
46  *
47  * Macro expands to...
48  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49  */
50 static struct pci_device_id e1000_pci_tbl[] = {
51         INTEL_E1000_ETHERNET_DEVICE(0x1000),
52         INTEL_E1000_ETHERNET_DEVICE(0x1001),
53         INTEL_E1000_ETHERNET_DEVICE(0x1004),
54         INTEL_E1000_ETHERNET_DEVICE(0x1008),
55         INTEL_E1000_ETHERNET_DEVICE(0x1009),
56         INTEL_E1000_ETHERNET_DEVICE(0x100C),
57         INTEL_E1000_ETHERNET_DEVICE(0x100D),
58         INTEL_E1000_ETHERNET_DEVICE(0x100E),
59         INTEL_E1000_ETHERNET_DEVICE(0x100F),
60         INTEL_E1000_ETHERNET_DEVICE(0x1010),
61         INTEL_E1000_ETHERNET_DEVICE(0x1011),
62         INTEL_E1000_ETHERNET_DEVICE(0x1012),
63         INTEL_E1000_ETHERNET_DEVICE(0x1013),
64         INTEL_E1000_ETHERNET_DEVICE(0x1014),
65         INTEL_E1000_ETHERNET_DEVICE(0x1015),
66         INTEL_E1000_ETHERNET_DEVICE(0x1016),
67         INTEL_E1000_ETHERNET_DEVICE(0x1017),
68         INTEL_E1000_ETHERNET_DEVICE(0x1018),
69         INTEL_E1000_ETHERNET_DEVICE(0x1019),
70         INTEL_E1000_ETHERNET_DEVICE(0x101A),
71         INTEL_E1000_ETHERNET_DEVICE(0x101D),
72         INTEL_E1000_ETHERNET_DEVICE(0x101E),
73         INTEL_E1000_ETHERNET_DEVICE(0x1026),
74         INTEL_E1000_ETHERNET_DEVICE(0x1027),
75         INTEL_E1000_ETHERNET_DEVICE(0x1028),
76         INTEL_E1000_ETHERNET_DEVICE(0x1049),
77         INTEL_E1000_ETHERNET_DEVICE(0x104A),
78         INTEL_E1000_ETHERNET_DEVICE(0x104B),
79         INTEL_E1000_ETHERNET_DEVICE(0x104C),
80         INTEL_E1000_ETHERNET_DEVICE(0x104D),
81         INTEL_E1000_ETHERNET_DEVICE(0x105E),
82         INTEL_E1000_ETHERNET_DEVICE(0x105F),
83         INTEL_E1000_ETHERNET_DEVICE(0x1060),
84         INTEL_E1000_ETHERNET_DEVICE(0x1075),
85         INTEL_E1000_ETHERNET_DEVICE(0x1076),
86         INTEL_E1000_ETHERNET_DEVICE(0x1077),
87         INTEL_E1000_ETHERNET_DEVICE(0x1078),
88         INTEL_E1000_ETHERNET_DEVICE(0x1079),
89         INTEL_E1000_ETHERNET_DEVICE(0x107A),
90         INTEL_E1000_ETHERNET_DEVICE(0x107B),
91         INTEL_E1000_ETHERNET_DEVICE(0x107C),
92         INTEL_E1000_ETHERNET_DEVICE(0x107D),
93         INTEL_E1000_ETHERNET_DEVICE(0x107E),
94         INTEL_E1000_ETHERNET_DEVICE(0x107F),
95         INTEL_E1000_ETHERNET_DEVICE(0x108A),
96         INTEL_E1000_ETHERNET_DEVICE(0x108B),
97         INTEL_E1000_ETHERNET_DEVICE(0x108C),
98         INTEL_E1000_ETHERNET_DEVICE(0x1096),
99         INTEL_E1000_ETHERNET_DEVICE(0x1098),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
104         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
106         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
107         INTEL_E1000_ETHERNET_DEVICE(0x10BC),
108         INTEL_E1000_ETHERNET_DEVICE(0x10C4),
109         INTEL_E1000_ETHERNET_DEVICE(0x10C5),
110         /* required last entry */
111         {0,}
112 };
113
114 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
115
116 int e1000_up(struct e1000_adapter *adapter);
117 void e1000_down(struct e1000_adapter *adapter);
118 void e1000_reinit_locked(struct e1000_adapter *adapter);
119 void e1000_reset(struct e1000_adapter *adapter);
120 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
121 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
122 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
123 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
124 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
125 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *txdr);
127 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rxdr);
129 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
130                              struct e1000_tx_ring *tx_ring);
131 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
132                              struct e1000_rx_ring *rx_ring);
133 void e1000_update_stats(struct e1000_adapter *adapter);
134
135 static int e1000_init_module(void);
136 static void e1000_exit_module(void);
137 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
138 static void __devexit e1000_remove(struct pci_dev *pdev);
139 static int e1000_alloc_queues(struct e1000_adapter *adapter);
140 static int e1000_sw_init(struct e1000_adapter *adapter);
141 static int e1000_open(struct net_device *netdev);
142 static int e1000_close(struct net_device *netdev);
143 static void e1000_configure_tx(struct e1000_adapter *adapter);
144 static void e1000_configure_rx(struct e1000_adapter *adapter);
145 static void e1000_setup_rctl(struct e1000_adapter *adapter);
146 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
147 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
148 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
149                                 struct e1000_tx_ring *tx_ring);
150 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
151                                 struct e1000_rx_ring *rx_ring);
152 static void e1000_set_multi(struct net_device *netdev);
153 static void e1000_update_phy_info(unsigned long data);
154 static void e1000_watchdog(unsigned long data);
155 static void e1000_82547_tx_fifo_stall(unsigned long data);
156 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
157 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
158 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
159 static int e1000_set_mac(struct net_device *netdev, void *p);
160 static irqreturn_t e1000_intr(int irq, void *data);
161 #ifdef CONFIG_PCI_MSI
162 static irqreturn_t e1000_intr_msi(int irq, void *data);
163 #endif
164 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
165                                     struct e1000_tx_ring *tx_ring);
166 #ifdef CONFIG_E1000_NAPI
167 static int e1000_clean(struct net_device *poll_dev, int *budget);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring,
170                                     int *work_done, int work_to_do);
171 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
172                                        struct e1000_rx_ring *rx_ring,
173                                        int *work_done, int work_to_do);
174 #else
175 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
176                                     struct e1000_rx_ring *rx_ring);
177 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
178                                        struct e1000_rx_ring *rx_ring);
179 #endif
180 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
181                                    struct e1000_rx_ring *rx_ring,
182                                    int cleaned_count);
183 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
184                                       struct e1000_rx_ring *rx_ring,
185                                       int cleaned_count);
186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
187 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
188                            int cmd);
189 void e1000_set_ethtool_ops(struct net_device *netdev);
190 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
191 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
192 static void e1000_tx_timeout(struct net_device *dev);
193 static void e1000_reset_task(struct work_struct *work);
194 static void e1000_smartspeed(struct e1000_adapter *adapter);
195 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
196                                        struct sk_buff *skb);
197
198 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
199 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
200 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
201 static void e1000_restore_vlan(struct e1000_adapter *adapter);
202
203 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
204 #ifdef CONFIG_PM
205 static int e1000_resume(struct pci_dev *pdev);
206 #endif
207 static void e1000_shutdown(struct pci_dev *pdev);
208
209 #ifdef CONFIG_NET_POLL_CONTROLLER
210 /* for netdump / net console */
211 static void e1000_netpoll (struct net_device *netdev);
212 #endif
213
214 extern void e1000_check_options(struct e1000_adapter *adapter);
215
216 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
217                      pci_channel_state_t state);
218 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
219 static void e1000_io_resume(struct pci_dev *pdev);
220
221 static struct pci_error_handlers e1000_err_handler = {
222         .error_detected = e1000_io_error_detected,
223         .slot_reset = e1000_io_slot_reset,
224         .resume = e1000_io_resume,
225 };
226
227 static struct pci_driver e1000_driver = {
228         .name     = e1000_driver_name,
229         .id_table = e1000_pci_tbl,
230         .probe    = e1000_probe,
231         .remove   = __devexit_p(e1000_remove),
232 #ifdef CONFIG_PM
233         /* Power Managment Hooks */
234         .suspend  = e1000_suspend,
235         .resume   = e1000_resume,
236 #endif
237         .shutdown = e1000_shutdown,
238         .err_handler = &e1000_err_handler
239 };
240
241 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
242 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
243 MODULE_LICENSE("GPL");
244 MODULE_VERSION(DRV_VERSION);
245
246 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 /**
251  * e1000_init_module - Driver Registration Routine
252  *
253  * e1000_init_module is the first routine called when the driver is
254  * loaded. All it does is register with the PCI subsystem.
255  **/
256
257 static int __init
258 e1000_init_module(void)
259 {
260         int ret;
261         printk(KERN_INFO "%s - version %s\n",
262                e1000_driver_string, e1000_driver_version);
263
264         printk(KERN_INFO "%s\n", e1000_copyright);
265
266         ret = pci_register_driver(&e1000_driver);
267
268         return ret;
269 }
270
271 module_init(e1000_init_module);
272
273 /**
274  * e1000_exit_module - Driver Exit Cleanup Routine
275  *
276  * e1000_exit_module is called just before the driver is removed
277  * from memory.
278  **/
279
280 static void __exit
281 e1000_exit_module(void)
282 {
283         pci_unregister_driver(&e1000_driver);
284 }
285
286 module_exit(e1000_exit_module);
287
288 static int e1000_request_irq(struct e1000_adapter *adapter)
289 {
290         struct net_device *netdev = adapter->netdev;
291         int flags, err = 0;
292
293         flags = IRQF_SHARED;
294 #ifdef CONFIG_PCI_MSI
295         if (adapter->hw.mac_type >= e1000_82571) {
296                 adapter->have_msi = TRUE;
297                 if ((err = pci_enable_msi(adapter->pdev))) {
298                         DPRINTK(PROBE, ERR,
299                          "Unable to allocate MSI interrupt Error: %d\n", err);
300                         adapter->have_msi = FALSE;
301                 }
302         }
303         if (adapter->have_msi) {
304                 flags &= ~IRQF_SHARED;
305                 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, flags,
306                                   netdev->name, netdev);
307                 if (err)
308                         DPRINTK(PROBE, ERR,
309                                "Unable to allocate interrupt Error: %d\n", err);
310         } else
311 #endif
312         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
313                                netdev->name, netdev)))
314                 DPRINTK(PROBE, ERR,
315                         "Unable to allocate interrupt Error: %d\n", err);
316
317         return err;
318 }
319
320 static void e1000_free_irq(struct e1000_adapter *adapter)
321 {
322         struct net_device *netdev = adapter->netdev;
323
324         free_irq(adapter->pdev->irq, netdev);
325
326 #ifdef CONFIG_PCI_MSI
327         if (adapter->have_msi)
328                 pci_disable_msi(adapter->pdev);
329 #endif
330 }
331
332 /**
333  * e1000_irq_disable - Mask off interrupt generation on the NIC
334  * @adapter: board private structure
335  **/
336
337 static void
338 e1000_irq_disable(struct e1000_adapter *adapter)
339 {
340         atomic_inc(&adapter->irq_sem);
341         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
342         E1000_WRITE_FLUSH(&adapter->hw);
343         synchronize_irq(adapter->pdev->irq);
344 }
345
346 /**
347  * e1000_irq_enable - Enable default interrupt generation settings
348  * @adapter: board private structure
349  **/
350
351 static void
352 e1000_irq_enable(struct e1000_adapter *adapter)
353 {
354         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
355                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
356                 E1000_WRITE_FLUSH(&adapter->hw);
357         }
358 }
359
360 static void
361 e1000_update_mng_vlan(struct e1000_adapter *adapter)
362 {
363         struct net_device *netdev = adapter->netdev;
364         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
365         uint16_t old_vid = adapter->mng_vlan_id;
366         if (adapter->vlgrp) {
367                 if (!adapter->vlgrp->vlan_devices[vid]) {
368                         if (adapter->hw.mng_cookie.status &
369                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
370                                 e1000_vlan_rx_add_vid(netdev, vid);
371                                 adapter->mng_vlan_id = vid;
372                         } else
373                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
374
375                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
376                                         (vid != old_vid) &&
377                                         !adapter->vlgrp->vlan_devices[old_vid])
378                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
379                 } else
380                         adapter->mng_vlan_id = vid;
381         }
382 }
383
384 /**
385  * e1000_release_hw_control - release control of the h/w to f/w
386  * @adapter: address of board private structure
387  *
388  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
389  * For ASF and Pass Through versions of f/w this means that the
390  * driver is no longer loaded. For AMT version (only with 82573) i
391  * of the f/w this means that the network i/f is closed.
392  *
393  **/
394
395 static void
396 e1000_release_hw_control(struct e1000_adapter *adapter)
397 {
398         uint32_t ctrl_ext;
399         uint32_t swsm;
400         uint32_t extcnf;
401
402         /* Let firmware taken over control of h/w */
403         switch (adapter->hw.mac_type) {
404         case e1000_82571:
405         case e1000_82572:
406         case e1000_80003es2lan:
407                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
408                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
409                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
410                 break;
411         case e1000_82573:
412                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
413                 E1000_WRITE_REG(&adapter->hw, SWSM,
414                                 swsm & ~E1000_SWSM_DRV_LOAD);
415         case e1000_ich8lan:
416                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
417                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
418                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
419                 break;
420         default:
421                 break;
422         }
423 }
424
425 /**
426  * e1000_get_hw_control - get control of the h/w from f/w
427  * @adapter: address of board private structure
428  *
429  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
430  * For ASF and Pass Through versions of f/w this means that
431  * the driver is loaded. For AMT version (only with 82573)
432  * of the f/w this means that the network i/f is open.
433  *
434  **/
435
436 static void
437 e1000_get_hw_control(struct e1000_adapter *adapter)
438 {
439         uint32_t ctrl_ext;
440         uint32_t swsm;
441         uint32_t extcnf;
442
443         /* Let firmware know the driver has taken over */
444         switch (adapter->hw.mac_type) {
445         case e1000_82571:
446         case e1000_82572:
447         case e1000_80003es2lan:
448                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
449                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
450                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
451                 break;
452         case e1000_82573:
453                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
454                 E1000_WRITE_REG(&adapter->hw, SWSM,
455                                 swsm | E1000_SWSM_DRV_LOAD);
456                 break;
457         case e1000_ich8lan:
458                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
459                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
460                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
461                 break;
462         default:
463                 break;
464         }
465 }
466
467 int
468 e1000_up(struct e1000_adapter *adapter)
469 {
470         struct net_device *netdev = adapter->netdev;
471         int i;
472
473         /* hardware has been reset, we need to reload some things */
474
475         e1000_set_multi(netdev);
476
477         e1000_restore_vlan(adapter);
478
479         e1000_configure_tx(adapter);
480         e1000_setup_rctl(adapter);
481         e1000_configure_rx(adapter);
482         /* call E1000_DESC_UNUSED which always leaves
483          * at least 1 descriptor unused to make sure
484          * next_to_use != next_to_clean */
485         for (i = 0; i < adapter->num_rx_queues; i++) {
486                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
487                 adapter->alloc_rx_buf(adapter, ring,
488                                       E1000_DESC_UNUSED(ring));
489         }
490
491         adapter->tx_queue_len = netdev->tx_queue_len;
492
493 #ifdef CONFIG_E1000_NAPI
494         netif_poll_enable(netdev);
495 #endif
496         e1000_irq_enable(adapter);
497
498         clear_bit(__E1000_DOWN, &adapter->flags);
499
500         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
501         return 0;
502 }
503
504 /**
505  * e1000_power_up_phy - restore link in case the phy was powered down
506  * @adapter: address of board private structure
507  *
508  * The phy may be powered down to save power and turn off link when the
509  * driver is unloaded and wake on lan is not enabled (among others)
510  * *** this routine MUST be followed by a call to e1000_reset ***
511  *
512  **/
513
514 void e1000_power_up_phy(struct e1000_adapter *adapter)
515 {
516         uint16_t mii_reg = 0;
517
518         /* Just clear the power down bit to wake the phy back up */
519         if (adapter->hw.media_type == e1000_media_type_copper) {
520                 /* according to the manual, the phy will retain its
521                  * settings across a power-down/up cycle */
522                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
523                 mii_reg &= ~MII_CR_POWER_DOWN;
524                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
525         }
526 }
527
528 static void e1000_power_down_phy(struct e1000_adapter *adapter)
529 {
530         /* Power down the PHY so no link is implied when interface is down *
531          * The PHY cannot be powered down if any of the following is TRUE *
532          * (a) WoL is enabled
533          * (b) AMT is active
534          * (c) SoL/IDER session is active */
535         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
536            adapter->hw.media_type == e1000_media_type_copper) {
537                 uint16_t mii_reg = 0;
538
539                 switch (adapter->hw.mac_type) {
540                 case e1000_82540:
541                 case e1000_82545:
542                 case e1000_82545_rev_3:
543                 case e1000_82546:
544                 case e1000_82546_rev_3:
545                 case e1000_82541:
546                 case e1000_82541_rev_2:
547                 case e1000_82547:
548                 case e1000_82547_rev_2:
549                         if (E1000_READ_REG(&adapter->hw, MANC) &
550                             E1000_MANC_SMBUS_EN)
551                                 goto out;
552                         break;
553                 case e1000_82571:
554                 case e1000_82572:
555                 case e1000_82573:
556                 case e1000_80003es2lan:
557                 case e1000_ich8lan:
558                         if (e1000_check_mng_mode(&adapter->hw) ||
559                             e1000_check_phy_reset_block(&adapter->hw))
560                                 goto out;
561                         break;
562                 default:
563                         goto out;
564                 }
565                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
566                 mii_reg |= MII_CR_POWER_DOWN;
567                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
568                 mdelay(1);
569         }
570 out:
571         return;
572 }
573
574 void
575 e1000_down(struct e1000_adapter *adapter)
576 {
577         struct net_device *netdev = adapter->netdev;
578
579         /* signal that we're down so the interrupt handler does not
580          * reschedule our watchdog timer */
581         set_bit(__E1000_DOWN, &adapter->flags);
582
583         e1000_irq_disable(adapter);
584
585         del_timer_sync(&adapter->tx_fifo_stall_timer);
586         del_timer_sync(&adapter->watchdog_timer);
587         del_timer_sync(&adapter->phy_info_timer);
588
589 #ifdef CONFIG_E1000_NAPI
590         netif_poll_disable(netdev);
591 #endif
592         netdev->tx_queue_len = adapter->tx_queue_len;
593         adapter->link_speed = 0;
594         adapter->link_duplex = 0;
595         netif_carrier_off(netdev);
596         netif_stop_queue(netdev);
597
598         e1000_reset(adapter);
599         e1000_clean_all_tx_rings(adapter);
600         e1000_clean_all_rx_rings(adapter);
601 }
602
603 void
604 e1000_reinit_locked(struct e1000_adapter *adapter)
605 {
606         WARN_ON(in_interrupt());
607         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
608                 msleep(1);
609         e1000_down(adapter);
610         e1000_up(adapter);
611         clear_bit(__E1000_RESETTING, &adapter->flags);
612 }
613
614 void
615 e1000_reset(struct e1000_adapter *adapter)
616 {
617         uint32_t pba, manc;
618         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
619
620         /* Repartition Pba for greater than 9k mtu
621          * To take effect CTRL.RST is required.
622          */
623
624         switch (adapter->hw.mac_type) {
625         case e1000_82547:
626         case e1000_82547_rev_2:
627                 pba = E1000_PBA_30K;
628                 break;
629         case e1000_82571:
630         case e1000_82572:
631         case e1000_80003es2lan:
632                 pba = E1000_PBA_38K;
633                 break;
634         case e1000_82573:
635                 pba = E1000_PBA_12K;
636                 break;
637         case e1000_ich8lan:
638                 pba = E1000_PBA_8K;
639                 break;
640         default:
641                 pba = E1000_PBA_48K;
642                 break;
643         }
644
645         if ((adapter->hw.mac_type != e1000_82573) &&
646            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
647                 pba -= 8; /* allocate more FIFO for Tx */
648
649
650         if (adapter->hw.mac_type == e1000_82547) {
651                 adapter->tx_fifo_head = 0;
652                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
653                 adapter->tx_fifo_size =
654                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
655                 atomic_set(&adapter->tx_fifo_stall, 0);
656         }
657
658         E1000_WRITE_REG(&adapter->hw, PBA, pba);
659
660         /* flow control settings */
661         /* Set the FC high water mark to 90% of the FIFO size.
662          * Required to clear last 3 LSB */
663         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
664         /* We can't use 90% on small FIFOs because the remainder
665          * would be less than 1 full frame.  In this case, we size
666          * it to allow at least a full frame above the high water
667          *  mark. */
668         if (pba < E1000_PBA_16K)
669                 fc_high_water_mark = (pba * 1024) - 1600;
670
671         adapter->hw.fc_high_water = fc_high_water_mark;
672         adapter->hw.fc_low_water = fc_high_water_mark - 8;
673         if (adapter->hw.mac_type == e1000_80003es2lan)
674                 adapter->hw.fc_pause_time = 0xFFFF;
675         else
676                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
677         adapter->hw.fc_send_xon = 1;
678         adapter->hw.fc = adapter->hw.original_fc;
679
680         /* Allow time for pending master requests to run */
681         e1000_reset_hw(&adapter->hw);
682         if (adapter->hw.mac_type >= e1000_82544)
683                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
684
685         if (e1000_init_hw(&adapter->hw))
686                 DPRINTK(PROBE, ERR, "Hardware Error\n");
687         e1000_update_mng_vlan(adapter);
688         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
689         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
690
691         e1000_reset_adaptive(&adapter->hw);
692         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
693
694         if (!adapter->smart_power_down &&
695             (adapter->hw.mac_type == e1000_82571 ||
696              adapter->hw.mac_type == e1000_82572)) {
697                 uint16_t phy_data = 0;
698                 /* speed up time to link by disabling smart power down, ignore
699                  * the return value of this function because there is nothing
700                  * different we would do if it failed */
701                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
702                                    &phy_data);
703                 phy_data &= ~IGP02E1000_PM_SPD;
704                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
705                                     phy_data);
706         }
707
708         if ((adapter->en_mng_pt) &&
709             (adapter->hw.mac_type >= e1000_82540) &&
710             (adapter->hw.mac_type < e1000_82571) &&
711             (adapter->hw.media_type == e1000_media_type_copper)) {
712                 manc = E1000_READ_REG(&adapter->hw, MANC);
713                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
714                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
715         }
716 }
717
718 /**
719  * e1000_probe - Device Initialization Routine
720  * @pdev: PCI device information struct
721  * @ent: entry in e1000_pci_tbl
722  *
723  * Returns 0 on success, negative on failure
724  *
725  * e1000_probe initializes an adapter identified by a pci_dev structure.
726  * The OS initialization, configuring of the adapter private structure,
727  * and a hardware reset occur.
728  **/
729
730 static int __devinit
731 e1000_probe(struct pci_dev *pdev,
732             const struct pci_device_id *ent)
733 {
734         struct net_device *netdev;
735         struct e1000_adapter *adapter;
736         unsigned long mmio_start, mmio_len;
737         unsigned long flash_start, flash_len;
738
739         static int cards_found = 0;
740         static int global_quad_port_a = 0; /* global ksp3 port a indication */
741         int i, err, pci_using_dac;
742         uint16_t eeprom_data = 0;
743         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
744         if ((err = pci_enable_device(pdev)))
745                 return err;
746
747         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
748             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
749                 pci_using_dac = 1;
750         } else {
751                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
752                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
753                         E1000_ERR("No usable DMA configuration, aborting\n");
754                         goto err_dma;
755                 }
756                 pci_using_dac = 0;
757         }
758
759         if ((err = pci_request_regions(pdev, e1000_driver_name)))
760                 goto err_pci_reg;
761
762         pci_set_master(pdev);
763
764         err = -ENOMEM;
765         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
766         if (!netdev)
767                 goto err_alloc_etherdev;
768
769         SET_MODULE_OWNER(netdev);
770         SET_NETDEV_DEV(netdev, &pdev->dev);
771
772         pci_set_drvdata(pdev, netdev);
773         adapter = netdev_priv(netdev);
774         adapter->netdev = netdev;
775         adapter->pdev = pdev;
776         adapter->hw.back = adapter;
777         adapter->msg_enable = (1 << debug) - 1;
778
779         mmio_start = pci_resource_start(pdev, BAR_0);
780         mmio_len = pci_resource_len(pdev, BAR_0);
781
782         err = -EIO;
783         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
784         if (!adapter->hw.hw_addr)
785                 goto err_ioremap;
786
787         for (i = BAR_1; i <= BAR_5; i++) {
788                 if (pci_resource_len(pdev, i) == 0)
789                         continue;
790                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
791                         adapter->hw.io_base = pci_resource_start(pdev, i);
792                         break;
793                 }
794         }
795
796         netdev->open = &e1000_open;
797         netdev->stop = &e1000_close;
798         netdev->hard_start_xmit = &e1000_xmit_frame;
799         netdev->get_stats = &e1000_get_stats;
800         netdev->set_multicast_list = &e1000_set_multi;
801         netdev->set_mac_address = &e1000_set_mac;
802         netdev->change_mtu = &e1000_change_mtu;
803         netdev->do_ioctl = &e1000_ioctl;
804         e1000_set_ethtool_ops(netdev);
805         netdev->tx_timeout = &e1000_tx_timeout;
806         netdev->watchdog_timeo = 5 * HZ;
807 #ifdef CONFIG_E1000_NAPI
808         netdev->poll = &e1000_clean;
809         netdev->weight = 64;
810 #endif
811         netdev->vlan_rx_register = e1000_vlan_rx_register;
812         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
813         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
814 #ifdef CONFIG_NET_POLL_CONTROLLER
815         netdev->poll_controller = e1000_netpoll;
816 #endif
817         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
818
819         netdev->mem_start = mmio_start;
820         netdev->mem_end = mmio_start + mmio_len;
821         netdev->base_addr = adapter->hw.io_base;
822
823         adapter->bd_number = cards_found;
824
825         /* setup the private structure */
826
827         if ((err = e1000_sw_init(adapter)))
828                 goto err_sw_init;
829
830         err = -EIO;
831         /* Flash BAR mapping must happen after e1000_sw_init
832          * because it depends on mac_type */
833         if ((adapter->hw.mac_type == e1000_ich8lan) &&
834            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
835                 flash_start = pci_resource_start(pdev, 1);
836                 flash_len = pci_resource_len(pdev, 1);
837                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
838                 if (!adapter->hw.flash_address)
839                         goto err_flashmap;
840         }
841
842         if (e1000_check_phy_reset_block(&adapter->hw))
843                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
844
845         if (adapter->hw.mac_type >= e1000_82543) {
846                 netdev->features = NETIF_F_SG |
847                                    NETIF_F_HW_CSUM |
848                                    NETIF_F_HW_VLAN_TX |
849                                    NETIF_F_HW_VLAN_RX |
850                                    NETIF_F_HW_VLAN_FILTER;
851                 if (adapter->hw.mac_type == e1000_ich8lan)
852                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
853         }
854
855 #ifdef NETIF_F_TSO
856         if ((adapter->hw.mac_type >= e1000_82544) &&
857            (adapter->hw.mac_type != e1000_82547))
858                 netdev->features |= NETIF_F_TSO;
859
860 #ifdef NETIF_F_TSO6
861         if (adapter->hw.mac_type > e1000_82547_rev_2)
862                 netdev->features |= NETIF_F_TSO6;
863 #endif
864 #endif
865         if (pci_using_dac)
866                 netdev->features |= NETIF_F_HIGHDMA;
867
868         netdev->features |= NETIF_F_LLTX;
869
870         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
871
872         /* initialize eeprom parameters */
873
874         if (e1000_init_eeprom_params(&adapter->hw)) {
875                 E1000_ERR("EEPROM initialization failed\n");
876                 goto err_eeprom;
877         }
878
879         /* before reading the EEPROM, reset the controller to
880          * put the device in a known good starting state */
881
882         e1000_reset_hw(&adapter->hw);
883
884         /* make sure the EEPROM is good */
885
886         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
887                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
888                 goto err_eeprom;
889         }
890
891         /* copy the MAC address out of the EEPROM */
892
893         if (e1000_read_mac_addr(&adapter->hw))
894                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
895         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
896         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
897
898         if (!is_valid_ether_addr(netdev->perm_addr)) {
899                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
900                 goto err_eeprom;
901         }
902
903         e1000_get_bus_info(&adapter->hw);
904
905         init_timer(&adapter->tx_fifo_stall_timer);
906         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
907         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
908
909         init_timer(&adapter->watchdog_timer);
910         adapter->watchdog_timer.function = &e1000_watchdog;
911         adapter->watchdog_timer.data = (unsigned long) adapter;
912
913         init_timer(&adapter->phy_info_timer);
914         adapter->phy_info_timer.function = &e1000_update_phy_info;
915         adapter->phy_info_timer.data = (unsigned long) adapter;
916
917         INIT_WORK(&adapter->reset_task, e1000_reset_task);
918
919         e1000_check_options(adapter);
920
921         /* Initial Wake on LAN setting
922          * If APM wake is enabled in the EEPROM,
923          * enable the ACPI Magic Packet filter
924          */
925
926         switch (adapter->hw.mac_type) {
927         case e1000_82542_rev2_0:
928         case e1000_82542_rev2_1:
929         case e1000_82543:
930                 break;
931         case e1000_82544:
932                 e1000_read_eeprom(&adapter->hw,
933                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
934                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
935                 break;
936         case e1000_ich8lan:
937                 e1000_read_eeprom(&adapter->hw,
938                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
939                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
940                 break;
941         case e1000_82546:
942         case e1000_82546_rev_3:
943         case e1000_82571:
944         case e1000_80003es2lan:
945                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
946                         e1000_read_eeprom(&adapter->hw,
947                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
948                         break;
949                 }
950                 /* Fall Through */
951         default:
952                 e1000_read_eeprom(&adapter->hw,
953                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
954                 break;
955         }
956         if (eeprom_data & eeprom_apme_mask)
957                 adapter->eeprom_wol |= E1000_WUFC_MAG;
958
959         /* now that we have the eeprom settings, apply the special cases
960          * where the eeprom may be wrong or the board simply won't support
961          * wake on lan on a particular port */
962         switch (pdev->device) {
963         case E1000_DEV_ID_82546GB_PCIE:
964                 adapter->eeprom_wol = 0;
965                 break;
966         case E1000_DEV_ID_82546EB_FIBER:
967         case E1000_DEV_ID_82546GB_FIBER:
968         case E1000_DEV_ID_82571EB_FIBER:
969                 /* Wake events only supported on port A for dual fiber
970                  * regardless of eeprom setting */
971                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
972                         adapter->eeprom_wol = 0;
973                 break;
974         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
975         case E1000_DEV_ID_82571EB_QUAD_COPPER:
976         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
977                 /* if quad port adapter, disable WoL on all but port A */
978                 if (global_quad_port_a != 0)
979                         adapter->eeprom_wol = 0;
980                 else
981                         adapter->quad_port_a = 1;
982                 /* Reset for multiple quad port adapters */
983                 if (++global_quad_port_a == 4)
984                         global_quad_port_a = 0;
985                 break;
986         }
987
988         /* initialize the wol settings based on the eeprom settings */
989         adapter->wol = adapter->eeprom_wol;
990
991         /* print bus type/speed/width info */
992         {
993         struct e1000_hw *hw = &adapter->hw;
994         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
995                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
996                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
997                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
998                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
999                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1000                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1001                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1002                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1003                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1004                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1005                  "32-bit"));
1006         }
1007
1008         for (i = 0; i < 6; i++)
1009                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1010
1011         /* reset the hardware with the new settings */
1012         e1000_reset(adapter);
1013
1014         /* If the controller is 82573 and f/w is AMT, do not set
1015          * DRV_LOAD until the interface is up.  For all other cases,
1016          * let the f/w know that the h/w is now under the control
1017          * of the driver. */
1018         if (adapter->hw.mac_type != e1000_82573 ||
1019             !e1000_check_mng_mode(&adapter->hw))
1020                 e1000_get_hw_control(adapter);
1021
1022         strcpy(netdev->name, "eth%d");
1023         if ((err = register_netdev(netdev)))
1024                 goto err_register;
1025
1026         /* tell the stack to leave us alone until e1000_open() is called */
1027         netif_carrier_off(netdev);
1028         netif_stop_queue(netdev);
1029
1030         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1031
1032         cards_found++;
1033         return 0;
1034
1035 err_register:
1036         e1000_release_hw_control(adapter);
1037 err_eeprom:
1038         if (!e1000_check_phy_reset_block(&adapter->hw))
1039                 e1000_phy_hw_reset(&adapter->hw);
1040
1041         if (adapter->hw.flash_address)
1042                 iounmap(adapter->hw.flash_address);
1043 err_flashmap:
1044 #ifdef CONFIG_E1000_NAPI
1045         for (i = 0; i < adapter->num_rx_queues; i++)
1046                 dev_put(&adapter->polling_netdev[i]);
1047 #endif
1048
1049         kfree(adapter->tx_ring);
1050         kfree(adapter->rx_ring);
1051 #ifdef CONFIG_E1000_NAPI
1052         kfree(adapter->polling_netdev);
1053 #endif
1054 err_sw_init:
1055         iounmap(adapter->hw.hw_addr);
1056 err_ioremap:
1057         free_netdev(netdev);
1058 err_alloc_etherdev:
1059         pci_release_regions(pdev);
1060 err_pci_reg:
1061 err_dma:
1062         pci_disable_device(pdev);
1063         return err;
1064 }
1065
1066 /**
1067  * e1000_remove - Device Removal Routine
1068  * @pdev: PCI device information struct
1069  *
1070  * e1000_remove is called by the PCI subsystem to alert the driver
1071  * that it should release a PCI device.  The could be caused by a
1072  * Hot-Plug event, or because the driver is going to be removed from
1073  * memory.
1074  **/
1075
1076 static void __devexit
1077 e1000_remove(struct pci_dev *pdev)
1078 {
1079         struct net_device *netdev = pci_get_drvdata(pdev);
1080         struct e1000_adapter *adapter = netdev_priv(netdev);
1081         uint32_t manc;
1082 #ifdef CONFIG_E1000_NAPI
1083         int i;
1084 #endif
1085
1086         flush_scheduled_work();
1087
1088         if (adapter->hw.mac_type >= e1000_82540 &&
1089             adapter->hw.mac_type < e1000_82571 &&
1090             adapter->hw.media_type == e1000_media_type_copper) {
1091                 manc = E1000_READ_REG(&adapter->hw, MANC);
1092                 if (manc & E1000_MANC_SMBUS_EN) {
1093                         manc |= E1000_MANC_ARP_EN;
1094                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1095                 }
1096         }
1097
1098         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1099          * would have already happened in close and is redundant. */
1100         e1000_release_hw_control(adapter);
1101
1102         unregister_netdev(netdev);
1103 #ifdef CONFIG_E1000_NAPI
1104         for (i = 0; i < adapter->num_rx_queues; i++)
1105                 dev_put(&adapter->polling_netdev[i]);
1106 #endif
1107
1108         if (!e1000_check_phy_reset_block(&adapter->hw))
1109                 e1000_phy_hw_reset(&adapter->hw);
1110
1111         kfree(adapter->tx_ring);
1112         kfree(adapter->rx_ring);
1113 #ifdef CONFIG_E1000_NAPI
1114         kfree(adapter->polling_netdev);
1115 #endif
1116
1117         iounmap(adapter->hw.hw_addr);
1118         if (adapter->hw.flash_address)
1119                 iounmap(adapter->hw.flash_address);
1120         pci_release_regions(pdev);
1121
1122         free_netdev(netdev);
1123
1124         pci_disable_device(pdev);
1125 }
1126
1127 /**
1128  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1129  * @adapter: board private structure to initialize
1130  *
1131  * e1000_sw_init initializes the Adapter private data structure.
1132  * Fields are initialized based on PCI device information and
1133  * OS network device settings (MTU size).
1134  **/
1135
1136 static int __devinit
1137 e1000_sw_init(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         struct net_device *netdev = adapter->netdev;
1141         struct pci_dev *pdev = adapter->pdev;
1142 #ifdef CONFIG_E1000_NAPI
1143         int i;
1144 #endif
1145
1146         /* PCI config space info */
1147
1148         hw->vendor_id = pdev->vendor;
1149         hw->device_id = pdev->device;
1150         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1151         hw->subsystem_id = pdev->subsystem_device;
1152
1153         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1154
1155         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1156
1157         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1158         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1159         hw->max_frame_size = netdev->mtu +
1160                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1161         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1162
1163         /* identify the MAC */
1164
1165         if (e1000_set_mac_type(hw)) {
1166                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1167                 return -EIO;
1168         }
1169
1170         switch (hw->mac_type) {
1171         default:
1172                 break;
1173         case e1000_82541:
1174         case e1000_82547:
1175         case e1000_82541_rev_2:
1176         case e1000_82547_rev_2:
1177                 hw->phy_init_script = 1;
1178                 break;
1179         }
1180
1181         e1000_set_media_type(hw);
1182
1183         hw->wait_autoneg_complete = FALSE;
1184         hw->tbi_compatibility_en = TRUE;
1185         hw->adaptive_ifs = TRUE;
1186
1187         /* Copper options */
1188
1189         if (hw->media_type == e1000_media_type_copper) {
1190                 hw->mdix = AUTO_ALL_MODES;
1191                 hw->disable_polarity_correction = FALSE;
1192                 hw->master_slave = E1000_MASTER_SLAVE;
1193         }
1194
1195         adapter->num_tx_queues = 1;
1196         adapter->num_rx_queues = 1;
1197
1198         if (e1000_alloc_queues(adapter)) {
1199                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1200                 return -ENOMEM;
1201         }
1202
1203 #ifdef CONFIG_E1000_NAPI
1204         for (i = 0; i < adapter->num_rx_queues; i++) {
1205                 adapter->polling_netdev[i].priv = adapter;
1206                 adapter->polling_netdev[i].poll = &e1000_clean;
1207                 adapter->polling_netdev[i].weight = 64;
1208                 dev_hold(&adapter->polling_netdev[i]);
1209                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1210         }
1211         spin_lock_init(&adapter->tx_queue_lock);
1212 #endif
1213
1214         atomic_set(&adapter->irq_sem, 1);
1215         spin_lock_init(&adapter->stats_lock);
1216
1217         set_bit(__E1000_DOWN, &adapter->flags);
1218
1219         return 0;
1220 }
1221
1222 /**
1223  * e1000_alloc_queues - Allocate memory for all rings
1224  * @adapter: board private structure to initialize
1225  *
1226  * We allocate one ring per queue at run-time since we don't know the
1227  * number of queues at compile-time.  The polling_netdev array is
1228  * intended for Multiqueue, but should work fine with a single queue.
1229  **/
1230
1231 static int __devinit
1232 e1000_alloc_queues(struct e1000_adapter *adapter)
1233 {
1234         int size;
1235
1236         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1237         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1238         if (!adapter->tx_ring)
1239                 return -ENOMEM;
1240         memset(adapter->tx_ring, 0, size);
1241
1242         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1243         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1244         if (!adapter->rx_ring) {
1245                 kfree(adapter->tx_ring);
1246                 return -ENOMEM;
1247         }
1248         memset(adapter->rx_ring, 0, size);
1249
1250 #ifdef CONFIG_E1000_NAPI
1251         size = sizeof(struct net_device) * adapter->num_rx_queues;
1252         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1253         if (!adapter->polling_netdev) {
1254                 kfree(adapter->tx_ring);
1255                 kfree(adapter->rx_ring);
1256                 return -ENOMEM;
1257         }
1258         memset(adapter->polling_netdev, 0, size);
1259 #endif
1260
1261         return E1000_SUCCESS;
1262 }
1263
1264 /**
1265  * e1000_open - Called when a network interface is made active
1266  * @netdev: network interface device structure
1267  *
1268  * Returns 0 on success, negative value on failure
1269  *
1270  * The open entry point is called when a network interface is made
1271  * active by the system (IFF_UP).  At this point all resources needed
1272  * for transmit and receive operations are allocated, the interrupt
1273  * handler is registered with the OS, the watchdog timer is started,
1274  * and the stack is notified that the interface is ready.
1275  **/
1276
1277 static int
1278 e1000_open(struct net_device *netdev)
1279 {
1280         struct e1000_adapter *adapter = netdev_priv(netdev);
1281         int err;
1282
1283         /* disallow open during test */
1284         if (test_bit(__E1000_TESTING, &adapter->flags))
1285                 return -EBUSY;
1286
1287         /* allocate transmit descriptors */
1288         if ((err = e1000_setup_all_tx_resources(adapter)))
1289                 goto err_setup_tx;
1290
1291         /* allocate receive descriptors */
1292         if ((err = e1000_setup_all_rx_resources(adapter)))
1293                 goto err_setup_rx;
1294
1295         err = e1000_request_irq(adapter);
1296         if (err)
1297                 goto err_req_irq;
1298
1299         e1000_power_up_phy(adapter);
1300
1301         if ((err = e1000_up(adapter)))
1302                 goto err_up;
1303         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1304         if ((adapter->hw.mng_cookie.status &
1305                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1306                 e1000_update_mng_vlan(adapter);
1307         }
1308
1309         /* If AMT is enabled, let the firmware know that the network
1310          * interface is now open */
1311         if (adapter->hw.mac_type == e1000_82573 &&
1312             e1000_check_mng_mode(&adapter->hw))
1313                 e1000_get_hw_control(adapter);
1314
1315         return E1000_SUCCESS;
1316
1317 err_up:
1318         e1000_power_down_phy(adapter);
1319         e1000_free_irq(adapter);
1320 err_req_irq:
1321         e1000_free_all_rx_resources(adapter);
1322 err_setup_rx:
1323         e1000_free_all_tx_resources(adapter);
1324 err_setup_tx:
1325         e1000_reset(adapter);
1326
1327         return err;
1328 }
1329
1330 /**
1331  * e1000_close - Disables a network interface
1332  * @netdev: network interface device structure
1333  *
1334  * Returns 0, this is not allowed to fail
1335  *
1336  * The close entry point is called when an interface is de-activated
1337  * by the OS.  The hardware is still under the drivers control, but
1338  * needs to be disabled.  A global MAC reset is issued to stop the
1339  * hardware, and all transmit and receive resources are freed.
1340  **/
1341
1342 static int
1343 e1000_close(struct net_device *netdev)
1344 {
1345         struct e1000_adapter *adapter = netdev_priv(netdev);
1346
1347         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1348         e1000_down(adapter);
1349         e1000_power_down_phy(adapter);
1350         e1000_free_irq(adapter);
1351
1352         e1000_free_all_tx_resources(adapter);
1353         e1000_free_all_rx_resources(adapter);
1354
1355         /* kill manageability vlan ID if supported, but not if a vlan with
1356          * the same ID is registered on the host OS (let 8021q kill it) */
1357         if ((adapter->hw.mng_cookie.status &
1358                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1359              !(adapter->vlgrp &&
1360                           adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1361                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1362         }
1363
1364         /* If AMT is enabled, let the firmware know that the network
1365          * interface is now closed */
1366         if (adapter->hw.mac_type == e1000_82573 &&
1367             e1000_check_mng_mode(&adapter->hw))
1368                 e1000_release_hw_control(adapter);
1369
1370         return 0;
1371 }
1372
1373 /**
1374  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1375  * @adapter: address of board private structure
1376  * @start: address of beginning of memory
1377  * @len: length of memory
1378  **/
1379 static boolean_t
1380 e1000_check_64k_bound(struct e1000_adapter *adapter,
1381                       void *start, unsigned long len)
1382 {
1383         unsigned long begin = (unsigned long) start;
1384         unsigned long end = begin + len;
1385
1386         /* First rev 82545 and 82546 need to not allow any memory
1387          * write location to cross 64k boundary due to errata 23 */
1388         if (adapter->hw.mac_type == e1000_82545 ||
1389             adapter->hw.mac_type == e1000_82546) {
1390                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1391         }
1392
1393         return TRUE;
1394 }
1395
1396 /**
1397  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1398  * @adapter: board private structure
1399  * @txdr:    tx descriptor ring (for a specific queue) to setup
1400  *
1401  * Return 0 on success, negative on failure
1402  **/
1403
1404 static int
1405 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1406                          struct e1000_tx_ring *txdr)
1407 {
1408         struct pci_dev *pdev = adapter->pdev;
1409         int size;
1410
1411         size = sizeof(struct e1000_buffer) * txdr->count;
1412         txdr->buffer_info = vmalloc(size);
1413         if (!txdr->buffer_info) {
1414                 DPRINTK(PROBE, ERR,
1415                 "Unable to allocate memory for the transmit descriptor ring\n");
1416                 return -ENOMEM;
1417         }
1418         memset(txdr->buffer_info, 0, size);
1419
1420         /* round up to nearest 4K */
1421
1422         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1423         E1000_ROUNDUP(txdr->size, 4096);
1424
1425         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1426         if (!txdr->desc) {
1427 setup_tx_desc_die:
1428                 vfree(txdr->buffer_info);
1429                 DPRINTK(PROBE, ERR,
1430                 "Unable to allocate memory for the transmit descriptor ring\n");
1431                 return -ENOMEM;
1432         }
1433
1434         /* Fix for errata 23, can't cross 64kB boundary */
1435         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1436                 void *olddesc = txdr->desc;
1437                 dma_addr_t olddma = txdr->dma;
1438                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1439                                      "at %p\n", txdr->size, txdr->desc);
1440                 /* Try again, without freeing the previous */
1441                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1442                 /* Failed allocation, critical failure */
1443                 if (!txdr->desc) {
1444                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1445                         goto setup_tx_desc_die;
1446                 }
1447
1448                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1449                         /* give up */
1450                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1451                                             txdr->dma);
1452                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1453                         DPRINTK(PROBE, ERR,
1454                                 "Unable to allocate aligned memory "
1455                                 "for the transmit descriptor ring\n");
1456                         vfree(txdr->buffer_info);
1457                         return -ENOMEM;
1458                 } else {
1459                         /* Free old allocation, new allocation was successful */
1460                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1461                 }
1462         }
1463         memset(txdr->desc, 0, txdr->size);
1464
1465         txdr->next_to_use = 0;
1466         txdr->next_to_clean = 0;
1467         spin_lock_init(&txdr->tx_lock);
1468
1469         return 0;
1470 }
1471
1472 /**
1473  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1474  *                                (Descriptors) for all queues
1475  * @adapter: board private structure
1476  *
1477  * Return 0 on success, negative on failure
1478  **/
1479
1480 int
1481 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1482 {
1483         int i, err = 0;
1484
1485         for (i = 0; i < adapter->num_tx_queues; i++) {
1486                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1487                 if (err) {
1488                         DPRINTK(PROBE, ERR,
1489                                 "Allocation for Tx Queue %u failed\n", i);
1490                         for (i-- ; i >= 0; i--)
1491                                 e1000_free_tx_resources(adapter,
1492                                                         &adapter->tx_ring[i]);
1493                         break;
1494                 }
1495         }
1496
1497         return err;
1498 }
1499
1500 /**
1501  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1502  * @adapter: board private structure
1503  *
1504  * Configure the Tx unit of the MAC after a reset.
1505  **/
1506
1507 static void
1508 e1000_configure_tx(struct e1000_adapter *adapter)
1509 {
1510         uint64_t tdba;
1511         struct e1000_hw *hw = &adapter->hw;
1512         uint32_t tdlen, tctl, tipg, tarc;
1513         uint32_t ipgr1, ipgr2;
1514
1515         /* Setup the HW Tx Head and Tail descriptor pointers */
1516
1517         switch (adapter->num_tx_queues) {
1518         case 1:
1519         default:
1520                 tdba = adapter->tx_ring[0].dma;
1521                 tdlen = adapter->tx_ring[0].count *
1522                         sizeof(struct e1000_tx_desc);
1523                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1524                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1525                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1526                 E1000_WRITE_REG(hw, TDT, 0);
1527                 E1000_WRITE_REG(hw, TDH, 0);
1528                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1529                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1530                 break;
1531         }
1532
1533         /* Set the default values for the Tx Inter Packet Gap timer */
1534
1535         if (hw->media_type == e1000_media_type_fiber ||
1536             hw->media_type == e1000_media_type_internal_serdes)
1537                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1538         else
1539                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1540
1541         switch (hw->mac_type) {
1542         case e1000_82542_rev2_0:
1543         case e1000_82542_rev2_1:
1544                 tipg = DEFAULT_82542_TIPG_IPGT;
1545                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1546                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1547                 break;
1548         case e1000_80003es2lan:
1549                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1550                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1551                 break;
1552         default:
1553                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1554                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1555                 break;
1556         }
1557         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1558         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1559         E1000_WRITE_REG(hw, TIPG, tipg);
1560
1561         /* Set the Tx Interrupt Delay register */
1562
1563         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1564         if (hw->mac_type >= e1000_82540)
1565                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1566
1567         /* Program the Transmit Control Register */
1568
1569         tctl = E1000_READ_REG(hw, TCTL);
1570         tctl &= ~E1000_TCTL_CT;
1571         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1572                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1573
1574         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1575                 tarc = E1000_READ_REG(hw, TARC0);
1576                 /* set the speed mode bit, we'll clear it if we're not at
1577                  * gigabit link later */
1578                 tarc |= (1 << 21);
1579                 E1000_WRITE_REG(hw, TARC0, tarc);
1580         } else if (hw->mac_type == e1000_80003es2lan) {
1581                 tarc = E1000_READ_REG(hw, TARC0);
1582                 tarc |= 1;
1583                 E1000_WRITE_REG(hw, TARC0, tarc);
1584                 tarc = E1000_READ_REG(hw, TARC1);
1585                 tarc |= 1;
1586                 E1000_WRITE_REG(hw, TARC1, tarc);
1587         }
1588
1589         e1000_config_collision_dist(hw);
1590
1591         /* Setup Transmit Descriptor Settings for eop descriptor */
1592         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1593
1594         /* only set IDE if we are delaying interrupts using the timers */
1595         if (adapter->tx_int_delay)
1596                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1597
1598         if (hw->mac_type < e1000_82543)
1599                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1600         else
1601                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1602
1603         /* Cache if we're 82544 running in PCI-X because we'll
1604          * need this to apply a workaround later in the send path. */
1605         if (hw->mac_type == e1000_82544 &&
1606             hw->bus_type == e1000_bus_type_pcix)
1607                 adapter->pcix_82544 = 1;
1608
1609         E1000_WRITE_REG(hw, TCTL, tctl);
1610
1611 }
1612
1613 /**
1614  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1615  * @adapter: board private structure
1616  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1617  *
1618  * Returns 0 on success, negative on failure
1619  **/
1620
1621 static int
1622 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1623                          struct e1000_rx_ring *rxdr)
1624 {
1625         struct pci_dev *pdev = adapter->pdev;
1626         int size, desc_len;
1627
1628         size = sizeof(struct e1000_buffer) * rxdr->count;
1629         rxdr->buffer_info = vmalloc(size);
1630         if (!rxdr->buffer_info) {
1631                 DPRINTK(PROBE, ERR,
1632                 "Unable to allocate memory for the receive descriptor ring\n");
1633                 return -ENOMEM;
1634         }
1635         memset(rxdr->buffer_info, 0, size);
1636
1637         size = sizeof(struct e1000_ps_page) * rxdr->count;
1638         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1639         if (!rxdr->ps_page) {
1640                 vfree(rxdr->buffer_info);
1641                 DPRINTK(PROBE, ERR,
1642                 "Unable to allocate memory for the receive descriptor ring\n");
1643                 return -ENOMEM;
1644         }
1645         memset(rxdr->ps_page, 0, size);
1646
1647         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1648         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1649         if (!rxdr->ps_page_dma) {
1650                 vfree(rxdr->buffer_info);
1651                 kfree(rxdr->ps_page);
1652                 DPRINTK(PROBE, ERR,
1653                 "Unable to allocate memory for the receive descriptor ring\n");
1654                 return -ENOMEM;
1655         }
1656         memset(rxdr->ps_page_dma, 0, size);
1657
1658         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1659                 desc_len = sizeof(struct e1000_rx_desc);
1660         else
1661                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1662
1663         /* Round up to nearest 4K */
1664
1665         rxdr->size = rxdr->count * desc_len;
1666         E1000_ROUNDUP(rxdr->size, 4096);
1667
1668         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1669
1670         if (!rxdr->desc) {
1671                 DPRINTK(PROBE, ERR,
1672                 "Unable to allocate memory for the receive descriptor ring\n");
1673 setup_rx_desc_die:
1674                 vfree(rxdr->buffer_info);
1675                 kfree(rxdr->ps_page);
1676                 kfree(rxdr->ps_page_dma);
1677                 return -ENOMEM;
1678         }
1679
1680         /* Fix for errata 23, can't cross 64kB boundary */
1681         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1682                 void *olddesc = rxdr->desc;
1683                 dma_addr_t olddma = rxdr->dma;
1684                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1685                                      "at %p\n", rxdr->size, rxdr->desc);
1686                 /* Try again, without freeing the previous */
1687                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1688                 /* Failed allocation, critical failure */
1689                 if (!rxdr->desc) {
1690                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1691                         DPRINTK(PROBE, ERR,
1692                                 "Unable to allocate memory "
1693                                 "for the receive descriptor ring\n");
1694                         goto setup_rx_desc_die;
1695                 }
1696
1697                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1698                         /* give up */
1699                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1700                                             rxdr->dma);
1701                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1702                         DPRINTK(PROBE, ERR,
1703                                 "Unable to allocate aligned memory "
1704                                 "for the receive descriptor ring\n");
1705                         goto setup_rx_desc_die;
1706                 } else {
1707                         /* Free old allocation, new allocation was successful */
1708                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1709                 }
1710         }
1711         memset(rxdr->desc, 0, rxdr->size);
1712
1713         rxdr->next_to_clean = 0;
1714         rxdr->next_to_use = 0;
1715
1716         return 0;
1717 }
1718
1719 /**
1720  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1721  *                                (Descriptors) for all queues
1722  * @adapter: board private structure
1723  *
1724  * Return 0 on success, negative on failure
1725  **/
1726
1727 int
1728 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1729 {
1730         int i, err = 0;
1731
1732         for (i = 0; i < adapter->num_rx_queues; i++) {
1733                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1734                 if (err) {
1735                         DPRINTK(PROBE, ERR,
1736                                 "Allocation for Rx Queue %u failed\n", i);
1737                         for (i-- ; i >= 0; i--)
1738                                 e1000_free_rx_resources(adapter,
1739                                                         &adapter->rx_ring[i]);
1740                         break;
1741                 }
1742         }
1743
1744         return err;
1745 }
1746
1747 /**
1748  * e1000_setup_rctl - configure the receive control registers
1749  * @adapter: Board private structure
1750  **/
1751 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1752                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1753 static void
1754 e1000_setup_rctl(struct e1000_adapter *adapter)
1755 {
1756         uint32_t rctl, rfctl;
1757         uint32_t psrctl = 0;
1758 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1759         uint32_t pages = 0;
1760 #endif
1761
1762         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1763
1764         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1765
1766         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1767                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1768                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1769
1770         if (adapter->hw.tbi_compatibility_on == 1)
1771                 rctl |= E1000_RCTL_SBP;
1772         else
1773                 rctl &= ~E1000_RCTL_SBP;
1774
1775         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1776                 rctl &= ~E1000_RCTL_LPE;
1777         else
1778                 rctl |= E1000_RCTL_LPE;
1779
1780         /* Setup buffer sizes */
1781         rctl &= ~E1000_RCTL_SZ_4096;
1782         rctl |= E1000_RCTL_BSEX;
1783         switch (adapter->rx_buffer_len) {
1784                 case E1000_RXBUFFER_256:
1785                         rctl |= E1000_RCTL_SZ_256;
1786                         rctl &= ~E1000_RCTL_BSEX;
1787                         break;
1788                 case E1000_RXBUFFER_512:
1789                         rctl |= E1000_RCTL_SZ_512;
1790                         rctl &= ~E1000_RCTL_BSEX;
1791                         break;
1792                 case E1000_RXBUFFER_1024:
1793                         rctl |= E1000_RCTL_SZ_1024;
1794                         rctl &= ~E1000_RCTL_BSEX;
1795                         break;
1796                 case E1000_RXBUFFER_2048:
1797                 default:
1798                         rctl |= E1000_RCTL_SZ_2048;
1799                         rctl &= ~E1000_RCTL_BSEX;
1800                         break;
1801                 case E1000_RXBUFFER_4096:
1802                         rctl |= E1000_RCTL_SZ_4096;
1803                         break;
1804                 case E1000_RXBUFFER_8192:
1805                         rctl |= E1000_RCTL_SZ_8192;
1806                         break;
1807                 case E1000_RXBUFFER_16384:
1808                         rctl |= E1000_RCTL_SZ_16384;
1809                         break;
1810         }
1811
1812 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1813         /* 82571 and greater support packet-split where the protocol
1814          * header is placed in skb->data and the packet data is
1815          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1816          * In the case of a non-split, skb->data is linearly filled,
1817          * followed by the page buffers.  Therefore, skb->data is
1818          * sized to hold the largest protocol header.
1819          */
1820         /* allocations using alloc_page take too long for regular MTU
1821          * so only enable packet split for jumbo frames */
1822         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1823         if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1824             PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1825                 adapter->rx_ps_pages = pages;
1826         else
1827                 adapter->rx_ps_pages = 0;
1828 #endif
1829         if (adapter->rx_ps_pages) {
1830                 /* Configure extra packet-split registers */
1831                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1832                 rfctl |= E1000_RFCTL_EXTEN;
1833                 /* disable packet split support for IPv6 extension headers,
1834                  * because some malformed IPv6 headers can hang the RX */
1835                 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
1836                           E1000_RFCTL_NEW_IPV6_EXT_DIS);
1837
1838                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1839
1840                 rctl |= E1000_RCTL_DTYP_PS;
1841
1842                 psrctl |= adapter->rx_ps_bsize0 >>
1843                         E1000_PSRCTL_BSIZE0_SHIFT;
1844
1845                 switch (adapter->rx_ps_pages) {
1846                 case 3:
1847                         psrctl |= PAGE_SIZE <<
1848                                 E1000_PSRCTL_BSIZE3_SHIFT;
1849                 case 2:
1850                         psrctl |= PAGE_SIZE <<
1851                                 E1000_PSRCTL_BSIZE2_SHIFT;
1852                 case 1:
1853                         psrctl |= PAGE_SIZE >>
1854                                 E1000_PSRCTL_BSIZE1_SHIFT;
1855                         break;
1856                 }
1857
1858                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1859         }
1860
1861         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1862 }
1863
1864 /**
1865  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1866  * @adapter: board private structure
1867  *
1868  * Configure the Rx unit of the MAC after a reset.
1869  **/
1870
1871 static void
1872 e1000_configure_rx(struct e1000_adapter *adapter)
1873 {
1874         uint64_t rdba;
1875         struct e1000_hw *hw = &adapter->hw;
1876         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1877
1878         if (adapter->rx_ps_pages) {
1879                 /* this is a 32 byte descriptor */
1880                 rdlen = adapter->rx_ring[0].count *
1881                         sizeof(union e1000_rx_desc_packet_split);
1882                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1883                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1884         } else {
1885                 rdlen = adapter->rx_ring[0].count *
1886                         sizeof(struct e1000_rx_desc);
1887                 adapter->clean_rx = e1000_clean_rx_irq;
1888                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1889         }
1890
1891         /* disable receives while setting up the descriptors */
1892         rctl = E1000_READ_REG(hw, RCTL);
1893         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1894
1895         /* set the Receive Delay Timer Register */
1896         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1897
1898         if (hw->mac_type >= e1000_82540) {
1899                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1900                 if (adapter->itr_setting != 0)
1901                         E1000_WRITE_REG(hw, ITR,
1902                                 1000000000 / (adapter->itr * 256));
1903         }
1904
1905         if (hw->mac_type >= e1000_82571) {
1906                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1907                 /* Reset delay timers after every interrupt */
1908                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1909 #ifdef CONFIG_E1000_NAPI
1910                 /* Auto-Mask interrupts upon ICR access */
1911                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1912                 E1000_WRITE_REG(hw, IAM, 0xffffffff);
1913 #endif
1914                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1915                 E1000_WRITE_FLUSH(hw);
1916         }
1917
1918         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1919          * the Base and Length of the Rx Descriptor Ring */
1920         switch (adapter->num_rx_queues) {
1921         case 1:
1922         default:
1923                 rdba = adapter->rx_ring[0].dma;
1924                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1925                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1926                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1927                 E1000_WRITE_REG(hw, RDT, 0);
1928                 E1000_WRITE_REG(hw, RDH, 0);
1929                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1930                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1931                 break;
1932         }
1933
1934         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1935         if (hw->mac_type >= e1000_82543) {
1936                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1937                 if (adapter->rx_csum == TRUE) {
1938                         rxcsum |= E1000_RXCSUM_TUOFL;
1939
1940                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1941                          * Must be used in conjunction with packet-split. */
1942                         if ((hw->mac_type >= e1000_82571) &&
1943                             (adapter->rx_ps_pages)) {
1944                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1945                         }
1946                 } else {
1947                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1948                         /* don't need to clear IPPCSE as it defaults to 0 */
1949                 }
1950                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1951         }
1952
1953         /* enable early receives on 82573, only takes effect if using > 2048
1954          * byte total frame size.  for example only for jumbo frames */
1955 #define E1000_ERT_2048 0x100
1956         if (hw->mac_type == e1000_82573)
1957                 E1000_WRITE_REG(hw, ERT, E1000_ERT_2048);
1958
1959         /* Enable Receives */
1960         E1000_WRITE_REG(hw, RCTL, rctl);
1961 }
1962
1963 /**
1964  * e1000_free_tx_resources - Free Tx Resources per Queue
1965  * @adapter: board private structure
1966  * @tx_ring: Tx descriptor ring for a specific queue
1967  *
1968  * Free all transmit software resources
1969  **/
1970
1971 static void
1972 e1000_free_tx_resources(struct e1000_adapter *adapter,
1973                         struct e1000_tx_ring *tx_ring)
1974 {
1975         struct pci_dev *pdev = adapter->pdev;
1976
1977         e1000_clean_tx_ring(adapter, tx_ring);
1978
1979         vfree(tx_ring->buffer_info);
1980         tx_ring->buffer_info = NULL;
1981
1982         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1983
1984         tx_ring->desc = NULL;
1985 }
1986
1987 /**
1988  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1989  * @adapter: board private structure
1990  *
1991  * Free all transmit software resources
1992  **/
1993
1994 void
1995 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1996 {
1997         int i;
1998
1999         for (i = 0; i < adapter->num_tx_queues; i++)
2000                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2001 }
2002
2003 static void
2004 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2005                         struct e1000_buffer *buffer_info)
2006 {
2007         if (buffer_info->dma) {
2008                 pci_unmap_page(adapter->pdev,
2009                                 buffer_info->dma,
2010                                 buffer_info->length,
2011                                 PCI_DMA_TODEVICE);
2012                 buffer_info->dma = 0;
2013         }
2014         if (buffer_info->skb) {
2015                 dev_kfree_skb_any(buffer_info->skb);
2016                 buffer_info->skb = NULL;
2017         }
2018         /* buffer_info must be completely set up in the transmit path */
2019 }
2020
2021 /**
2022  * e1000_clean_tx_ring - Free Tx Buffers
2023  * @adapter: board private structure
2024  * @tx_ring: ring to be cleaned
2025  **/
2026
2027 static void
2028 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2029                     struct e1000_tx_ring *tx_ring)
2030 {
2031         struct e1000_buffer *buffer_info;
2032         unsigned long size;
2033         unsigned int i;
2034
2035         /* Free all the Tx ring sk_buffs */
2036
2037         for (i = 0; i < tx_ring->count; i++) {
2038                 buffer_info = &tx_ring->buffer_info[i];
2039                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2040         }
2041
2042         size = sizeof(struct e1000_buffer) * tx_ring->count;
2043         memset(tx_ring->buffer_info, 0, size);
2044
2045         /* Zero out the descriptor ring */
2046
2047         memset(tx_ring->desc, 0, tx_ring->size);
2048
2049         tx_ring->next_to_use = 0;
2050         tx_ring->next_to_clean = 0;
2051         tx_ring->last_tx_tso = 0;
2052
2053         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2054         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2055 }
2056
2057 /**
2058  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2059  * @adapter: board private structure
2060  **/
2061
2062 static void
2063 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2064 {
2065         int i;
2066
2067         for (i = 0; i < adapter->num_tx_queues; i++)
2068                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2069 }
2070
2071 /**
2072  * e1000_free_rx_resources - Free Rx Resources
2073  * @adapter: board private structure
2074  * @rx_ring: ring to clean the resources from
2075  *
2076  * Free all receive software resources
2077  **/
2078
2079 static void
2080 e1000_free_rx_resources(struct e1000_adapter *adapter,
2081                         struct e1000_rx_ring *rx_ring)
2082 {
2083         struct pci_dev *pdev = adapter->pdev;
2084
2085         e1000_clean_rx_ring(adapter, rx_ring);
2086
2087         vfree(rx_ring->buffer_info);
2088         rx_ring->buffer_info = NULL;
2089         kfree(rx_ring->ps_page);
2090         rx_ring->ps_page = NULL;
2091         kfree(rx_ring->ps_page_dma);
2092         rx_ring->ps_page_dma = NULL;
2093
2094         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2095
2096         rx_ring->desc = NULL;
2097 }
2098
2099 /**
2100  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2101  * @adapter: board private structure
2102  *
2103  * Free all receive software resources
2104  **/
2105
2106 void
2107 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2108 {
2109         int i;
2110
2111         for (i = 0; i < adapter->num_rx_queues; i++)
2112                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2113 }
2114
2115 /**
2116  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2117  * @adapter: board private structure
2118  * @rx_ring: ring to free buffers from
2119  **/
2120
2121 static void
2122 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2123                     struct e1000_rx_ring *rx_ring)
2124 {
2125         struct e1000_buffer *buffer_info;
2126         struct e1000_ps_page *ps_page;
2127         struct e1000_ps_page_dma *ps_page_dma;
2128         struct pci_dev *pdev = adapter->pdev;
2129         unsigned long size;
2130         unsigned int i, j;
2131
2132         /* Free all the Rx ring sk_buffs */
2133         for (i = 0; i < rx_ring->count; i++) {
2134                 buffer_info = &rx_ring->buffer_info[i];
2135                 if (buffer_info->skb) {
2136                         pci_unmap_single(pdev,
2137                                          buffer_info->dma,
2138                                          buffer_info->length,
2139                                          PCI_DMA_FROMDEVICE);
2140
2141                         dev_kfree_skb(buffer_info->skb);
2142                         buffer_info->skb = NULL;
2143                 }
2144                 ps_page = &rx_ring->ps_page[i];
2145                 ps_page_dma = &rx_ring->ps_page_dma[i];
2146                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2147                         if (!ps_page->ps_page[j]) break;
2148                         pci_unmap_page(pdev,
2149                                        ps_page_dma->ps_page_dma[j],
2150                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2151                         ps_page_dma->ps_page_dma[j] = 0;
2152                         put_page(ps_page->ps_page[j]);
2153                         ps_page->ps_page[j] = NULL;
2154                 }
2155         }
2156
2157         size = sizeof(struct e1000_buffer) * rx_ring->count;
2158         memset(rx_ring->buffer_info, 0, size);
2159         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2160         memset(rx_ring->ps_page, 0, size);
2161         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2162         memset(rx_ring->ps_page_dma, 0, size);
2163
2164         /* Zero out the descriptor ring */
2165
2166         memset(rx_ring->desc, 0, rx_ring->size);
2167
2168         rx_ring->next_to_clean = 0;
2169         rx_ring->next_to_use = 0;
2170
2171         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2172         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2173 }
2174
2175 /**
2176  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2177  * @adapter: board private structure
2178  **/
2179
2180 static void
2181 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2182 {
2183         int i;
2184
2185         for (i = 0; i < adapter->num_rx_queues; i++)
2186                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2187 }
2188
2189 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2190  * and memory write and invalidate disabled for certain operations
2191  */
2192 static void
2193 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2194 {
2195         struct net_device *netdev = adapter->netdev;
2196         uint32_t rctl;
2197
2198         e1000_pci_clear_mwi(&adapter->hw);
2199
2200         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2201         rctl |= E1000_RCTL_RST;
2202         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2203         E1000_WRITE_FLUSH(&adapter->hw);
2204         mdelay(5);
2205
2206         if (netif_running(netdev))
2207                 e1000_clean_all_rx_rings(adapter);
2208 }
2209
2210 static void
2211 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2212 {
2213         struct net_device *netdev = adapter->netdev;
2214         uint32_t rctl;
2215
2216         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2217         rctl &= ~E1000_RCTL_RST;
2218         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2219         E1000_WRITE_FLUSH(&adapter->hw);
2220         mdelay(5);
2221
2222         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2223                 e1000_pci_set_mwi(&adapter->hw);
2224
2225         if (netif_running(netdev)) {
2226                 /* No need to loop, because 82542 supports only 1 queue */
2227                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2228                 e1000_configure_rx(adapter);
2229                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2230         }
2231 }
2232
2233 /**
2234  * e1000_set_mac - Change the Ethernet Address of the NIC
2235  * @netdev: network interface device structure
2236  * @p: pointer to an address structure
2237  *
2238  * Returns 0 on success, negative on failure
2239  **/
2240
2241 static int
2242 e1000_set_mac(struct net_device *netdev, void *p)
2243 {
2244         struct e1000_adapter *adapter = netdev_priv(netdev);
2245         struct sockaddr *addr = p;
2246
2247         if (!is_valid_ether_addr(addr->sa_data))
2248                 return -EADDRNOTAVAIL;
2249
2250         /* 82542 2.0 needs to be in reset to write receive address registers */
2251
2252         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2253                 e1000_enter_82542_rst(adapter);
2254
2255         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2256         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2257
2258         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2259
2260         /* With 82571 controllers, LAA may be overwritten (with the default)
2261          * due to controller reset from the other port. */
2262         if (adapter->hw.mac_type == e1000_82571) {
2263                 /* activate the work around */
2264                 adapter->hw.laa_is_present = 1;
2265
2266                 /* Hold a copy of the LAA in RAR[14] This is done so that
2267                  * between the time RAR[0] gets clobbered  and the time it
2268                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2269                  * of the RARs and no incoming packets directed to this port
2270                  * are dropped. Eventaully the LAA will be in RAR[0] and
2271                  * RAR[14] */
2272                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2273                                         E1000_RAR_ENTRIES - 1);
2274         }
2275
2276         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2277                 e1000_leave_82542_rst(adapter);
2278
2279         return 0;
2280 }
2281
2282 /**
2283  * e1000_set_multi - Multicast and Promiscuous mode set
2284  * @netdev: network interface device structure
2285  *
2286  * The set_multi entry point is called whenever the multicast address
2287  * list or the network interface flags are updated.  This routine is
2288  * responsible for configuring the hardware for proper multicast,
2289  * promiscuous mode, and all-multi behavior.
2290  **/
2291
2292 static void
2293 e1000_set_multi(struct net_device *netdev)
2294 {
2295         struct e1000_adapter *adapter = netdev_priv(netdev);
2296         struct e1000_hw *hw = &adapter->hw;
2297         struct dev_mc_list *mc_ptr;
2298         uint32_t rctl;
2299         uint32_t hash_value;
2300         int i, rar_entries = E1000_RAR_ENTRIES;
2301         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2302                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2303                                 E1000_NUM_MTA_REGISTERS;
2304
2305         if (adapter->hw.mac_type == e1000_ich8lan)
2306                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2307
2308         /* reserve RAR[14] for LAA over-write work-around */
2309         if (adapter->hw.mac_type == e1000_82571)
2310                 rar_entries--;
2311
2312         /* Check for Promiscuous and All Multicast modes */
2313
2314         rctl = E1000_READ_REG(hw, RCTL);
2315
2316         if (netdev->flags & IFF_PROMISC) {
2317                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2318         } else if (netdev->flags & IFF_ALLMULTI) {
2319                 rctl |= E1000_RCTL_MPE;
2320                 rctl &= ~E1000_RCTL_UPE;
2321         } else {
2322                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2323         }
2324
2325         E1000_WRITE_REG(hw, RCTL, rctl);
2326
2327         /* 82542 2.0 needs to be in reset to write receive address registers */
2328
2329         if (hw->mac_type == e1000_82542_rev2_0)
2330                 e1000_enter_82542_rst(adapter);
2331
2332         /* load the first 14 multicast address into the exact filters 1-14
2333          * RAR 0 is used for the station MAC adddress
2334          * if there are not 14 addresses, go ahead and clear the filters
2335          * -- with 82571 controllers only 0-13 entries are filled here
2336          */
2337         mc_ptr = netdev->mc_list;
2338
2339         for (i = 1; i < rar_entries; i++) {
2340                 if (mc_ptr) {
2341                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2342                         mc_ptr = mc_ptr->next;
2343                 } else {
2344                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2345                         E1000_WRITE_FLUSH(hw);
2346                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2347                         E1000_WRITE_FLUSH(hw);
2348                 }
2349         }
2350
2351         /* clear the old settings from the multicast hash table */
2352
2353         for (i = 0; i < mta_reg_count; i++) {
2354                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2355                 E1000_WRITE_FLUSH(hw);
2356         }
2357
2358         /* load any remaining addresses into the hash table */
2359
2360         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2361                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2362                 e1000_mta_set(hw, hash_value);
2363         }
2364
2365         if (hw->mac_type == e1000_82542_rev2_0)
2366                 e1000_leave_82542_rst(adapter);
2367 }
2368
2369 /* Need to wait a few seconds after link up to get diagnostic information from
2370  * the phy */
2371
2372 static void
2373 e1000_update_phy_info(unsigned long data)
2374 {
2375         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2376         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2377 }
2378
2379 /**
2380  * e1000_82547_tx_fifo_stall - Timer Call-back
2381  * @data: pointer to adapter cast into an unsigned long
2382  **/
2383
2384 static void
2385 e1000_82547_tx_fifo_stall(unsigned long data)
2386 {
2387         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2388         struct net_device *netdev = adapter->netdev;
2389         uint32_t tctl;
2390
2391         if (atomic_read(&adapter->tx_fifo_stall)) {
2392                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2393                     E1000_READ_REG(&adapter->hw, TDH)) &&
2394                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2395                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2396                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2397                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2398                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2399                         E1000_WRITE_REG(&adapter->hw, TCTL,
2400                                         tctl & ~E1000_TCTL_EN);
2401                         E1000_WRITE_REG(&adapter->hw, TDFT,
2402                                         adapter->tx_head_addr);
2403                         E1000_WRITE_REG(&adapter->hw, TDFH,
2404                                         adapter->tx_head_addr);
2405                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2406                                         adapter->tx_head_addr);
2407                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2408                                         adapter->tx_head_addr);
2409                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2410                         E1000_WRITE_FLUSH(&adapter->hw);
2411
2412                         adapter->tx_fifo_head = 0;
2413                         atomic_set(&adapter->tx_fifo_stall, 0);
2414                         netif_wake_queue(netdev);
2415                 } else {
2416                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2417                 }
2418         }
2419 }
2420
2421 /**
2422  * e1000_watchdog - Timer Call-back
2423  * @data: pointer to adapter cast into an unsigned long
2424  **/
2425 static void
2426 e1000_watchdog(unsigned long data)
2427 {
2428         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2429         struct net_device *netdev = adapter->netdev;
2430         struct e1000_tx_ring *txdr = adapter->tx_ring;
2431         uint32_t link, tctl;
2432         int32_t ret_val;
2433
2434         ret_val = e1000_check_for_link(&adapter->hw);
2435         if ((ret_val == E1000_ERR_PHY) &&
2436             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2437             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2438                 /* See e1000_kumeran_lock_loss_workaround() */
2439                 DPRINTK(LINK, INFO,
2440                         "Gigabit has been disabled, downgrading speed\n");
2441         }
2442
2443         if (adapter->hw.mac_type == e1000_82573) {
2444                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2445                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2446                         e1000_update_mng_vlan(adapter);
2447         }
2448
2449         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2450            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2451                 link = !adapter->hw.serdes_link_down;
2452         else
2453                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2454
2455         if (link) {
2456                 if (!netif_carrier_ok(netdev)) {
2457                         boolean_t txb2b = 1;
2458                         e1000_get_speed_and_duplex(&adapter->hw,
2459                                                    &adapter->link_speed,
2460                                                    &adapter->link_duplex);
2461
2462                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2463                                adapter->link_speed,
2464                                adapter->link_duplex == FULL_DUPLEX ?
2465                                "Full Duplex" : "Half Duplex");
2466
2467                         /* tweak tx_queue_len according to speed/duplex
2468                          * and adjust the timeout factor */
2469                         netdev->tx_queue_len = adapter->tx_queue_len;
2470                         adapter->tx_timeout_factor = 1;
2471                         switch (adapter->link_speed) {
2472                         case SPEED_10:
2473                                 txb2b = 0;
2474                                 netdev->tx_queue_len = 10;
2475                                 adapter->tx_timeout_factor = 8;
2476                                 break;
2477                         case SPEED_100:
2478                                 txb2b = 0;
2479                                 netdev->tx_queue_len = 100;
2480                                 /* maybe add some timeout factor ? */
2481                                 break;
2482                         }
2483
2484                         if ((adapter->hw.mac_type == e1000_82571 ||
2485                              adapter->hw.mac_type == e1000_82572) &&
2486                             txb2b == 0) {
2487                                 uint32_t tarc0;
2488                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2489                                 tarc0 &= ~(1 << 21);
2490                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2491                         }
2492
2493 #ifdef NETIF_F_TSO
2494                         /* disable TSO for pcie and 10/100 speeds, to avoid
2495                          * some hardware issues */
2496                         if (!adapter->tso_force &&
2497                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2498                                 switch (adapter->link_speed) {
2499                                 case SPEED_10:
2500                                 case SPEED_100:
2501                                         DPRINTK(PROBE,INFO,
2502                                         "10/100 speed: disabling TSO\n");
2503                                         netdev->features &= ~NETIF_F_TSO;
2504 #ifdef NETIF_F_TSO6
2505                                         netdev->features &= ~NETIF_F_TSO6;
2506 #endif
2507                                         break;
2508                                 case SPEED_1000:
2509                                         netdev->features |= NETIF_F_TSO;
2510 #ifdef NETIF_F_TSO6
2511                                         netdev->features |= NETIF_F_TSO6;
2512 #endif
2513                                         break;
2514                                 default:
2515                                         /* oops */
2516                                         break;
2517                                 }
2518                         }
2519 #endif
2520
2521                         /* enable transmits in the hardware, need to do this
2522                          * after setting TARC0 */
2523                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2524                         tctl |= E1000_TCTL_EN;
2525                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2526
2527                         netif_carrier_on(netdev);
2528                         netif_wake_queue(netdev);
2529                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2530                         adapter->smartspeed = 0;
2531                 }
2532         } else {
2533                 if (netif_carrier_ok(netdev)) {
2534                         adapter->link_speed = 0;
2535                         adapter->link_duplex = 0;
2536                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2537                         netif_carrier_off(netdev);
2538                         netif_stop_queue(netdev);
2539                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2540
2541                         /* 80003ES2LAN workaround--
2542                          * For packet buffer work-around on link down event;
2543                          * disable receives in the ISR and
2544                          * reset device here in the watchdog
2545                          */
2546                         if (adapter->hw.mac_type == e1000_80003es2lan)
2547                                 /* reset device */
2548                                 schedule_work(&adapter->reset_task);
2549                 }
2550
2551                 e1000_smartspeed(adapter);
2552         }
2553
2554         e1000_update_stats(adapter);
2555
2556         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2557         adapter->tpt_old = adapter->stats.tpt;
2558         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2559         adapter->colc_old = adapter->stats.colc;
2560
2561         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2562         adapter->gorcl_old = adapter->stats.gorcl;
2563         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2564         adapter->gotcl_old = adapter->stats.gotcl;
2565
2566         e1000_update_adaptive(&adapter->hw);
2567
2568         if (!netif_carrier_ok(netdev)) {
2569                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2570                         /* We've lost link, so the controller stops DMA,
2571                          * but we've got queued Tx work that's never going
2572                          * to get done, so reset controller to flush Tx.
2573                          * (Do the reset outside of interrupt context). */
2574                         adapter->tx_timeout_count++;
2575                         schedule_work(&adapter->reset_task);
2576                 }
2577         }
2578
2579         /* Cause software interrupt to ensure rx ring is cleaned */
2580         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2581
2582         /* Force detection of hung controller every watchdog period */
2583         adapter->detect_tx_hung = TRUE;
2584
2585         /* With 82571 controllers, LAA may be overwritten due to controller
2586          * reset from the other port. Set the appropriate LAA in RAR[0] */
2587         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2588                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2589
2590         /* Reset the timer */
2591         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2592 }
2593
2594 enum latency_range {
2595         lowest_latency = 0,
2596         low_latency = 1,
2597         bulk_latency = 2,
2598         latency_invalid = 255
2599 };
2600
2601 /**
2602  * e1000_update_itr - update the dynamic ITR value based on statistics
2603  *      Stores a new ITR value based on packets and byte
2604  *      counts during the last interrupt.  The advantage of per interrupt
2605  *      computation is faster updates and more accurate ITR for the current
2606  *      traffic pattern.  Constants in this function were computed
2607  *      based on theoretical maximum wire speed and thresholds were set based
2608  *      on testing data as well as attempting to minimize response time
2609  *      while increasing bulk throughput.
2610  *      this functionality is controlled by the InterruptThrottleRate module
2611  *      parameter (see e1000_param.c)
2612  * @adapter: pointer to adapter
2613  * @itr_setting: current adapter->itr
2614  * @packets: the number of packets during this measurement interval
2615  * @bytes: the number of bytes during this measurement interval
2616  **/
2617 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2618                                    uint16_t itr_setting,
2619                                    int packets,
2620                                    int bytes)
2621 {
2622         unsigned int retval = itr_setting;
2623         struct e1000_hw *hw = &adapter->hw;
2624
2625         if (unlikely(hw->mac_type < e1000_82540))
2626                 goto update_itr_done;
2627
2628         if (packets == 0)
2629                 goto update_itr_done;
2630
2631
2632         switch (itr_setting) {
2633         case lowest_latency:
2634                 if ((packets < 5) && (bytes > 512))
2635                         retval = low_latency;
2636                 break;
2637         case low_latency:  /* 50 usec aka 20000 ints/s */
2638                 if (bytes > 10000) {
2639                         if ((packets < 10) ||
2640                              ((bytes/packets) > 1200))
2641                                 retval = bulk_latency;
2642                         else if ((packets > 35))
2643                                 retval = lowest_latency;
2644                 } else if (packets <= 2 && bytes < 512)
2645                         retval = lowest_latency;
2646                 break;
2647         case bulk_latency: /* 250 usec aka 4000 ints/s */
2648                 if (bytes > 25000) {
2649                         if (packets > 35)
2650                                 retval = low_latency;
2651                 } else {
2652                         if (bytes < 6000)
2653                                 retval = low_latency;
2654                 }
2655                 break;
2656         }
2657
2658 update_itr_done:
2659         return retval;
2660 }
2661
2662 static void e1000_set_itr(struct e1000_adapter *adapter)
2663 {
2664         struct e1000_hw *hw = &adapter->hw;
2665         uint16_t current_itr;
2666         uint32_t new_itr = adapter->itr;
2667
2668         if (unlikely(hw->mac_type < e1000_82540))
2669                 return;
2670
2671         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2672         if (unlikely(adapter->link_speed != SPEED_1000)) {
2673                 current_itr = 0;
2674                 new_itr = 4000;
2675                 goto set_itr_now;
2676         }
2677
2678         adapter->tx_itr = e1000_update_itr(adapter,
2679                                     adapter->tx_itr,
2680                                     adapter->total_tx_packets,
2681                                     adapter->total_tx_bytes);
2682         adapter->rx_itr = e1000_update_itr(adapter,
2683                                     adapter->rx_itr,
2684                                     adapter->total_rx_packets,
2685                                     adapter->total_rx_bytes);
2686
2687         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2688
2689         /* conservative mode eliminates the lowest_latency setting */
2690         if (current_itr == lowest_latency && (adapter->itr_setting == 3))
2691                 current_itr = low_latency;
2692
2693         switch (current_itr) {
2694         /* counts and packets in update_itr are dependent on these numbers */
2695         case lowest_latency:
2696                 new_itr = 70000;
2697                 break;
2698         case low_latency:
2699                 new_itr = 20000; /* aka hwitr = ~200 */
2700                 break;
2701         case bulk_latency:
2702                 new_itr = 4000;
2703                 break;
2704         default:
2705                 break;
2706         }
2707
2708 set_itr_now:
2709         if (new_itr != adapter->itr) {
2710                 /* this attempts to bias the interrupt rate towards Bulk
2711                  * by adding intermediate steps when interrupt rate is
2712                  * increasing */
2713                 new_itr = new_itr > adapter->itr ?
2714                              min(adapter->itr + (new_itr >> 2), new_itr) :
2715                              new_itr;
2716                 adapter->itr = new_itr;
2717                 E1000_WRITE_REG(hw, ITR, 1000000000 / (new_itr * 256));
2718         }
2719
2720         return;
2721 }
2722
2723 #define E1000_TX_FLAGS_CSUM             0x00000001
2724 #define E1000_TX_FLAGS_VLAN             0x00000002
2725 #define E1000_TX_FLAGS_TSO              0x00000004
2726 #define E1000_TX_FLAGS_IPV4             0x00000008
2727 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2728 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2729
2730 static int
2731 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2732           struct sk_buff *skb)
2733 {
2734 #ifdef NETIF_F_TSO
2735         struct e1000_context_desc *context_desc;
2736         struct e1000_buffer *buffer_info;
2737         unsigned int i;
2738         uint32_t cmd_length = 0;
2739         uint16_t ipcse = 0, tucse, mss;
2740         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2741         int err;
2742
2743         if (skb_is_gso(skb)) {
2744                 if (skb_header_cloned(skb)) {
2745                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2746                         if (err)
2747                                 return err;
2748                 }
2749
2750                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2751                 mss = skb_shinfo(skb)->gso_size;
2752                 if (skb->protocol == htons(ETH_P_IP)) {
2753                         skb->nh.iph->tot_len = 0;
2754                         skb->nh.iph->check = 0;
2755                         skb->h.th->check =
2756                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2757                                                    skb->nh.iph->daddr,
2758                                                    0,
2759                                                    IPPROTO_TCP,
2760                                                    0);
2761                         cmd_length = E1000_TXD_CMD_IP;
2762                         ipcse = skb->h.raw - skb->data - 1;
2763 #ifdef NETIF_F_TSO6
2764                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2765                         skb->nh.ipv6h->payload_len = 0;
2766                         skb->h.th->check =
2767                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2768                                                  &skb->nh.ipv6h->daddr,
2769                                                  0,
2770                                                  IPPROTO_TCP,
2771                                                  0);
2772                         ipcse = 0;
2773 #endif
2774                 }
2775                 ipcss = skb->nh.raw - skb->data;
2776                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2777                 tucss = skb->h.raw - skb->data;
2778                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2779                 tucse = 0;
2780
2781                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2782                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2783
2784                 i = tx_ring->next_to_use;
2785                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2786                 buffer_info = &tx_ring->buffer_info[i];
2787
2788                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2789                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2790                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2791                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2792                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2793                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2794                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2795                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2796                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2797
2798                 buffer_info->time_stamp = jiffies;
2799                 buffer_info->next_to_watch = i;
2800
2801                 if (++i == tx_ring->count) i = 0;
2802                 tx_ring->next_to_use = i;
2803
2804                 return TRUE;
2805         }
2806 #endif
2807
2808         return FALSE;
2809 }
2810
2811 static boolean_t
2812 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2813               struct sk_buff *skb)
2814 {
2815         struct e1000_context_desc *context_desc;
2816         struct e1000_buffer *buffer_info;
2817         unsigned int i;
2818         uint8_t css;
2819
2820         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2821                 css = skb->h.raw - skb->data;
2822
2823                 i = tx_ring->next_to_use;
2824                 buffer_info = &tx_ring->buffer_info[i];
2825                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2826
2827                 context_desc->upper_setup.tcp_fields.tucss = css;
2828                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
2829                 context_desc->upper_setup.tcp_fields.tucse = 0;
2830                 context_desc->tcp_seg_setup.data = 0;
2831                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2832
2833                 buffer_info->time_stamp = jiffies;
2834                 buffer_info->next_to_watch = i;
2835
2836                 if (unlikely(++i == tx_ring->count)) i = 0;
2837                 tx_ring->next_to_use = i;
2838
2839                 return TRUE;
2840         }
2841
2842         return FALSE;
2843 }
2844
2845 #define E1000_MAX_TXD_PWR       12
2846 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2847
2848 static int
2849 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2850              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2851              unsigned int nr_frags, unsigned int mss)
2852 {
2853         struct e1000_buffer *buffer_info;
2854         unsigned int len = skb->len;
2855         unsigned int offset = 0, size, count = 0, i;
2856         unsigned int f;
2857         len -= skb->data_len;
2858
2859         i = tx_ring->next_to_use;
2860
2861         while (len) {
2862                 buffer_info = &tx_ring->buffer_info[i];
2863                 size = min(len, max_per_txd);
2864 #ifdef NETIF_F_TSO
2865                 /* Workaround for Controller erratum --
2866                  * descriptor for non-tso packet in a linear SKB that follows a
2867                  * tso gets written back prematurely before the data is fully
2868                  * DMA'd to the controller */
2869                 if (!skb->data_len && tx_ring->last_tx_tso &&
2870                     !skb_is_gso(skb)) {
2871                         tx_ring->last_tx_tso = 0;
2872                         size -= 4;
2873                 }
2874
2875                 /* Workaround for premature desc write-backs
2876                  * in TSO mode.  Append 4-byte sentinel desc */
2877                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2878                         size -= 4;
2879 #endif
2880                 /* work-around for errata 10 and it applies
2881                  * to all controllers in PCI-X mode
2882                  * The fix is to make sure that the first descriptor of a
2883                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2884                  */
2885                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2886                                 (size > 2015) && count == 0))
2887                         size = 2015;
2888
2889                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2890                  * terminating buffers within evenly-aligned dwords. */
2891                 if (unlikely(adapter->pcix_82544 &&
2892                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2893                    size > 4))
2894                         size -= 4;
2895
2896                 buffer_info->length = size;
2897                 buffer_info->dma =
2898                         pci_map_single(adapter->pdev,
2899                                 skb->data + offset,
2900                                 size,
2901                                 PCI_DMA_TODEVICE);
2902                 buffer_info->time_stamp = jiffies;
2903                 buffer_info->next_to_watch = i;
2904
2905                 len -= size;
2906                 offset += size;
2907                 count++;
2908                 if (unlikely(++i == tx_ring->count)) i = 0;
2909         }
2910
2911         for (f = 0; f < nr_frags; f++) {
2912                 struct skb_frag_struct *frag;
2913
2914                 frag = &skb_shinfo(skb)->frags[f];
2915                 len = frag->size;
2916                 offset = frag->page_offset;
2917
2918                 while (len) {
2919                         buffer_info = &tx_ring->buffer_info[i];
2920                         size = min(len, max_per_txd);
2921 #ifdef NETIF_F_TSO
2922                         /* Workaround for premature desc write-backs
2923                          * in TSO mode.  Append 4-byte sentinel desc */
2924                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2925                                 size -= 4;
2926 #endif
2927                         /* Workaround for potential 82544 hang in PCI-X.
2928                          * Avoid terminating buffers within evenly-aligned
2929                          * dwords. */
2930                         if (unlikely(adapter->pcix_82544 &&
2931                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2932                            size > 4))
2933                                 size -= 4;
2934
2935                         buffer_info->length = size;
2936                         buffer_info->dma =
2937                                 pci_map_page(adapter->pdev,
2938                                         frag->page,
2939                                         offset,
2940                                         size,
2941                                         PCI_DMA_TODEVICE);
2942                         buffer_info->time_stamp = jiffies;
2943                         buffer_info->next_to_watch = i;
2944
2945                         len -= size;
2946                         offset += size;
2947                         count++;
2948                         if (unlikely(++i == tx_ring->count)) i = 0;
2949                 }
2950         }
2951
2952         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2953         tx_ring->buffer_info[i].skb = skb;
2954         tx_ring->buffer_info[first].next_to_watch = i;
2955
2956         return count;
2957 }
2958
2959 static void
2960 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2961                int tx_flags, int count)
2962 {
2963         struct e1000_tx_desc *tx_desc = NULL;
2964         struct e1000_buffer *buffer_info;
2965         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2966         unsigned int i;
2967
2968         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2969                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2970                              E1000_TXD_CMD_TSE;
2971                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2972
2973                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2974                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2975         }
2976
2977         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2978                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2979                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2980         }
2981
2982         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2983                 txd_lower |= E1000_TXD_CMD_VLE;
2984                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2985         }
2986
2987         i = tx_ring->next_to_use;
2988
2989         while (count--) {
2990                 buffer_info = &tx_ring->buffer_info[i];
2991                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2992                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2993                 tx_desc->lower.data =
2994                         cpu_to_le32(txd_lower | buffer_info->length);
2995                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2996                 if (unlikely(++i == tx_ring->count)) i = 0;
2997         }
2998
2999         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3000
3001         /* Force memory writes to complete before letting h/w
3002          * know there are new descriptors to fetch.  (Only
3003          * applicable for weak-ordered memory model archs,
3004          * such as IA-64). */
3005         wmb();
3006
3007         tx_ring->next_to_use = i;
3008         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
3009         /* we need this if more than one processor can write to our tail
3010          * at a time, it syncronizes IO on IA64/Altix systems */
3011         mmiowb();
3012 }
3013
3014 /**
3015  * 82547 workaround to avoid controller hang in half-duplex environment.
3016  * The workaround is to avoid queuing a large packet that would span
3017  * the internal Tx FIFO ring boundary by notifying the stack to resend
3018  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3019  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3020  * to the beginning of the Tx FIFO.
3021  **/
3022
3023 #define E1000_FIFO_HDR                  0x10
3024 #define E1000_82547_PAD_LEN             0x3E0
3025
3026 static int
3027 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
3028 {
3029         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3030         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
3031
3032         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
3033
3034         if (adapter->link_duplex != HALF_DUPLEX)
3035                 goto no_fifo_stall_required;
3036
3037         if (atomic_read(&adapter->tx_fifo_stall))
3038                 return 1;
3039
3040         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3041                 atomic_set(&adapter->tx_fifo_stall, 1);
3042                 return 1;
3043         }
3044
3045 no_fifo_stall_required:
3046         adapter->tx_fifo_head += skb_fifo_len;
3047         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3048                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3049         return 0;
3050 }
3051
3052 #define MINIMUM_DHCP_PACKET_SIZE 282
3053 static int
3054 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
3055 {
3056         struct e1000_hw *hw =  &adapter->hw;
3057         uint16_t length, offset;
3058         if (vlan_tx_tag_present(skb)) {
3059                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
3060                         ( adapter->hw.mng_cookie.status &
3061                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3062                         return 0;
3063         }
3064         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3065                 struct ethhdr *eth = (struct ethhdr *) skb->data;
3066                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3067                         const struct iphdr *ip =
3068                                 (struct iphdr *)((uint8_t *)skb->data+14);
3069                         if (IPPROTO_UDP == ip->protocol) {
3070                                 struct udphdr *udp =
3071                                         (struct udphdr *)((uint8_t *)ip +
3072                                                 (ip->ihl << 2));
3073                                 if (ntohs(udp->dest) == 67) {
3074                                         offset = (uint8_t *)udp + 8 - skb->data;
3075                                         length = skb->len - offset;
3076
3077                                         return e1000_mng_write_dhcp_info(hw,
3078                                                         (uint8_t *)udp + 8,
3079                                                         length);
3080                                 }
3081                         }
3082                 }
3083         }
3084         return 0;
3085 }
3086
3087 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3088 {
3089         struct e1000_adapter *adapter = netdev_priv(netdev);
3090         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3091
3092         netif_stop_queue(netdev);
3093         /* Herbert's original patch had:
3094          *  smp_mb__after_netif_stop_queue();
3095          * but since that doesn't exist yet, just open code it. */
3096         smp_mb();
3097
3098         /* We need to check again in a case another CPU has just
3099          * made room available. */
3100         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3101                 return -EBUSY;
3102
3103         /* A reprieve! */
3104         netif_start_queue(netdev);
3105         ++adapter->restart_queue;
3106         return 0;
3107 }
3108
3109 static int e1000_maybe_stop_tx(struct net_device *netdev,
3110                                struct e1000_tx_ring *tx_ring, int size)
3111 {
3112         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3113                 return 0;
3114         return __e1000_maybe_stop_tx(netdev, size);
3115 }
3116
3117 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3118 static int
3119 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3120 {
3121         struct e1000_adapter *adapter = netdev_priv(netdev);
3122         struct e1000_tx_ring *tx_ring;
3123         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3124         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3125         unsigned int tx_flags = 0;
3126         unsigned int len = skb->len;
3127         unsigned long flags;
3128         unsigned int nr_frags = 0;
3129         unsigned int mss = 0;
3130         int count = 0;
3131         int tso;
3132         unsigned int f;
3133         len -= skb->data_len;
3134
3135         /* This goes back to the question of how to logically map a tx queue
3136          * to a flow.  Right now, performance is impacted slightly negatively
3137          * if using multiple tx queues.  If the stack breaks away from a
3138          * single qdisc implementation, we can look at this again. */
3139         tx_ring = adapter->tx_ring;
3140
3141         if (unlikely(skb->len <= 0)) {
3142                 dev_kfree_skb_any(skb);
3143                 return NETDEV_TX_OK;
3144         }
3145
3146         /* 82571 and newer doesn't need the workaround that limited descriptor
3147          * length to 4kB */
3148         if (adapter->hw.mac_type >= e1000_82571)
3149                 max_per_txd = 8192;
3150
3151 #ifdef NETIF_F_TSO
3152         mss = skb_shinfo(skb)->gso_size;
3153         /* The controller does a simple calculation to
3154          * make sure there is enough room in the FIFO before
3155          * initiating the DMA for each buffer.  The calc is:
3156          * 4 = ceil(buffer len/mss).  To make sure we don't
3157          * overrun the FIFO, adjust the max buffer len if mss
3158          * drops. */
3159         if (mss) {
3160                 uint8_t hdr_len;
3161                 max_per_txd = min(mss << 2, max_per_txd);
3162                 max_txd_pwr = fls(max_per_txd) - 1;
3163
3164                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3165                 * points to just header, pull a few bytes of payload from
3166                 * frags into skb->data */
3167                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3168                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3169                         switch (adapter->hw.mac_type) {
3170                                 unsigned int pull_size;
3171                         case e1000_82571:
3172                         case e1000_82572:
3173                         case e1000_82573:
3174                         case e1000_ich8lan:
3175                                 pull_size = min((unsigned int)4, skb->data_len);
3176                                 if (!__pskb_pull_tail(skb, pull_size)) {
3177                                         DPRINTK(DRV, ERR,
3178                                                 "__pskb_pull_tail failed.\n");
3179                                         dev_kfree_skb_any(skb);
3180                                         return NETDEV_TX_OK;
3181                                 }
3182                                 len = skb->len - skb->data_len;
3183                                 break;
3184                         default:
3185                                 /* do nothing */
3186                                 break;
3187                         }
3188                 }
3189         }
3190
3191         /* reserve a descriptor for the offload context */
3192         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3193                 count++;
3194         count++;
3195 #else
3196         if (skb->ip_summed == CHECKSUM_PARTIAL)
3197                 count++;
3198 #endif
3199
3200 #ifdef NETIF_F_TSO
3201         /* Controller Erratum workaround */
3202         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3203                 count++;
3204 #endif
3205
3206         count += TXD_USE_COUNT(len, max_txd_pwr);
3207
3208         if (adapter->pcix_82544)
3209                 count++;
3210
3211         /* work-around for errata 10 and it applies to all controllers
3212          * in PCI-X mode, so add one more descriptor to the count
3213          */
3214         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3215                         (len > 2015)))
3216                 count++;
3217
3218         nr_frags = skb_shinfo(skb)->nr_frags;
3219         for (f = 0; f < nr_frags; f++)
3220                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3221                                        max_txd_pwr);
3222         if (adapter->pcix_82544)
3223                 count += nr_frags;
3224
3225
3226         if (adapter->hw.tx_pkt_filtering &&
3227             (adapter->hw.mac_type == e1000_82573))
3228                 e1000_transfer_dhcp_info(adapter, skb);
3229
3230         local_irq_save(flags);
3231         if (!spin_trylock(&tx_ring->tx_lock)) {
3232                 /* Collision - tell upper layer to requeue */
3233                 local_irq_restore(flags);
3234                 return NETDEV_TX_LOCKED;
3235         }
3236
3237         /* need: count + 2 desc gap to keep tail from touching
3238          * head, otherwise try next time */
3239         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3240                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3241                 return NETDEV_TX_BUSY;
3242         }
3243
3244         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3245                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3246                         netif_stop_queue(netdev);
3247                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3248                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3249                         return NETDEV_TX_BUSY;
3250                 }
3251         }
3252
3253         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3254                 tx_flags |= E1000_TX_FLAGS_VLAN;
3255                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3256         }
3257
3258         first = tx_ring->next_to_use;
3259
3260         tso = e1000_tso(adapter, tx_ring, skb);
3261         if (tso < 0) {
3262                 dev_kfree_skb_any(skb);
3263                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3264                 return NETDEV_TX_OK;
3265         }
3266
3267         if (likely(tso)) {
3268                 tx_ring->last_tx_tso = 1;
3269                 tx_flags |= E1000_TX_FLAGS_TSO;
3270         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3271                 tx_flags |= E1000_TX_FLAGS_CSUM;
3272
3273         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3274          * 82571 hardware supports TSO capabilities for IPv6 as well...
3275          * no longer assume, we must. */
3276         if (likely(skb->protocol == htons(ETH_P_IP)))
3277                 tx_flags |= E1000_TX_FLAGS_IPV4;
3278
3279         e1000_tx_queue(adapter, tx_ring, tx_flags,
3280                        e1000_tx_map(adapter, tx_ring, skb, first,
3281                                     max_per_txd, nr_frags, mss));
3282
3283         netdev->trans_start = jiffies;
3284
3285         /* Make sure there is space in the ring for the next send. */
3286         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3287
3288         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3289         return NETDEV_TX_OK;
3290 }
3291
3292 /**
3293  * e1000_tx_timeout - Respond to a Tx Hang
3294  * @netdev: network interface device structure
3295  **/
3296
3297 static void
3298 e1000_tx_timeout(struct net_device *netdev)
3299 {
3300         struct e1000_adapter *adapter = netdev_priv(netdev);
3301
3302         /* Do the reset outside of interrupt context */
3303         adapter->tx_timeout_count++;
3304         schedule_work(&adapter->reset_task);
3305 }
3306
3307 static void
3308 e1000_reset_task(struct work_struct *work)
3309 {
3310         struct e1000_adapter *adapter =
3311                 container_of(work, struct e1000_adapter, reset_task);
3312
3313         e1000_reinit_locked(adapter);
3314 }
3315
3316 /**
3317  * e1000_get_stats - Get System Network Statistics
3318  * @netdev: network interface device structure
3319  *
3320  * Returns the address of the device statistics structure.
3321  * The statistics are actually updated from the timer callback.
3322  **/
3323
3324 static struct net_device_stats *
3325 e1000_get_stats(struct net_device *netdev)
3326 {
3327         struct e1000_adapter *adapter = netdev_priv(netdev);
3328
3329         /* only return the current stats */
3330         return &adapter->net_stats;
3331 }
3332
3333 /**
3334  * e1000_change_mtu - Change the Maximum Transfer Unit
3335  * @netdev: network interface device structure
3336  * @new_mtu: new value for maximum frame size
3337  *
3338  * Returns 0 on success, negative on failure
3339  **/
3340
3341 static int
3342 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3343 {
3344         struct e1000_adapter *adapter = netdev_priv(netdev);
3345         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3346         uint16_t eeprom_data = 0;
3347
3348         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3349             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3350                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3351                 return -EINVAL;
3352         }
3353
3354         /* Adapter-specific max frame size limits. */
3355         switch (adapter->hw.mac_type) {
3356         case e1000_undefined ... e1000_82542_rev2_1:
3357         case e1000_ich8lan:
3358                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3359                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3360                         return -EINVAL;
3361                 }
3362                 break;
3363         case e1000_82573:
3364                 /* Jumbo Frames not supported if:
3365                  * - this is not an 82573L device
3366                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3367                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3368                                   &eeprom_data);
3369                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3370                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3371                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3372                                 DPRINTK(PROBE, ERR,
3373                                         "Jumbo Frames not supported.\n");
3374                                 return -EINVAL;
3375                         }
3376                         break;
3377                 }
3378                 /* ERT will be enabled later to enable wire speed receives */
3379
3380                 /* fall through to get support */
3381         case e1000_82571:
3382         case e1000_82572:
3383         case e1000_80003es2lan:
3384 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3385                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3386                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3387                         return -EINVAL;
3388                 }
3389                 break;
3390         default:
3391                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3392                 break;
3393         }
3394
3395         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3396          * means we reserve 2 more, this pushes us to allocate from the next
3397          * larger slab size
3398          * i.e. RXBUFFER_2048 --> size-4096 slab */
3399
3400         if (max_frame <= E1000_RXBUFFER_256)
3401                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3402         else if (max_frame <= E1000_RXBUFFER_512)
3403                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3404         else if (max_frame <= E1000_RXBUFFER_1024)
3405                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3406         else if (max_frame <= E1000_RXBUFFER_2048)
3407                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3408         else if (max_frame <= E1000_RXBUFFER_4096)
3409                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3410         else if (max_frame <= E1000_RXBUFFER_8192)
3411                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3412         else if (max_frame <= E1000_RXBUFFER_16384)
3413                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3414
3415         /* adjust allocation if LPE protects us, and we aren't using SBP */
3416         if (!adapter->hw.tbi_compatibility_on &&
3417             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3418              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3419                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3420
3421         netdev->mtu = new_mtu;
3422
3423         if (netif_running(netdev))
3424                 e1000_reinit_locked(adapter);
3425
3426         adapter->hw.max_frame_size = max_frame;
3427
3428         return 0;
3429 }
3430
3431 /**
3432  * e1000_update_stats - Update the board statistics counters
3433  * @adapter: board private structure
3434  **/
3435
3436 void
3437 e1000_update_stats(struct e1000_adapter *adapter)
3438 {
3439         struct e1000_hw *hw = &adapter->hw;
3440         struct pci_dev *pdev = adapter->pdev;
3441         unsigned long flags;
3442         uint16_t phy_tmp;
3443
3444 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3445
3446         /*
3447          * Prevent stats update while adapter is being reset, or if the pci
3448          * connection is down.
3449          */
3450         if (adapter->link_speed == 0)
3451                 return;
3452         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3453                 return;
3454
3455         spin_lock_irqsave(&adapter->stats_lock, flags);
3456
3457         /* these counters are modified from e1000_adjust_tbi_stats,
3458          * called from the interrupt context, so they must only
3459          * be written while holding adapter->stats_lock
3460          */
3461
3462         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3463         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3464         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3465         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3466         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3467         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3468         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3469
3470         if (adapter->hw.mac_type != e1000_ich8lan) {
3471                 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3472                 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3473                 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3474                 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3475                 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3476                 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3477         }
3478
3479         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3480         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3481         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3482         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3483         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3484         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3485         adapter->stats.dc += E1000_READ_REG(hw, DC);
3486         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3487         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3488         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3489         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3490         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3491         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3492         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3493         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3494         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3495         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3496         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3497         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3498         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3499         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3500         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3501         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3502         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3503         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3504         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3505
3506         if (adapter->hw.mac_type != e1000_ich8lan) {
3507                 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3508                 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3509                 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3510                 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3511                 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3512                 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3513         }
3514
3515         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3516         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3517
3518         /* used for adaptive IFS */
3519
3520         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3521         adapter->stats.tpt += hw->tx_packet_delta;
3522         hw->collision_delta = E1000_READ_REG(hw, COLC);
3523         adapter->stats.colc += hw->collision_delta;
3524
3525         if (hw->mac_type >= e1000_82543) {
3526                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3527                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3528                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3529                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3530                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3531                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3532         }
3533         if (hw->mac_type > e1000_82547_rev_2) {
3534                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3535                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3536
3537                 if (adapter->hw.mac_type != e1000_ich8lan) {
3538                         adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3539                         adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3540                         adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3541                         adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3542                         adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3543                         adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3544                         adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3545                 }
3546         }
3547
3548         /* Fill out the OS statistics structure */
3549         adapter->net_stats.rx_packets = adapter->stats.gprc;
3550         adapter->net_stats.tx_packets = adapter->stats.gptc;
3551         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3552         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3553         adapter->net_stats.multicast = adapter->stats.mprc;
3554         adapter->net_stats.collisions = adapter->stats.colc;
3555
3556         /* Rx Errors */
3557
3558         /* RLEC on some newer hardware can be incorrect so build
3559         * our own version based on RUC and ROC */
3560         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3561                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3562                 adapter->stats.ruc + adapter->stats.roc +
3563                 adapter->stats.cexterr;
3564         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3565         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3566         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3567         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3568         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3569
3570         /* Tx Errors */
3571         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3572         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3573         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3574         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3575         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3576
3577         /* Tx Dropped needs to be maintained elsewhere */
3578
3579         /* Phy Stats */
3580         if (hw->media_type == e1000_media_type_copper) {
3581                 if ((adapter->link_speed == SPEED_1000) &&
3582                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3583                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3584                         adapter->phy_stats.idle_errors += phy_tmp;
3585                 }
3586
3587                 if ((hw->mac_type <= e1000_82546) &&
3588                    (hw->phy_type == e1000_phy_m88) &&
3589                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3590                         adapter->phy_stats.receive_errors += phy_tmp;
3591         }
3592
3593         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3594 }
3595 #ifdef CONFIG_PCI_MSI
3596
3597 /**
3598  * e1000_intr_msi - Interrupt Handler
3599  * @irq: interrupt number
3600  * @data: pointer to a network interface device structure
3601  **/
3602
3603 static
3604 irqreturn_t e1000_intr_msi(int irq, void *data)
3605 {
3606         struct net_device *netdev = data;
3607         struct e1000_adapter *adapter = netdev_priv(netdev);
3608         struct e1000_hw *hw = &adapter->hw;
3609 #ifndef CONFIG_E1000_NAPI
3610         int i;
3611 #endif
3612
3613         /* this code avoids the read of ICR but has to get 1000 interrupts
3614          * at every link change event before it will notice the change */
3615         if (++adapter->detect_link >= 1000) {
3616                 uint32_t icr = E1000_READ_REG(hw, ICR);
3617 #ifdef CONFIG_E1000_NAPI
3618                 /* read ICR disables interrupts using IAM, so keep up with our
3619                  * enable/disable accounting */
3620                 atomic_inc(&adapter->irq_sem);
3621 #endif
3622                 adapter->detect_link = 0;
3623                 if ((icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) &&
3624                     (icr & E1000_ICR_INT_ASSERTED)) {
3625                         hw->get_link_status = 1;
3626                         /* 80003ES2LAN workaround--
3627                         * For packet buffer work-around on link down event;
3628                         * disable receives here in the ISR and
3629                         * reset adapter in watchdog
3630                         */
3631                         if (netif_carrier_ok(netdev) &&
3632                             (adapter->hw.mac_type == e1000_80003es2lan)) {
3633                                 /* disable receives */
3634                                 uint32_t rctl = E1000_READ_REG(hw, RCTL);
3635                                 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3636                         }
3637                         /* guard against interrupt when we're going down */
3638                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3639                                 mod_timer(&adapter->watchdog_timer,
3640                                           jiffies + 1);
3641                 }
3642         } else {
3643                 E1000_WRITE_REG(hw, ICR, (0xffffffff & ~(E1000_ICR_RXSEQ |
3644                                                          E1000_ICR_LSC)));
3645                 /* bummer we have to flush here, but things break otherwise as
3646                  * some event appears to be lost or delayed and throughput
3647                  * drops.  In almost all tests this flush is un-necessary */
3648                 E1000_WRITE_FLUSH(hw);
3649 #ifdef CONFIG_E1000_NAPI
3650                 /* Interrupt Auto-Mask (IAM)...upon writing ICR, interrupts are
3651                  * masked.  No need for the IMC write, but it does mean we
3652                  * should account for it ASAP. */
3653                 atomic_inc(&adapter->irq_sem);
3654 #endif
3655         }
3656
3657 #ifdef CONFIG_E1000_NAPI
3658         if (likely(netif_rx_schedule_prep(netdev))) {
3659                 adapter->total_tx_bytes = 0;
3660                 adapter->total_tx_packets = 0;
3661                 adapter->total_rx_bytes = 0;
3662                 adapter->total_rx_packets = 0;
3663                 __netif_rx_schedule(netdev);
3664         } else
3665                 e1000_irq_enable(adapter);
3666 #else
3667         adapter->total_tx_bytes = 0;
3668         adapter->total_rx_bytes = 0;
3669         adapter->total_tx_packets = 0;
3670         adapter->total_rx_packets = 0;
3671
3672         for (i = 0; i < E1000_MAX_INTR; i++)
3673                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3674                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3675                         break;
3676
3677         if (likely(adapter->itr_setting & 3))
3678                 e1000_set_itr(adapter);
3679 #endif
3680
3681         return IRQ_HANDLED;
3682 }
3683 #endif
3684
3685 /**
3686  * e1000_intr - Interrupt Handler
3687  * @irq: interrupt number
3688  * @data: pointer to a network interface device structure
3689  **/
3690
3691 static irqreturn_t
3692 e1000_intr(int irq, void *data)
3693 {
3694         struct net_device *netdev = data;
3695         struct e1000_adapter *adapter = netdev_priv(netdev);
3696         struct e1000_hw *hw = &adapter->hw;
3697         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3698 #ifndef CONFIG_E1000_NAPI
3699         int i;
3700 #endif
3701         if (unlikely(!icr))
3702                 return IRQ_NONE;  /* Not our interrupt */
3703
3704 #ifdef CONFIG_E1000_NAPI
3705         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3706          * not set, then the adapter didn't send an interrupt */
3707         if (unlikely(hw->mac_type >= e1000_82571 &&
3708                      !(icr & E1000_ICR_INT_ASSERTED)))
3709                 return IRQ_NONE;
3710
3711         /* Interrupt Auto-Mask...upon reading ICR,
3712          * interrupts are masked.  No need for the
3713          * IMC write, but it does mean we should
3714          * account for it ASAP. */
3715         if (likely(hw->mac_type >= e1000_82571))
3716                 atomic_inc(&adapter->irq_sem);
3717 #endif
3718
3719         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3720                 hw->get_link_status = 1;
3721                 /* 80003ES2LAN workaround--
3722                  * For packet buffer work-around on link down event;
3723                  * disable receives here in the ISR and
3724                  * reset adapter in watchdog
3725                  */
3726                 if (netif_carrier_ok(netdev) &&
3727                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3728                         /* disable receives */
3729                         rctl = E1000_READ_REG(hw, RCTL);
3730                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3731                 }
3732                 /* guard against interrupt when we're going down */
3733                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3734                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3735         }
3736
3737 #ifdef CONFIG_E1000_NAPI
3738         if (unlikely(hw->mac_type < e1000_82571)) {
3739                 /* disable interrupts, without the synchronize_irq bit */
3740                 atomic_inc(&adapter->irq_sem);
3741                 E1000_WRITE_REG(hw, IMC, ~0);
3742                 E1000_WRITE_FLUSH(hw);
3743         }
3744         if (likely(netif_rx_schedule_prep(netdev))) {
3745                 adapter->total_tx_bytes = 0;
3746                 adapter->total_tx_packets = 0;
3747                 adapter->total_rx_bytes = 0;
3748                 adapter->total_rx_packets = 0;
3749                 __netif_rx_schedule(netdev);
3750         } else
3751                 /* this really should not happen! if it does it is basically a
3752                  * bug, but not a hard error, so enable ints and continue */
3753                 e1000_irq_enable(adapter);
3754 #else
3755         /* Writing IMC and IMS is needed for 82547.
3756          * Due to Hub Link bus being occupied, an interrupt
3757          * de-assertion message is not able to be sent.
3758          * When an interrupt assertion message is generated later,
3759          * two messages are re-ordered and sent out.
3760          * That causes APIC to think 82547 is in de-assertion
3761          * state, while 82547 is in assertion state, resulting
3762          * in dead lock. Writing IMC forces 82547 into
3763          * de-assertion state.
3764          */
3765         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3766                 atomic_inc(&adapter->irq_sem);
3767                 E1000_WRITE_REG(hw, IMC, ~0);
3768         }
3769
3770         adapter->total_tx_bytes = 0;
3771         adapter->total_rx_bytes = 0;
3772         adapter->total_tx_packets = 0;
3773         adapter->total_rx_packets = 0;
3774
3775         for (i = 0; i < E1000_MAX_INTR; i++)
3776                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3777                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3778                         break;
3779
3780         if (likely(adapter->itr_setting & 3))
3781                 e1000_set_itr(adapter);
3782
3783         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3784                 e1000_irq_enable(adapter);
3785
3786 #endif
3787         return IRQ_HANDLED;
3788 }
3789
3790 #ifdef CONFIG_E1000_NAPI
3791 /**
3792  * e1000_clean - NAPI Rx polling callback
3793  * @adapter: board private structure
3794  **/
3795
3796 static int
3797 e1000_clean(struct net_device *poll_dev, int *budget)
3798 {
3799         struct e1000_adapter *adapter;
3800         int work_to_do = min(*budget, poll_dev->quota);
3801         int tx_cleaned = 0, work_done = 0;
3802
3803         /* Must NOT use netdev_priv macro here. */
3804         adapter = poll_dev->priv;
3805
3806         /* Keep link state information with original netdev */
3807         if (!netif_carrier_ok(poll_dev))
3808                 goto quit_polling;
3809
3810         /* e1000_clean is called per-cpu.  This lock protects
3811          * tx_ring[0] from being cleaned by multiple cpus
3812          * simultaneously.  A failure obtaining the lock means
3813          * tx_ring[0] is currently being cleaned anyway. */
3814         if (spin_trylock(&adapter->tx_queue_lock)) {
3815                 tx_cleaned = e1000_clean_tx_irq(adapter,
3816                                                 &adapter->tx_ring[0]);
3817                 spin_unlock(&adapter->tx_queue_lock);
3818         }
3819
3820         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3821                           &work_done, work_to_do);
3822
3823         *budget -= work_done;
3824         poll_dev->quota -= work_done;
3825
3826         /* If no Tx and not enough Rx work done, exit the polling mode */
3827         if ((!tx_cleaned && (work_done == 0)) ||
3828            !netif_running(poll_dev)) {
3829 quit_polling:
3830                 if (likely(adapter->itr_setting & 3))
3831                         e1000_set_itr(adapter);
3832                 netif_rx_complete(poll_dev);
3833                 e1000_irq_enable(adapter);
3834                 return 0;
3835         }
3836
3837         return 1;
3838 }
3839
3840 #endif
3841 /**
3842  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843  * @adapter: board private structure
3844  **/
3845
3846 static boolean_t
3847 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3848                    struct e1000_tx_ring *tx_ring)
3849 {
3850         struct net_device *netdev = adapter->netdev;
3851         struct e1000_tx_desc *tx_desc, *eop_desc;
3852         struct e1000_buffer *buffer_info;
3853         unsigned int i, eop;
3854 #ifdef CONFIG_E1000_NAPI
3855         unsigned int count = 0;
3856 #endif
3857         boolean_t cleaned = FALSE;
3858         unsigned int total_tx_bytes=0, total_tx_packets=0;
3859
3860         i = tx_ring->next_to_clean;
3861         eop = tx_ring->buffer_info[i].next_to_watch;
3862         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3863
3864         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3865                 for (cleaned = FALSE; !cleaned; ) {
3866                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3867                         buffer_info = &tx_ring->buffer_info[i];
3868                         cleaned = (i == eop);
3869
3870                         if (cleaned) {
3871                                 /* this packet count is wrong for TSO but has a
3872                                  * tendency to make dynamic ITR change more
3873                                  * towards bulk */
3874                                 total_tx_packets++;
3875                                 total_tx_bytes += buffer_info->skb->len;
3876                         }
3877                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3878                         tx_desc->upper.data = 0;
3879
3880                         if (unlikely(++i == tx_ring->count)) i = 0;
3881                 }
3882
3883                 eop = tx_ring->buffer_info[i].next_to_watch;
3884                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3885 #ifdef CONFIG_E1000_NAPI
3886 #define E1000_TX_WEIGHT 64
3887                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3888                 if (count++ == E1000_TX_WEIGHT) break;
3889 #endif
3890         }
3891
3892         tx_ring->next_to_clean = i;
3893
3894 #define TX_WAKE_THRESHOLD 32
3895         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3896                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3897                 /* Make sure that anybody stopping the queue after this
3898                  * sees the new next_to_clean.
3899                  */
3900                 smp_mb();
3901                 if (netif_queue_stopped(netdev)) {
3902                         netif_wake_queue(netdev);
3903                         ++adapter->restart_queue;
3904                 }
3905         }
3906
3907         if (adapter->detect_tx_hung) {
3908                 /* Detect a transmit hang in hardware, this serializes the
3909                  * check with the clearing of time_stamp and movement of i */
3910                 adapter->detect_tx_hung = FALSE;
3911                 if (tx_ring->buffer_info[eop].dma &&
3912                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3913                                (adapter->tx_timeout_factor * HZ))
3914                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3915                          E1000_STATUS_TXOFF)) {
3916
3917                         /* detected Tx unit hang */
3918                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3919                                         "  Tx Queue             <%lu>\n"
3920                                         "  TDH                  <%x>\n"
3921                                         "  TDT                  <%x>\n"
3922                                         "  next_to_use          <%x>\n"
3923                                         "  next_to_clean        <%x>\n"
3924                                         "buffer_info[next_to_clean]\n"
3925                                         "  time_stamp           <%lx>\n"
3926                                         "  next_to_watch        <%x>\n"
3927                                         "  jiffies              <%lx>\n"
3928                                         "  next_to_watch.status <%x>\n",
3929                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3930                                         sizeof(struct e1000_tx_ring)),
3931                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3932                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3933                                 tx_ring->next_to_use,
3934                                 tx_ring->next_to_clean,
3935                                 tx_ring->buffer_info[eop].time_stamp,
3936                                 eop,
3937                                 jiffies,
3938                                 eop_desc->upper.fields.status);
3939                         netif_stop_queue(netdev);
3940                 }
3941         }
3942         adapter->total_tx_bytes += total_tx_bytes;
3943         adapter->total_tx_packets += total_tx_packets;
3944         return cleaned;
3945 }
3946
3947 /**
3948  * e1000_rx_checksum - Receive Checksum Offload for 82543
3949  * @adapter:     board private structure
3950  * @status_err:  receive descriptor status and error fields
3951  * @csum:        receive descriptor csum field
3952  * @sk_buff:     socket buffer with received data
3953  **/
3954
3955 static void
3956 e1000_rx_checksum(struct e1000_adapter *adapter,
3957                   uint32_t status_err, uint32_t csum,
3958                   struct sk_buff *skb)
3959 {
3960         uint16_t status = (uint16_t)status_err;
3961         uint8_t errors = (uint8_t)(status_err >> 24);
3962         skb->ip_summed = CHECKSUM_NONE;
3963
3964         /* 82543 or newer only */
3965         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3966         /* Ignore Checksum bit is set */
3967         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3968         /* TCP/UDP checksum error bit is set */
3969         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3970                 /* let the stack verify checksum errors */
3971                 adapter->hw_csum_err++;
3972                 return;
3973         }
3974         /* TCP/UDP Checksum has not been calculated */
3975         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3976                 if (!(status & E1000_RXD_STAT_TCPCS))
3977                         return;
3978         } else {
3979                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3980                         return;
3981         }
3982         /* It must be a TCP or UDP packet with a valid checksum */
3983         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3984                 /* TCP checksum is good */
3985                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3986         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3987                 /* IP fragment with UDP payload */
3988                 /* Hardware complements the payload checksum, so we undo it
3989                  * and then put the value in host order for further stack use.
3990                  */
3991                 csum = ntohl(csum ^ 0xFFFF);
3992                 skb->csum = csum;
3993                 skb->ip_summed = CHECKSUM_COMPLETE;
3994         }
3995         adapter->hw_csum_good++;
3996 }
3997
3998 /**
3999  * e1000_clean_rx_irq - Send received data up the network stack; legacy
4000  * @adapter: board private structure
4001  **/
4002
4003 static boolean_t
4004 #ifdef CONFIG_E1000_NAPI
4005 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4006                    struct e1000_rx_ring *rx_ring,
4007                    int *work_done, int work_to_do)
4008 #else
4009 e1000_clean_rx_irq(struct e1000_adapter *adapter,
4010                    struct e1000_rx_ring *rx_ring)
4011 #endif
4012 {
4013         struct net_device *netdev = adapter->netdev;
4014         struct pci_dev *pdev = adapter->pdev;
4015         struct e1000_rx_desc *rx_desc, *next_rxd;
4016         struct e1000_buffer *buffer_info, *next_buffer;
4017         unsigned long flags;
4018         uint32_t length;
4019         uint8_t last_byte;
4020         unsigned int i;
4021         int cleaned_count = 0;
4022         boolean_t cleaned = FALSE;
4023         unsigned int total_rx_bytes=0, total_rx_packets=0;
4024
4025         i = rx_ring->next_to_clean;
4026         rx_desc = E1000_RX_DESC(*rx_ring, i);
4027         buffer_info = &rx_ring->buffer_info[i];
4028
4029         while (rx_desc->status & E1000_RXD_STAT_DD) {
4030                 struct sk_buff *skb;
4031                 u8 status;
4032
4033 #ifdef CONFIG_E1000_NAPI
4034                 if (*work_done >= work_to_do)
4035                         break;
4036                 (*work_done)++;
4037 #endif
4038                 status = rx_desc->status;
4039                 skb = buffer_info->skb;
4040                 buffer_info->skb = NULL;
4041
4042                 prefetch(skb->data - NET_IP_ALIGN);
4043
4044                 if (++i == rx_ring->count) i = 0;
4045                 next_rxd = E1000_RX_DESC(*rx_ring, i);
4046                 prefetch(next_rxd);
4047
4048                 next_buffer = &rx_ring->buffer_info[i];
4049
4050                 cleaned = TRUE;
4051                 cleaned_count++;
4052                 pci_unmap_single(pdev,
4053                                  buffer_info->dma,
4054                                  buffer_info->length,
4055                                  PCI_DMA_FROMDEVICE);
4056
4057                 length = le16_to_cpu(rx_desc->length);
4058
4059                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4060                         /* All receives must fit into a single buffer */
4061                         E1000_DBG("%s: Receive packet consumed multiple"
4062                                   " buffers\n", netdev->name);
4063                         /* recycle */
4064                         buffer_info->skb = skb;
4065                         goto next_desc;
4066                 }
4067
4068                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4069                         last_byte = *(skb->data + length - 1);
4070                         if (TBI_ACCEPT(&adapter->hw, status,
4071                                       rx_desc->errors, length, last_byte)) {
4072                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4073                                 e1000_tbi_adjust_stats(&adapter->hw,
4074                                                        &adapter->stats,
4075                                                        length, skb->data);
4076                                 spin_unlock_irqrestore(&adapter->stats_lock,
4077                                                        flags);
4078                                 length--;
4079                         } else {
4080                                 /* recycle */
4081                                 buffer_info->skb = skb;
4082                                 goto next_desc;
4083                         }
4084                 }
4085
4086                 /* adjust length to remove Ethernet CRC, this must be
4087                  * done after the TBI_ACCEPT workaround above */
4088                 length -= 4;
4089
4090                 /* probably a little skewed due to removing CRC */
4091                 total_rx_bytes += length;
4092                 total_rx_packets++;
4093
4094                 /* code added for copybreak, this should improve
4095                  * performance for small packets with large amounts
4096                  * of reassembly being done in the stack */
4097 #define E1000_CB_LENGTH 256
4098                 if (length < E1000_CB_LENGTH) {
4099                         struct sk_buff *new_skb =
4100                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4101                         if (new_skb) {
4102                                 skb_reserve(new_skb, NET_IP_ALIGN);
4103                                 memcpy(new_skb->data - NET_IP_ALIGN,
4104                                        skb->data - NET_IP_ALIGN,
4105                                        length + NET_IP_ALIGN);
4106                                 /* save the skb in buffer_info as good */
4107                                 buffer_info->skb = skb;
4108                                 skb = new_skb;
4109                         }
4110                         /* else just continue with the old one */
4111                 }
4112                 /* end copybreak code */
4113                 skb_put(skb, length);
4114
4115                 /* Receive Checksum Offload */
4116                 e1000_rx_checksum(adapter,
4117                                   (uint32_t)(status) |
4118                                   ((uint32_t)(rx_desc->errors) << 24),
4119                                   le16_to_cpu(rx_desc->csum), skb);
4120
4121                 skb->protocol = eth_type_trans(skb, netdev);
4122 #ifdef CONFIG_E1000_NAPI
4123                 if (unlikely(adapter->vlgrp &&
4124                             (status & E1000_RXD_STAT_VP))) {
4125                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4126                                                  le16_to_cpu(rx_desc->special) &
4127                                                  E1000_RXD_SPC_VLAN_MASK);
4128                 } else {
4129                         netif_receive_skb(skb);
4130                 }
4131 #else /* CONFIG_E1000_NAPI */
4132                 if (unlikely(adapter->vlgrp &&
4133                             (status & E1000_RXD_STAT_VP))) {
4134                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4135                                         le16_to_cpu(rx_desc->special) &
4136                                         E1000_RXD_SPC_VLAN_MASK);
4137                 } else {
4138                         netif_rx(skb);
4139                 }
4140 #endif /* CONFIG_E1000_NAPI */
4141                 netdev->last_rx = jiffies;
4142
4143 next_desc:
4144                 rx_desc->status = 0;
4145
4146                 /* return some buffers to hardware, one at a time is too slow */
4147                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4148                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4149                         cleaned_count = 0;
4150                 }
4151
4152                 /* use prefetched values */
4153                 rx_desc = next_rxd;
4154                 buffer_info = next_buffer;
4155         }
4156         rx_ring->next_to_clean = i;
4157
4158         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4159         if (cleaned_count)
4160                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4161
4162         adapter->total_rx_packets += total_rx_packets;
4163         adapter->total_rx_bytes += total_rx_bytes;
4164         return cleaned;
4165 }
4166
4167 /**
4168  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
4169  * @adapter: board private structure
4170  **/
4171
4172 static boolean_t
4173 #ifdef CONFIG_E1000_NAPI
4174 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4175                       struct e1000_rx_ring *rx_ring,
4176                       int *work_done, int work_to_do)
4177 #else
4178 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
4179                       struct e1000_rx_ring *rx_ring)
4180 #endif
4181 {
4182         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
4183         struct net_device *netdev = adapter->netdev;
4184         struct pci_dev *pdev = adapter->pdev;
4185         struct e1000_buffer *buffer_info, *next_buffer;
4186         struct e1000_ps_page *ps_page;
4187         struct e1000_ps_page_dma *ps_page_dma;
4188         struct sk_buff *skb;
4189         unsigned int i, j;
4190         uint32_t length, staterr;
4191         int cleaned_count = 0;
4192         boolean_t cleaned = FALSE;
4193         unsigned int total_rx_bytes=0, total_rx_packets=0;
4194
4195         i = rx_ring->next_to_clean;
4196         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4197         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4198         buffer_info = &rx_ring->buffer_info[i];
4199
4200         while (staterr & E1000_RXD_STAT_DD) {
4201                 ps_page = &rx_ring->ps_page[i];
4202                 ps_page_dma = &rx_ring->ps_page_dma[i];
4203 #ifdef CONFIG_E1000_NAPI
4204                 if (unlikely(*work_done >= work_to_do))
4205                         break;
4206                 (*work_done)++;
4207 #endif
4208                 skb = buffer_info->skb;
4209
4210                 /* in the packet split case this is header only */
4211                 prefetch(skb->data - NET_IP_ALIGN);
4212
4213                 if (++i == rx_ring->count) i = 0;
4214                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
4215                 prefetch(next_rxd);
4216
4217                 next_buffer = &rx_ring->buffer_info[i];
4218
4219                 cleaned = TRUE;
4220                 cleaned_count++;
4221                 pci_unmap_single(pdev, buffer_info->dma,
4222                                  buffer_info->length,
4223                                  PCI_DMA_FROMDEVICE);
4224
4225                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
4226                         E1000_DBG("%s: Packet Split buffers didn't pick up"
4227                                   " the full packet\n", netdev->name);
4228                         dev_kfree_skb_irq(skb);
4229                         goto next_desc;
4230                 }
4231
4232                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
4233                         dev_kfree_skb_irq(skb);
4234                         goto next_desc;
4235                 }
4236
4237                 length = le16_to_cpu(rx_desc->wb.middle.length0);
4238
4239                 if (unlikely(!length)) {
4240                         E1000_DBG("%s: Last part of the packet spanning"
4241                                   " multiple descriptors\n", netdev->name);
4242                         dev_kfree_skb_irq(skb);
4243                         goto next_desc;
4244                 }
4245
4246                 /* Good Receive */
4247                 skb_put(skb, length);
4248
4249                 {
4250                 /* this looks ugly, but it seems compiler issues make it
4251                    more efficient than reusing j */
4252                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
4253
4254                 /* page alloc/put takes too long and effects small packet
4255                  * throughput, so unsplit small packets and save the alloc/put*/
4256                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
4257                         u8 *vaddr;
4258                         /* there is no documentation about how to call
4259                          * kmap_atomic, so we can't hold the mapping
4260                          * very long */
4261                         pci_dma_sync_single_for_cpu(pdev,
4262                                 ps_page_dma->ps_page_dma[0],
4263                                 PAGE_SIZE,
4264                                 PCI_DMA_FROMDEVICE);
4265                         vaddr = kmap_atomic(ps_page->ps_page[0],
4266                                             KM_SKB_DATA_SOFTIRQ);
4267                         memcpy(skb->tail, vaddr, l1);
4268                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
4269                         pci_dma_sync_single_for_device(pdev,
4270                                 ps_page_dma->ps_page_dma[0],
4271                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4272                         /* remove the CRC */
4273                         l1 -= 4;
4274                         skb_put(skb, l1);
4275                         goto copydone;
4276                 } /* if */
4277                 }
4278
4279                 for (j = 0; j < adapter->rx_ps_pages; j++) {
4280                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4281                                 break;
4282                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4283                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
4284                         ps_page_dma->ps_page_dma[j] = 0;
4285                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4286                                            length);
4287                         ps_page->ps_page[j] = NULL;
4288                         skb->len += length;
4289                         skb->data_len += length;
4290                         skb->truesize += length;
4291                 }
4292
4293                 /* strip the ethernet crc, problem is we're using pages now so
4294                  * this whole operation can get a little cpu intensive */
4295                 pskb_trim(skb, skb->len - 4);
4296
4297 copydone:
4298                 total_rx_bytes += skb->len;
4299                 total_rx_packets++;
4300
4301                 e1000_rx_checksum(adapter, staterr,
4302                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4303                 skb->protocol = eth_type_trans(skb, netdev);
4304
4305                 if (likely(rx_desc->wb.upper.header_status &
4306                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4307                         adapter->rx_hdr_split++;
4308 #ifdef CONFIG_E1000_NAPI
4309                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4310                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4311                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4312                                 E1000_RXD_SPC_VLAN_MASK);
4313                 } else {
4314                         netif_receive_skb(skb);
4315                 }
4316 #else /* CONFIG_E1000_NAPI */
4317                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4318                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4319                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4320                                 E1000_RXD_SPC_VLAN_MASK);
4321                 } else {
4322                         netif_rx(skb);
4323                 }
4324 #endif /* CONFIG_E1000_NAPI */
4325                 netdev->last_rx = jiffies;
4326
4327 next_desc:
4328                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4329                 buffer_info->skb = NULL;
4330
4331                 /* return some buffers to hardware, one at a time is too slow */
4332                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4333                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4334                         cleaned_count = 0;
4335                 }
4336
4337                 /* use prefetched values */
4338                 rx_desc = next_rxd;
4339                 buffer_info = next_buffer;
4340
4341                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4342         }
4343         rx_ring->next_to_clean = i;
4344
4345         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4346         if (cleaned_count)
4347                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4348
4349         adapter->total_rx_packets += total_rx_packets;
4350         adapter->total_rx_bytes += total_rx_bytes;
4351         return cleaned;
4352 }
4353
4354 /**
4355  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4356  * @adapter: address of board private structure
4357  **/
4358
4359 static void
4360 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4361                        struct e1000_rx_ring *rx_ring,
4362                        int cleaned_count)
4363 {
4364         struct net_device *netdev = adapter->netdev;
4365         struct pci_dev *pdev = adapter->pdev;
4366         struct e1000_rx_desc *rx_desc;
4367         struct e1000_buffer *buffer_info;
4368         struct sk_buff *skb;
4369         unsigned int i;
4370         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4371
4372         i = rx_ring->next_to_use;
4373         buffer_info = &rx_ring->buffer_info[i];
4374
4375         while (cleaned_count--) {
4376                 skb = buffer_info->skb;
4377                 if (skb) {
4378                         skb_trim(skb, 0);
4379                         goto map_skb;
4380                 }
4381
4382                 skb = netdev_alloc_skb(netdev, bufsz);
4383                 if (unlikely(!skb)) {
4384                         /* Better luck next round */
4385                         adapter->alloc_rx_buff_failed++;
4386                         break;
4387                 }
4388
4389                 /* Fix for errata 23, can't cross 64kB boundary */
4390                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4391                         struct sk_buff *oldskb = skb;
4392                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4393                                              "at %p\n", bufsz, skb->data);
4394                         /* Try again, without freeing the previous */
4395                         skb = netdev_alloc_skb(netdev, bufsz);
4396                         /* Failed allocation, critical failure */
4397                         if (!skb) {
4398                                 dev_kfree_skb(oldskb);
4399                                 break;
4400                         }
4401
4402                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4403                                 /* give up */
4404                                 dev_kfree_skb(skb);
4405                                 dev_kfree_skb(oldskb);
4406                                 break; /* while !buffer_info->skb */
4407                         }
4408
4409                         /* Use new allocation */
4410                         dev_kfree_skb(oldskb);
4411                 }
4412                 /* Make buffer alignment 2 beyond a 16 byte boundary
4413                  * this will result in a 16 byte aligned IP header after
4414                  * the 14 byte MAC header is removed
4415                  */
4416                 skb_reserve(skb, NET_IP_ALIGN);
4417
4418                 buffer_info->skb = skb;
4419                 buffer_info->length = adapter->rx_buffer_len;
4420 map_skb:
4421                 buffer_info->dma = pci_map_single(pdev,
4422                                                   skb->data,
4423                                                   adapter->rx_buffer_len,
4424                                                   PCI_DMA_FROMDEVICE);
4425
4426                 /* Fix for errata 23, can't cross 64kB boundary */
4427                 if (!e1000_check_64k_bound(adapter,
4428                                         (void *)(unsigned long)buffer_info->dma,
4429                                         adapter->rx_buffer_len)) {
4430                         DPRINTK(RX_ERR, ERR,
4431                                 "dma align check failed: %u bytes at %p\n",
4432                                 adapter->rx_buffer_len,
4433                                 (void *)(unsigned long)buffer_info->dma);
4434                         dev_kfree_skb(skb);
4435                         buffer_info->skb = NULL;
4436
4437                         pci_unmap_single(pdev, buffer_info->dma,
4438                                          adapter->rx_buffer_len,
4439                                          PCI_DMA_FROMDEVICE);
4440
4441                         break; /* while !buffer_info->skb */
4442                 }
4443                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4444                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4445
4446                 if (unlikely(++i == rx_ring->count))
4447                         i = 0;
4448                 buffer_info = &rx_ring->buffer_info[i];
4449         }
4450
4451         if (likely(rx_ring->next_to_use != i)) {
4452                 rx_ring->next_to_use = i;
4453                 if (unlikely(i-- == 0))
4454                         i = (rx_ring->count - 1);
4455
4456                 /* Force memory writes to complete before letting h/w
4457                  * know there are new descriptors to fetch.  (Only
4458                  * applicable for weak-ordered memory model archs,
4459                  * such as IA-64). */
4460                 wmb();
4461                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4462         }
4463 }
4464
4465 /**
4466  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4467  * @adapter: address of board private structure
4468  **/
4469
4470 static void
4471 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4472                           struct e1000_rx_ring *rx_ring,
4473                           int cleaned_count)
4474 {
4475         struct net_device *netdev = adapter->netdev;
4476         struct pci_dev *pdev = adapter->pdev;
4477         union e1000_rx_desc_packet_split *rx_desc;
4478         struct e1000_buffer *buffer_info;
4479         struct e1000_ps_page *ps_page;
4480         struct e1000_ps_page_dma *ps_page_dma;
4481         struct sk_buff *skb;
4482         unsigned int i, j;
4483
4484         i = rx_ring->next_to_use;
4485         buffer_info = &rx_ring->buffer_info[i];
4486         ps_page = &rx_ring->ps_page[i];
4487         ps_page_dma = &rx_ring->ps_page_dma[i];
4488
4489         while (cleaned_count--) {
4490                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4491
4492                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4493                         if (j < adapter->rx_ps_pages) {
4494                                 if (likely(!ps_page->ps_page[j])) {
4495                                         ps_page->ps_page[j] =
4496                                                 alloc_page(GFP_ATOMIC);
4497                                         if (unlikely(!ps_page->ps_page[j])) {
4498                                                 adapter->alloc_rx_buff_failed++;
4499                                                 goto no_buffers;
4500                                         }
4501                                         ps_page_dma->ps_page_dma[j] =
4502                                                 pci_map_page(pdev,
4503                                                             ps_page->ps_page[j],
4504                                                             0, PAGE_SIZE,
4505                                                             PCI_DMA_FROMDEVICE);
4506                                 }
4507                                 /* Refresh the desc even if buffer_addrs didn't
4508                                  * change because each write-back erases
4509                                  * this info.
4510                                  */
4511                                 rx_desc->read.buffer_addr[j+1] =
4512                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4513                         } else
4514                                 rx_desc->read.buffer_addr[j+1] = ~0;
4515                 }
4516
4517                 skb = netdev_alloc_skb(netdev,
4518                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4519
4520                 if (unlikely(!skb)) {
4521                         adapter->alloc_rx_buff_failed++;
4522                         break;
4523                 }
4524
4525                 /* Make buffer alignment 2 beyond a 16 byte boundary
4526                  * this will result in a 16 byte aligned IP header after
4527                  * the 14 byte MAC header is removed
4528                  */
4529                 skb_reserve(skb, NET_IP_ALIGN);
4530
4531                 buffer_info->skb = skb;
4532                 buffer_info->length = adapter->rx_ps_bsize0;
4533                 buffer_info->dma = pci_map_single(pdev, skb->data,
4534                                                   adapter->rx_ps_bsize0,
4535                                                   PCI_DMA_FROMDEVICE);
4536
4537                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4538
4539                 if (unlikely(++i == rx_ring->count)) i = 0;
4540                 buffer_info = &rx_ring->buffer_info[i];
4541                 ps_page = &rx_ring->ps_page[i];
4542                 ps_page_dma = &rx_ring->ps_page_dma[i];
4543         }
4544
4545 no_buffers:
4546         if (likely(rx_ring->next_to_use != i)) {
4547                 rx_ring->next_to_use = i;
4548                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4549
4550                 /* Force memory writes to complete before letting h/w
4551                  * know there are new descriptors to fetch.  (Only
4552                  * applicable for weak-ordered memory model archs,
4553                  * such as IA-64). */
4554                 wmb();
4555                 /* Hardware increments by 16 bytes, but packet split
4556                  * descriptors are 32 bytes...so we increment tail
4557                  * twice as much.
4558                  */
4559                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4560         }
4561 }
4562
4563 /**
4564  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4565  * @adapter:
4566  **/
4567
4568 static void
4569 e1000_smartspeed(struct e1000_adapter *adapter)
4570 {
4571         uint16_t phy_status;
4572         uint16_t phy_ctrl;
4573
4574         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4575            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4576                 return;
4577
4578         if (adapter->smartspeed == 0) {
4579                 /* If Master/Slave config fault is asserted twice,
4580                  * we assume back-to-back */
4581                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4582                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4583                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4584                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4585                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4586                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4587                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4588                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4589                                             phy_ctrl);
4590                         adapter->smartspeed++;
4591                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4592                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4593                                                &phy_ctrl)) {
4594                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4595                                              MII_CR_RESTART_AUTO_NEG);
4596                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4597                                                     phy_ctrl);
4598                         }
4599                 }
4600                 return;
4601         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4602                 /* If still no link, perhaps using 2/3 pair cable */
4603                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4604                 phy_ctrl |= CR_1000T_MS_ENABLE;
4605                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4606                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4607                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4608                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4609                                      MII_CR_RESTART_AUTO_NEG);
4610                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4611                 }
4612         }
4613         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4614         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4615                 adapter->smartspeed = 0;
4616 }
4617
4618 /**
4619  * e1000_ioctl -
4620  * @netdev:
4621  * @ifreq:
4622  * @cmd:
4623  **/
4624
4625 static int
4626 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4627 {
4628         switch (cmd) {
4629         case SIOCGMIIPHY:
4630         case SIOCGMIIREG:
4631         case SIOCSMIIREG:
4632                 return e1000_mii_ioctl(netdev, ifr, cmd);
4633         default:
4634                 return -EOPNOTSUPP;
4635         }
4636 }
4637
4638 /**
4639  * e1000_mii_ioctl -
4640  * @netdev:
4641  * @ifreq:
4642  * @cmd:
4643  **/
4644
4645 static int
4646 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4647 {
4648         struct e1000_adapter *adapter = netdev_priv(netdev);
4649         struct mii_ioctl_data *data = if_mii(ifr);
4650         int retval;
4651         uint16_t mii_reg;
4652         uint16_t spddplx;
4653         unsigned long flags;
4654
4655         if (adapter->hw.media_type != e1000_media_type_copper)
4656                 return -EOPNOTSUPP;
4657
4658         switch (cmd) {
4659         case SIOCGMIIPHY:
4660                 data->phy_id = adapter->hw.phy_addr;
4661                 break;
4662         case SIOCGMIIREG:
4663                 if (!capable(CAP_NET_ADMIN))
4664                         return -EPERM;
4665                 spin_lock_irqsave(&adapter->stats_lock, flags);
4666                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4667                                    &data->val_out)) {
4668                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4669                         return -EIO;
4670                 }
4671                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4672                 break;
4673         case SIOCSMIIREG:
4674                 if (!capable(CAP_NET_ADMIN))
4675                         return -EPERM;
4676                 if (data->reg_num & ~(0x1F))
4677                         return -EFAULT;
4678                 mii_reg = data->val_in;
4679                 spin_lock_irqsave(&adapter->stats_lock, flags);
4680                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4681                                         mii_reg)) {
4682                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4683                         return -EIO;
4684                 }
4685                 if (adapter->hw.media_type == e1000_media_type_copper) {
4686                         switch (data->reg_num) {
4687                         case PHY_CTRL:
4688                                 if (mii_reg & MII_CR_POWER_DOWN)
4689                                         break;
4690                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4691                                         adapter->hw.autoneg = 1;
4692                                         adapter->hw.autoneg_advertised = 0x2F;
4693                                 } else {
4694                                         if (mii_reg & 0x40)
4695                                                 spddplx = SPEED_1000;
4696                                         else if (mii_reg & 0x2000)
4697                                                 spddplx = SPEED_100;
4698                                         else
4699                                                 spddplx = SPEED_10;
4700                                         spddplx += (mii_reg & 0x100)
4701                                                    ? DUPLEX_FULL :
4702                                                    DUPLEX_HALF;
4703                                         retval = e1000_set_spd_dplx(adapter,
4704                                                                     spddplx);
4705                                         if (retval) {
4706                                                 spin_unlock_irqrestore(
4707                                                         &adapter->stats_lock,
4708                                                         flags);
4709                                                 return retval;
4710                                         }
4711                                 }
4712                                 if (netif_running(adapter->netdev))
4713                                         e1000_reinit_locked(adapter);
4714                                 else
4715                                         e1000_reset(adapter);
4716                                 break;
4717                         case M88E1000_PHY_SPEC_CTRL:
4718                         case M88E1000_EXT_PHY_SPEC_CTRL:
4719                                 if (e1000_phy_reset(&adapter->hw)) {
4720                                         spin_unlock_irqrestore(
4721                                                 &adapter->stats_lock, flags);
4722                                         return -EIO;
4723                                 }
4724                                 break;
4725                         }
4726                 } else {
4727                         switch (data->reg_num) {
4728                         case PHY_CTRL:
4729                                 if (mii_reg & MII_CR_POWER_DOWN)
4730                                         break;
4731                                 if (netif_running(adapter->netdev))
4732                                         e1000_reinit_locked(adapter);
4733                                 else
4734                                         e1000_reset(adapter);
4735                                 break;
4736                         }
4737                 }
4738                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4739                 break;
4740         default:
4741                 return -EOPNOTSUPP;
4742         }
4743         return E1000_SUCCESS;
4744 }
4745
4746 void
4747 e1000_pci_set_mwi(struct e1000_hw *hw)
4748 {
4749         struct e1000_adapter *adapter = hw->back;
4750         int ret_val = pci_set_mwi(adapter->pdev);
4751
4752         if (ret_val)
4753                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4754 }
4755
4756 void
4757 e1000_pci_clear_mwi(struct e1000_hw *hw)
4758 {
4759         struct e1000_adapter *adapter = hw->back;
4760
4761         pci_clear_mwi(adapter->pdev);
4762 }
4763
4764 void
4765 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4766 {
4767         struct e1000_adapter *adapter = hw->back;
4768
4769         pci_read_config_word(adapter->pdev, reg, value);
4770 }
4771
4772 void
4773 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4774 {
4775         struct e1000_adapter *adapter = hw->back;
4776
4777         pci_write_config_word(adapter->pdev, reg, *value);
4778 }
4779
4780 int32_t
4781 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4782 {
4783     struct e1000_adapter *adapter = hw->back;
4784     uint16_t cap_offset;
4785
4786     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4787     if (!cap_offset)
4788         return -E1000_ERR_CONFIG;
4789
4790     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4791
4792     return E1000_SUCCESS;
4793 }
4794
4795 void
4796 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4797 {
4798         outl(value, port);
4799 }
4800
4801 static void
4802 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4803 {
4804         struct e1000_adapter *adapter = netdev_priv(netdev);
4805         uint32_t ctrl, rctl;
4806
4807         e1000_irq_disable(adapter);
4808         adapter->vlgrp = grp;
4809
4810         if (grp) {
4811                 /* enable VLAN tag insert/strip */
4812                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4813                 ctrl |= E1000_CTRL_VME;
4814                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4815
4816                 if (adapter->hw.mac_type != e1000_ich8lan) {
4817                         /* enable VLAN receive filtering */
4818                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4819                         rctl |= E1000_RCTL_VFE;
4820                         rctl &= ~E1000_RCTL_CFIEN;
4821                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4822                         e1000_update_mng_vlan(adapter);
4823                 }
4824         } else {
4825                 /* disable VLAN tag insert/strip */
4826                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4827                 ctrl &= ~E1000_CTRL_VME;
4828                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4829
4830                 if (adapter->hw.mac_type != e1000_ich8lan) {
4831                         /* disable VLAN filtering */
4832                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4833                         rctl &= ~E1000_RCTL_VFE;
4834                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4835                         if (adapter->mng_vlan_id !=
4836                             (uint16_t)E1000_MNG_VLAN_NONE) {
4837                                 e1000_vlan_rx_kill_vid(netdev,
4838                                                        adapter->mng_vlan_id);
4839                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4840                         }
4841                 }
4842         }
4843
4844         e1000_irq_enable(adapter);
4845 }
4846
4847 static void
4848 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4849 {
4850         struct e1000_adapter *adapter = netdev_priv(netdev);
4851         uint32_t vfta, index;
4852
4853         if ((adapter->hw.mng_cookie.status &
4854              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4855             (vid == adapter->mng_vlan_id))
4856                 return;
4857         /* add VID to filter table */
4858         index = (vid >> 5) & 0x7F;
4859         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4860         vfta |= (1 << (vid & 0x1F));
4861         e1000_write_vfta(&adapter->hw, index, vfta);
4862 }
4863
4864 static void
4865 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4866 {
4867         struct e1000_adapter *adapter = netdev_priv(netdev);
4868         uint32_t vfta, index;
4869
4870         e1000_irq_disable(adapter);
4871
4872         if (adapter->vlgrp)
4873                 adapter->vlgrp->vlan_devices[vid] = NULL;
4874
4875         e1000_irq_enable(adapter);
4876
4877         if ((adapter->hw.mng_cookie.status &
4878              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4879             (vid == adapter->mng_vlan_id)) {
4880                 /* release control to f/w */
4881                 e1000_release_hw_control(adapter);
4882                 return;
4883         }
4884
4885         /* remove VID from filter table */
4886         index = (vid >> 5) & 0x7F;
4887         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4888         vfta &= ~(1 << (vid & 0x1F));
4889         e1000_write_vfta(&adapter->hw, index, vfta);
4890 }
4891
4892 static void
4893 e1000_restore_vlan(struct e1000_adapter *adapter)
4894 {
4895         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4896
4897         if (adapter->vlgrp) {
4898                 uint16_t vid;
4899                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4900                         if (!adapter->vlgrp->vlan_devices[vid])
4901                                 continue;
4902                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4903                 }
4904         }
4905 }
4906
4907 int
4908 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4909 {
4910         adapter->hw.autoneg = 0;
4911
4912         /* Fiber NICs only allow 1000 gbps Full duplex */
4913         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4914                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4915                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4916                 return -EINVAL;
4917         }
4918
4919         switch (spddplx) {
4920         case SPEED_10 + DUPLEX_HALF:
4921                 adapter->hw.forced_speed_duplex = e1000_10_half;
4922                 break;
4923         case SPEED_10 + DUPLEX_FULL:
4924                 adapter->hw.forced_speed_duplex = e1000_10_full;
4925                 break;
4926         case SPEED_100 + DUPLEX_HALF:
4927                 adapter->hw.forced_speed_duplex = e1000_100_half;
4928                 break;
4929         case SPEED_100 + DUPLEX_FULL:
4930                 adapter->hw.forced_speed_duplex = e1000_100_full;
4931                 break;
4932         case SPEED_1000 + DUPLEX_FULL:
4933                 adapter->hw.autoneg = 1;
4934                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4935                 break;
4936         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4937         default:
4938                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4939                 return -EINVAL;
4940         }
4941         return 0;
4942 }
4943
4944 #ifdef CONFIG_PM
4945 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4946  * bus we're on (PCI(X) vs. PCI-E)
4947  */
4948 #define PCIE_CONFIG_SPACE_LEN 256
4949 #define PCI_CONFIG_SPACE_LEN 64
4950 static int
4951 e1000_pci_save_state(struct e1000_adapter *adapter)
4952 {
4953         struct pci_dev *dev = adapter->pdev;
4954         int size;
4955         int i;
4956
4957         if (adapter->hw.mac_type >= e1000_82571)
4958                 size = PCIE_CONFIG_SPACE_LEN;
4959         else
4960                 size = PCI_CONFIG_SPACE_LEN;
4961
4962         WARN_ON(adapter->config_space != NULL);
4963
4964         adapter->config_space = kmalloc(size, GFP_KERNEL);
4965         if (!adapter->config_space) {
4966                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4967                 return -ENOMEM;
4968         }
4969         for (i = 0; i < (size / 4); i++)
4970                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4971         return 0;
4972 }
4973
4974 static void
4975 e1000_pci_restore_state(struct e1000_adapter *adapter)
4976 {
4977         struct pci_dev *dev = adapter->pdev;
4978         int size;
4979         int i;
4980
4981         if (adapter->config_space == NULL)
4982                 return;
4983
4984         if (adapter->hw.mac_type >= e1000_82571)
4985                 size = PCIE_CONFIG_SPACE_LEN;
4986         else
4987                 size = PCI_CONFIG_SPACE_LEN;
4988         for (i = 0; i < (size / 4); i++)
4989                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4990         kfree(adapter->config_space);
4991         adapter->config_space = NULL;
4992         return;
4993 }
4994 #endif /* CONFIG_PM */
4995
4996 static int
4997 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4998 {
4999         struct net_device *netdev = pci_get_drvdata(pdev);
5000         struct e1000_adapter *adapter = netdev_priv(netdev);
5001         uint32_t ctrl, ctrl_ext, rctl, manc, status;
5002         uint32_t wufc = adapter->wol;
5003 #ifdef CONFIG_PM
5004         int retval = 0;
5005 #endif
5006
5007         netif_device_detach(netdev);
5008
5009         if (netif_running(netdev)) {
5010                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5011                 e1000_down(adapter);
5012         }
5013
5014 #ifdef CONFIG_PM
5015         /* Implement our own version of pci_save_state(pdev) because pci-
5016          * express adapters have 256-byte config spaces. */
5017         retval = e1000_pci_save_state(adapter);
5018         if (retval)
5019                 return retval;
5020 #endif
5021
5022         status = E1000_READ_REG(&adapter->hw, STATUS);
5023         if (status & E1000_STATUS_LU)
5024                 wufc &= ~E1000_WUFC_LNKC;
5025
5026         if (wufc) {
5027                 e1000_setup_rctl(adapter);
5028                 e1000_set_multi(netdev);
5029
5030                 /* turn on all-multi mode if wake on multicast is enabled */
5031                 if (wufc & E1000_WUFC_MC) {
5032                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
5033                         rctl |= E1000_RCTL_MPE;
5034                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
5035                 }
5036
5037                 if (adapter->hw.mac_type >= e1000_82540) {
5038                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
5039                         /* advertise wake from D3Cold */
5040                         #define E1000_CTRL_ADVD3WUC 0x00100000
5041                         /* phy power management enable */
5042                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5043                         ctrl |= E1000_CTRL_ADVD3WUC |
5044                                 E1000_CTRL_EN_PHY_PWR_MGMT;
5045                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
5046                 }
5047
5048                 if (adapter->hw.media_type == e1000_media_type_fiber ||
5049                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
5050                         /* keep the laser running in D3 */
5051                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
5052                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5053                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
5054                 }
5055
5056                 /* Allow time for pending master requests to run */
5057                 e1000_disable_pciex_master(&adapter->hw);
5058
5059                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
5060                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
5061                 pci_enable_wake(pdev, PCI_D3hot, 1);
5062                 pci_enable_wake(pdev, PCI_D3cold, 1);
5063         } else {
5064                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
5065                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
5066                 pci_enable_wake(pdev, PCI_D3hot, 0);
5067                 pci_enable_wake(pdev, PCI_D3cold, 0);
5068         }
5069
5070         if (adapter->hw.mac_type >= e1000_82540 &&
5071             adapter->hw.mac_type < e1000_82571 &&
5072             adapter->hw.media_type == e1000_media_type_copper) {
5073                 manc = E1000_READ_REG(&adapter->hw, MANC);
5074                 if (manc & E1000_MANC_SMBUS_EN) {
5075                         manc |= E1000_MANC_ARP_EN;
5076                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
5077                         pci_enable_wake(pdev, PCI_D3hot, 1);
5078                         pci_enable_wake(pdev, PCI_D3cold, 1);
5079                 }
5080         }
5081
5082         if (adapter->hw.phy_type == e1000_phy_igp_3)
5083                 e1000_phy_powerdown_workaround(&adapter->hw);
5084
5085         if (netif_running(netdev))
5086                 e1000_free_irq(adapter);
5087
5088         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
5089          * would have already happened in close and is redundant. */
5090         e1000_release_hw_control(adapter);
5091
5092         pci_disable_device(pdev);
5093
5094         pci_set_power_state(pdev, pci_choose_state(pdev, state));
5095
5096         return 0;
5097 }
5098
5099 #ifdef CONFIG_PM
5100 static int
5101 e1000_resume(struct pci_dev *pdev)
5102 {
5103         struct net_device *netdev = pci_get_drvdata(pdev);
5104         struct e1000_adapter *adapter = netdev_priv(netdev);
5105         uint32_t manc, err;
5106
5107         pci_set_power_state(pdev, PCI_D0);
5108         e1000_pci_restore_state(adapter);
5109         if ((err = pci_enable_device(pdev))) {
5110                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
5111                 return err;
5112         }
5113         pci_set_master(pdev);
5114
5115         pci_enable_wake(pdev, PCI_D3hot, 0);
5116         pci_enable_wake(pdev, PCI_D3cold, 0);
5117
5118         if (netif_running(netdev) && (err = e1000_request_irq(adapter)))
5119                 return err;
5120
5121         e1000_power_up_phy(adapter);
5122         e1000_reset(adapter);
5123         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5124
5125         if (netif_running(netdev))
5126                 e1000_up(adapter);
5127
5128         netif_device_attach(netdev);
5129
5130         if (adapter->hw.mac_type >= e1000_82540 &&
5131             adapter->hw.mac_type < e1000_82571 &&
5132             adapter->hw.media_type == e1000_media_type_copper) {
5133                 manc = E1000_READ_REG(&adapter->hw, MANC);
5134                 manc &= ~(E1000_MANC_ARP_EN);
5135                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5136         }
5137
5138         /* If the controller is 82573 and f/w is AMT, do not set
5139          * DRV_LOAD until the interface is up.  For all other cases,
5140          * let the f/w know that the h/w is now under the control
5141          * of the driver. */
5142         if (adapter->hw.mac_type != e1000_82573 ||
5143             !e1000_check_mng_mode(&adapter->hw))
5144                 e1000_get_hw_control(adapter);
5145
5146         return 0;
5147 }
5148 #endif
5149
5150 static void e1000_shutdown(struct pci_dev *pdev)
5151 {
5152         e1000_suspend(pdev, PMSG_SUSPEND);
5153 }
5154
5155 #ifdef CONFIG_NET_POLL_CONTROLLER
5156 /*
5157  * Polling 'interrupt' - used by things like netconsole to send skbs
5158  * without having to re-enable interrupts. It's not called while
5159  * the interrupt routine is executing.
5160  */
5161 static void
5162 e1000_netpoll(struct net_device *netdev)
5163 {
5164         struct e1000_adapter *adapter = netdev_priv(netdev);
5165
5166         disable_irq(adapter->pdev->irq);
5167         e1000_intr(adapter->pdev->irq, netdev);
5168         e1000_clean_tx_irq(adapter, adapter->tx_ring);
5169 #ifndef CONFIG_E1000_NAPI
5170         adapter->clean_rx(adapter, adapter->rx_ring);
5171 #endif
5172         enable_irq(adapter->pdev->irq);
5173 }
5174 #endif
5175
5176 /**
5177  * e1000_io_error_detected - called when PCI error is detected
5178  * @pdev: Pointer to PCI device
5179  * @state: The current pci conneection state
5180  *
5181  * This function is called after a PCI bus error affecting
5182  * this device has been detected.
5183  */
5184 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
5185 {
5186         struct net_device *netdev = pci_get_drvdata(pdev);
5187         struct e1000_adapter *adapter = netdev->priv;
5188
5189         netif_device_detach(netdev);
5190
5191         if (netif_running(netdev))
5192                 e1000_down(adapter);
5193         pci_disable_device(pdev);
5194
5195         /* Request a slot slot reset. */
5196         return PCI_ERS_RESULT_NEED_RESET;
5197 }
5198
5199 /**
5200  * e1000_io_slot_reset - called after the pci bus has been reset.
5201  * @pdev: Pointer to PCI device
5202  *
5203  * Restart the card from scratch, as if from a cold-boot. Implementation
5204  * resembles the first-half of the e1000_resume routine.
5205  */
5206 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5207 {
5208         struct net_device *netdev = pci_get_drvdata(pdev);
5209         struct e1000_adapter *adapter = netdev->priv;
5210
5211         if (pci_enable_device(pdev)) {
5212                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
5213                 return PCI_ERS_RESULT_DISCONNECT;
5214         }
5215         pci_set_master(pdev);
5216
5217         pci_enable_wake(pdev, PCI_D3hot, 0);
5218         pci_enable_wake(pdev, PCI_D3cold, 0);
5219
5220         e1000_reset(adapter);
5221         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
5222
5223         return PCI_ERS_RESULT_RECOVERED;
5224 }
5225
5226 /**
5227  * e1000_io_resume - called when traffic can start flowing again.
5228  * @pdev: Pointer to PCI device
5229  *
5230  * This callback is called when the error recovery driver tells us that
5231  * its OK to resume normal operation. Implementation resembles the
5232  * second-half of the e1000_resume routine.
5233  */
5234 static void e1000_io_resume(struct pci_dev *pdev)
5235 {
5236         struct net_device *netdev = pci_get_drvdata(pdev);
5237         struct e1000_adapter *adapter = netdev->priv;
5238         uint32_t manc, swsm;
5239
5240         if (netif_running(netdev)) {
5241                 if (e1000_up(adapter)) {
5242                         printk("e1000: can't bring device back up after reset\n");
5243                         return;
5244                 }
5245         }
5246
5247         netif_device_attach(netdev);
5248
5249         if (adapter->hw.mac_type >= e1000_82540 &&
5250             adapter->hw.mac_type < e1000_82571 &&
5251             adapter->hw.media_type == e1000_media_type_copper) {
5252                 manc = E1000_READ_REG(&adapter->hw, MANC);
5253                 manc &= ~(E1000_MANC_ARP_EN);
5254                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
5255         }
5256
5257         switch (adapter->hw.mac_type) {
5258         case e1000_82573:
5259                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
5260                 E1000_WRITE_REG(&adapter->hw, SWSM,
5261                                 swsm | E1000_SWSM_DRV_LOAD);
5262                 break;
5263         default:
5264                 break;
5265         }
5266
5267         if (netif_running(netdev))
5268                 mod_timer(&adapter->watchdog_timer, jiffies);
5269 }
5270
5271 /* e1000_main.c */