Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[linux-drm-fsl-dcu.git] / drivers / net / cxgb4 / cxgb4_main.c
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if_vlan.h>
45 #include <linux/init.h>
46 #include <linux/log2.h>
47 #include <linux/mdio.h>
48 #include <linux/module.h>
49 #include <linux/moduleparam.h>
50 #include <linux/mutex.h>
51 #include <linux/netdevice.h>
52 #include <linux/pci.h>
53 #include <linux/aer.h>
54 #include <linux/rtnetlink.h>
55 #include <linux/sched.h>
56 #include <linux/seq_file.h>
57 #include <linux/sockios.h>
58 #include <linux/vmalloc.h>
59 #include <linux/workqueue.h>
60 #include <net/neighbour.h>
61 #include <net/netevent.h>
62 #include <asm/uaccess.h>
63
64 #include "cxgb4.h"
65 #include "t4_regs.h"
66 #include "t4_msg.h"
67 #include "t4fw_api.h"
68 #include "l2t.h"
69
70 #define DRV_VERSION "1.0.0-ko"
71 #define DRV_DESC "Chelsio T4 Network Driver"
72
73 /*
74  * Max interrupt hold-off timer value in us.  Queues fall back to this value
75  * under extreme memory pressure so it's largish to give the system time to
76  * recover.
77  */
78 #define MAX_SGE_TIMERVAL 200U
79
80 enum {
81         MEMWIN0_APERTURE = 65536,
82         MEMWIN0_BASE     = 0x30000,
83         MEMWIN1_APERTURE = 32768,
84         MEMWIN1_BASE     = 0x28000,
85         MEMWIN2_APERTURE = 2048,
86         MEMWIN2_BASE     = 0x1b800,
87 };
88
89 enum {
90         MAX_TXQ_ENTRIES      = 16384,
91         MAX_CTRL_TXQ_ENTRIES = 1024,
92         MAX_RSPQ_ENTRIES     = 16384,
93         MAX_RX_BUFFERS       = 16384,
94         MIN_TXQ_ENTRIES      = 32,
95         MIN_CTRL_TXQ_ENTRIES = 32,
96         MIN_RSPQ_ENTRIES     = 128,
97         MIN_FL_ENTRIES       = 16
98 };
99
100 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
101                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
102                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
103
104 #define CH_DEVICE(devid) { PCI_VDEVICE(CHELSIO, devid), 0 }
105
106 static DEFINE_PCI_DEVICE_TABLE(cxgb4_pci_tbl) = {
107         CH_DEVICE(0xa000),  /* PE10K */
108         { 0, }
109 };
110
111 #define FW_FNAME "cxgb4/t4fw.bin"
112
113 MODULE_DESCRIPTION(DRV_DESC);
114 MODULE_AUTHOR("Chelsio Communications");
115 MODULE_LICENSE("Dual BSD/GPL");
116 MODULE_VERSION(DRV_VERSION);
117 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
118 MODULE_FIRMWARE(FW_FNAME);
119
120 static int dflt_msg_enable = DFLT_MSG_ENABLE;
121
122 module_param(dflt_msg_enable, int, 0644);
123 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
124
125 /*
126  * The driver uses the best interrupt scheme available on a platform in the
127  * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
128  * of these schemes the driver may consider as follows:
129  *
130  * msi = 2: choose from among all three options
131  * msi = 1: only consider MSI and INTx interrupts
132  * msi = 0: force INTx interrupts
133  */
134 static int msi = 2;
135
136 module_param(msi, int, 0644);
137 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
138
139 /*
140  * Queue interrupt hold-off timer values.  Queues default to the first of these
141  * upon creation.
142  */
143 static unsigned int intr_holdoff[SGE_NTIMERS - 1] = { 5, 10, 20, 50, 100 };
144
145 module_param_array(intr_holdoff, uint, NULL, 0644);
146 MODULE_PARM_DESC(intr_holdoff, "values for queue interrupt hold-off timers "
147                  "0..4 in microseconds");
148
149 static unsigned int intr_cnt[SGE_NCOUNTERS - 1] = { 4, 8, 16 };
150
151 module_param_array(intr_cnt, uint, NULL, 0644);
152 MODULE_PARM_DESC(intr_cnt,
153                  "thresholds 1..3 for queue interrupt packet counters");
154
155 static int vf_acls;
156
157 #ifdef CONFIG_PCI_IOV
158 module_param(vf_acls, bool, 0644);
159 MODULE_PARM_DESC(vf_acls, "if set enable virtualization L2 ACL enforcement");
160
161 static unsigned int num_vf[4];
162
163 module_param_array(num_vf, uint, NULL, 0644);
164 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
165 #endif
166
167 static struct dentry *cxgb4_debugfs_root;
168
169 static LIST_HEAD(adapter_list);
170 static DEFINE_MUTEX(uld_mutex);
171 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
172 static const char *uld_str[] = { "RDMA", "iSCSI" };
173
174 static void link_report(struct net_device *dev)
175 {
176         if (!netif_carrier_ok(dev))
177                 netdev_info(dev, "link down\n");
178         else {
179                 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
180
181                 const char *s = "10Mbps";
182                 const struct port_info *p = netdev_priv(dev);
183
184                 switch (p->link_cfg.speed) {
185                 case SPEED_10000:
186                         s = "10Gbps";
187                         break;
188                 case SPEED_1000:
189                         s = "1000Mbps";
190                         break;
191                 case SPEED_100:
192                         s = "100Mbps";
193                         break;
194                 }
195
196                 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
197                             fc[p->link_cfg.fc]);
198         }
199 }
200
201 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
202 {
203         struct net_device *dev = adapter->port[port_id];
204
205         /* Skip changes from disabled ports. */
206         if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
207                 if (link_stat)
208                         netif_carrier_on(dev);
209                 else
210                         netif_carrier_off(dev);
211
212                 link_report(dev);
213         }
214 }
215
216 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
217 {
218         static const char *mod_str[] = {
219                 NULL, "LR", "SR", "ER", "passive DA", "active DA"
220         };
221
222         const struct net_device *dev = adap->port[port_id];
223         const struct port_info *pi = netdev_priv(dev);
224
225         if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
226                 netdev_info(dev, "port module unplugged\n");
227         else
228                 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
229 }
230
231 /*
232  * Configure the exact and hash address filters to handle a port's multicast
233  * and secondary unicast MAC addresses.
234  */
235 static int set_addr_filters(const struct net_device *dev, bool sleep)
236 {
237         u64 mhash = 0;
238         u64 uhash = 0;
239         bool free = true;
240         u16 filt_idx[7];
241         const u8 *addr[7];
242         int ret, naddr = 0;
243         const struct netdev_hw_addr *ha;
244         int uc_cnt = netdev_uc_count(dev);
245         int mc_cnt = netdev_mc_count(dev);
246         const struct port_info *pi = netdev_priv(dev);
247
248         /* first do the secondary unicast addresses */
249         netdev_for_each_uc_addr(ha, dev) {
250                 addr[naddr++] = ha->addr;
251                 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
252                         ret = t4_alloc_mac_filt(pi->adapter, 0, pi->viid, free,
253                                         naddr, addr, filt_idx, &uhash, sleep);
254                         if (ret < 0)
255                                 return ret;
256
257                         free = false;
258                         naddr = 0;
259                 }
260         }
261
262         /* next set up the multicast addresses */
263         netdev_for_each_mc_addr(ha, dev) {
264                 addr[naddr++] = ha->addr;
265                 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
266                         ret = t4_alloc_mac_filt(pi->adapter, 0, pi->viid, free,
267                                         naddr, addr, filt_idx, &mhash, sleep);
268                         if (ret < 0)
269                                 return ret;
270
271                         free = false;
272                         naddr = 0;
273                 }
274         }
275
276         return t4_set_addr_hash(pi->adapter, 0, pi->viid, uhash != 0,
277                                 uhash | mhash, sleep);
278 }
279
280 /*
281  * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
282  * If @mtu is -1 it is left unchanged.
283  */
284 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
285 {
286         int ret;
287         struct port_info *pi = netdev_priv(dev);
288
289         ret = set_addr_filters(dev, sleep_ok);
290         if (ret == 0)
291                 ret = t4_set_rxmode(pi->adapter, 0, pi->viid, mtu,
292                                     (dev->flags & IFF_PROMISC) ? 1 : 0,
293                                     (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1,
294                                     sleep_ok);
295         return ret;
296 }
297
298 /**
299  *      link_start - enable a port
300  *      @dev: the port to enable
301  *
302  *      Performs the MAC and PHY actions needed to enable a port.
303  */
304 static int link_start(struct net_device *dev)
305 {
306         int ret;
307         struct port_info *pi = netdev_priv(dev);
308
309         /*
310          * We do not set address filters and promiscuity here, the stack does
311          * that step explicitly.
312          */
313         ret = t4_set_rxmode(pi->adapter, 0, pi->viid, dev->mtu, -1, -1, -1,
314                             true);
315         if (ret == 0) {
316                 ret = t4_change_mac(pi->adapter, 0, pi->viid,
317                                     pi->xact_addr_filt, dev->dev_addr, true,
318                                     false);
319                 if (ret >= 0) {
320                         pi->xact_addr_filt = ret;
321                         ret = 0;
322                 }
323         }
324         if (ret == 0)
325                 ret = t4_link_start(pi->adapter, 0, pi->tx_chan, &pi->link_cfg);
326         if (ret == 0)
327                 ret = t4_enable_vi(pi->adapter, 0, pi->viid, true, true);
328         return ret;
329 }
330
331 /*
332  * Response queue handler for the FW event queue.
333  */
334 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
335                           const struct pkt_gl *gl)
336 {
337         u8 opcode = ((const struct rss_header *)rsp)->opcode;
338
339         rsp++;                                          /* skip RSS header */
340         if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
341                 const struct cpl_sge_egr_update *p = (void *)rsp;
342                 unsigned int qid = EGR_QID(ntohl(p->opcode_qid));
343                 struct sge_txq *txq = q->adap->sge.egr_map[qid];
344
345                 txq->restarts++;
346                 if ((u8 *)txq < (u8 *)q->adap->sge.ethrxq) {
347                         struct sge_eth_txq *eq;
348
349                         eq = container_of(txq, struct sge_eth_txq, q);
350                         netif_tx_wake_queue(eq->txq);
351                 } else {
352                         struct sge_ofld_txq *oq;
353
354                         oq = container_of(txq, struct sge_ofld_txq, q);
355                         tasklet_schedule(&oq->qresume_tsk);
356                 }
357         } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
358                 const struct cpl_fw6_msg *p = (void *)rsp;
359
360                 if (p->type == 0)
361                         t4_handle_fw_rpl(q->adap, p->data);
362         } else if (opcode == CPL_L2T_WRITE_RPL) {
363                 const struct cpl_l2t_write_rpl *p = (void *)rsp;
364
365                 do_l2t_write_rpl(q->adap, p);
366         } else
367                 dev_err(q->adap->pdev_dev,
368                         "unexpected CPL %#x on FW event queue\n", opcode);
369         return 0;
370 }
371
372 /**
373  *      uldrx_handler - response queue handler for ULD queues
374  *      @q: the response queue that received the packet
375  *      @rsp: the response queue descriptor holding the offload message
376  *      @gl: the gather list of packet fragments
377  *
378  *      Deliver an ingress offload packet to a ULD.  All processing is done by
379  *      the ULD, we just maintain statistics.
380  */
381 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
382                          const struct pkt_gl *gl)
383 {
384         struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
385
386         if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
387                 rxq->stats.nomem++;
388                 return -1;
389         }
390         if (gl == NULL)
391                 rxq->stats.imm++;
392         else if (gl == CXGB4_MSG_AN)
393                 rxq->stats.an++;
394         else
395                 rxq->stats.pkts++;
396         return 0;
397 }
398
399 static void disable_msi(struct adapter *adapter)
400 {
401         if (adapter->flags & USING_MSIX) {
402                 pci_disable_msix(adapter->pdev);
403                 adapter->flags &= ~USING_MSIX;
404         } else if (adapter->flags & USING_MSI) {
405                 pci_disable_msi(adapter->pdev);
406                 adapter->flags &= ~USING_MSI;
407         }
408 }
409
410 /*
411  * Interrupt handler for non-data events used with MSI-X.
412  */
413 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
414 {
415         struct adapter *adap = cookie;
416
417         u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE));
418         if (v & PFSW) {
419                 adap->swintr = 1;
420                 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE), v);
421         }
422         t4_slow_intr_handler(adap);
423         return IRQ_HANDLED;
424 }
425
426 /*
427  * Name the MSI-X interrupts.
428  */
429 static void name_msix_vecs(struct adapter *adap)
430 {
431         int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc) - 1;
432
433         /* non-data interrupts */
434         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
435         adap->msix_info[0].desc[n] = 0;
436
437         /* FW events */
438         snprintf(adap->msix_info[1].desc, n, "%s-FWeventq", adap->name);
439         adap->msix_info[1].desc[n] = 0;
440
441         /* Ethernet queues */
442         for_each_port(adap, j) {
443                 struct net_device *d = adap->port[j];
444                 const struct port_info *pi = netdev_priv(d);
445
446                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
447                         snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
448                                  d->name, i);
449                         adap->msix_info[msi_idx].desc[n] = 0;
450                 }
451         }
452
453         /* offload queues */
454         for_each_ofldrxq(&adap->sge, i) {
455                 snprintf(adap->msix_info[msi_idx].desc, n, "%s-ofld%d",
456                          adap->name, i);
457                 adap->msix_info[msi_idx++].desc[n] = 0;
458         }
459         for_each_rdmarxq(&adap->sge, i) {
460                 snprintf(adap->msix_info[msi_idx].desc, n, "%s-rdma%d",
461                          adap->name, i);
462                 adap->msix_info[msi_idx++].desc[n] = 0;
463         }
464 }
465
466 static int request_msix_queue_irqs(struct adapter *adap)
467 {
468         struct sge *s = &adap->sge;
469         int err, ethqidx, ofldqidx = 0, rdmaqidx = 0, msi = 2;
470
471         err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
472                           adap->msix_info[1].desc, &s->fw_evtq);
473         if (err)
474                 return err;
475
476         for_each_ethrxq(s, ethqidx) {
477                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
478                                   adap->msix_info[msi].desc,
479                                   &s->ethrxq[ethqidx].rspq);
480                 if (err)
481                         goto unwind;
482                 msi++;
483         }
484         for_each_ofldrxq(s, ofldqidx) {
485                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
486                                   adap->msix_info[msi].desc,
487                                   &s->ofldrxq[ofldqidx].rspq);
488                 if (err)
489                         goto unwind;
490                 msi++;
491         }
492         for_each_rdmarxq(s, rdmaqidx) {
493                 err = request_irq(adap->msix_info[msi].vec, t4_sge_intr_msix, 0,
494                                   adap->msix_info[msi].desc,
495                                   &s->rdmarxq[rdmaqidx].rspq);
496                 if (err)
497                         goto unwind;
498                 msi++;
499         }
500         return 0;
501
502 unwind:
503         while (--rdmaqidx >= 0)
504                 free_irq(adap->msix_info[--msi].vec,
505                          &s->rdmarxq[rdmaqidx].rspq);
506         while (--ofldqidx >= 0)
507                 free_irq(adap->msix_info[--msi].vec,
508                          &s->ofldrxq[ofldqidx].rspq);
509         while (--ethqidx >= 0)
510                 free_irq(adap->msix_info[--msi].vec, &s->ethrxq[ethqidx].rspq);
511         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
512         return err;
513 }
514
515 static void free_msix_queue_irqs(struct adapter *adap)
516 {
517         int i, msi = 2;
518         struct sge *s = &adap->sge;
519
520         free_irq(adap->msix_info[1].vec, &s->fw_evtq);
521         for_each_ethrxq(s, i)
522                 free_irq(adap->msix_info[msi++].vec, &s->ethrxq[i].rspq);
523         for_each_ofldrxq(s, i)
524                 free_irq(adap->msix_info[msi++].vec, &s->ofldrxq[i].rspq);
525         for_each_rdmarxq(s, i)
526                 free_irq(adap->msix_info[msi++].vec, &s->rdmarxq[i].rspq);
527 }
528
529 /**
530  *      setup_rss - configure RSS
531  *      @adap: the adapter
532  *
533  *      Sets up RSS to distribute packets to multiple receive queues.  We
534  *      configure the RSS CPU lookup table to distribute to the number of HW
535  *      receive queues, and the response queue lookup table to narrow that
536  *      down to the response queues actually configured for each port.
537  *      We always configure the RSS mapping for all ports since the mapping
538  *      table has plenty of entries.
539  */
540 static int setup_rss(struct adapter *adap)
541 {
542         int i, j, err;
543         u16 rss[MAX_ETH_QSETS];
544
545         for_each_port(adap, i) {
546                 const struct port_info *pi = adap2pinfo(adap, i);
547                 const struct sge_eth_rxq *q = &adap->sge.ethrxq[pi->first_qset];
548
549                 for (j = 0; j < pi->nqsets; j++)
550                         rss[j] = q[j].rspq.abs_id;
551
552                 err = t4_config_rss_range(adap, 0, pi->viid, 0, pi->rss_size,
553                                           rss, pi->nqsets);
554                 if (err)
555                         return err;
556         }
557         return 0;
558 }
559
560 /*
561  * Wait until all NAPI handlers are descheduled.
562  */
563 static void quiesce_rx(struct adapter *adap)
564 {
565         int i;
566
567         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
568                 struct sge_rspq *q = adap->sge.ingr_map[i];
569
570                 if (q && q->handler)
571                         napi_disable(&q->napi);
572         }
573 }
574
575 /*
576  * Enable NAPI scheduling and interrupt generation for all Rx queues.
577  */
578 static void enable_rx(struct adapter *adap)
579 {
580         int i;
581
582         for (i = 0; i < ARRAY_SIZE(adap->sge.ingr_map); i++) {
583                 struct sge_rspq *q = adap->sge.ingr_map[i];
584
585                 if (!q)
586                         continue;
587                 if (q->handler)
588                         napi_enable(&q->napi);
589                 /* 0-increment GTS to start the timer and enable interrupts */
590                 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS),
591                              SEINTARM(q->intr_params) |
592                              INGRESSQID(q->cntxt_id));
593         }
594 }
595
596 /**
597  *      setup_sge_queues - configure SGE Tx/Rx/response queues
598  *      @adap: the adapter
599  *
600  *      Determines how many sets of SGE queues to use and initializes them.
601  *      We support multiple queue sets per port if we have MSI-X, otherwise
602  *      just one queue set per port.
603  */
604 static int setup_sge_queues(struct adapter *adap)
605 {
606         int err, msi_idx, i, j;
607         struct sge *s = &adap->sge;
608
609         bitmap_zero(s->starving_fl, MAX_EGRQ);
610         bitmap_zero(s->txq_maperr, MAX_EGRQ);
611
612         if (adap->flags & USING_MSIX)
613                 msi_idx = 1;         /* vector 0 is for non-queue interrupts */
614         else {
615                 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
616                                        NULL, NULL);
617                 if (err)
618                         return err;
619                 msi_idx = -((int)s->intrq.abs_id + 1);
620         }
621
622         err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
623                                msi_idx, NULL, fwevtq_handler);
624         if (err) {
625 freeout:        t4_free_sge_resources(adap);
626                 return err;
627         }
628
629         for_each_port(adap, i) {
630                 struct net_device *dev = adap->port[i];
631                 struct port_info *pi = netdev_priv(dev);
632                 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
633                 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
634
635                 for (j = 0; j < pi->nqsets; j++, q++) {
636                         if (msi_idx > 0)
637                                 msi_idx++;
638                         err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
639                                                msi_idx, &q->fl,
640                                                t4_ethrx_handler);
641                         if (err)
642                                 goto freeout;
643                         q->rspq.idx = j;
644                         memset(&q->stats, 0, sizeof(q->stats));
645                 }
646                 for (j = 0; j < pi->nqsets; j++, t++) {
647                         err = t4_sge_alloc_eth_txq(adap, t, dev,
648                                         netdev_get_tx_queue(dev, j),
649                                         s->fw_evtq.cntxt_id);
650                         if (err)
651                                 goto freeout;
652                 }
653         }
654
655         j = s->ofldqsets / adap->params.nports; /* ofld queues per channel */
656         for_each_ofldrxq(s, i) {
657                 struct sge_ofld_rxq *q = &s->ofldrxq[i];
658                 struct net_device *dev = adap->port[i / j];
659
660                 if (msi_idx > 0)
661                         msi_idx++;
662                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev, msi_idx,
663                                        &q->fl, uldrx_handler);
664                 if (err)
665                         goto freeout;
666                 memset(&q->stats, 0, sizeof(q->stats));
667                 s->ofld_rxq[i] = q->rspq.abs_id;
668                 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i], dev,
669                                             s->fw_evtq.cntxt_id);
670                 if (err)
671                         goto freeout;
672         }
673
674         for_each_rdmarxq(s, i) {
675                 struct sge_ofld_rxq *q = &s->rdmarxq[i];
676
677                 if (msi_idx > 0)
678                         msi_idx++;
679                 err = t4_sge_alloc_rxq(adap, &q->rspq, false, adap->port[i],
680                                        msi_idx, &q->fl, uldrx_handler);
681                 if (err)
682                         goto freeout;
683                 memset(&q->stats, 0, sizeof(q->stats));
684                 s->rdma_rxq[i] = q->rspq.abs_id;
685         }
686
687         for_each_port(adap, i) {
688                 /*
689                  * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
690                  * have RDMA queues, and that's the right value.
691                  */
692                 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
693                                             s->fw_evtq.cntxt_id,
694                                             s->rdmarxq[i].rspq.cntxt_id);
695                 if (err)
696                         goto freeout;
697         }
698
699         t4_write_reg(adap, MPS_TRC_RSS_CONTROL,
700                      RSSCONTROL(netdev2pinfo(adap->port[0])->tx_chan) |
701                      QUEUENUMBER(s->ethrxq[0].rspq.abs_id));
702         return 0;
703 }
704
705 /*
706  * Returns 0 if new FW was successfully loaded, a positive errno if a load was
707  * started but failed, and a negative errno if flash load couldn't start.
708  */
709 static int upgrade_fw(struct adapter *adap)
710 {
711         int ret;
712         u32 vers;
713         const struct fw_hdr *hdr;
714         const struct firmware *fw;
715         struct device *dev = adap->pdev_dev;
716
717         ret = request_firmware(&fw, FW_FNAME, dev);
718         if (ret < 0) {
719                 dev_err(dev, "unable to load firmware image " FW_FNAME
720                         ", error %d\n", ret);
721                 return ret;
722         }
723
724         hdr = (const struct fw_hdr *)fw->data;
725         vers = ntohl(hdr->fw_ver);
726         if (FW_HDR_FW_VER_MAJOR_GET(vers) != FW_VERSION_MAJOR) {
727                 ret = -EINVAL;              /* wrong major version, won't do */
728                 goto out;
729         }
730
731         /*
732          * If the flash FW is unusable or we found something newer, load it.
733          */
734         if (FW_HDR_FW_VER_MAJOR_GET(adap->params.fw_vers) != FW_VERSION_MAJOR ||
735             vers > adap->params.fw_vers) {
736                 ret = -t4_load_fw(adap, fw->data, fw->size);
737                 if (!ret)
738                         dev_info(dev, "firmware upgraded to version %pI4 from "
739                                  FW_FNAME "\n", &hdr->fw_ver);
740         }
741 out:    release_firmware(fw);
742         return ret;
743 }
744
745 /*
746  * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
747  * The allocated memory is cleared.
748  */
749 void *t4_alloc_mem(size_t size)
750 {
751         void *p = kmalloc(size, GFP_KERNEL);
752
753         if (!p)
754                 p = vmalloc(size);
755         if (p)
756                 memset(p, 0, size);
757         return p;
758 }
759
760 /*
761  * Free memory allocated through alloc_mem().
762  */
763 void t4_free_mem(void *addr)
764 {
765         if (is_vmalloc_addr(addr))
766                 vfree(addr);
767         else
768                 kfree(addr);
769 }
770
771 static inline int is_offload(const struct adapter *adap)
772 {
773         return adap->params.offload;
774 }
775
776 /*
777  * Implementation of ethtool operations.
778  */
779
780 static u32 get_msglevel(struct net_device *dev)
781 {
782         return netdev2adap(dev)->msg_enable;
783 }
784
785 static void set_msglevel(struct net_device *dev, u32 val)
786 {
787         netdev2adap(dev)->msg_enable = val;
788 }
789
790 static char stats_strings[][ETH_GSTRING_LEN] = {
791         "TxOctetsOK         ",
792         "TxFramesOK         ",
793         "TxBroadcastFrames  ",
794         "TxMulticastFrames  ",
795         "TxUnicastFrames    ",
796         "TxErrorFrames      ",
797
798         "TxFrames64         ",
799         "TxFrames65To127    ",
800         "TxFrames128To255   ",
801         "TxFrames256To511   ",
802         "TxFrames512To1023  ",
803         "TxFrames1024To1518 ",
804         "TxFrames1519ToMax  ",
805
806         "TxFramesDropped    ",
807         "TxPauseFrames      ",
808         "TxPPP0Frames       ",
809         "TxPPP1Frames       ",
810         "TxPPP2Frames       ",
811         "TxPPP3Frames       ",
812         "TxPPP4Frames       ",
813         "TxPPP5Frames       ",
814         "TxPPP6Frames       ",
815         "TxPPP7Frames       ",
816
817         "RxOctetsOK         ",
818         "RxFramesOK         ",
819         "RxBroadcastFrames  ",
820         "RxMulticastFrames  ",
821         "RxUnicastFrames    ",
822
823         "RxFramesTooLong    ",
824         "RxJabberErrors     ",
825         "RxFCSErrors        ",
826         "RxLengthErrors     ",
827         "RxSymbolErrors     ",
828         "RxRuntFrames       ",
829
830         "RxFrames64         ",
831         "RxFrames65To127    ",
832         "RxFrames128To255   ",
833         "RxFrames256To511   ",
834         "RxFrames512To1023  ",
835         "RxFrames1024To1518 ",
836         "RxFrames1519ToMax  ",
837
838         "RxPauseFrames      ",
839         "RxPPP0Frames       ",
840         "RxPPP1Frames       ",
841         "RxPPP2Frames       ",
842         "RxPPP3Frames       ",
843         "RxPPP4Frames       ",
844         "RxPPP5Frames       ",
845         "RxPPP6Frames       ",
846         "RxPPP7Frames       ",
847
848         "RxBG0FramesDropped ",
849         "RxBG1FramesDropped ",
850         "RxBG2FramesDropped ",
851         "RxBG3FramesDropped ",
852         "RxBG0FramesTrunc   ",
853         "RxBG1FramesTrunc   ",
854         "RxBG2FramesTrunc   ",
855         "RxBG3FramesTrunc   ",
856
857         "TSO                ",
858         "TxCsumOffload      ",
859         "RxCsumGood         ",
860         "VLANextractions    ",
861         "VLANinsertions     ",
862 };
863
864 static int get_sset_count(struct net_device *dev, int sset)
865 {
866         switch (sset) {
867         case ETH_SS_STATS:
868                 return ARRAY_SIZE(stats_strings);
869         default:
870                 return -EOPNOTSUPP;
871         }
872 }
873
874 #define T4_REGMAP_SIZE (160 * 1024)
875
876 static int get_regs_len(struct net_device *dev)
877 {
878         return T4_REGMAP_SIZE;
879 }
880
881 static int get_eeprom_len(struct net_device *dev)
882 {
883         return EEPROMSIZE;
884 }
885
886 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
887 {
888         struct adapter *adapter = netdev2adap(dev);
889
890         strcpy(info->driver, KBUILD_MODNAME);
891         strcpy(info->version, DRV_VERSION);
892         strcpy(info->bus_info, pci_name(adapter->pdev));
893
894         if (!adapter->params.fw_vers)
895                 strcpy(info->fw_version, "N/A");
896         else
897                 snprintf(info->fw_version, sizeof(info->fw_version),
898                         "%u.%u.%u.%u, TP %u.%u.%u.%u",
899                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.fw_vers),
900                         FW_HDR_FW_VER_MINOR_GET(adapter->params.fw_vers),
901                         FW_HDR_FW_VER_MICRO_GET(adapter->params.fw_vers),
902                         FW_HDR_FW_VER_BUILD_GET(adapter->params.fw_vers),
903                         FW_HDR_FW_VER_MAJOR_GET(adapter->params.tp_vers),
904                         FW_HDR_FW_VER_MINOR_GET(adapter->params.tp_vers),
905                         FW_HDR_FW_VER_MICRO_GET(adapter->params.tp_vers),
906                         FW_HDR_FW_VER_BUILD_GET(adapter->params.tp_vers));
907 }
908
909 static void get_strings(struct net_device *dev, u32 stringset, u8 *data)
910 {
911         if (stringset == ETH_SS_STATS)
912                 memcpy(data, stats_strings, sizeof(stats_strings));
913 }
914
915 /*
916  * port stats maintained per queue of the port.  They should be in the same
917  * order as in stats_strings above.
918  */
919 struct queue_port_stats {
920         u64 tso;
921         u64 tx_csum;
922         u64 rx_csum;
923         u64 vlan_ex;
924         u64 vlan_ins;
925 };
926
927 static void collect_sge_port_stats(const struct adapter *adap,
928                 const struct port_info *p, struct queue_port_stats *s)
929 {
930         int i;
931         const struct sge_eth_txq *tx = &adap->sge.ethtxq[p->first_qset];
932         const struct sge_eth_rxq *rx = &adap->sge.ethrxq[p->first_qset];
933
934         memset(s, 0, sizeof(*s));
935         for (i = 0; i < p->nqsets; i++, rx++, tx++) {
936                 s->tso += tx->tso;
937                 s->tx_csum += tx->tx_cso;
938                 s->rx_csum += rx->stats.rx_cso;
939                 s->vlan_ex += rx->stats.vlan_ex;
940                 s->vlan_ins += tx->vlan_ins;
941         }
942 }
943
944 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
945                       u64 *data)
946 {
947         struct port_info *pi = netdev_priv(dev);
948         struct adapter *adapter = pi->adapter;
949
950         t4_get_port_stats(adapter, pi->tx_chan, (struct port_stats *)data);
951
952         data += sizeof(struct port_stats) / sizeof(u64);
953         collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
954 }
955
956 /*
957  * Return a version number to identify the type of adapter.  The scheme is:
958  * - bits 0..9: chip version
959  * - bits 10..15: chip revision
960  */
961 static inline unsigned int mk_adap_vers(const struct adapter *ap)
962 {
963         return 4 | (ap->params.rev << 10);
964 }
965
966 static void reg_block_dump(struct adapter *ap, void *buf, unsigned int start,
967                            unsigned int end)
968 {
969         u32 *p = buf + start;
970
971         for ( ; start <= end; start += sizeof(u32))
972                 *p++ = t4_read_reg(ap, start);
973 }
974
975 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
976                      void *buf)
977 {
978         static const unsigned int reg_ranges[] = {
979                 0x1008, 0x1108,
980                 0x1180, 0x11b4,
981                 0x11fc, 0x123c,
982                 0x1300, 0x173c,
983                 0x1800, 0x18fc,
984                 0x3000, 0x30d8,
985                 0x30e0, 0x5924,
986                 0x5960, 0x59d4,
987                 0x5a00, 0x5af8,
988                 0x6000, 0x6098,
989                 0x6100, 0x6150,
990                 0x6200, 0x6208,
991                 0x6240, 0x6248,
992                 0x6280, 0x6338,
993                 0x6370, 0x638c,
994                 0x6400, 0x643c,
995                 0x6500, 0x6524,
996                 0x6a00, 0x6a38,
997                 0x6a60, 0x6a78,
998                 0x6b00, 0x6b84,
999                 0x6bf0, 0x6c84,
1000                 0x6cf0, 0x6d84,
1001                 0x6df0, 0x6e84,
1002                 0x6ef0, 0x6f84,
1003                 0x6ff0, 0x7084,
1004                 0x70f0, 0x7184,
1005                 0x71f0, 0x7284,
1006                 0x72f0, 0x7384,
1007                 0x73f0, 0x7450,
1008                 0x7500, 0x7530,
1009                 0x7600, 0x761c,
1010                 0x7680, 0x76cc,
1011                 0x7700, 0x7798,
1012                 0x77c0, 0x77fc,
1013                 0x7900, 0x79fc,
1014                 0x7b00, 0x7c38,
1015                 0x7d00, 0x7efc,
1016                 0x8dc0, 0x8e1c,
1017                 0x8e30, 0x8e78,
1018                 0x8ea0, 0x8f6c,
1019                 0x8fc0, 0x9074,
1020                 0x90fc, 0x90fc,
1021                 0x9400, 0x9458,
1022                 0x9600, 0x96bc,
1023                 0x9800, 0x9808,
1024                 0x9820, 0x983c,
1025                 0x9850, 0x9864,
1026                 0x9c00, 0x9c6c,
1027                 0x9c80, 0x9cec,
1028                 0x9d00, 0x9d6c,
1029                 0x9d80, 0x9dec,
1030                 0x9e00, 0x9e6c,
1031                 0x9e80, 0x9eec,
1032                 0x9f00, 0x9f6c,
1033                 0x9f80, 0x9fec,
1034                 0xd004, 0xd03c,
1035                 0xdfc0, 0xdfe0,
1036                 0xe000, 0xea7c,
1037                 0xf000, 0x11190,
1038                 0x19040, 0x19124,
1039                 0x19150, 0x191b0,
1040                 0x191d0, 0x191e8,
1041                 0x19238, 0x1924c,
1042                 0x193f8, 0x19474,
1043                 0x19490, 0x194f8,
1044                 0x19800, 0x19f30,
1045                 0x1a000, 0x1a06c,
1046                 0x1a0b0, 0x1a120,
1047                 0x1a128, 0x1a138,
1048                 0x1a190, 0x1a1c4,
1049                 0x1a1fc, 0x1a1fc,
1050                 0x1e040, 0x1e04c,
1051                 0x1e240, 0x1e28c,
1052                 0x1e2c0, 0x1e2c0,
1053                 0x1e2e0, 0x1e2e0,
1054                 0x1e300, 0x1e384,
1055                 0x1e3c0, 0x1e3c8,
1056                 0x1e440, 0x1e44c,
1057                 0x1e640, 0x1e68c,
1058                 0x1e6c0, 0x1e6c0,
1059                 0x1e6e0, 0x1e6e0,
1060                 0x1e700, 0x1e784,
1061                 0x1e7c0, 0x1e7c8,
1062                 0x1e840, 0x1e84c,
1063                 0x1ea40, 0x1ea8c,
1064                 0x1eac0, 0x1eac0,
1065                 0x1eae0, 0x1eae0,
1066                 0x1eb00, 0x1eb84,
1067                 0x1ebc0, 0x1ebc8,
1068                 0x1ec40, 0x1ec4c,
1069                 0x1ee40, 0x1ee8c,
1070                 0x1eec0, 0x1eec0,
1071                 0x1eee0, 0x1eee0,
1072                 0x1ef00, 0x1ef84,
1073                 0x1efc0, 0x1efc8,
1074                 0x1f040, 0x1f04c,
1075                 0x1f240, 0x1f28c,
1076                 0x1f2c0, 0x1f2c0,
1077                 0x1f2e0, 0x1f2e0,
1078                 0x1f300, 0x1f384,
1079                 0x1f3c0, 0x1f3c8,
1080                 0x1f440, 0x1f44c,
1081                 0x1f640, 0x1f68c,
1082                 0x1f6c0, 0x1f6c0,
1083                 0x1f6e0, 0x1f6e0,
1084                 0x1f700, 0x1f784,
1085                 0x1f7c0, 0x1f7c8,
1086                 0x1f840, 0x1f84c,
1087                 0x1fa40, 0x1fa8c,
1088                 0x1fac0, 0x1fac0,
1089                 0x1fae0, 0x1fae0,
1090                 0x1fb00, 0x1fb84,
1091                 0x1fbc0, 0x1fbc8,
1092                 0x1fc40, 0x1fc4c,
1093                 0x1fe40, 0x1fe8c,
1094                 0x1fec0, 0x1fec0,
1095                 0x1fee0, 0x1fee0,
1096                 0x1ff00, 0x1ff84,
1097                 0x1ffc0, 0x1ffc8,
1098                 0x20000, 0x2002c,
1099                 0x20100, 0x2013c,
1100                 0x20190, 0x201c8,
1101                 0x20200, 0x20318,
1102                 0x20400, 0x20528,
1103                 0x20540, 0x20614,
1104                 0x21000, 0x21040,
1105                 0x2104c, 0x21060,
1106                 0x210c0, 0x210ec,
1107                 0x21200, 0x21268,
1108                 0x21270, 0x21284,
1109                 0x212fc, 0x21388,
1110                 0x21400, 0x21404,
1111                 0x21500, 0x21518,
1112                 0x2152c, 0x2153c,
1113                 0x21550, 0x21554,
1114                 0x21600, 0x21600,
1115                 0x21608, 0x21628,
1116                 0x21630, 0x2163c,
1117                 0x21700, 0x2171c,
1118                 0x21780, 0x2178c,
1119                 0x21800, 0x21c38,
1120                 0x21c80, 0x21d7c,
1121                 0x21e00, 0x21e04,
1122                 0x22000, 0x2202c,
1123                 0x22100, 0x2213c,
1124                 0x22190, 0x221c8,
1125                 0x22200, 0x22318,
1126                 0x22400, 0x22528,
1127                 0x22540, 0x22614,
1128                 0x23000, 0x23040,
1129                 0x2304c, 0x23060,
1130                 0x230c0, 0x230ec,
1131                 0x23200, 0x23268,
1132                 0x23270, 0x23284,
1133                 0x232fc, 0x23388,
1134                 0x23400, 0x23404,
1135                 0x23500, 0x23518,
1136                 0x2352c, 0x2353c,
1137                 0x23550, 0x23554,
1138                 0x23600, 0x23600,
1139                 0x23608, 0x23628,
1140                 0x23630, 0x2363c,
1141                 0x23700, 0x2371c,
1142                 0x23780, 0x2378c,
1143                 0x23800, 0x23c38,
1144                 0x23c80, 0x23d7c,
1145                 0x23e00, 0x23e04,
1146                 0x24000, 0x2402c,
1147                 0x24100, 0x2413c,
1148                 0x24190, 0x241c8,
1149                 0x24200, 0x24318,
1150                 0x24400, 0x24528,
1151                 0x24540, 0x24614,
1152                 0x25000, 0x25040,
1153                 0x2504c, 0x25060,
1154                 0x250c0, 0x250ec,
1155                 0x25200, 0x25268,
1156                 0x25270, 0x25284,
1157                 0x252fc, 0x25388,
1158                 0x25400, 0x25404,
1159                 0x25500, 0x25518,
1160                 0x2552c, 0x2553c,
1161                 0x25550, 0x25554,
1162                 0x25600, 0x25600,
1163                 0x25608, 0x25628,
1164                 0x25630, 0x2563c,
1165                 0x25700, 0x2571c,
1166                 0x25780, 0x2578c,
1167                 0x25800, 0x25c38,
1168                 0x25c80, 0x25d7c,
1169                 0x25e00, 0x25e04,
1170                 0x26000, 0x2602c,
1171                 0x26100, 0x2613c,
1172                 0x26190, 0x261c8,
1173                 0x26200, 0x26318,
1174                 0x26400, 0x26528,
1175                 0x26540, 0x26614,
1176                 0x27000, 0x27040,
1177                 0x2704c, 0x27060,
1178                 0x270c0, 0x270ec,
1179                 0x27200, 0x27268,
1180                 0x27270, 0x27284,
1181                 0x272fc, 0x27388,
1182                 0x27400, 0x27404,
1183                 0x27500, 0x27518,
1184                 0x2752c, 0x2753c,
1185                 0x27550, 0x27554,
1186                 0x27600, 0x27600,
1187                 0x27608, 0x27628,
1188                 0x27630, 0x2763c,
1189                 0x27700, 0x2771c,
1190                 0x27780, 0x2778c,
1191                 0x27800, 0x27c38,
1192                 0x27c80, 0x27d7c,
1193                 0x27e00, 0x27e04
1194         };
1195
1196         int i;
1197         struct adapter *ap = netdev2adap(dev);
1198
1199         regs->version = mk_adap_vers(ap);
1200
1201         memset(buf, 0, T4_REGMAP_SIZE);
1202         for (i = 0; i < ARRAY_SIZE(reg_ranges); i += 2)
1203                 reg_block_dump(ap, buf, reg_ranges[i], reg_ranges[i + 1]);
1204 }
1205
1206 static int restart_autoneg(struct net_device *dev)
1207 {
1208         struct port_info *p = netdev_priv(dev);
1209
1210         if (!netif_running(dev))
1211                 return -EAGAIN;
1212         if (p->link_cfg.autoneg != AUTONEG_ENABLE)
1213                 return -EINVAL;
1214         t4_restart_aneg(p->adapter, 0, p->tx_chan);
1215         return 0;
1216 }
1217
1218 static int identify_port(struct net_device *dev, u32 data)
1219 {
1220         if (data == 0)
1221                 data = 2;     /* default to 2 seconds */
1222
1223         return t4_identify_port(netdev2adap(dev), 0, netdev2pinfo(dev)->viid,
1224                                 data * 5);
1225 }
1226
1227 static unsigned int from_fw_linkcaps(unsigned int type, unsigned int caps)
1228 {
1229         unsigned int v = 0;
1230
1231         if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XAUI) {
1232                 v |= SUPPORTED_TP;
1233                 if (caps & FW_PORT_CAP_SPEED_100M)
1234                         v |= SUPPORTED_100baseT_Full;
1235                 if (caps & FW_PORT_CAP_SPEED_1G)
1236                         v |= SUPPORTED_1000baseT_Full;
1237                 if (caps & FW_PORT_CAP_SPEED_10G)
1238                         v |= SUPPORTED_10000baseT_Full;
1239         } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1240                 v |= SUPPORTED_Backplane;
1241                 if (caps & FW_PORT_CAP_SPEED_1G)
1242                         v |= SUPPORTED_1000baseKX_Full;
1243                 if (caps & FW_PORT_CAP_SPEED_10G)
1244                         v |= SUPPORTED_10000baseKX4_Full;
1245         } else if (type == FW_PORT_TYPE_KR)
1246                 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1247         else if (type == FW_PORT_TYPE_FIBER)
1248                 v |= SUPPORTED_FIBRE;
1249
1250         if (caps & FW_PORT_CAP_ANEG)
1251                 v |= SUPPORTED_Autoneg;
1252         return v;
1253 }
1254
1255 static unsigned int to_fw_linkcaps(unsigned int caps)
1256 {
1257         unsigned int v = 0;
1258
1259         if (caps & ADVERTISED_100baseT_Full)
1260                 v |= FW_PORT_CAP_SPEED_100M;
1261         if (caps & ADVERTISED_1000baseT_Full)
1262                 v |= FW_PORT_CAP_SPEED_1G;
1263         if (caps & ADVERTISED_10000baseT_Full)
1264                 v |= FW_PORT_CAP_SPEED_10G;
1265         return v;
1266 }
1267
1268 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1269 {
1270         const struct port_info *p = netdev_priv(dev);
1271
1272         if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1273             p->port_type == FW_PORT_TYPE_BT_XAUI)
1274                 cmd->port = PORT_TP;
1275         else if (p->port_type == FW_PORT_TYPE_FIBER)
1276                 cmd->port = PORT_FIBRE;
1277         else if (p->port_type == FW_PORT_TYPE_TWINAX)
1278                 cmd->port = PORT_DA;
1279         else
1280                 cmd->port = PORT_OTHER;
1281
1282         if (p->mdio_addr >= 0) {
1283                 cmd->phy_address = p->mdio_addr;
1284                 cmd->transceiver = XCVR_EXTERNAL;
1285                 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1286                         MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1287         } else {
1288                 cmd->phy_address = 0;  /* not really, but no better option */
1289                 cmd->transceiver = XCVR_INTERNAL;
1290                 cmd->mdio_support = 0;
1291         }
1292
1293         cmd->supported = from_fw_linkcaps(p->port_type, p->link_cfg.supported);
1294         cmd->advertising = from_fw_linkcaps(p->port_type,
1295                                             p->link_cfg.advertising);
1296         cmd->speed = netif_carrier_ok(dev) ? p->link_cfg.speed : 0;
1297         cmd->duplex = DUPLEX_FULL;
1298         cmd->autoneg = p->link_cfg.autoneg;
1299         cmd->maxtxpkt = 0;
1300         cmd->maxrxpkt = 0;
1301         return 0;
1302 }
1303
1304 static unsigned int speed_to_caps(int speed)
1305 {
1306         if (speed == SPEED_100)
1307                 return FW_PORT_CAP_SPEED_100M;
1308         if (speed == SPEED_1000)
1309                 return FW_PORT_CAP_SPEED_1G;
1310         if (speed == SPEED_10000)
1311                 return FW_PORT_CAP_SPEED_10G;
1312         return 0;
1313 }
1314
1315 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1316 {
1317         unsigned int cap;
1318         struct port_info *p = netdev_priv(dev);
1319         struct link_config *lc = &p->link_cfg;
1320
1321         if (cmd->duplex != DUPLEX_FULL)     /* only full-duplex supported */
1322                 return -EINVAL;
1323
1324         if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1325                 /*
1326                  * PHY offers a single speed.  See if that's what's
1327                  * being requested.
1328                  */
1329                 if (cmd->autoneg == AUTONEG_DISABLE &&
1330                     (lc->supported & speed_to_caps(cmd->speed)))
1331                                 return 0;
1332                 return -EINVAL;
1333         }
1334
1335         if (cmd->autoneg == AUTONEG_DISABLE) {
1336                 cap = speed_to_caps(cmd->speed);
1337
1338                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000 ||
1339                     cmd->speed == SPEED_10000)
1340                         return -EINVAL;
1341                 lc->requested_speed = cap;
1342                 lc->advertising = 0;
1343         } else {
1344                 cap = to_fw_linkcaps(cmd->advertising);
1345                 if (!(lc->supported & cap))
1346                         return -EINVAL;
1347                 lc->requested_speed = 0;
1348                 lc->advertising = cap | FW_PORT_CAP_ANEG;
1349         }
1350         lc->autoneg = cmd->autoneg;
1351
1352         if (netif_running(dev))
1353                 return t4_link_start(p->adapter, 0, p->tx_chan, lc);
1354         return 0;
1355 }
1356
1357 static void get_pauseparam(struct net_device *dev,
1358                            struct ethtool_pauseparam *epause)
1359 {
1360         struct port_info *p = netdev_priv(dev);
1361
1362         epause->autoneg = (p->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1363         epause->rx_pause = (p->link_cfg.fc & PAUSE_RX) != 0;
1364         epause->tx_pause = (p->link_cfg.fc & PAUSE_TX) != 0;
1365 }
1366
1367 static int set_pauseparam(struct net_device *dev,
1368                           struct ethtool_pauseparam *epause)
1369 {
1370         struct port_info *p = netdev_priv(dev);
1371         struct link_config *lc = &p->link_cfg;
1372
1373         if (epause->autoneg == AUTONEG_DISABLE)
1374                 lc->requested_fc = 0;
1375         else if (lc->supported & FW_PORT_CAP_ANEG)
1376                 lc->requested_fc = PAUSE_AUTONEG;
1377         else
1378                 return -EINVAL;
1379
1380         if (epause->rx_pause)
1381                 lc->requested_fc |= PAUSE_RX;
1382         if (epause->tx_pause)
1383                 lc->requested_fc |= PAUSE_TX;
1384         if (netif_running(dev))
1385                 return t4_link_start(p->adapter, 0, p->tx_chan, lc);
1386         return 0;
1387 }
1388
1389 static u32 get_rx_csum(struct net_device *dev)
1390 {
1391         struct port_info *p = netdev_priv(dev);
1392
1393         return p->rx_offload & RX_CSO;
1394 }
1395
1396 static int set_rx_csum(struct net_device *dev, u32 data)
1397 {
1398         struct port_info *p = netdev_priv(dev);
1399
1400         if (data)
1401                 p->rx_offload |= RX_CSO;
1402         else
1403                 p->rx_offload &= ~RX_CSO;
1404         return 0;
1405 }
1406
1407 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1408 {
1409         const struct port_info *pi = netdev_priv(dev);
1410         const struct sge *s = &pi->adapter->sge;
1411
1412         e->rx_max_pending = MAX_RX_BUFFERS;
1413         e->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1414         e->rx_jumbo_max_pending = 0;
1415         e->tx_max_pending = MAX_TXQ_ENTRIES;
1416
1417         e->rx_pending = s->ethrxq[pi->first_qset].fl.size - 8;
1418         e->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1419         e->rx_jumbo_pending = 0;
1420         e->tx_pending = s->ethtxq[pi->first_qset].q.size;
1421 }
1422
1423 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1424 {
1425         int i;
1426         const struct port_info *pi = netdev_priv(dev);
1427         struct adapter *adapter = pi->adapter;
1428         struct sge *s = &adapter->sge;
1429
1430         if (e->rx_pending > MAX_RX_BUFFERS || e->rx_jumbo_pending ||
1431             e->tx_pending > MAX_TXQ_ENTRIES ||
1432             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1433             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1434             e->rx_pending < MIN_FL_ENTRIES || e->tx_pending < MIN_TXQ_ENTRIES)
1435                 return -EINVAL;
1436
1437         if (adapter->flags & FULL_INIT_DONE)
1438                 return -EBUSY;
1439
1440         for (i = 0; i < pi->nqsets; ++i) {
1441                 s->ethtxq[pi->first_qset + i].q.size = e->tx_pending;
1442                 s->ethrxq[pi->first_qset + i].fl.size = e->rx_pending + 8;
1443                 s->ethrxq[pi->first_qset + i].rspq.size = e->rx_mini_pending;
1444         }
1445         return 0;
1446 }
1447
1448 static int closest_timer(const struct sge *s, int time)
1449 {
1450         int i, delta, match = 0, min_delta = INT_MAX;
1451
1452         for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1453                 delta = time - s->timer_val[i];
1454                 if (delta < 0)
1455                         delta = -delta;
1456                 if (delta < min_delta) {
1457                         min_delta = delta;
1458                         match = i;
1459                 }
1460         }
1461         return match;
1462 }
1463
1464 static int closest_thres(const struct sge *s, int thres)
1465 {
1466         int i, delta, match = 0, min_delta = INT_MAX;
1467
1468         for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1469                 delta = thres - s->counter_val[i];
1470                 if (delta < 0)
1471                         delta = -delta;
1472                 if (delta < min_delta) {
1473                         min_delta = delta;
1474                         match = i;
1475                 }
1476         }
1477         return match;
1478 }
1479
1480 /*
1481  * Return a queue's interrupt hold-off time in us.  0 means no timer.
1482  */
1483 static unsigned int qtimer_val(const struct adapter *adap,
1484                                const struct sge_rspq *q)
1485 {
1486         unsigned int idx = q->intr_params >> 1;
1487
1488         return idx < SGE_NTIMERS ? adap->sge.timer_val[idx] : 0;
1489 }
1490
1491 /**
1492  *      set_rxq_intr_params - set a queue's interrupt holdoff parameters
1493  *      @adap: the adapter
1494  *      @q: the Rx queue
1495  *      @us: the hold-off time in us, or 0 to disable timer
1496  *      @cnt: the hold-off packet count, or 0 to disable counter
1497  *
1498  *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1499  *      one of the two needs to be enabled for the queue to generate interrupts.
1500  */
1501 static int set_rxq_intr_params(struct adapter *adap, struct sge_rspq *q,
1502                                unsigned int us, unsigned int cnt)
1503 {
1504         if ((us | cnt) == 0)
1505                 cnt = 1;
1506
1507         if (cnt) {
1508                 int err;
1509                 u32 v, new_idx;
1510
1511                 new_idx = closest_thres(&adap->sge, cnt);
1512                 if (q->desc && q->pktcnt_idx != new_idx) {
1513                         /* the queue has already been created, update it */
1514                         v = FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
1515                             FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1516                             FW_PARAMS_PARAM_YZ(q->cntxt_id);
1517                         err = t4_set_params(adap, 0, 0, 0, 1, &v, &new_idx);
1518                         if (err)
1519                                 return err;
1520                 }
1521                 q->pktcnt_idx = new_idx;
1522         }
1523
1524         us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1525         q->intr_params = QINTR_TIMER_IDX(us) | (cnt > 0 ? QINTR_CNT_EN : 0);
1526         return 0;
1527 }
1528
1529 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1530 {
1531         const struct port_info *pi = netdev_priv(dev);
1532         struct adapter *adap = pi->adapter;
1533
1534         return set_rxq_intr_params(adap, &adap->sge.ethrxq[pi->first_qset].rspq,
1535                         c->rx_coalesce_usecs, c->rx_max_coalesced_frames);
1536 }
1537
1538 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1539 {
1540         const struct port_info *pi = netdev_priv(dev);
1541         const struct adapter *adap = pi->adapter;
1542         const struct sge_rspq *rq = &adap->sge.ethrxq[pi->first_qset].rspq;
1543
1544         c->rx_coalesce_usecs = qtimer_val(adap, rq);
1545         c->rx_max_coalesced_frames = (rq->intr_params & QINTR_CNT_EN) ?
1546                 adap->sge.counter_val[rq->pktcnt_idx] : 0;
1547         return 0;
1548 }
1549
1550 /*
1551  * Translate a physical EEPROM address to virtual.  The first 1K is accessed
1552  * through virtual addresses starting at 31K, the rest is accessed through
1553  * virtual addresses starting at 0.  This mapping is correct only for PF0.
1554  */
1555 static int eeprom_ptov(unsigned int phys_addr)
1556 {
1557         if (phys_addr < 1024)
1558                 return phys_addr + (31 << 10);
1559         if (phys_addr < EEPROMSIZE)
1560                 return phys_addr - 1024;
1561         return -EINVAL;
1562 }
1563
1564 /*
1565  * The next two routines implement eeprom read/write from physical addresses.
1566  * The physical->virtual translation is correct only for PF0.
1567  */
1568 static int eeprom_rd_phys(struct adapter *adap, unsigned int phys_addr, u32 *v)
1569 {
1570         int vaddr = eeprom_ptov(phys_addr);
1571
1572         if (vaddr >= 0)
1573                 vaddr = pci_read_vpd(adap->pdev, vaddr, sizeof(u32), v);
1574         return vaddr < 0 ? vaddr : 0;
1575 }
1576
1577 static int eeprom_wr_phys(struct adapter *adap, unsigned int phys_addr, u32 v)
1578 {
1579         int vaddr = eeprom_ptov(phys_addr);
1580
1581         if (vaddr >= 0)
1582                 vaddr = pci_write_vpd(adap->pdev, vaddr, sizeof(u32), &v);
1583         return vaddr < 0 ? vaddr : 0;
1584 }
1585
1586 #define EEPROM_MAGIC 0x38E2F10C
1587
1588 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1589                       u8 *data)
1590 {
1591         int i, err = 0;
1592         struct adapter *adapter = netdev2adap(dev);
1593
1594         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1595         if (!buf)
1596                 return -ENOMEM;
1597
1598         e->magic = EEPROM_MAGIC;
1599         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1600                 err = eeprom_rd_phys(adapter, i, (u32 *)&buf[i]);
1601
1602         if (!err)
1603                 memcpy(data, buf + e->offset, e->len);
1604         kfree(buf);
1605         return err;
1606 }
1607
1608 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1609                       u8 *data)
1610 {
1611         u8 *buf;
1612         int err = 0;
1613         u32 aligned_offset, aligned_len, *p;
1614         struct adapter *adapter = netdev2adap(dev);
1615
1616         if (eeprom->magic != EEPROM_MAGIC)
1617                 return -EINVAL;
1618
1619         aligned_offset = eeprom->offset & ~3;
1620         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
1621
1622         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
1623                 /*
1624                  * RMW possibly needed for first or last words.
1625                  */
1626                 buf = kmalloc(aligned_len, GFP_KERNEL);
1627                 if (!buf)
1628                         return -ENOMEM;
1629                 err = eeprom_rd_phys(adapter, aligned_offset, (u32 *)buf);
1630                 if (!err && aligned_len > 4)
1631                         err = eeprom_rd_phys(adapter,
1632                                              aligned_offset + aligned_len - 4,
1633                                              (u32 *)&buf[aligned_len - 4]);
1634                 if (err)
1635                         goto out;
1636                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
1637         } else
1638                 buf = data;
1639
1640         err = t4_seeprom_wp(adapter, false);
1641         if (err)
1642                 goto out;
1643
1644         for (p = (u32 *)buf; !err && aligned_len; aligned_len -= 4, p++) {
1645                 err = eeprom_wr_phys(adapter, aligned_offset, *p);
1646                 aligned_offset += 4;
1647         }
1648
1649         if (!err)
1650                 err = t4_seeprom_wp(adapter, true);
1651 out:
1652         if (buf != data)
1653                 kfree(buf);
1654         return err;
1655 }
1656
1657 static int set_flash(struct net_device *netdev, struct ethtool_flash *ef)
1658 {
1659         int ret;
1660         const struct firmware *fw;
1661         struct adapter *adap = netdev2adap(netdev);
1662
1663         ef->data[sizeof(ef->data) - 1] = '\0';
1664         ret = request_firmware(&fw, ef->data, adap->pdev_dev);
1665         if (ret < 0)
1666                 return ret;
1667
1668         ret = t4_load_fw(adap, fw->data, fw->size);
1669         release_firmware(fw);
1670         if (!ret)
1671                 dev_info(adap->pdev_dev, "loaded firmware %s\n", ef->data);
1672         return ret;
1673 }
1674
1675 #define WOL_SUPPORTED (WAKE_BCAST | WAKE_MAGIC)
1676 #define BCAST_CRC 0xa0ccc1a6
1677
1678 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1679 {
1680         wol->supported = WAKE_BCAST | WAKE_MAGIC;
1681         wol->wolopts = netdev2adap(dev)->wol;
1682         memset(&wol->sopass, 0, sizeof(wol->sopass));
1683 }
1684
1685 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
1686 {
1687         int err = 0;
1688         struct port_info *pi = netdev_priv(dev);
1689
1690         if (wol->wolopts & ~WOL_SUPPORTED)
1691                 return -EINVAL;
1692         t4_wol_magic_enable(pi->adapter, pi->tx_chan,
1693                             (wol->wolopts & WAKE_MAGIC) ? dev->dev_addr : NULL);
1694         if (wol->wolopts & WAKE_BCAST) {
1695                 err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0xfe, ~0ULL,
1696                                         ~0ULL, 0, false);
1697                 if (!err)
1698                         err = t4_wol_pat_enable(pi->adapter, pi->tx_chan, 1,
1699                                                 ~6ULL, ~0ULL, BCAST_CRC, true);
1700         } else
1701                 t4_wol_pat_enable(pi->adapter, pi->tx_chan, 0, 0, 0, 0, false);
1702         return err;
1703 }
1704
1705 static int set_tso(struct net_device *dev, u32 value)
1706 {
1707         if (value)
1708                 dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1709         else
1710                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
1711         return 0;
1712 }
1713
1714 static struct ethtool_ops cxgb_ethtool_ops = {
1715         .get_settings      = get_settings,
1716         .set_settings      = set_settings,
1717         .get_drvinfo       = get_drvinfo,
1718         .get_msglevel      = get_msglevel,
1719         .set_msglevel      = set_msglevel,
1720         .get_ringparam     = get_sge_param,
1721         .set_ringparam     = set_sge_param,
1722         .get_coalesce      = get_coalesce,
1723         .set_coalesce      = set_coalesce,
1724         .get_eeprom_len    = get_eeprom_len,
1725         .get_eeprom        = get_eeprom,
1726         .set_eeprom        = set_eeprom,
1727         .get_pauseparam    = get_pauseparam,
1728         .set_pauseparam    = set_pauseparam,
1729         .get_rx_csum       = get_rx_csum,
1730         .set_rx_csum       = set_rx_csum,
1731         .set_tx_csum       = ethtool_op_set_tx_ipv6_csum,
1732         .set_sg            = ethtool_op_set_sg,
1733         .get_link          = ethtool_op_get_link,
1734         .get_strings       = get_strings,
1735         .phys_id           = identify_port,
1736         .nway_reset        = restart_autoneg,
1737         .get_sset_count    = get_sset_count,
1738         .get_ethtool_stats = get_stats,
1739         .get_regs_len      = get_regs_len,
1740         .get_regs          = get_regs,
1741         .get_wol           = get_wol,
1742         .set_wol           = set_wol,
1743         .set_tso           = set_tso,
1744         .flash_device      = set_flash,
1745 };
1746
1747 /*
1748  * debugfs support
1749  */
1750
1751 static int mem_open(struct inode *inode, struct file *file)
1752 {
1753         file->private_data = inode->i_private;
1754         return 0;
1755 }
1756
1757 static ssize_t mem_read(struct file *file, char __user *buf, size_t count,
1758                         loff_t *ppos)
1759 {
1760         loff_t pos = *ppos;
1761         loff_t avail = file->f_path.dentry->d_inode->i_size;
1762         unsigned int mem = (uintptr_t)file->private_data & 3;
1763         struct adapter *adap = file->private_data - mem;
1764
1765         if (pos < 0)
1766                 return -EINVAL;
1767         if (pos >= avail)
1768                 return 0;
1769         if (count > avail - pos)
1770                 count = avail - pos;
1771
1772         while (count) {
1773                 size_t len;
1774                 int ret, ofst;
1775                 __be32 data[16];
1776
1777                 if (mem == MEM_MC)
1778                         ret = t4_mc_read(adap, pos, data, NULL);
1779                 else
1780                         ret = t4_edc_read(adap, mem, pos, data, NULL);
1781                 if (ret)
1782                         return ret;
1783
1784                 ofst = pos % sizeof(data);
1785                 len = min(count, sizeof(data) - ofst);
1786                 if (copy_to_user(buf, (u8 *)data + ofst, len))
1787                         return -EFAULT;
1788
1789                 buf += len;
1790                 pos += len;
1791                 count -= len;
1792         }
1793         count = pos - *ppos;
1794         *ppos = pos;
1795         return count;
1796 }
1797
1798 static const struct file_operations mem_debugfs_fops = {
1799         .owner   = THIS_MODULE,
1800         .open    = mem_open,
1801         .read    = mem_read,
1802 };
1803
1804 static void __devinit add_debugfs_mem(struct adapter *adap, const char *name,
1805                                       unsigned int idx, unsigned int size_mb)
1806 {
1807         struct dentry *de;
1808
1809         de = debugfs_create_file(name, S_IRUSR, adap->debugfs_root,
1810                                  (void *)adap + idx, &mem_debugfs_fops);
1811         if (de && de->d_inode)
1812                 de->d_inode->i_size = size_mb << 20;
1813 }
1814
1815 static int __devinit setup_debugfs(struct adapter *adap)
1816 {
1817         int i;
1818
1819         if (IS_ERR_OR_NULL(adap->debugfs_root))
1820                 return -1;
1821
1822         i = t4_read_reg(adap, MA_TARGET_MEM_ENABLE);
1823         if (i & EDRAM0_ENABLE)
1824                 add_debugfs_mem(adap, "edc0", MEM_EDC0, 5);
1825         if (i & EDRAM1_ENABLE)
1826                 add_debugfs_mem(adap, "edc1", MEM_EDC1, 5);
1827         if (i & EXT_MEM_ENABLE)
1828                 add_debugfs_mem(adap, "mc", MEM_MC,
1829                         EXT_MEM_SIZE_GET(t4_read_reg(adap, MA_EXT_MEMORY_BAR)));
1830         if (adap->l2t)
1831                 debugfs_create_file("l2t", S_IRUSR, adap->debugfs_root, adap,
1832                                     &t4_l2t_fops);
1833         return 0;
1834 }
1835
1836 /*
1837  * upper-layer driver support
1838  */
1839
1840 /*
1841  * Allocate an active-open TID and set it to the supplied value.
1842  */
1843 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1844 {
1845         int atid = -1;
1846
1847         spin_lock_bh(&t->atid_lock);
1848         if (t->afree) {
1849                 union aopen_entry *p = t->afree;
1850
1851                 atid = p - t->atid_tab;
1852                 t->afree = p->next;
1853                 p->data = data;
1854                 t->atids_in_use++;
1855         }
1856         spin_unlock_bh(&t->atid_lock);
1857         return atid;
1858 }
1859 EXPORT_SYMBOL(cxgb4_alloc_atid);
1860
1861 /*
1862  * Release an active-open TID.
1863  */
1864 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1865 {
1866         union aopen_entry *p = &t->atid_tab[atid];
1867
1868         spin_lock_bh(&t->atid_lock);
1869         p->next = t->afree;
1870         t->afree = p;
1871         t->atids_in_use--;
1872         spin_unlock_bh(&t->atid_lock);
1873 }
1874 EXPORT_SYMBOL(cxgb4_free_atid);
1875
1876 /*
1877  * Allocate a server TID and set it to the supplied value.
1878  */
1879 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1880 {
1881         int stid;
1882
1883         spin_lock_bh(&t->stid_lock);
1884         if (family == PF_INET) {
1885                 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1886                 if (stid < t->nstids)
1887                         __set_bit(stid, t->stid_bmap);
1888                 else
1889                         stid = -1;
1890         } else {
1891                 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 2);
1892                 if (stid < 0)
1893                         stid = -1;
1894         }
1895         if (stid >= 0) {
1896                 t->stid_tab[stid].data = data;
1897                 stid += t->stid_base;
1898                 t->stids_in_use++;
1899         }
1900         spin_unlock_bh(&t->stid_lock);
1901         return stid;
1902 }
1903 EXPORT_SYMBOL(cxgb4_alloc_stid);
1904
1905 /*
1906  * Release a server TID.
1907  */
1908 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1909 {
1910         stid -= t->stid_base;
1911         spin_lock_bh(&t->stid_lock);
1912         if (family == PF_INET)
1913                 __clear_bit(stid, t->stid_bmap);
1914         else
1915                 bitmap_release_region(t->stid_bmap, stid, 2);
1916         t->stid_tab[stid].data = NULL;
1917         t->stids_in_use--;
1918         spin_unlock_bh(&t->stid_lock);
1919 }
1920 EXPORT_SYMBOL(cxgb4_free_stid);
1921
1922 /*
1923  * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1924  */
1925 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1926                            unsigned int tid)
1927 {
1928         struct cpl_tid_release *req;
1929
1930         set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1931         req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1932         INIT_TP_WR(req, tid);
1933         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1934 }
1935
1936 /*
1937  * Queue a TID release request and if necessary schedule a work queue to
1938  * process it.
1939  */
1940 void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1941                              unsigned int tid)
1942 {
1943         void **p = &t->tid_tab[tid];
1944         struct adapter *adap = container_of(t, struct adapter, tids);
1945
1946         spin_lock_bh(&adap->tid_release_lock);
1947         *p = adap->tid_release_head;
1948         /* Low 2 bits encode the Tx channel number */
1949         adap->tid_release_head = (void **)((uintptr_t)p | chan);
1950         if (!adap->tid_release_task_busy) {
1951                 adap->tid_release_task_busy = true;
1952                 schedule_work(&adap->tid_release_task);
1953         }
1954         spin_unlock_bh(&adap->tid_release_lock);
1955 }
1956 EXPORT_SYMBOL(cxgb4_queue_tid_release);
1957
1958 /*
1959  * Process the list of pending TID release requests.
1960  */
1961 static void process_tid_release_list(struct work_struct *work)
1962 {
1963         struct sk_buff *skb;
1964         struct adapter *adap;
1965
1966         adap = container_of(work, struct adapter, tid_release_task);
1967
1968         spin_lock_bh(&adap->tid_release_lock);
1969         while (adap->tid_release_head) {
1970                 void **p = adap->tid_release_head;
1971                 unsigned int chan = (uintptr_t)p & 3;
1972                 p = (void *)p - chan;
1973
1974                 adap->tid_release_head = *p;
1975                 *p = NULL;
1976                 spin_unlock_bh(&adap->tid_release_lock);
1977
1978                 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1979                                          GFP_KERNEL)))
1980                         schedule_timeout_uninterruptible(1);
1981
1982                 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1983                 t4_ofld_send(adap, skb);
1984                 spin_lock_bh(&adap->tid_release_lock);
1985         }
1986         adap->tid_release_task_busy = false;
1987         spin_unlock_bh(&adap->tid_release_lock);
1988 }
1989
1990 /*
1991  * Release a TID and inform HW.  If we are unable to allocate the release
1992  * message we defer to a work queue.
1993  */
1994 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1995 {
1996         void *old;
1997         struct sk_buff *skb;
1998         struct adapter *adap = container_of(t, struct adapter, tids);
1999
2000         old = t->tid_tab[tid];
2001         skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
2002         if (likely(skb)) {
2003                 t->tid_tab[tid] = NULL;
2004                 mk_tid_release(skb, chan, tid);
2005                 t4_ofld_send(adap, skb);
2006         } else
2007                 cxgb4_queue_tid_release(t, chan, tid);
2008         if (old)
2009                 atomic_dec(&t->tids_in_use);
2010 }
2011 EXPORT_SYMBOL(cxgb4_remove_tid);
2012
2013 /*
2014  * Allocate and initialize the TID tables.  Returns 0 on success.
2015  */
2016 static int tid_init(struct tid_info *t)
2017 {
2018         size_t size;
2019         unsigned int natids = t->natids;
2020
2021         size = t->ntids * sizeof(*t->tid_tab) + natids * sizeof(*t->atid_tab) +
2022                t->nstids * sizeof(*t->stid_tab) +
2023                BITS_TO_LONGS(t->nstids) * sizeof(long);
2024         t->tid_tab = t4_alloc_mem(size);
2025         if (!t->tid_tab)
2026                 return -ENOMEM;
2027
2028         t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
2029         t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
2030         t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids];
2031         spin_lock_init(&t->stid_lock);
2032         spin_lock_init(&t->atid_lock);
2033
2034         t->stids_in_use = 0;
2035         t->afree = NULL;
2036         t->atids_in_use = 0;
2037         atomic_set(&t->tids_in_use, 0);
2038
2039         /* Setup the free list for atid_tab and clear the stid bitmap. */
2040         if (natids) {
2041                 while (--natids)
2042                         t->atid_tab[natids - 1].next = &t->atid_tab[natids];
2043                 t->afree = t->atid_tab;
2044         }
2045         bitmap_zero(t->stid_bmap, t->nstids);
2046         return 0;
2047 }
2048
2049 /**
2050  *      cxgb4_create_server - create an IP server
2051  *      @dev: the device
2052  *      @stid: the server TID
2053  *      @sip: local IP address to bind server to
2054  *      @sport: the server's TCP port
2055  *      @queue: queue to direct messages from this server to
2056  *
2057  *      Create an IP server for the given port and address.
2058  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2059  */
2060 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
2061                         __be32 sip, __be16 sport, unsigned int queue)
2062 {
2063         unsigned int chan;
2064         struct sk_buff *skb;
2065         struct adapter *adap;
2066         struct cpl_pass_open_req *req;
2067
2068         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2069         if (!skb)
2070                 return -ENOMEM;
2071
2072         adap = netdev2adap(dev);
2073         req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
2074         INIT_TP_WR(req, 0);
2075         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
2076         req->local_port = sport;
2077         req->peer_port = htons(0);
2078         req->local_ip = sip;
2079         req->peer_ip = htonl(0);
2080         chan = netdev2pinfo(adap->sge.ingr_map[queue]->netdev)->tx_chan;
2081         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2082         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2083                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2084         return t4_mgmt_tx(adap, skb);
2085 }
2086 EXPORT_SYMBOL(cxgb4_create_server);
2087
2088 /**
2089  *      cxgb4_create_server6 - create an IPv6 server
2090  *      @dev: the device
2091  *      @stid: the server TID
2092  *      @sip: local IPv6 address to bind server to
2093  *      @sport: the server's TCP port
2094  *      @queue: queue to direct messages from this server to
2095  *
2096  *      Create an IPv6 server for the given port and address.
2097  *      Returns <0 on error and one of the %NET_XMIT_* values on success.
2098  */
2099 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
2100                          const struct in6_addr *sip, __be16 sport,
2101                          unsigned int queue)
2102 {
2103         unsigned int chan;
2104         struct sk_buff *skb;
2105         struct adapter *adap;
2106         struct cpl_pass_open_req6 *req;
2107
2108         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
2109         if (!skb)
2110                 return -ENOMEM;
2111
2112         adap = netdev2adap(dev);
2113         req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
2114         INIT_TP_WR(req, 0);
2115         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
2116         req->local_port = sport;
2117         req->peer_port = htons(0);
2118         req->local_ip_hi = *(__be64 *)(sip->s6_addr);
2119         req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
2120         req->peer_ip_hi = cpu_to_be64(0);
2121         req->peer_ip_lo = cpu_to_be64(0);
2122         chan = netdev2pinfo(adap->sge.ingr_map[queue]->netdev)->tx_chan;
2123         req->opt0 = cpu_to_be64(TX_CHAN(chan));
2124         req->opt1 = cpu_to_be64(CONN_POLICY_ASK |
2125                                 SYN_RSS_ENABLE | SYN_RSS_QUEUE(queue));
2126         return t4_mgmt_tx(adap, skb);
2127 }
2128 EXPORT_SYMBOL(cxgb4_create_server6);
2129
2130 /**
2131  *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
2132  *      @mtus: the HW MTU table
2133  *      @mtu: the target MTU
2134  *      @idx: index of selected entry in the MTU table
2135  *
2136  *      Returns the index and the value in the HW MTU table that is closest to
2137  *      but does not exceed @mtu, unless @mtu is smaller than any value in the
2138  *      table, in which case that smallest available value is selected.
2139  */
2140 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
2141                             unsigned int *idx)
2142 {
2143         unsigned int i = 0;
2144
2145         while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
2146                 ++i;
2147         if (idx)
2148                 *idx = i;
2149         return mtus[i];
2150 }
2151 EXPORT_SYMBOL(cxgb4_best_mtu);
2152
2153 /**
2154  *      cxgb4_port_chan - get the HW channel of a port
2155  *      @dev: the net device for the port
2156  *
2157  *      Return the HW Tx channel of the given port.
2158  */
2159 unsigned int cxgb4_port_chan(const struct net_device *dev)
2160 {
2161         return netdev2pinfo(dev)->tx_chan;
2162 }
2163 EXPORT_SYMBOL(cxgb4_port_chan);
2164
2165 /**
2166  *      cxgb4_port_viid - get the VI id of a port
2167  *      @dev: the net device for the port
2168  *
2169  *      Return the VI id of the given port.
2170  */
2171 unsigned int cxgb4_port_viid(const struct net_device *dev)
2172 {
2173         return netdev2pinfo(dev)->viid;
2174 }
2175 EXPORT_SYMBOL(cxgb4_port_viid);
2176
2177 /**
2178  *      cxgb4_port_idx - get the index of a port
2179  *      @dev: the net device for the port
2180  *
2181  *      Return the index of the given port.
2182  */
2183 unsigned int cxgb4_port_idx(const struct net_device *dev)
2184 {
2185         return netdev2pinfo(dev)->port_id;
2186 }
2187 EXPORT_SYMBOL(cxgb4_port_idx);
2188
2189 /**
2190  *      cxgb4_netdev_by_hwid - return the net device of a HW port
2191  *      @pdev: identifies the adapter
2192  *      @id: the HW port id
2193  *
2194  *      Return the net device associated with the interface with the given HW
2195  *      id.
2196  */
2197 struct net_device *cxgb4_netdev_by_hwid(struct pci_dev *pdev, unsigned int id)
2198 {
2199         const struct adapter *adap = pci_get_drvdata(pdev);
2200
2201         if (!adap || id >= NCHAN)
2202                 return NULL;
2203         id = adap->chan_map[id];
2204         return id < MAX_NPORTS ? adap->port[id] : NULL;
2205 }
2206 EXPORT_SYMBOL(cxgb4_netdev_by_hwid);
2207
2208 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2209                          struct tp_tcp_stats *v6)
2210 {
2211         struct adapter *adap = pci_get_drvdata(pdev);
2212
2213         spin_lock(&adap->stats_lock);
2214         t4_tp_get_tcp_stats(adap, v4, v6);
2215         spin_unlock(&adap->stats_lock);
2216 }
2217 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2218
2219 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2220                       const unsigned int *pgsz_order)
2221 {
2222         struct adapter *adap = netdev2adap(dev);
2223
2224         t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK, tag_mask);
2225         t4_write_reg(adap, ULP_RX_ISCSI_PSZ, HPZ0(pgsz_order[0]) |
2226                      HPZ1(pgsz_order[1]) | HPZ2(pgsz_order[2]) |
2227                      HPZ3(pgsz_order[3]));
2228 }
2229 EXPORT_SYMBOL(cxgb4_iscsi_init);
2230
2231 static struct pci_driver cxgb4_driver;
2232
2233 static void check_neigh_update(struct neighbour *neigh)
2234 {
2235         const struct device *parent;
2236         const struct net_device *netdev = neigh->dev;
2237
2238         if (netdev->priv_flags & IFF_802_1Q_VLAN)
2239                 netdev = vlan_dev_real_dev(netdev);
2240         parent = netdev->dev.parent;
2241         if (parent && parent->driver == &cxgb4_driver.driver)
2242                 t4_l2t_update(dev_get_drvdata(parent), neigh);
2243 }
2244
2245 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2246                        void *data)
2247 {
2248         switch (event) {
2249         case NETEVENT_NEIGH_UPDATE:
2250                 check_neigh_update(data);
2251                 break;
2252         case NETEVENT_PMTU_UPDATE:
2253         case NETEVENT_REDIRECT:
2254         default:
2255                 break;
2256         }
2257         return 0;
2258 }
2259
2260 static bool netevent_registered;
2261 static struct notifier_block cxgb4_netevent_nb = {
2262         .notifier_call = netevent_cb
2263 };
2264
2265 static void uld_attach(struct adapter *adap, unsigned int uld)
2266 {
2267         void *handle;
2268         struct cxgb4_lld_info lli;
2269
2270         lli.pdev = adap->pdev;
2271         lli.l2t = adap->l2t;
2272         lli.tids = &adap->tids;
2273         lli.ports = adap->port;
2274         lli.vr = &adap->vres;
2275         lli.mtus = adap->params.mtus;
2276         if (uld == CXGB4_ULD_RDMA) {
2277                 lli.rxq_ids = adap->sge.rdma_rxq;
2278                 lli.nrxq = adap->sge.rdmaqs;
2279         } else if (uld == CXGB4_ULD_ISCSI) {
2280                 lli.rxq_ids = adap->sge.ofld_rxq;
2281                 lli.nrxq = adap->sge.ofldqsets;
2282         }
2283         lli.ntxq = adap->sge.ofldqsets;
2284         lli.nchan = adap->params.nports;
2285         lli.nports = adap->params.nports;
2286         lli.wr_cred = adap->params.ofldq_wr_cred;
2287         lli.adapter_type = adap->params.rev;
2288         lli.iscsi_iolen = MAXRXDATA_GET(t4_read_reg(adap, TP_PARA_REG2));
2289         lli.udb_density = 1 << QUEUESPERPAGEPF0_GET(
2290                         t4_read_reg(adap, SGE_EGRESS_QUEUES_PER_PAGE_PF));
2291         lli.ucq_density = 1 << QUEUESPERPAGEPF0_GET(
2292                         t4_read_reg(adap, SGE_INGRESS_QUEUES_PER_PAGE_PF));
2293         lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS);
2294         lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL);
2295         lli.fw_vers = adap->params.fw_vers;
2296
2297         handle = ulds[uld].add(&lli);
2298         if (IS_ERR(handle)) {
2299                 dev_warn(adap->pdev_dev,
2300                          "could not attach to the %s driver, error %ld\n",
2301                          uld_str[uld], PTR_ERR(handle));
2302                 return;
2303         }
2304
2305         adap->uld_handle[uld] = handle;
2306
2307         if (!netevent_registered) {
2308                 register_netevent_notifier(&cxgb4_netevent_nb);
2309                 netevent_registered = true;
2310         }
2311 }
2312
2313 static void attach_ulds(struct adapter *adap)
2314 {
2315         unsigned int i;
2316
2317         mutex_lock(&uld_mutex);
2318         list_add_tail(&adap->list_node, &adapter_list);
2319         for (i = 0; i < CXGB4_ULD_MAX; i++)
2320                 if (ulds[i].add)
2321                         uld_attach(adap, i);
2322         mutex_unlock(&uld_mutex);
2323 }
2324
2325 static void detach_ulds(struct adapter *adap)
2326 {
2327         unsigned int i;
2328
2329         mutex_lock(&uld_mutex);
2330         list_del(&adap->list_node);
2331         for (i = 0; i < CXGB4_ULD_MAX; i++)
2332                 if (adap->uld_handle[i]) {
2333                         ulds[i].state_change(adap->uld_handle[i],
2334                                              CXGB4_STATE_DETACH);
2335                         adap->uld_handle[i] = NULL;
2336                 }
2337         if (netevent_registered && list_empty(&adapter_list)) {
2338                 unregister_netevent_notifier(&cxgb4_netevent_nb);
2339                 netevent_registered = false;
2340         }
2341         mutex_unlock(&uld_mutex);
2342 }
2343
2344 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2345 {
2346         unsigned int i;
2347
2348         mutex_lock(&uld_mutex);
2349         for (i = 0; i < CXGB4_ULD_MAX; i++)
2350                 if (adap->uld_handle[i])
2351                         ulds[i].state_change(adap->uld_handle[i], new_state);
2352         mutex_unlock(&uld_mutex);
2353 }
2354
2355 /**
2356  *      cxgb4_register_uld - register an upper-layer driver
2357  *      @type: the ULD type
2358  *      @p: the ULD methods
2359  *
2360  *      Registers an upper-layer driver with this driver and notifies the ULD
2361  *      about any presently available devices that support its type.  Returns
2362  *      %-EBUSY if a ULD of the same type is already registered.
2363  */
2364 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2365 {
2366         int ret = 0;
2367         struct adapter *adap;
2368
2369         if (type >= CXGB4_ULD_MAX)
2370                 return -EINVAL;
2371         mutex_lock(&uld_mutex);
2372         if (ulds[type].add) {
2373                 ret = -EBUSY;
2374                 goto out;
2375         }
2376         ulds[type] = *p;
2377         list_for_each_entry(adap, &adapter_list, list_node)
2378                 uld_attach(adap, type);
2379 out:    mutex_unlock(&uld_mutex);
2380         return ret;
2381 }
2382 EXPORT_SYMBOL(cxgb4_register_uld);
2383
2384 /**
2385  *      cxgb4_unregister_uld - unregister an upper-layer driver
2386  *      @type: the ULD type
2387  *
2388  *      Unregisters an existing upper-layer driver.
2389  */
2390 int cxgb4_unregister_uld(enum cxgb4_uld type)
2391 {
2392         struct adapter *adap;
2393
2394         if (type >= CXGB4_ULD_MAX)
2395                 return -EINVAL;
2396         mutex_lock(&uld_mutex);
2397         list_for_each_entry(adap, &adapter_list, list_node)
2398                 adap->uld_handle[type] = NULL;
2399         ulds[type].add = NULL;
2400         mutex_unlock(&uld_mutex);
2401         return 0;
2402 }
2403 EXPORT_SYMBOL(cxgb4_unregister_uld);
2404
2405 /**
2406  *      cxgb_up - enable the adapter
2407  *      @adap: adapter being enabled
2408  *
2409  *      Called when the first port is enabled, this function performs the
2410  *      actions necessary to make an adapter operational, such as completing
2411  *      the initialization of HW modules, and enabling interrupts.
2412  *
2413  *      Must be called with the rtnl lock held.
2414  */
2415 static int cxgb_up(struct adapter *adap)
2416 {
2417         int err = 0;
2418
2419         if (!(adap->flags & FULL_INIT_DONE)) {
2420                 err = setup_sge_queues(adap);
2421                 if (err)
2422                         goto out;
2423                 err = setup_rss(adap);
2424                 if (err) {
2425                         t4_free_sge_resources(adap);
2426                         goto out;
2427                 }
2428                 if (adap->flags & USING_MSIX)
2429                         name_msix_vecs(adap);
2430                 adap->flags |= FULL_INIT_DONE;
2431         }
2432
2433         if (adap->flags & USING_MSIX) {
2434                 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2435                                   adap->msix_info[0].desc, adap);
2436                 if (err)
2437                         goto irq_err;
2438
2439                 err = request_msix_queue_irqs(adap);
2440                 if (err) {
2441                         free_irq(adap->msix_info[0].vec, adap);
2442                         goto irq_err;
2443                 }
2444         } else {
2445                 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2446                                   (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2447                                   adap->name, adap);
2448                 if (err)
2449                         goto irq_err;
2450         }
2451         enable_rx(adap);
2452         t4_sge_start(adap);
2453         t4_intr_enable(adap);
2454         notify_ulds(adap, CXGB4_STATE_UP);
2455  out:
2456         return err;
2457  irq_err:
2458         dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2459         goto out;
2460 }
2461
2462 static void cxgb_down(struct adapter *adapter)
2463 {
2464         t4_intr_disable(adapter);
2465         cancel_work_sync(&adapter->tid_release_task);
2466         adapter->tid_release_task_busy = false;
2467
2468         if (adapter->flags & USING_MSIX) {
2469                 free_msix_queue_irqs(adapter);
2470                 free_irq(adapter->msix_info[0].vec, adapter);
2471         } else
2472                 free_irq(adapter->pdev->irq, adapter);
2473         quiesce_rx(adapter);
2474 }
2475
2476 /*
2477  * net_device operations
2478  */
2479 static int cxgb_open(struct net_device *dev)
2480 {
2481         int err;
2482         struct port_info *pi = netdev_priv(dev);
2483         struct adapter *adapter = pi->adapter;
2484
2485         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
2486                 return err;
2487
2488         dev->real_num_tx_queues = pi->nqsets;
2489         set_bit(pi->tx_chan, &adapter->open_device_map);
2490         link_start(dev);
2491         netif_tx_start_all_queues(dev);
2492         return 0;
2493 }
2494
2495 static int cxgb_close(struct net_device *dev)
2496 {
2497         int ret;
2498         struct port_info *pi = netdev_priv(dev);
2499         struct adapter *adapter = pi->adapter;
2500
2501         netif_tx_stop_all_queues(dev);
2502         netif_carrier_off(dev);
2503         ret = t4_enable_vi(adapter, 0, pi->viid, false, false);
2504
2505         clear_bit(pi->tx_chan, &adapter->open_device_map);
2506
2507         if (!adapter->open_device_map)
2508                 cxgb_down(adapter);
2509         return 0;
2510 }
2511
2512 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
2513 {
2514         struct port_stats stats;
2515         struct port_info *p = netdev_priv(dev);
2516         struct adapter *adapter = p->adapter;
2517         struct net_device_stats *ns = &dev->stats;
2518
2519         spin_lock(&adapter->stats_lock);
2520         t4_get_port_stats(adapter, p->tx_chan, &stats);
2521         spin_unlock(&adapter->stats_lock);
2522
2523         ns->tx_bytes   = stats.tx_octets;
2524         ns->tx_packets = stats.tx_frames;
2525         ns->rx_bytes   = stats.rx_octets;
2526         ns->rx_packets = stats.rx_frames;
2527         ns->multicast  = stats.rx_mcast_frames;
2528
2529         /* detailed rx_errors */
2530         ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2531                                stats.rx_runt;
2532         ns->rx_over_errors   = 0;
2533         ns->rx_crc_errors    = stats.rx_fcs_err;
2534         ns->rx_frame_errors  = stats.rx_symbol_err;
2535         ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2536                                stats.rx_ovflow2 + stats.rx_ovflow3 +
2537                                stats.rx_trunc0 + stats.rx_trunc1 +
2538                                stats.rx_trunc2 + stats.rx_trunc3;
2539         ns->rx_missed_errors = 0;
2540
2541         /* detailed tx_errors */
2542         ns->tx_aborted_errors   = 0;
2543         ns->tx_carrier_errors   = 0;
2544         ns->tx_fifo_errors      = 0;
2545         ns->tx_heartbeat_errors = 0;
2546         ns->tx_window_errors    = 0;
2547
2548         ns->tx_errors = stats.tx_error_frames;
2549         ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2550                 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2551         return ns;
2552 }
2553
2554 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2555 {
2556         int ret = 0, prtad, devad;
2557         struct port_info *pi = netdev_priv(dev);
2558         struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2559
2560         switch (cmd) {
2561         case SIOCGMIIPHY:
2562                 if (pi->mdio_addr < 0)
2563                         return -EOPNOTSUPP;
2564                 data->phy_id = pi->mdio_addr;
2565                 break;
2566         case SIOCGMIIREG:
2567         case SIOCSMIIREG:
2568                 if (mdio_phy_id_is_c45(data->phy_id)) {
2569                         prtad = mdio_phy_id_prtad(data->phy_id);
2570                         devad = mdio_phy_id_devad(data->phy_id);
2571                 } else if (data->phy_id < 32) {
2572                         prtad = data->phy_id;
2573                         devad = 0;
2574                         data->reg_num &= 0x1f;
2575                 } else
2576                         return -EINVAL;
2577
2578                 if (cmd == SIOCGMIIREG)
2579                         ret = t4_mdio_rd(pi->adapter, 0, prtad, devad,
2580                                          data->reg_num, &data->val_out);
2581                 else
2582                         ret = t4_mdio_wr(pi->adapter, 0, prtad, devad,
2583                                          data->reg_num, data->val_in);
2584                 break;
2585         default:
2586                 return -EOPNOTSUPP;
2587         }
2588         return ret;
2589 }
2590
2591 static void cxgb_set_rxmode(struct net_device *dev)
2592 {
2593         /* unfortunately we can't return errors to the stack */
2594         set_rxmode(dev, -1, false);
2595 }
2596
2597 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2598 {
2599         int ret;
2600         struct port_info *pi = netdev_priv(dev);
2601
2602         if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
2603                 return -EINVAL;
2604         ret = t4_set_rxmode(pi->adapter, 0, pi->viid, new_mtu, -1, -1, -1,
2605                             true);
2606         if (!ret)
2607                 dev->mtu = new_mtu;
2608         return ret;
2609 }
2610
2611 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2612 {
2613         int ret;
2614         struct sockaddr *addr = p;
2615         struct port_info *pi = netdev_priv(dev);
2616
2617         if (!is_valid_ether_addr(addr->sa_data))
2618                 return -EINVAL;
2619
2620         ret = t4_change_mac(pi->adapter, 0, pi->viid, pi->xact_addr_filt,
2621                             addr->sa_data, true, true);
2622         if (ret < 0)
2623                 return ret;
2624
2625         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2626         pi->xact_addr_filt = ret;
2627         return 0;
2628 }
2629
2630 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2631 {
2632         struct port_info *pi = netdev_priv(dev);
2633
2634         pi->vlan_grp = grp;
2635         t4_set_vlan_accel(pi->adapter, 1 << pi->tx_chan, grp != NULL);
2636 }
2637
2638 #ifdef CONFIG_NET_POLL_CONTROLLER
2639 static void cxgb_netpoll(struct net_device *dev)
2640 {
2641         struct port_info *pi = netdev_priv(dev);
2642         struct adapter *adap = pi->adapter;
2643
2644         if (adap->flags & USING_MSIX) {
2645                 int i;
2646                 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2647
2648                 for (i = pi->nqsets; i; i--, rx++)
2649                         t4_sge_intr_msix(0, &rx->rspq);
2650         } else
2651                 t4_intr_handler(adap)(0, adap);
2652 }
2653 #endif
2654
2655 static const struct net_device_ops cxgb4_netdev_ops = {
2656         .ndo_open             = cxgb_open,
2657         .ndo_stop             = cxgb_close,
2658         .ndo_start_xmit       = t4_eth_xmit,
2659         .ndo_get_stats        = cxgb_get_stats,
2660         .ndo_set_rx_mode      = cxgb_set_rxmode,
2661         .ndo_set_mac_address  = cxgb_set_mac_addr,
2662         .ndo_validate_addr    = eth_validate_addr,
2663         .ndo_do_ioctl         = cxgb_ioctl,
2664         .ndo_change_mtu       = cxgb_change_mtu,
2665         .ndo_vlan_rx_register = vlan_rx_register,
2666 #ifdef CONFIG_NET_POLL_CONTROLLER
2667         .ndo_poll_controller  = cxgb_netpoll,
2668 #endif
2669 };
2670
2671 void t4_fatal_err(struct adapter *adap)
2672 {
2673         t4_set_reg_field(adap, SGE_CONTROL, GLOBALENABLE, 0);
2674         t4_intr_disable(adap);
2675         dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2676 }
2677
2678 static void setup_memwin(struct adapter *adap)
2679 {
2680         u32 bar0;
2681
2682         bar0 = pci_resource_start(adap->pdev, 0);  /* truncation intentional */
2683         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0),
2684                      (bar0 + MEMWIN0_BASE) | BIR(0) |
2685                      WINDOW(ilog2(MEMWIN0_APERTURE) - 10));
2686         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1),
2687                      (bar0 + MEMWIN1_BASE) | BIR(0) |
2688                      WINDOW(ilog2(MEMWIN1_APERTURE) - 10));
2689         t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2),
2690                      (bar0 + MEMWIN2_BASE) | BIR(0) |
2691                      WINDOW(ilog2(MEMWIN2_APERTURE) - 10));
2692 }
2693
2694 /*
2695  * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
2696  */
2697 #define MAX_ATIDS 8192U
2698
2699 /*
2700  * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2701  */
2702 static int adap_init0(struct adapter *adap)
2703 {
2704         int ret;
2705         u32 v, port_vec;
2706         enum dev_state state;
2707         u32 params[7], val[7];
2708         struct fw_caps_config_cmd c;
2709
2710         ret = t4_check_fw_version(adap);
2711         if (ret == -EINVAL || ret > 0) {
2712                 if (upgrade_fw(adap) >= 0)             /* recache FW version */
2713                         ret = t4_check_fw_version(adap);
2714         }
2715         if (ret < 0)
2716                 return ret;
2717
2718         /* contact FW, request master */
2719         ret = t4_fw_hello(adap, 0, 0, MASTER_MUST, &state);
2720         if (ret < 0) {
2721                 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
2722                         ret);
2723                 return ret;
2724         }
2725
2726         /* reset device */
2727         ret = t4_fw_reset(adap, 0, PIORSTMODE | PIORST);
2728         if (ret < 0)
2729                 goto bye;
2730
2731         /* get device capabilities */
2732         memset(&c, 0, sizeof(c));
2733         c.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2734                               FW_CMD_REQUEST | FW_CMD_READ);
2735         c.retval_len16 = htonl(FW_LEN16(c));
2736         ret = t4_wr_mbox(adap, 0, &c, sizeof(c), &c);
2737         if (ret < 0)
2738                 goto bye;
2739
2740         /* select capabilities we'll be using */
2741         if (c.niccaps & htons(FW_CAPS_CONFIG_NIC_VM)) {
2742                 if (!vf_acls)
2743                         c.niccaps ^= htons(FW_CAPS_CONFIG_NIC_VM);
2744                 else
2745                         c.niccaps = htons(FW_CAPS_CONFIG_NIC_VM);
2746         } else if (vf_acls) {
2747                 dev_err(adap->pdev_dev, "virtualization ACLs not supported");
2748                 goto bye;
2749         }
2750         c.op_to_write = htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
2751                               FW_CMD_REQUEST | FW_CMD_WRITE);
2752         ret = t4_wr_mbox(adap, 0, &c, sizeof(c), NULL);
2753         if (ret < 0)
2754                 goto bye;
2755
2756         ret = t4_config_glbl_rss(adap, 0,
2757                                  FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2758                                  FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
2759                                  FW_RSS_GLB_CONFIG_CMD_TNLALLLKP);
2760         if (ret < 0)
2761                 goto bye;
2762
2763         ret = t4_cfg_pfvf(adap, 0, 0, 0, 64, 64, 64, 0, 0, 4, 0xf, 0xf, 16,
2764                           FW_CMD_CAP_PF, FW_CMD_CAP_PF);
2765         if (ret < 0)
2766                 goto bye;
2767
2768         for (v = 0; v < SGE_NTIMERS - 1; v++)
2769                 adap->sge.timer_val[v] = min(intr_holdoff[v], MAX_SGE_TIMERVAL);
2770         adap->sge.timer_val[SGE_NTIMERS - 1] = MAX_SGE_TIMERVAL;
2771         adap->sge.counter_val[0] = 1;
2772         for (v = 1; v < SGE_NCOUNTERS; v++)
2773                 adap->sge.counter_val[v] = min(intr_cnt[v - 1],
2774                                                THRESHOLD_3_MASK);
2775         t4_sge_init(adap);
2776
2777         /* get basic stuff going */
2778         ret = t4_early_init(adap, 0);
2779         if (ret < 0)
2780                 goto bye;
2781
2782 #define FW_PARAM_DEV(param) \
2783         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
2784          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
2785
2786 #define FW_PARAM_PFVF(param) \
2787         (FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
2788          FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
2789
2790         params[0] = FW_PARAM_DEV(PORTVEC);
2791         params[1] = FW_PARAM_PFVF(L2T_START);
2792         params[2] = FW_PARAM_PFVF(L2T_END);
2793         params[3] = FW_PARAM_PFVF(FILTER_START);
2794         params[4] = FW_PARAM_PFVF(FILTER_END);
2795         ret = t4_query_params(adap, 0, 0, 0, 5, params, val);
2796         if (ret < 0)
2797                 goto bye;
2798         port_vec = val[0];
2799         adap->tids.ftid_base = val[3];
2800         adap->tids.nftids = val[4] - val[3] + 1;
2801
2802         if (c.ofldcaps) {
2803                 /* query offload-related parameters */
2804                 params[0] = FW_PARAM_DEV(NTID);
2805                 params[1] = FW_PARAM_PFVF(SERVER_START);
2806                 params[2] = FW_PARAM_PFVF(SERVER_END);
2807                 params[3] = FW_PARAM_PFVF(TDDP_START);
2808                 params[4] = FW_PARAM_PFVF(TDDP_END);
2809                 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
2810                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
2811                 if (ret < 0)
2812                         goto bye;
2813                 adap->tids.ntids = val[0];
2814                 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
2815                 adap->tids.stid_base = val[1];
2816                 adap->tids.nstids = val[2] - val[1] + 1;
2817                 adap->vres.ddp.start = val[3];
2818                 adap->vres.ddp.size = val[4] - val[3] + 1;
2819                 adap->params.ofldq_wr_cred = val[5];
2820                 adap->params.offload = 1;
2821         }
2822         if (c.rdmacaps) {
2823                 params[0] = FW_PARAM_PFVF(STAG_START);
2824                 params[1] = FW_PARAM_PFVF(STAG_END);
2825                 params[2] = FW_PARAM_PFVF(RQ_START);
2826                 params[3] = FW_PARAM_PFVF(RQ_END);
2827                 params[4] = FW_PARAM_PFVF(PBL_START);
2828                 params[5] = FW_PARAM_PFVF(PBL_END);
2829                 ret = t4_query_params(adap, 0, 0, 0, 6, params, val);
2830                 if (ret < 0)
2831                         goto bye;
2832                 adap->vres.stag.start = val[0];
2833                 adap->vres.stag.size = val[1] - val[0] + 1;
2834                 adap->vres.rq.start = val[2];
2835                 adap->vres.rq.size = val[3] - val[2] + 1;
2836                 adap->vres.pbl.start = val[4];
2837                 adap->vres.pbl.size = val[5] - val[4] + 1;
2838         }
2839         if (c.iscsicaps) {
2840                 params[0] = FW_PARAM_PFVF(ISCSI_START);
2841                 params[1] = FW_PARAM_PFVF(ISCSI_END);
2842                 ret = t4_query_params(adap, 0, 0, 0, 2, params, val);
2843                 if (ret < 0)
2844                         goto bye;
2845                 adap->vres.iscsi.start = val[0];
2846                 adap->vres.iscsi.size = val[1] - val[0] + 1;
2847         }
2848 #undef FW_PARAM_PFVF
2849 #undef FW_PARAM_DEV
2850
2851         adap->params.nports = hweight32(port_vec);
2852         adap->params.portvec = port_vec;
2853         adap->flags |= FW_OK;
2854
2855         /* These are finalized by FW initialization, load their values now */
2856         v = t4_read_reg(adap, TP_TIMER_RESOLUTION);
2857         adap->params.tp.tre = TIMERRESOLUTION_GET(v);
2858         t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
2859         t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
2860                      adap->params.b_wnd);
2861
2862         /* tweak some settings */
2863         t4_write_reg(adap, TP_SHIFT_CNT, 0x64f8849);
2864         t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(PAGE_SHIFT - 12));
2865         t4_write_reg(adap, TP_PIO_ADDR, TP_INGRESS_CONFIG);
2866         v = t4_read_reg(adap, TP_PIO_DATA);
2867         t4_write_reg(adap, TP_PIO_DATA, v & ~CSUM_HAS_PSEUDO_HDR);
2868         setup_memwin(adap);
2869         return 0;
2870
2871         /*
2872          * If a command timed out or failed with EIO FW does not operate within
2873          * its spec or something catastrophic happened to HW/FW, stop issuing
2874          * commands.
2875          */
2876 bye:    if (ret != -ETIMEDOUT && ret != -EIO)
2877                 t4_fw_bye(adap, 0);
2878         return ret;
2879 }
2880
2881 static inline bool is_10g_port(const struct link_config *lc)
2882 {
2883         return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0;
2884 }
2885
2886 static inline void init_rspq(struct sge_rspq *q, u8 timer_idx, u8 pkt_cnt_idx,
2887                              unsigned int size, unsigned int iqe_size)
2888 {
2889         q->intr_params = QINTR_TIMER_IDX(timer_idx) |
2890                          (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0);
2891         q->pktcnt_idx = pkt_cnt_idx < SGE_NCOUNTERS ? pkt_cnt_idx : 0;
2892         q->iqe_len = iqe_size;
2893         q->size = size;
2894 }
2895
2896 /*
2897  * Perform default configuration of DMA queues depending on the number and type
2898  * of ports we found and the number of available CPUs.  Most settings can be
2899  * modified by the admin prior to actual use.
2900  */
2901 static void __devinit cfg_queues(struct adapter *adap)
2902 {
2903         struct sge *s = &adap->sge;
2904         int i, q10g = 0, n10g = 0, qidx = 0;
2905
2906         for_each_port(adap, i)
2907                 n10g += is_10g_port(&adap2pinfo(adap, i)->link_cfg);
2908
2909         /*
2910          * We default to 1 queue per non-10G port and up to # of cores queues
2911          * per 10G port.
2912          */
2913         if (n10g)
2914                 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
2915         if (q10g > num_online_cpus())
2916                 q10g = num_online_cpus();
2917
2918         for_each_port(adap, i) {
2919                 struct port_info *pi = adap2pinfo(adap, i);
2920
2921                 pi->first_qset = qidx;
2922                 pi->nqsets = is_10g_port(&pi->link_cfg) ? q10g : 1;
2923                 qidx += pi->nqsets;
2924         }
2925
2926         s->ethqsets = qidx;
2927         s->max_ethqsets = qidx;   /* MSI-X may lower it later */
2928
2929         if (is_offload(adap)) {
2930                 /*
2931                  * For offload we use 1 queue/channel if all ports are up to 1G,
2932                  * otherwise we divide all available queues amongst the channels
2933                  * capped by the number of available cores.
2934                  */
2935                 if (n10g) {
2936                         i = min_t(int, ARRAY_SIZE(s->ofldrxq),
2937                                   num_online_cpus());
2938                         s->ofldqsets = roundup(i, adap->params.nports);
2939                 } else
2940                         s->ofldqsets = adap->params.nports;
2941                 /* For RDMA one Rx queue per channel suffices */
2942                 s->rdmaqs = adap->params.nports;
2943         }
2944
2945         for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
2946                 struct sge_eth_rxq *r = &s->ethrxq[i];
2947
2948                 init_rspq(&r->rspq, 0, 0, 1024, 64);
2949                 r->fl.size = 72;
2950         }
2951
2952         for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
2953                 s->ethtxq[i].q.size = 1024;
2954
2955         for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
2956                 s->ctrlq[i].q.size = 512;
2957
2958         for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
2959                 s->ofldtxq[i].q.size = 1024;
2960
2961         for (i = 0; i < ARRAY_SIZE(s->ofldrxq); i++) {
2962                 struct sge_ofld_rxq *r = &s->ofldrxq[i];
2963
2964                 init_rspq(&r->rspq, 0, 0, 1024, 64);
2965                 r->rspq.uld = CXGB4_ULD_ISCSI;
2966                 r->fl.size = 72;
2967         }
2968
2969         for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
2970                 struct sge_ofld_rxq *r = &s->rdmarxq[i];
2971
2972                 init_rspq(&r->rspq, 0, 0, 511, 64);
2973                 r->rspq.uld = CXGB4_ULD_RDMA;
2974                 r->fl.size = 72;
2975         }
2976
2977         init_rspq(&s->fw_evtq, 6, 0, 512, 64);
2978         init_rspq(&s->intrq, 6, 0, 2 * MAX_INGQ, 64);
2979 }
2980
2981 /*
2982  * Reduce the number of Ethernet queues across all ports to at most n.
2983  * n provides at least one queue per port.
2984  */
2985 static void __devinit reduce_ethqs(struct adapter *adap, int n)
2986 {
2987         int i;
2988         struct port_info *pi;
2989
2990         while (n < adap->sge.ethqsets)
2991                 for_each_port(adap, i) {
2992                         pi = adap2pinfo(adap, i);
2993                         if (pi->nqsets > 1) {
2994                                 pi->nqsets--;
2995                                 adap->sge.ethqsets--;
2996                                 if (adap->sge.ethqsets <= n)
2997                                         break;
2998                         }
2999                 }
3000
3001         n = 0;
3002         for_each_port(adap, i) {
3003                 pi = adap2pinfo(adap, i);
3004                 pi->first_qset = n;
3005                 n += pi->nqsets;
3006         }
3007 }
3008
3009 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
3010 #define EXTRA_VECS 2
3011
3012 static int __devinit enable_msix(struct adapter *adap)
3013 {
3014         int ofld_need = 0;
3015         int i, err, want, need;
3016         struct sge *s = &adap->sge;
3017         unsigned int nchan = adap->params.nports;
3018         struct msix_entry entries[MAX_INGQ + 1];
3019
3020         for (i = 0; i < ARRAY_SIZE(entries); ++i)
3021                 entries[i].entry = i;
3022
3023         want = s->max_ethqsets + EXTRA_VECS;
3024         if (is_offload(adap)) {
3025                 want += s->rdmaqs + s->ofldqsets;
3026                 /* need nchan for each possible ULD */
3027                 ofld_need = 2 * nchan;
3028         }
3029         need = adap->params.nports + EXTRA_VECS + ofld_need;
3030
3031         while ((err = pci_enable_msix(adap->pdev, entries, want)) >= need)
3032                 want = err;
3033
3034         if (!err) {
3035                 /*
3036                  * Distribute available vectors to the various queue groups.
3037                  * Every group gets its minimum requirement and NIC gets top
3038                  * priority for leftovers.
3039                  */
3040                 i = want - EXTRA_VECS - ofld_need;
3041                 if (i < s->max_ethqsets) {
3042                         s->max_ethqsets = i;
3043                         if (i < s->ethqsets)
3044                                 reduce_ethqs(adap, i);
3045                 }
3046                 if (is_offload(adap)) {
3047                         i = want - EXTRA_VECS - s->max_ethqsets;
3048                         i -= ofld_need - nchan;
3049                         s->ofldqsets = (i / nchan) * nchan;  /* round down */
3050                 }
3051                 for (i = 0; i < want; ++i)
3052                         adap->msix_info[i].vec = entries[i].vector;
3053         } else if (err > 0)
3054                 dev_info(adap->pdev_dev,
3055                          "only %d MSI-X vectors left, not using MSI-X\n", err);
3056         return err;
3057 }
3058
3059 #undef EXTRA_VECS
3060
3061 static void __devinit print_port_info(struct adapter *adap)
3062 {
3063         static const char *base[] = {
3064                 "R", "KX4", "T", "KX", "T", "KR", "CX4"
3065         };
3066
3067         int i;
3068         char buf[80];
3069
3070         for_each_port(adap, i) {
3071                 struct net_device *dev = adap->port[i];
3072                 const struct port_info *pi = netdev_priv(dev);
3073                 char *bufp = buf;
3074
3075                 if (!test_bit(i, &adap->registered_device_map))
3076                         continue;
3077
3078                 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
3079                         bufp += sprintf(bufp, "100/");
3080                 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
3081                         bufp += sprintf(bufp, "1000/");
3082                 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
3083                         bufp += sprintf(bufp, "10G/");
3084                 if (bufp != buf)
3085                         --bufp;
3086                 sprintf(bufp, "BASE-%s", base[pi->port_type]);
3087
3088                 netdev_info(dev, "Chelsio %s rev %d %s %sNIC PCIe x%d%s\n",
3089                             adap->params.vpd.id, adap->params.rev,
3090                             buf, is_offload(adap) ? "R" : "",
3091                             adap->params.pci.width,
3092                             (adap->flags & USING_MSIX) ? " MSI-X" :
3093                             (adap->flags & USING_MSI) ? " MSI" : "");
3094                 if (adap->name == dev->name)
3095                         netdev_info(dev, "S/N: %s, E/C: %s\n",
3096                                     adap->params.vpd.sn, adap->params.vpd.ec);
3097         }
3098 }
3099
3100 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_TSO6 |\
3101                    NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3102
3103 static int __devinit init_one(struct pci_dev *pdev,
3104                               const struct pci_device_id *ent)
3105 {
3106         int func, i, err;
3107         struct port_info *pi;
3108         unsigned int highdma = 0;
3109         struct adapter *adapter = NULL;
3110
3111         printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3112
3113         err = pci_request_regions(pdev, KBUILD_MODNAME);
3114         if (err) {
3115                 /* Just info, some other driver may have claimed the device. */
3116                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3117                 return err;
3118         }
3119
3120         /* We control everything through PF 0 */
3121         func = PCI_FUNC(pdev->devfn);
3122         if (func > 0)
3123                 goto sriov;
3124
3125         err = pci_enable_device(pdev);
3126         if (err) {
3127                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3128                 goto out_release_regions;
3129         }
3130
3131         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3132                 highdma = NETIF_F_HIGHDMA;
3133                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3134                 if (err) {
3135                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3136                                 "coherent allocations\n");
3137                         goto out_disable_device;
3138                 }
3139         } else {
3140                 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3141                 if (err) {
3142                         dev_err(&pdev->dev, "no usable DMA configuration\n");
3143                         goto out_disable_device;
3144                 }
3145         }
3146
3147         pci_enable_pcie_error_reporting(pdev);
3148         pci_set_master(pdev);
3149         pci_save_state(pdev);
3150
3151         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3152         if (!adapter) {
3153                 err = -ENOMEM;
3154                 goto out_disable_device;
3155         }
3156
3157         adapter->regs = pci_ioremap_bar(pdev, 0);
3158         if (!adapter->regs) {
3159                 dev_err(&pdev->dev, "cannot map device registers\n");
3160                 err = -ENOMEM;
3161                 goto out_free_adapter;
3162         }
3163
3164         adapter->pdev = pdev;
3165         adapter->pdev_dev = &pdev->dev;
3166         adapter->name = pci_name(pdev);
3167         adapter->msg_enable = dflt_msg_enable;
3168         memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
3169
3170         spin_lock_init(&adapter->stats_lock);
3171         spin_lock_init(&adapter->tid_release_lock);
3172
3173         INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
3174
3175         err = t4_prep_adapter(adapter);
3176         if (err)
3177                 goto out_unmap_bar;
3178         err = adap_init0(adapter);
3179         if (err)
3180                 goto out_unmap_bar;
3181
3182         for_each_port(adapter, i) {
3183                 struct net_device *netdev;
3184
3185                 netdev = alloc_etherdev_mq(sizeof(struct port_info),
3186                                            MAX_ETH_QSETS);
3187                 if (!netdev) {
3188                         err = -ENOMEM;
3189                         goto out_free_dev;
3190                 }
3191
3192                 SET_NETDEV_DEV(netdev, &pdev->dev);
3193
3194                 adapter->port[i] = netdev;
3195                 pi = netdev_priv(netdev);
3196                 pi->adapter = adapter;
3197                 pi->xact_addr_filt = -1;
3198                 pi->rx_offload = RX_CSO;
3199                 pi->port_id = i;
3200                 netif_carrier_off(netdev);
3201                 netif_tx_stop_all_queues(netdev);
3202                 netdev->irq = pdev->irq;
3203
3204                 netdev->features |= NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6;
3205                 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3206                 netdev->features |= NETIF_F_GRO | highdma;
3207                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3208                 netdev->vlan_features = netdev->features & VLAN_FEAT;
3209
3210                 netdev->netdev_ops = &cxgb4_netdev_ops;
3211                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3212         }
3213
3214         pci_set_drvdata(pdev, adapter);
3215
3216         if (adapter->flags & FW_OK) {
3217                 err = t4_port_init(adapter, 0, 0, 0);
3218                 if (err)
3219                         goto out_free_dev;
3220         }
3221
3222         /*
3223          * Configure queues and allocate tables now, they can be needed as
3224          * soon as the first register_netdev completes.
3225          */
3226         cfg_queues(adapter);
3227
3228         adapter->l2t = t4_init_l2t();
3229         if (!adapter->l2t) {
3230                 /* We tolerate a lack of L2T, giving up some functionality */
3231                 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
3232                 adapter->params.offload = 0;
3233         }
3234
3235         if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
3236                 dev_warn(&pdev->dev, "could not allocate TID table, "
3237                          "continuing\n");
3238                 adapter->params.offload = 0;
3239         }
3240
3241         /*
3242          * The card is now ready to go.  If any errors occur during device
3243          * registration we do not fail the whole card but rather proceed only
3244          * with the ports we manage to register successfully.  However we must
3245          * register at least one net device.
3246          */
3247         for_each_port(adapter, i) {
3248                 err = register_netdev(adapter->port[i]);
3249                 if (err)
3250                         dev_warn(&pdev->dev,
3251                                  "cannot register net device %s, skipping\n",
3252                                  adapter->port[i]->name);
3253                 else {
3254                         /*
3255                          * Change the name we use for messages to the name of
3256                          * the first successfully registered interface.
3257                          */
3258                         if (!adapter->registered_device_map)
3259                                 adapter->name = adapter->port[i]->name;
3260
3261                         __set_bit(i, &adapter->registered_device_map);
3262                         adapter->chan_map[adap2pinfo(adapter, i)->tx_chan] = i;
3263                 }
3264         }
3265         if (!adapter->registered_device_map) {
3266                 dev_err(&pdev->dev, "could not register any net devices\n");
3267                 goto out_free_dev;
3268         }
3269
3270         if (cxgb4_debugfs_root) {
3271                 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
3272                                                            cxgb4_debugfs_root);
3273                 setup_debugfs(adapter);
3274         }
3275
3276         /* See what interrupts we'll be using */
3277         if (msi > 1 && enable_msix(adapter) == 0)
3278                 adapter->flags |= USING_MSIX;
3279         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3280                 adapter->flags |= USING_MSI;
3281
3282         if (is_offload(adapter))
3283                 attach_ulds(adapter);
3284
3285         print_port_info(adapter);
3286
3287 sriov:
3288 #ifdef CONFIG_PCI_IOV
3289         if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
3290                 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
3291                         dev_info(&pdev->dev,
3292                                  "instantiated %u virtual functions\n",
3293                                  num_vf[func]);
3294 #endif
3295         return 0;
3296
3297  out_free_dev:
3298         t4_free_mem(adapter->tids.tid_tab);
3299         t4_free_mem(adapter->l2t);
3300         for_each_port(adapter, i)
3301                 if (adapter->port[i])
3302                         free_netdev(adapter->port[i]);
3303         if (adapter->flags & FW_OK)
3304                 t4_fw_bye(adapter, 0);
3305  out_unmap_bar:
3306         iounmap(adapter->regs);
3307  out_free_adapter:
3308         kfree(adapter);
3309  out_disable_device:
3310         pci_disable_pcie_error_reporting(pdev);
3311         pci_disable_device(pdev);
3312  out_release_regions:
3313         pci_release_regions(pdev);
3314         pci_set_drvdata(pdev, NULL);
3315         return err;
3316 }
3317
3318 static void __devexit remove_one(struct pci_dev *pdev)
3319 {
3320         struct adapter *adapter = pci_get_drvdata(pdev);
3321
3322         pci_disable_sriov(pdev);
3323
3324         if (adapter) {
3325                 int i;
3326
3327                 if (is_offload(adapter))
3328                         detach_ulds(adapter);
3329
3330                 for_each_port(adapter, i)
3331                         if (test_bit(i, &adapter->registered_device_map))
3332                                 unregister_netdev(adapter->port[i]);
3333
3334                 if (adapter->debugfs_root)
3335                         debugfs_remove_recursive(adapter->debugfs_root);
3336
3337                 t4_sge_stop(adapter);
3338                 t4_free_sge_resources(adapter);
3339                 t4_free_mem(adapter->l2t);
3340                 t4_free_mem(adapter->tids.tid_tab);
3341                 disable_msi(adapter);
3342
3343                 for_each_port(adapter, i)
3344                         if (adapter->port[i])
3345                                 free_netdev(adapter->port[i]);
3346
3347                 if (adapter->flags & FW_OK)
3348                         t4_fw_bye(adapter, 0);
3349                 iounmap(adapter->regs);
3350                 kfree(adapter);
3351                 pci_disable_pcie_error_reporting(pdev);
3352                 pci_disable_device(pdev);
3353                 pci_release_regions(pdev);
3354                 pci_set_drvdata(pdev, NULL);
3355         } else if (PCI_FUNC(pdev->devfn) > 0)
3356                 pci_release_regions(pdev);
3357 }
3358
3359 static struct pci_driver cxgb4_driver = {
3360         .name     = KBUILD_MODNAME,
3361         .id_table = cxgb4_pci_tbl,
3362         .probe    = init_one,
3363         .remove   = __devexit_p(remove_one),
3364 };
3365
3366 static int __init cxgb4_init_module(void)
3367 {
3368         int ret;
3369
3370         /* Debugfs support is optional, just warn if this fails */
3371         cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3372         if (!cxgb4_debugfs_root)
3373                 pr_warning("could not create debugfs entry, continuing\n");
3374
3375         ret = pci_register_driver(&cxgb4_driver);
3376         if (ret < 0)
3377                 debugfs_remove(cxgb4_debugfs_root);
3378         return ret;
3379 }
3380
3381 static void __exit cxgb4_cleanup_module(void)
3382 {
3383         pci_unregister_driver(&cxgb4_driver);
3384         debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
3385 }
3386
3387 module_init(cxgb4_init_module);
3388 module_exit(cxgb4_cleanup_module);