f5d8b53be333aa9c997b0e82c1e8e69a8204eb0d
[linux-drm-fsl-dcu.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2  * MMCIF eMMC driver.
3  *
4  * Copyright (C) 2010 Renesas Solutions Corp.
5  * Yusuke Goda <yusuke.goda.sx@renesas.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License.
10  *
11  *
12  * TODO
13  *  1. DMA
14  *  2. Power management
15  *  3. Handle MMC errors better
16  *
17  */
18
19 /*
20  * The MMCIF driver is now processing MMC requests asynchronously, according
21  * to the Linux MMC API requirement.
22  *
23  * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24  * data, and optional stop. To achieve asynchronous processing each of these
25  * stages is split into two halves: a top and a bottom half. The top half
26  * initialises the hardware, installs a timeout handler to handle completion
27  * timeouts, and returns. In case of the command stage this immediately returns
28  * control to the caller, leaving all further processing to run asynchronously.
29  * All further request processing is performed by the bottom halves.
30  *
31  * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32  * thread, a DMA completion callback, if DMA is used, a timeout work, and
33  * request- and stage-specific handler methods.
34  *
35  * Each bottom half run begins with either a hardware interrupt, a DMA callback
36  * invocation, or a timeout work run. In case of an error or a successful
37  * processing completion, the MMC core is informed and the request processing is
38  * finished. In case processing has to continue, i.e., if data has to be read
39  * from or written to the card, or if a stop command has to be sent, the next
40  * top half is called, which performs the necessary hardware handling and
41  * reschedules the timeout work. This returns the driver state machine into the
42  * bottom half waiting state.
43  */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/pagemap.h>
58 #include <linux/platform_device.h>
59 #include <linux/pm_runtime.h>
60 #include <linux/spinlock.h>
61 #include <linux/module.h>
62
63 #define DRIVER_NAME     "sh_mmcif"
64 #define DRIVER_VERSION  "2010-04-28"
65
66 /* CE_CMD_SET */
67 #define CMD_MASK                0x3f000000
68 #define CMD_SET_RTYP_NO         ((0 << 23) | (0 << 22))
69 #define CMD_SET_RTYP_6B         ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
70 #define CMD_SET_RTYP_17B        ((1 << 23) | (0 << 22)) /* R2 */
71 #define CMD_SET_RBSY            (1 << 21) /* R1b */
72 #define CMD_SET_CCSEN           (1 << 20)
73 #define CMD_SET_WDAT            (1 << 19) /* 1: on data, 0: no data */
74 #define CMD_SET_DWEN            (1 << 18) /* 1: write, 0: read */
75 #define CMD_SET_CMLTE           (1 << 17) /* 1: multi block trans, 0: single */
76 #define CMD_SET_CMD12EN         (1 << 16) /* 1: CMD12 auto issue */
77 #define CMD_SET_RIDXC_INDEX     ((0 << 15) | (0 << 14)) /* index check */
78 #define CMD_SET_RIDXC_BITS      ((0 << 15) | (1 << 14)) /* check bits check */
79 #define CMD_SET_RIDXC_NO        ((1 << 15) | (0 << 14)) /* no check */
80 #define CMD_SET_CRC7C           ((0 << 13) | (0 << 12)) /* CRC7 check*/
81 #define CMD_SET_CRC7C_BITS      ((0 << 13) | (1 << 12)) /* check bits check*/
82 #define CMD_SET_CRC7C_INTERNAL  ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
83 #define CMD_SET_CRC16C          (1 << 10) /* 0: CRC16 check*/
84 #define CMD_SET_CRCSTE          (1 << 8) /* 1: not receive CRC status */
85 #define CMD_SET_TBIT            (1 << 7) /* 1: tran mission bit "Low" */
86 #define CMD_SET_OPDM            (1 << 6) /* 1: open/drain */
87 #define CMD_SET_CCSH            (1 << 5)
88 #define CMD_SET_DATW_1          ((0 << 1) | (0 << 0)) /* 1bit */
89 #define CMD_SET_DATW_4          ((0 << 1) | (1 << 0)) /* 4bit */
90 #define CMD_SET_DATW_8          ((1 << 1) | (0 << 0)) /* 8bit */
91
92 /* CE_CMD_CTRL */
93 #define CMD_CTRL_BREAK          (1 << 0)
94
95 /* CE_BLOCK_SET */
96 #define BLOCK_SIZE_MASK         0x0000ffff
97
98 /* CE_INT */
99 #define INT_CCSDE               (1 << 29)
100 #define INT_CMD12DRE            (1 << 26)
101 #define INT_CMD12RBE            (1 << 25)
102 #define INT_CMD12CRE            (1 << 24)
103 #define INT_DTRANE              (1 << 23)
104 #define INT_BUFRE               (1 << 22)
105 #define INT_BUFWEN              (1 << 21)
106 #define INT_BUFREN              (1 << 20)
107 #define INT_CCSRCV              (1 << 19)
108 #define INT_RBSYE               (1 << 17)
109 #define INT_CRSPE               (1 << 16)
110 #define INT_CMDVIO              (1 << 15)
111 #define INT_BUFVIO              (1 << 14)
112 #define INT_WDATERR             (1 << 11)
113 #define INT_RDATERR             (1 << 10)
114 #define INT_RIDXERR             (1 << 9)
115 #define INT_RSPERR              (1 << 8)
116 #define INT_CCSTO               (1 << 5)
117 #define INT_CRCSTO              (1 << 4)
118 #define INT_WDATTO              (1 << 3)
119 #define INT_RDATTO              (1 << 2)
120 #define INT_RBSYTO              (1 << 1)
121 #define INT_RSPTO               (1 << 0)
122 #define INT_ERR_STS             (INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
123                                  INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
124                                  INT_CCSTO | INT_CRCSTO | INT_WDATTO |    \
125                                  INT_RDATTO | INT_RBSYTO | INT_RSPTO)
126
127 /* CE_INT_MASK */
128 #define MASK_ALL                0x00000000
129 #define MASK_MCCSDE             (1 << 29)
130 #define MASK_MCMD12DRE          (1 << 26)
131 #define MASK_MCMD12RBE          (1 << 25)
132 #define MASK_MCMD12CRE          (1 << 24)
133 #define MASK_MDTRANE            (1 << 23)
134 #define MASK_MBUFRE             (1 << 22)
135 #define MASK_MBUFWEN            (1 << 21)
136 #define MASK_MBUFREN            (1 << 20)
137 #define MASK_MCCSRCV            (1 << 19)
138 #define MASK_MRBSYE             (1 << 17)
139 #define MASK_MCRSPE             (1 << 16)
140 #define MASK_MCMDVIO            (1 << 15)
141 #define MASK_MBUFVIO            (1 << 14)
142 #define MASK_MWDATERR           (1 << 11)
143 #define MASK_MRDATERR           (1 << 10)
144 #define MASK_MRIDXERR           (1 << 9)
145 #define MASK_MRSPERR            (1 << 8)
146 #define MASK_MCCSTO             (1 << 5)
147 #define MASK_MCRCSTO            (1 << 4)
148 #define MASK_MWDATTO            (1 << 3)
149 #define MASK_MRDATTO            (1 << 2)
150 #define MASK_MRBSYTO            (1 << 1)
151 #define MASK_MRSPTO             (1 << 0)
152
153 #define MASK_START_CMD          (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
154                                  MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
155                                  MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
156                                  MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
157
158 /* CE_HOST_STS1 */
159 #define STS1_CMDSEQ             (1 << 31)
160
161 /* CE_HOST_STS2 */
162 #define STS2_CRCSTE             (1 << 31)
163 #define STS2_CRC16E             (1 << 30)
164 #define STS2_AC12CRCE           (1 << 29)
165 #define STS2_RSPCRC7E           (1 << 28)
166 #define STS2_CRCSTEBE           (1 << 27)
167 #define STS2_RDATEBE            (1 << 26)
168 #define STS2_AC12REBE           (1 << 25)
169 #define STS2_RSPEBE             (1 << 24)
170 #define STS2_AC12IDXE           (1 << 23)
171 #define STS2_RSPIDXE            (1 << 22)
172 #define STS2_CCSTO              (1 << 15)
173 #define STS2_RDATTO             (1 << 14)
174 #define STS2_DATBSYTO           (1 << 13)
175 #define STS2_CRCSTTO            (1 << 12)
176 #define STS2_AC12BSYTO          (1 << 11)
177 #define STS2_RSPBSYTO           (1 << 10)
178 #define STS2_AC12RSPTO          (1 << 9)
179 #define STS2_RSPTO              (1 << 8)
180 #define STS2_CRC_ERR            (STS2_CRCSTE | STS2_CRC16E |            \
181                                  STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
182 #define STS2_TIMEOUT_ERR        (STS2_CCSTO | STS2_RDATTO |             \
183                                  STS2_DATBSYTO | STS2_CRCSTTO |         \
184                                  STS2_AC12BSYTO | STS2_RSPBSYTO |       \
185                                  STS2_AC12RSPTO | STS2_RSPTO)
186
187 #define CLKDEV_EMMC_DATA        52000000 /* 52MHz */
188 #define CLKDEV_MMC_DATA         20000000 /* 20MHz */
189 #define CLKDEV_INIT             400000   /* 400 KHz */
190
191 enum mmcif_state {
192         STATE_IDLE,
193         STATE_REQUEST,
194         STATE_IOS,
195 };
196
197 enum mmcif_wait_for {
198         MMCIF_WAIT_FOR_REQUEST,
199         MMCIF_WAIT_FOR_CMD,
200         MMCIF_WAIT_FOR_MREAD,
201         MMCIF_WAIT_FOR_MWRITE,
202         MMCIF_WAIT_FOR_READ,
203         MMCIF_WAIT_FOR_WRITE,
204         MMCIF_WAIT_FOR_READ_END,
205         MMCIF_WAIT_FOR_WRITE_END,
206         MMCIF_WAIT_FOR_STOP,
207 };
208
209 struct sh_mmcif_host {
210         struct mmc_host *mmc;
211         struct mmc_request *mrq;
212         struct platform_device *pd;
213         struct sh_dmae_slave dma_slave_tx;
214         struct sh_dmae_slave dma_slave_rx;
215         struct clk *hclk;
216         unsigned int clk;
217         int bus_width;
218         bool sd_error;
219         bool dying;
220         long timeout;
221         void __iomem *addr;
222         u32 *pio_ptr;
223         spinlock_t lock;                /* protect sh_mmcif_host::state */
224         enum mmcif_state state;
225         enum mmcif_wait_for wait_for;
226         struct delayed_work timeout_work;
227         size_t blocksize;
228         int sg_idx;
229         int sg_blkidx;
230         bool power;
231         bool card_present;
232
233         /* DMA support */
234         struct dma_chan         *chan_rx;
235         struct dma_chan         *chan_tx;
236         struct completion       dma_complete;
237         bool                    dma_active;
238 };
239
240 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
241                                         unsigned int reg, u32 val)
242 {
243         writel(val | readl(host->addr + reg), host->addr + reg);
244 }
245
246 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
247                                         unsigned int reg, u32 val)
248 {
249         writel(~val & readl(host->addr + reg), host->addr + reg);
250 }
251
252 static void mmcif_dma_complete(void *arg)
253 {
254         struct sh_mmcif_host *host = arg;
255         struct mmc_data *data = host->mrq->data;
256
257         dev_dbg(&host->pd->dev, "Command completed\n");
258
259         if (WARN(!data, "%s: NULL data in DMA completion!\n",
260                  dev_name(&host->pd->dev)))
261                 return;
262
263         if (data->flags & MMC_DATA_READ)
264                 dma_unmap_sg(host->chan_rx->device->dev,
265                              data->sg, data->sg_len,
266                              DMA_FROM_DEVICE);
267         else
268                 dma_unmap_sg(host->chan_tx->device->dev,
269                              data->sg, data->sg_len,
270                              DMA_TO_DEVICE);
271
272         complete(&host->dma_complete);
273 }
274
275 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
276 {
277         struct mmc_data *data = host->mrq->data;
278         struct scatterlist *sg = data->sg;
279         struct dma_async_tx_descriptor *desc = NULL;
280         struct dma_chan *chan = host->chan_rx;
281         dma_cookie_t cookie = -EINVAL;
282         int ret;
283
284         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
285                          DMA_FROM_DEVICE);
286         if (ret > 0) {
287                 host->dma_active = true;
288                 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
289                         DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
290         }
291
292         if (desc) {
293                 desc->callback = mmcif_dma_complete;
294                 desc->callback_param = host;
295                 cookie = dmaengine_submit(desc);
296                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
297                 dma_async_issue_pending(chan);
298         }
299         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
300                 __func__, data->sg_len, ret, cookie);
301
302         if (!desc) {
303                 /* DMA failed, fall back to PIO */
304                 if (ret >= 0)
305                         ret = -EIO;
306                 host->chan_rx = NULL;
307                 host->dma_active = false;
308                 dma_release_channel(chan);
309                 /* Free the Tx channel too */
310                 chan = host->chan_tx;
311                 if (chan) {
312                         host->chan_tx = NULL;
313                         dma_release_channel(chan);
314                 }
315                 dev_warn(&host->pd->dev,
316                          "DMA failed: %d, falling back to PIO\n", ret);
317                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
318         }
319
320         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
321                 desc, cookie, data->sg_len);
322 }
323
324 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
325 {
326         struct mmc_data *data = host->mrq->data;
327         struct scatterlist *sg = data->sg;
328         struct dma_async_tx_descriptor *desc = NULL;
329         struct dma_chan *chan = host->chan_tx;
330         dma_cookie_t cookie = -EINVAL;
331         int ret;
332
333         ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
334                          DMA_TO_DEVICE);
335         if (ret > 0) {
336                 host->dma_active = true;
337                 desc = chan->device->device_prep_slave_sg(chan, sg, ret,
338                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
339         }
340
341         if (desc) {
342                 desc->callback = mmcif_dma_complete;
343                 desc->callback_param = host;
344                 cookie = dmaengine_submit(desc);
345                 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
346                 dma_async_issue_pending(chan);
347         }
348         dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
349                 __func__, data->sg_len, ret, cookie);
350
351         if (!desc) {
352                 /* DMA failed, fall back to PIO */
353                 if (ret >= 0)
354                         ret = -EIO;
355                 host->chan_tx = NULL;
356                 host->dma_active = false;
357                 dma_release_channel(chan);
358                 /* Free the Rx channel too */
359                 chan = host->chan_rx;
360                 if (chan) {
361                         host->chan_rx = NULL;
362                         dma_release_channel(chan);
363                 }
364                 dev_warn(&host->pd->dev,
365                          "DMA failed: %d, falling back to PIO\n", ret);
366                 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
367         }
368
369         dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
370                 desc, cookie);
371 }
372
373 static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
374 {
375         dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
376         chan->private = arg;
377         return true;
378 }
379
380 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
381                                  struct sh_mmcif_plat_data *pdata)
382 {
383         struct sh_dmae_slave *tx, *rx;
384         host->dma_active = false;
385
386         /* We can only either use DMA for both Tx and Rx or not use it at all */
387         if (pdata->dma) {
388                 dev_warn(&host->pd->dev,
389                          "Update your platform to use embedded DMA slave IDs\n");
390                 tx = &pdata->dma->chan_priv_tx;
391                 rx = &pdata->dma->chan_priv_rx;
392         } else {
393                 tx = &host->dma_slave_tx;
394                 tx->slave_id = pdata->slave_id_tx;
395                 rx = &host->dma_slave_rx;
396                 rx->slave_id = pdata->slave_id_rx;
397         }
398         if (tx->slave_id > 0 && rx->slave_id > 0) {
399                 dma_cap_mask_t mask;
400
401                 dma_cap_zero(mask);
402                 dma_cap_set(DMA_SLAVE, mask);
403
404                 host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
405                 dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
406                         host->chan_tx);
407
408                 if (!host->chan_tx)
409                         return;
410
411                 host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
412                 dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
413                         host->chan_rx);
414
415                 if (!host->chan_rx) {
416                         dma_release_channel(host->chan_tx);
417                         host->chan_tx = NULL;
418                         return;
419                 }
420
421                 init_completion(&host->dma_complete);
422         }
423 }
424
425 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
426 {
427         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
428         /* Descriptors are freed automatically */
429         if (host->chan_tx) {
430                 struct dma_chan *chan = host->chan_tx;
431                 host->chan_tx = NULL;
432                 dma_release_channel(chan);
433         }
434         if (host->chan_rx) {
435                 struct dma_chan *chan = host->chan_rx;
436                 host->chan_rx = NULL;
437                 dma_release_channel(chan);
438         }
439
440         host->dma_active = false;
441 }
442
443 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
444 {
445         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
446
447         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
448         sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
449
450         if (!clk)
451                 return;
452         if (p->sup_pclk && clk == host->clk)
453                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
454         else
455                 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
456                                 ((fls(host->clk / clk) - 1) << 16));
457
458         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
459 }
460
461 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
462 {
463         u32 tmp;
464
465         tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
466
467         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
468         sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
469         sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
470                 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
471         /* byte swap on */
472         sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
473 }
474
475 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
476 {
477         u32 state1, state2;
478         int ret, timeout;
479
480         host->sd_error = false;
481
482         state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
483         state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
484         dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
485         dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
486
487         if (state1 & STS1_CMDSEQ) {
488                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
489                 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
490                 for (timeout = 10000000; timeout; timeout--) {
491                         if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
492                               & STS1_CMDSEQ))
493                                 break;
494                         mdelay(1);
495                 }
496                 if (!timeout) {
497                         dev_err(&host->pd->dev,
498                                 "Forced end of command sequence timeout err\n");
499                         return -EIO;
500                 }
501                 sh_mmcif_sync_reset(host);
502                 dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
503                 return -EIO;
504         }
505
506         if (state2 & STS2_CRC_ERR) {
507                 dev_dbg(&host->pd->dev, ": CRC error\n");
508                 ret = -EIO;
509         } else if (state2 & STS2_TIMEOUT_ERR) {
510                 dev_dbg(&host->pd->dev, ": Timeout\n");
511                 ret = -ETIMEDOUT;
512         } else {
513                 dev_dbg(&host->pd->dev, ": End/Index error\n");
514                 ret = -EIO;
515         }
516         return ret;
517 }
518
519 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
520 {
521         struct mmc_data *data = host->mrq->data;
522
523         host->sg_blkidx += host->blocksize;
524
525         /* data->sg->length must be a multiple of host->blocksize? */
526         BUG_ON(host->sg_blkidx > data->sg->length);
527
528         if (host->sg_blkidx == data->sg->length) {
529                 host->sg_blkidx = 0;
530                 if (++host->sg_idx < data->sg_len)
531                         host->pio_ptr = sg_virt(++data->sg);
532         } else {
533                 host->pio_ptr = p;
534         }
535
536         if (host->sg_idx == data->sg_len)
537                 return false;
538
539         return true;
540 }
541
542 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
543                                  struct mmc_request *mrq)
544 {
545         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
546                            BLOCK_SIZE_MASK) + 3;
547
548         host->wait_for = MMCIF_WAIT_FOR_READ;
549         schedule_delayed_work(&host->timeout_work, host->timeout);
550
551         /* buf read enable */
552         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
553 }
554
555 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
556 {
557         struct mmc_data *data = host->mrq->data;
558         u32 *p = sg_virt(data->sg);
559         int i;
560
561         if (host->sd_error) {
562                 data->error = sh_mmcif_error_manage(host);
563                 return false;
564         }
565
566         for (i = 0; i < host->blocksize / 4; i++)
567                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
568
569         /* buffer read end */
570         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
571         host->wait_for = MMCIF_WAIT_FOR_READ_END;
572
573         return true;
574 }
575
576 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
577                                 struct mmc_request *mrq)
578 {
579         struct mmc_data *data = mrq->data;
580
581         if (!data->sg_len || !data->sg->length)
582                 return;
583
584         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
585                 BLOCK_SIZE_MASK;
586
587         host->wait_for = MMCIF_WAIT_FOR_MREAD;
588         host->sg_idx = 0;
589         host->sg_blkidx = 0;
590         host->pio_ptr = sg_virt(data->sg);
591         schedule_delayed_work(&host->timeout_work, host->timeout);
592         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
593 }
594
595 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
596 {
597         struct mmc_data *data = host->mrq->data;
598         u32 *p = host->pio_ptr;
599         int i;
600
601         if (host->sd_error) {
602                 data->error = sh_mmcif_error_manage(host);
603                 return false;
604         }
605
606         BUG_ON(!data->sg->length);
607
608         for (i = 0; i < host->blocksize / 4; i++)
609                 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
610
611         if (!sh_mmcif_next_block(host, p))
612                 return false;
613
614         schedule_delayed_work(&host->timeout_work, host->timeout);
615         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
616
617         return true;
618 }
619
620 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
621                                         struct mmc_request *mrq)
622 {
623         host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
624                            BLOCK_SIZE_MASK) + 3;
625
626         host->wait_for = MMCIF_WAIT_FOR_WRITE;
627         schedule_delayed_work(&host->timeout_work, host->timeout);
628
629         /* buf write enable */
630         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
631 }
632
633 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
634 {
635         struct mmc_data *data = host->mrq->data;
636         u32 *p = sg_virt(data->sg);
637         int i;
638
639         if (host->sd_error) {
640                 data->error = sh_mmcif_error_manage(host);
641                 return false;
642         }
643
644         for (i = 0; i < host->blocksize / 4; i++)
645                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
646
647         /* buffer write end */
648         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
649         host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
650
651         return true;
652 }
653
654 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
655                                 struct mmc_request *mrq)
656 {
657         struct mmc_data *data = mrq->data;
658
659         if (!data->sg_len || !data->sg->length)
660                 return;
661
662         host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
663                 BLOCK_SIZE_MASK;
664
665         host->wait_for = MMCIF_WAIT_FOR_MWRITE;
666         host->sg_idx = 0;
667         host->sg_blkidx = 0;
668         host->pio_ptr = sg_virt(data->sg);
669         schedule_delayed_work(&host->timeout_work, host->timeout);
670         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
671 }
672
673 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
674 {
675         struct mmc_data *data = host->mrq->data;
676         u32 *p = host->pio_ptr;
677         int i;
678
679         if (host->sd_error) {
680                 data->error = sh_mmcif_error_manage(host);
681                 return false;
682         }
683
684         BUG_ON(!data->sg->length);
685
686         for (i = 0; i < host->blocksize / 4; i++)
687                 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
688
689         if (!sh_mmcif_next_block(host, p))
690                 return false;
691
692         schedule_delayed_work(&host->timeout_work, host->timeout);
693         sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
694
695         return true;
696 }
697
698 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
699                                                 struct mmc_command *cmd)
700 {
701         if (cmd->flags & MMC_RSP_136) {
702                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
703                 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
704                 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
705                 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
706         } else
707                 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
708 }
709
710 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
711                                                 struct mmc_command *cmd)
712 {
713         cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
714 }
715
716 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
717                             struct mmc_request *mrq)
718 {
719         struct mmc_data *data = mrq->data;
720         struct mmc_command *cmd = mrq->cmd;
721         u32 opc = cmd->opcode;
722         u32 tmp = 0;
723
724         /* Response Type check */
725         switch (mmc_resp_type(cmd)) {
726         case MMC_RSP_NONE:
727                 tmp |= CMD_SET_RTYP_NO;
728                 break;
729         case MMC_RSP_R1:
730         case MMC_RSP_R1B:
731         case MMC_RSP_R3:
732                 tmp |= CMD_SET_RTYP_6B;
733                 break;
734         case MMC_RSP_R2:
735                 tmp |= CMD_SET_RTYP_17B;
736                 break;
737         default:
738                 dev_err(&host->pd->dev, "Unsupported response type.\n");
739                 break;
740         }
741         switch (opc) {
742         /* RBSY */
743         case MMC_SWITCH:
744         case MMC_STOP_TRANSMISSION:
745         case MMC_SET_WRITE_PROT:
746         case MMC_CLR_WRITE_PROT:
747         case MMC_ERASE:
748         case MMC_GEN_CMD:
749                 tmp |= CMD_SET_RBSY;
750                 break;
751         }
752         /* WDAT / DATW */
753         if (data) {
754                 tmp |= CMD_SET_WDAT;
755                 switch (host->bus_width) {
756                 case MMC_BUS_WIDTH_1:
757                         tmp |= CMD_SET_DATW_1;
758                         break;
759                 case MMC_BUS_WIDTH_4:
760                         tmp |= CMD_SET_DATW_4;
761                         break;
762                 case MMC_BUS_WIDTH_8:
763                         tmp |= CMD_SET_DATW_8;
764                         break;
765                 default:
766                         dev_err(&host->pd->dev, "Unsupported bus width.\n");
767                         break;
768                 }
769         }
770         /* DWEN */
771         if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
772                 tmp |= CMD_SET_DWEN;
773         /* CMLTE/CMD12EN */
774         if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
775                 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
776                 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
777                                 data->blocks << 16);
778         }
779         /* RIDXC[1:0] check bits */
780         if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
781             opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
782                 tmp |= CMD_SET_RIDXC_BITS;
783         /* RCRC7C[1:0] check bits */
784         if (opc == MMC_SEND_OP_COND)
785                 tmp |= CMD_SET_CRC7C_BITS;
786         /* RCRC7C[1:0] internal CRC7 */
787         if (opc == MMC_ALL_SEND_CID ||
788                 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
789                 tmp |= CMD_SET_CRC7C_INTERNAL;
790
791         return (opc << 24) | tmp;
792 }
793
794 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
795                                struct mmc_request *mrq, u32 opc)
796 {
797         switch (opc) {
798         case MMC_READ_MULTIPLE_BLOCK:
799                 sh_mmcif_multi_read(host, mrq);
800                 return 0;
801         case MMC_WRITE_MULTIPLE_BLOCK:
802                 sh_mmcif_multi_write(host, mrq);
803                 return 0;
804         case MMC_WRITE_BLOCK:
805                 sh_mmcif_single_write(host, mrq);
806                 return 0;
807         case MMC_READ_SINGLE_BLOCK:
808         case MMC_SEND_EXT_CSD:
809                 sh_mmcif_single_read(host, mrq);
810                 return 0;
811         default:
812                 dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
813                 return -EINVAL;
814         }
815 }
816
817 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
818                                struct mmc_request *mrq)
819 {
820         struct mmc_command *cmd = mrq->cmd;
821         u32 opc = cmd->opcode;
822         u32 mask;
823
824         switch (opc) {
825         /* response busy check */
826         case MMC_SWITCH:
827         case MMC_STOP_TRANSMISSION:
828         case MMC_SET_WRITE_PROT:
829         case MMC_CLR_WRITE_PROT:
830         case MMC_ERASE:
831         case MMC_GEN_CMD:
832                 mask = MASK_START_CMD | MASK_MRBSYE;
833                 break;
834         default:
835                 mask = MASK_START_CMD | MASK_MCRSPE;
836                 break;
837         }
838
839         if (mrq->data) {
840                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
841                 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
842                                 mrq->data->blksz);
843         }
844         opc = sh_mmcif_set_cmd(host, mrq);
845
846         sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
847         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
848         /* set arg */
849         sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
850         /* set cmd */
851         sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
852
853         host->wait_for = MMCIF_WAIT_FOR_CMD;
854         schedule_delayed_work(&host->timeout_work, host->timeout);
855 }
856
857 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
858                               struct mmc_request *mrq)
859 {
860         switch (mrq->cmd->opcode) {
861         case MMC_READ_MULTIPLE_BLOCK:
862                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
863                 break;
864         case MMC_WRITE_MULTIPLE_BLOCK:
865                 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
866                 break;
867         default:
868                 dev_err(&host->pd->dev, "unsupported stop cmd\n");
869                 mrq->stop->error = sh_mmcif_error_manage(host);
870                 return;
871         }
872
873         host->wait_for = MMCIF_WAIT_FOR_STOP;
874         schedule_delayed_work(&host->timeout_work, host->timeout);
875 }
876
877 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
878 {
879         struct sh_mmcif_host *host = mmc_priv(mmc);
880         unsigned long flags;
881
882         spin_lock_irqsave(&host->lock, flags);
883         if (host->state != STATE_IDLE) {
884                 spin_unlock_irqrestore(&host->lock, flags);
885                 mrq->cmd->error = -EAGAIN;
886                 mmc_request_done(mmc, mrq);
887                 return;
888         }
889
890         host->state = STATE_REQUEST;
891         spin_unlock_irqrestore(&host->lock, flags);
892
893         switch (mrq->cmd->opcode) {
894         /* MMCIF does not support SD/SDIO command */
895         case SD_IO_SEND_OP_COND:
896         case MMC_APP_CMD:
897                 host->state = STATE_IDLE;
898                 mrq->cmd->error = -ETIMEDOUT;
899                 mmc_request_done(mmc, mrq);
900                 return;
901         case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
902                 if (!mrq->data) {
903                         /* send_if_cond cmd (not support) */
904                         host->state = STATE_IDLE;
905                         mrq->cmd->error = -ETIMEDOUT;
906                         mmc_request_done(mmc, mrq);
907                         return;
908                 }
909                 break;
910         default:
911                 break;
912         }
913
914         host->mrq = mrq;
915
916         sh_mmcif_start_cmd(host, mrq);
917 }
918
919 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
920 {
921         struct sh_mmcif_host *host = mmc_priv(mmc);
922         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
923         unsigned long flags;
924
925         spin_lock_irqsave(&host->lock, flags);
926         if (host->state != STATE_IDLE) {
927                 spin_unlock_irqrestore(&host->lock, flags);
928                 return;
929         }
930
931         host->state = STATE_IOS;
932         spin_unlock_irqrestore(&host->lock, flags);
933
934         if (ios->power_mode == MMC_POWER_UP) {
935                 if (!host->card_present) {
936                         /* See if we also get DMA */
937                         sh_mmcif_request_dma(host, host->pd->dev.platform_data);
938                         host->card_present = true;
939                 }
940         } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
941                 /* clock stop */
942                 sh_mmcif_clock_control(host, 0);
943                 if (ios->power_mode == MMC_POWER_OFF) {
944                         if (host->card_present) {
945                                 sh_mmcif_release_dma(host);
946                                 host->card_present = false;
947                         }
948                 }
949                 if (host->power) {
950                         pm_runtime_put(&host->pd->dev);
951                         host->power = false;
952                         if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
953                                 p->down_pwr(host->pd);
954                 }
955                 host->state = STATE_IDLE;
956                 return;
957         }
958
959         if (ios->clock) {
960                 if (!host->power) {
961                         if (p->set_pwr)
962                                 p->set_pwr(host->pd, ios->power_mode);
963                         pm_runtime_get_sync(&host->pd->dev);
964                         host->power = true;
965                         sh_mmcif_sync_reset(host);
966                 }
967                 sh_mmcif_clock_control(host, ios->clock);
968         }
969
970         host->bus_width = ios->bus_width;
971         host->state = STATE_IDLE;
972 }
973
974 static int sh_mmcif_get_cd(struct mmc_host *mmc)
975 {
976         struct sh_mmcif_host *host = mmc_priv(mmc);
977         struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
978
979         if (!p->get_cd)
980                 return -ENOSYS;
981         else
982                 return p->get_cd(host->pd);
983 }
984
985 static struct mmc_host_ops sh_mmcif_ops = {
986         .request        = sh_mmcif_request,
987         .set_ios        = sh_mmcif_set_ios,
988         .get_cd         = sh_mmcif_get_cd,
989 };
990
991 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
992 {
993         struct mmc_command *cmd = host->mrq->cmd;
994         struct mmc_data *data = host->mrq->data;
995         long time;
996
997         if (host->sd_error) {
998                 switch (cmd->opcode) {
999                 case MMC_ALL_SEND_CID:
1000                 case MMC_SELECT_CARD:
1001                 case MMC_APP_CMD:
1002                         cmd->error = -ETIMEDOUT;
1003                         host->sd_error = false;
1004                         break;
1005                 default:
1006                         cmd->error = sh_mmcif_error_manage(host);
1007                         dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
1008                                 cmd->opcode, cmd->error);
1009                         break;
1010                 }
1011                 return false;
1012         }
1013         if (!(cmd->flags & MMC_RSP_PRESENT)) {
1014                 cmd->error = 0;
1015                 return false;
1016         }
1017
1018         sh_mmcif_get_response(host, cmd);
1019
1020         if (!data)
1021                 return false;
1022
1023         if (data->flags & MMC_DATA_READ) {
1024                 if (host->chan_rx)
1025                         sh_mmcif_start_dma_rx(host);
1026         } else {
1027                 if (host->chan_tx)
1028                         sh_mmcif_start_dma_tx(host);
1029         }
1030
1031         if (!host->dma_active) {
1032                 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1033                 if (!data->error)
1034                         return true;
1035                 return false;
1036         }
1037
1038         /* Running in the IRQ thread, can sleep */
1039         time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1040                                                          host->timeout);
1041         if (host->sd_error) {
1042                 dev_err(host->mmc->parent,
1043                         "Error IRQ while waiting for DMA completion!\n");
1044                 /* Woken up by an error IRQ: abort DMA */
1045                 if (data->flags & MMC_DATA_READ)
1046                         dmaengine_terminate_all(host->chan_rx);
1047                 else
1048                         dmaengine_terminate_all(host->chan_tx);
1049                 data->error = sh_mmcif_error_manage(host);
1050         } else if (!time) {
1051                 data->error = -ETIMEDOUT;
1052         } else if (time < 0) {
1053                 data->error = time;
1054         }
1055         sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1056                         BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1057         host->dma_active = false;
1058
1059         if (data->error)
1060                 data->bytes_xfered = 0;
1061
1062         return false;
1063 }
1064
1065 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1066 {
1067         struct sh_mmcif_host *host = dev_id;
1068         struct mmc_request *mrq = host->mrq;
1069         struct mmc_data *data = mrq->data;
1070
1071         cancel_delayed_work_sync(&host->timeout_work);
1072
1073         /*
1074          * All handlers return true, if processing continues, and false, if the
1075          * request has to be completed - successfully or not
1076          */
1077         switch (host->wait_for) {
1078         case MMCIF_WAIT_FOR_REQUEST:
1079                 /* We're too late, the timeout has already kicked in */
1080                 return IRQ_HANDLED;
1081         case MMCIF_WAIT_FOR_CMD:
1082                 if (sh_mmcif_end_cmd(host))
1083                         /* Wait for data */
1084                         return IRQ_HANDLED;
1085                 break;
1086         case MMCIF_WAIT_FOR_MREAD:
1087                 if (sh_mmcif_mread_block(host))
1088                         /* Wait for more data */
1089                         return IRQ_HANDLED;
1090                 break;
1091         case MMCIF_WAIT_FOR_READ:
1092                 if (sh_mmcif_read_block(host))
1093                         /* Wait for data end */
1094                         return IRQ_HANDLED;
1095                 break;
1096         case MMCIF_WAIT_FOR_MWRITE:
1097                 if (sh_mmcif_mwrite_block(host))
1098                         /* Wait data to write */
1099                         return IRQ_HANDLED;
1100                 break;
1101         case MMCIF_WAIT_FOR_WRITE:
1102                 if (sh_mmcif_write_block(host))
1103                         /* Wait for data end */
1104                         return IRQ_HANDLED;
1105                 break;
1106         case MMCIF_WAIT_FOR_STOP:
1107                 if (host->sd_error) {
1108                         mrq->stop->error = sh_mmcif_error_manage(host);
1109                         break;
1110                 }
1111                 sh_mmcif_get_cmd12response(host, mrq->stop);
1112                 mrq->stop->error = 0;
1113                 break;
1114         case MMCIF_WAIT_FOR_READ_END:
1115         case MMCIF_WAIT_FOR_WRITE_END:
1116                 if (host->sd_error)
1117                         data->error = sh_mmcif_error_manage(host);
1118                 break;
1119         default:
1120                 BUG();
1121         }
1122
1123         if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1124                 if (!mrq->cmd->error && data && !data->error)
1125                         data->bytes_xfered =
1126                                 data->blocks * data->blksz;
1127
1128                 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1129                         sh_mmcif_stop_cmd(host, mrq);
1130                         if (!mrq->stop->error)
1131                                 return IRQ_HANDLED;
1132                 }
1133         }
1134
1135         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1136         host->state = STATE_IDLE;
1137         host->mrq = NULL;
1138         mmc_request_done(host->mmc, mrq);
1139
1140         return IRQ_HANDLED;
1141 }
1142
1143 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1144 {
1145         struct sh_mmcif_host *host = dev_id;
1146         u32 state;
1147         int err = 0;
1148
1149         state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1150
1151         if (state & INT_ERR_STS) {
1152                 /* error interrupts - process first */
1153                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1154                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1155                 err = 1;
1156         } else if (state & INT_RBSYE) {
1157                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1158                                 ~(INT_RBSYE | INT_CRSPE));
1159                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
1160         } else if (state & INT_CRSPE) {
1161                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
1162                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
1163         } else if (state & INT_BUFREN) {
1164                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
1165                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
1166         } else if (state & INT_BUFWEN) {
1167                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
1168                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
1169         } else if (state & INT_CMD12DRE) {
1170                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1171                         ~(INT_CMD12DRE | INT_CMD12RBE |
1172                           INT_CMD12CRE | INT_BUFRE));
1173                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
1174         } else if (state & INT_BUFRE) {
1175                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
1176                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
1177         } else if (state & INT_DTRANE) {
1178                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
1179                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
1180         } else if (state & INT_CMD12RBE) {
1181                 sh_mmcif_writel(host->addr, MMCIF_CE_INT,
1182                                 ~(INT_CMD12RBE | INT_CMD12CRE));
1183                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
1184         } else {
1185                 dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
1186                 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
1187                 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
1188                 err = 1;
1189         }
1190         if (err) {
1191                 host->sd_error = true;
1192                 dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
1193         }
1194         if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1195                 if (!host->dma_active)
1196                         return IRQ_WAKE_THREAD;
1197                 else if (host->sd_error)
1198                         mmcif_dma_complete(host);
1199         } else {
1200                 dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1201         }
1202
1203         return IRQ_HANDLED;
1204 }
1205
1206 static void mmcif_timeout_work(struct work_struct *work)
1207 {
1208         struct delayed_work *d = container_of(work, struct delayed_work, work);
1209         struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1210         struct mmc_request *mrq = host->mrq;
1211
1212         if (host->dying)
1213                 /* Don't run after mmc_remove_host() */
1214                 return;
1215
1216         /*
1217          * Handle races with cancel_delayed_work(), unless
1218          * cancel_delayed_work_sync() is used
1219          */
1220         switch (host->wait_for) {
1221         case MMCIF_WAIT_FOR_CMD:
1222                 mrq->cmd->error = sh_mmcif_error_manage(host);
1223                 break;
1224         case MMCIF_WAIT_FOR_STOP:
1225                 mrq->stop->error = sh_mmcif_error_manage(host);
1226                 break;
1227         case MMCIF_WAIT_FOR_MREAD:
1228         case MMCIF_WAIT_FOR_MWRITE:
1229         case MMCIF_WAIT_FOR_READ:
1230         case MMCIF_WAIT_FOR_WRITE:
1231         case MMCIF_WAIT_FOR_READ_END:
1232         case MMCIF_WAIT_FOR_WRITE_END:
1233                 mrq->data->error = sh_mmcif_error_manage(host);
1234                 break;
1235         default:
1236                 BUG();
1237         }
1238
1239         host->state = STATE_IDLE;
1240         host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1241         host->mrq = NULL;
1242         mmc_request_done(host->mmc, mrq);
1243 }
1244
1245 static int __devinit sh_mmcif_probe(struct platform_device *pdev)
1246 {
1247         int ret = 0, irq[2];
1248         struct mmc_host *mmc;
1249         struct sh_mmcif_host *host;
1250         struct sh_mmcif_plat_data *pd;
1251         struct resource *res;
1252         void __iomem *reg;
1253         char clk_name[8];
1254
1255         irq[0] = platform_get_irq(pdev, 0);
1256         irq[1] = platform_get_irq(pdev, 1);
1257         if (irq[0] < 0 || irq[1] < 0) {
1258                 dev_err(&pdev->dev, "Get irq error\n");
1259                 return -ENXIO;
1260         }
1261         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1262         if (!res) {
1263                 dev_err(&pdev->dev, "platform_get_resource error.\n");
1264                 return -ENXIO;
1265         }
1266         reg = ioremap(res->start, resource_size(res));
1267         if (!reg) {
1268                 dev_err(&pdev->dev, "ioremap error.\n");
1269                 return -ENOMEM;
1270         }
1271         pd = pdev->dev.platform_data;
1272         if (!pd) {
1273                 dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
1274                 ret = -ENXIO;
1275                 goto clean_up;
1276         }
1277         mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1278         if (!mmc) {
1279                 ret = -ENOMEM;
1280                 goto clean_up;
1281         }
1282         host            = mmc_priv(mmc);
1283         host->mmc       = mmc;
1284         host->addr      = reg;
1285         host->timeout   = 1000;
1286
1287         snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
1288         host->hclk = clk_get(&pdev->dev, clk_name);
1289         if (IS_ERR(host->hclk)) {
1290                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
1291                 ret = PTR_ERR(host->hclk);
1292                 goto clean_up1;
1293         }
1294         clk_enable(host->hclk);
1295         host->clk = clk_get_rate(host->hclk);
1296         host->pd = pdev;
1297
1298         spin_lock_init(&host->lock);
1299
1300         mmc->ops = &sh_mmcif_ops;
1301         mmc->f_max = host->clk;
1302         /* close to 400KHz */
1303         if (mmc->f_max < 51200000)
1304                 mmc->f_min = mmc->f_max / 128;
1305         else if (mmc->f_max < 102400000)
1306                 mmc->f_min = mmc->f_max / 256;
1307         else
1308                 mmc->f_min = mmc->f_max / 512;
1309         if (pd->ocr)
1310                 mmc->ocr_avail = pd->ocr;
1311         mmc->caps = MMC_CAP_MMC_HIGHSPEED;
1312         if (pd->caps)
1313                 mmc->caps |= pd->caps;
1314         mmc->max_segs = 32;
1315         mmc->max_blk_size = 512;
1316         mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1317         mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1318         mmc->max_seg_size = mmc->max_req_size;
1319
1320         sh_mmcif_sync_reset(host);
1321         platform_set_drvdata(pdev, host);
1322
1323         pm_runtime_enable(&pdev->dev);
1324         host->power = false;
1325
1326         ret = pm_runtime_resume(&pdev->dev);
1327         if (ret < 0)
1328                 goto clean_up2;
1329
1330         mmc_add_host(mmc);
1331
1332         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1333
1334         ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
1335         if (ret) {
1336                 dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
1337                 goto clean_up3;
1338         }
1339         ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
1340         if (ret) {
1341                 free_irq(irq[0], host);
1342                 dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1343                 goto clean_up3;
1344         }
1345
1346         INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1347
1348         mmc_detect_change(host->mmc, 0);
1349
1350         dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
1351         dev_dbg(&pdev->dev, "chip ver H'%04x\n",
1352                 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
1353         return ret;
1354
1355 clean_up3:
1356         mmc_remove_host(mmc);
1357         pm_runtime_suspend(&pdev->dev);
1358 clean_up2:
1359         pm_runtime_disable(&pdev->dev);
1360         clk_disable(host->hclk);
1361 clean_up1:
1362         mmc_free_host(mmc);
1363 clean_up:
1364         if (reg)
1365                 iounmap(reg);
1366         return ret;
1367 }
1368
1369 static int __devexit sh_mmcif_remove(struct platform_device *pdev)
1370 {
1371         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1372         int irq[2];
1373
1374         host->dying = true;
1375         pm_runtime_get_sync(&pdev->dev);
1376
1377         mmc_remove_host(host->mmc);
1378         sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1379
1380         /*
1381          * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1382          * mmc_remove_host() call above. But swapping order doesn't help either
1383          * (a query on the linux-mmc mailing list didn't bring any replies).
1384          */
1385         cancel_delayed_work_sync(&host->timeout_work);
1386
1387         if (host->addr)
1388                 iounmap(host->addr);
1389
1390         irq[0] = platform_get_irq(pdev, 0);
1391         irq[1] = platform_get_irq(pdev, 1);
1392
1393         free_irq(irq[0], host);
1394         free_irq(irq[1], host);
1395
1396         platform_set_drvdata(pdev, NULL);
1397
1398         clk_disable(host->hclk);
1399         mmc_free_host(host->mmc);
1400         pm_runtime_put_sync(&pdev->dev);
1401         pm_runtime_disable(&pdev->dev);
1402
1403         return 0;
1404 }
1405
1406 #ifdef CONFIG_PM
1407 static int sh_mmcif_suspend(struct device *dev)
1408 {
1409         struct platform_device *pdev = to_platform_device(dev);
1410         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1411         int ret = mmc_suspend_host(host->mmc);
1412
1413         if (!ret) {
1414                 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1415                 clk_disable(host->hclk);
1416         }
1417
1418         return ret;
1419 }
1420
1421 static int sh_mmcif_resume(struct device *dev)
1422 {
1423         struct platform_device *pdev = to_platform_device(dev);
1424         struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1425
1426         clk_enable(host->hclk);
1427
1428         return mmc_resume_host(host->mmc);
1429 }
1430 #else
1431 #define sh_mmcif_suspend        NULL
1432 #define sh_mmcif_resume         NULL
1433 #endif  /* CONFIG_PM */
1434
1435 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1436         .suspend = sh_mmcif_suspend,
1437         .resume = sh_mmcif_resume,
1438 };
1439
1440 static struct platform_driver sh_mmcif_driver = {
1441         .probe          = sh_mmcif_probe,
1442         .remove         = sh_mmcif_remove,
1443         .driver         = {
1444                 .name   = DRIVER_NAME,
1445                 .pm     = &sh_mmcif_dev_pm_ops,
1446         },
1447 };
1448
1449 module_platform_driver(sh_mmcif_driver);
1450
1451 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1452 MODULE_LICENSE("GPL");
1453 MODULE_ALIAS("platform:" DRIVER_NAME);
1454 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");