Merge branches 'for-4.3/chicony', 'for-4.3/cp2112', 'for-4.3/i2c-hid', 'for-4.3/lenov...
[linux-drm-fsl-dcu.git] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70                           sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75         struct pool_info *pi = data;
76         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78         /* allocate a r1bio with room for raid_disks entries in the bios array */
79         return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84         kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97         struct pool_info *pi = data;
98         struct r1bio *r1_bio;
99         struct bio *bio;
100         int need_pages;
101         int i, j;
102
103         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104         if (!r1_bio)
105                 return NULL;
106
107         /*
108          * Allocate bios : 1 for reading, n-1 for writing
109          */
110         for (j = pi->raid_disks ; j-- ; ) {
111                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112                 if (!bio)
113                         goto out_free_bio;
114                 r1_bio->bios[j] = bio;
115         }
116         /*
117          * Allocate RESYNC_PAGES data pages and attach them to
118          * the first bio.
119          * If this is a user-requested check/repair, allocate
120          * RESYNC_PAGES for each bio.
121          */
122         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123                 need_pages = pi->raid_disks;
124         else
125                 need_pages = 1;
126         for (j = 0; j < need_pages; j++) {
127                 bio = r1_bio->bios[j];
128                 bio->bi_vcnt = RESYNC_PAGES;
129
130                 if (bio_alloc_pages(bio, gfp_flags))
131                         goto out_free_pages;
132         }
133         /* If not user-requests, copy the page pointers to all bios */
134         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135                 for (i=0; i<RESYNC_PAGES ; i++)
136                         for (j=1; j<pi->raid_disks; j++)
137                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
139         }
140
141         r1_bio->master_bio = NULL;
142
143         return r1_bio;
144
145 out_free_pages:
146         while (--j >= 0) {
147                 struct bio_vec *bv;
148
149                 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150                         __free_page(bv->bv_page);
151         }
152
153 out_free_bio:
154         while (++j < pi->raid_disks)
155                 bio_put(r1_bio->bios[j]);
156         r1bio_pool_free(r1_bio, data);
157         return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162         struct pool_info *pi = data;
163         int i,j;
164         struct r1bio *r1bio = __r1_bio;
165
166         for (i = 0; i < RESYNC_PAGES; i++)
167                 for (j = pi->raid_disks; j-- ;) {
168                         if (j == 0 ||
169                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
170                             r1bio->bios[0]->bi_io_vec[i].bv_page)
171                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172                 }
173         for (i=0 ; i < pi->raid_disks; i++)
174                 bio_put(r1bio->bios[i]);
175
176         r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181         int i;
182
183         for (i = 0; i < conf->raid_disks * 2; i++) {
184                 struct bio **bio = r1_bio->bios + i;
185                 if (!BIO_SPECIAL(*bio))
186                         bio_put(*bio);
187                 *bio = NULL;
188         }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193         struct r1conf *conf = r1_bio->mddev->private;
194
195         put_all_bios(conf, r1_bio);
196         mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201         struct r1conf *conf = r1_bio->mddev->private;
202         int i;
203
204         for (i = 0; i < conf->raid_disks * 2; i++) {
205                 struct bio *bio = r1_bio->bios[i];
206                 if (bio->bi_end_io)
207                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208         }
209
210         mempool_free(r1_bio, conf->r1buf_pool);
211
212         lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217         unsigned long flags;
218         struct mddev *mddev = r1_bio->mddev;
219         struct r1conf *conf = mddev->private;
220
221         spin_lock_irqsave(&conf->device_lock, flags);
222         list_add(&r1_bio->retry_list, &conf->retry_list);
223         conf->nr_queued ++;
224         spin_unlock_irqrestore(&conf->device_lock, flags);
225
226         wake_up(&conf->wait_barrier);
227         md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231  * raid_end_bio_io() is called when we have finished servicing a mirrored
232  * operation and are ready to return a success/failure code to the buffer
233  * cache layer.
234  */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237         struct bio *bio = r1_bio->master_bio;
238         int done;
239         struct r1conf *conf = r1_bio->mddev->private;
240         sector_t start_next_window = r1_bio->start_next_window;
241         sector_t bi_sector = bio->bi_iter.bi_sector;
242
243         if (bio->bi_phys_segments) {
244                 unsigned long flags;
245                 spin_lock_irqsave(&conf->device_lock, flags);
246                 bio->bi_phys_segments--;
247                 done = (bio->bi_phys_segments == 0);
248                 spin_unlock_irqrestore(&conf->device_lock, flags);
249                 /*
250                  * make_request() might be waiting for
251                  * bi_phys_segments to decrease
252                  */
253                 wake_up(&conf->wait_barrier);
254         } else
255                 done = 1;
256
257         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259         if (done) {
260                 bio_endio(bio, 0);
261                 /*
262                  * Wake up any possible resync thread that waits for the device
263                  * to go idle.
264                  */
265                 allow_barrier(conf, start_next_window, bi_sector);
266         }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271         struct bio *bio = r1_bio->master_bio;
272
273         /* if nobody has done the final endio yet, do it now */
274         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
277                          (unsigned long long) bio->bi_iter.bi_sector,
278                          (unsigned long long) bio_end_sector(bio) - 1);
279
280                 call_bio_endio(r1_bio);
281         }
282         free_r1bio(r1_bio);
283 }
284
285 /*
286  * Update disk head position estimator based on IRQ completion info.
287  */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290         struct r1conf *conf = r1_bio->mddev->private;
291
292         conf->mirrors[disk].head_position =
293                 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297  * Find the disk number which triggered given bio
298  */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301         int mirror;
302         struct r1conf *conf = r1_bio->mddev->private;
303         int raid_disks = conf->raid_disks;
304
305         for (mirror = 0; mirror < raid_disks * 2; mirror++)
306                 if (r1_bio->bios[mirror] == bio)
307                         break;
308
309         BUG_ON(mirror == raid_disks * 2);
310         update_head_pos(mirror, r1_bio);
311
312         return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318         struct r1bio *r1_bio = bio->bi_private;
319         int mirror;
320         struct r1conf *conf = r1_bio->mddev->private;
321
322         mirror = r1_bio->read_disk;
323         /*
324          * this branch is our 'one mirror IO has finished' event handler:
325          */
326         update_head_pos(mirror, r1_bio);
327
328         if (uptodate)
329                 set_bit(R1BIO_Uptodate, &r1_bio->state);
330         else {
331                 /* If all other devices have failed, we want to return
332                  * the error upwards rather than fail the last device.
333                  * Here we redefine "uptodate" to mean "Don't want to retry"
334                  */
335                 unsigned long flags;
336                 spin_lock_irqsave(&conf->device_lock, flags);
337                 if (r1_bio->mddev->degraded == conf->raid_disks ||
338                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339                      test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
340                         uptodate = 1;
341                 spin_unlock_irqrestore(&conf->device_lock, flags);
342         }
343
344         if (uptodate) {
345                 raid_end_bio_io(r1_bio);
346                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347         } else {
348                 /*
349                  * oops, read error:
350                  */
351                 char b[BDEVNAME_SIZE];
352                 printk_ratelimited(
353                         KERN_ERR "md/raid1:%s: %s: "
354                         "rescheduling sector %llu\n",
355                         mdname(conf->mddev),
356                         bdevname(conf->mirrors[mirror].rdev->bdev,
357                                  b),
358                         (unsigned long long)r1_bio->sector);
359                 set_bit(R1BIO_ReadError, &r1_bio->state);
360                 reschedule_retry(r1_bio);
361                 /* don't drop the reference on read_disk yet */
362         }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367         /* it really is the end of this request */
368         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369                 /* free extra copy of the data pages */
370                 int i = r1_bio->behind_page_count;
371                 while (i--)
372                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373                 kfree(r1_bio->behind_bvecs);
374                 r1_bio->behind_bvecs = NULL;
375         }
376         /* clear the bitmap if all writes complete successfully */
377         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378                         r1_bio->sectors,
379                         !test_bit(R1BIO_Degraded, &r1_bio->state),
380                         test_bit(R1BIO_BehindIO, &r1_bio->state));
381         md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386         if (!atomic_dec_and_test(&r1_bio->remaining))
387                 return;
388
389         if (test_bit(R1BIO_WriteError, &r1_bio->state))
390                 reschedule_retry(r1_bio);
391         else {
392                 close_write(r1_bio);
393                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394                         reschedule_retry(r1_bio);
395                 else
396                         raid_end_bio_io(r1_bio);
397         }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403         struct r1bio *r1_bio = bio->bi_private;
404         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405         struct r1conf *conf = r1_bio->mddev->private;
406         struct bio *to_put = NULL;
407
408         mirror = find_bio_disk(r1_bio, bio);
409
410         /*
411          * 'one mirror IO has finished' event handler:
412          */
413         if (!uptodate) {
414                 set_bit(WriteErrorSeen,
415                         &conf->mirrors[mirror].rdev->flags);
416                 if (!test_and_set_bit(WantReplacement,
417                                       &conf->mirrors[mirror].rdev->flags))
418                         set_bit(MD_RECOVERY_NEEDED, &
419                                 conf->mddev->recovery);
420
421                 set_bit(R1BIO_WriteError, &r1_bio->state);
422         } else {
423                 /*
424                  * Set R1BIO_Uptodate in our master bio, so that we
425                  * will return a good error code for to the higher
426                  * levels even if IO on some other mirrored buffer
427                  * fails.
428                  *
429                  * The 'master' represents the composite IO operation
430                  * to user-side. So if something waits for IO, then it
431                  * will wait for the 'master' bio.
432                  */
433                 sector_t first_bad;
434                 int bad_sectors;
435
436                 r1_bio->bios[mirror] = NULL;
437                 to_put = bio;
438                 /*
439                  * Do not set R1BIO_Uptodate if the current device is
440                  * rebuilding or Faulty. This is because we cannot use
441                  * such device for properly reading the data back (we could
442                  * potentially use it, if the current write would have felt
443                  * before rdev->recovery_offset, but for simplicity we don't
444                  * check this here.
445                  */
446                 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447                     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448                         set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450                 /* Maybe we can clear some bad blocks. */
451                 if (is_badblock(conf->mirrors[mirror].rdev,
452                                 r1_bio->sector, r1_bio->sectors,
453                                 &first_bad, &bad_sectors)) {
454                         r1_bio->bios[mirror] = IO_MADE_GOOD;
455                         set_bit(R1BIO_MadeGood, &r1_bio->state);
456                 }
457         }
458
459         if (behind) {
460                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461                         atomic_dec(&r1_bio->behind_remaining);
462
463                 /*
464                  * In behind mode, we ACK the master bio once the I/O
465                  * has safely reached all non-writemostly
466                  * disks. Setting the Returned bit ensures that this
467                  * gets done only once -- we don't ever want to return
468                  * -EIO here, instead we'll wait
469                  */
470                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472                         /* Maybe we can return now */
473                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474                                 struct bio *mbio = r1_bio->master_bio;
475                                 pr_debug("raid1: behind end write sectors"
476                                          " %llu-%llu\n",
477                                          (unsigned long long) mbio->bi_iter.bi_sector,
478                                          (unsigned long long) bio_end_sector(mbio) - 1);
479                                 call_bio_endio(r1_bio);
480                         }
481                 }
482         }
483         if (r1_bio->bios[mirror] == NULL)
484                 rdev_dec_pending(conf->mirrors[mirror].rdev,
485                                  conf->mddev);
486
487         /*
488          * Let's see if all mirrored write operations have finished
489          * already.
490          */
491         r1_bio_write_done(r1_bio);
492
493         if (to_put)
494                 bio_put(to_put);
495 }
496
497 /*
498  * This routine returns the disk from which the requested read should
499  * be done. There is a per-array 'next expected sequential IO' sector
500  * number - if this matches on the next IO then we use the last disk.
501  * There is also a per-disk 'last know head position' sector that is
502  * maintained from IRQ contexts, both the normal and the resync IO
503  * completion handlers update this position correctly. If there is no
504  * perfect sequential match then we pick the disk whose head is closest.
505  *
506  * If there are 2 mirrors in the same 2 devices, performance degrades
507  * because position is mirror, not device based.
508  *
509  * The rdev for the device selected will have nr_pending incremented.
510  */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513         const sector_t this_sector = r1_bio->sector;
514         int sectors;
515         int best_good_sectors;
516         int best_disk, best_dist_disk, best_pending_disk;
517         int has_nonrot_disk;
518         int disk;
519         sector_t best_dist;
520         unsigned int min_pending;
521         struct md_rdev *rdev;
522         int choose_first;
523         int choose_next_idle;
524
525         rcu_read_lock();
526         /*
527          * Check if we can balance. We can balance on the whole
528          * device if no resync is going on, or below the resync window.
529          * We take the first readable disk when above the resync window.
530          */
531  retry:
532         sectors = r1_bio->sectors;
533         best_disk = -1;
534         best_dist_disk = -1;
535         best_dist = MaxSector;
536         best_pending_disk = -1;
537         min_pending = UINT_MAX;
538         best_good_sectors = 0;
539         has_nonrot_disk = 0;
540         choose_next_idle = 0;
541
542         if ((conf->mddev->recovery_cp < this_sector + sectors) ||
543             (mddev_is_clustered(conf->mddev) &&
544             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
545                     this_sector + sectors)))
546                 choose_first = 1;
547         else
548                 choose_first = 0;
549
550         for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
551                 sector_t dist;
552                 sector_t first_bad;
553                 int bad_sectors;
554                 unsigned int pending;
555                 bool nonrot;
556
557                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
558                 if (r1_bio->bios[disk] == IO_BLOCKED
559                     || rdev == NULL
560                     || test_bit(Unmerged, &rdev->flags)
561                     || test_bit(Faulty, &rdev->flags))
562                         continue;
563                 if (!test_bit(In_sync, &rdev->flags) &&
564                     rdev->recovery_offset < this_sector + sectors)
565                         continue;
566                 if (test_bit(WriteMostly, &rdev->flags)) {
567                         /* Don't balance among write-mostly, just
568                          * use the first as a last resort */
569                         if (best_dist_disk < 0) {
570                                 if (is_badblock(rdev, this_sector, sectors,
571                                                 &first_bad, &bad_sectors)) {
572                                         if (first_bad < this_sector)
573                                                 /* Cannot use this */
574                                                 continue;
575                                         best_good_sectors = first_bad - this_sector;
576                                 } else
577                                         best_good_sectors = sectors;
578                                 best_dist_disk = disk;
579                                 best_pending_disk = disk;
580                         }
581                         continue;
582                 }
583                 /* This is a reasonable device to use.  It might
584                  * even be best.
585                  */
586                 if (is_badblock(rdev, this_sector, sectors,
587                                 &first_bad, &bad_sectors)) {
588                         if (best_dist < MaxSector)
589                                 /* already have a better device */
590                                 continue;
591                         if (first_bad <= this_sector) {
592                                 /* cannot read here. If this is the 'primary'
593                                  * device, then we must not read beyond
594                                  * bad_sectors from another device..
595                                  */
596                                 bad_sectors -= (this_sector - first_bad);
597                                 if (choose_first && sectors > bad_sectors)
598                                         sectors = bad_sectors;
599                                 if (best_good_sectors > sectors)
600                                         best_good_sectors = sectors;
601
602                         } else {
603                                 sector_t good_sectors = first_bad - this_sector;
604                                 if (good_sectors > best_good_sectors) {
605                                         best_good_sectors = good_sectors;
606                                         best_disk = disk;
607                                 }
608                                 if (choose_first)
609                                         break;
610                         }
611                         continue;
612                 } else
613                         best_good_sectors = sectors;
614
615                 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
616                 has_nonrot_disk |= nonrot;
617                 pending = atomic_read(&rdev->nr_pending);
618                 dist = abs(this_sector - conf->mirrors[disk].head_position);
619                 if (choose_first) {
620                         best_disk = disk;
621                         break;
622                 }
623                 /* Don't change to another disk for sequential reads */
624                 if (conf->mirrors[disk].next_seq_sect == this_sector
625                     || dist == 0) {
626                         int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
627                         struct raid1_info *mirror = &conf->mirrors[disk];
628
629                         best_disk = disk;
630                         /*
631                          * If buffered sequential IO size exceeds optimal
632                          * iosize, check if there is idle disk. If yes, choose
633                          * the idle disk. read_balance could already choose an
634                          * idle disk before noticing it's a sequential IO in
635                          * this disk. This doesn't matter because this disk
636                          * will idle, next time it will be utilized after the
637                          * first disk has IO size exceeds optimal iosize. In
638                          * this way, iosize of the first disk will be optimal
639                          * iosize at least. iosize of the second disk might be
640                          * small, but not a big deal since when the second disk
641                          * starts IO, the first disk is likely still busy.
642                          */
643                         if (nonrot && opt_iosize > 0 &&
644                             mirror->seq_start != MaxSector &&
645                             mirror->next_seq_sect > opt_iosize &&
646                             mirror->next_seq_sect - opt_iosize >=
647                             mirror->seq_start) {
648                                 choose_next_idle = 1;
649                                 continue;
650                         }
651                         break;
652                 }
653                 /* If device is idle, use it */
654                 if (pending == 0) {
655                         best_disk = disk;
656                         break;
657                 }
658
659                 if (choose_next_idle)
660                         continue;
661
662                 if (min_pending > pending) {
663                         min_pending = pending;
664                         best_pending_disk = disk;
665                 }
666
667                 if (dist < best_dist) {
668                         best_dist = dist;
669                         best_dist_disk = disk;
670                 }
671         }
672
673         /*
674          * If all disks are rotational, choose the closest disk. If any disk is
675          * non-rotational, choose the disk with less pending request even the
676          * disk is rotational, which might/might not be optimal for raids with
677          * mixed ratation/non-rotational disks depending on workload.
678          */
679         if (best_disk == -1) {
680                 if (has_nonrot_disk)
681                         best_disk = best_pending_disk;
682                 else
683                         best_disk = best_dist_disk;
684         }
685
686         if (best_disk >= 0) {
687                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
688                 if (!rdev)
689                         goto retry;
690                 atomic_inc(&rdev->nr_pending);
691                 if (test_bit(Faulty, &rdev->flags)) {
692                         /* cannot risk returning a device that failed
693                          * before we inc'ed nr_pending
694                          */
695                         rdev_dec_pending(rdev, conf->mddev);
696                         goto retry;
697                 }
698                 sectors = best_good_sectors;
699
700                 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
701                         conf->mirrors[best_disk].seq_start = this_sector;
702
703                 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
704         }
705         rcu_read_unlock();
706         *max_sectors = sectors;
707
708         return best_disk;
709 }
710
711 static int raid1_mergeable_bvec(struct mddev *mddev,
712                                 struct bvec_merge_data *bvm,
713                                 struct bio_vec *biovec)
714 {
715         struct r1conf *conf = mddev->private;
716         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
717         int max = biovec->bv_len;
718
719         if (mddev->merge_check_needed) {
720                 int disk;
721                 rcu_read_lock();
722                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
723                         struct md_rdev *rdev = rcu_dereference(
724                                 conf->mirrors[disk].rdev);
725                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
726                                 struct request_queue *q =
727                                         bdev_get_queue(rdev->bdev);
728                                 if (q->merge_bvec_fn) {
729                                         bvm->bi_sector = sector +
730                                                 rdev->data_offset;
731                                         bvm->bi_bdev = rdev->bdev;
732                                         max = min(max, q->merge_bvec_fn(
733                                                           q, bvm, biovec));
734                                 }
735                         }
736                 }
737                 rcu_read_unlock();
738         }
739         return max;
740
741 }
742
743 static int raid1_congested(struct mddev *mddev, int bits)
744 {
745         struct r1conf *conf = mddev->private;
746         int i, ret = 0;
747
748         if ((bits & (1 << WB_async_congested)) &&
749             conf->pending_count >= max_queued_requests)
750                 return 1;
751
752         rcu_read_lock();
753         for (i = 0; i < conf->raid_disks * 2; i++) {
754                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
755                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
756                         struct request_queue *q = bdev_get_queue(rdev->bdev);
757
758                         BUG_ON(!q);
759
760                         /* Note the '|| 1' - when read_balance prefers
761                          * non-congested targets, it can be removed
762                          */
763                         if ((bits & (1 << WB_async_congested)) || 1)
764                                 ret |= bdi_congested(&q->backing_dev_info, bits);
765                         else
766                                 ret &= bdi_congested(&q->backing_dev_info, bits);
767                 }
768         }
769         rcu_read_unlock();
770         return ret;
771 }
772
773 static void flush_pending_writes(struct r1conf *conf)
774 {
775         /* Any writes that have been queued but are awaiting
776          * bitmap updates get flushed here.
777          */
778         spin_lock_irq(&conf->device_lock);
779
780         if (conf->pending_bio_list.head) {
781                 struct bio *bio;
782                 bio = bio_list_get(&conf->pending_bio_list);
783                 conf->pending_count = 0;
784                 spin_unlock_irq(&conf->device_lock);
785                 /* flush any pending bitmap writes to
786                  * disk before proceeding w/ I/O */
787                 bitmap_unplug(conf->mddev->bitmap);
788                 wake_up(&conf->wait_barrier);
789
790                 while (bio) { /* submit pending writes */
791                         struct bio *next = bio->bi_next;
792                         bio->bi_next = NULL;
793                         if (unlikely((bio->bi_rw & REQ_DISCARD) &&
794                             !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
795                                 /* Just ignore it */
796                                 bio_endio(bio, 0);
797                         else
798                                 generic_make_request(bio);
799                         bio = next;
800                 }
801         } else
802                 spin_unlock_irq(&conf->device_lock);
803 }
804
805 /* Barriers....
806  * Sometimes we need to suspend IO while we do something else,
807  * either some resync/recovery, or reconfigure the array.
808  * To do this we raise a 'barrier'.
809  * The 'barrier' is a counter that can be raised multiple times
810  * to count how many activities are happening which preclude
811  * normal IO.
812  * We can only raise the barrier if there is no pending IO.
813  * i.e. if nr_pending == 0.
814  * We choose only to raise the barrier if no-one is waiting for the
815  * barrier to go down.  This means that as soon as an IO request
816  * is ready, no other operations which require a barrier will start
817  * until the IO request has had a chance.
818  *
819  * So: regular IO calls 'wait_barrier'.  When that returns there
820  *    is no backgroup IO happening,  It must arrange to call
821  *    allow_barrier when it has finished its IO.
822  * backgroup IO calls must call raise_barrier.  Once that returns
823  *    there is no normal IO happeing.  It must arrange to call
824  *    lower_barrier when the particular background IO completes.
825  */
826 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
827 {
828         spin_lock_irq(&conf->resync_lock);
829
830         /* Wait until no block IO is waiting */
831         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
832                             conf->resync_lock);
833
834         /* block any new IO from starting */
835         conf->barrier++;
836         conf->next_resync = sector_nr;
837
838         /* For these conditions we must wait:
839          * A: while the array is in frozen state
840          * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841          *    the max count which allowed.
842          * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843          *    next resync will reach to the window which normal bios are
844          *    handling.
845          * D: while there are any active requests in the current window.
846          */
847         wait_event_lock_irq(conf->wait_barrier,
848                             !conf->array_frozen &&
849                             conf->barrier < RESYNC_DEPTH &&
850                             conf->current_window_requests == 0 &&
851                             (conf->start_next_window >=
852                              conf->next_resync + RESYNC_SECTORS),
853                             conf->resync_lock);
854
855         conf->nr_pending++;
856         spin_unlock_irq(&conf->resync_lock);
857 }
858
859 static void lower_barrier(struct r1conf *conf)
860 {
861         unsigned long flags;
862         BUG_ON(conf->barrier <= 0);
863         spin_lock_irqsave(&conf->resync_lock, flags);
864         conf->barrier--;
865         conf->nr_pending--;
866         spin_unlock_irqrestore(&conf->resync_lock, flags);
867         wake_up(&conf->wait_barrier);
868 }
869
870 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
871 {
872         bool wait = false;
873
874         if (conf->array_frozen || !bio)
875                 wait = true;
876         else if (conf->barrier && bio_data_dir(bio) == WRITE) {
877                 if ((conf->mddev->curr_resync_completed
878                      >= bio_end_sector(bio)) ||
879                     (conf->next_resync + NEXT_NORMALIO_DISTANCE
880                      <= bio->bi_iter.bi_sector))
881                         wait = false;
882                 else
883                         wait = true;
884         }
885
886         return wait;
887 }
888
889 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
890 {
891         sector_t sector = 0;
892
893         spin_lock_irq(&conf->resync_lock);
894         if (need_to_wait_for_sync(conf, bio)) {
895                 conf->nr_waiting++;
896                 /* Wait for the barrier to drop.
897                  * However if there are already pending
898                  * requests (preventing the barrier from
899                  * rising completely), and the
900                  * per-process bio queue isn't empty,
901                  * then don't wait, as we need to empty
902                  * that queue to allow conf->start_next_window
903                  * to increase.
904                  */
905                 wait_event_lock_irq(conf->wait_barrier,
906                                     !conf->array_frozen &&
907                                     (!conf->barrier ||
908                                      ((conf->start_next_window <
909                                        conf->next_resync + RESYNC_SECTORS) &&
910                                       current->bio_list &&
911                                       !bio_list_empty(current->bio_list))),
912                                     conf->resync_lock);
913                 conf->nr_waiting--;
914         }
915
916         if (bio && bio_data_dir(bio) == WRITE) {
917                 if (bio->bi_iter.bi_sector >=
918                     conf->mddev->curr_resync_completed) {
919                         if (conf->start_next_window == MaxSector)
920                                 conf->start_next_window =
921                                         conf->next_resync +
922                                         NEXT_NORMALIO_DISTANCE;
923
924                         if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
925                             <= bio->bi_iter.bi_sector)
926                                 conf->next_window_requests++;
927                         else
928                                 conf->current_window_requests++;
929                         sector = conf->start_next_window;
930                 }
931         }
932
933         conf->nr_pending++;
934         spin_unlock_irq(&conf->resync_lock);
935         return sector;
936 }
937
938 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
939                           sector_t bi_sector)
940 {
941         unsigned long flags;
942
943         spin_lock_irqsave(&conf->resync_lock, flags);
944         conf->nr_pending--;
945         if (start_next_window) {
946                 if (start_next_window == conf->start_next_window) {
947                         if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
948                             <= bi_sector)
949                                 conf->next_window_requests--;
950                         else
951                                 conf->current_window_requests--;
952                 } else
953                         conf->current_window_requests--;
954
955                 if (!conf->current_window_requests) {
956                         if (conf->next_window_requests) {
957                                 conf->current_window_requests =
958                                         conf->next_window_requests;
959                                 conf->next_window_requests = 0;
960                                 conf->start_next_window +=
961                                         NEXT_NORMALIO_DISTANCE;
962                         } else
963                                 conf->start_next_window = MaxSector;
964                 }
965         }
966         spin_unlock_irqrestore(&conf->resync_lock, flags);
967         wake_up(&conf->wait_barrier);
968 }
969
970 static void freeze_array(struct r1conf *conf, int extra)
971 {
972         /* stop syncio and normal IO and wait for everything to
973          * go quite.
974          * We wait until nr_pending match nr_queued+extra
975          * This is called in the context of one normal IO request
976          * that has failed. Thus any sync request that might be pending
977          * will be blocked by nr_pending, and we need to wait for
978          * pending IO requests to complete or be queued for re-try.
979          * Thus the number queued (nr_queued) plus this request (extra)
980          * must match the number of pending IOs (nr_pending) before
981          * we continue.
982          */
983         spin_lock_irq(&conf->resync_lock);
984         conf->array_frozen = 1;
985         wait_event_lock_irq_cmd(conf->wait_barrier,
986                                 conf->nr_pending == conf->nr_queued+extra,
987                                 conf->resync_lock,
988                                 flush_pending_writes(conf));
989         spin_unlock_irq(&conf->resync_lock);
990 }
991 static void unfreeze_array(struct r1conf *conf)
992 {
993         /* reverse the effect of the freeze */
994         spin_lock_irq(&conf->resync_lock);
995         conf->array_frozen = 0;
996         wake_up(&conf->wait_barrier);
997         spin_unlock_irq(&conf->resync_lock);
998 }
999
1000 /* duplicate the data pages for behind I/O
1001  */
1002 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1003 {
1004         int i;
1005         struct bio_vec *bvec;
1006         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1007                                         GFP_NOIO);
1008         if (unlikely(!bvecs))
1009                 return;
1010
1011         bio_for_each_segment_all(bvec, bio, i) {
1012                 bvecs[i] = *bvec;
1013                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1014                 if (unlikely(!bvecs[i].bv_page))
1015                         goto do_sync_io;
1016                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1017                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1018                 kunmap(bvecs[i].bv_page);
1019                 kunmap(bvec->bv_page);
1020         }
1021         r1_bio->behind_bvecs = bvecs;
1022         r1_bio->behind_page_count = bio->bi_vcnt;
1023         set_bit(R1BIO_BehindIO, &r1_bio->state);
1024         return;
1025
1026 do_sync_io:
1027         for (i = 0; i < bio->bi_vcnt; i++)
1028                 if (bvecs[i].bv_page)
1029                         put_page(bvecs[i].bv_page);
1030         kfree(bvecs);
1031         pr_debug("%dB behind alloc failed, doing sync I/O\n",
1032                  bio->bi_iter.bi_size);
1033 }
1034
1035 struct raid1_plug_cb {
1036         struct blk_plug_cb      cb;
1037         struct bio_list         pending;
1038         int                     pending_cnt;
1039 };
1040
1041 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1042 {
1043         struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1044                                                   cb);
1045         struct mddev *mddev = plug->cb.data;
1046         struct r1conf *conf = mddev->private;
1047         struct bio *bio;
1048
1049         if (from_schedule || current->bio_list) {
1050                 spin_lock_irq(&conf->device_lock);
1051                 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1052                 conf->pending_count += plug->pending_cnt;
1053                 spin_unlock_irq(&conf->device_lock);
1054                 wake_up(&conf->wait_barrier);
1055                 md_wakeup_thread(mddev->thread);
1056                 kfree(plug);
1057                 return;
1058         }
1059
1060         /* we aren't scheduling, so we can do the write-out directly. */
1061         bio = bio_list_get(&plug->pending);
1062         bitmap_unplug(mddev->bitmap);
1063         wake_up(&conf->wait_barrier);
1064
1065         while (bio) { /* submit pending writes */
1066                 struct bio *next = bio->bi_next;
1067                 bio->bi_next = NULL;
1068                 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1069                     !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1070                         /* Just ignore it */
1071                         bio_endio(bio, 0);
1072                 else
1073                         generic_make_request(bio);
1074                 bio = next;
1075         }
1076         kfree(plug);
1077 }
1078
1079 static void make_request(struct mddev *mddev, struct bio * bio)
1080 {
1081         struct r1conf *conf = mddev->private;
1082         struct raid1_info *mirror;
1083         struct r1bio *r1_bio;
1084         struct bio *read_bio;
1085         int i, disks;
1086         struct bitmap *bitmap;
1087         unsigned long flags;
1088         const int rw = bio_data_dir(bio);
1089         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1090         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1091         const unsigned long do_discard = (bio->bi_rw
1092                                           & (REQ_DISCARD | REQ_SECURE));
1093         const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1094         struct md_rdev *blocked_rdev;
1095         struct blk_plug_cb *cb;
1096         struct raid1_plug_cb *plug = NULL;
1097         int first_clone;
1098         int sectors_handled;
1099         int max_sectors;
1100         sector_t start_next_window;
1101
1102         /*
1103          * Register the new request and wait if the reconstruction
1104          * thread has put up a bar for new requests.
1105          * Continue immediately if no resync is active currently.
1106          */
1107
1108         md_write_start(mddev, bio); /* wait on superblock update early */
1109
1110         if (bio_data_dir(bio) == WRITE &&
1111             ((bio_end_sector(bio) > mddev->suspend_lo &&
1112             bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1113             (mddev_is_clustered(mddev) &&
1114              md_cluster_ops->area_resyncing(mddev, WRITE,
1115                      bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1116                 /* As the suspend_* range is controlled by
1117                  * userspace, we want an interruptible
1118                  * wait.
1119                  */
1120                 DEFINE_WAIT(w);
1121                 for (;;) {
1122                         flush_signals(current);
1123                         prepare_to_wait(&conf->wait_barrier,
1124                                         &w, TASK_INTERRUPTIBLE);
1125                         if (bio_end_sector(bio) <= mddev->suspend_lo ||
1126                             bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1127                             (mddev_is_clustered(mddev) &&
1128                              !md_cluster_ops->area_resyncing(mddev, WRITE,
1129                                      bio->bi_iter.bi_sector, bio_end_sector(bio))))
1130                                 break;
1131                         schedule();
1132                 }
1133                 finish_wait(&conf->wait_barrier, &w);
1134         }
1135
1136         start_next_window = wait_barrier(conf, bio);
1137
1138         bitmap = mddev->bitmap;
1139
1140         /*
1141          * make_request() can abort the operation when READA is being
1142          * used and no empty request is available.
1143          *
1144          */
1145         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1146
1147         r1_bio->master_bio = bio;
1148         r1_bio->sectors = bio_sectors(bio);
1149         r1_bio->state = 0;
1150         r1_bio->mddev = mddev;
1151         r1_bio->sector = bio->bi_iter.bi_sector;
1152
1153         /* We might need to issue multiple reads to different
1154          * devices if there are bad blocks around, so we keep
1155          * track of the number of reads in bio->bi_phys_segments.
1156          * If this is 0, there is only one r1_bio and no locking
1157          * will be needed when requests complete.  If it is
1158          * non-zero, then it is the number of not-completed requests.
1159          */
1160         bio->bi_phys_segments = 0;
1161         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1162
1163         if (rw == READ) {
1164                 /*
1165                  * read balancing logic:
1166                  */
1167                 int rdisk;
1168
1169 read_again:
1170                 rdisk = read_balance(conf, r1_bio, &max_sectors);
1171
1172                 if (rdisk < 0) {
1173                         /* couldn't find anywhere to read from */
1174                         raid_end_bio_io(r1_bio);
1175                         return;
1176                 }
1177                 mirror = conf->mirrors + rdisk;
1178
1179                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1180                     bitmap) {
1181                         /* Reading from a write-mostly device must
1182                          * take care not to over-take any writes
1183                          * that are 'behind'
1184                          */
1185                         wait_event(bitmap->behind_wait,
1186                                    atomic_read(&bitmap->behind_writes) == 0);
1187                 }
1188                 r1_bio->read_disk = rdisk;
1189                 r1_bio->start_next_window = 0;
1190
1191                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1192                 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1193                          max_sectors);
1194
1195                 r1_bio->bios[rdisk] = read_bio;
1196
1197                 read_bio->bi_iter.bi_sector = r1_bio->sector +
1198                         mirror->rdev->data_offset;
1199                 read_bio->bi_bdev = mirror->rdev->bdev;
1200                 read_bio->bi_end_io = raid1_end_read_request;
1201                 read_bio->bi_rw = READ | do_sync;
1202                 read_bio->bi_private = r1_bio;
1203
1204                 if (max_sectors < r1_bio->sectors) {
1205                         /* could not read all from this device, so we will
1206                          * need another r1_bio.
1207                          */
1208
1209                         sectors_handled = (r1_bio->sector + max_sectors
1210                                            - bio->bi_iter.bi_sector);
1211                         r1_bio->sectors = max_sectors;
1212                         spin_lock_irq(&conf->device_lock);
1213                         if (bio->bi_phys_segments == 0)
1214                                 bio->bi_phys_segments = 2;
1215                         else
1216                                 bio->bi_phys_segments++;
1217                         spin_unlock_irq(&conf->device_lock);
1218                         /* Cannot call generic_make_request directly
1219                          * as that will be queued in __make_request
1220                          * and subsequent mempool_alloc might block waiting
1221                          * for it.  So hand bio over to raid1d.
1222                          */
1223                         reschedule_retry(r1_bio);
1224
1225                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1226
1227                         r1_bio->master_bio = bio;
1228                         r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1229                         r1_bio->state = 0;
1230                         r1_bio->mddev = mddev;
1231                         r1_bio->sector = bio->bi_iter.bi_sector +
1232                                 sectors_handled;
1233                         goto read_again;
1234                 } else
1235                         generic_make_request(read_bio);
1236                 return;
1237         }
1238
1239         /*
1240          * WRITE:
1241          */
1242         if (conf->pending_count >= max_queued_requests) {
1243                 md_wakeup_thread(mddev->thread);
1244                 wait_event(conf->wait_barrier,
1245                            conf->pending_count < max_queued_requests);
1246         }
1247         /* first select target devices under rcu_lock and
1248          * inc refcount on their rdev.  Record them by setting
1249          * bios[x] to bio
1250          * If there are known/acknowledged bad blocks on any device on
1251          * which we have seen a write error, we want to avoid writing those
1252          * blocks.
1253          * This potentially requires several writes to write around
1254          * the bad blocks.  Each set of writes gets it's own r1bio
1255          * with a set of bios attached.
1256          */
1257
1258         disks = conf->raid_disks * 2;
1259  retry_write:
1260         r1_bio->start_next_window = start_next_window;
1261         blocked_rdev = NULL;
1262         rcu_read_lock();
1263         max_sectors = r1_bio->sectors;
1264         for (i = 0;  i < disks; i++) {
1265                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1266                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1267                         atomic_inc(&rdev->nr_pending);
1268                         blocked_rdev = rdev;
1269                         break;
1270                 }
1271                 r1_bio->bios[i] = NULL;
1272                 if (!rdev || test_bit(Faulty, &rdev->flags)
1273                     || test_bit(Unmerged, &rdev->flags)) {
1274                         if (i < conf->raid_disks)
1275                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1276                         continue;
1277                 }
1278
1279                 atomic_inc(&rdev->nr_pending);
1280                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1281                         sector_t first_bad;
1282                         int bad_sectors;
1283                         int is_bad;
1284
1285                         is_bad = is_badblock(rdev, r1_bio->sector,
1286                                              max_sectors,
1287                                              &first_bad, &bad_sectors);
1288                         if (is_bad < 0) {
1289                                 /* mustn't write here until the bad block is
1290                                  * acknowledged*/
1291                                 set_bit(BlockedBadBlocks, &rdev->flags);
1292                                 blocked_rdev = rdev;
1293                                 break;
1294                         }
1295                         if (is_bad && first_bad <= r1_bio->sector) {
1296                                 /* Cannot write here at all */
1297                                 bad_sectors -= (r1_bio->sector - first_bad);
1298                                 if (bad_sectors < max_sectors)
1299                                         /* mustn't write more than bad_sectors
1300                                          * to other devices yet
1301                                          */
1302                                         max_sectors = bad_sectors;
1303                                 rdev_dec_pending(rdev, mddev);
1304                                 /* We don't set R1BIO_Degraded as that
1305                                  * only applies if the disk is
1306                                  * missing, so it might be re-added,
1307                                  * and we want to know to recover this
1308                                  * chunk.
1309                                  * In this case the device is here,
1310                                  * and the fact that this chunk is not
1311                                  * in-sync is recorded in the bad
1312                                  * block log
1313                                  */
1314                                 continue;
1315                         }
1316                         if (is_bad) {
1317                                 int good_sectors = first_bad - r1_bio->sector;
1318                                 if (good_sectors < max_sectors)
1319                                         max_sectors = good_sectors;
1320                         }
1321                 }
1322                 r1_bio->bios[i] = bio;
1323         }
1324         rcu_read_unlock();
1325
1326         if (unlikely(blocked_rdev)) {
1327                 /* Wait for this device to become unblocked */
1328                 int j;
1329                 sector_t old = start_next_window;
1330
1331                 for (j = 0; j < i; j++)
1332                         if (r1_bio->bios[j])
1333                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1334                 r1_bio->state = 0;
1335                 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1336                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1337                 start_next_window = wait_barrier(conf, bio);
1338                 /*
1339                  * We must make sure the multi r1bios of bio have
1340                  * the same value of bi_phys_segments
1341                  */
1342                 if (bio->bi_phys_segments && old &&
1343                     old != start_next_window)
1344                         /* Wait for the former r1bio(s) to complete */
1345                         wait_event(conf->wait_barrier,
1346                                    bio->bi_phys_segments == 1);
1347                 goto retry_write;
1348         }
1349
1350         if (max_sectors < r1_bio->sectors) {
1351                 /* We are splitting this write into multiple parts, so
1352                  * we need to prepare for allocating another r1_bio.
1353                  */
1354                 r1_bio->sectors = max_sectors;
1355                 spin_lock_irq(&conf->device_lock);
1356                 if (bio->bi_phys_segments == 0)
1357                         bio->bi_phys_segments = 2;
1358                 else
1359                         bio->bi_phys_segments++;
1360                 spin_unlock_irq(&conf->device_lock);
1361         }
1362         sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1363
1364         atomic_set(&r1_bio->remaining, 1);
1365         atomic_set(&r1_bio->behind_remaining, 0);
1366
1367         first_clone = 1;
1368         for (i = 0; i < disks; i++) {
1369                 struct bio *mbio;
1370                 if (!r1_bio->bios[i])
1371                         continue;
1372
1373                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1374                 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1375
1376                 if (first_clone) {
1377                         /* do behind I/O ?
1378                          * Not if there are too many, or cannot
1379                          * allocate memory, or a reader on WriteMostly
1380                          * is waiting for behind writes to flush */
1381                         if (bitmap &&
1382                             (atomic_read(&bitmap->behind_writes)
1383                              < mddev->bitmap_info.max_write_behind) &&
1384                             !waitqueue_active(&bitmap->behind_wait))
1385                                 alloc_behind_pages(mbio, r1_bio);
1386
1387                         bitmap_startwrite(bitmap, r1_bio->sector,
1388                                           r1_bio->sectors,
1389                                           test_bit(R1BIO_BehindIO,
1390                                                    &r1_bio->state));
1391                         first_clone = 0;
1392                 }
1393                 if (r1_bio->behind_bvecs) {
1394                         struct bio_vec *bvec;
1395                         int j;
1396
1397                         /*
1398                          * We trimmed the bio, so _all is legit
1399                          */
1400                         bio_for_each_segment_all(bvec, mbio, j)
1401                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1402                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1403                                 atomic_inc(&r1_bio->behind_remaining);
1404                 }
1405
1406                 r1_bio->bios[i] = mbio;
1407
1408                 mbio->bi_iter.bi_sector = (r1_bio->sector +
1409                                    conf->mirrors[i].rdev->data_offset);
1410                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1411                 mbio->bi_end_io = raid1_end_write_request;
1412                 mbio->bi_rw =
1413                         WRITE | do_flush_fua | do_sync | do_discard | do_same;
1414                 mbio->bi_private = r1_bio;
1415
1416                 atomic_inc(&r1_bio->remaining);
1417
1418                 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1419                 if (cb)
1420                         plug = container_of(cb, struct raid1_plug_cb, cb);
1421                 else
1422                         plug = NULL;
1423                 spin_lock_irqsave(&conf->device_lock, flags);
1424                 if (plug) {
1425                         bio_list_add(&plug->pending, mbio);
1426                         plug->pending_cnt++;
1427                 } else {
1428                         bio_list_add(&conf->pending_bio_list, mbio);
1429                         conf->pending_count++;
1430                 }
1431                 spin_unlock_irqrestore(&conf->device_lock, flags);
1432                 if (!plug)
1433                         md_wakeup_thread(mddev->thread);
1434         }
1435         /* Mustn't call r1_bio_write_done before this next test,
1436          * as it could result in the bio being freed.
1437          */
1438         if (sectors_handled < bio_sectors(bio)) {
1439                 r1_bio_write_done(r1_bio);
1440                 /* We need another r1_bio.  It has already been counted
1441                  * in bio->bi_phys_segments
1442                  */
1443                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1444                 r1_bio->master_bio = bio;
1445                 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1446                 r1_bio->state = 0;
1447                 r1_bio->mddev = mddev;
1448                 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1449                 goto retry_write;
1450         }
1451
1452         r1_bio_write_done(r1_bio);
1453
1454         /* In case raid1d snuck in to freeze_array */
1455         wake_up(&conf->wait_barrier);
1456 }
1457
1458 static void status(struct seq_file *seq, struct mddev *mddev)
1459 {
1460         struct r1conf *conf = mddev->private;
1461         int i;
1462
1463         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1464                    conf->raid_disks - mddev->degraded);
1465         rcu_read_lock();
1466         for (i = 0; i < conf->raid_disks; i++) {
1467                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1468                 seq_printf(seq, "%s",
1469                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1470         }
1471         rcu_read_unlock();
1472         seq_printf(seq, "]");
1473 }
1474
1475 static void error(struct mddev *mddev, struct md_rdev *rdev)
1476 {
1477         char b[BDEVNAME_SIZE];
1478         struct r1conf *conf = mddev->private;
1479         unsigned long flags;
1480
1481         /*
1482          * If it is not operational, then we have already marked it as dead
1483          * else if it is the last working disks, ignore the error, let the
1484          * next level up know.
1485          * else mark the drive as failed
1486          */
1487         if (test_bit(In_sync, &rdev->flags)
1488             && (conf->raid_disks - mddev->degraded) == 1) {
1489                 /*
1490                  * Don't fail the drive, act as though we were just a
1491                  * normal single drive.
1492                  * However don't try a recovery from this drive as
1493                  * it is very likely to fail.
1494                  */
1495                 conf->recovery_disabled = mddev->recovery_disabled;
1496                 return;
1497         }
1498         set_bit(Blocked, &rdev->flags);
1499         spin_lock_irqsave(&conf->device_lock, flags);
1500         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1501                 mddev->degraded++;
1502                 set_bit(Faulty, &rdev->flags);
1503         } else
1504                 set_bit(Faulty, &rdev->flags);
1505         spin_unlock_irqrestore(&conf->device_lock, flags);
1506         /*
1507          * if recovery is running, make sure it aborts.
1508          */
1509         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1510         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1511         printk(KERN_ALERT
1512                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1513                "md/raid1:%s: Operation continuing on %d devices.\n",
1514                mdname(mddev), bdevname(rdev->bdev, b),
1515                mdname(mddev), conf->raid_disks - mddev->degraded);
1516 }
1517
1518 static void print_conf(struct r1conf *conf)
1519 {
1520         int i;
1521
1522         printk(KERN_DEBUG "RAID1 conf printout:\n");
1523         if (!conf) {
1524                 printk(KERN_DEBUG "(!conf)\n");
1525                 return;
1526         }
1527         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1528                 conf->raid_disks);
1529
1530         rcu_read_lock();
1531         for (i = 0; i < conf->raid_disks; i++) {
1532                 char b[BDEVNAME_SIZE];
1533                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1534                 if (rdev)
1535                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1536                                i, !test_bit(In_sync, &rdev->flags),
1537                                !test_bit(Faulty, &rdev->flags),
1538                                bdevname(rdev->bdev,b));
1539         }
1540         rcu_read_unlock();
1541 }
1542
1543 static void close_sync(struct r1conf *conf)
1544 {
1545         wait_barrier(conf, NULL);
1546         allow_barrier(conf, 0, 0);
1547
1548         mempool_destroy(conf->r1buf_pool);
1549         conf->r1buf_pool = NULL;
1550
1551         spin_lock_irq(&conf->resync_lock);
1552         conf->next_resync = 0;
1553         conf->start_next_window = MaxSector;
1554         conf->current_window_requests +=
1555                 conf->next_window_requests;
1556         conf->next_window_requests = 0;
1557         spin_unlock_irq(&conf->resync_lock);
1558 }
1559
1560 static int raid1_spare_active(struct mddev *mddev)
1561 {
1562         int i;
1563         struct r1conf *conf = mddev->private;
1564         int count = 0;
1565         unsigned long flags;
1566
1567         /*
1568          * Find all failed disks within the RAID1 configuration
1569          * and mark them readable.
1570          * Called under mddev lock, so rcu protection not needed.
1571          * device_lock used to avoid races with raid1_end_read_request
1572          * which expects 'In_sync' flags and ->degraded to be consistent.
1573          */
1574         spin_lock_irqsave(&conf->device_lock, flags);
1575         for (i = 0; i < conf->raid_disks; i++) {
1576                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1577                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1578                 if (repl
1579                     && !test_bit(Candidate, &repl->flags)
1580                     && repl->recovery_offset == MaxSector
1581                     && !test_bit(Faulty, &repl->flags)
1582                     && !test_and_set_bit(In_sync, &repl->flags)) {
1583                         /* replacement has just become active */
1584                         if (!rdev ||
1585                             !test_and_clear_bit(In_sync, &rdev->flags))
1586                                 count++;
1587                         if (rdev) {
1588                                 /* Replaced device not technically
1589                                  * faulty, but we need to be sure
1590                                  * it gets removed and never re-added
1591                                  */
1592                                 set_bit(Faulty, &rdev->flags);
1593                                 sysfs_notify_dirent_safe(
1594                                         rdev->sysfs_state);
1595                         }
1596                 }
1597                 if (rdev
1598                     && rdev->recovery_offset == MaxSector
1599                     && !test_bit(Faulty, &rdev->flags)
1600                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1601                         count++;
1602                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1603                 }
1604         }
1605         mddev->degraded -= count;
1606         spin_unlock_irqrestore(&conf->device_lock, flags);
1607
1608         print_conf(conf);
1609         return count;
1610 }
1611
1612 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1613 {
1614         struct r1conf *conf = mddev->private;
1615         int err = -EEXIST;
1616         int mirror = 0;
1617         struct raid1_info *p;
1618         int first = 0;
1619         int last = conf->raid_disks - 1;
1620         struct request_queue *q = bdev_get_queue(rdev->bdev);
1621
1622         if (mddev->recovery_disabled == conf->recovery_disabled)
1623                 return -EBUSY;
1624
1625         if (rdev->raid_disk >= 0)
1626                 first = last = rdev->raid_disk;
1627
1628         if (q->merge_bvec_fn) {
1629                 set_bit(Unmerged, &rdev->flags);
1630                 mddev->merge_check_needed = 1;
1631         }
1632
1633         for (mirror = first; mirror <= last; mirror++) {
1634                 p = conf->mirrors+mirror;
1635                 if (!p->rdev) {
1636
1637                         if (mddev->gendisk)
1638                                 disk_stack_limits(mddev->gendisk, rdev->bdev,
1639                                                   rdev->data_offset << 9);
1640
1641                         p->head_position = 0;
1642                         rdev->raid_disk = mirror;
1643                         err = 0;
1644                         /* As all devices are equivalent, we don't need a full recovery
1645                          * if this was recently any drive of the array
1646                          */
1647                         if (rdev->saved_raid_disk < 0)
1648                                 conf->fullsync = 1;
1649                         rcu_assign_pointer(p->rdev, rdev);
1650                         break;
1651                 }
1652                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1653                     p[conf->raid_disks].rdev == NULL) {
1654                         /* Add this device as a replacement */
1655                         clear_bit(In_sync, &rdev->flags);
1656                         set_bit(Replacement, &rdev->flags);
1657                         rdev->raid_disk = mirror;
1658                         err = 0;
1659                         conf->fullsync = 1;
1660                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1661                         break;
1662                 }
1663         }
1664         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1665                 /* Some requests might not have seen this new
1666                  * merge_bvec_fn.  We must wait for them to complete
1667                  * before merging the device fully.
1668                  * First we make sure any code which has tested
1669                  * our function has submitted the request, then
1670                  * we wait for all outstanding requests to complete.
1671                  */
1672                 synchronize_sched();
1673                 freeze_array(conf, 0);
1674                 unfreeze_array(conf);
1675                 clear_bit(Unmerged, &rdev->flags);
1676         }
1677         md_integrity_add_rdev(rdev, mddev);
1678         if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1679                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1680         print_conf(conf);
1681         return err;
1682 }
1683
1684 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1685 {
1686         struct r1conf *conf = mddev->private;
1687         int err = 0;
1688         int number = rdev->raid_disk;
1689         struct raid1_info *p = conf->mirrors + number;
1690
1691         if (rdev != p->rdev)
1692                 p = conf->mirrors + conf->raid_disks + number;
1693
1694         print_conf(conf);
1695         if (rdev == p->rdev) {
1696                 if (test_bit(In_sync, &rdev->flags) ||
1697                     atomic_read(&rdev->nr_pending)) {
1698                         err = -EBUSY;
1699                         goto abort;
1700                 }
1701                 /* Only remove non-faulty devices if recovery
1702                  * is not possible.
1703                  */
1704                 if (!test_bit(Faulty, &rdev->flags) &&
1705                     mddev->recovery_disabled != conf->recovery_disabled &&
1706                     mddev->degraded < conf->raid_disks) {
1707                         err = -EBUSY;
1708                         goto abort;
1709                 }
1710                 p->rdev = NULL;
1711                 synchronize_rcu();
1712                 if (atomic_read(&rdev->nr_pending)) {
1713                         /* lost the race, try later */
1714                         err = -EBUSY;
1715                         p->rdev = rdev;
1716                         goto abort;
1717                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1718                         /* We just removed a device that is being replaced.
1719                          * Move down the replacement.  We drain all IO before
1720                          * doing this to avoid confusion.
1721                          */
1722                         struct md_rdev *repl =
1723                                 conf->mirrors[conf->raid_disks + number].rdev;
1724                         freeze_array(conf, 0);
1725                         clear_bit(Replacement, &repl->flags);
1726                         p->rdev = repl;
1727                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1728                         unfreeze_array(conf);
1729                         clear_bit(WantReplacement, &rdev->flags);
1730                 } else
1731                         clear_bit(WantReplacement, &rdev->flags);
1732                 err = md_integrity_register(mddev);
1733         }
1734 abort:
1735
1736         print_conf(conf);
1737         return err;
1738 }
1739
1740 static void end_sync_read(struct bio *bio, int error)
1741 {
1742         struct r1bio *r1_bio = bio->bi_private;
1743
1744         update_head_pos(r1_bio->read_disk, r1_bio);
1745
1746         /*
1747          * we have read a block, now it needs to be re-written,
1748          * or re-read if the read failed.
1749          * We don't do much here, just schedule handling by raid1d
1750          */
1751         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1752                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1753
1754         if (atomic_dec_and_test(&r1_bio->remaining))
1755                 reschedule_retry(r1_bio);
1756 }
1757
1758 static void end_sync_write(struct bio *bio, int error)
1759 {
1760         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1761         struct r1bio *r1_bio = bio->bi_private;
1762         struct mddev *mddev = r1_bio->mddev;
1763         struct r1conf *conf = mddev->private;
1764         int mirror=0;
1765         sector_t first_bad;
1766         int bad_sectors;
1767
1768         mirror = find_bio_disk(r1_bio, bio);
1769
1770         if (!uptodate) {
1771                 sector_t sync_blocks = 0;
1772                 sector_t s = r1_bio->sector;
1773                 long sectors_to_go = r1_bio->sectors;
1774                 /* make sure these bits doesn't get cleared. */
1775                 do {
1776                         bitmap_end_sync(mddev->bitmap, s,
1777                                         &sync_blocks, 1);
1778                         s += sync_blocks;
1779                         sectors_to_go -= sync_blocks;
1780                 } while (sectors_to_go > 0);
1781                 set_bit(WriteErrorSeen,
1782                         &conf->mirrors[mirror].rdev->flags);
1783                 if (!test_and_set_bit(WantReplacement,
1784                                       &conf->mirrors[mirror].rdev->flags))
1785                         set_bit(MD_RECOVERY_NEEDED, &
1786                                 mddev->recovery);
1787                 set_bit(R1BIO_WriteError, &r1_bio->state);
1788         } else if (is_badblock(conf->mirrors[mirror].rdev,
1789                                r1_bio->sector,
1790                                r1_bio->sectors,
1791                                &first_bad, &bad_sectors) &&
1792                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1793                                 r1_bio->sector,
1794                                 r1_bio->sectors,
1795                                 &first_bad, &bad_sectors)
1796                 )
1797                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1798
1799         if (atomic_dec_and_test(&r1_bio->remaining)) {
1800                 int s = r1_bio->sectors;
1801                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1802                     test_bit(R1BIO_WriteError, &r1_bio->state))
1803                         reschedule_retry(r1_bio);
1804                 else {
1805                         put_buf(r1_bio);
1806                         md_done_sync(mddev, s, uptodate);
1807                 }
1808         }
1809 }
1810
1811 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1812                             int sectors, struct page *page, int rw)
1813 {
1814         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1815                 /* success */
1816                 return 1;
1817         if (rw == WRITE) {
1818                 set_bit(WriteErrorSeen, &rdev->flags);
1819                 if (!test_and_set_bit(WantReplacement,
1820                                       &rdev->flags))
1821                         set_bit(MD_RECOVERY_NEEDED, &
1822                                 rdev->mddev->recovery);
1823         }
1824         /* need to record an error - either for the block or the device */
1825         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1826                 md_error(rdev->mddev, rdev);
1827         return 0;
1828 }
1829
1830 static int fix_sync_read_error(struct r1bio *r1_bio)
1831 {
1832         /* Try some synchronous reads of other devices to get
1833          * good data, much like with normal read errors.  Only
1834          * read into the pages we already have so we don't
1835          * need to re-issue the read request.
1836          * We don't need to freeze the array, because being in an
1837          * active sync request, there is no normal IO, and
1838          * no overlapping syncs.
1839          * We don't need to check is_badblock() again as we
1840          * made sure that anything with a bad block in range
1841          * will have bi_end_io clear.
1842          */
1843         struct mddev *mddev = r1_bio->mddev;
1844         struct r1conf *conf = mddev->private;
1845         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1846         sector_t sect = r1_bio->sector;
1847         int sectors = r1_bio->sectors;
1848         int idx = 0;
1849
1850         while(sectors) {
1851                 int s = sectors;
1852                 int d = r1_bio->read_disk;
1853                 int success = 0;
1854                 struct md_rdev *rdev;
1855                 int start;
1856
1857                 if (s > (PAGE_SIZE>>9))
1858                         s = PAGE_SIZE >> 9;
1859                 do {
1860                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1861                                 /* No rcu protection needed here devices
1862                                  * can only be removed when no resync is
1863                                  * active, and resync is currently active
1864                                  */
1865                                 rdev = conf->mirrors[d].rdev;
1866                                 if (sync_page_io(rdev, sect, s<<9,
1867                                                  bio->bi_io_vec[idx].bv_page,
1868                                                  READ, false)) {
1869                                         success = 1;
1870                                         break;
1871                                 }
1872                         }
1873                         d++;
1874                         if (d == conf->raid_disks * 2)
1875                                 d = 0;
1876                 } while (!success && d != r1_bio->read_disk);
1877
1878                 if (!success) {
1879                         char b[BDEVNAME_SIZE];
1880                         int abort = 0;
1881                         /* Cannot read from anywhere, this block is lost.
1882                          * Record a bad block on each device.  If that doesn't
1883                          * work just disable and interrupt the recovery.
1884                          * Don't fail devices as that won't really help.
1885                          */
1886                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1887                                " for block %llu\n",
1888                                mdname(mddev),
1889                                bdevname(bio->bi_bdev, b),
1890                                (unsigned long long)r1_bio->sector);
1891                         for (d = 0; d < conf->raid_disks * 2; d++) {
1892                                 rdev = conf->mirrors[d].rdev;
1893                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1894                                         continue;
1895                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1896                                         abort = 1;
1897                         }
1898                         if (abort) {
1899                                 conf->recovery_disabled =
1900                                         mddev->recovery_disabled;
1901                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1902                                 md_done_sync(mddev, r1_bio->sectors, 0);
1903                                 put_buf(r1_bio);
1904                                 return 0;
1905                         }
1906                         /* Try next page */
1907                         sectors -= s;
1908                         sect += s;
1909                         idx++;
1910                         continue;
1911                 }
1912
1913                 start = d;
1914                 /* write it back and re-read */
1915                 while (d != r1_bio->read_disk) {
1916                         if (d == 0)
1917                                 d = conf->raid_disks * 2;
1918                         d--;
1919                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920                                 continue;
1921                         rdev = conf->mirrors[d].rdev;
1922                         if (r1_sync_page_io(rdev, sect, s,
1923                                             bio->bi_io_vec[idx].bv_page,
1924                                             WRITE) == 0) {
1925                                 r1_bio->bios[d]->bi_end_io = NULL;
1926                                 rdev_dec_pending(rdev, mddev);
1927                         }
1928                 }
1929                 d = start;
1930                 while (d != r1_bio->read_disk) {
1931                         if (d == 0)
1932                                 d = conf->raid_disks * 2;
1933                         d--;
1934                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1935                                 continue;
1936                         rdev = conf->mirrors[d].rdev;
1937                         if (r1_sync_page_io(rdev, sect, s,
1938                                             bio->bi_io_vec[idx].bv_page,
1939                                             READ) != 0)
1940                                 atomic_add(s, &rdev->corrected_errors);
1941                 }
1942                 sectors -= s;
1943                 sect += s;
1944                 idx ++;
1945         }
1946         set_bit(R1BIO_Uptodate, &r1_bio->state);
1947         set_bit(BIO_UPTODATE, &bio->bi_flags);
1948         return 1;
1949 }
1950
1951 static void process_checks(struct r1bio *r1_bio)
1952 {
1953         /* We have read all readable devices.  If we haven't
1954          * got the block, then there is no hope left.
1955          * If we have, then we want to do a comparison
1956          * and skip the write if everything is the same.
1957          * If any blocks failed to read, then we need to
1958          * attempt an over-write
1959          */
1960         struct mddev *mddev = r1_bio->mddev;
1961         struct r1conf *conf = mddev->private;
1962         int primary;
1963         int i;
1964         int vcnt;
1965
1966         /* Fix variable parts of all bios */
1967         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1968         for (i = 0; i < conf->raid_disks * 2; i++) {
1969                 int j;
1970                 int size;
1971                 int uptodate;
1972                 struct bio *b = r1_bio->bios[i];
1973                 if (b->bi_end_io != end_sync_read)
1974                         continue;
1975                 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1976                 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1977                 bio_reset(b);
1978                 if (!uptodate)
1979                         clear_bit(BIO_UPTODATE, &b->bi_flags);
1980                 b->bi_vcnt = vcnt;
1981                 b->bi_iter.bi_size = r1_bio->sectors << 9;
1982                 b->bi_iter.bi_sector = r1_bio->sector +
1983                         conf->mirrors[i].rdev->data_offset;
1984                 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1985                 b->bi_end_io = end_sync_read;
1986                 b->bi_private = r1_bio;
1987
1988                 size = b->bi_iter.bi_size;
1989                 for (j = 0; j < vcnt ; j++) {
1990                         struct bio_vec *bi;
1991                         bi = &b->bi_io_vec[j];
1992                         bi->bv_offset = 0;
1993                         if (size > PAGE_SIZE)
1994                                 bi->bv_len = PAGE_SIZE;
1995                         else
1996                                 bi->bv_len = size;
1997                         size -= PAGE_SIZE;
1998                 }
1999         }
2000         for (primary = 0; primary < conf->raid_disks * 2; primary++)
2001                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2002                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
2003                         r1_bio->bios[primary]->bi_end_io = NULL;
2004                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2005                         break;
2006                 }
2007         r1_bio->read_disk = primary;
2008         for (i = 0; i < conf->raid_disks * 2; i++) {
2009                 int j;
2010                 struct bio *pbio = r1_bio->bios[primary];
2011                 struct bio *sbio = r1_bio->bios[i];
2012                 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
2013
2014                 if (sbio->bi_end_io != end_sync_read)
2015                         continue;
2016                 /* Now we can 'fixup' the BIO_UPTODATE flag */
2017                 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2018
2019                 if (uptodate) {
2020                         for (j = vcnt; j-- ; ) {
2021                                 struct page *p, *s;
2022                                 p = pbio->bi_io_vec[j].bv_page;
2023                                 s = sbio->bi_io_vec[j].bv_page;
2024                                 if (memcmp(page_address(p),
2025                                            page_address(s),
2026                                            sbio->bi_io_vec[j].bv_len))
2027                                         break;
2028                         }
2029                 } else
2030                         j = 0;
2031                 if (j >= 0)
2032                         atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2033                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2034                               && uptodate)) {
2035                         /* No need to write to this device. */
2036                         sbio->bi_end_io = NULL;
2037                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2038                         continue;
2039                 }
2040
2041                 bio_copy_data(sbio, pbio);
2042         }
2043 }
2044
2045 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2046 {
2047         struct r1conf *conf = mddev->private;
2048         int i;
2049         int disks = conf->raid_disks * 2;
2050         struct bio *bio, *wbio;
2051
2052         bio = r1_bio->bios[r1_bio->read_disk];
2053
2054         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2055                 /* ouch - failed to read all of that. */
2056                 if (!fix_sync_read_error(r1_bio))
2057                         return;
2058
2059         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2060                 process_checks(r1_bio);
2061
2062         /*
2063          * schedule writes
2064          */
2065         atomic_set(&r1_bio->remaining, 1);
2066         for (i = 0; i < disks ; i++) {
2067                 wbio = r1_bio->bios[i];
2068                 if (wbio->bi_end_io == NULL ||
2069                     (wbio->bi_end_io == end_sync_read &&
2070                      (i == r1_bio->read_disk ||
2071                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2072                         continue;
2073
2074                 wbio->bi_rw = WRITE;
2075                 wbio->bi_end_io = end_sync_write;
2076                 atomic_inc(&r1_bio->remaining);
2077                 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2078
2079                 generic_make_request(wbio);
2080         }
2081
2082         if (atomic_dec_and_test(&r1_bio->remaining)) {
2083                 /* if we're here, all write(s) have completed, so clean up */
2084                 int s = r1_bio->sectors;
2085                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2086                     test_bit(R1BIO_WriteError, &r1_bio->state))
2087                         reschedule_retry(r1_bio);
2088                 else {
2089                         put_buf(r1_bio);
2090                         md_done_sync(mddev, s, 1);
2091                 }
2092         }
2093 }
2094
2095 /*
2096  * This is a kernel thread which:
2097  *
2098  *      1.      Retries failed read operations on working mirrors.
2099  *      2.      Updates the raid superblock when problems encounter.
2100  *      3.      Performs writes following reads for array synchronising.
2101  */
2102
2103 static void fix_read_error(struct r1conf *conf, int read_disk,
2104                            sector_t sect, int sectors)
2105 {
2106         struct mddev *mddev = conf->mddev;
2107         while(sectors) {
2108                 int s = sectors;
2109                 int d = read_disk;
2110                 int success = 0;
2111                 int start;
2112                 struct md_rdev *rdev;
2113
2114                 if (s > (PAGE_SIZE>>9))
2115                         s = PAGE_SIZE >> 9;
2116
2117                 do {
2118                         /* Note: no rcu protection needed here
2119                          * as this is synchronous in the raid1d thread
2120                          * which is the thread that might remove
2121                          * a device.  If raid1d ever becomes multi-threaded....
2122                          */
2123                         sector_t first_bad;
2124                         int bad_sectors;
2125
2126                         rdev = conf->mirrors[d].rdev;
2127                         if (rdev &&
2128                             (test_bit(In_sync, &rdev->flags) ||
2129                              (!test_bit(Faulty, &rdev->flags) &&
2130                               rdev->recovery_offset >= sect + s)) &&
2131                             is_badblock(rdev, sect, s,
2132                                         &first_bad, &bad_sectors) == 0 &&
2133                             sync_page_io(rdev, sect, s<<9,
2134                                          conf->tmppage, READ, false))
2135                                 success = 1;
2136                         else {
2137                                 d++;
2138                                 if (d == conf->raid_disks * 2)
2139                                         d = 0;
2140                         }
2141                 } while (!success && d != read_disk);
2142
2143                 if (!success) {
2144                         /* Cannot read from anywhere - mark it bad */
2145                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2146                         if (!rdev_set_badblocks(rdev, sect, s, 0))
2147                                 md_error(mddev, rdev);
2148                         break;
2149                 }
2150                 /* write it back and re-read */
2151                 start = d;
2152                 while (d != read_disk) {
2153                         if (d==0)
2154                                 d = conf->raid_disks * 2;
2155                         d--;
2156                         rdev = conf->mirrors[d].rdev;
2157                         if (rdev &&
2158                             !test_bit(Faulty, &rdev->flags))
2159                                 r1_sync_page_io(rdev, sect, s,
2160                                                 conf->tmppage, WRITE);
2161                 }
2162                 d = start;
2163                 while (d != read_disk) {
2164                         char b[BDEVNAME_SIZE];
2165                         if (d==0)
2166                                 d = conf->raid_disks * 2;
2167                         d--;
2168                         rdev = conf->mirrors[d].rdev;
2169                         if (rdev &&
2170                             !test_bit(Faulty, &rdev->flags)) {
2171                                 if (r1_sync_page_io(rdev, sect, s,
2172                                                     conf->tmppage, READ)) {
2173                                         atomic_add(s, &rdev->corrected_errors);
2174                                         printk(KERN_INFO
2175                                                "md/raid1:%s: read error corrected "
2176                                                "(%d sectors at %llu on %s)\n",
2177                                                mdname(mddev), s,
2178                                                (unsigned long long)(sect +
2179                                                    rdev->data_offset),
2180                                                bdevname(rdev->bdev, b));
2181                                 }
2182                         }
2183                 }
2184                 sectors -= s;
2185                 sect += s;
2186         }
2187 }
2188
2189 static int narrow_write_error(struct r1bio *r1_bio, int i)
2190 {
2191         struct mddev *mddev = r1_bio->mddev;
2192         struct r1conf *conf = mddev->private;
2193         struct md_rdev *rdev = conf->mirrors[i].rdev;
2194
2195         /* bio has the data to be written to device 'i' where
2196          * we just recently had a write error.
2197          * We repeatedly clone the bio and trim down to one block,
2198          * then try the write.  Where the write fails we record
2199          * a bad block.
2200          * It is conceivable that the bio doesn't exactly align with
2201          * blocks.  We must handle this somehow.
2202          *
2203          * We currently own a reference on the rdev.
2204          */
2205
2206         int block_sectors;
2207         sector_t sector;
2208         int sectors;
2209         int sect_to_write = r1_bio->sectors;
2210         int ok = 1;
2211
2212         if (rdev->badblocks.shift < 0)
2213                 return 0;
2214
2215         block_sectors = roundup(1 << rdev->badblocks.shift,
2216                                 bdev_logical_block_size(rdev->bdev) >> 9);
2217         sector = r1_bio->sector;
2218         sectors = ((sector + block_sectors)
2219                    & ~(sector_t)(block_sectors - 1))
2220                 - sector;
2221
2222         while (sect_to_write) {
2223                 struct bio *wbio;
2224                 if (sectors > sect_to_write)
2225                         sectors = sect_to_write;
2226                 /* Write at 'sector' for 'sectors'*/
2227
2228                 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2229                         unsigned vcnt = r1_bio->behind_page_count;
2230                         struct bio_vec *vec = r1_bio->behind_bvecs;
2231
2232                         while (!vec->bv_page) {
2233                                 vec++;
2234                                 vcnt--;
2235                         }
2236
2237                         wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2238                         memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2239
2240                         wbio->bi_vcnt = vcnt;
2241                 } else {
2242                         wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2243                 }
2244
2245                 wbio->bi_rw = WRITE;
2246                 wbio->bi_iter.bi_sector = r1_bio->sector;
2247                 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2248
2249                 bio_trim(wbio, sector - r1_bio->sector, sectors);
2250                 wbio->bi_iter.bi_sector += rdev->data_offset;
2251                 wbio->bi_bdev = rdev->bdev;
2252                 if (submit_bio_wait(WRITE, wbio) == 0)
2253                         /* failure! */
2254                         ok = rdev_set_badblocks(rdev, sector,
2255                                                 sectors, 0)
2256                                 && ok;
2257
2258                 bio_put(wbio);
2259                 sect_to_write -= sectors;
2260                 sector += sectors;
2261                 sectors = block_sectors;
2262         }
2263         return ok;
2264 }
2265
2266 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2267 {
2268         int m;
2269         int s = r1_bio->sectors;
2270         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2271                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2272                 struct bio *bio = r1_bio->bios[m];
2273                 if (bio->bi_end_io == NULL)
2274                         continue;
2275                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2276                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2277                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2278                 }
2279                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2280                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2281                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2282                                 md_error(conf->mddev, rdev);
2283                 }
2284         }
2285         put_buf(r1_bio);
2286         md_done_sync(conf->mddev, s, 1);
2287 }
2288
2289 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2290 {
2291         int m;
2292         for (m = 0; m < conf->raid_disks * 2 ; m++)
2293                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2294                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2295                         rdev_clear_badblocks(rdev,
2296                                              r1_bio->sector,
2297                                              r1_bio->sectors, 0);
2298                         rdev_dec_pending(rdev, conf->mddev);
2299                 } else if (r1_bio->bios[m] != NULL) {
2300                         /* This drive got a write error.  We need to
2301                          * narrow down and record precise write
2302                          * errors.
2303                          */
2304                         if (!narrow_write_error(r1_bio, m)) {
2305                                 md_error(conf->mddev,
2306                                          conf->mirrors[m].rdev);
2307                                 /* an I/O failed, we can't clear the bitmap */
2308                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2309                         }
2310                         rdev_dec_pending(conf->mirrors[m].rdev,
2311                                          conf->mddev);
2312                 }
2313         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2314                 close_write(r1_bio);
2315         raid_end_bio_io(r1_bio);
2316 }
2317
2318 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2319 {
2320         int disk;
2321         int max_sectors;
2322         struct mddev *mddev = conf->mddev;
2323         struct bio *bio;
2324         char b[BDEVNAME_SIZE];
2325         struct md_rdev *rdev;
2326
2327         clear_bit(R1BIO_ReadError, &r1_bio->state);
2328         /* we got a read error. Maybe the drive is bad.  Maybe just
2329          * the block and we can fix it.
2330          * We freeze all other IO, and try reading the block from
2331          * other devices.  When we find one, we re-write
2332          * and check it that fixes the read error.
2333          * This is all done synchronously while the array is
2334          * frozen
2335          */
2336         if (mddev->ro == 0) {
2337                 freeze_array(conf, 1);
2338                 fix_read_error(conf, r1_bio->read_disk,
2339                                r1_bio->sector, r1_bio->sectors);
2340                 unfreeze_array(conf);
2341         } else
2342                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2343         rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2344
2345         bio = r1_bio->bios[r1_bio->read_disk];
2346         bdevname(bio->bi_bdev, b);
2347 read_more:
2348         disk = read_balance(conf, r1_bio, &max_sectors);
2349         if (disk == -1) {
2350                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2351                        " read error for block %llu\n",
2352                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2353                 raid_end_bio_io(r1_bio);
2354         } else {
2355                 const unsigned long do_sync
2356                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2357                 if (bio) {
2358                         r1_bio->bios[r1_bio->read_disk] =
2359                                 mddev->ro ? IO_BLOCKED : NULL;
2360                         bio_put(bio);
2361                 }
2362                 r1_bio->read_disk = disk;
2363                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2364                 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2365                          max_sectors);
2366                 r1_bio->bios[r1_bio->read_disk] = bio;
2367                 rdev = conf->mirrors[disk].rdev;
2368                 printk_ratelimited(KERN_ERR
2369                                    "md/raid1:%s: redirecting sector %llu"
2370                                    " to other mirror: %s\n",
2371                                    mdname(mddev),
2372                                    (unsigned long long)r1_bio->sector,
2373                                    bdevname(rdev->bdev, b));
2374                 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2375                 bio->bi_bdev = rdev->bdev;
2376                 bio->bi_end_io = raid1_end_read_request;
2377                 bio->bi_rw = READ | do_sync;
2378                 bio->bi_private = r1_bio;
2379                 if (max_sectors < r1_bio->sectors) {
2380                         /* Drat - have to split this up more */
2381                         struct bio *mbio = r1_bio->master_bio;
2382                         int sectors_handled = (r1_bio->sector + max_sectors
2383                                                - mbio->bi_iter.bi_sector);
2384                         r1_bio->sectors = max_sectors;
2385                         spin_lock_irq(&conf->device_lock);
2386                         if (mbio->bi_phys_segments == 0)
2387                                 mbio->bi_phys_segments = 2;
2388                         else
2389                                 mbio->bi_phys_segments++;
2390                         spin_unlock_irq(&conf->device_lock);
2391                         generic_make_request(bio);
2392                         bio = NULL;
2393
2394                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2395
2396                         r1_bio->master_bio = mbio;
2397                         r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2398                         r1_bio->state = 0;
2399                         set_bit(R1BIO_ReadError, &r1_bio->state);
2400                         r1_bio->mddev = mddev;
2401                         r1_bio->sector = mbio->bi_iter.bi_sector +
2402                                 sectors_handled;
2403
2404                         goto read_more;
2405                 } else
2406                         generic_make_request(bio);
2407         }
2408 }
2409
2410 static void raid1d(struct md_thread *thread)
2411 {
2412         struct mddev *mddev = thread->mddev;
2413         struct r1bio *r1_bio;
2414         unsigned long flags;
2415         struct r1conf *conf = mddev->private;
2416         struct list_head *head = &conf->retry_list;
2417         struct blk_plug plug;
2418
2419         md_check_recovery(mddev);
2420
2421         blk_start_plug(&plug);
2422         for (;;) {
2423
2424                 flush_pending_writes(conf);
2425
2426                 spin_lock_irqsave(&conf->device_lock, flags);
2427                 if (list_empty(head)) {
2428                         spin_unlock_irqrestore(&conf->device_lock, flags);
2429                         break;
2430                 }
2431                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2432                 list_del(head->prev);
2433                 conf->nr_queued--;
2434                 spin_unlock_irqrestore(&conf->device_lock, flags);
2435
2436                 mddev = r1_bio->mddev;
2437                 conf = mddev->private;
2438                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2439                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2440                             test_bit(R1BIO_WriteError, &r1_bio->state))
2441                                 handle_sync_write_finished(conf, r1_bio);
2442                         else
2443                                 sync_request_write(mddev, r1_bio);
2444                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2445                            test_bit(R1BIO_WriteError, &r1_bio->state))
2446                         handle_write_finished(conf, r1_bio);
2447                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2448                         handle_read_error(conf, r1_bio);
2449                 else
2450                         /* just a partial read to be scheduled from separate
2451                          * context
2452                          */
2453                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2454
2455                 cond_resched();
2456                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2457                         md_check_recovery(mddev);
2458         }
2459         blk_finish_plug(&plug);
2460 }
2461
2462 static int init_resync(struct r1conf *conf)
2463 {
2464         int buffs;
2465
2466         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2467         BUG_ON(conf->r1buf_pool);
2468         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2469                                           conf->poolinfo);
2470         if (!conf->r1buf_pool)
2471                 return -ENOMEM;
2472         conf->next_resync = 0;
2473         return 0;
2474 }
2475
2476 /*
2477  * perform a "sync" on one "block"
2478  *
2479  * We need to make sure that no normal I/O request - particularly write
2480  * requests - conflict with active sync requests.
2481  *
2482  * This is achieved by tracking pending requests and a 'barrier' concept
2483  * that can be installed to exclude normal IO requests.
2484  */
2485
2486 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
2487 {
2488         struct r1conf *conf = mddev->private;
2489         struct r1bio *r1_bio;
2490         struct bio *bio;
2491         sector_t max_sector, nr_sectors;
2492         int disk = -1;
2493         int i;
2494         int wonly = -1;
2495         int write_targets = 0, read_targets = 0;
2496         sector_t sync_blocks;
2497         int still_degraded = 0;
2498         int good_sectors = RESYNC_SECTORS;
2499         int min_bad = 0; /* number of sectors that are bad in all devices */
2500
2501         if (!conf->r1buf_pool)
2502                 if (init_resync(conf))
2503                         return 0;
2504
2505         max_sector = mddev->dev_sectors;
2506         if (sector_nr >= max_sector) {
2507                 /* If we aborted, we need to abort the
2508                  * sync on the 'current' bitmap chunk (there will
2509                  * only be one in raid1 resync.
2510                  * We can find the current addess in mddev->curr_resync
2511                  */
2512                 if (mddev->curr_resync < max_sector) /* aborted */
2513                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2514                                                 &sync_blocks, 1);
2515                 else /* completed sync */
2516                         conf->fullsync = 0;
2517
2518                 bitmap_close_sync(mddev->bitmap);
2519                 close_sync(conf);
2520                 return 0;
2521         }
2522
2523         if (mddev->bitmap == NULL &&
2524             mddev->recovery_cp == MaxSector &&
2525             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2526             conf->fullsync == 0) {
2527                 *skipped = 1;
2528                 return max_sector - sector_nr;
2529         }
2530         /* before building a request, check if we can skip these blocks..
2531          * This call the bitmap_start_sync doesn't actually record anything
2532          */
2533         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2534             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2535                 /* We can skip this block, and probably several more */
2536                 *skipped = 1;
2537                 return sync_blocks;
2538         }
2539
2540         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2541         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2542
2543         raise_barrier(conf, sector_nr);
2544
2545         rcu_read_lock();
2546         /*
2547          * If we get a correctably read error during resync or recovery,
2548          * we might want to read from a different device.  So we
2549          * flag all drives that could conceivably be read from for READ,
2550          * and any others (which will be non-In_sync devices) for WRITE.
2551          * If a read fails, we try reading from something else for which READ
2552          * is OK.
2553          */
2554
2555         r1_bio->mddev = mddev;
2556         r1_bio->sector = sector_nr;
2557         r1_bio->state = 0;
2558         set_bit(R1BIO_IsSync, &r1_bio->state);
2559
2560         for (i = 0; i < conf->raid_disks * 2; i++) {
2561                 struct md_rdev *rdev;
2562                 bio = r1_bio->bios[i];
2563                 bio_reset(bio);
2564
2565                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2566                 if (rdev == NULL ||
2567                     test_bit(Faulty, &rdev->flags)) {
2568                         if (i < conf->raid_disks)
2569                                 still_degraded = 1;
2570                 } else if (!test_bit(In_sync, &rdev->flags)) {
2571                         bio->bi_rw = WRITE;
2572                         bio->bi_end_io = end_sync_write;
2573                         write_targets ++;
2574                 } else {
2575                         /* may need to read from here */
2576                         sector_t first_bad = MaxSector;
2577                         int bad_sectors;
2578
2579                         if (is_badblock(rdev, sector_nr, good_sectors,
2580                                         &first_bad, &bad_sectors)) {
2581                                 if (first_bad > sector_nr)
2582                                         good_sectors = first_bad - sector_nr;
2583                                 else {
2584                                         bad_sectors -= (sector_nr - first_bad);
2585                                         if (min_bad == 0 ||
2586                                             min_bad > bad_sectors)
2587                                                 min_bad = bad_sectors;
2588                                 }
2589                         }
2590                         if (sector_nr < first_bad) {
2591                                 if (test_bit(WriteMostly, &rdev->flags)) {
2592                                         if (wonly < 0)
2593                                                 wonly = i;
2594                                 } else {
2595                                         if (disk < 0)
2596                                                 disk = i;
2597                                 }
2598                                 bio->bi_rw = READ;
2599                                 bio->bi_end_io = end_sync_read;
2600                                 read_targets++;
2601                         } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2602                                 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2603                                 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2604                                 /*
2605                                  * The device is suitable for reading (InSync),
2606                                  * but has bad block(s) here. Let's try to correct them,
2607                                  * if we are doing resync or repair. Otherwise, leave
2608                                  * this device alone for this sync request.
2609                                  */
2610                                 bio->bi_rw = WRITE;
2611                                 bio->bi_end_io = end_sync_write;
2612                                 write_targets++;
2613                         }
2614                 }
2615                 if (bio->bi_end_io) {
2616                         atomic_inc(&rdev->nr_pending);
2617                         bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2618                         bio->bi_bdev = rdev->bdev;
2619                         bio->bi_private = r1_bio;
2620                 }
2621         }
2622         rcu_read_unlock();
2623         if (disk < 0)
2624                 disk = wonly;
2625         r1_bio->read_disk = disk;
2626
2627         if (read_targets == 0 && min_bad > 0) {
2628                 /* These sectors are bad on all InSync devices, so we
2629                  * need to mark them bad on all write targets
2630                  */
2631                 int ok = 1;
2632                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2633                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2634                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2635                                 ok = rdev_set_badblocks(rdev, sector_nr,
2636                                                         min_bad, 0
2637                                         ) && ok;
2638                         }
2639                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2640                 *skipped = 1;
2641                 put_buf(r1_bio);
2642
2643                 if (!ok) {
2644                         /* Cannot record the badblocks, so need to
2645                          * abort the resync.
2646                          * If there are multiple read targets, could just
2647                          * fail the really bad ones ???
2648                          */
2649                         conf->recovery_disabled = mddev->recovery_disabled;
2650                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2651                         return 0;
2652                 } else
2653                         return min_bad;
2654
2655         }
2656         if (min_bad > 0 && min_bad < good_sectors) {
2657                 /* only resync enough to reach the next bad->good
2658                  * transition */
2659                 good_sectors = min_bad;
2660         }
2661
2662         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2663                 /* extra read targets are also write targets */
2664                 write_targets += read_targets-1;
2665
2666         if (write_targets == 0 || read_targets == 0) {
2667                 /* There is nowhere to write, so all non-sync
2668                  * drives must be failed - so we are finished
2669                  */
2670                 sector_t rv;
2671                 if (min_bad > 0)
2672                         max_sector = sector_nr + min_bad;
2673                 rv = max_sector - sector_nr;
2674                 *skipped = 1;
2675                 put_buf(r1_bio);
2676                 return rv;
2677         }
2678
2679         if (max_sector > mddev->resync_max)
2680                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2681         if (max_sector > sector_nr + good_sectors)
2682                 max_sector = sector_nr + good_sectors;
2683         nr_sectors = 0;
2684         sync_blocks = 0;
2685         do {
2686                 struct page *page;
2687                 int len = PAGE_SIZE;
2688                 if (sector_nr + (len>>9) > max_sector)
2689                         len = (max_sector - sector_nr) << 9;
2690                 if (len == 0)
2691                         break;
2692                 if (sync_blocks == 0) {
2693                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2694                                                &sync_blocks, still_degraded) &&
2695                             !conf->fullsync &&
2696                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2697                                 break;
2698                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2699                         if ((len >> 9) > sync_blocks)
2700                                 len = sync_blocks<<9;
2701                 }
2702
2703                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2704                         bio = r1_bio->bios[i];
2705                         if (bio->bi_end_io) {
2706                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2707                                 if (bio_add_page(bio, page, len, 0) == 0) {
2708                                         /* stop here */
2709                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2710                                         while (i > 0) {
2711                                                 i--;
2712                                                 bio = r1_bio->bios[i];
2713                                                 if (bio->bi_end_io==NULL)
2714                                                         continue;
2715                                                 /* remove last page from this bio */
2716                                                 bio->bi_vcnt--;
2717                                                 bio->bi_iter.bi_size -= len;
2718                                                 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2719                                         }
2720                                         goto bio_full;
2721                                 }
2722                         }
2723                 }
2724                 nr_sectors += len>>9;
2725                 sector_nr += len>>9;
2726                 sync_blocks -= (len>>9);
2727         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2728  bio_full:
2729         r1_bio->sectors = nr_sectors;
2730
2731         /* For a user-requested sync, we read all readable devices and do a
2732          * compare
2733          */
2734         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2735                 atomic_set(&r1_bio->remaining, read_targets);
2736                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2737                         bio = r1_bio->bios[i];
2738                         if (bio->bi_end_io == end_sync_read) {
2739                                 read_targets--;
2740                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2741                                 generic_make_request(bio);
2742                         }
2743                 }
2744         } else {
2745                 atomic_set(&r1_bio->remaining, 1);
2746                 bio = r1_bio->bios[r1_bio->read_disk];
2747                 md_sync_acct(bio->bi_bdev, nr_sectors);
2748                 generic_make_request(bio);
2749
2750         }
2751         return nr_sectors;
2752 }
2753
2754 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2755 {
2756         if (sectors)
2757                 return sectors;
2758
2759         return mddev->dev_sectors;
2760 }
2761
2762 static struct r1conf *setup_conf(struct mddev *mddev)
2763 {
2764         struct r1conf *conf;
2765         int i;
2766         struct raid1_info *disk;
2767         struct md_rdev *rdev;
2768         int err = -ENOMEM;
2769
2770         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2771         if (!conf)
2772                 goto abort;
2773
2774         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2775                                 * mddev->raid_disks * 2,
2776                                  GFP_KERNEL);
2777         if (!conf->mirrors)
2778                 goto abort;
2779
2780         conf->tmppage = alloc_page(GFP_KERNEL);
2781         if (!conf->tmppage)
2782                 goto abort;
2783
2784         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2785         if (!conf->poolinfo)
2786                 goto abort;
2787         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2788         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2789                                           r1bio_pool_free,
2790                                           conf->poolinfo);
2791         if (!conf->r1bio_pool)
2792                 goto abort;
2793
2794         conf->poolinfo->mddev = mddev;
2795
2796         err = -EINVAL;
2797         spin_lock_init(&conf->device_lock);
2798         rdev_for_each(rdev, mddev) {
2799                 struct request_queue *q;
2800                 int disk_idx = rdev->raid_disk;
2801                 if (disk_idx >= mddev->raid_disks
2802                     || disk_idx < 0)
2803                         continue;
2804                 if (test_bit(Replacement, &rdev->flags))
2805                         disk = conf->mirrors + mddev->raid_disks + disk_idx;
2806                 else
2807                         disk = conf->mirrors + disk_idx;
2808
2809                 if (disk->rdev)
2810                         goto abort;
2811                 disk->rdev = rdev;
2812                 q = bdev_get_queue(rdev->bdev);
2813                 if (q->merge_bvec_fn)
2814                         mddev->merge_check_needed = 1;
2815
2816                 disk->head_position = 0;
2817                 disk->seq_start = MaxSector;
2818         }
2819         conf->raid_disks = mddev->raid_disks;
2820         conf->mddev = mddev;
2821         INIT_LIST_HEAD(&conf->retry_list);
2822
2823         spin_lock_init(&conf->resync_lock);
2824         init_waitqueue_head(&conf->wait_barrier);
2825
2826         bio_list_init(&conf->pending_bio_list);
2827         conf->pending_count = 0;
2828         conf->recovery_disabled = mddev->recovery_disabled - 1;
2829
2830         conf->start_next_window = MaxSector;
2831         conf->current_window_requests = conf->next_window_requests = 0;
2832
2833         err = -EIO;
2834         for (i = 0; i < conf->raid_disks * 2; i++) {
2835
2836                 disk = conf->mirrors + i;
2837
2838                 if (i < conf->raid_disks &&
2839                     disk[conf->raid_disks].rdev) {
2840                         /* This slot has a replacement. */
2841                         if (!disk->rdev) {
2842                                 /* No original, just make the replacement
2843                                  * a recovering spare
2844                                  */
2845                                 disk->rdev =
2846                                         disk[conf->raid_disks].rdev;
2847                                 disk[conf->raid_disks].rdev = NULL;
2848                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2849                                 /* Original is not in_sync - bad */
2850                                 goto abort;
2851                 }
2852
2853                 if (!disk->rdev ||
2854                     !test_bit(In_sync, &disk->rdev->flags)) {
2855                         disk->head_position = 0;
2856                         if (disk->rdev &&
2857                             (disk->rdev->saved_raid_disk < 0))
2858                                 conf->fullsync = 1;
2859                 }
2860         }
2861
2862         err = -ENOMEM;
2863         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2864         if (!conf->thread) {
2865                 printk(KERN_ERR
2866                        "md/raid1:%s: couldn't allocate thread\n",
2867                        mdname(mddev));
2868                 goto abort;
2869         }
2870
2871         return conf;
2872
2873  abort:
2874         if (conf) {
2875                 if (conf->r1bio_pool)
2876                         mempool_destroy(conf->r1bio_pool);
2877                 kfree(conf->mirrors);
2878                 safe_put_page(conf->tmppage);
2879                 kfree(conf->poolinfo);
2880                 kfree(conf);
2881         }
2882         return ERR_PTR(err);
2883 }
2884
2885 static void raid1_free(struct mddev *mddev, void *priv);
2886 static int run(struct mddev *mddev)
2887 {
2888         struct r1conf *conf;
2889         int i;
2890         struct md_rdev *rdev;
2891         int ret;
2892         bool discard_supported = false;
2893
2894         if (mddev->level != 1) {
2895                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2896                        mdname(mddev), mddev->level);
2897                 return -EIO;
2898         }
2899         if (mddev->reshape_position != MaxSector) {
2900                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2901                        mdname(mddev));
2902                 return -EIO;
2903         }
2904         /*
2905          * copy the already verified devices into our private RAID1
2906          * bookkeeping area. [whatever we allocate in run(),
2907          * should be freed in raid1_free()]
2908          */
2909         if (mddev->private == NULL)
2910                 conf = setup_conf(mddev);
2911         else
2912                 conf = mddev->private;
2913
2914         if (IS_ERR(conf))
2915                 return PTR_ERR(conf);
2916
2917         if (mddev->queue)
2918                 blk_queue_max_write_same_sectors(mddev->queue, 0);
2919
2920         rdev_for_each(rdev, mddev) {
2921                 if (!mddev->gendisk)
2922                         continue;
2923                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2924                                   rdev->data_offset << 9);
2925                 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2926                         discard_supported = true;
2927         }
2928
2929         mddev->degraded = 0;
2930         for (i=0; i < conf->raid_disks; i++)
2931                 if (conf->mirrors[i].rdev == NULL ||
2932                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2933                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2934                         mddev->degraded++;
2935
2936         if (conf->raid_disks - mddev->degraded == 1)
2937                 mddev->recovery_cp = MaxSector;
2938
2939         if (mddev->recovery_cp != MaxSector)
2940                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2941                        " -- starting background reconstruction\n",
2942                        mdname(mddev));
2943         printk(KERN_INFO
2944                 "md/raid1:%s: active with %d out of %d mirrors\n",
2945                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2946                 mddev->raid_disks);
2947
2948         /*
2949          * Ok, everything is just fine now
2950          */
2951         mddev->thread = conf->thread;
2952         conf->thread = NULL;
2953         mddev->private = conf;
2954
2955         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2956
2957         if (mddev->queue) {
2958                 if (discard_supported)
2959                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2960                                                 mddev->queue);
2961                 else
2962                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2963                                                   mddev->queue);
2964         }
2965
2966         ret =  md_integrity_register(mddev);
2967         if (ret) {
2968                 md_unregister_thread(&mddev->thread);
2969                 raid1_free(mddev, conf);
2970         }
2971         return ret;
2972 }
2973
2974 static void raid1_free(struct mddev *mddev, void *priv)
2975 {
2976         struct r1conf *conf = priv;
2977
2978         if (conf->r1bio_pool)
2979                 mempool_destroy(conf->r1bio_pool);
2980         kfree(conf->mirrors);
2981         safe_put_page(conf->tmppage);
2982         kfree(conf->poolinfo);
2983         kfree(conf);
2984 }
2985
2986 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2987 {
2988         /* no resync is happening, and there is enough space
2989          * on all devices, so we can resize.
2990          * We need to make sure resync covers any new space.
2991          * If the array is shrinking we should possibly wait until
2992          * any io in the removed space completes, but it hardly seems
2993          * worth it.
2994          */
2995         sector_t newsize = raid1_size(mddev, sectors, 0);
2996         if (mddev->external_size &&
2997             mddev->array_sectors > newsize)
2998                 return -EINVAL;
2999         if (mddev->bitmap) {
3000                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3001                 if (ret)
3002                         return ret;
3003         }
3004         md_set_array_sectors(mddev, newsize);
3005         set_capacity(mddev->gendisk, mddev->array_sectors);
3006         revalidate_disk(mddev->gendisk);
3007         if (sectors > mddev->dev_sectors &&
3008             mddev->recovery_cp > mddev->dev_sectors) {
3009                 mddev->recovery_cp = mddev->dev_sectors;
3010                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3011         }
3012         mddev->dev_sectors = sectors;
3013         mddev->resync_max_sectors = sectors;
3014         return 0;
3015 }
3016
3017 static int raid1_reshape(struct mddev *mddev)
3018 {
3019         /* We need to:
3020          * 1/ resize the r1bio_pool
3021          * 2/ resize conf->mirrors
3022          *
3023          * We allocate a new r1bio_pool if we can.
3024          * Then raise a device barrier and wait until all IO stops.
3025          * Then resize conf->mirrors and swap in the new r1bio pool.
3026          *
3027          * At the same time, we "pack" the devices so that all the missing
3028          * devices have the higher raid_disk numbers.
3029          */
3030         mempool_t *newpool, *oldpool;
3031         struct pool_info *newpoolinfo;
3032         struct raid1_info *newmirrors;
3033         struct r1conf *conf = mddev->private;
3034         int cnt, raid_disks;
3035         unsigned long flags;
3036         int d, d2, err;
3037
3038         /* Cannot change chunk_size, layout, or level */
3039         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3040             mddev->layout != mddev->new_layout ||
3041             mddev->level != mddev->new_level) {
3042                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3043                 mddev->new_layout = mddev->layout;
3044                 mddev->new_level = mddev->level;
3045                 return -EINVAL;
3046         }
3047
3048         err = md_allow_write(mddev);
3049         if (err)
3050                 return err;
3051
3052         raid_disks = mddev->raid_disks + mddev->delta_disks;
3053
3054         if (raid_disks < conf->raid_disks) {
3055                 cnt=0;
3056                 for (d= 0; d < conf->raid_disks; d++)
3057                         if (conf->mirrors[d].rdev)
3058                                 cnt++;
3059                 if (cnt > raid_disks)
3060                         return -EBUSY;
3061         }
3062
3063         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3064         if (!newpoolinfo)
3065                 return -ENOMEM;
3066         newpoolinfo->mddev = mddev;
3067         newpoolinfo->raid_disks = raid_disks * 2;
3068
3069         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3070                                  r1bio_pool_free, newpoolinfo);
3071         if (!newpool) {
3072                 kfree(newpoolinfo);
3073                 return -ENOMEM;
3074         }
3075         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3076                              GFP_KERNEL);
3077         if (!newmirrors) {
3078                 kfree(newpoolinfo);
3079                 mempool_destroy(newpool);
3080                 return -ENOMEM;
3081         }
3082
3083         freeze_array(conf, 0);
3084
3085         /* ok, everything is stopped */
3086         oldpool = conf->r1bio_pool;
3087         conf->r1bio_pool = newpool;
3088
3089         for (d = d2 = 0; d < conf->raid_disks; d++) {
3090                 struct md_rdev *rdev = conf->mirrors[d].rdev;
3091                 if (rdev && rdev->raid_disk != d2) {
3092                         sysfs_unlink_rdev(mddev, rdev);
3093                         rdev->raid_disk = d2;
3094                         sysfs_unlink_rdev(mddev, rdev);
3095                         if (sysfs_link_rdev(mddev, rdev))
3096                                 printk(KERN_WARNING
3097                                        "md/raid1:%s: cannot register rd%d\n",
3098                                        mdname(mddev), rdev->raid_disk);
3099                 }
3100                 if (rdev)
3101                         newmirrors[d2++].rdev = rdev;
3102         }
3103         kfree(conf->mirrors);
3104         conf->mirrors = newmirrors;
3105         kfree(conf->poolinfo);
3106         conf->poolinfo = newpoolinfo;
3107
3108         spin_lock_irqsave(&conf->device_lock, flags);
3109         mddev->degraded += (raid_disks - conf->raid_disks);
3110         spin_unlock_irqrestore(&conf->device_lock, flags);
3111         conf->raid_disks = mddev->raid_disks = raid_disks;
3112         mddev->delta_disks = 0;
3113
3114         unfreeze_array(conf);
3115
3116         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3117         md_wakeup_thread(mddev->thread);
3118
3119         mempool_destroy(oldpool);
3120         return 0;
3121 }
3122
3123 static void raid1_quiesce(struct mddev *mddev, int state)
3124 {
3125         struct r1conf *conf = mddev->private;
3126
3127         switch(state) {
3128         case 2: /* wake for suspend */
3129                 wake_up(&conf->wait_barrier);
3130                 break;
3131         case 1:
3132                 freeze_array(conf, 0);
3133                 break;
3134         case 0:
3135                 unfreeze_array(conf);
3136                 break;
3137         }
3138 }
3139
3140 static void *raid1_takeover(struct mddev *mddev)
3141 {
3142         /* raid1 can take over:
3143          *  raid5 with 2 devices, any layout or chunk size
3144          */
3145         if (mddev->level == 5 && mddev->raid_disks == 2) {
3146                 struct r1conf *conf;
3147                 mddev->new_level = 1;
3148                 mddev->new_layout = 0;
3149                 mddev->new_chunk_sectors = 0;
3150                 conf = setup_conf(mddev);
3151                 if (!IS_ERR(conf))
3152                         /* Array must appear to be quiesced */
3153                         conf->array_frozen = 1;
3154                 return conf;
3155         }
3156         return ERR_PTR(-EINVAL);
3157 }
3158
3159 static struct md_personality raid1_personality =
3160 {
3161         .name           = "raid1",
3162         .level          = 1,
3163         .owner          = THIS_MODULE,
3164         .make_request   = make_request,
3165         .run            = run,
3166         .free           = raid1_free,
3167         .status         = status,
3168         .error_handler  = error,
3169         .hot_add_disk   = raid1_add_disk,
3170         .hot_remove_disk= raid1_remove_disk,
3171         .spare_active   = raid1_spare_active,
3172         .sync_request   = sync_request,
3173         .resize         = raid1_resize,
3174         .size           = raid1_size,
3175         .check_reshape  = raid1_reshape,
3176         .quiesce        = raid1_quiesce,
3177         .takeover       = raid1_takeover,
3178         .congested      = raid1_congested,
3179         .mergeable_bvec = raid1_mergeable_bvec,
3180 };
3181
3182 static int __init raid_init(void)
3183 {
3184         return register_md_personality(&raid1_personality);
3185 }
3186
3187 static void raid_exit(void)
3188 {
3189         unregister_md_personality(&raid1_personality);
3190 }
3191
3192 module_init(raid_init);
3193 module_exit(raid_exit);
3194 MODULE_LICENSE("GPL");
3195 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3196 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3197 MODULE_ALIAS("md-raid1");
3198 MODULE_ALIAS("md-level-1");
3199
3200 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);