Merge tag 'drm-intel-next-fixes-2015-07-02' of git://anongit.freedesktop.org/drm...
[linux-drm-fsl-dcu.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/sort.h>
22 #include <linux/rbtree.h>
23
24 #define DM_MSG_PREFIX   "thin"
25
26 /*
27  * Tunable constants
28  */
29 #define ENDIO_HOOK_POOL_SIZE 1024
30 #define MAPPING_POOL_SIZE 1024
31 #define COMMIT_PERIOD HZ
32 #define NO_SPACE_TIMEOUT_SECS 60
33
34 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
35
36 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
37                 "A percentage of time allocated for copy on write");
38
39 /*
40  * The block size of the device holding pool data must be
41  * between 64KB and 1GB.
42  */
43 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
44 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
45
46 /*
47  * Device id is restricted to 24 bits.
48  */
49 #define MAX_DEV_ID ((1 << 24) - 1)
50
51 /*
52  * How do we handle breaking sharing of data blocks?
53  * =================================================
54  *
55  * We use a standard copy-on-write btree to store the mappings for the
56  * devices (note I'm talking about copy-on-write of the metadata here, not
57  * the data).  When you take an internal snapshot you clone the root node
58  * of the origin btree.  After this there is no concept of an origin or a
59  * snapshot.  They are just two device trees that happen to point to the
60  * same data blocks.
61  *
62  * When we get a write in we decide if it's to a shared data block using
63  * some timestamp magic.  If it is, we have to break sharing.
64  *
65  * Let's say we write to a shared block in what was the origin.  The
66  * steps are:
67  *
68  * i) plug io further to this physical block. (see bio_prison code).
69  *
70  * ii) quiesce any read io to that shared data block.  Obviously
71  * including all devices that share this block.  (see dm_deferred_set code)
72  *
73  * iii) copy the data block to a newly allocate block.  This step can be
74  * missed out if the io covers the block. (schedule_copy).
75  *
76  * iv) insert the new mapping into the origin's btree
77  * (process_prepared_mapping).  This act of inserting breaks some
78  * sharing of btree nodes between the two devices.  Breaking sharing only
79  * effects the btree of that specific device.  Btrees for the other
80  * devices that share the block never change.  The btree for the origin
81  * device as it was after the last commit is untouched, ie. we're using
82  * persistent data structures in the functional programming sense.
83  *
84  * v) unplug io to this physical block, including the io that triggered
85  * the breaking of sharing.
86  *
87  * Steps (ii) and (iii) occur in parallel.
88  *
89  * The metadata _doesn't_ need to be committed before the io continues.  We
90  * get away with this because the io is always written to a _new_ block.
91  * If there's a crash, then:
92  *
93  * - The origin mapping will point to the old origin block (the shared
94  * one).  This will contain the data as it was before the io that triggered
95  * the breaking of sharing came in.
96  *
97  * - The snap mapping still points to the old block.  As it would after
98  * the commit.
99  *
100  * The downside of this scheme is the timestamp magic isn't perfect, and
101  * will continue to think that data block in the snapshot device is shared
102  * even after the write to the origin has broken sharing.  I suspect data
103  * blocks will typically be shared by many different devices, so we're
104  * breaking sharing n + 1 times, rather than n, where n is the number of
105  * devices that reference this data block.  At the moment I think the
106  * benefits far, far outweigh the disadvantages.
107  */
108
109 /*----------------------------------------------------------------*/
110
111 /*
112  * Key building.
113  */
114 enum lock_space {
115         VIRTUAL,
116         PHYSICAL
117 };
118
119 static void build_key(struct dm_thin_device *td, enum lock_space ls,
120                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
121 {
122         key->virtual = (ls == VIRTUAL);
123         key->dev = dm_thin_dev_id(td);
124         key->block_begin = b;
125         key->block_end = e;
126 }
127
128 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
129                            struct dm_cell_key *key)
130 {
131         build_key(td, PHYSICAL, b, b + 1llu, key);
132 }
133
134 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
135                               struct dm_cell_key *key)
136 {
137         build_key(td, VIRTUAL, b, b + 1llu, key);
138 }
139
140 /*----------------------------------------------------------------*/
141
142 #define THROTTLE_THRESHOLD (1 * HZ)
143
144 struct throttle {
145         struct rw_semaphore lock;
146         unsigned long threshold;
147         bool throttle_applied;
148 };
149
150 static void throttle_init(struct throttle *t)
151 {
152         init_rwsem(&t->lock);
153         t->throttle_applied = false;
154 }
155
156 static void throttle_work_start(struct throttle *t)
157 {
158         t->threshold = jiffies + THROTTLE_THRESHOLD;
159 }
160
161 static void throttle_work_update(struct throttle *t)
162 {
163         if (!t->throttle_applied && jiffies > t->threshold) {
164                 down_write(&t->lock);
165                 t->throttle_applied = true;
166         }
167 }
168
169 static void throttle_work_complete(struct throttle *t)
170 {
171         if (t->throttle_applied) {
172                 t->throttle_applied = false;
173                 up_write(&t->lock);
174         }
175 }
176
177 static void throttle_lock(struct throttle *t)
178 {
179         down_read(&t->lock);
180 }
181
182 static void throttle_unlock(struct throttle *t)
183 {
184         up_read(&t->lock);
185 }
186
187 /*----------------------------------------------------------------*/
188
189 /*
190  * A pool device ties together a metadata device and a data device.  It
191  * also provides the interface for creating and destroying internal
192  * devices.
193  */
194 struct dm_thin_new_mapping;
195
196 /*
197  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
198  */
199 enum pool_mode {
200         PM_WRITE,               /* metadata may be changed */
201         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
202         PM_READ_ONLY,           /* metadata may not be changed */
203         PM_FAIL,                /* all I/O fails */
204 };
205
206 struct pool_features {
207         enum pool_mode mode;
208
209         bool zero_new_blocks:1;
210         bool discard_enabled:1;
211         bool discard_passdown:1;
212         bool error_if_no_space:1;
213 };
214
215 struct thin_c;
216 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
217 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
218 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
219
220 #define CELL_SORT_ARRAY_SIZE 8192
221
222 struct pool {
223         struct list_head list;
224         struct dm_target *ti;   /* Only set if a pool target is bound */
225
226         struct mapped_device *pool_md;
227         struct block_device *md_dev;
228         struct dm_pool_metadata *pmd;
229
230         dm_block_t low_water_blocks;
231         uint32_t sectors_per_block;
232         int sectors_per_block_shift;
233
234         struct pool_features pf;
235         bool low_water_triggered:1;     /* A dm event has been sent */
236         bool suspended:1;
237
238         struct dm_bio_prison *prison;
239         struct dm_kcopyd_client *copier;
240
241         struct workqueue_struct *wq;
242         struct throttle throttle;
243         struct work_struct worker;
244         struct delayed_work waker;
245         struct delayed_work no_space_timeout;
246
247         unsigned long last_commit_jiffies;
248         unsigned ref_count;
249
250         spinlock_t lock;
251         struct bio_list deferred_flush_bios;
252         struct list_head prepared_mappings;
253         struct list_head prepared_discards;
254         struct list_head active_thins;
255
256         struct dm_deferred_set *shared_read_ds;
257         struct dm_deferred_set *all_io_ds;
258
259         struct dm_thin_new_mapping *next_mapping;
260         mempool_t *mapping_pool;
261
262         process_bio_fn process_bio;
263         process_bio_fn process_discard;
264
265         process_cell_fn process_cell;
266         process_cell_fn process_discard_cell;
267
268         process_mapping_fn process_prepared_mapping;
269         process_mapping_fn process_prepared_discard;
270
271         struct dm_bio_prison_cell *cell_sort_array[CELL_SORT_ARRAY_SIZE];
272 };
273
274 static enum pool_mode get_pool_mode(struct pool *pool);
275 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
276
277 /*
278  * Target context for a pool.
279  */
280 struct pool_c {
281         struct dm_target *ti;
282         struct pool *pool;
283         struct dm_dev *data_dev;
284         struct dm_dev *metadata_dev;
285         struct dm_target_callbacks callbacks;
286
287         dm_block_t low_water_blocks;
288         struct pool_features requested_pf; /* Features requested during table load */
289         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
290 };
291
292 /*
293  * Target context for a thin.
294  */
295 struct thin_c {
296         struct list_head list;
297         struct dm_dev *pool_dev;
298         struct dm_dev *origin_dev;
299         sector_t origin_size;
300         dm_thin_id dev_id;
301
302         struct pool *pool;
303         struct dm_thin_device *td;
304         struct mapped_device *thin_md;
305
306         bool requeue_mode:1;
307         spinlock_t lock;
308         struct list_head deferred_cells;
309         struct bio_list deferred_bio_list;
310         struct bio_list retry_on_resume_list;
311         struct rb_root sort_bio_list; /* sorted list of deferred bios */
312
313         /*
314          * Ensures the thin is not destroyed until the worker has finished
315          * iterating the active_thins list.
316          */
317         atomic_t refcount;
318         struct completion can_destroy;
319 };
320
321 /*----------------------------------------------------------------*/
322
323 /**
324  * __blkdev_issue_discard_async - queue a discard with async completion
325  * @bdev:       blockdev to issue discard for
326  * @sector:     start sector
327  * @nr_sects:   number of sectors to discard
328  * @gfp_mask:   memory allocation flags (for bio_alloc)
329  * @flags:      BLKDEV_IFL_* flags to control behaviour
330  * @parent_bio: parent discard bio that all sub discards get chained to
331  *
332  * Description:
333  *    Asynchronously issue a discard request for the sectors in question.
334  *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
335  *    that is being kept local to DM thinp until the block changes to allow
336  *    late bio splitting land upstream.
337  */
338 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
339                                         sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
340                                         struct bio *parent_bio)
341 {
342         struct request_queue *q = bdev_get_queue(bdev);
343         int type = REQ_WRITE | REQ_DISCARD;
344         unsigned int max_discard_sectors, granularity;
345         int alignment;
346         struct bio *bio;
347         int ret = 0;
348         struct blk_plug plug;
349
350         if (!q)
351                 return -ENXIO;
352
353         if (!blk_queue_discard(q))
354                 return -EOPNOTSUPP;
355
356         /* Zero-sector (unknown) and one-sector granularities are the same.  */
357         granularity = max(q->limits.discard_granularity >> 9, 1U);
358         alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
359
360         /*
361          * Ensure that max_discard_sectors is of the proper
362          * granularity, so that requests stay aligned after a split.
363          */
364         max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
365         max_discard_sectors -= max_discard_sectors % granularity;
366         if (unlikely(!max_discard_sectors)) {
367                 /* Avoid infinite loop below. Being cautious never hurts. */
368                 return -EOPNOTSUPP;
369         }
370
371         if (flags & BLKDEV_DISCARD_SECURE) {
372                 if (!blk_queue_secdiscard(q))
373                         return -EOPNOTSUPP;
374                 type |= REQ_SECURE;
375         }
376
377         blk_start_plug(&plug);
378         while (nr_sects) {
379                 unsigned int req_sects;
380                 sector_t end_sect, tmp;
381
382                 /*
383                  * Required bio_put occurs in bio_endio thanks to bio_chain below
384                  */
385                 bio = bio_alloc(gfp_mask, 1);
386                 if (!bio) {
387                         ret = -ENOMEM;
388                         break;
389                 }
390
391                 req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
392
393                 /*
394                  * If splitting a request, and the next starting sector would be
395                  * misaligned, stop the discard at the previous aligned sector.
396                  */
397                 end_sect = sector + req_sects;
398                 tmp = end_sect;
399                 if (req_sects < nr_sects &&
400                     sector_div(tmp, granularity) != alignment) {
401                         end_sect = end_sect - alignment;
402                         sector_div(end_sect, granularity);
403                         end_sect = end_sect * granularity + alignment;
404                         req_sects = end_sect - sector;
405                 }
406
407                 bio_chain(bio, parent_bio);
408
409                 bio->bi_iter.bi_sector = sector;
410                 bio->bi_bdev = bdev;
411
412                 bio->bi_iter.bi_size = req_sects << 9;
413                 nr_sects -= req_sects;
414                 sector = end_sect;
415
416                 submit_bio(type, bio);
417
418                 /*
419                  * We can loop for a long time in here, if someone does
420                  * full device discards (like mkfs). Be nice and allow
421                  * us to schedule out to avoid softlocking if preempt
422                  * is disabled.
423                  */
424                 cond_resched();
425         }
426         blk_finish_plug(&plug);
427
428         return ret;
429 }
430
431 static bool block_size_is_power_of_two(struct pool *pool)
432 {
433         return pool->sectors_per_block_shift >= 0;
434 }
435
436 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
437 {
438         return block_size_is_power_of_two(pool) ?
439                 (b << pool->sectors_per_block_shift) :
440                 (b * pool->sectors_per_block);
441 }
442
443 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
444                          struct bio *parent_bio)
445 {
446         sector_t s = block_to_sectors(tc->pool, data_b);
447         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
448
449         return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
450                                             GFP_NOWAIT, 0, parent_bio);
451 }
452
453 /*----------------------------------------------------------------*/
454
455 /*
456  * wake_worker() is used when new work is queued and when pool_resume is
457  * ready to continue deferred IO processing.
458  */
459 static void wake_worker(struct pool *pool)
460 {
461         queue_work(pool->wq, &pool->worker);
462 }
463
464 /*----------------------------------------------------------------*/
465
466 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
467                       struct dm_bio_prison_cell **cell_result)
468 {
469         int r;
470         struct dm_bio_prison_cell *cell_prealloc;
471
472         /*
473          * Allocate a cell from the prison's mempool.
474          * This might block but it can't fail.
475          */
476         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
477
478         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
479         if (r)
480                 /*
481                  * We reused an old cell; we can get rid of
482                  * the new one.
483                  */
484                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
485
486         return r;
487 }
488
489 static void cell_release(struct pool *pool,
490                          struct dm_bio_prison_cell *cell,
491                          struct bio_list *bios)
492 {
493         dm_cell_release(pool->prison, cell, bios);
494         dm_bio_prison_free_cell(pool->prison, cell);
495 }
496
497 static void cell_visit_release(struct pool *pool,
498                                void (*fn)(void *, struct dm_bio_prison_cell *),
499                                void *context,
500                                struct dm_bio_prison_cell *cell)
501 {
502         dm_cell_visit_release(pool->prison, fn, context, cell);
503         dm_bio_prison_free_cell(pool->prison, cell);
504 }
505
506 static void cell_release_no_holder(struct pool *pool,
507                                    struct dm_bio_prison_cell *cell,
508                                    struct bio_list *bios)
509 {
510         dm_cell_release_no_holder(pool->prison, cell, bios);
511         dm_bio_prison_free_cell(pool->prison, cell);
512 }
513
514 static void cell_error_with_code(struct pool *pool,
515                                  struct dm_bio_prison_cell *cell, int error_code)
516 {
517         dm_cell_error(pool->prison, cell, error_code);
518         dm_bio_prison_free_cell(pool->prison, cell);
519 }
520
521 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
522 {
523         cell_error_with_code(pool, cell, -EIO);
524 }
525
526 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
527 {
528         cell_error_with_code(pool, cell, 0);
529 }
530
531 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
532 {
533         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
534 }
535
536 /*----------------------------------------------------------------*/
537
538 /*
539  * A global list of pools that uses a struct mapped_device as a key.
540  */
541 static struct dm_thin_pool_table {
542         struct mutex mutex;
543         struct list_head pools;
544 } dm_thin_pool_table;
545
546 static void pool_table_init(void)
547 {
548         mutex_init(&dm_thin_pool_table.mutex);
549         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
550 }
551
552 static void __pool_table_insert(struct pool *pool)
553 {
554         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
555         list_add(&pool->list, &dm_thin_pool_table.pools);
556 }
557
558 static void __pool_table_remove(struct pool *pool)
559 {
560         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
561         list_del(&pool->list);
562 }
563
564 static struct pool *__pool_table_lookup(struct mapped_device *md)
565 {
566         struct pool *pool = NULL, *tmp;
567
568         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
569
570         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
571                 if (tmp->pool_md == md) {
572                         pool = tmp;
573                         break;
574                 }
575         }
576
577         return pool;
578 }
579
580 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
581 {
582         struct pool *pool = NULL, *tmp;
583
584         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
585
586         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
587                 if (tmp->md_dev == md_dev) {
588                         pool = tmp;
589                         break;
590                 }
591         }
592
593         return pool;
594 }
595
596 /*----------------------------------------------------------------*/
597
598 struct dm_thin_endio_hook {
599         struct thin_c *tc;
600         struct dm_deferred_entry *shared_read_entry;
601         struct dm_deferred_entry *all_io_entry;
602         struct dm_thin_new_mapping *overwrite_mapping;
603         struct rb_node rb_node;
604         struct dm_bio_prison_cell *cell;
605 };
606
607 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
608 {
609         bio_list_merge(bios, master);
610         bio_list_init(master);
611 }
612
613 static void error_bio_list(struct bio_list *bios, int error)
614 {
615         struct bio *bio;
616
617         while ((bio = bio_list_pop(bios)))
618                 bio_endio(bio, error);
619 }
620
621 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
622 {
623         struct bio_list bios;
624         unsigned long flags;
625
626         bio_list_init(&bios);
627
628         spin_lock_irqsave(&tc->lock, flags);
629         __merge_bio_list(&bios, master);
630         spin_unlock_irqrestore(&tc->lock, flags);
631
632         error_bio_list(&bios, error);
633 }
634
635 static void requeue_deferred_cells(struct thin_c *tc)
636 {
637         struct pool *pool = tc->pool;
638         unsigned long flags;
639         struct list_head cells;
640         struct dm_bio_prison_cell *cell, *tmp;
641
642         INIT_LIST_HEAD(&cells);
643
644         spin_lock_irqsave(&tc->lock, flags);
645         list_splice_init(&tc->deferred_cells, &cells);
646         spin_unlock_irqrestore(&tc->lock, flags);
647
648         list_for_each_entry_safe(cell, tmp, &cells, user_list)
649                 cell_requeue(pool, cell);
650 }
651
652 static void requeue_io(struct thin_c *tc)
653 {
654         struct bio_list bios;
655         unsigned long flags;
656
657         bio_list_init(&bios);
658
659         spin_lock_irqsave(&tc->lock, flags);
660         __merge_bio_list(&bios, &tc->deferred_bio_list);
661         __merge_bio_list(&bios, &tc->retry_on_resume_list);
662         spin_unlock_irqrestore(&tc->lock, flags);
663
664         error_bio_list(&bios, DM_ENDIO_REQUEUE);
665         requeue_deferred_cells(tc);
666 }
667
668 static void error_retry_list(struct pool *pool)
669 {
670         struct thin_c *tc;
671
672         rcu_read_lock();
673         list_for_each_entry_rcu(tc, &pool->active_thins, list)
674                 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
675         rcu_read_unlock();
676 }
677
678 /*
679  * This section of code contains the logic for processing a thin device's IO.
680  * Much of the code depends on pool object resources (lists, workqueues, etc)
681  * but most is exclusively called from the thin target rather than the thin-pool
682  * target.
683  */
684
685 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
686 {
687         struct pool *pool = tc->pool;
688         sector_t block_nr = bio->bi_iter.bi_sector;
689
690         if (block_size_is_power_of_two(pool))
691                 block_nr >>= pool->sectors_per_block_shift;
692         else
693                 (void) sector_div(block_nr, pool->sectors_per_block);
694
695         return block_nr;
696 }
697
698 /*
699  * Returns the _complete_ blocks that this bio covers.
700  */
701 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
702                                 dm_block_t *begin, dm_block_t *end)
703 {
704         struct pool *pool = tc->pool;
705         sector_t b = bio->bi_iter.bi_sector;
706         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
707
708         b += pool->sectors_per_block - 1ull; /* so we round up */
709
710         if (block_size_is_power_of_two(pool)) {
711                 b >>= pool->sectors_per_block_shift;
712                 e >>= pool->sectors_per_block_shift;
713         } else {
714                 (void) sector_div(b, pool->sectors_per_block);
715                 (void) sector_div(e, pool->sectors_per_block);
716         }
717
718         if (e < b)
719                 /* Can happen if the bio is within a single block. */
720                 e = b;
721
722         *begin = b;
723         *end = e;
724 }
725
726 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
727 {
728         struct pool *pool = tc->pool;
729         sector_t bi_sector = bio->bi_iter.bi_sector;
730
731         bio->bi_bdev = tc->pool_dev->bdev;
732         if (block_size_is_power_of_two(pool))
733                 bio->bi_iter.bi_sector =
734                         (block << pool->sectors_per_block_shift) |
735                         (bi_sector & (pool->sectors_per_block - 1));
736         else
737                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
738                                  sector_div(bi_sector, pool->sectors_per_block);
739 }
740
741 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
742 {
743         bio->bi_bdev = tc->origin_dev->bdev;
744 }
745
746 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
747 {
748         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
749                 dm_thin_changed_this_transaction(tc->td);
750 }
751
752 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
753 {
754         struct dm_thin_endio_hook *h;
755
756         if (bio->bi_rw & REQ_DISCARD)
757                 return;
758
759         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
760         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
761 }
762
763 static void issue(struct thin_c *tc, struct bio *bio)
764 {
765         struct pool *pool = tc->pool;
766         unsigned long flags;
767
768         if (!bio_triggers_commit(tc, bio)) {
769                 generic_make_request(bio);
770                 return;
771         }
772
773         /*
774          * Complete bio with an error if earlier I/O caused changes to
775          * the metadata that can't be committed e.g, due to I/O errors
776          * on the metadata device.
777          */
778         if (dm_thin_aborted_changes(tc->td)) {
779                 bio_io_error(bio);
780                 return;
781         }
782
783         /*
784          * Batch together any bios that trigger commits and then issue a
785          * single commit for them in process_deferred_bios().
786          */
787         spin_lock_irqsave(&pool->lock, flags);
788         bio_list_add(&pool->deferred_flush_bios, bio);
789         spin_unlock_irqrestore(&pool->lock, flags);
790 }
791
792 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
793 {
794         remap_to_origin(tc, bio);
795         issue(tc, bio);
796 }
797
798 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
799                             dm_block_t block)
800 {
801         remap(tc, bio, block);
802         issue(tc, bio);
803 }
804
805 /*----------------------------------------------------------------*/
806
807 /*
808  * Bio endio functions.
809  */
810 struct dm_thin_new_mapping {
811         struct list_head list;
812
813         bool pass_discard:1;
814         bool maybe_shared:1;
815
816         /*
817          * Track quiescing, copying and zeroing preparation actions.  When this
818          * counter hits zero the block is prepared and can be inserted into the
819          * btree.
820          */
821         atomic_t prepare_actions;
822
823         int err;
824         struct thin_c *tc;
825         dm_block_t virt_begin, virt_end;
826         dm_block_t data_block;
827         struct dm_bio_prison_cell *cell;
828
829         /*
830          * If the bio covers the whole area of a block then we can avoid
831          * zeroing or copying.  Instead this bio is hooked.  The bio will
832          * still be in the cell, so care has to be taken to avoid issuing
833          * the bio twice.
834          */
835         struct bio *bio;
836         bio_end_io_t *saved_bi_end_io;
837 };
838
839 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
840 {
841         struct pool *pool = m->tc->pool;
842
843         if (atomic_dec_and_test(&m->prepare_actions)) {
844                 list_add_tail(&m->list, &pool->prepared_mappings);
845                 wake_worker(pool);
846         }
847 }
848
849 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
850 {
851         unsigned long flags;
852         struct pool *pool = m->tc->pool;
853
854         spin_lock_irqsave(&pool->lock, flags);
855         __complete_mapping_preparation(m);
856         spin_unlock_irqrestore(&pool->lock, flags);
857 }
858
859 static void copy_complete(int read_err, unsigned long write_err, void *context)
860 {
861         struct dm_thin_new_mapping *m = context;
862
863         m->err = read_err || write_err ? -EIO : 0;
864         complete_mapping_preparation(m);
865 }
866
867 static void overwrite_endio(struct bio *bio, int err)
868 {
869         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
870         struct dm_thin_new_mapping *m = h->overwrite_mapping;
871
872         bio->bi_end_io = m->saved_bi_end_io;
873
874         m->err = err;
875         complete_mapping_preparation(m);
876 }
877
878 /*----------------------------------------------------------------*/
879
880 /*
881  * Workqueue.
882  */
883
884 /*
885  * Prepared mapping jobs.
886  */
887
888 /*
889  * This sends the bios in the cell, except the original holder, back
890  * to the deferred_bios list.
891  */
892 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
893 {
894         struct pool *pool = tc->pool;
895         unsigned long flags;
896
897         spin_lock_irqsave(&tc->lock, flags);
898         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
899         spin_unlock_irqrestore(&tc->lock, flags);
900
901         wake_worker(pool);
902 }
903
904 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
905
906 struct remap_info {
907         struct thin_c *tc;
908         struct bio_list defer_bios;
909         struct bio_list issue_bios;
910 };
911
912 static void __inc_remap_and_issue_cell(void *context,
913                                        struct dm_bio_prison_cell *cell)
914 {
915         struct remap_info *info = context;
916         struct bio *bio;
917
918         while ((bio = bio_list_pop(&cell->bios))) {
919                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
920                         bio_list_add(&info->defer_bios, bio);
921                 else {
922                         inc_all_io_entry(info->tc->pool, bio);
923
924                         /*
925                          * We can't issue the bios with the bio prison lock
926                          * held, so we add them to a list to issue on
927                          * return from this function.
928                          */
929                         bio_list_add(&info->issue_bios, bio);
930                 }
931         }
932 }
933
934 static void inc_remap_and_issue_cell(struct thin_c *tc,
935                                      struct dm_bio_prison_cell *cell,
936                                      dm_block_t block)
937 {
938         struct bio *bio;
939         struct remap_info info;
940
941         info.tc = tc;
942         bio_list_init(&info.defer_bios);
943         bio_list_init(&info.issue_bios);
944
945         /*
946          * We have to be careful to inc any bios we're about to issue
947          * before the cell is released, and avoid a race with new bios
948          * being added to the cell.
949          */
950         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
951                            &info, cell);
952
953         while ((bio = bio_list_pop(&info.defer_bios)))
954                 thin_defer_bio(tc, bio);
955
956         while ((bio = bio_list_pop(&info.issue_bios)))
957                 remap_and_issue(info.tc, bio, block);
958 }
959
960 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
961 {
962         cell_error(m->tc->pool, m->cell);
963         list_del(&m->list);
964         mempool_free(m, m->tc->pool->mapping_pool);
965 }
966
967 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
968 {
969         struct thin_c *tc = m->tc;
970         struct pool *pool = tc->pool;
971         struct bio *bio = m->bio;
972         int r;
973
974         if (m->err) {
975                 cell_error(pool, m->cell);
976                 goto out;
977         }
978
979         /*
980          * Commit the prepared block into the mapping btree.
981          * Any I/O for this block arriving after this point will get
982          * remapped to it directly.
983          */
984         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
985         if (r) {
986                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
987                 cell_error(pool, m->cell);
988                 goto out;
989         }
990
991         /*
992          * Release any bios held while the block was being provisioned.
993          * If we are processing a write bio that completely covers the block,
994          * we already processed it so can ignore it now when processing
995          * the bios in the cell.
996          */
997         if (bio) {
998                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
999                 bio_endio(bio, 0);
1000         } else {
1001                 inc_all_io_entry(tc->pool, m->cell->holder);
1002                 remap_and_issue(tc, m->cell->holder, m->data_block);
1003                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1004         }
1005
1006 out:
1007         list_del(&m->list);
1008         mempool_free(m, pool->mapping_pool);
1009 }
1010
1011 /*----------------------------------------------------------------*/
1012
1013 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1014 {
1015         struct thin_c *tc = m->tc;
1016         if (m->cell)
1017                 cell_defer_no_holder(tc, m->cell);
1018         mempool_free(m, tc->pool->mapping_pool);
1019 }
1020
1021 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1022 {
1023         bio_io_error(m->bio);
1024         free_discard_mapping(m);
1025 }
1026
1027 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1028 {
1029         bio_endio(m->bio, 0);
1030         free_discard_mapping(m);
1031 }
1032
1033 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1034 {
1035         int r;
1036         struct thin_c *tc = m->tc;
1037
1038         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1039         if (r) {
1040                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1041                 bio_io_error(m->bio);
1042         } else
1043                 bio_endio(m->bio, 0);
1044
1045         cell_defer_no_holder(tc, m->cell);
1046         mempool_free(m, tc->pool->mapping_pool);
1047 }
1048
1049 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1050 {
1051         /*
1052          * We've already unmapped this range of blocks, but before we
1053          * passdown we have to check that these blocks are now unused.
1054          */
1055         int r;
1056         bool used = true;
1057         struct thin_c *tc = m->tc;
1058         struct pool *pool = tc->pool;
1059         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1060
1061         while (b != end) {
1062                 /* find start of unmapped run */
1063                 for (; b < end; b++) {
1064                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1065                         if (r)
1066                                 return r;
1067
1068                         if (!used)
1069                                 break;
1070                 }
1071
1072                 if (b == end)
1073                         break;
1074
1075                 /* find end of run */
1076                 for (e = b + 1; e != end; e++) {
1077                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1078                         if (r)
1079                                 return r;
1080
1081                         if (used)
1082                                 break;
1083                 }
1084
1085                 r = issue_discard(tc, b, e, m->bio);
1086                 if (r)
1087                         return r;
1088
1089                 b = e;
1090         }
1091
1092         return 0;
1093 }
1094
1095 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1096 {
1097         int r;
1098         struct thin_c *tc = m->tc;
1099         struct pool *pool = tc->pool;
1100
1101         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1102         if (r)
1103                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1104
1105         else if (m->maybe_shared)
1106                 r = passdown_double_checking_shared_status(m);
1107         else
1108                 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1109
1110         /*
1111          * Even if r is set, there could be sub discards in flight that we
1112          * need to wait for.
1113          */
1114         bio_endio(m->bio, r);
1115         cell_defer_no_holder(tc, m->cell);
1116         mempool_free(m, pool->mapping_pool);
1117 }
1118
1119 static void process_prepared(struct pool *pool, struct list_head *head,
1120                              process_mapping_fn *fn)
1121 {
1122         unsigned long flags;
1123         struct list_head maps;
1124         struct dm_thin_new_mapping *m, *tmp;
1125
1126         INIT_LIST_HEAD(&maps);
1127         spin_lock_irqsave(&pool->lock, flags);
1128         list_splice_init(head, &maps);
1129         spin_unlock_irqrestore(&pool->lock, flags);
1130
1131         list_for_each_entry_safe(m, tmp, &maps, list)
1132                 (*fn)(m);
1133 }
1134
1135 /*
1136  * Deferred bio jobs.
1137  */
1138 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1139 {
1140         return bio->bi_iter.bi_size ==
1141                 (pool->sectors_per_block << SECTOR_SHIFT);
1142 }
1143
1144 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1145 {
1146         return (bio_data_dir(bio) == WRITE) &&
1147                 io_overlaps_block(pool, bio);
1148 }
1149
1150 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1151                                bio_end_io_t *fn)
1152 {
1153         *save = bio->bi_end_io;
1154         bio->bi_end_io = fn;
1155 }
1156
1157 static int ensure_next_mapping(struct pool *pool)
1158 {
1159         if (pool->next_mapping)
1160                 return 0;
1161
1162         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1163
1164         return pool->next_mapping ? 0 : -ENOMEM;
1165 }
1166
1167 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1168 {
1169         struct dm_thin_new_mapping *m = pool->next_mapping;
1170
1171         BUG_ON(!pool->next_mapping);
1172
1173         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1174         INIT_LIST_HEAD(&m->list);
1175         m->bio = NULL;
1176
1177         pool->next_mapping = NULL;
1178
1179         return m;
1180 }
1181
1182 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1183                     sector_t begin, sector_t end)
1184 {
1185         int r;
1186         struct dm_io_region to;
1187
1188         to.bdev = tc->pool_dev->bdev;
1189         to.sector = begin;
1190         to.count = end - begin;
1191
1192         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1193         if (r < 0) {
1194                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1195                 copy_complete(1, 1, m);
1196         }
1197 }
1198
1199 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1200                                       dm_block_t data_begin,
1201                                       struct dm_thin_new_mapping *m)
1202 {
1203         struct pool *pool = tc->pool;
1204         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1205
1206         h->overwrite_mapping = m;
1207         m->bio = bio;
1208         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1209         inc_all_io_entry(pool, bio);
1210         remap_and_issue(tc, bio, data_begin);
1211 }
1212
1213 /*
1214  * A partial copy also needs to zero the uncopied region.
1215  */
1216 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1217                           struct dm_dev *origin, dm_block_t data_origin,
1218                           dm_block_t data_dest,
1219                           struct dm_bio_prison_cell *cell, struct bio *bio,
1220                           sector_t len)
1221 {
1222         int r;
1223         struct pool *pool = tc->pool;
1224         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1225
1226         m->tc = tc;
1227         m->virt_begin = virt_block;
1228         m->virt_end = virt_block + 1u;
1229         m->data_block = data_dest;
1230         m->cell = cell;
1231
1232         /*
1233          * quiesce action + copy action + an extra reference held for the
1234          * duration of this function (we may need to inc later for a
1235          * partial zero).
1236          */
1237         atomic_set(&m->prepare_actions, 3);
1238
1239         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1240                 complete_mapping_preparation(m); /* already quiesced */
1241
1242         /*
1243          * IO to pool_dev remaps to the pool target's data_dev.
1244          *
1245          * If the whole block of data is being overwritten, we can issue the
1246          * bio immediately. Otherwise we use kcopyd to clone the data first.
1247          */
1248         if (io_overwrites_block(pool, bio))
1249                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1250         else {
1251                 struct dm_io_region from, to;
1252
1253                 from.bdev = origin->bdev;
1254                 from.sector = data_origin * pool->sectors_per_block;
1255                 from.count = len;
1256
1257                 to.bdev = tc->pool_dev->bdev;
1258                 to.sector = data_dest * pool->sectors_per_block;
1259                 to.count = len;
1260
1261                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1262                                    0, copy_complete, m);
1263                 if (r < 0) {
1264                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1265                         copy_complete(1, 1, m);
1266
1267                         /*
1268                          * We allow the zero to be issued, to simplify the
1269                          * error path.  Otherwise we'd need to start
1270                          * worrying about decrementing the prepare_actions
1271                          * counter.
1272                          */
1273                 }
1274
1275                 /*
1276                  * Do we need to zero a tail region?
1277                  */
1278                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1279                         atomic_inc(&m->prepare_actions);
1280                         ll_zero(tc, m,
1281                                 data_dest * pool->sectors_per_block + len,
1282                                 (data_dest + 1) * pool->sectors_per_block);
1283                 }
1284         }
1285
1286         complete_mapping_preparation(m); /* drop our ref */
1287 }
1288
1289 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1290                                    dm_block_t data_origin, dm_block_t data_dest,
1291                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1292 {
1293         schedule_copy(tc, virt_block, tc->pool_dev,
1294                       data_origin, data_dest, cell, bio,
1295                       tc->pool->sectors_per_block);
1296 }
1297
1298 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1299                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1300                           struct bio *bio)
1301 {
1302         struct pool *pool = tc->pool;
1303         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1304
1305         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1306         m->tc = tc;
1307         m->virt_begin = virt_block;
1308         m->virt_end = virt_block + 1u;
1309         m->data_block = data_block;
1310         m->cell = cell;
1311
1312         /*
1313          * If the whole block of data is being overwritten or we are not
1314          * zeroing pre-existing data, we can issue the bio immediately.
1315          * Otherwise we use kcopyd to zero the data first.
1316          */
1317         if (pool->pf.zero_new_blocks) {
1318                 if (io_overwrites_block(pool, bio))
1319                         remap_and_issue_overwrite(tc, bio, data_block, m);
1320                 else
1321                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1322                                 (data_block + 1) * pool->sectors_per_block);
1323         } else
1324                 process_prepared_mapping(m);
1325 }
1326
1327 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1328                                    dm_block_t data_dest,
1329                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1330 {
1331         struct pool *pool = tc->pool;
1332         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1333         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1334
1335         if (virt_block_end <= tc->origin_size)
1336                 schedule_copy(tc, virt_block, tc->origin_dev,
1337                               virt_block, data_dest, cell, bio,
1338                               pool->sectors_per_block);
1339
1340         else if (virt_block_begin < tc->origin_size)
1341                 schedule_copy(tc, virt_block, tc->origin_dev,
1342                               virt_block, data_dest, cell, bio,
1343                               tc->origin_size - virt_block_begin);
1344
1345         else
1346                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1347 }
1348
1349 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1350
1351 static void check_for_space(struct pool *pool)
1352 {
1353         int r;
1354         dm_block_t nr_free;
1355
1356         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1357                 return;
1358
1359         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1360         if (r)
1361                 return;
1362
1363         if (nr_free)
1364                 set_pool_mode(pool, PM_WRITE);
1365 }
1366
1367 /*
1368  * A non-zero return indicates read_only or fail_io mode.
1369  * Many callers don't care about the return value.
1370  */
1371 static int commit(struct pool *pool)
1372 {
1373         int r;
1374
1375         if (get_pool_mode(pool) >= PM_READ_ONLY)
1376                 return -EINVAL;
1377
1378         r = dm_pool_commit_metadata(pool->pmd);
1379         if (r)
1380                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1381         else
1382                 check_for_space(pool);
1383
1384         return r;
1385 }
1386
1387 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1388 {
1389         unsigned long flags;
1390
1391         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1392                 DMWARN("%s: reached low water mark for data device: sending event.",
1393                        dm_device_name(pool->pool_md));
1394                 spin_lock_irqsave(&pool->lock, flags);
1395                 pool->low_water_triggered = true;
1396                 spin_unlock_irqrestore(&pool->lock, flags);
1397                 dm_table_event(pool->ti->table);
1398         }
1399 }
1400
1401 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1402 {
1403         int r;
1404         dm_block_t free_blocks;
1405         struct pool *pool = tc->pool;
1406
1407         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1408                 return -EINVAL;
1409
1410         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1411         if (r) {
1412                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1413                 return r;
1414         }
1415
1416         check_low_water_mark(pool, free_blocks);
1417
1418         if (!free_blocks) {
1419                 /*
1420                  * Try to commit to see if that will free up some
1421                  * more space.
1422                  */
1423                 r = commit(pool);
1424                 if (r)
1425                         return r;
1426
1427                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1428                 if (r) {
1429                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1430                         return r;
1431                 }
1432
1433                 if (!free_blocks) {
1434                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1435                         return -ENOSPC;
1436                 }
1437         }
1438
1439         r = dm_pool_alloc_data_block(pool->pmd, result);
1440         if (r) {
1441                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1442                 return r;
1443         }
1444
1445         return 0;
1446 }
1447
1448 /*
1449  * If we have run out of space, queue bios until the device is
1450  * resumed, presumably after having been reloaded with more space.
1451  */
1452 static void retry_on_resume(struct bio *bio)
1453 {
1454         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1455         struct thin_c *tc = h->tc;
1456         unsigned long flags;
1457
1458         spin_lock_irqsave(&tc->lock, flags);
1459         bio_list_add(&tc->retry_on_resume_list, bio);
1460         spin_unlock_irqrestore(&tc->lock, flags);
1461 }
1462
1463 static int should_error_unserviceable_bio(struct pool *pool)
1464 {
1465         enum pool_mode m = get_pool_mode(pool);
1466
1467         switch (m) {
1468         case PM_WRITE:
1469                 /* Shouldn't get here */
1470                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1471                 return -EIO;
1472
1473         case PM_OUT_OF_DATA_SPACE:
1474                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1475
1476         case PM_READ_ONLY:
1477         case PM_FAIL:
1478                 return -EIO;
1479         default:
1480                 /* Shouldn't get here */
1481                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1482                 return -EIO;
1483         }
1484 }
1485
1486 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1487 {
1488         int error = should_error_unserviceable_bio(pool);
1489
1490         if (error)
1491                 bio_endio(bio, error);
1492         else
1493                 retry_on_resume(bio);
1494 }
1495
1496 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1497 {
1498         struct bio *bio;
1499         struct bio_list bios;
1500         int error;
1501
1502         error = should_error_unserviceable_bio(pool);
1503         if (error) {
1504                 cell_error_with_code(pool, cell, error);
1505                 return;
1506         }
1507
1508         bio_list_init(&bios);
1509         cell_release(pool, cell, &bios);
1510
1511         while ((bio = bio_list_pop(&bios)))
1512                 retry_on_resume(bio);
1513 }
1514
1515 static void process_discard_cell_no_passdown(struct thin_c *tc,
1516                                              struct dm_bio_prison_cell *virt_cell)
1517 {
1518         struct pool *pool = tc->pool;
1519         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1520
1521         /*
1522          * We don't need to lock the data blocks, since there's no
1523          * passdown.  We only lock data blocks for allocation and breaking sharing.
1524          */
1525         m->tc = tc;
1526         m->virt_begin = virt_cell->key.block_begin;
1527         m->virt_end = virt_cell->key.block_end;
1528         m->cell = virt_cell;
1529         m->bio = virt_cell->holder;
1530
1531         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1532                 pool->process_prepared_discard(m);
1533 }
1534
1535 /*
1536  * FIXME: DM local hack to defer parent bios's end_io until we
1537  * _know_ all chained sub range discard bios have completed.
1538  * Will go away once late bio splitting lands upstream!
1539  */
1540 static inline void __bio_inc_remaining(struct bio *bio)
1541 {
1542         bio->bi_flags |= (1 << BIO_CHAIN);
1543         smp_mb__before_atomic();
1544         atomic_inc(&bio->__bi_remaining);
1545 }
1546
1547 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1548                                  struct bio *bio)
1549 {
1550         struct pool *pool = tc->pool;
1551
1552         int r;
1553         bool maybe_shared;
1554         struct dm_cell_key data_key;
1555         struct dm_bio_prison_cell *data_cell;
1556         struct dm_thin_new_mapping *m;
1557         dm_block_t virt_begin, virt_end, data_begin;
1558
1559         while (begin != end) {
1560                 r = ensure_next_mapping(pool);
1561                 if (r)
1562                         /* we did our best */
1563                         return;
1564
1565                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1566                                               &data_begin, &maybe_shared);
1567                 if (r)
1568                         /*
1569                          * Silently fail, letting any mappings we've
1570                          * created complete.
1571                          */
1572                         break;
1573
1574                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1575                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1576                         /* contention, we'll give up with this range */
1577                         begin = virt_end;
1578                         continue;
1579                 }
1580
1581                 /*
1582                  * IO may still be going to the destination block.  We must
1583                  * quiesce before we can do the removal.
1584                  */
1585                 m = get_next_mapping(pool);
1586                 m->tc = tc;
1587                 m->maybe_shared = maybe_shared;
1588                 m->virt_begin = virt_begin;
1589                 m->virt_end = virt_end;
1590                 m->data_block = data_begin;
1591                 m->cell = data_cell;
1592                 m->bio = bio;
1593
1594                 /*
1595                  * The parent bio must not complete before sub discard bios are
1596                  * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1597                  *
1598                  * This per-mapping bi_remaining increment is paired with
1599                  * the implicit decrement that occurs via bio_endio() in
1600                  * process_prepared_discard_{passdown,no_passdown}.
1601                  */
1602                 __bio_inc_remaining(bio);
1603                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1604                         pool->process_prepared_discard(m);
1605
1606                 begin = virt_end;
1607         }
1608 }
1609
1610 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1611 {
1612         struct bio *bio = virt_cell->holder;
1613         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1614
1615         /*
1616          * The virt_cell will only get freed once the origin bio completes.
1617          * This means it will remain locked while all the individual
1618          * passdown bios are in flight.
1619          */
1620         h->cell = virt_cell;
1621         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1622
1623         /*
1624          * We complete the bio now, knowing that the bi_remaining field
1625          * will prevent completion until the sub range discards have
1626          * completed.
1627          */
1628         bio_endio(bio, 0);
1629 }
1630
1631 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1632 {
1633         dm_block_t begin, end;
1634         struct dm_cell_key virt_key;
1635         struct dm_bio_prison_cell *virt_cell;
1636
1637         get_bio_block_range(tc, bio, &begin, &end);
1638         if (begin == end) {
1639                 /*
1640                  * The discard covers less than a block.
1641                  */
1642                 bio_endio(bio, 0);
1643                 return;
1644         }
1645
1646         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1647         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1648                 /*
1649                  * Potential starvation issue: We're relying on the
1650                  * fs/application being well behaved, and not trying to
1651                  * send IO to a region at the same time as discarding it.
1652                  * If they do this persistently then it's possible this
1653                  * cell will never be granted.
1654                  */
1655                 return;
1656
1657         tc->pool->process_discard_cell(tc, virt_cell);
1658 }
1659
1660 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1661                           struct dm_cell_key *key,
1662                           struct dm_thin_lookup_result *lookup_result,
1663                           struct dm_bio_prison_cell *cell)
1664 {
1665         int r;
1666         dm_block_t data_block;
1667         struct pool *pool = tc->pool;
1668
1669         r = alloc_data_block(tc, &data_block);
1670         switch (r) {
1671         case 0:
1672                 schedule_internal_copy(tc, block, lookup_result->block,
1673                                        data_block, cell, bio);
1674                 break;
1675
1676         case -ENOSPC:
1677                 retry_bios_on_resume(pool, cell);
1678                 break;
1679
1680         default:
1681                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1682                             __func__, r);
1683                 cell_error(pool, cell);
1684                 break;
1685         }
1686 }
1687
1688 static void __remap_and_issue_shared_cell(void *context,
1689                                           struct dm_bio_prison_cell *cell)
1690 {
1691         struct remap_info *info = context;
1692         struct bio *bio;
1693
1694         while ((bio = bio_list_pop(&cell->bios))) {
1695                 if ((bio_data_dir(bio) == WRITE) ||
1696                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1697                         bio_list_add(&info->defer_bios, bio);
1698                 else {
1699                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1700
1701                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1702                         inc_all_io_entry(info->tc->pool, bio);
1703                         bio_list_add(&info->issue_bios, bio);
1704                 }
1705         }
1706 }
1707
1708 static void remap_and_issue_shared_cell(struct thin_c *tc,
1709                                         struct dm_bio_prison_cell *cell,
1710                                         dm_block_t block)
1711 {
1712         struct bio *bio;
1713         struct remap_info info;
1714
1715         info.tc = tc;
1716         bio_list_init(&info.defer_bios);
1717         bio_list_init(&info.issue_bios);
1718
1719         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1720                            &info, cell);
1721
1722         while ((bio = bio_list_pop(&info.defer_bios)))
1723                 thin_defer_bio(tc, bio);
1724
1725         while ((bio = bio_list_pop(&info.issue_bios)))
1726                 remap_and_issue(tc, bio, block);
1727 }
1728
1729 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1730                                dm_block_t block,
1731                                struct dm_thin_lookup_result *lookup_result,
1732                                struct dm_bio_prison_cell *virt_cell)
1733 {
1734         struct dm_bio_prison_cell *data_cell;
1735         struct pool *pool = tc->pool;
1736         struct dm_cell_key key;
1737
1738         /*
1739          * If cell is already occupied, then sharing is already in the process
1740          * of being broken so we have nothing further to do here.
1741          */
1742         build_data_key(tc->td, lookup_result->block, &key);
1743         if (bio_detain(pool, &key, bio, &data_cell)) {
1744                 cell_defer_no_holder(tc, virt_cell);
1745                 return;
1746         }
1747
1748         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1749                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1750                 cell_defer_no_holder(tc, virt_cell);
1751         } else {
1752                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1753
1754                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1755                 inc_all_io_entry(pool, bio);
1756                 remap_and_issue(tc, bio, lookup_result->block);
1757
1758                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1759                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1760         }
1761 }
1762
1763 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1764                             struct dm_bio_prison_cell *cell)
1765 {
1766         int r;
1767         dm_block_t data_block;
1768         struct pool *pool = tc->pool;
1769
1770         /*
1771          * Remap empty bios (flushes) immediately, without provisioning.
1772          */
1773         if (!bio->bi_iter.bi_size) {
1774                 inc_all_io_entry(pool, bio);
1775                 cell_defer_no_holder(tc, cell);
1776
1777                 remap_and_issue(tc, bio, 0);
1778                 return;
1779         }
1780
1781         /*
1782          * Fill read bios with zeroes and complete them immediately.
1783          */
1784         if (bio_data_dir(bio) == READ) {
1785                 zero_fill_bio(bio);
1786                 cell_defer_no_holder(tc, cell);
1787                 bio_endio(bio, 0);
1788                 return;
1789         }
1790
1791         r = alloc_data_block(tc, &data_block);
1792         switch (r) {
1793         case 0:
1794                 if (tc->origin_dev)
1795                         schedule_external_copy(tc, block, data_block, cell, bio);
1796                 else
1797                         schedule_zero(tc, block, data_block, cell, bio);
1798                 break;
1799
1800         case -ENOSPC:
1801                 retry_bios_on_resume(pool, cell);
1802                 break;
1803
1804         default:
1805                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1806                             __func__, r);
1807                 cell_error(pool, cell);
1808                 break;
1809         }
1810 }
1811
1812 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1813 {
1814         int r;
1815         struct pool *pool = tc->pool;
1816         struct bio *bio = cell->holder;
1817         dm_block_t block = get_bio_block(tc, bio);
1818         struct dm_thin_lookup_result lookup_result;
1819
1820         if (tc->requeue_mode) {
1821                 cell_requeue(pool, cell);
1822                 return;
1823         }
1824
1825         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1826         switch (r) {
1827         case 0:
1828                 if (lookup_result.shared)
1829                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1830                 else {
1831                         inc_all_io_entry(pool, bio);
1832                         remap_and_issue(tc, bio, lookup_result.block);
1833                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1834                 }
1835                 break;
1836
1837         case -ENODATA:
1838                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1839                         inc_all_io_entry(pool, bio);
1840                         cell_defer_no_holder(tc, cell);
1841
1842                         if (bio_end_sector(bio) <= tc->origin_size)
1843                                 remap_to_origin_and_issue(tc, bio);
1844
1845                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1846                                 zero_fill_bio(bio);
1847                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1848                                 remap_to_origin_and_issue(tc, bio);
1849
1850                         } else {
1851                                 zero_fill_bio(bio);
1852                                 bio_endio(bio, 0);
1853                         }
1854                 } else
1855                         provision_block(tc, bio, block, cell);
1856                 break;
1857
1858         default:
1859                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1860                             __func__, r);
1861                 cell_defer_no_holder(tc, cell);
1862                 bio_io_error(bio);
1863                 break;
1864         }
1865 }
1866
1867 static void process_bio(struct thin_c *tc, struct bio *bio)
1868 {
1869         struct pool *pool = tc->pool;
1870         dm_block_t block = get_bio_block(tc, bio);
1871         struct dm_bio_prison_cell *cell;
1872         struct dm_cell_key key;
1873
1874         /*
1875          * If cell is already occupied, then the block is already
1876          * being provisioned so we have nothing further to do here.
1877          */
1878         build_virtual_key(tc->td, block, &key);
1879         if (bio_detain(pool, &key, bio, &cell))
1880                 return;
1881
1882         process_cell(tc, cell);
1883 }
1884
1885 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1886                                     struct dm_bio_prison_cell *cell)
1887 {
1888         int r;
1889         int rw = bio_data_dir(bio);
1890         dm_block_t block = get_bio_block(tc, bio);
1891         struct dm_thin_lookup_result lookup_result;
1892
1893         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1894         switch (r) {
1895         case 0:
1896                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1897                         handle_unserviceable_bio(tc->pool, bio);
1898                         if (cell)
1899                                 cell_defer_no_holder(tc, cell);
1900                 } else {
1901                         inc_all_io_entry(tc->pool, bio);
1902                         remap_and_issue(tc, bio, lookup_result.block);
1903                         if (cell)
1904                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1905                 }
1906                 break;
1907
1908         case -ENODATA:
1909                 if (cell)
1910                         cell_defer_no_holder(tc, cell);
1911                 if (rw != READ) {
1912                         handle_unserviceable_bio(tc->pool, bio);
1913                         break;
1914                 }
1915
1916                 if (tc->origin_dev) {
1917                         inc_all_io_entry(tc->pool, bio);
1918                         remap_to_origin_and_issue(tc, bio);
1919                         break;
1920                 }
1921
1922                 zero_fill_bio(bio);
1923                 bio_endio(bio, 0);
1924                 break;
1925
1926         default:
1927                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1928                             __func__, r);
1929                 if (cell)
1930                         cell_defer_no_holder(tc, cell);
1931                 bio_io_error(bio);
1932                 break;
1933         }
1934 }
1935
1936 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1937 {
1938         __process_bio_read_only(tc, bio, NULL);
1939 }
1940
1941 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1942 {
1943         __process_bio_read_only(tc, cell->holder, cell);
1944 }
1945
1946 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1947 {
1948         bio_endio(bio, 0);
1949 }
1950
1951 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1952 {
1953         bio_io_error(bio);
1954 }
1955
1956 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1957 {
1958         cell_success(tc->pool, cell);
1959 }
1960
1961 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1962 {
1963         cell_error(tc->pool, cell);
1964 }
1965
1966 /*
1967  * FIXME: should we also commit due to size of transaction, measured in
1968  * metadata blocks?
1969  */
1970 static int need_commit_due_to_time(struct pool *pool)
1971 {
1972         return !time_in_range(jiffies, pool->last_commit_jiffies,
1973                               pool->last_commit_jiffies + COMMIT_PERIOD);
1974 }
1975
1976 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1977 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1978
1979 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1980 {
1981         struct rb_node **rbp, *parent;
1982         struct dm_thin_endio_hook *pbd;
1983         sector_t bi_sector = bio->bi_iter.bi_sector;
1984
1985         rbp = &tc->sort_bio_list.rb_node;
1986         parent = NULL;
1987         while (*rbp) {
1988                 parent = *rbp;
1989                 pbd = thin_pbd(parent);
1990
1991                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1992                         rbp = &(*rbp)->rb_left;
1993                 else
1994                         rbp = &(*rbp)->rb_right;
1995         }
1996
1997         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1998         rb_link_node(&pbd->rb_node, parent, rbp);
1999         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2000 }
2001
2002 static void __extract_sorted_bios(struct thin_c *tc)
2003 {
2004         struct rb_node *node;
2005         struct dm_thin_endio_hook *pbd;
2006         struct bio *bio;
2007
2008         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2009                 pbd = thin_pbd(node);
2010                 bio = thin_bio(pbd);
2011
2012                 bio_list_add(&tc->deferred_bio_list, bio);
2013                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2014         }
2015
2016         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2017 }
2018
2019 static void __sort_thin_deferred_bios(struct thin_c *tc)
2020 {
2021         struct bio *bio;
2022         struct bio_list bios;
2023
2024         bio_list_init(&bios);
2025         bio_list_merge(&bios, &tc->deferred_bio_list);
2026         bio_list_init(&tc->deferred_bio_list);
2027
2028         /* Sort deferred_bio_list using rb-tree */
2029         while ((bio = bio_list_pop(&bios)))
2030                 __thin_bio_rb_add(tc, bio);
2031
2032         /*
2033          * Transfer the sorted bios in sort_bio_list back to
2034          * deferred_bio_list to allow lockless submission of
2035          * all bios.
2036          */
2037         __extract_sorted_bios(tc);
2038 }
2039
2040 static void process_thin_deferred_bios(struct thin_c *tc)
2041 {
2042         struct pool *pool = tc->pool;
2043         unsigned long flags;
2044         struct bio *bio;
2045         struct bio_list bios;
2046         struct blk_plug plug;
2047         unsigned count = 0;
2048
2049         if (tc->requeue_mode) {
2050                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2051                 return;
2052         }
2053
2054         bio_list_init(&bios);
2055
2056         spin_lock_irqsave(&tc->lock, flags);
2057
2058         if (bio_list_empty(&tc->deferred_bio_list)) {
2059                 spin_unlock_irqrestore(&tc->lock, flags);
2060                 return;
2061         }
2062
2063         __sort_thin_deferred_bios(tc);
2064
2065         bio_list_merge(&bios, &tc->deferred_bio_list);
2066         bio_list_init(&tc->deferred_bio_list);
2067
2068         spin_unlock_irqrestore(&tc->lock, flags);
2069
2070         blk_start_plug(&plug);
2071         while ((bio = bio_list_pop(&bios))) {
2072                 /*
2073                  * If we've got no free new_mapping structs, and processing
2074                  * this bio might require one, we pause until there are some
2075                  * prepared mappings to process.
2076                  */
2077                 if (ensure_next_mapping(pool)) {
2078                         spin_lock_irqsave(&tc->lock, flags);
2079                         bio_list_add(&tc->deferred_bio_list, bio);
2080                         bio_list_merge(&tc->deferred_bio_list, &bios);
2081                         spin_unlock_irqrestore(&tc->lock, flags);
2082                         break;
2083                 }
2084
2085                 if (bio->bi_rw & REQ_DISCARD)
2086                         pool->process_discard(tc, bio);
2087                 else
2088                         pool->process_bio(tc, bio);
2089
2090                 if ((count++ & 127) == 0) {
2091                         throttle_work_update(&pool->throttle);
2092                         dm_pool_issue_prefetches(pool->pmd);
2093                 }
2094         }
2095         blk_finish_plug(&plug);
2096 }
2097
2098 static int cmp_cells(const void *lhs, const void *rhs)
2099 {
2100         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2101         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2102
2103         BUG_ON(!lhs_cell->holder);
2104         BUG_ON(!rhs_cell->holder);
2105
2106         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2107                 return -1;
2108
2109         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2110                 return 1;
2111
2112         return 0;
2113 }
2114
2115 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2116 {
2117         unsigned count = 0;
2118         struct dm_bio_prison_cell *cell, *tmp;
2119
2120         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2121                 if (count >= CELL_SORT_ARRAY_SIZE)
2122                         break;
2123
2124                 pool->cell_sort_array[count++] = cell;
2125                 list_del(&cell->user_list);
2126         }
2127
2128         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2129
2130         return count;
2131 }
2132
2133 static void process_thin_deferred_cells(struct thin_c *tc)
2134 {
2135         struct pool *pool = tc->pool;
2136         unsigned long flags;
2137         struct list_head cells;
2138         struct dm_bio_prison_cell *cell;
2139         unsigned i, j, count;
2140
2141         INIT_LIST_HEAD(&cells);
2142
2143         spin_lock_irqsave(&tc->lock, flags);
2144         list_splice_init(&tc->deferred_cells, &cells);
2145         spin_unlock_irqrestore(&tc->lock, flags);
2146
2147         if (list_empty(&cells))
2148                 return;
2149
2150         do {
2151                 count = sort_cells(tc->pool, &cells);
2152
2153                 for (i = 0; i < count; i++) {
2154                         cell = pool->cell_sort_array[i];
2155                         BUG_ON(!cell->holder);
2156
2157                         /*
2158                          * If we've got no free new_mapping structs, and processing
2159                          * this bio might require one, we pause until there are some
2160                          * prepared mappings to process.
2161                          */
2162                         if (ensure_next_mapping(pool)) {
2163                                 for (j = i; j < count; j++)
2164                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2165
2166                                 spin_lock_irqsave(&tc->lock, flags);
2167                                 list_splice(&cells, &tc->deferred_cells);
2168                                 spin_unlock_irqrestore(&tc->lock, flags);
2169                                 return;
2170                         }
2171
2172                         if (cell->holder->bi_rw & REQ_DISCARD)
2173                                 pool->process_discard_cell(tc, cell);
2174                         else
2175                                 pool->process_cell(tc, cell);
2176                 }
2177         } while (!list_empty(&cells));
2178 }
2179
2180 static void thin_get(struct thin_c *tc);
2181 static void thin_put(struct thin_c *tc);
2182
2183 /*
2184  * We can't hold rcu_read_lock() around code that can block.  So we
2185  * find a thin with the rcu lock held; bump a refcount; then drop
2186  * the lock.
2187  */
2188 static struct thin_c *get_first_thin(struct pool *pool)
2189 {
2190         struct thin_c *tc = NULL;
2191
2192         rcu_read_lock();
2193         if (!list_empty(&pool->active_thins)) {
2194                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2195                 thin_get(tc);
2196         }
2197         rcu_read_unlock();
2198
2199         return tc;
2200 }
2201
2202 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2203 {
2204         struct thin_c *old_tc = tc;
2205
2206         rcu_read_lock();
2207         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2208                 thin_get(tc);
2209                 thin_put(old_tc);
2210                 rcu_read_unlock();
2211                 return tc;
2212         }
2213         thin_put(old_tc);
2214         rcu_read_unlock();
2215
2216         return NULL;
2217 }
2218
2219 static void process_deferred_bios(struct pool *pool)
2220 {
2221         unsigned long flags;
2222         struct bio *bio;
2223         struct bio_list bios;
2224         struct thin_c *tc;
2225
2226         tc = get_first_thin(pool);
2227         while (tc) {
2228                 process_thin_deferred_cells(tc);
2229                 process_thin_deferred_bios(tc);
2230                 tc = get_next_thin(pool, tc);
2231         }
2232
2233         /*
2234          * If there are any deferred flush bios, we must commit
2235          * the metadata before issuing them.
2236          */
2237         bio_list_init(&bios);
2238         spin_lock_irqsave(&pool->lock, flags);
2239         bio_list_merge(&bios, &pool->deferred_flush_bios);
2240         bio_list_init(&pool->deferred_flush_bios);
2241         spin_unlock_irqrestore(&pool->lock, flags);
2242
2243         if (bio_list_empty(&bios) &&
2244             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2245                 return;
2246
2247         if (commit(pool)) {
2248                 while ((bio = bio_list_pop(&bios)))
2249                         bio_io_error(bio);
2250                 return;
2251         }
2252         pool->last_commit_jiffies = jiffies;
2253
2254         while ((bio = bio_list_pop(&bios)))
2255                 generic_make_request(bio);
2256 }
2257
2258 static void do_worker(struct work_struct *ws)
2259 {
2260         struct pool *pool = container_of(ws, struct pool, worker);
2261
2262         throttle_work_start(&pool->throttle);
2263         dm_pool_issue_prefetches(pool->pmd);
2264         throttle_work_update(&pool->throttle);
2265         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2266         throttle_work_update(&pool->throttle);
2267         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2268         throttle_work_update(&pool->throttle);
2269         process_deferred_bios(pool);
2270         throttle_work_complete(&pool->throttle);
2271 }
2272
2273 /*
2274  * We want to commit periodically so that not too much
2275  * unwritten data builds up.
2276  */
2277 static void do_waker(struct work_struct *ws)
2278 {
2279         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2280         wake_worker(pool);
2281         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2282 }
2283
2284 /*
2285  * We're holding onto IO to allow userland time to react.  After the
2286  * timeout either the pool will have been resized (and thus back in
2287  * PM_WRITE mode), or we degrade to PM_READ_ONLY and start erroring IO.
2288  */
2289 static void do_no_space_timeout(struct work_struct *ws)
2290 {
2291         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2292                                          no_space_timeout);
2293
2294         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space)
2295                 set_pool_mode(pool, PM_READ_ONLY);
2296 }
2297
2298 /*----------------------------------------------------------------*/
2299
2300 struct pool_work {
2301         struct work_struct worker;
2302         struct completion complete;
2303 };
2304
2305 static struct pool_work *to_pool_work(struct work_struct *ws)
2306 {
2307         return container_of(ws, struct pool_work, worker);
2308 }
2309
2310 static void pool_work_complete(struct pool_work *pw)
2311 {
2312         complete(&pw->complete);
2313 }
2314
2315 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2316                            void (*fn)(struct work_struct *))
2317 {
2318         INIT_WORK_ONSTACK(&pw->worker, fn);
2319         init_completion(&pw->complete);
2320         queue_work(pool->wq, &pw->worker);
2321         wait_for_completion(&pw->complete);
2322 }
2323
2324 /*----------------------------------------------------------------*/
2325
2326 struct noflush_work {
2327         struct pool_work pw;
2328         struct thin_c *tc;
2329 };
2330
2331 static struct noflush_work *to_noflush(struct work_struct *ws)
2332 {
2333         return container_of(to_pool_work(ws), struct noflush_work, pw);
2334 }
2335
2336 static void do_noflush_start(struct work_struct *ws)
2337 {
2338         struct noflush_work *w = to_noflush(ws);
2339         w->tc->requeue_mode = true;
2340         requeue_io(w->tc);
2341         pool_work_complete(&w->pw);
2342 }
2343
2344 static void do_noflush_stop(struct work_struct *ws)
2345 {
2346         struct noflush_work *w = to_noflush(ws);
2347         w->tc->requeue_mode = false;
2348         pool_work_complete(&w->pw);
2349 }
2350
2351 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2352 {
2353         struct noflush_work w;
2354
2355         w.tc = tc;
2356         pool_work_wait(&w.pw, tc->pool, fn);
2357 }
2358
2359 /*----------------------------------------------------------------*/
2360
2361 static enum pool_mode get_pool_mode(struct pool *pool)
2362 {
2363         return pool->pf.mode;
2364 }
2365
2366 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2367 {
2368         dm_table_event(pool->ti->table);
2369         DMINFO("%s: switching pool to %s mode",
2370                dm_device_name(pool->pool_md), new_mode);
2371 }
2372
2373 static bool passdown_enabled(struct pool_c *pt)
2374 {
2375         return pt->adjusted_pf.discard_passdown;
2376 }
2377
2378 static void set_discard_callbacks(struct pool *pool)
2379 {
2380         struct pool_c *pt = pool->ti->private;
2381
2382         if (passdown_enabled(pt)) {
2383                 pool->process_discard_cell = process_discard_cell_passdown;
2384                 pool->process_prepared_discard = process_prepared_discard_passdown;
2385         } else {
2386                 pool->process_discard_cell = process_discard_cell_no_passdown;
2387                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2388         }
2389 }
2390
2391 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2392 {
2393         struct pool_c *pt = pool->ti->private;
2394         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2395         enum pool_mode old_mode = get_pool_mode(pool);
2396         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2397
2398         /*
2399          * Never allow the pool to transition to PM_WRITE mode if user
2400          * intervention is required to verify metadata and data consistency.
2401          */
2402         if (new_mode == PM_WRITE && needs_check) {
2403                 DMERR("%s: unable to switch pool to write mode until repaired.",
2404                       dm_device_name(pool->pool_md));
2405                 if (old_mode != new_mode)
2406                         new_mode = old_mode;
2407                 else
2408                         new_mode = PM_READ_ONLY;
2409         }
2410         /*
2411          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2412          * not going to recover without a thin_repair.  So we never let the
2413          * pool move out of the old mode.
2414          */
2415         if (old_mode == PM_FAIL)
2416                 new_mode = old_mode;
2417
2418         switch (new_mode) {
2419         case PM_FAIL:
2420                 if (old_mode != new_mode)
2421                         notify_of_pool_mode_change(pool, "failure");
2422                 dm_pool_metadata_read_only(pool->pmd);
2423                 pool->process_bio = process_bio_fail;
2424                 pool->process_discard = process_bio_fail;
2425                 pool->process_cell = process_cell_fail;
2426                 pool->process_discard_cell = process_cell_fail;
2427                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2428                 pool->process_prepared_discard = process_prepared_discard_fail;
2429
2430                 error_retry_list(pool);
2431                 break;
2432
2433         case PM_READ_ONLY:
2434                 if (old_mode != new_mode)
2435                         notify_of_pool_mode_change(pool, "read-only");
2436                 dm_pool_metadata_read_only(pool->pmd);
2437                 pool->process_bio = process_bio_read_only;
2438                 pool->process_discard = process_bio_success;
2439                 pool->process_cell = process_cell_read_only;
2440                 pool->process_discard_cell = process_cell_success;
2441                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2442                 pool->process_prepared_discard = process_prepared_discard_success;
2443
2444                 error_retry_list(pool);
2445                 break;
2446
2447         case PM_OUT_OF_DATA_SPACE:
2448                 /*
2449                  * Ideally we'd never hit this state; the low water mark
2450                  * would trigger userland to extend the pool before we
2451                  * completely run out of data space.  However, many small
2452                  * IOs to unprovisioned space can consume data space at an
2453                  * alarming rate.  Adjust your low water mark if you're
2454                  * frequently seeing this mode.
2455                  */
2456                 if (old_mode != new_mode)
2457                         notify_of_pool_mode_change(pool, "out-of-data-space");
2458                 pool->process_bio = process_bio_read_only;
2459                 pool->process_discard = process_discard_bio;
2460                 pool->process_cell = process_cell_read_only;
2461                 pool->process_prepared_mapping = process_prepared_mapping;
2462                 set_discard_callbacks(pool);
2463
2464                 if (!pool->pf.error_if_no_space && no_space_timeout)
2465                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2466                 break;
2467
2468         case PM_WRITE:
2469                 if (old_mode != new_mode)
2470                         notify_of_pool_mode_change(pool, "write");
2471                 dm_pool_metadata_read_write(pool->pmd);
2472                 pool->process_bio = process_bio;
2473                 pool->process_discard = process_discard_bio;
2474                 pool->process_cell = process_cell;
2475                 pool->process_prepared_mapping = process_prepared_mapping;
2476                 set_discard_callbacks(pool);
2477                 break;
2478         }
2479
2480         pool->pf.mode = new_mode;
2481         /*
2482          * The pool mode may have changed, sync it so bind_control_target()
2483          * doesn't cause an unexpected mode transition on resume.
2484          */
2485         pt->adjusted_pf.mode = new_mode;
2486 }
2487
2488 static void abort_transaction(struct pool *pool)
2489 {
2490         const char *dev_name = dm_device_name(pool->pool_md);
2491
2492         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2493         if (dm_pool_abort_metadata(pool->pmd)) {
2494                 DMERR("%s: failed to abort metadata transaction", dev_name);
2495                 set_pool_mode(pool, PM_FAIL);
2496         }
2497
2498         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2499                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2500                 set_pool_mode(pool, PM_FAIL);
2501         }
2502 }
2503
2504 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2505 {
2506         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2507                     dm_device_name(pool->pool_md), op, r);
2508
2509         abort_transaction(pool);
2510         set_pool_mode(pool, PM_READ_ONLY);
2511 }
2512
2513 /*----------------------------------------------------------------*/
2514
2515 /*
2516  * Mapping functions.
2517  */
2518
2519 /*
2520  * Called only while mapping a thin bio to hand it over to the workqueue.
2521  */
2522 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2523 {
2524         unsigned long flags;
2525         struct pool *pool = tc->pool;
2526
2527         spin_lock_irqsave(&tc->lock, flags);
2528         bio_list_add(&tc->deferred_bio_list, bio);
2529         spin_unlock_irqrestore(&tc->lock, flags);
2530
2531         wake_worker(pool);
2532 }
2533
2534 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2535 {
2536         struct pool *pool = tc->pool;
2537
2538         throttle_lock(&pool->throttle);
2539         thin_defer_bio(tc, bio);
2540         throttle_unlock(&pool->throttle);
2541 }
2542
2543 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2544 {
2545         unsigned long flags;
2546         struct pool *pool = tc->pool;
2547
2548         throttle_lock(&pool->throttle);
2549         spin_lock_irqsave(&tc->lock, flags);
2550         list_add_tail(&cell->user_list, &tc->deferred_cells);
2551         spin_unlock_irqrestore(&tc->lock, flags);
2552         throttle_unlock(&pool->throttle);
2553
2554         wake_worker(pool);
2555 }
2556
2557 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2558 {
2559         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2560
2561         h->tc = tc;
2562         h->shared_read_entry = NULL;
2563         h->all_io_entry = NULL;
2564         h->overwrite_mapping = NULL;
2565         h->cell = NULL;
2566 }
2567
2568 /*
2569  * Non-blocking function called from the thin target's map function.
2570  */
2571 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2572 {
2573         int r;
2574         struct thin_c *tc = ti->private;
2575         dm_block_t block = get_bio_block(tc, bio);
2576         struct dm_thin_device *td = tc->td;
2577         struct dm_thin_lookup_result result;
2578         struct dm_bio_prison_cell *virt_cell, *data_cell;
2579         struct dm_cell_key key;
2580
2581         thin_hook_bio(tc, bio);
2582
2583         if (tc->requeue_mode) {
2584                 bio_endio(bio, DM_ENDIO_REQUEUE);
2585                 return DM_MAPIO_SUBMITTED;
2586         }
2587
2588         if (get_pool_mode(tc->pool) == PM_FAIL) {
2589                 bio_io_error(bio);
2590                 return DM_MAPIO_SUBMITTED;
2591         }
2592
2593         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2594                 thin_defer_bio_with_throttle(tc, bio);
2595                 return DM_MAPIO_SUBMITTED;
2596         }
2597
2598         /*
2599          * We must hold the virtual cell before doing the lookup, otherwise
2600          * there's a race with discard.
2601          */
2602         build_virtual_key(tc->td, block, &key);
2603         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2604                 return DM_MAPIO_SUBMITTED;
2605
2606         r = dm_thin_find_block(td, block, 0, &result);
2607
2608         /*
2609          * Note that we defer readahead too.
2610          */
2611         switch (r) {
2612         case 0:
2613                 if (unlikely(result.shared)) {
2614                         /*
2615                          * We have a race condition here between the
2616                          * result.shared value returned by the lookup and
2617                          * snapshot creation, which may cause new
2618                          * sharing.
2619                          *
2620                          * To avoid this always quiesce the origin before
2621                          * taking the snap.  You want to do this anyway to
2622                          * ensure a consistent application view
2623                          * (i.e. lockfs).
2624                          *
2625                          * More distant ancestors are irrelevant. The
2626                          * shared flag will be set in their case.
2627                          */
2628                         thin_defer_cell(tc, virt_cell);
2629                         return DM_MAPIO_SUBMITTED;
2630                 }
2631
2632                 build_data_key(tc->td, result.block, &key);
2633                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2634                         cell_defer_no_holder(tc, virt_cell);
2635                         return DM_MAPIO_SUBMITTED;
2636                 }
2637
2638                 inc_all_io_entry(tc->pool, bio);
2639                 cell_defer_no_holder(tc, data_cell);
2640                 cell_defer_no_holder(tc, virt_cell);
2641
2642                 remap(tc, bio, result.block);
2643                 return DM_MAPIO_REMAPPED;
2644
2645         case -ENODATA:
2646         case -EWOULDBLOCK:
2647                 thin_defer_cell(tc, virt_cell);
2648                 return DM_MAPIO_SUBMITTED;
2649
2650         default:
2651                 /*
2652                  * Must always call bio_io_error on failure.
2653                  * dm_thin_find_block can fail with -EINVAL if the
2654                  * pool is switched to fail-io mode.
2655                  */
2656                 bio_io_error(bio);
2657                 cell_defer_no_holder(tc, virt_cell);
2658                 return DM_MAPIO_SUBMITTED;
2659         }
2660 }
2661
2662 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2663 {
2664         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2665         struct request_queue *q;
2666
2667         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2668                 return 1;
2669
2670         q = bdev_get_queue(pt->data_dev->bdev);
2671         return bdi_congested(&q->backing_dev_info, bdi_bits);
2672 }
2673
2674 static void requeue_bios(struct pool *pool)
2675 {
2676         unsigned long flags;
2677         struct thin_c *tc;
2678
2679         rcu_read_lock();
2680         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2681                 spin_lock_irqsave(&tc->lock, flags);
2682                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2683                 bio_list_init(&tc->retry_on_resume_list);
2684                 spin_unlock_irqrestore(&tc->lock, flags);
2685         }
2686         rcu_read_unlock();
2687 }
2688
2689 /*----------------------------------------------------------------
2690  * Binding of control targets to a pool object
2691  *--------------------------------------------------------------*/
2692 static bool data_dev_supports_discard(struct pool_c *pt)
2693 {
2694         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2695
2696         return q && blk_queue_discard(q);
2697 }
2698
2699 static bool is_factor(sector_t block_size, uint32_t n)
2700 {
2701         return !sector_div(block_size, n);
2702 }
2703
2704 /*
2705  * If discard_passdown was enabled verify that the data device
2706  * supports discards.  Disable discard_passdown if not.
2707  */
2708 static void disable_passdown_if_not_supported(struct pool_c *pt)
2709 {
2710         struct pool *pool = pt->pool;
2711         struct block_device *data_bdev = pt->data_dev->bdev;
2712         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2713         const char *reason = NULL;
2714         char buf[BDEVNAME_SIZE];
2715
2716         if (!pt->adjusted_pf.discard_passdown)
2717                 return;
2718
2719         if (!data_dev_supports_discard(pt))
2720                 reason = "discard unsupported";
2721
2722         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2723                 reason = "max discard sectors smaller than a block";
2724
2725         if (reason) {
2726                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2727                 pt->adjusted_pf.discard_passdown = false;
2728         }
2729 }
2730
2731 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2732 {
2733         struct pool_c *pt = ti->private;
2734
2735         /*
2736          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2737          */
2738         enum pool_mode old_mode = get_pool_mode(pool);
2739         enum pool_mode new_mode = pt->adjusted_pf.mode;
2740
2741         /*
2742          * Don't change the pool's mode until set_pool_mode() below.
2743          * Otherwise the pool's process_* function pointers may
2744          * not match the desired pool mode.
2745          */
2746         pt->adjusted_pf.mode = old_mode;
2747
2748         pool->ti = ti;
2749         pool->pf = pt->adjusted_pf;
2750         pool->low_water_blocks = pt->low_water_blocks;
2751
2752         set_pool_mode(pool, new_mode);
2753
2754         return 0;
2755 }
2756
2757 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2758 {
2759         if (pool->ti == ti)
2760                 pool->ti = NULL;
2761 }
2762
2763 /*----------------------------------------------------------------
2764  * Pool creation
2765  *--------------------------------------------------------------*/
2766 /* Initialize pool features. */
2767 static void pool_features_init(struct pool_features *pf)
2768 {
2769         pf->mode = PM_WRITE;
2770         pf->zero_new_blocks = true;
2771         pf->discard_enabled = true;
2772         pf->discard_passdown = true;
2773         pf->error_if_no_space = false;
2774 }
2775
2776 static void __pool_destroy(struct pool *pool)
2777 {
2778         __pool_table_remove(pool);
2779
2780         if (dm_pool_metadata_close(pool->pmd) < 0)
2781                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2782
2783         dm_bio_prison_destroy(pool->prison);
2784         dm_kcopyd_client_destroy(pool->copier);
2785
2786         if (pool->wq)
2787                 destroy_workqueue(pool->wq);
2788
2789         if (pool->next_mapping)
2790                 mempool_free(pool->next_mapping, pool->mapping_pool);
2791         mempool_destroy(pool->mapping_pool);
2792         dm_deferred_set_destroy(pool->shared_read_ds);
2793         dm_deferred_set_destroy(pool->all_io_ds);
2794         kfree(pool);
2795 }
2796
2797 static struct kmem_cache *_new_mapping_cache;
2798
2799 static struct pool *pool_create(struct mapped_device *pool_md,
2800                                 struct block_device *metadata_dev,
2801                                 unsigned long block_size,
2802                                 int read_only, char **error)
2803 {
2804         int r;
2805         void *err_p;
2806         struct pool *pool;
2807         struct dm_pool_metadata *pmd;
2808         bool format_device = read_only ? false : true;
2809
2810         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2811         if (IS_ERR(pmd)) {
2812                 *error = "Error creating metadata object";
2813                 return (struct pool *)pmd;
2814         }
2815
2816         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2817         if (!pool) {
2818                 *error = "Error allocating memory for pool";
2819                 err_p = ERR_PTR(-ENOMEM);
2820                 goto bad_pool;
2821         }
2822
2823         pool->pmd = pmd;
2824         pool->sectors_per_block = block_size;
2825         if (block_size & (block_size - 1))
2826                 pool->sectors_per_block_shift = -1;
2827         else
2828                 pool->sectors_per_block_shift = __ffs(block_size);
2829         pool->low_water_blocks = 0;
2830         pool_features_init(&pool->pf);
2831         pool->prison = dm_bio_prison_create();
2832         if (!pool->prison) {
2833                 *error = "Error creating pool's bio prison";
2834                 err_p = ERR_PTR(-ENOMEM);
2835                 goto bad_prison;
2836         }
2837
2838         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2839         if (IS_ERR(pool->copier)) {
2840                 r = PTR_ERR(pool->copier);
2841                 *error = "Error creating pool's kcopyd client";
2842                 err_p = ERR_PTR(r);
2843                 goto bad_kcopyd_client;
2844         }
2845
2846         /*
2847          * Create singlethreaded workqueue that will service all devices
2848          * that use this metadata.
2849          */
2850         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2851         if (!pool->wq) {
2852                 *error = "Error creating pool's workqueue";
2853                 err_p = ERR_PTR(-ENOMEM);
2854                 goto bad_wq;
2855         }
2856
2857         throttle_init(&pool->throttle);
2858         INIT_WORK(&pool->worker, do_worker);
2859         INIT_DELAYED_WORK(&pool->waker, do_waker);
2860         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2861         spin_lock_init(&pool->lock);
2862         bio_list_init(&pool->deferred_flush_bios);
2863         INIT_LIST_HEAD(&pool->prepared_mappings);
2864         INIT_LIST_HEAD(&pool->prepared_discards);
2865         INIT_LIST_HEAD(&pool->active_thins);
2866         pool->low_water_triggered = false;
2867         pool->suspended = true;
2868
2869         pool->shared_read_ds = dm_deferred_set_create();
2870         if (!pool->shared_read_ds) {
2871                 *error = "Error creating pool's shared read deferred set";
2872                 err_p = ERR_PTR(-ENOMEM);
2873                 goto bad_shared_read_ds;
2874         }
2875
2876         pool->all_io_ds = dm_deferred_set_create();
2877         if (!pool->all_io_ds) {
2878                 *error = "Error creating pool's all io deferred set";
2879                 err_p = ERR_PTR(-ENOMEM);
2880                 goto bad_all_io_ds;
2881         }
2882
2883         pool->next_mapping = NULL;
2884         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2885                                                       _new_mapping_cache);
2886         if (!pool->mapping_pool) {
2887                 *error = "Error creating pool's mapping mempool";
2888                 err_p = ERR_PTR(-ENOMEM);
2889                 goto bad_mapping_pool;
2890         }
2891
2892         pool->ref_count = 1;
2893         pool->last_commit_jiffies = jiffies;
2894         pool->pool_md = pool_md;
2895         pool->md_dev = metadata_dev;
2896         __pool_table_insert(pool);
2897
2898         return pool;
2899
2900 bad_mapping_pool:
2901         dm_deferred_set_destroy(pool->all_io_ds);
2902 bad_all_io_ds:
2903         dm_deferred_set_destroy(pool->shared_read_ds);
2904 bad_shared_read_ds:
2905         destroy_workqueue(pool->wq);
2906 bad_wq:
2907         dm_kcopyd_client_destroy(pool->copier);
2908 bad_kcopyd_client:
2909         dm_bio_prison_destroy(pool->prison);
2910 bad_prison:
2911         kfree(pool);
2912 bad_pool:
2913         if (dm_pool_metadata_close(pmd))
2914                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2915
2916         return err_p;
2917 }
2918
2919 static void __pool_inc(struct pool *pool)
2920 {
2921         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2922         pool->ref_count++;
2923 }
2924
2925 static void __pool_dec(struct pool *pool)
2926 {
2927         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2928         BUG_ON(!pool->ref_count);
2929         if (!--pool->ref_count)
2930                 __pool_destroy(pool);
2931 }
2932
2933 static struct pool *__pool_find(struct mapped_device *pool_md,
2934                                 struct block_device *metadata_dev,
2935                                 unsigned long block_size, int read_only,
2936                                 char **error, int *created)
2937 {
2938         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2939
2940         if (pool) {
2941                 if (pool->pool_md != pool_md) {
2942                         *error = "metadata device already in use by a pool";
2943                         return ERR_PTR(-EBUSY);
2944                 }
2945                 __pool_inc(pool);
2946
2947         } else {
2948                 pool = __pool_table_lookup(pool_md);
2949                 if (pool) {
2950                         if (pool->md_dev != metadata_dev) {
2951                                 *error = "different pool cannot replace a pool";
2952                                 return ERR_PTR(-EINVAL);
2953                         }
2954                         __pool_inc(pool);
2955
2956                 } else {
2957                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2958                         *created = 1;
2959                 }
2960         }
2961
2962         return pool;
2963 }
2964
2965 /*----------------------------------------------------------------
2966  * Pool target methods
2967  *--------------------------------------------------------------*/
2968 static void pool_dtr(struct dm_target *ti)
2969 {
2970         struct pool_c *pt = ti->private;
2971
2972         mutex_lock(&dm_thin_pool_table.mutex);
2973
2974         unbind_control_target(pt->pool, ti);
2975         __pool_dec(pt->pool);
2976         dm_put_device(ti, pt->metadata_dev);
2977         dm_put_device(ti, pt->data_dev);
2978         kfree(pt);
2979
2980         mutex_unlock(&dm_thin_pool_table.mutex);
2981 }
2982
2983 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
2984                                struct dm_target *ti)
2985 {
2986         int r;
2987         unsigned argc;
2988         const char *arg_name;
2989
2990         static struct dm_arg _args[] = {
2991                 {0, 4, "Invalid number of pool feature arguments"},
2992         };
2993
2994         /*
2995          * No feature arguments supplied.
2996          */
2997         if (!as->argc)
2998                 return 0;
2999
3000         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3001         if (r)
3002                 return -EINVAL;
3003
3004         while (argc && !r) {
3005                 arg_name = dm_shift_arg(as);
3006                 argc--;
3007
3008                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3009                         pf->zero_new_blocks = false;
3010
3011                 else if (!strcasecmp(arg_name, "ignore_discard"))
3012                         pf->discard_enabled = false;
3013
3014                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3015                         pf->discard_passdown = false;
3016
3017                 else if (!strcasecmp(arg_name, "read_only"))
3018                         pf->mode = PM_READ_ONLY;
3019
3020                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3021                         pf->error_if_no_space = true;
3022
3023                 else {
3024                         ti->error = "Unrecognised pool feature requested";
3025                         r = -EINVAL;
3026                         break;
3027                 }
3028         }
3029
3030         return r;
3031 }
3032
3033 static void metadata_low_callback(void *context)
3034 {
3035         struct pool *pool = context;
3036
3037         DMWARN("%s: reached low water mark for metadata device: sending event.",
3038                dm_device_name(pool->pool_md));
3039
3040         dm_table_event(pool->ti->table);
3041 }
3042
3043 static sector_t get_dev_size(struct block_device *bdev)
3044 {
3045         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3046 }
3047
3048 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3049 {
3050         sector_t metadata_dev_size = get_dev_size(bdev);
3051         char buffer[BDEVNAME_SIZE];
3052
3053         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3054                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3055                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3056 }
3057
3058 static sector_t get_metadata_dev_size(struct block_device *bdev)
3059 {
3060         sector_t metadata_dev_size = get_dev_size(bdev);
3061
3062         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3063                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3064
3065         return metadata_dev_size;
3066 }
3067
3068 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3069 {
3070         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3071
3072         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3073
3074         return metadata_dev_size;
3075 }
3076
3077 /*
3078  * When a metadata threshold is crossed a dm event is triggered, and
3079  * userland should respond by growing the metadata device.  We could let
3080  * userland set the threshold, like we do with the data threshold, but I'm
3081  * not sure they know enough to do this well.
3082  */
3083 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3084 {
3085         /*
3086          * 4M is ample for all ops with the possible exception of thin
3087          * device deletion which is harmless if it fails (just retry the
3088          * delete after you've grown the device).
3089          */
3090         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3091         return min((dm_block_t)1024ULL /* 4M */, quarter);
3092 }
3093
3094 /*
3095  * thin-pool <metadata dev> <data dev>
3096  *           <data block size (sectors)>
3097  *           <low water mark (blocks)>
3098  *           [<#feature args> [<arg>]*]
3099  *
3100  * Optional feature arguments are:
3101  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3102  *           ignore_discard: disable discard
3103  *           no_discard_passdown: don't pass discards down to the data device
3104  *           read_only: Don't allow any changes to be made to the pool metadata.
3105  *           error_if_no_space: error IOs, instead of queueing, if no space.
3106  */
3107 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3108 {
3109         int r, pool_created = 0;
3110         struct pool_c *pt;
3111         struct pool *pool;
3112         struct pool_features pf;
3113         struct dm_arg_set as;
3114         struct dm_dev *data_dev;
3115         unsigned long block_size;
3116         dm_block_t low_water_blocks;
3117         struct dm_dev *metadata_dev;
3118         fmode_t metadata_mode;
3119
3120         /*
3121          * FIXME Remove validation from scope of lock.
3122          */
3123         mutex_lock(&dm_thin_pool_table.mutex);
3124
3125         if (argc < 4) {
3126                 ti->error = "Invalid argument count";
3127                 r = -EINVAL;
3128                 goto out_unlock;
3129         }
3130
3131         as.argc = argc;
3132         as.argv = argv;
3133
3134         /*
3135          * Set default pool features.
3136          */
3137         pool_features_init(&pf);
3138
3139         dm_consume_args(&as, 4);
3140         r = parse_pool_features(&as, &pf, ti);
3141         if (r)
3142                 goto out_unlock;
3143
3144         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3145         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3146         if (r) {
3147                 ti->error = "Error opening metadata block device";
3148                 goto out_unlock;
3149         }
3150         warn_if_metadata_device_too_big(metadata_dev->bdev);
3151
3152         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3153         if (r) {
3154                 ti->error = "Error getting data device";
3155                 goto out_metadata;
3156         }
3157
3158         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3159             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3160             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3161             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3162                 ti->error = "Invalid block size";
3163                 r = -EINVAL;
3164                 goto out;
3165         }
3166
3167         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3168                 ti->error = "Invalid low water mark";
3169                 r = -EINVAL;
3170                 goto out;
3171         }
3172
3173         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3174         if (!pt) {
3175                 r = -ENOMEM;
3176                 goto out;
3177         }
3178
3179         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3180                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3181         if (IS_ERR(pool)) {
3182                 r = PTR_ERR(pool);
3183                 goto out_free_pt;
3184         }
3185
3186         /*
3187          * 'pool_created' reflects whether this is the first table load.
3188          * Top level discard support is not allowed to be changed after
3189          * initial load.  This would require a pool reload to trigger thin
3190          * device changes.
3191          */
3192         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3193                 ti->error = "Discard support cannot be disabled once enabled";
3194                 r = -EINVAL;
3195                 goto out_flags_changed;
3196         }
3197
3198         pt->pool = pool;
3199         pt->ti = ti;
3200         pt->metadata_dev = metadata_dev;
3201         pt->data_dev = data_dev;
3202         pt->low_water_blocks = low_water_blocks;
3203         pt->adjusted_pf = pt->requested_pf = pf;
3204         ti->num_flush_bios = 1;
3205
3206         /*
3207          * Only need to enable discards if the pool should pass
3208          * them down to the data device.  The thin device's discard
3209          * processing will cause mappings to be removed from the btree.
3210          */
3211         ti->discard_zeroes_data_unsupported = true;
3212         if (pf.discard_enabled && pf.discard_passdown) {
3213                 ti->num_discard_bios = 1;
3214
3215                 /*
3216                  * Setting 'discards_supported' circumvents the normal
3217                  * stacking of discard limits (this keeps the pool and
3218                  * thin devices' discard limits consistent).
3219                  */
3220                 ti->discards_supported = true;
3221         }
3222         ti->private = pt;
3223
3224         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3225                                                 calc_metadata_threshold(pt),
3226                                                 metadata_low_callback,
3227                                                 pool);
3228         if (r)
3229                 goto out_free_pt;
3230
3231         pt->callbacks.congested_fn = pool_is_congested;
3232         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3233
3234         mutex_unlock(&dm_thin_pool_table.mutex);
3235
3236         return 0;
3237
3238 out_flags_changed:
3239         __pool_dec(pool);
3240 out_free_pt:
3241         kfree(pt);
3242 out:
3243         dm_put_device(ti, data_dev);
3244 out_metadata:
3245         dm_put_device(ti, metadata_dev);
3246 out_unlock:
3247         mutex_unlock(&dm_thin_pool_table.mutex);
3248
3249         return r;
3250 }
3251
3252 static int pool_map(struct dm_target *ti, struct bio *bio)
3253 {
3254         int r;
3255         struct pool_c *pt = ti->private;
3256         struct pool *pool = pt->pool;
3257         unsigned long flags;
3258
3259         /*
3260          * As this is a singleton target, ti->begin is always zero.
3261          */
3262         spin_lock_irqsave(&pool->lock, flags);
3263         bio->bi_bdev = pt->data_dev->bdev;
3264         r = DM_MAPIO_REMAPPED;
3265         spin_unlock_irqrestore(&pool->lock, flags);
3266
3267         return r;
3268 }
3269
3270 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3271 {
3272         int r;
3273         struct pool_c *pt = ti->private;
3274         struct pool *pool = pt->pool;
3275         sector_t data_size = ti->len;
3276         dm_block_t sb_data_size;
3277
3278         *need_commit = false;
3279
3280         (void) sector_div(data_size, pool->sectors_per_block);
3281
3282         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3283         if (r) {
3284                 DMERR("%s: failed to retrieve data device size",
3285                       dm_device_name(pool->pool_md));
3286                 return r;
3287         }
3288
3289         if (data_size < sb_data_size) {
3290                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3291                       dm_device_name(pool->pool_md),
3292                       (unsigned long long)data_size, sb_data_size);
3293                 return -EINVAL;
3294
3295         } else if (data_size > sb_data_size) {
3296                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3297                         DMERR("%s: unable to grow the data device until repaired.",
3298                               dm_device_name(pool->pool_md));
3299                         return 0;
3300                 }
3301
3302                 if (sb_data_size)
3303                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3304                                dm_device_name(pool->pool_md),
3305                                sb_data_size, (unsigned long long)data_size);
3306                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3307                 if (r) {
3308                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3309                         return r;
3310                 }
3311
3312                 *need_commit = true;
3313         }
3314
3315         return 0;
3316 }
3317
3318 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3319 {
3320         int r;
3321         struct pool_c *pt = ti->private;
3322         struct pool *pool = pt->pool;
3323         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3324
3325         *need_commit = false;
3326
3327         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3328
3329         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3330         if (r) {
3331                 DMERR("%s: failed to retrieve metadata device size",
3332                       dm_device_name(pool->pool_md));
3333                 return r;
3334         }
3335
3336         if (metadata_dev_size < sb_metadata_dev_size) {
3337                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3338                       dm_device_name(pool->pool_md),
3339                       metadata_dev_size, sb_metadata_dev_size);
3340                 return -EINVAL;
3341
3342         } else if (metadata_dev_size > sb_metadata_dev_size) {
3343                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3344                         DMERR("%s: unable to grow the metadata device until repaired.",
3345                               dm_device_name(pool->pool_md));
3346                         return 0;
3347                 }
3348
3349                 warn_if_metadata_device_too_big(pool->md_dev);
3350                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3351                        dm_device_name(pool->pool_md),
3352                        sb_metadata_dev_size, metadata_dev_size);
3353                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3354                 if (r) {
3355                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3356                         return r;
3357                 }
3358
3359                 *need_commit = true;
3360         }
3361
3362         return 0;
3363 }
3364
3365 /*
3366  * Retrieves the number of blocks of the data device from
3367  * the superblock and compares it to the actual device size,
3368  * thus resizing the data device in case it has grown.
3369  *
3370  * This both copes with opening preallocated data devices in the ctr
3371  * being followed by a resume
3372  * -and-
3373  * calling the resume method individually after userspace has
3374  * grown the data device in reaction to a table event.
3375  */
3376 static int pool_preresume(struct dm_target *ti)
3377 {
3378         int r;
3379         bool need_commit1, need_commit2;
3380         struct pool_c *pt = ti->private;
3381         struct pool *pool = pt->pool;
3382
3383         /*
3384          * Take control of the pool object.
3385          */
3386         r = bind_control_target(pool, ti);
3387         if (r)
3388                 return r;
3389
3390         r = maybe_resize_data_dev(ti, &need_commit1);
3391         if (r)
3392                 return r;
3393
3394         r = maybe_resize_metadata_dev(ti, &need_commit2);
3395         if (r)
3396                 return r;
3397
3398         if (need_commit1 || need_commit2)
3399                 (void) commit(pool);
3400
3401         return 0;
3402 }
3403
3404 static void pool_suspend_active_thins(struct pool *pool)
3405 {
3406         struct thin_c *tc;
3407
3408         /* Suspend all active thin devices */
3409         tc = get_first_thin(pool);
3410         while (tc) {
3411                 dm_internal_suspend_noflush(tc->thin_md);
3412                 tc = get_next_thin(pool, tc);
3413         }
3414 }
3415
3416 static void pool_resume_active_thins(struct pool *pool)
3417 {
3418         struct thin_c *tc;
3419
3420         /* Resume all active thin devices */
3421         tc = get_first_thin(pool);
3422         while (tc) {
3423                 dm_internal_resume(tc->thin_md);
3424                 tc = get_next_thin(pool, tc);
3425         }
3426 }
3427
3428 static void pool_resume(struct dm_target *ti)
3429 {
3430         struct pool_c *pt = ti->private;
3431         struct pool *pool = pt->pool;
3432         unsigned long flags;
3433
3434         /*
3435          * Must requeue active_thins' bios and then resume
3436          * active_thins _before_ clearing 'suspend' flag.
3437          */
3438         requeue_bios(pool);
3439         pool_resume_active_thins(pool);
3440
3441         spin_lock_irqsave(&pool->lock, flags);
3442         pool->low_water_triggered = false;
3443         pool->suspended = false;
3444         spin_unlock_irqrestore(&pool->lock, flags);
3445
3446         do_waker(&pool->waker.work);
3447 }
3448
3449 static void pool_presuspend(struct dm_target *ti)
3450 {
3451         struct pool_c *pt = ti->private;
3452         struct pool *pool = pt->pool;
3453         unsigned long flags;
3454
3455         spin_lock_irqsave(&pool->lock, flags);
3456         pool->suspended = true;
3457         spin_unlock_irqrestore(&pool->lock, flags);
3458
3459         pool_suspend_active_thins(pool);
3460 }
3461
3462 static void pool_presuspend_undo(struct dm_target *ti)
3463 {
3464         struct pool_c *pt = ti->private;
3465         struct pool *pool = pt->pool;
3466         unsigned long flags;
3467
3468         pool_resume_active_thins(pool);
3469
3470         spin_lock_irqsave(&pool->lock, flags);
3471         pool->suspended = false;
3472         spin_unlock_irqrestore(&pool->lock, flags);
3473 }
3474
3475 static void pool_postsuspend(struct dm_target *ti)
3476 {
3477         struct pool_c *pt = ti->private;
3478         struct pool *pool = pt->pool;
3479
3480         cancel_delayed_work(&pool->waker);
3481         cancel_delayed_work(&pool->no_space_timeout);
3482         flush_workqueue(pool->wq);
3483         (void) commit(pool);
3484 }
3485
3486 static int check_arg_count(unsigned argc, unsigned args_required)
3487 {
3488         if (argc != args_required) {
3489                 DMWARN("Message received with %u arguments instead of %u.",
3490                        argc, args_required);
3491                 return -EINVAL;
3492         }
3493
3494         return 0;
3495 }
3496
3497 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3498 {
3499         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3500             *dev_id <= MAX_DEV_ID)
3501                 return 0;
3502
3503         if (warning)
3504                 DMWARN("Message received with invalid device id: %s", arg);
3505
3506         return -EINVAL;
3507 }
3508
3509 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3510 {
3511         dm_thin_id dev_id;
3512         int r;
3513
3514         r = check_arg_count(argc, 2);
3515         if (r)
3516                 return r;
3517
3518         r = read_dev_id(argv[1], &dev_id, 1);
3519         if (r)
3520                 return r;
3521
3522         r = dm_pool_create_thin(pool->pmd, dev_id);
3523         if (r) {
3524                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3525                        argv[1]);
3526                 return r;
3527         }
3528
3529         return 0;
3530 }
3531
3532 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3533 {
3534         dm_thin_id dev_id;
3535         dm_thin_id origin_dev_id;
3536         int r;
3537
3538         r = check_arg_count(argc, 3);
3539         if (r)
3540                 return r;
3541
3542         r = read_dev_id(argv[1], &dev_id, 1);
3543         if (r)
3544                 return r;
3545
3546         r = read_dev_id(argv[2], &origin_dev_id, 1);
3547         if (r)
3548                 return r;
3549
3550         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3551         if (r) {
3552                 DMWARN("Creation of new snapshot %s of device %s failed.",
3553                        argv[1], argv[2]);
3554                 return r;
3555         }
3556
3557         return 0;
3558 }
3559
3560 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3561 {
3562         dm_thin_id dev_id;
3563         int r;
3564
3565         r = check_arg_count(argc, 2);
3566         if (r)
3567                 return r;
3568
3569         r = read_dev_id(argv[1], &dev_id, 1);
3570         if (r)
3571                 return r;
3572
3573         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3574         if (r)
3575                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3576
3577         return r;
3578 }
3579
3580 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3581 {
3582         dm_thin_id old_id, new_id;
3583         int r;
3584
3585         r = check_arg_count(argc, 3);
3586         if (r)
3587                 return r;
3588
3589         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3590                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3591                 return -EINVAL;
3592         }
3593
3594         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3595                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3596                 return -EINVAL;
3597         }
3598
3599         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3600         if (r) {
3601                 DMWARN("Failed to change transaction id from %s to %s.",
3602                        argv[1], argv[2]);
3603                 return r;
3604         }
3605
3606         return 0;
3607 }
3608
3609 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3610 {
3611         int r;
3612
3613         r = check_arg_count(argc, 1);
3614         if (r)
3615                 return r;
3616
3617         (void) commit(pool);
3618
3619         r = dm_pool_reserve_metadata_snap(pool->pmd);
3620         if (r)
3621                 DMWARN("reserve_metadata_snap message failed.");
3622
3623         return r;
3624 }
3625
3626 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3627 {
3628         int r;
3629
3630         r = check_arg_count(argc, 1);
3631         if (r)
3632                 return r;
3633
3634         r = dm_pool_release_metadata_snap(pool->pmd);
3635         if (r)
3636                 DMWARN("release_metadata_snap message failed.");
3637
3638         return r;
3639 }
3640
3641 /*
3642  * Messages supported:
3643  *   create_thin        <dev_id>
3644  *   create_snap        <dev_id> <origin_id>
3645  *   delete             <dev_id>
3646  *   set_transaction_id <current_trans_id> <new_trans_id>
3647  *   reserve_metadata_snap
3648  *   release_metadata_snap
3649  */
3650 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3651 {
3652         int r = -EINVAL;
3653         struct pool_c *pt = ti->private;
3654         struct pool *pool = pt->pool;
3655
3656         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3657                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3658                       dm_device_name(pool->pool_md));
3659                 return -EOPNOTSUPP;
3660         }
3661
3662         if (!strcasecmp(argv[0], "create_thin"))
3663                 r = process_create_thin_mesg(argc, argv, pool);
3664
3665         else if (!strcasecmp(argv[0], "create_snap"))
3666                 r = process_create_snap_mesg(argc, argv, pool);
3667
3668         else if (!strcasecmp(argv[0], "delete"))
3669                 r = process_delete_mesg(argc, argv, pool);
3670
3671         else if (!strcasecmp(argv[0], "set_transaction_id"))
3672                 r = process_set_transaction_id_mesg(argc, argv, pool);
3673
3674         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3675                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3676
3677         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3678                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3679
3680         else
3681                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3682
3683         if (!r)
3684                 (void) commit(pool);
3685
3686         return r;
3687 }
3688
3689 static void emit_flags(struct pool_features *pf, char *result,
3690                        unsigned sz, unsigned maxlen)
3691 {
3692         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3693                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3694                 pf->error_if_no_space;
3695         DMEMIT("%u ", count);
3696
3697         if (!pf->zero_new_blocks)
3698                 DMEMIT("skip_block_zeroing ");
3699
3700         if (!pf->discard_enabled)
3701                 DMEMIT("ignore_discard ");
3702
3703         if (!pf->discard_passdown)
3704                 DMEMIT("no_discard_passdown ");
3705
3706         if (pf->mode == PM_READ_ONLY)
3707                 DMEMIT("read_only ");
3708
3709         if (pf->error_if_no_space)
3710                 DMEMIT("error_if_no_space ");
3711 }
3712
3713 /*
3714  * Status line is:
3715  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3716  *    <used data sectors>/<total data sectors> <held metadata root>
3717  */
3718 static void pool_status(struct dm_target *ti, status_type_t type,
3719                         unsigned status_flags, char *result, unsigned maxlen)
3720 {
3721         int r;
3722         unsigned sz = 0;
3723         uint64_t transaction_id;
3724         dm_block_t nr_free_blocks_data;
3725         dm_block_t nr_free_blocks_metadata;
3726         dm_block_t nr_blocks_data;
3727         dm_block_t nr_blocks_metadata;
3728         dm_block_t held_root;
3729         char buf[BDEVNAME_SIZE];
3730         char buf2[BDEVNAME_SIZE];
3731         struct pool_c *pt = ti->private;
3732         struct pool *pool = pt->pool;
3733
3734         switch (type) {
3735         case STATUSTYPE_INFO:
3736                 if (get_pool_mode(pool) == PM_FAIL) {
3737                         DMEMIT("Fail");
3738                         break;
3739                 }
3740
3741                 /* Commit to ensure statistics aren't out-of-date */
3742                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3743                         (void) commit(pool);
3744
3745                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3746                 if (r) {
3747                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3748                               dm_device_name(pool->pool_md), r);
3749                         goto err;
3750                 }
3751
3752                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3753                 if (r) {
3754                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3755                               dm_device_name(pool->pool_md), r);
3756                         goto err;
3757                 }
3758
3759                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3760                 if (r) {
3761                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3762                               dm_device_name(pool->pool_md), r);
3763                         goto err;
3764                 }
3765
3766                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3767                 if (r) {
3768                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3769                               dm_device_name(pool->pool_md), r);
3770                         goto err;
3771                 }
3772
3773                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3774                 if (r) {
3775                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3776                               dm_device_name(pool->pool_md), r);
3777                         goto err;
3778                 }
3779
3780                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3781                 if (r) {
3782                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3783                               dm_device_name(pool->pool_md), r);
3784                         goto err;
3785                 }
3786
3787                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3788                        (unsigned long long)transaction_id,
3789                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3790                        (unsigned long long)nr_blocks_metadata,
3791                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3792                        (unsigned long long)nr_blocks_data);
3793
3794                 if (held_root)
3795                         DMEMIT("%llu ", held_root);
3796                 else
3797                         DMEMIT("- ");
3798
3799                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3800                         DMEMIT("out_of_data_space ");
3801                 else if (pool->pf.mode == PM_READ_ONLY)
3802                         DMEMIT("ro ");
3803                 else
3804                         DMEMIT("rw ");
3805
3806                 if (!pool->pf.discard_enabled)
3807                         DMEMIT("ignore_discard ");
3808                 else if (pool->pf.discard_passdown)
3809                         DMEMIT("discard_passdown ");
3810                 else
3811                         DMEMIT("no_discard_passdown ");
3812
3813                 if (pool->pf.error_if_no_space)
3814                         DMEMIT("error_if_no_space ");
3815                 else
3816                         DMEMIT("queue_if_no_space ");
3817
3818                 break;
3819
3820         case STATUSTYPE_TABLE:
3821                 DMEMIT("%s %s %lu %llu ",
3822                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3823                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3824                        (unsigned long)pool->sectors_per_block,
3825                        (unsigned long long)pt->low_water_blocks);
3826                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3827                 break;
3828         }
3829         return;
3830
3831 err:
3832         DMEMIT("Error");
3833 }
3834
3835 static int pool_iterate_devices(struct dm_target *ti,
3836                                 iterate_devices_callout_fn fn, void *data)
3837 {
3838         struct pool_c *pt = ti->private;
3839
3840         return fn(ti, pt->data_dev, 0, ti->len, data);
3841 }
3842
3843 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3844                       struct bio_vec *biovec, int max_size)
3845 {
3846         struct pool_c *pt = ti->private;
3847         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3848
3849         if (!q->merge_bvec_fn)
3850                 return max_size;
3851
3852         bvm->bi_bdev = pt->data_dev->bdev;
3853
3854         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3855 }
3856
3857 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3858 {
3859         struct pool_c *pt = ti->private;
3860         struct pool *pool = pt->pool;
3861         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3862
3863         /*
3864          * If max_sectors is smaller than pool->sectors_per_block adjust it
3865          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3866          * This is especially beneficial when the pool's data device is a RAID
3867          * device that has a full stripe width that matches pool->sectors_per_block
3868          * -- because even though partial RAID stripe-sized IOs will be issued to a
3869          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3870          *    boundary.. which avoids additional partial RAID stripe writes cascading
3871          */
3872         if (limits->max_sectors < pool->sectors_per_block) {
3873                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3874                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3875                                 limits->max_sectors--;
3876                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3877                 }
3878         }
3879
3880         /*
3881          * If the system-determined stacked limits are compatible with the
3882          * pool's blocksize (io_opt is a factor) do not override them.
3883          */
3884         if (io_opt_sectors < pool->sectors_per_block ||
3885             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3886                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3887                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3888                 else
3889                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3890                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3891         }
3892
3893         /*
3894          * pt->adjusted_pf is a staging area for the actual features to use.
3895          * They get transferred to the live pool in bind_control_target()
3896          * called from pool_preresume().
3897          */
3898         if (!pt->adjusted_pf.discard_enabled) {
3899                 /*
3900                  * Must explicitly disallow stacking discard limits otherwise the
3901                  * block layer will stack them if pool's data device has support.
3902                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3903                  * user to see that, so make sure to set all discard limits to 0.
3904                  */
3905                 limits->discard_granularity = 0;
3906                 return;
3907         }
3908
3909         disable_passdown_if_not_supported(pt);
3910
3911         /*
3912          * The pool uses the same discard limits as the underlying data
3913          * device.  DM core has already set this up.
3914          */
3915 }
3916
3917 static struct target_type pool_target = {
3918         .name = "thin-pool",
3919         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3920                     DM_TARGET_IMMUTABLE,
3921         .version = {1, 15, 0},
3922         .module = THIS_MODULE,
3923         .ctr = pool_ctr,
3924         .dtr = pool_dtr,
3925         .map = pool_map,
3926         .presuspend = pool_presuspend,
3927         .presuspend_undo = pool_presuspend_undo,
3928         .postsuspend = pool_postsuspend,
3929         .preresume = pool_preresume,
3930         .resume = pool_resume,
3931         .message = pool_message,
3932         .status = pool_status,
3933         .merge = pool_merge,
3934         .iterate_devices = pool_iterate_devices,
3935         .io_hints = pool_io_hints,
3936 };
3937
3938 /*----------------------------------------------------------------
3939  * Thin target methods
3940  *--------------------------------------------------------------*/
3941 static void thin_get(struct thin_c *tc)
3942 {
3943         atomic_inc(&tc->refcount);
3944 }
3945
3946 static void thin_put(struct thin_c *tc)
3947 {
3948         if (atomic_dec_and_test(&tc->refcount))
3949                 complete(&tc->can_destroy);
3950 }
3951
3952 static void thin_dtr(struct dm_target *ti)
3953 {
3954         struct thin_c *tc = ti->private;
3955         unsigned long flags;
3956
3957         spin_lock_irqsave(&tc->pool->lock, flags);
3958         list_del_rcu(&tc->list);
3959         spin_unlock_irqrestore(&tc->pool->lock, flags);
3960         synchronize_rcu();
3961
3962         thin_put(tc);
3963         wait_for_completion(&tc->can_destroy);
3964
3965         mutex_lock(&dm_thin_pool_table.mutex);
3966
3967         __pool_dec(tc->pool);
3968         dm_pool_close_thin_device(tc->td);
3969         dm_put_device(ti, tc->pool_dev);
3970         if (tc->origin_dev)
3971                 dm_put_device(ti, tc->origin_dev);
3972         kfree(tc);
3973
3974         mutex_unlock(&dm_thin_pool_table.mutex);
3975 }
3976
3977 /*
3978  * Thin target parameters:
3979  *
3980  * <pool_dev> <dev_id> [origin_dev]
3981  *
3982  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3983  * dev_id: the internal device identifier
3984  * origin_dev: a device external to the pool that should act as the origin
3985  *
3986  * If the pool device has discards disabled, they get disabled for the thin
3987  * device as well.
3988  */
3989 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
3990 {
3991         int r;
3992         struct thin_c *tc;
3993         struct dm_dev *pool_dev, *origin_dev;
3994         struct mapped_device *pool_md;
3995         unsigned long flags;
3996
3997         mutex_lock(&dm_thin_pool_table.mutex);
3998
3999         if (argc != 2 && argc != 3) {
4000                 ti->error = "Invalid argument count";
4001                 r = -EINVAL;
4002                 goto out_unlock;
4003         }
4004
4005         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4006         if (!tc) {
4007                 ti->error = "Out of memory";
4008                 r = -ENOMEM;
4009                 goto out_unlock;
4010         }
4011         tc->thin_md = dm_table_get_md(ti->table);
4012         spin_lock_init(&tc->lock);
4013         INIT_LIST_HEAD(&tc->deferred_cells);
4014         bio_list_init(&tc->deferred_bio_list);
4015         bio_list_init(&tc->retry_on_resume_list);
4016         tc->sort_bio_list = RB_ROOT;
4017
4018         if (argc == 3) {
4019                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4020                 if (r) {
4021                         ti->error = "Error opening origin device";
4022                         goto bad_origin_dev;
4023                 }
4024                 tc->origin_dev = origin_dev;
4025         }
4026
4027         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4028         if (r) {
4029                 ti->error = "Error opening pool device";
4030                 goto bad_pool_dev;
4031         }
4032         tc->pool_dev = pool_dev;
4033
4034         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4035                 ti->error = "Invalid device id";
4036                 r = -EINVAL;
4037                 goto bad_common;
4038         }
4039
4040         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4041         if (!pool_md) {
4042                 ti->error = "Couldn't get pool mapped device";
4043                 r = -EINVAL;
4044                 goto bad_common;
4045         }
4046
4047         tc->pool = __pool_table_lookup(pool_md);
4048         if (!tc->pool) {
4049                 ti->error = "Couldn't find pool object";
4050                 r = -EINVAL;
4051                 goto bad_pool_lookup;
4052         }
4053         __pool_inc(tc->pool);
4054
4055         if (get_pool_mode(tc->pool) == PM_FAIL) {
4056                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4057                 r = -EINVAL;
4058                 goto bad_pool;
4059         }
4060
4061         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4062         if (r) {
4063                 ti->error = "Couldn't open thin internal device";
4064                 goto bad_pool;
4065         }
4066
4067         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4068         if (r)
4069                 goto bad;
4070
4071         ti->num_flush_bios = 1;
4072         ti->flush_supported = true;
4073         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4074
4075         /* In case the pool supports discards, pass them on. */
4076         ti->discard_zeroes_data_unsupported = true;
4077         if (tc->pool->pf.discard_enabled) {
4078                 ti->discards_supported = true;
4079                 ti->num_discard_bios = 1;
4080                 ti->split_discard_bios = false;
4081         }
4082
4083         mutex_unlock(&dm_thin_pool_table.mutex);
4084
4085         spin_lock_irqsave(&tc->pool->lock, flags);
4086         if (tc->pool->suspended) {
4087                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4088                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4089                 ti->error = "Unable to activate thin device while pool is suspended";
4090                 r = -EINVAL;
4091                 goto bad;
4092         }
4093         atomic_set(&tc->refcount, 1);
4094         init_completion(&tc->can_destroy);
4095         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4096         spin_unlock_irqrestore(&tc->pool->lock, flags);
4097         /*
4098          * This synchronize_rcu() call is needed here otherwise we risk a
4099          * wake_worker() call finding no bios to process (because the newly
4100          * added tc isn't yet visible).  So this reduces latency since we
4101          * aren't then dependent on the periodic commit to wake_worker().
4102          */
4103         synchronize_rcu();
4104
4105         dm_put(pool_md);
4106
4107         return 0;
4108
4109 bad:
4110         dm_pool_close_thin_device(tc->td);
4111 bad_pool:
4112         __pool_dec(tc->pool);
4113 bad_pool_lookup:
4114         dm_put(pool_md);
4115 bad_common:
4116         dm_put_device(ti, tc->pool_dev);
4117 bad_pool_dev:
4118         if (tc->origin_dev)
4119                 dm_put_device(ti, tc->origin_dev);
4120 bad_origin_dev:
4121         kfree(tc);
4122 out_unlock:
4123         mutex_unlock(&dm_thin_pool_table.mutex);
4124
4125         return r;
4126 }
4127
4128 static int thin_map(struct dm_target *ti, struct bio *bio)
4129 {
4130         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4131
4132         return thin_bio_map(ti, bio);
4133 }
4134
4135 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4136 {
4137         unsigned long flags;
4138         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4139         struct list_head work;
4140         struct dm_thin_new_mapping *m, *tmp;
4141         struct pool *pool = h->tc->pool;
4142
4143         if (h->shared_read_entry) {
4144                 INIT_LIST_HEAD(&work);
4145                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4146
4147                 spin_lock_irqsave(&pool->lock, flags);
4148                 list_for_each_entry_safe(m, tmp, &work, list) {
4149                         list_del(&m->list);
4150                         __complete_mapping_preparation(m);
4151                 }
4152                 spin_unlock_irqrestore(&pool->lock, flags);
4153         }
4154
4155         if (h->all_io_entry) {
4156                 INIT_LIST_HEAD(&work);
4157                 dm_deferred_entry_dec(h->all_io_entry, &work);
4158                 if (!list_empty(&work)) {
4159                         spin_lock_irqsave(&pool->lock, flags);
4160                         list_for_each_entry_safe(m, tmp, &work, list)
4161                                 list_add_tail(&m->list, &pool->prepared_discards);
4162                         spin_unlock_irqrestore(&pool->lock, flags);
4163                         wake_worker(pool);
4164                 }
4165         }
4166
4167         if (h->cell)
4168                 cell_defer_no_holder(h->tc, h->cell);
4169
4170         return 0;
4171 }
4172
4173 static void thin_presuspend(struct dm_target *ti)
4174 {
4175         struct thin_c *tc = ti->private;
4176
4177         if (dm_noflush_suspending(ti))
4178                 noflush_work(tc, do_noflush_start);
4179 }
4180
4181 static void thin_postsuspend(struct dm_target *ti)
4182 {
4183         struct thin_c *tc = ti->private;
4184
4185         /*
4186          * The dm_noflush_suspending flag has been cleared by now, so
4187          * unfortunately we must always run this.
4188          */
4189         noflush_work(tc, do_noflush_stop);
4190 }
4191
4192 static int thin_preresume(struct dm_target *ti)
4193 {
4194         struct thin_c *tc = ti->private;
4195
4196         if (tc->origin_dev)
4197                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4198
4199         return 0;
4200 }
4201
4202 /*
4203  * <nr mapped sectors> <highest mapped sector>
4204  */
4205 static void thin_status(struct dm_target *ti, status_type_t type,
4206                         unsigned status_flags, char *result, unsigned maxlen)
4207 {
4208         int r;
4209         ssize_t sz = 0;
4210         dm_block_t mapped, highest;
4211         char buf[BDEVNAME_SIZE];
4212         struct thin_c *tc = ti->private;
4213
4214         if (get_pool_mode(tc->pool) == PM_FAIL) {
4215                 DMEMIT("Fail");
4216                 return;
4217         }
4218
4219         if (!tc->td)
4220                 DMEMIT("-");
4221         else {
4222                 switch (type) {
4223                 case STATUSTYPE_INFO:
4224                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4225                         if (r) {
4226                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4227                                 goto err;
4228                         }
4229
4230                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4231                         if (r < 0) {
4232                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4233                                 goto err;
4234                         }
4235
4236                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4237                         if (r)
4238                                 DMEMIT("%llu", ((highest + 1) *
4239                                                 tc->pool->sectors_per_block) - 1);
4240                         else
4241                                 DMEMIT("-");
4242                         break;
4243
4244                 case STATUSTYPE_TABLE:
4245                         DMEMIT("%s %lu",
4246                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4247                                (unsigned long) tc->dev_id);
4248                         if (tc->origin_dev)
4249                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4250                         break;
4251                 }
4252         }
4253
4254         return;
4255
4256 err:
4257         DMEMIT("Error");
4258 }
4259
4260 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4261                       struct bio_vec *biovec, int max_size)
4262 {
4263         struct thin_c *tc = ti->private;
4264         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4265
4266         if (!q->merge_bvec_fn)
4267                 return max_size;
4268
4269         bvm->bi_bdev = tc->pool_dev->bdev;
4270         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4271
4272         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4273 }
4274
4275 static int thin_iterate_devices(struct dm_target *ti,
4276                                 iterate_devices_callout_fn fn, void *data)
4277 {
4278         sector_t blocks;
4279         struct thin_c *tc = ti->private;
4280         struct pool *pool = tc->pool;
4281
4282         /*
4283          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4284          * we follow a more convoluted path through to the pool's target.
4285          */
4286         if (!pool->ti)
4287                 return 0;       /* nothing is bound */
4288
4289         blocks = pool->ti->len;
4290         (void) sector_div(blocks, pool->sectors_per_block);
4291         if (blocks)
4292                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4293
4294         return 0;
4295 }
4296
4297 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4298 {
4299         struct thin_c *tc = ti->private;
4300         struct pool *pool = tc->pool;
4301
4302         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4303         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4304 }
4305
4306 static struct target_type thin_target = {
4307         .name = "thin",
4308         .version = {1, 15, 0},
4309         .module = THIS_MODULE,
4310         .ctr = thin_ctr,
4311         .dtr = thin_dtr,
4312         .map = thin_map,
4313         .end_io = thin_endio,
4314         .preresume = thin_preresume,
4315         .presuspend = thin_presuspend,
4316         .postsuspend = thin_postsuspend,
4317         .status = thin_status,
4318         .merge = thin_merge,
4319         .iterate_devices = thin_iterate_devices,
4320         .io_hints = thin_io_hints,
4321 };
4322
4323 /*----------------------------------------------------------------*/
4324
4325 static int __init dm_thin_init(void)
4326 {
4327         int r;
4328
4329         pool_table_init();
4330
4331         r = dm_register_target(&thin_target);
4332         if (r)
4333                 return r;
4334
4335         r = dm_register_target(&pool_target);
4336         if (r)
4337                 goto bad_pool_target;
4338
4339         r = -ENOMEM;
4340
4341         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4342         if (!_new_mapping_cache)
4343                 goto bad_new_mapping_cache;
4344
4345         return 0;
4346
4347 bad_new_mapping_cache:
4348         dm_unregister_target(&pool_target);
4349 bad_pool_target:
4350         dm_unregister_target(&thin_target);
4351
4352         return r;
4353 }
4354
4355 static void dm_thin_exit(void)
4356 {
4357         dm_unregister_target(&thin_target);
4358         dm_unregister_target(&pool_target);
4359
4360         kmem_cache_destroy(_new_mapping_cache);
4361 }
4362
4363 module_init(dm_thin_init);
4364 module_exit(dm_thin_exit);
4365
4366 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4367 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4368
4369 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4370 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4371 MODULE_LICENSE("GPL");