Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203         PM_READ_ONLY,           /* metadata may not be changed */
204         PM_FAIL,                /* all I/O fails */
205 };
206
207 struct pool_features {
208         enum pool_mode mode;
209
210         bool zero_new_blocks:1;
211         bool discard_enabled:1;
212         bool discard_passdown:1;
213         bool error_if_no_space:1;
214 };
215
216 struct thin_c;
217 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221 #define CELL_SORT_ARRAY_SIZE 8192
222
223 struct pool {
224         struct list_head list;
225         struct dm_target *ti;   /* Only set if a pool target is bound */
226
227         struct mapped_device *pool_md;
228         struct block_device *md_dev;
229         struct dm_pool_metadata *pmd;
230
231         dm_block_t low_water_blocks;
232         uint32_t sectors_per_block;
233         int sectors_per_block_shift;
234
235         struct pool_features pf;
236         bool low_water_triggered:1;     /* A dm event has been sent */
237         bool suspended:1;
238
239         struct dm_bio_prison *prison;
240         struct dm_kcopyd_client *copier;
241
242         struct workqueue_struct *wq;
243         struct throttle throttle;
244         struct work_struct worker;
245         struct delayed_work waker;
246         struct delayed_work no_space_timeout;
247
248         unsigned long last_commit_jiffies;
249         unsigned ref_count;
250
251         spinlock_t lock;
252         struct bio_list deferred_flush_bios;
253         struct list_head prepared_mappings;
254         struct list_head prepared_discards;
255         struct list_head active_thins;
256
257         struct dm_deferred_set *shared_read_ds;
258         struct dm_deferred_set *all_io_ds;
259
260         struct dm_thin_new_mapping *next_mapping;
261         mempool_t *mapping_pool;
262
263         process_bio_fn process_bio;
264         process_bio_fn process_discard;
265
266         process_cell_fn process_cell;
267         process_cell_fn process_discard_cell;
268
269         process_mapping_fn process_prepared_mapping;
270         process_mapping_fn process_prepared_discard;
271
272         struct dm_bio_prison_cell **cell_sort_array;
273 };
274
275 static enum pool_mode get_pool_mode(struct pool *pool);
276 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
277
278 /*
279  * Target context for a pool.
280  */
281 struct pool_c {
282         struct dm_target *ti;
283         struct pool *pool;
284         struct dm_dev *data_dev;
285         struct dm_dev *metadata_dev;
286         struct dm_target_callbacks callbacks;
287
288         dm_block_t low_water_blocks;
289         struct pool_features requested_pf; /* Features requested during table load */
290         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
291 };
292
293 /*
294  * Target context for a thin.
295  */
296 struct thin_c {
297         struct list_head list;
298         struct dm_dev *pool_dev;
299         struct dm_dev *origin_dev;
300         sector_t origin_size;
301         dm_thin_id dev_id;
302
303         struct pool *pool;
304         struct dm_thin_device *td;
305         struct mapped_device *thin_md;
306
307         bool requeue_mode:1;
308         spinlock_t lock;
309         struct list_head deferred_cells;
310         struct bio_list deferred_bio_list;
311         struct bio_list retry_on_resume_list;
312         struct rb_root sort_bio_list; /* sorted list of deferred bios */
313
314         /*
315          * Ensures the thin is not destroyed until the worker has finished
316          * iterating the active_thins list.
317          */
318         atomic_t refcount;
319         struct completion can_destroy;
320 };
321
322 /*----------------------------------------------------------------*/
323
324 /**
325  * __blkdev_issue_discard_async - queue a discard with async completion
326  * @bdev:       blockdev to issue discard for
327  * @sector:     start sector
328  * @nr_sects:   number of sectors to discard
329  * @gfp_mask:   memory allocation flags (for bio_alloc)
330  * @flags:      BLKDEV_IFL_* flags to control behaviour
331  * @parent_bio: parent discard bio that all sub discards get chained to
332  *
333  * Description:
334  *    Asynchronously issue a discard request for the sectors in question.
335  *    NOTE: this variant of blk-core's blkdev_issue_discard() is a stop-gap
336  *    that is being kept local to DM thinp until the block changes to allow
337  *    late bio splitting land upstream.
338  */
339 static int __blkdev_issue_discard_async(struct block_device *bdev, sector_t sector,
340                                         sector_t nr_sects, gfp_t gfp_mask, unsigned long flags,
341                                         struct bio *parent_bio)
342 {
343         struct request_queue *q = bdev_get_queue(bdev);
344         int type = REQ_WRITE | REQ_DISCARD;
345         unsigned int max_discard_sectors, granularity;
346         int alignment;
347         struct bio *bio;
348         int ret = 0;
349         struct blk_plug plug;
350
351         if (!q)
352                 return -ENXIO;
353
354         if (!blk_queue_discard(q))
355                 return -EOPNOTSUPP;
356
357         /* Zero-sector (unknown) and one-sector granularities are the same.  */
358         granularity = max(q->limits.discard_granularity >> 9, 1U);
359         alignment = (bdev_discard_alignment(bdev) >> 9) % granularity;
360
361         /*
362          * Ensure that max_discard_sectors is of the proper
363          * granularity, so that requests stay aligned after a split.
364          */
365         max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9);
366         max_discard_sectors -= max_discard_sectors % granularity;
367         if (unlikely(!max_discard_sectors)) {
368                 /* Avoid infinite loop below. Being cautious never hurts. */
369                 return -EOPNOTSUPP;
370         }
371
372         if (flags & BLKDEV_DISCARD_SECURE) {
373                 if (!blk_queue_secdiscard(q))
374                         return -EOPNOTSUPP;
375                 type |= REQ_SECURE;
376         }
377
378         blk_start_plug(&plug);
379         while (nr_sects) {
380                 unsigned int req_sects;
381                 sector_t end_sect, tmp;
382
383                 /*
384                  * Required bio_put occurs in bio_endio thanks to bio_chain below
385                  */
386                 bio = bio_alloc(gfp_mask, 1);
387                 if (!bio) {
388                         ret = -ENOMEM;
389                         break;
390                 }
391
392                 req_sects = min_t(sector_t, nr_sects, max_discard_sectors);
393
394                 /*
395                  * If splitting a request, and the next starting sector would be
396                  * misaligned, stop the discard at the previous aligned sector.
397                  */
398                 end_sect = sector + req_sects;
399                 tmp = end_sect;
400                 if (req_sects < nr_sects &&
401                     sector_div(tmp, granularity) != alignment) {
402                         end_sect = end_sect - alignment;
403                         sector_div(end_sect, granularity);
404                         end_sect = end_sect * granularity + alignment;
405                         req_sects = end_sect - sector;
406                 }
407
408                 bio_chain(bio, parent_bio);
409
410                 bio->bi_iter.bi_sector = sector;
411                 bio->bi_bdev = bdev;
412
413                 bio->bi_iter.bi_size = req_sects << 9;
414                 nr_sects -= req_sects;
415                 sector = end_sect;
416
417                 submit_bio(type, bio);
418
419                 /*
420                  * We can loop for a long time in here, if someone does
421                  * full device discards (like mkfs). Be nice and allow
422                  * us to schedule out to avoid softlocking if preempt
423                  * is disabled.
424                  */
425                 cond_resched();
426         }
427         blk_finish_plug(&plug);
428
429         return ret;
430 }
431
432 static bool block_size_is_power_of_two(struct pool *pool)
433 {
434         return pool->sectors_per_block_shift >= 0;
435 }
436
437 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
438 {
439         return block_size_is_power_of_two(pool) ?
440                 (b << pool->sectors_per_block_shift) :
441                 (b * pool->sectors_per_block);
442 }
443
444 static int issue_discard(struct thin_c *tc, dm_block_t data_b, dm_block_t data_e,
445                          struct bio *parent_bio)
446 {
447         sector_t s = block_to_sectors(tc->pool, data_b);
448         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
449
450         return __blkdev_issue_discard_async(tc->pool_dev->bdev, s, len,
451                                             GFP_NOWAIT, 0, parent_bio);
452 }
453
454 /*----------------------------------------------------------------*/
455
456 /*
457  * wake_worker() is used when new work is queued and when pool_resume is
458  * ready to continue deferred IO processing.
459  */
460 static void wake_worker(struct pool *pool)
461 {
462         queue_work(pool->wq, &pool->worker);
463 }
464
465 /*----------------------------------------------------------------*/
466
467 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
468                       struct dm_bio_prison_cell **cell_result)
469 {
470         int r;
471         struct dm_bio_prison_cell *cell_prealloc;
472
473         /*
474          * Allocate a cell from the prison's mempool.
475          * This might block but it can't fail.
476          */
477         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
478
479         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
480         if (r)
481                 /*
482                  * We reused an old cell; we can get rid of
483                  * the new one.
484                  */
485                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
486
487         return r;
488 }
489
490 static void cell_release(struct pool *pool,
491                          struct dm_bio_prison_cell *cell,
492                          struct bio_list *bios)
493 {
494         dm_cell_release(pool->prison, cell, bios);
495         dm_bio_prison_free_cell(pool->prison, cell);
496 }
497
498 static void cell_visit_release(struct pool *pool,
499                                void (*fn)(void *, struct dm_bio_prison_cell *),
500                                void *context,
501                                struct dm_bio_prison_cell *cell)
502 {
503         dm_cell_visit_release(pool->prison, fn, context, cell);
504         dm_bio_prison_free_cell(pool->prison, cell);
505 }
506
507 static void cell_release_no_holder(struct pool *pool,
508                                    struct dm_bio_prison_cell *cell,
509                                    struct bio_list *bios)
510 {
511         dm_cell_release_no_holder(pool->prison, cell, bios);
512         dm_bio_prison_free_cell(pool->prison, cell);
513 }
514
515 static void cell_error_with_code(struct pool *pool,
516                                  struct dm_bio_prison_cell *cell, int error_code)
517 {
518         dm_cell_error(pool->prison, cell, error_code);
519         dm_bio_prison_free_cell(pool->prison, cell);
520 }
521
522 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
523 {
524         cell_error_with_code(pool, cell, -EIO);
525 }
526
527 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
528 {
529         cell_error_with_code(pool, cell, 0);
530 }
531
532 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
533 {
534         cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
535 }
536
537 /*----------------------------------------------------------------*/
538
539 /*
540  * A global list of pools that uses a struct mapped_device as a key.
541  */
542 static struct dm_thin_pool_table {
543         struct mutex mutex;
544         struct list_head pools;
545 } dm_thin_pool_table;
546
547 static void pool_table_init(void)
548 {
549         mutex_init(&dm_thin_pool_table.mutex);
550         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
551 }
552
553 static void __pool_table_insert(struct pool *pool)
554 {
555         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556         list_add(&pool->list, &dm_thin_pool_table.pools);
557 }
558
559 static void __pool_table_remove(struct pool *pool)
560 {
561         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
562         list_del(&pool->list);
563 }
564
565 static struct pool *__pool_table_lookup(struct mapped_device *md)
566 {
567         struct pool *pool = NULL, *tmp;
568
569         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
570
571         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
572                 if (tmp->pool_md == md) {
573                         pool = tmp;
574                         break;
575                 }
576         }
577
578         return pool;
579 }
580
581 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
582 {
583         struct pool *pool = NULL, *tmp;
584
585         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
586
587         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
588                 if (tmp->md_dev == md_dev) {
589                         pool = tmp;
590                         break;
591                 }
592         }
593
594         return pool;
595 }
596
597 /*----------------------------------------------------------------*/
598
599 struct dm_thin_endio_hook {
600         struct thin_c *tc;
601         struct dm_deferred_entry *shared_read_entry;
602         struct dm_deferred_entry *all_io_entry;
603         struct dm_thin_new_mapping *overwrite_mapping;
604         struct rb_node rb_node;
605         struct dm_bio_prison_cell *cell;
606 };
607
608 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
609 {
610         bio_list_merge(bios, master);
611         bio_list_init(master);
612 }
613
614 static void error_bio_list(struct bio_list *bios, int error)
615 {
616         struct bio *bio;
617
618         while ((bio = bio_list_pop(bios)))
619                 bio_endio(bio, error);
620 }
621
622 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
623 {
624         struct bio_list bios;
625         unsigned long flags;
626
627         bio_list_init(&bios);
628
629         spin_lock_irqsave(&tc->lock, flags);
630         __merge_bio_list(&bios, master);
631         spin_unlock_irqrestore(&tc->lock, flags);
632
633         error_bio_list(&bios, error);
634 }
635
636 static void requeue_deferred_cells(struct thin_c *tc)
637 {
638         struct pool *pool = tc->pool;
639         unsigned long flags;
640         struct list_head cells;
641         struct dm_bio_prison_cell *cell, *tmp;
642
643         INIT_LIST_HEAD(&cells);
644
645         spin_lock_irqsave(&tc->lock, flags);
646         list_splice_init(&tc->deferred_cells, &cells);
647         spin_unlock_irqrestore(&tc->lock, flags);
648
649         list_for_each_entry_safe(cell, tmp, &cells, user_list)
650                 cell_requeue(pool, cell);
651 }
652
653 static void requeue_io(struct thin_c *tc)
654 {
655         struct bio_list bios;
656         unsigned long flags;
657
658         bio_list_init(&bios);
659
660         spin_lock_irqsave(&tc->lock, flags);
661         __merge_bio_list(&bios, &tc->deferred_bio_list);
662         __merge_bio_list(&bios, &tc->retry_on_resume_list);
663         spin_unlock_irqrestore(&tc->lock, flags);
664
665         error_bio_list(&bios, DM_ENDIO_REQUEUE);
666         requeue_deferred_cells(tc);
667 }
668
669 static void error_retry_list(struct pool *pool)
670 {
671         struct thin_c *tc;
672
673         rcu_read_lock();
674         list_for_each_entry_rcu(tc, &pool->active_thins, list)
675                 error_thin_bio_list(tc, &tc->retry_on_resume_list, -EIO);
676         rcu_read_unlock();
677 }
678
679 /*
680  * This section of code contains the logic for processing a thin device's IO.
681  * Much of the code depends on pool object resources (lists, workqueues, etc)
682  * but most is exclusively called from the thin target rather than the thin-pool
683  * target.
684  */
685
686 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
687 {
688         struct pool *pool = tc->pool;
689         sector_t block_nr = bio->bi_iter.bi_sector;
690
691         if (block_size_is_power_of_two(pool))
692                 block_nr >>= pool->sectors_per_block_shift;
693         else
694                 (void) sector_div(block_nr, pool->sectors_per_block);
695
696         return block_nr;
697 }
698
699 /*
700  * Returns the _complete_ blocks that this bio covers.
701  */
702 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
703                                 dm_block_t *begin, dm_block_t *end)
704 {
705         struct pool *pool = tc->pool;
706         sector_t b = bio->bi_iter.bi_sector;
707         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
708
709         b += pool->sectors_per_block - 1ull; /* so we round up */
710
711         if (block_size_is_power_of_two(pool)) {
712                 b >>= pool->sectors_per_block_shift;
713                 e >>= pool->sectors_per_block_shift;
714         } else {
715                 (void) sector_div(b, pool->sectors_per_block);
716                 (void) sector_div(e, pool->sectors_per_block);
717         }
718
719         if (e < b)
720                 /* Can happen if the bio is within a single block. */
721                 e = b;
722
723         *begin = b;
724         *end = e;
725 }
726
727 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
728 {
729         struct pool *pool = tc->pool;
730         sector_t bi_sector = bio->bi_iter.bi_sector;
731
732         bio->bi_bdev = tc->pool_dev->bdev;
733         if (block_size_is_power_of_two(pool))
734                 bio->bi_iter.bi_sector =
735                         (block << pool->sectors_per_block_shift) |
736                         (bi_sector & (pool->sectors_per_block - 1));
737         else
738                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
739                                  sector_div(bi_sector, pool->sectors_per_block);
740 }
741
742 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
743 {
744         bio->bi_bdev = tc->origin_dev->bdev;
745 }
746
747 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
748 {
749         return (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
750                 dm_thin_changed_this_transaction(tc->td);
751 }
752
753 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
754 {
755         struct dm_thin_endio_hook *h;
756
757         if (bio->bi_rw & REQ_DISCARD)
758                 return;
759
760         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
761         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
762 }
763
764 static void issue(struct thin_c *tc, struct bio *bio)
765 {
766         struct pool *pool = tc->pool;
767         unsigned long flags;
768
769         if (!bio_triggers_commit(tc, bio)) {
770                 generic_make_request(bio);
771                 return;
772         }
773
774         /*
775          * Complete bio with an error if earlier I/O caused changes to
776          * the metadata that can't be committed e.g, due to I/O errors
777          * on the metadata device.
778          */
779         if (dm_thin_aborted_changes(tc->td)) {
780                 bio_io_error(bio);
781                 return;
782         }
783
784         /*
785          * Batch together any bios that trigger commits and then issue a
786          * single commit for them in process_deferred_bios().
787          */
788         spin_lock_irqsave(&pool->lock, flags);
789         bio_list_add(&pool->deferred_flush_bios, bio);
790         spin_unlock_irqrestore(&pool->lock, flags);
791 }
792
793 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
794 {
795         remap_to_origin(tc, bio);
796         issue(tc, bio);
797 }
798
799 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
800                             dm_block_t block)
801 {
802         remap(tc, bio, block);
803         issue(tc, bio);
804 }
805
806 /*----------------------------------------------------------------*/
807
808 /*
809  * Bio endio functions.
810  */
811 struct dm_thin_new_mapping {
812         struct list_head list;
813
814         bool pass_discard:1;
815         bool maybe_shared:1;
816
817         /*
818          * Track quiescing, copying and zeroing preparation actions.  When this
819          * counter hits zero the block is prepared and can be inserted into the
820          * btree.
821          */
822         atomic_t prepare_actions;
823
824         int err;
825         struct thin_c *tc;
826         dm_block_t virt_begin, virt_end;
827         dm_block_t data_block;
828         struct dm_bio_prison_cell *cell;
829
830         /*
831          * If the bio covers the whole area of a block then we can avoid
832          * zeroing or copying.  Instead this bio is hooked.  The bio will
833          * still be in the cell, so care has to be taken to avoid issuing
834          * the bio twice.
835          */
836         struct bio *bio;
837         bio_end_io_t *saved_bi_end_io;
838 };
839
840 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
841 {
842         struct pool *pool = m->tc->pool;
843
844         if (atomic_dec_and_test(&m->prepare_actions)) {
845                 list_add_tail(&m->list, &pool->prepared_mappings);
846                 wake_worker(pool);
847         }
848 }
849
850 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
851 {
852         unsigned long flags;
853         struct pool *pool = m->tc->pool;
854
855         spin_lock_irqsave(&pool->lock, flags);
856         __complete_mapping_preparation(m);
857         spin_unlock_irqrestore(&pool->lock, flags);
858 }
859
860 static void copy_complete(int read_err, unsigned long write_err, void *context)
861 {
862         struct dm_thin_new_mapping *m = context;
863
864         m->err = read_err || write_err ? -EIO : 0;
865         complete_mapping_preparation(m);
866 }
867
868 static void overwrite_endio(struct bio *bio, int err)
869 {
870         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
871         struct dm_thin_new_mapping *m = h->overwrite_mapping;
872
873         bio->bi_end_io = m->saved_bi_end_io;
874
875         m->err = err;
876         complete_mapping_preparation(m);
877 }
878
879 /*----------------------------------------------------------------*/
880
881 /*
882  * Workqueue.
883  */
884
885 /*
886  * Prepared mapping jobs.
887  */
888
889 /*
890  * This sends the bios in the cell, except the original holder, back
891  * to the deferred_bios list.
892  */
893 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
894 {
895         struct pool *pool = tc->pool;
896         unsigned long flags;
897
898         spin_lock_irqsave(&tc->lock, flags);
899         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
900         spin_unlock_irqrestore(&tc->lock, flags);
901
902         wake_worker(pool);
903 }
904
905 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
906
907 struct remap_info {
908         struct thin_c *tc;
909         struct bio_list defer_bios;
910         struct bio_list issue_bios;
911 };
912
913 static void __inc_remap_and_issue_cell(void *context,
914                                        struct dm_bio_prison_cell *cell)
915 {
916         struct remap_info *info = context;
917         struct bio *bio;
918
919         while ((bio = bio_list_pop(&cell->bios))) {
920                 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA))
921                         bio_list_add(&info->defer_bios, bio);
922                 else {
923                         inc_all_io_entry(info->tc->pool, bio);
924
925                         /*
926                          * We can't issue the bios with the bio prison lock
927                          * held, so we add them to a list to issue on
928                          * return from this function.
929                          */
930                         bio_list_add(&info->issue_bios, bio);
931                 }
932         }
933 }
934
935 static void inc_remap_and_issue_cell(struct thin_c *tc,
936                                      struct dm_bio_prison_cell *cell,
937                                      dm_block_t block)
938 {
939         struct bio *bio;
940         struct remap_info info;
941
942         info.tc = tc;
943         bio_list_init(&info.defer_bios);
944         bio_list_init(&info.issue_bios);
945
946         /*
947          * We have to be careful to inc any bios we're about to issue
948          * before the cell is released, and avoid a race with new bios
949          * being added to the cell.
950          */
951         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
952                            &info, cell);
953
954         while ((bio = bio_list_pop(&info.defer_bios)))
955                 thin_defer_bio(tc, bio);
956
957         while ((bio = bio_list_pop(&info.issue_bios)))
958                 remap_and_issue(info.tc, bio, block);
959 }
960
961 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
962 {
963         cell_error(m->tc->pool, m->cell);
964         list_del(&m->list);
965         mempool_free(m, m->tc->pool->mapping_pool);
966 }
967
968 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
969 {
970         struct thin_c *tc = m->tc;
971         struct pool *pool = tc->pool;
972         struct bio *bio = m->bio;
973         int r;
974
975         if (m->err) {
976                 cell_error(pool, m->cell);
977                 goto out;
978         }
979
980         /*
981          * Commit the prepared block into the mapping btree.
982          * Any I/O for this block arriving after this point will get
983          * remapped to it directly.
984          */
985         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
986         if (r) {
987                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
988                 cell_error(pool, m->cell);
989                 goto out;
990         }
991
992         /*
993          * Release any bios held while the block was being provisioned.
994          * If we are processing a write bio that completely covers the block,
995          * we already processed it so can ignore it now when processing
996          * the bios in the cell.
997          */
998         if (bio) {
999                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1000                 bio_endio(bio, 0);
1001         } else {
1002                 inc_all_io_entry(tc->pool, m->cell->holder);
1003                 remap_and_issue(tc, m->cell->holder, m->data_block);
1004                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1005         }
1006
1007 out:
1008         list_del(&m->list);
1009         mempool_free(m, pool->mapping_pool);
1010 }
1011
1012 /*----------------------------------------------------------------*/
1013
1014 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1015 {
1016         struct thin_c *tc = m->tc;
1017         if (m->cell)
1018                 cell_defer_no_holder(tc, m->cell);
1019         mempool_free(m, tc->pool->mapping_pool);
1020 }
1021
1022 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1023 {
1024         bio_io_error(m->bio);
1025         free_discard_mapping(m);
1026 }
1027
1028 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1029 {
1030         bio_endio(m->bio, 0);
1031         free_discard_mapping(m);
1032 }
1033
1034 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1035 {
1036         int r;
1037         struct thin_c *tc = m->tc;
1038
1039         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1040         if (r) {
1041                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1042                 bio_io_error(m->bio);
1043         } else
1044                 bio_endio(m->bio, 0);
1045
1046         cell_defer_no_holder(tc, m->cell);
1047         mempool_free(m, tc->pool->mapping_pool);
1048 }
1049
1050 static int passdown_double_checking_shared_status(struct dm_thin_new_mapping *m)
1051 {
1052         /*
1053          * We've already unmapped this range of blocks, but before we
1054          * passdown we have to check that these blocks are now unused.
1055          */
1056         int r;
1057         bool used = true;
1058         struct thin_c *tc = m->tc;
1059         struct pool *pool = tc->pool;
1060         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1061
1062         while (b != end) {
1063                 /* find start of unmapped run */
1064                 for (; b < end; b++) {
1065                         r = dm_pool_block_is_used(pool->pmd, b, &used);
1066                         if (r)
1067                                 return r;
1068
1069                         if (!used)
1070                                 break;
1071                 }
1072
1073                 if (b == end)
1074                         break;
1075
1076                 /* find end of run */
1077                 for (e = b + 1; e != end; e++) {
1078                         r = dm_pool_block_is_used(pool->pmd, e, &used);
1079                         if (r)
1080                                 return r;
1081
1082                         if (used)
1083                                 break;
1084                 }
1085
1086                 r = issue_discard(tc, b, e, m->bio);
1087                 if (r)
1088                         return r;
1089
1090                 b = e;
1091         }
1092
1093         return 0;
1094 }
1095
1096 static void process_prepared_discard_passdown(struct dm_thin_new_mapping *m)
1097 {
1098         int r;
1099         struct thin_c *tc = m->tc;
1100         struct pool *pool = tc->pool;
1101
1102         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1103         if (r)
1104                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1105
1106         else if (m->maybe_shared)
1107                 r = passdown_double_checking_shared_status(m);
1108         else
1109                 r = issue_discard(tc, m->data_block, m->data_block + (m->virt_end - m->virt_begin), m->bio);
1110
1111         /*
1112          * Even if r is set, there could be sub discards in flight that we
1113          * need to wait for.
1114          */
1115         bio_endio(m->bio, r);
1116         cell_defer_no_holder(tc, m->cell);
1117         mempool_free(m, pool->mapping_pool);
1118 }
1119
1120 static void process_prepared(struct pool *pool, struct list_head *head,
1121                              process_mapping_fn *fn)
1122 {
1123         unsigned long flags;
1124         struct list_head maps;
1125         struct dm_thin_new_mapping *m, *tmp;
1126
1127         INIT_LIST_HEAD(&maps);
1128         spin_lock_irqsave(&pool->lock, flags);
1129         list_splice_init(head, &maps);
1130         spin_unlock_irqrestore(&pool->lock, flags);
1131
1132         list_for_each_entry_safe(m, tmp, &maps, list)
1133                 (*fn)(m);
1134 }
1135
1136 /*
1137  * Deferred bio jobs.
1138  */
1139 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1140 {
1141         return bio->bi_iter.bi_size ==
1142                 (pool->sectors_per_block << SECTOR_SHIFT);
1143 }
1144
1145 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1146 {
1147         return (bio_data_dir(bio) == WRITE) &&
1148                 io_overlaps_block(pool, bio);
1149 }
1150
1151 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1152                                bio_end_io_t *fn)
1153 {
1154         *save = bio->bi_end_io;
1155         bio->bi_end_io = fn;
1156 }
1157
1158 static int ensure_next_mapping(struct pool *pool)
1159 {
1160         if (pool->next_mapping)
1161                 return 0;
1162
1163         pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1164
1165         return pool->next_mapping ? 0 : -ENOMEM;
1166 }
1167
1168 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1169 {
1170         struct dm_thin_new_mapping *m = pool->next_mapping;
1171
1172         BUG_ON(!pool->next_mapping);
1173
1174         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1175         INIT_LIST_HEAD(&m->list);
1176         m->bio = NULL;
1177
1178         pool->next_mapping = NULL;
1179
1180         return m;
1181 }
1182
1183 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1184                     sector_t begin, sector_t end)
1185 {
1186         int r;
1187         struct dm_io_region to;
1188
1189         to.bdev = tc->pool_dev->bdev;
1190         to.sector = begin;
1191         to.count = end - begin;
1192
1193         r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1194         if (r < 0) {
1195                 DMERR_LIMIT("dm_kcopyd_zero() failed");
1196                 copy_complete(1, 1, m);
1197         }
1198 }
1199
1200 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1201                                       dm_block_t data_begin,
1202                                       struct dm_thin_new_mapping *m)
1203 {
1204         struct pool *pool = tc->pool;
1205         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1206
1207         h->overwrite_mapping = m;
1208         m->bio = bio;
1209         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1210         inc_all_io_entry(pool, bio);
1211         remap_and_issue(tc, bio, data_begin);
1212 }
1213
1214 /*
1215  * A partial copy also needs to zero the uncopied region.
1216  */
1217 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1218                           struct dm_dev *origin, dm_block_t data_origin,
1219                           dm_block_t data_dest,
1220                           struct dm_bio_prison_cell *cell, struct bio *bio,
1221                           sector_t len)
1222 {
1223         int r;
1224         struct pool *pool = tc->pool;
1225         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1226
1227         m->tc = tc;
1228         m->virt_begin = virt_block;
1229         m->virt_end = virt_block + 1u;
1230         m->data_block = data_dest;
1231         m->cell = cell;
1232
1233         /*
1234          * quiesce action + copy action + an extra reference held for the
1235          * duration of this function (we may need to inc later for a
1236          * partial zero).
1237          */
1238         atomic_set(&m->prepare_actions, 3);
1239
1240         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1241                 complete_mapping_preparation(m); /* already quiesced */
1242
1243         /*
1244          * IO to pool_dev remaps to the pool target's data_dev.
1245          *
1246          * If the whole block of data is being overwritten, we can issue the
1247          * bio immediately. Otherwise we use kcopyd to clone the data first.
1248          */
1249         if (io_overwrites_block(pool, bio))
1250                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1251         else {
1252                 struct dm_io_region from, to;
1253
1254                 from.bdev = origin->bdev;
1255                 from.sector = data_origin * pool->sectors_per_block;
1256                 from.count = len;
1257
1258                 to.bdev = tc->pool_dev->bdev;
1259                 to.sector = data_dest * pool->sectors_per_block;
1260                 to.count = len;
1261
1262                 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1263                                    0, copy_complete, m);
1264                 if (r < 0) {
1265                         DMERR_LIMIT("dm_kcopyd_copy() failed");
1266                         copy_complete(1, 1, m);
1267
1268                         /*
1269                          * We allow the zero to be issued, to simplify the
1270                          * error path.  Otherwise we'd need to start
1271                          * worrying about decrementing the prepare_actions
1272                          * counter.
1273                          */
1274                 }
1275
1276                 /*
1277                  * Do we need to zero a tail region?
1278                  */
1279                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1280                         atomic_inc(&m->prepare_actions);
1281                         ll_zero(tc, m,
1282                                 data_dest * pool->sectors_per_block + len,
1283                                 (data_dest + 1) * pool->sectors_per_block);
1284                 }
1285         }
1286
1287         complete_mapping_preparation(m); /* drop our ref */
1288 }
1289
1290 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1291                                    dm_block_t data_origin, dm_block_t data_dest,
1292                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1293 {
1294         schedule_copy(tc, virt_block, tc->pool_dev,
1295                       data_origin, data_dest, cell, bio,
1296                       tc->pool->sectors_per_block);
1297 }
1298
1299 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1300                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1301                           struct bio *bio)
1302 {
1303         struct pool *pool = tc->pool;
1304         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1305
1306         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1307         m->tc = tc;
1308         m->virt_begin = virt_block;
1309         m->virt_end = virt_block + 1u;
1310         m->data_block = data_block;
1311         m->cell = cell;
1312
1313         /*
1314          * If the whole block of data is being overwritten or we are not
1315          * zeroing pre-existing data, we can issue the bio immediately.
1316          * Otherwise we use kcopyd to zero the data first.
1317          */
1318         if (pool->pf.zero_new_blocks) {
1319                 if (io_overwrites_block(pool, bio))
1320                         remap_and_issue_overwrite(tc, bio, data_block, m);
1321                 else
1322                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1323                                 (data_block + 1) * pool->sectors_per_block);
1324         } else
1325                 process_prepared_mapping(m);
1326 }
1327
1328 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1329                                    dm_block_t data_dest,
1330                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1331 {
1332         struct pool *pool = tc->pool;
1333         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1334         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1335
1336         if (virt_block_end <= tc->origin_size)
1337                 schedule_copy(tc, virt_block, tc->origin_dev,
1338                               virt_block, data_dest, cell, bio,
1339                               pool->sectors_per_block);
1340
1341         else if (virt_block_begin < tc->origin_size)
1342                 schedule_copy(tc, virt_block, tc->origin_dev,
1343                               virt_block, data_dest, cell, bio,
1344                               tc->origin_size - virt_block_begin);
1345
1346         else
1347                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1348 }
1349
1350 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1351
1352 static void check_for_space(struct pool *pool)
1353 {
1354         int r;
1355         dm_block_t nr_free;
1356
1357         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1358                 return;
1359
1360         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1361         if (r)
1362                 return;
1363
1364         if (nr_free)
1365                 set_pool_mode(pool, PM_WRITE);
1366 }
1367
1368 /*
1369  * A non-zero return indicates read_only or fail_io mode.
1370  * Many callers don't care about the return value.
1371  */
1372 static int commit(struct pool *pool)
1373 {
1374         int r;
1375
1376         if (get_pool_mode(pool) >= PM_READ_ONLY)
1377                 return -EINVAL;
1378
1379         r = dm_pool_commit_metadata(pool->pmd);
1380         if (r)
1381                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1382         else
1383                 check_for_space(pool);
1384
1385         return r;
1386 }
1387
1388 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1389 {
1390         unsigned long flags;
1391
1392         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1393                 DMWARN("%s: reached low water mark for data device: sending event.",
1394                        dm_device_name(pool->pool_md));
1395                 spin_lock_irqsave(&pool->lock, flags);
1396                 pool->low_water_triggered = true;
1397                 spin_unlock_irqrestore(&pool->lock, flags);
1398                 dm_table_event(pool->ti->table);
1399         }
1400 }
1401
1402 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1403 {
1404         int r;
1405         dm_block_t free_blocks;
1406         struct pool *pool = tc->pool;
1407
1408         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1409                 return -EINVAL;
1410
1411         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1412         if (r) {
1413                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1414                 return r;
1415         }
1416
1417         check_low_water_mark(pool, free_blocks);
1418
1419         if (!free_blocks) {
1420                 /*
1421                  * Try to commit to see if that will free up some
1422                  * more space.
1423                  */
1424                 r = commit(pool);
1425                 if (r)
1426                         return r;
1427
1428                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1429                 if (r) {
1430                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1431                         return r;
1432                 }
1433
1434                 if (!free_blocks) {
1435                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1436                         return -ENOSPC;
1437                 }
1438         }
1439
1440         r = dm_pool_alloc_data_block(pool->pmd, result);
1441         if (r) {
1442                 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1443                 return r;
1444         }
1445
1446         return 0;
1447 }
1448
1449 /*
1450  * If we have run out of space, queue bios until the device is
1451  * resumed, presumably after having been reloaded with more space.
1452  */
1453 static void retry_on_resume(struct bio *bio)
1454 {
1455         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1456         struct thin_c *tc = h->tc;
1457         unsigned long flags;
1458
1459         spin_lock_irqsave(&tc->lock, flags);
1460         bio_list_add(&tc->retry_on_resume_list, bio);
1461         spin_unlock_irqrestore(&tc->lock, flags);
1462 }
1463
1464 static int should_error_unserviceable_bio(struct pool *pool)
1465 {
1466         enum pool_mode m = get_pool_mode(pool);
1467
1468         switch (m) {
1469         case PM_WRITE:
1470                 /* Shouldn't get here */
1471                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1472                 return -EIO;
1473
1474         case PM_OUT_OF_DATA_SPACE:
1475                 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1476
1477         case PM_READ_ONLY:
1478         case PM_FAIL:
1479                 return -EIO;
1480         default:
1481                 /* Shouldn't get here */
1482                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1483                 return -EIO;
1484         }
1485 }
1486
1487 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1488 {
1489         int error = should_error_unserviceable_bio(pool);
1490
1491         if (error)
1492                 bio_endio(bio, error);
1493         else
1494                 retry_on_resume(bio);
1495 }
1496
1497 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1498 {
1499         struct bio *bio;
1500         struct bio_list bios;
1501         int error;
1502
1503         error = should_error_unserviceable_bio(pool);
1504         if (error) {
1505                 cell_error_with_code(pool, cell, error);
1506                 return;
1507         }
1508
1509         bio_list_init(&bios);
1510         cell_release(pool, cell, &bios);
1511
1512         while ((bio = bio_list_pop(&bios)))
1513                 retry_on_resume(bio);
1514 }
1515
1516 static void process_discard_cell_no_passdown(struct thin_c *tc,
1517                                              struct dm_bio_prison_cell *virt_cell)
1518 {
1519         struct pool *pool = tc->pool;
1520         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1521
1522         /*
1523          * We don't need to lock the data blocks, since there's no
1524          * passdown.  We only lock data blocks for allocation and breaking sharing.
1525          */
1526         m->tc = tc;
1527         m->virt_begin = virt_cell->key.block_begin;
1528         m->virt_end = virt_cell->key.block_end;
1529         m->cell = virt_cell;
1530         m->bio = virt_cell->holder;
1531
1532         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1533                 pool->process_prepared_discard(m);
1534 }
1535
1536 /*
1537  * FIXME: DM local hack to defer parent bios's end_io until we
1538  * _know_ all chained sub range discard bios have completed.
1539  * Will go away once late bio splitting lands upstream!
1540  */
1541 static inline void __bio_inc_remaining(struct bio *bio)
1542 {
1543         bio->bi_flags |= (1 << BIO_CHAIN);
1544         smp_mb__before_atomic();
1545         atomic_inc(&bio->__bi_remaining);
1546 }
1547
1548 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1549                                  struct bio *bio)
1550 {
1551         struct pool *pool = tc->pool;
1552
1553         int r;
1554         bool maybe_shared;
1555         struct dm_cell_key data_key;
1556         struct dm_bio_prison_cell *data_cell;
1557         struct dm_thin_new_mapping *m;
1558         dm_block_t virt_begin, virt_end, data_begin;
1559
1560         while (begin != end) {
1561                 r = ensure_next_mapping(pool);
1562                 if (r)
1563                         /* we did our best */
1564                         return;
1565
1566                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1567                                               &data_begin, &maybe_shared);
1568                 if (r)
1569                         /*
1570                          * Silently fail, letting any mappings we've
1571                          * created complete.
1572                          */
1573                         break;
1574
1575                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1576                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1577                         /* contention, we'll give up with this range */
1578                         begin = virt_end;
1579                         continue;
1580                 }
1581
1582                 /*
1583                  * IO may still be going to the destination block.  We must
1584                  * quiesce before we can do the removal.
1585                  */
1586                 m = get_next_mapping(pool);
1587                 m->tc = tc;
1588                 m->maybe_shared = maybe_shared;
1589                 m->virt_begin = virt_begin;
1590                 m->virt_end = virt_end;
1591                 m->data_block = data_begin;
1592                 m->cell = data_cell;
1593                 m->bio = bio;
1594
1595                 /*
1596                  * The parent bio must not complete before sub discard bios are
1597                  * chained to it (see __blkdev_issue_discard_async's bio_chain)!
1598                  *
1599                  * This per-mapping bi_remaining increment is paired with
1600                  * the implicit decrement that occurs via bio_endio() in
1601                  * process_prepared_discard_{passdown,no_passdown}.
1602                  */
1603                 __bio_inc_remaining(bio);
1604                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1605                         pool->process_prepared_discard(m);
1606
1607                 begin = virt_end;
1608         }
1609 }
1610
1611 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1612 {
1613         struct bio *bio = virt_cell->holder;
1614         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1615
1616         /*
1617          * The virt_cell will only get freed once the origin bio completes.
1618          * This means it will remain locked while all the individual
1619          * passdown bios are in flight.
1620          */
1621         h->cell = virt_cell;
1622         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1623
1624         /*
1625          * We complete the bio now, knowing that the bi_remaining field
1626          * will prevent completion until the sub range discards have
1627          * completed.
1628          */
1629         bio_endio(bio, 0);
1630 }
1631
1632 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1633 {
1634         dm_block_t begin, end;
1635         struct dm_cell_key virt_key;
1636         struct dm_bio_prison_cell *virt_cell;
1637
1638         get_bio_block_range(tc, bio, &begin, &end);
1639         if (begin == end) {
1640                 /*
1641                  * The discard covers less than a block.
1642                  */
1643                 bio_endio(bio, 0);
1644                 return;
1645         }
1646
1647         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1648         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1649                 /*
1650                  * Potential starvation issue: We're relying on the
1651                  * fs/application being well behaved, and not trying to
1652                  * send IO to a region at the same time as discarding it.
1653                  * If they do this persistently then it's possible this
1654                  * cell will never be granted.
1655                  */
1656                 return;
1657
1658         tc->pool->process_discard_cell(tc, virt_cell);
1659 }
1660
1661 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1662                           struct dm_cell_key *key,
1663                           struct dm_thin_lookup_result *lookup_result,
1664                           struct dm_bio_prison_cell *cell)
1665 {
1666         int r;
1667         dm_block_t data_block;
1668         struct pool *pool = tc->pool;
1669
1670         r = alloc_data_block(tc, &data_block);
1671         switch (r) {
1672         case 0:
1673                 schedule_internal_copy(tc, block, lookup_result->block,
1674                                        data_block, cell, bio);
1675                 break;
1676
1677         case -ENOSPC:
1678                 retry_bios_on_resume(pool, cell);
1679                 break;
1680
1681         default:
1682                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1683                             __func__, r);
1684                 cell_error(pool, cell);
1685                 break;
1686         }
1687 }
1688
1689 static void __remap_and_issue_shared_cell(void *context,
1690                                           struct dm_bio_prison_cell *cell)
1691 {
1692         struct remap_info *info = context;
1693         struct bio *bio;
1694
1695         while ((bio = bio_list_pop(&cell->bios))) {
1696                 if ((bio_data_dir(bio) == WRITE) ||
1697                     (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)))
1698                         bio_list_add(&info->defer_bios, bio);
1699                 else {
1700                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1701
1702                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1703                         inc_all_io_entry(info->tc->pool, bio);
1704                         bio_list_add(&info->issue_bios, bio);
1705                 }
1706         }
1707 }
1708
1709 static void remap_and_issue_shared_cell(struct thin_c *tc,
1710                                         struct dm_bio_prison_cell *cell,
1711                                         dm_block_t block)
1712 {
1713         struct bio *bio;
1714         struct remap_info info;
1715
1716         info.tc = tc;
1717         bio_list_init(&info.defer_bios);
1718         bio_list_init(&info.issue_bios);
1719
1720         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1721                            &info, cell);
1722
1723         while ((bio = bio_list_pop(&info.defer_bios)))
1724                 thin_defer_bio(tc, bio);
1725
1726         while ((bio = bio_list_pop(&info.issue_bios)))
1727                 remap_and_issue(tc, bio, block);
1728 }
1729
1730 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1731                                dm_block_t block,
1732                                struct dm_thin_lookup_result *lookup_result,
1733                                struct dm_bio_prison_cell *virt_cell)
1734 {
1735         struct dm_bio_prison_cell *data_cell;
1736         struct pool *pool = tc->pool;
1737         struct dm_cell_key key;
1738
1739         /*
1740          * If cell is already occupied, then sharing is already in the process
1741          * of being broken so we have nothing further to do here.
1742          */
1743         build_data_key(tc->td, lookup_result->block, &key);
1744         if (bio_detain(pool, &key, bio, &data_cell)) {
1745                 cell_defer_no_holder(tc, virt_cell);
1746                 return;
1747         }
1748
1749         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1750                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1751                 cell_defer_no_holder(tc, virt_cell);
1752         } else {
1753                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1754
1755                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1756                 inc_all_io_entry(pool, bio);
1757                 remap_and_issue(tc, bio, lookup_result->block);
1758
1759                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1760                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1761         }
1762 }
1763
1764 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1765                             struct dm_bio_prison_cell *cell)
1766 {
1767         int r;
1768         dm_block_t data_block;
1769         struct pool *pool = tc->pool;
1770
1771         /*
1772          * Remap empty bios (flushes) immediately, without provisioning.
1773          */
1774         if (!bio->bi_iter.bi_size) {
1775                 inc_all_io_entry(pool, bio);
1776                 cell_defer_no_holder(tc, cell);
1777
1778                 remap_and_issue(tc, bio, 0);
1779                 return;
1780         }
1781
1782         /*
1783          * Fill read bios with zeroes and complete them immediately.
1784          */
1785         if (bio_data_dir(bio) == READ) {
1786                 zero_fill_bio(bio);
1787                 cell_defer_no_holder(tc, cell);
1788                 bio_endio(bio, 0);
1789                 return;
1790         }
1791
1792         r = alloc_data_block(tc, &data_block);
1793         switch (r) {
1794         case 0:
1795                 if (tc->origin_dev)
1796                         schedule_external_copy(tc, block, data_block, cell, bio);
1797                 else
1798                         schedule_zero(tc, block, data_block, cell, bio);
1799                 break;
1800
1801         case -ENOSPC:
1802                 retry_bios_on_resume(pool, cell);
1803                 break;
1804
1805         default:
1806                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1807                             __func__, r);
1808                 cell_error(pool, cell);
1809                 break;
1810         }
1811 }
1812
1813 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1814 {
1815         int r;
1816         struct pool *pool = tc->pool;
1817         struct bio *bio = cell->holder;
1818         dm_block_t block = get_bio_block(tc, bio);
1819         struct dm_thin_lookup_result lookup_result;
1820
1821         if (tc->requeue_mode) {
1822                 cell_requeue(pool, cell);
1823                 return;
1824         }
1825
1826         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1827         switch (r) {
1828         case 0:
1829                 if (lookup_result.shared)
1830                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1831                 else {
1832                         inc_all_io_entry(pool, bio);
1833                         remap_and_issue(tc, bio, lookup_result.block);
1834                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1835                 }
1836                 break;
1837
1838         case -ENODATA:
1839                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1840                         inc_all_io_entry(pool, bio);
1841                         cell_defer_no_holder(tc, cell);
1842
1843                         if (bio_end_sector(bio) <= tc->origin_size)
1844                                 remap_to_origin_and_issue(tc, bio);
1845
1846                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1847                                 zero_fill_bio(bio);
1848                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1849                                 remap_to_origin_and_issue(tc, bio);
1850
1851                         } else {
1852                                 zero_fill_bio(bio);
1853                                 bio_endio(bio, 0);
1854                         }
1855                 } else
1856                         provision_block(tc, bio, block, cell);
1857                 break;
1858
1859         default:
1860                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1861                             __func__, r);
1862                 cell_defer_no_holder(tc, cell);
1863                 bio_io_error(bio);
1864                 break;
1865         }
1866 }
1867
1868 static void process_bio(struct thin_c *tc, struct bio *bio)
1869 {
1870         struct pool *pool = tc->pool;
1871         dm_block_t block = get_bio_block(tc, bio);
1872         struct dm_bio_prison_cell *cell;
1873         struct dm_cell_key key;
1874
1875         /*
1876          * If cell is already occupied, then the block is already
1877          * being provisioned so we have nothing further to do here.
1878          */
1879         build_virtual_key(tc->td, block, &key);
1880         if (bio_detain(pool, &key, bio, &cell))
1881                 return;
1882
1883         process_cell(tc, cell);
1884 }
1885
1886 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1887                                     struct dm_bio_prison_cell *cell)
1888 {
1889         int r;
1890         int rw = bio_data_dir(bio);
1891         dm_block_t block = get_bio_block(tc, bio);
1892         struct dm_thin_lookup_result lookup_result;
1893
1894         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1895         switch (r) {
1896         case 0:
1897                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1898                         handle_unserviceable_bio(tc->pool, bio);
1899                         if (cell)
1900                                 cell_defer_no_holder(tc, cell);
1901                 } else {
1902                         inc_all_io_entry(tc->pool, bio);
1903                         remap_and_issue(tc, bio, lookup_result.block);
1904                         if (cell)
1905                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1906                 }
1907                 break;
1908
1909         case -ENODATA:
1910                 if (cell)
1911                         cell_defer_no_holder(tc, cell);
1912                 if (rw != READ) {
1913                         handle_unserviceable_bio(tc->pool, bio);
1914                         break;
1915                 }
1916
1917                 if (tc->origin_dev) {
1918                         inc_all_io_entry(tc->pool, bio);
1919                         remap_to_origin_and_issue(tc, bio);
1920                         break;
1921                 }
1922
1923                 zero_fill_bio(bio);
1924                 bio_endio(bio, 0);
1925                 break;
1926
1927         default:
1928                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1929                             __func__, r);
1930                 if (cell)
1931                         cell_defer_no_holder(tc, cell);
1932                 bio_io_error(bio);
1933                 break;
1934         }
1935 }
1936
1937 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1938 {
1939         __process_bio_read_only(tc, bio, NULL);
1940 }
1941
1942 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1943 {
1944         __process_bio_read_only(tc, cell->holder, cell);
1945 }
1946
1947 static void process_bio_success(struct thin_c *tc, struct bio *bio)
1948 {
1949         bio_endio(bio, 0);
1950 }
1951
1952 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1953 {
1954         bio_io_error(bio);
1955 }
1956
1957 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1958 {
1959         cell_success(tc->pool, cell);
1960 }
1961
1962 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1963 {
1964         cell_error(tc->pool, cell);
1965 }
1966
1967 /*
1968  * FIXME: should we also commit due to size of transaction, measured in
1969  * metadata blocks?
1970  */
1971 static int need_commit_due_to_time(struct pool *pool)
1972 {
1973         return !time_in_range(jiffies, pool->last_commit_jiffies,
1974                               pool->last_commit_jiffies + COMMIT_PERIOD);
1975 }
1976
1977 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1978 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1979
1980 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
1981 {
1982         struct rb_node **rbp, *parent;
1983         struct dm_thin_endio_hook *pbd;
1984         sector_t bi_sector = bio->bi_iter.bi_sector;
1985
1986         rbp = &tc->sort_bio_list.rb_node;
1987         parent = NULL;
1988         while (*rbp) {
1989                 parent = *rbp;
1990                 pbd = thin_pbd(parent);
1991
1992                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
1993                         rbp = &(*rbp)->rb_left;
1994                 else
1995                         rbp = &(*rbp)->rb_right;
1996         }
1997
1998         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1999         rb_link_node(&pbd->rb_node, parent, rbp);
2000         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2001 }
2002
2003 static void __extract_sorted_bios(struct thin_c *tc)
2004 {
2005         struct rb_node *node;
2006         struct dm_thin_endio_hook *pbd;
2007         struct bio *bio;
2008
2009         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2010                 pbd = thin_pbd(node);
2011                 bio = thin_bio(pbd);
2012
2013                 bio_list_add(&tc->deferred_bio_list, bio);
2014                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2015         }
2016
2017         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2018 }
2019
2020 static void __sort_thin_deferred_bios(struct thin_c *tc)
2021 {
2022         struct bio *bio;
2023         struct bio_list bios;
2024
2025         bio_list_init(&bios);
2026         bio_list_merge(&bios, &tc->deferred_bio_list);
2027         bio_list_init(&tc->deferred_bio_list);
2028
2029         /* Sort deferred_bio_list using rb-tree */
2030         while ((bio = bio_list_pop(&bios)))
2031                 __thin_bio_rb_add(tc, bio);
2032
2033         /*
2034          * Transfer the sorted bios in sort_bio_list back to
2035          * deferred_bio_list to allow lockless submission of
2036          * all bios.
2037          */
2038         __extract_sorted_bios(tc);
2039 }
2040
2041 static void process_thin_deferred_bios(struct thin_c *tc)
2042 {
2043         struct pool *pool = tc->pool;
2044         unsigned long flags;
2045         struct bio *bio;
2046         struct bio_list bios;
2047         struct blk_plug plug;
2048         unsigned count = 0;
2049
2050         if (tc->requeue_mode) {
2051                 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2052                 return;
2053         }
2054
2055         bio_list_init(&bios);
2056
2057         spin_lock_irqsave(&tc->lock, flags);
2058
2059         if (bio_list_empty(&tc->deferred_bio_list)) {
2060                 spin_unlock_irqrestore(&tc->lock, flags);
2061                 return;
2062         }
2063
2064         __sort_thin_deferred_bios(tc);
2065
2066         bio_list_merge(&bios, &tc->deferred_bio_list);
2067         bio_list_init(&tc->deferred_bio_list);
2068
2069         spin_unlock_irqrestore(&tc->lock, flags);
2070
2071         blk_start_plug(&plug);
2072         while ((bio = bio_list_pop(&bios))) {
2073                 /*
2074                  * If we've got no free new_mapping structs, and processing
2075                  * this bio might require one, we pause until there are some
2076                  * prepared mappings to process.
2077                  */
2078                 if (ensure_next_mapping(pool)) {
2079                         spin_lock_irqsave(&tc->lock, flags);
2080                         bio_list_add(&tc->deferred_bio_list, bio);
2081                         bio_list_merge(&tc->deferred_bio_list, &bios);
2082                         spin_unlock_irqrestore(&tc->lock, flags);
2083                         break;
2084                 }
2085
2086                 if (bio->bi_rw & REQ_DISCARD)
2087                         pool->process_discard(tc, bio);
2088                 else
2089                         pool->process_bio(tc, bio);
2090
2091                 if ((count++ & 127) == 0) {
2092                         throttle_work_update(&pool->throttle);
2093                         dm_pool_issue_prefetches(pool->pmd);
2094                 }
2095         }
2096         blk_finish_plug(&plug);
2097 }
2098
2099 static int cmp_cells(const void *lhs, const void *rhs)
2100 {
2101         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2102         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2103
2104         BUG_ON(!lhs_cell->holder);
2105         BUG_ON(!rhs_cell->holder);
2106
2107         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2108                 return -1;
2109
2110         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2111                 return 1;
2112
2113         return 0;
2114 }
2115
2116 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2117 {
2118         unsigned count = 0;
2119         struct dm_bio_prison_cell *cell, *tmp;
2120
2121         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2122                 if (count >= CELL_SORT_ARRAY_SIZE)
2123                         break;
2124
2125                 pool->cell_sort_array[count++] = cell;
2126                 list_del(&cell->user_list);
2127         }
2128
2129         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2130
2131         return count;
2132 }
2133
2134 static void process_thin_deferred_cells(struct thin_c *tc)
2135 {
2136         struct pool *pool = tc->pool;
2137         unsigned long flags;
2138         struct list_head cells;
2139         struct dm_bio_prison_cell *cell;
2140         unsigned i, j, count;
2141
2142         INIT_LIST_HEAD(&cells);
2143
2144         spin_lock_irqsave(&tc->lock, flags);
2145         list_splice_init(&tc->deferred_cells, &cells);
2146         spin_unlock_irqrestore(&tc->lock, flags);
2147
2148         if (list_empty(&cells))
2149                 return;
2150
2151         do {
2152                 count = sort_cells(tc->pool, &cells);
2153
2154                 for (i = 0; i < count; i++) {
2155                         cell = pool->cell_sort_array[i];
2156                         BUG_ON(!cell->holder);
2157
2158                         /*
2159                          * If we've got no free new_mapping structs, and processing
2160                          * this bio might require one, we pause until there are some
2161                          * prepared mappings to process.
2162                          */
2163                         if (ensure_next_mapping(pool)) {
2164                                 for (j = i; j < count; j++)
2165                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2166
2167                                 spin_lock_irqsave(&tc->lock, flags);
2168                                 list_splice(&cells, &tc->deferred_cells);
2169                                 spin_unlock_irqrestore(&tc->lock, flags);
2170                                 return;
2171                         }
2172
2173                         if (cell->holder->bi_rw & REQ_DISCARD)
2174                                 pool->process_discard_cell(tc, cell);
2175                         else
2176                                 pool->process_cell(tc, cell);
2177                 }
2178         } while (!list_empty(&cells));
2179 }
2180
2181 static void thin_get(struct thin_c *tc);
2182 static void thin_put(struct thin_c *tc);
2183
2184 /*
2185  * We can't hold rcu_read_lock() around code that can block.  So we
2186  * find a thin with the rcu lock held; bump a refcount; then drop
2187  * the lock.
2188  */
2189 static struct thin_c *get_first_thin(struct pool *pool)
2190 {
2191         struct thin_c *tc = NULL;
2192
2193         rcu_read_lock();
2194         if (!list_empty(&pool->active_thins)) {
2195                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2196                 thin_get(tc);
2197         }
2198         rcu_read_unlock();
2199
2200         return tc;
2201 }
2202
2203 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2204 {
2205         struct thin_c *old_tc = tc;
2206
2207         rcu_read_lock();
2208         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2209                 thin_get(tc);
2210                 thin_put(old_tc);
2211                 rcu_read_unlock();
2212                 return tc;
2213         }
2214         thin_put(old_tc);
2215         rcu_read_unlock();
2216
2217         return NULL;
2218 }
2219
2220 static void process_deferred_bios(struct pool *pool)
2221 {
2222         unsigned long flags;
2223         struct bio *bio;
2224         struct bio_list bios;
2225         struct thin_c *tc;
2226
2227         tc = get_first_thin(pool);
2228         while (tc) {
2229                 process_thin_deferred_cells(tc);
2230                 process_thin_deferred_bios(tc);
2231                 tc = get_next_thin(pool, tc);
2232         }
2233
2234         /*
2235          * If there are any deferred flush bios, we must commit
2236          * the metadata before issuing them.
2237          */
2238         bio_list_init(&bios);
2239         spin_lock_irqsave(&pool->lock, flags);
2240         bio_list_merge(&bios, &pool->deferred_flush_bios);
2241         bio_list_init(&pool->deferred_flush_bios);
2242         spin_unlock_irqrestore(&pool->lock, flags);
2243
2244         if (bio_list_empty(&bios) &&
2245             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2246                 return;
2247
2248         if (commit(pool)) {
2249                 while ((bio = bio_list_pop(&bios)))
2250                         bio_io_error(bio);
2251                 return;
2252         }
2253         pool->last_commit_jiffies = jiffies;
2254
2255         while ((bio = bio_list_pop(&bios)))
2256                 generic_make_request(bio);
2257 }
2258
2259 static void do_worker(struct work_struct *ws)
2260 {
2261         struct pool *pool = container_of(ws, struct pool, worker);
2262
2263         throttle_work_start(&pool->throttle);
2264         dm_pool_issue_prefetches(pool->pmd);
2265         throttle_work_update(&pool->throttle);
2266         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2267         throttle_work_update(&pool->throttle);
2268         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2269         throttle_work_update(&pool->throttle);
2270         process_deferred_bios(pool);
2271         throttle_work_complete(&pool->throttle);
2272 }
2273
2274 /*
2275  * We want to commit periodically so that not too much
2276  * unwritten data builds up.
2277  */
2278 static void do_waker(struct work_struct *ws)
2279 {
2280         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2281         wake_worker(pool);
2282         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2283 }
2284
2285 static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2286
2287 /*
2288  * We're holding onto IO to allow userland time to react.  After the
2289  * timeout either the pool will have been resized (and thus back in
2290  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2291  */
2292 static void do_no_space_timeout(struct work_struct *ws)
2293 {
2294         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2295                                          no_space_timeout);
2296
2297         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2298                 pool->pf.error_if_no_space = true;
2299                 notify_of_pool_mode_change_to_oods(pool);
2300                 error_retry_list(pool);
2301         }
2302 }
2303
2304 /*----------------------------------------------------------------*/
2305
2306 struct pool_work {
2307         struct work_struct worker;
2308         struct completion complete;
2309 };
2310
2311 static struct pool_work *to_pool_work(struct work_struct *ws)
2312 {
2313         return container_of(ws, struct pool_work, worker);
2314 }
2315
2316 static void pool_work_complete(struct pool_work *pw)
2317 {
2318         complete(&pw->complete);
2319 }
2320
2321 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2322                            void (*fn)(struct work_struct *))
2323 {
2324         INIT_WORK_ONSTACK(&pw->worker, fn);
2325         init_completion(&pw->complete);
2326         queue_work(pool->wq, &pw->worker);
2327         wait_for_completion(&pw->complete);
2328 }
2329
2330 /*----------------------------------------------------------------*/
2331
2332 struct noflush_work {
2333         struct pool_work pw;
2334         struct thin_c *tc;
2335 };
2336
2337 static struct noflush_work *to_noflush(struct work_struct *ws)
2338 {
2339         return container_of(to_pool_work(ws), struct noflush_work, pw);
2340 }
2341
2342 static void do_noflush_start(struct work_struct *ws)
2343 {
2344         struct noflush_work *w = to_noflush(ws);
2345         w->tc->requeue_mode = true;
2346         requeue_io(w->tc);
2347         pool_work_complete(&w->pw);
2348 }
2349
2350 static void do_noflush_stop(struct work_struct *ws)
2351 {
2352         struct noflush_work *w = to_noflush(ws);
2353         w->tc->requeue_mode = false;
2354         pool_work_complete(&w->pw);
2355 }
2356
2357 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2358 {
2359         struct noflush_work w;
2360
2361         w.tc = tc;
2362         pool_work_wait(&w.pw, tc->pool, fn);
2363 }
2364
2365 /*----------------------------------------------------------------*/
2366
2367 static enum pool_mode get_pool_mode(struct pool *pool)
2368 {
2369         return pool->pf.mode;
2370 }
2371
2372 static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2373 {
2374         dm_table_event(pool->ti->table);
2375         DMINFO("%s: switching pool to %s mode",
2376                dm_device_name(pool->pool_md), new_mode);
2377 }
2378
2379 static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2380 {
2381         if (!pool->pf.error_if_no_space)
2382                 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2383         else
2384                 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2385 }
2386
2387 static bool passdown_enabled(struct pool_c *pt)
2388 {
2389         return pt->adjusted_pf.discard_passdown;
2390 }
2391
2392 static void set_discard_callbacks(struct pool *pool)
2393 {
2394         struct pool_c *pt = pool->ti->private;
2395
2396         if (passdown_enabled(pt)) {
2397                 pool->process_discard_cell = process_discard_cell_passdown;
2398                 pool->process_prepared_discard = process_prepared_discard_passdown;
2399         } else {
2400                 pool->process_discard_cell = process_discard_cell_no_passdown;
2401                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2402         }
2403 }
2404
2405 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2406 {
2407         struct pool_c *pt = pool->ti->private;
2408         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2409         enum pool_mode old_mode = get_pool_mode(pool);
2410         unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2411
2412         /*
2413          * Never allow the pool to transition to PM_WRITE mode if user
2414          * intervention is required to verify metadata and data consistency.
2415          */
2416         if (new_mode == PM_WRITE && needs_check) {
2417                 DMERR("%s: unable to switch pool to write mode until repaired.",
2418                       dm_device_name(pool->pool_md));
2419                 if (old_mode != new_mode)
2420                         new_mode = old_mode;
2421                 else
2422                         new_mode = PM_READ_ONLY;
2423         }
2424         /*
2425          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2426          * not going to recover without a thin_repair.  So we never let the
2427          * pool move out of the old mode.
2428          */
2429         if (old_mode == PM_FAIL)
2430                 new_mode = old_mode;
2431
2432         switch (new_mode) {
2433         case PM_FAIL:
2434                 if (old_mode != new_mode)
2435                         notify_of_pool_mode_change(pool, "failure");
2436                 dm_pool_metadata_read_only(pool->pmd);
2437                 pool->process_bio = process_bio_fail;
2438                 pool->process_discard = process_bio_fail;
2439                 pool->process_cell = process_cell_fail;
2440                 pool->process_discard_cell = process_cell_fail;
2441                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2442                 pool->process_prepared_discard = process_prepared_discard_fail;
2443
2444                 error_retry_list(pool);
2445                 break;
2446
2447         case PM_READ_ONLY:
2448                 if (old_mode != new_mode)
2449                         notify_of_pool_mode_change(pool, "read-only");
2450                 dm_pool_metadata_read_only(pool->pmd);
2451                 pool->process_bio = process_bio_read_only;
2452                 pool->process_discard = process_bio_success;
2453                 pool->process_cell = process_cell_read_only;
2454                 pool->process_discard_cell = process_cell_success;
2455                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2456                 pool->process_prepared_discard = process_prepared_discard_success;
2457
2458                 error_retry_list(pool);
2459                 break;
2460
2461         case PM_OUT_OF_DATA_SPACE:
2462                 /*
2463                  * Ideally we'd never hit this state; the low water mark
2464                  * would trigger userland to extend the pool before we
2465                  * completely run out of data space.  However, many small
2466                  * IOs to unprovisioned space can consume data space at an
2467                  * alarming rate.  Adjust your low water mark if you're
2468                  * frequently seeing this mode.
2469                  */
2470                 if (old_mode != new_mode)
2471                         notify_of_pool_mode_change_to_oods(pool);
2472                 pool->process_bio = process_bio_read_only;
2473                 pool->process_discard = process_discard_bio;
2474                 pool->process_cell = process_cell_read_only;
2475                 pool->process_prepared_mapping = process_prepared_mapping;
2476                 set_discard_callbacks(pool);
2477
2478                 if (!pool->pf.error_if_no_space && no_space_timeout)
2479                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2480                 break;
2481
2482         case PM_WRITE:
2483                 if (old_mode != new_mode)
2484                         notify_of_pool_mode_change(pool, "write");
2485                 dm_pool_metadata_read_write(pool->pmd);
2486                 pool->process_bio = process_bio;
2487                 pool->process_discard = process_discard_bio;
2488                 pool->process_cell = process_cell;
2489                 pool->process_prepared_mapping = process_prepared_mapping;
2490                 set_discard_callbacks(pool);
2491                 break;
2492         }
2493
2494         pool->pf.mode = new_mode;
2495         /*
2496          * The pool mode may have changed, sync it so bind_control_target()
2497          * doesn't cause an unexpected mode transition on resume.
2498          */
2499         pt->adjusted_pf.mode = new_mode;
2500 }
2501
2502 static void abort_transaction(struct pool *pool)
2503 {
2504         const char *dev_name = dm_device_name(pool->pool_md);
2505
2506         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2507         if (dm_pool_abort_metadata(pool->pmd)) {
2508                 DMERR("%s: failed to abort metadata transaction", dev_name);
2509                 set_pool_mode(pool, PM_FAIL);
2510         }
2511
2512         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2513                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2514                 set_pool_mode(pool, PM_FAIL);
2515         }
2516 }
2517
2518 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2519 {
2520         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2521                     dm_device_name(pool->pool_md), op, r);
2522
2523         abort_transaction(pool);
2524         set_pool_mode(pool, PM_READ_ONLY);
2525 }
2526
2527 /*----------------------------------------------------------------*/
2528
2529 /*
2530  * Mapping functions.
2531  */
2532
2533 /*
2534  * Called only while mapping a thin bio to hand it over to the workqueue.
2535  */
2536 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2537 {
2538         unsigned long flags;
2539         struct pool *pool = tc->pool;
2540
2541         spin_lock_irqsave(&tc->lock, flags);
2542         bio_list_add(&tc->deferred_bio_list, bio);
2543         spin_unlock_irqrestore(&tc->lock, flags);
2544
2545         wake_worker(pool);
2546 }
2547
2548 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2549 {
2550         struct pool *pool = tc->pool;
2551
2552         throttle_lock(&pool->throttle);
2553         thin_defer_bio(tc, bio);
2554         throttle_unlock(&pool->throttle);
2555 }
2556
2557 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2558 {
2559         unsigned long flags;
2560         struct pool *pool = tc->pool;
2561
2562         throttle_lock(&pool->throttle);
2563         spin_lock_irqsave(&tc->lock, flags);
2564         list_add_tail(&cell->user_list, &tc->deferred_cells);
2565         spin_unlock_irqrestore(&tc->lock, flags);
2566         throttle_unlock(&pool->throttle);
2567
2568         wake_worker(pool);
2569 }
2570
2571 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2572 {
2573         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2574
2575         h->tc = tc;
2576         h->shared_read_entry = NULL;
2577         h->all_io_entry = NULL;
2578         h->overwrite_mapping = NULL;
2579         h->cell = NULL;
2580 }
2581
2582 /*
2583  * Non-blocking function called from the thin target's map function.
2584  */
2585 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2586 {
2587         int r;
2588         struct thin_c *tc = ti->private;
2589         dm_block_t block = get_bio_block(tc, bio);
2590         struct dm_thin_device *td = tc->td;
2591         struct dm_thin_lookup_result result;
2592         struct dm_bio_prison_cell *virt_cell, *data_cell;
2593         struct dm_cell_key key;
2594
2595         thin_hook_bio(tc, bio);
2596
2597         if (tc->requeue_mode) {
2598                 bio_endio(bio, DM_ENDIO_REQUEUE);
2599                 return DM_MAPIO_SUBMITTED;
2600         }
2601
2602         if (get_pool_mode(tc->pool) == PM_FAIL) {
2603                 bio_io_error(bio);
2604                 return DM_MAPIO_SUBMITTED;
2605         }
2606
2607         if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
2608                 thin_defer_bio_with_throttle(tc, bio);
2609                 return DM_MAPIO_SUBMITTED;
2610         }
2611
2612         /*
2613          * We must hold the virtual cell before doing the lookup, otherwise
2614          * there's a race with discard.
2615          */
2616         build_virtual_key(tc->td, block, &key);
2617         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2618                 return DM_MAPIO_SUBMITTED;
2619
2620         r = dm_thin_find_block(td, block, 0, &result);
2621
2622         /*
2623          * Note that we defer readahead too.
2624          */
2625         switch (r) {
2626         case 0:
2627                 if (unlikely(result.shared)) {
2628                         /*
2629                          * We have a race condition here between the
2630                          * result.shared value returned by the lookup and
2631                          * snapshot creation, which may cause new
2632                          * sharing.
2633                          *
2634                          * To avoid this always quiesce the origin before
2635                          * taking the snap.  You want to do this anyway to
2636                          * ensure a consistent application view
2637                          * (i.e. lockfs).
2638                          *
2639                          * More distant ancestors are irrelevant. The
2640                          * shared flag will be set in their case.
2641                          */
2642                         thin_defer_cell(tc, virt_cell);
2643                         return DM_MAPIO_SUBMITTED;
2644                 }
2645
2646                 build_data_key(tc->td, result.block, &key);
2647                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2648                         cell_defer_no_holder(tc, virt_cell);
2649                         return DM_MAPIO_SUBMITTED;
2650                 }
2651
2652                 inc_all_io_entry(tc->pool, bio);
2653                 cell_defer_no_holder(tc, data_cell);
2654                 cell_defer_no_holder(tc, virt_cell);
2655
2656                 remap(tc, bio, result.block);
2657                 return DM_MAPIO_REMAPPED;
2658
2659         case -ENODATA:
2660         case -EWOULDBLOCK:
2661                 thin_defer_cell(tc, virt_cell);
2662                 return DM_MAPIO_SUBMITTED;
2663
2664         default:
2665                 /*
2666                  * Must always call bio_io_error on failure.
2667                  * dm_thin_find_block can fail with -EINVAL if the
2668                  * pool is switched to fail-io mode.
2669                  */
2670                 bio_io_error(bio);
2671                 cell_defer_no_holder(tc, virt_cell);
2672                 return DM_MAPIO_SUBMITTED;
2673         }
2674 }
2675
2676 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2677 {
2678         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2679         struct request_queue *q;
2680
2681         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2682                 return 1;
2683
2684         q = bdev_get_queue(pt->data_dev->bdev);
2685         return bdi_congested(&q->backing_dev_info, bdi_bits);
2686 }
2687
2688 static void requeue_bios(struct pool *pool)
2689 {
2690         unsigned long flags;
2691         struct thin_c *tc;
2692
2693         rcu_read_lock();
2694         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2695                 spin_lock_irqsave(&tc->lock, flags);
2696                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2697                 bio_list_init(&tc->retry_on_resume_list);
2698                 spin_unlock_irqrestore(&tc->lock, flags);
2699         }
2700         rcu_read_unlock();
2701 }
2702
2703 /*----------------------------------------------------------------
2704  * Binding of control targets to a pool object
2705  *--------------------------------------------------------------*/
2706 static bool data_dev_supports_discard(struct pool_c *pt)
2707 {
2708         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2709
2710         return q && blk_queue_discard(q);
2711 }
2712
2713 static bool is_factor(sector_t block_size, uint32_t n)
2714 {
2715         return !sector_div(block_size, n);
2716 }
2717
2718 /*
2719  * If discard_passdown was enabled verify that the data device
2720  * supports discards.  Disable discard_passdown if not.
2721  */
2722 static void disable_passdown_if_not_supported(struct pool_c *pt)
2723 {
2724         struct pool *pool = pt->pool;
2725         struct block_device *data_bdev = pt->data_dev->bdev;
2726         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2727         const char *reason = NULL;
2728         char buf[BDEVNAME_SIZE];
2729
2730         if (!pt->adjusted_pf.discard_passdown)
2731                 return;
2732
2733         if (!data_dev_supports_discard(pt))
2734                 reason = "discard unsupported";
2735
2736         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2737                 reason = "max discard sectors smaller than a block";
2738
2739         if (reason) {
2740                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2741                 pt->adjusted_pf.discard_passdown = false;
2742         }
2743 }
2744
2745 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2746 {
2747         struct pool_c *pt = ti->private;
2748
2749         /*
2750          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2751          */
2752         enum pool_mode old_mode = get_pool_mode(pool);
2753         enum pool_mode new_mode = pt->adjusted_pf.mode;
2754
2755         /*
2756          * Don't change the pool's mode until set_pool_mode() below.
2757          * Otherwise the pool's process_* function pointers may
2758          * not match the desired pool mode.
2759          */
2760         pt->adjusted_pf.mode = old_mode;
2761
2762         pool->ti = ti;
2763         pool->pf = pt->adjusted_pf;
2764         pool->low_water_blocks = pt->low_water_blocks;
2765
2766         set_pool_mode(pool, new_mode);
2767
2768         return 0;
2769 }
2770
2771 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2772 {
2773         if (pool->ti == ti)
2774                 pool->ti = NULL;
2775 }
2776
2777 /*----------------------------------------------------------------
2778  * Pool creation
2779  *--------------------------------------------------------------*/
2780 /* Initialize pool features. */
2781 static void pool_features_init(struct pool_features *pf)
2782 {
2783         pf->mode = PM_WRITE;
2784         pf->zero_new_blocks = true;
2785         pf->discard_enabled = true;
2786         pf->discard_passdown = true;
2787         pf->error_if_no_space = false;
2788 }
2789
2790 static void __pool_destroy(struct pool *pool)
2791 {
2792         __pool_table_remove(pool);
2793
2794         vfree(pool->cell_sort_array);
2795         if (dm_pool_metadata_close(pool->pmd) < 0)
2796                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2797
2798         dm_bio_prison_destroy(pool->prison);
2799         dm_kcopyd_client_destroy(pool->copier);
2800
2801         if (pool->wq)
2802                 destroy_workqueue(pool->wq);
2803
2804         if (pool->next_mapping)
2805                 mempool_free(pool->next_mapping, pool->mapping_pool);
2806         mempool_destroy(pool->mapping_pool);
2807         dm_deferred_set_destroy(pool->shared_read_ds);
2808         dm_deferred_set_destroy(pool->all_io_ds);
2809         kfree(pool);
2810 }
2811
2812 static struct kmem_cache *_new_mapping_cache;
2813
2814 static struct pool *pool_create(struct mapped_device *pool_md,
2815                                 struct block_device *metadata_dev,
2816                                 unsigned long block_size,
2817                                 int read_only, char **error)
2818 {
2819         int r;
2820         void *err_p;
2821         struct pool *pool;
2822         struct dm_pool_metadata *pmd;
2823         bool format_device = read_only ? false : true;
2824
2825         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2826         if (IS_ERR(pmd)) {
2827                 *error = "Error creating metadata object";
2828                 return (struct pool *)pmd;
2829         }
2830
2831         pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2832         if (!pool) {
2833                 *error = "Error allocating memory for pool";
2834                 err_p = ERR_PTR(-ENOMEM);
2835                 goto bad_pool;
2836         }
2837
2838         pool->pmd = pmd;
2839         pool->sectors_per_block = block_size;
2840         if (block_size & (block_size - 1))
2841                 pool->sectors_per_block_shift = -1;
2842         else
2843                 pool->sectors_per_block_shift = __ffs(block_size);
2844         pool->low_water_blocks = 0;
2845         pool_features_init(&pool->pf);
2846         pool->prison = dm_bio_prison_create();
2847         if (!pool->prison) {
2848                 *error = "Error creating pool's bio prison";
2849                 err_p = ERR_PTR(-ENOMEM);
2850                 goto bad_prison;
2851         }
2852
2853         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2854         if (IS_ERR(pool->copier)) {
2855                 r = PTR_ERR(pool->copier);
2856                 *error = "Error creating pool's kcopyd client";
2857                 err_p = ERR_PTR(r);
2858                 goto bad_kcopyd_client;
2859         }
2860
2861         /*
2862          * Create singlethreaded workqueue that will service all devices
2863          * that use this metadata.
2864          */
2865         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2866         if (!pool->wq) {
2867                 *error = "Error creating pool's workqueue";
2868                 err_p = ERR_PTR(-ENOMEM);
2869                 goto bad_wq;
2870         }
2871
2872         throttle_init(&pool->throttle);
2873         INIT_WORK(&pool->worker, do_worker);
2874         INIT_DELAYED_WORK(&pool->waker, do_waker);
2875         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2876         spin_lock_init(&pool->lock);
2877         bio_list_init(&pool->deferred_flush_bios);
2878         INIT_LIST_HEAD(&pool->prepared_mappings);
2879         INIT_LIST_HEAD(&pool->prepared_discards);
2880         INIT_LIST_HEAD(&pool->active_thins);
2881         pool->low_water_triggered = false;
2882         pool->suspended = true;
2883
2884         pool->shared_read_ds = dm_deferred_set_create();
2885         if (!pool->shared_read_ds) {
2886                 *error = "Error creating pool's shared read deferred set";
2887                 err_p = ERR_PTR(-ENOMEM);
2888                 goto bad_shared_read_ds;
2889         }
2890
2891         pool->all_io_ds = dm_deferred_set_create();
2892         if (!pool->all_io_ds) {
2893                 *error = "Error creating pool's all io deferred set";
2894                 err_p = ERR_PTR(-ENOMEM);
2895                 goto bad_all_io_ds;
2896         }
2897
2898         pool->next_mapping = NULL;
2899         pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2900                                                       _new_mapping_cache);
2901         if (!pool->mapping_pool) {
2902                 *error = "Error creating pool's mapping mempool";
2903                 err_p = ERR_PTR(-ENOMEM);
2904                 goto bad_mapping_pool;
2905         }
2906
2907         pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2908         if (!pool->cell_sort_array) {
2909                 *error = "Error allocating cell sort array";
2910                 err_p = ERR_PTR(-ENOMEM);
2911                 goto bad_sort_array;
2912         }
2913
2914         pool->ref_count = 1;
2915         pool->last_commit_jiffies = jiffies;
2916         pool->pool_md = pool_md;
2917         pool->md_dev = metadata_dev;
2918         __pool_table_insert(pool);
2919
2920         return pool;
2921
2922 bad_sort_array:
2923         mempool_destroy(pool->mapping_pool);
2924 bad_mapping_pool:
2925         dm_deferred_set_destroy(pool->all_io_ds);
2926 bad_all_io_ds:
2927         dm_deferred_set_destroy(pool->shared_read_ds);
2928 bad_shared_read_ds:
2929         destroy_workqueue(pool->wq);
2930 bad_wq:
2931         dm_kcopyd_client_destroy(pool->copier);
2932 bad_kcopyd_client:
2933         dm_bio_prison_destroy(pool->prison);
2934 bad_prison:
2935         kfree(pool);
2936 bad_pool:
2937         if (dm_pool_metadata_close(pmd))
2938                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2939
2940         return err_p;
2941 }
2942
2943 static void __pool_inc(struct pool *pool)
2944 {
2945         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2946         pool->ref_count++;
2947 }
2948
2949 static void __pool_dec(struct pool *pool)
2950 {
2951         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2952         BUG_ON(!pool->ref_count);
2953         if (!--pool->ref_count)
2954                 __pool_destroy(pool);
2955 }
2956
2957 static struct pool *__pool_find(struct mapped_device *pool_md,
2958                                 struct block_device *metadata_dev,
2959                                 unsigned long block_size, int read_only,
2960                                 char **error, int *created)
2961 {
2962         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2963
2964         if (pool) {
2965                 if (pool->pool_md != pool_md) {
2966                         *error = "metadata device already in use by a pool";
2967                         return ERR_PTR(-EBUSY);
2968                 }
2969                 __pool_inc(pool);
2970
2971         } else {
2972                 pool = __pool_table_lookup(pool_md);
2973                 if (pool) {
2974                         if (pool->md_dev != metadata_dev) {
2975                                 *error = "different pool cannot replace a pool";
2976                                 return ERR_PTR(-EINVAL);
2977                         }
2978                         __pool_inc(pool);
2979
2980                 } else {
2981                         pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
2982                         *created = 1;
2983                 }
2984         }
2985
2986         return pool;
2987 }
2988
2989 /*----------------------------------------------------------------
2990  * Pool target methods
2991  *--------------------------------------------------------------*/
2992 static void pool_dtr(struct dm_target *ti)
2993 {
2994         struct pool_c *pt = ti->private;
2995
2996         mutex_lock(&dm_thin_pool_table.mutex);
2997
2998         unbind_control_target(pt->pool, ti);
2999         __pool_dec(pt->pool);
3000         dm_put_device(ti, pt->metadata_dev);
3001         dm_put_device(ti, pt->data_dev);
3002         kfree(pt);
3003
3004         mutex_unlock(&dm_thin_pool_table.mutex);
3005 }
3006
3007 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3008                                struct dm_target *ti)
3009 {
3010         int r;
3011         unsigned argc;
3012         const char *arg_name;
3013
3014         static struct dm_arg _args[] = {
3015                 {0, 4, "Invalid number of pool feature arguments"},
3016         };
3017
3018         /*
3019          * No feature arguments supplied.
3020          */
3021         if (!as->argc)
3022                 return 0;
3023
3024         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3025         if (r)
3026                 return -EINVAL;
3027
3028         while (argc && !r) {
3029                 arg_name = dm_shift_arg(as);
3030                 argc--;
3031
3032                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3033                         pf->zero_new_blocks = false;
3034
3035                 else if (!strcasecmp(arg_name, "ignore_discard"))
3036                         pf->discard_enabled = false;
3037
3038                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3039                         pf->discard_passdown = false;
3040
3041                 else if (!strcasecmp(arg_name, "read_only"))
3042                         pf->mode = PM_READ_ONLY;
3043
3044                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3045                         pf->error_if_no_space = true;
3046
3047                 else {
3048                         ti->error = "Unrecognised pool feature requested";
3049                         r = -EINVAL;
3050                         break;
3051                 }
3052         }
3053
3054         return r;
3055 }
3056
3057 static void metadata_low_callback(void *context)
3058 {
3059         struct pool *pool = context;
3060
3061         DMWARN("%s: reached low water mark for metadata device: sending event.",
3062                dm_device_name(pool->pool_md));
3063
3064         dm_table_event(pool->ti->table);
3065 }
3066
3067 static sector_t get_dev_size(struct block_device *bdev)
3068 {
3069         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3070 }
3071
3072 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3073 {
3074         sector_t metadata_dev_size = get_dev_size(bdev);
3075         char buffer[BDEVNAME_SIZE];
3076
3077         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3078                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3079                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3080 }
3081
3082 static sector_t get_metadata_dev_size(struct block_device *bdev)
3083 {
3084         sector_t metadata_dev_size = get_dev_size(bdev);
3085
3086         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3087                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3088
3089         return metadata_dev_size;
3090 }
3091
3092 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3093 {
3094         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3095
3096         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3097
3098         return metadata_dev_size;
3099 }
3100
3101 /*
3102  * When a metadata threshold is crossed a dm event is triggered, and
3103  * userland should respond by growing the metadata device.  We could let
3104  * userland set the threshold, like we do with the data threshold, but I'm
3105  * not sure they know enough to do this well.
3106  */
3107 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3108 {
3109         /*
3110          * 4M is ample for all ops with the possible exception of thin
3111          * device deletion which is harmless if it fails (just retry the
3112          * delete after you've grown the device).
3113          */
3114         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3115         return min((dm_block_t)1024ULL /* 4M */, quarter);
3116 }
3117
3118 /*
3119  * thin-pool <metadata dev> <data dev>
3120  *           <data block size (sectors)>
3121  *           <low water mark (blocks)>
3122  *           [<#feature args> [<arg>]*]
3123  *
3124  * Optional feature arguments are:
3125  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3126  *           ignore_discard: disable discard
3127  *           no_discard_passdown: don't pass discards down to the data device
3128  *           read_only: Don't allow any changes to be made to the pool metadata.
3129  *           error_if_no_space: error IOs, instead of queueing, if no space.
3130  */
3131 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3132 {
3133         int r, pool_created = 0;
3134         struct pool_c *pt;
3135         struct pool *pool;
3136         struct pool_features pf;
3137         struct dm_arg_set as;
3138         struct dm_dev *data_dev;
3139         unsigned long block_size;
3140         dm_block_t low_water_blocks;
3141         struct dm_dev *metadata_dev;
3142         fmode_t metadata_mode;
3143
3144         /*
3145          * FIXME Remove validation from scope of lock.
3146          */
3147         mutex_lock(&dm_thin_pool_table.mutex);
3148
3149         if (argc < 4) {
3150                 ti->error = "Invalid argument count";
3151                 r = -EINVAL;
3152                 goto out_unlock;
3153         }
3154
3155         as.argc = argc;
3156         as.argv = argv;
3157
3158         /*
3159          * Set default pool features.
3160          */
3161         pool_features_init(&pf);
3162
3163         dm_consume_args(&as, 4);
3164         r = parse_pool_features(&as, &pf, ti);
3165         if (r)
3166                 goto out_unlock;
3167
3168         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3169         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3170         if (r) {
3171                 ti->error = "Error opening metadata block device";
3172                 goto out_unlock;
3173         }
3174         warn_if_metadata_device_too_big(metadata_dev->bdev);
3175
3176         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3177         if (r) {
3178                 ti->error = "Error getting data device";
3179                 goto out_metadata;
3180         }
3181
3182         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3183             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3184             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3185             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3186                 ti->error = "Invalid block size";
3187                 r = -EINVAL;
3188                 goto out;
3189         }
3190
3191         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3192                 ti->error = "Invalid low water mark";
3193                 r = -EINVAL;
3194                 goto out;
3195         }
3196
3197         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3198         if (!pt) {
3199                 r = -ENOMEM;
3200                 goto out;
3201         }
3202
3203         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3204                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3205         if (IS_ERR(pool)) {
3206                 r = PTR_ERR(pool);
3207                 goto out_free_pt;
3208         }
3209
3210         /*
3211          * 'pool_created' reflects whether this is the first table load.
3212          * Top level discard support is not allowed to be changed after
3213          * initial load.  This would require a pool reload to trigger thin
3214          * device changes.
3215          */
3216         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3217                 ti->error = "Discard support cannot be disabled once enabled";
3218                 r = -EINVAL;
3219                 goto out_flags_changed;
3220         }
3221
3222         pt->pool = pool;
3223         pt->ti = ti;
3224         pt->metadata_dev = metadata_dev;
3225         pt->data_dev = data_dev;
3226         pt->low_water_blocks = low_water_blocks;
3227         pt->adjusted_pf = pt->requested_pf = pf;
3228         ti->num_flush_bios = 1;
3229
3230         /*
3231          * Only need to enable discards if the pool should pass
3232          * them down to the data device.  The thin device's discard
3233          * processing will cause mappings to be removed from the btree.
3234          */
3235         ti->discard_zeroes_data_unsupported = true;
3236         if (pf.discard_enabled && pf.discard_passdown) {
3237                 ti->num_discard_bios = 1;
3238
3239                 /*
3240                  * Setting 'discards_supported' circumvents the normal
3241                  * stacking of discard limits (this keeps the pool and
3242                  * thin devices' discard limits consistent).
3243                  */
3244                 ti->discards_supported = true;
3245         }
3246         ti->private = pt;
3247
3248         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3249                                                 calc_metadata_threshold(pt),
3250                                                 metadata_low_callback,
3251                                                 pool);
3252         if (r)
3253                 goto out_free_pt;
3254
3255         pt->callbacks.congested_fn = pool_is_congested;
3256         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3257
3258         mutex_unlock(&dm_thin_pool_table.mutex);
3259
3260         return 0;
3261
3262 out_flags_changed:
3263         __pool_dec(pool);
3264 out_free_pt:
3265         kfree(pt);
3266 out:
3267         dm_put_device(ti, data_dev);
3268 out_metadata:
3269         dm_put_device(ti, metadata_dev);
3270 out_unlock:
3271         mutex_unlock(&dm_thin_pool_table.mutex);
3272
3273         return r;
3274 }
3275
3276 static int pool_map(struct dm_target *ti, struct bio *bio)
3277 {
3278         int r;
3279         struct pool_c *pt = ti->private;
3280         struct pool *pool = pt->pool;
3281         unsigned long flags;
3282
3283         /*
3284          * As this is a singleton target, ti->begin is always zero.
3285          */
3286         spin_lock_irqsave(&pool->lock, flags);
3287         bio->bi_bdev = pt->data_dev->bdev;
3288         r = DM_MAPIO_REMAPPED;
3289         spin_unlock_irqrestore(&pool->lock, flags);
3290
3291         return r;
3292 }
3293
3294 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3295 {
3296         int r;
3297         struct pool_c *pt = ti->private;
3298         struct pool *pool = pt->pool;
3299         sector_t data_size = ti->len;
3300         dm_block_t sb_data_size;
3301
3302         *need_commit = false;
3303
3304         (void) sector_div(data_size, pool->sectors_per_block);
3305
3306         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3307         if (r) {
3308                 DMERR("%s: failed to retrieve data device size",
3309                       dm_device_name(pool->pool_md));
3310                 return r;
3311         }
3312
3313         if (data_size < sb_data_size) {
3314                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3315                       dm_device_name(pool->pool_md),
3316                       (unsigned long long)data_size, sb_data_size);
3317                 return -EINVAL;
3318
3319         } else if (data_size > sb_data_size) {
3320                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3321                         DMERR("%s: unable to grow the data device until repaired.",
3322                               dm_device_name(pool->pool_md));
3323                         return 0;
3324                 }
3325
3326                 if (sb_data_size)
3327                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3328                                dm_device_name(pool->pool_md),
3329                                sb_data_size, (unsigned long long)data_size);
3330                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3331                 if (r) {
3332                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3333                         return r;
3334                 }
3335
3336                 *need_commit = true;
3337         }
3338
3339         return 0;
3340 }
3341
3342 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3343 {
3344         int r;
3345         struct pool_c *pt = ti->private;
3346         struct pool *pool = pt->pool;
3347         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3348
3349         *need_commit = false;
3350
3351         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3352
3353         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3354         if (r) {
3355                 DMERR("%s: failed to retrieve metadata device size",
3356                       dm_device_name(pool->pool_md));
3357                 return r;
3358         }
3359
3360         if (metadata_dev_size < sb_metadata_dev_size) {
3361                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3362                       dm_device_name(pool->pool_md),
3363                       metadata_dev_size, sb_metadata_dev_size);
3364                 return -EINVAL;
3365
3366         } else if (metadata_dev_size > sb_metadata_dev_size) {
3367                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3368                         DMERR("%s: unable to grow the metadata device until repaired.",
3369                               dm_device_name(pool->pool_md));
3370                         return 0;
3371                 }
3372
3373                 warn_if_metadata_device_too_big(pool->md_dev);
3374                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3375                        dm_device_name(pool->pool_md),
3376                        sb_metadata_dev_size, metadata_dev_size);
3377                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3378                 if (r) {
3379                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3380                         return r;
3381                 }
3382
3383                 *need_commit = true;
3384         }
3385
3386         return 0;
3387 }
3388
3389 /*
3390  * Retrieves the number of blocks of the data device from
3391  * the superblock and compares it to the actual device size,
3392  * thus resizing the data device in case it has grown.
3393  *
3394  * This both copes with opening preallocated data devices in the ctr
3395  * being followed by a resume
3396  * -and-
3397  * calling the resume method individually after userspace has
3398  * grown the data device in reaction to a table event.
3399  */
3400 static int pool_preresume(struct dm_target *ti)
3401 {
3402         int r;
3403         bool need_commit1, need_commit2;
3404         struct pool_c *pt = ti->private;
3405         struct pool *pool = pt->pool;
3406
3407         /*
3408          * Take control of the pool object.
3409          */
3410         r = bind_control_target(pool, ti);
3411         if (r)
3412                 return r;
3413
3414         r = maybe_resize_data_dev(ti, &need_commit1);
3415         if (r)
3416                 return r;
3417
3418         r = maybe_resize_metadata_dev(ti, &need_commit2);
3419         if (r)
3420                 return r;
3421
3422         if (need_commit1 || need_commit2)
3423                 (void) commit(pool);
3424
3425         return 0;
3426 }
3427
3428 static void pool_suspend_active_thins(struct pool *pool)
3429 {
3430         struct thin_c *tc;
3431
3432         /* Suspend all active thin devices */
3433         tc = get_first_thin(pool);
3434         while (tc) {
3435                 dm_internal_suspend_noflush(tc->thin_md);
3436                 tc = get_next_thin(pool, tc);
3437         }
3438 }
3439
3440 static void pool_resume_active_thins(struct pool *pool)
3441 {
3442         struct thin_c *tc;
3443
3444         /* Resume all active thin devices */
3445         tc = get_first_thin(pool);
3446         while (tc) {
3447                 dm_internal_resume(tc->thin_md);
3448                 tc = get_next_thin(pool, tc);
3449         }
3450 }
3451
3452 static void pool_resume(struct dm_target *ti)
3453 {
3454         struct pool_c *pt = ti->private;
3455         struct pool *pool = pt->pool;
3456         unsigned long flags;
3457
3458         /*
3459          * Must requeue active_thins' bios and then resume
3460          * active_thins _before_ clearing 'suspend' flag.
3461          */
3462         requeue_bios(pool);
3463         pool_resume_active_thins(pool);
3464
3465         spin_lock_irqsave(&pool->lock, flags);
3466         pool->low_water_triggered = false;
3467         pool->suspended = false;
3468         spin_unlock_irqrestore(&pool->lock, flags);
3469
3470         do_waker(&pool->waker.work);
3471 }
3472
3473 static void pool_presuspend(struct dm_target *ti)
3474 {
3475         struct pool_c *pt = ti->private;
3476         struct pool *pool = pt->pool;
3477         unsigned long flags;
3478
3479         spin_lock_irqsave(&pool->lock, flags);
3480         pool->suspended = true;
3481         spin_unlock_irqrestore(&pool->lock, flags);
3482
3483         pool_suspend_active_thins(pool);
3484 }
3485
3486 static void pool_presuspend_undo(struct dm_target *ti)
3487 {
3488         struct pool_c *pt = ti->private;
3489         struct pool *pool = pt->pool;
3490         unsigned long flags;
3491
3492         pool_resume_active_thins(pool);
3493
3494         spin_lock_irqsave(&pool->lock, flags);
3495         pool->suspended = false;
3496         spin_unlock_irqrestore(&pool->lock, flags);
3497 }
3498
3499 static void pool_postsuspend(struct dm_target *ti)
3500 {
3501         struct pool_c *pt = ti->private;
3502         struct pool *pool = pt->pool;
3503
3504         cancel_delayed_work(&pool->waker);
3505         cancel_delayed_work(&pool->no_space_timeout);
3506         flush_workqueue(pool->wq);
3507         (void) commit(pool);
3508 }
3509
3510 static int check_arg_count(unsigned argc, unsigned args_required)
3511 {
3512         if (argc != args_required) {
3513                 DMWARN("Message received with %u arguments instead of %u.",
3514                        argc, args_required);
3515                 return -EINVAL;
3516         }
3517
3518         return 0;
3519 }
3520
3521 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3522 {
3523         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3524             *dev_id <= MAX_DEV_ID)
3525                 return 0;
3526
3527         if (warning)
3528                 DMWARN("Message received with invalid device id: %s", arg);
3529
3530         return -EINVAL;
3531 }
3532
3533 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3534 {
3535         dm_thin_id dev_id;
3536         int r;
3537
3538         r = check_arg_count(argc, 2);
3539         if (r)
3540                 return r;
3541
3542         r = read_dev_id(argv[1], &dev_id, 1);
3543         if (r)
3544                 return r;
3545
3546         r = dm_pool_create_thin(pool->pmd, dev_id);
3547         if (r) {
3548                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3549                        argv[1]);
3550                 return r;
3551         }
3552
3553         return 0;
3554 }
3555
3556 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3557 {
3558         dm_thin_id dev_id;
3559         dm_thin_id origin_dev_id;
3560         int r;
3561
3562         r = check_arg_count(argc, 3);
3563         if (r)
3564                 return r;
3565
3566         r = read_dev_id(argv[1], &dev_id, 1);
3567         if (r)
3568                 return r;
3569
3570         r = read_dev_id(argv[2], &origin_dev_id, 1);
3571         if (r)
3572                 return r;
3573
3574         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3575         if (r) {
3576                 DMWARN("Creation of new snapshot %s of device %s failed.",
3577                        argv[1], argv[2]);
3578                 return r;
3579         }
3580
3581         return 0;
3582 }
3583
3584 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3585 {
3586         dm_thin_id dev_id;
3587         int r;
3588
3589         r = check_arg_count(argc, 2);
3590         if (r)
3591                 return r;
3592
3593         r = read_dev_id(argv[1], &dev_id, 1);
3594         if (r)
3595                 return r;
3596
3597         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3598         if (r)
3599                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3600
3601         return r;
3602 }
3603
3604 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3605 {
3606         dm_thin_id old_id, new_id;
3607         int r;
3608
3609         r = check_arg_count(argc, 3);
3610         if (r)
3611                 return r;
3612
3613         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3614                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3615                 return -EINVAL;
3616         }
3617
3618         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3619                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3620                 return -EINVAL;
3621         }
3622
3623         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3624         if (r) {
3625                 DMWARN("Failed to change transaction id from %s to %s.",
3626                        argv[1], argv[2]);
3627                 return r;
3628         }
3629
3630         return 0;
3631 }
3632
3633 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3634 {
3635         int r;
3636
3637         r = check_arg_count(argc, 1);
3638         if (r)
3639                 return r;
3640
3641         (void) commit(pool);
3642
3643         r = dm_pool_reserve_metadata_snap(pool->pmd);
3644         if (r)
3645                 DMWARN("reserve_metadata_snap message failed.");
3646
3647         return r;
3648 }
3649
3650 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3651 {
3652         int r;
3653
3654         r = check_arg_count(argc, 1);
3655         if (r)
3656                 return r;
3657
3658         r = dm_pool_release_metadata_snap(pool->pmd);
3659         if (r)
3660                 DMWARN("release_metadata_snap message failed.");
3661
3662         return r;
3663 }
3664
3665 /*
3666  * Messages supported:
3667  *   create_thin        <dev_id>
3668  *   create_snap        <dev_id> <origin_id>
3669  *   delete             <dev_id>
3670  *   set_transaction_id <current_trans_id> <new_trans_id>
3671  *   reserve_metadata_snap
3672  *   release_metadata_snap
3673  */
3674 static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3675 {
3676         int r = -EINVAL;
3677         struct pool_c *pt = ti->private;
3678         struct pool *pool = pt->pool;
3679
3680         if (get_pool_mode(pool) >= PM_READ_ONLY) {
3681                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3682                       dm_device_name(pool->pool_md));
3683                 return -EOPNOTSUPP;
3684         }
3685
3686         if (!strcasecmp(argv[0], "create_thin"))
3687                 r = process_create_thin_mesg(argc, argv, pool);
3688
3689         else if (!strcasecmp(argv[0], "create_snap"))
3690                 r = process_create_snap_mesg(argc, argv, pool);
3691
3692         else if (!strcasecmp(argv[0], "delete"))
3693                 r = process_delete_mesg(argc, argv, pool);
3694
3695         else if (!strcasecmp(argv[0], "set_transaction_id"))
3696                 r = process_set_transaction_id_mesg(argc, argv, pool);
3697
3698         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3699                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3700
3701         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3702                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3703
3704         else
3705                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3706
3707         if (!r)
3708                 (void) commit(pool);
3709
3710         return r;
3711 }
3712
3713 static void emit_flags(struct pool_features *pf, char *result,
3714                        unsigned sz, unsigned maxlen)
3715 {
3716         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3717                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3718                 pf->error_if_no_space;
3719         DMEMIT("%u ", count);
3720
3721         if (!pf->zero_new_blocks)
3722                 DMEMIT("skip_block_zeroing ");
3723
3724         if (!pf->discard_enabled)
3725                 DMEMIT("ignore_discard ");
3726
3727         if (!pf->discard_passdown)
3728                 DMEMIT("no_discard_passdown ");
3729
3730         if (pf->mode == PM_READ_ONLY)
3731                 DMEMIT("read_only ");
3732
3733         if (pf->error_if_no_space)
3734                 DMEMIT("error_if_no_space ");
3735 }
3736
3737 /*
3738  * Status line is:
3739  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3740  *    <used data sectors>/<total data sectors> <held metadata root>
3741  *    <pool mode> <discard config> <no space config> <needs_check>
3742  */
3743 static void pool_status(struct dm_target *ti, status_type_t type,
3744                         unsigned status_flags, char *result, unsigned maxlen)
3745 {
3746         int r;
3747         unsigned sz = 0;
3748         uint64_t transaction_id;
3749         dm_block_t nr_free_blocks_data;
3750         dm_block_t nr_free_blocks_metadata;
3751         dm_block_t nr_blocks_data;
3752         dm_block_t nr_blocks_metadata;
3753         dm_block_t held_root;
3754         char buf[BDEVNAME_SIZE];
3755         char buf2[BDEVNAME_SIZE];
3756         struct pool_c *pt = ti->private;
3757         struct pool *pool = pt->pool;
3758
3759         switch (type) {
3760         case STATUSTYPE_INFO:
3761                 if (get_pool_mode(pool) == PM_FAIL) {
3762                         DMEMIT("Fail");
3763                         break;
3764                 }
3765
3766                 /* Commit to ensure statistics aren't out-of-date */
3767                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3768                         (void) commit(pool);
3769
3770                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3771                 if (r) {
3772                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3773                               dm_device_name(pool->pool_md), r);
3774                         goto err;
3775                 }
3776
3777                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3778                 if (r) {
3779                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3780                               dm_device_name(pool->pool_md), r);
3781                         goto err;
3782                 }
3783
3784                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3785                 if (r) {
3786                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3787                               dm_device_name(pool->pool_md), r);
3788                         goto err;
3789                 }
3790
3791                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3792                 if (r) {
3793                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3794                               dm_device_name(pool->pool_md), r);
3795                         goto err;
3796                 }
3797
3798                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3799                 if (r) {
3800                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3801                               dm_device_name(pool->pool_md), r);
3802                         goto err;
3803                 }
3804
3805                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3806                 if (r) {
3807                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3808                               dm_device_name(pool->pool_md), r);
3809                         goto err;
3810                 }
3811
3812                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3813                        (unsigned long long)transaction_id,
3814                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3815                        (unsigned long long)nr_blocks_metadata,
3816                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3817                        (unsigned long long)nr_blocks_data);
3818
3819                 if (held_root)
3820                         DMEMIT("%llu ", held_root);
3821                 else
3822                         DMEMIT("- ");
3823
3824                 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3825                         DMEMIT("out_of_data_space ");
3826                 else if (pool->pf.mode == PM_READ_ONLY)
3827                         DMEMIT("ro ");
3828                 else
3829                         DMEMIT("rw ");
3830
3831                 if (!pool->pf.discard_enabled)
3832                         DMEMIT("ignore_discard ");
3833                 else if (pool->pf.discard_passdown)
3834                         DMEMIT("discard_passdown ");
3835                 else
3836                         DMEMIT("no_discard_passdown ");
3837
3838                 if (pool->pf.error_if_no_space)
3839                         DMEMIT("error_if_no_space ");
3840                 else
3841                         DMEMIT("queue_if_no_space ");
3842
3843                 if (dm_pool_metadata_needs_check(pool->pmd))
3844                         DMEMIT("needs_check ");
3845                 else
3846                         DMEMIT("- ");
3847
3848                 break;
3849
3850         case STATUSTYPE_TABLE:
3851                 DMEMIT("%s %s %lu %llu ",
3852                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3853                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3854                        (unsigned long)pool->sectors_per_block,
3855                        (unsigned long long)pt->low_water_blocks);
3856                 emit_flags(&pt->requested_pf, result, sz, maxlen);
3857                 break;
3858         }
3859         return;
3860
3861 err:
3862         DMEMIT("Error");
3863 }
3864
3865 static int pool_iterate_devices(struct dm_target *ti,
3866                                 iterate_devices_callout_fn fn, void *data)
3867 {
3868         struct pool_c *pt = ti->private;
3869
3870         return fn(ti, pt->data_dev, 0, ti->len, data);
3871 }
3872
3873 static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
3874                       struct bio_vec *biovec, int max_size)
3875 {
3876         struct pool_c *pt = ti->private;
3877         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
3878
3879         if (!q->merge_bvec_fn)
3880                 return max_size;
3881
3882         bvm->bi_bdev = pt->data_dev->bdev;
3883
3884         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3885 }
3886
3887 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3888 {
3889         struct pool_c *pt = ti->private;
3890         struct pool *pool = pt->pool;
3891         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3892
3893         /*
3894          * If max_sectors is smaller than pool->sectors_per_block adjust it
3895          * to the highest possible power-of-2 factor of pool->sectors_per_block.
3896          * This is especially beneficial when the pool's data device is a RAID
3897          * device that has a full stripe width that matches pool->sectors_per_block
3898          * -- because even though partial RAID stripe-sized IOs will be issued to a
3899          *    single RAID stripe; when aggregated they will end on a full RAID stripe
3900          *    boundary.. which avoids additional partial RAID stripe writes cascading
3901          */
3902         if (limits->max_sectors < pool->sectors_per_block) {
3903                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3904                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3905                                 limits->max_sectors--;
3906                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3907                 }
3908         }
3909
3910         /*
3911          * If the system-determined stacked limits are compatible with the
3912          * pool's blocksize (io_opt is a factor) do not override them.
3913          */
3914         if (io_opt_sectors < pool->sectors_per_block ||
3915             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3916                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3917                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3918                 else
3919                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3920                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3921         }
3922
3923         /*
3924          * pt->adjusted_pf is a staging area for the actual features to use.
3925          * They get transferred to the live pool in bind_control_target()
3926          * called from pool_preresume().
3927          */
3928         if (!pt->adjusted_pf.discard_enabled) {
3929                 /*
3930                  * Must explicitly disallow stacking discard limits otherwise the
3931                  * block layer will stack them if pool's data device has support.
3932                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3933                  * user to see that, so make sure to set all discard limits to 0.
3934                  */
3935                 limits->discard_granularity = 0;
3936                 return;
3937         }
3938
3939         disable_passdown_if_not_supported(pt);
3940
3941         /*
3942          * The pool uses the same discard limits as the underlying data
3943          * device.  DM core has already set this up.
3944          */
3945 }
3946
3947 static struct target_type pool_target = {
3948         .name = "thin-pool",
3949         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3950                     DM_TARGET_IMMUTABLE,
3951         .version = {1, 16, 0},
3952         .module = THIS_MODULE,
3953         .ctr = pool_ctr,
3954         .dtr = pool_dtr,
3955         .map = pool_map,
3956         .presuspend = pool_presuspend,
3957         .presuspend_undo = pool_presuspend_undo,
3958         .postsuspend = pool_postsuspend,
3959         .preresume = pool_preresume,
3960         .resume = pool_resume,
3961         .message = pool_message,
3962         .status = pool_status,
3963         .merge = pool_merge,
3964         .iterate_devices = pool_iterate_devices,
3965         .io_hints = pool_io_hints,
3966 };
3967
3968 /*----------------------------------------------------------------
3969  * Thin target methods
3970  *--------------------------------------------------------------*/
3971 static void thin_get(struct thin_c *tc)
3972 {
3973         atomic_inc(&tc->refcount);
3974 }
3975
3976 static void thin_put(struct thin_c *tc)
3977 {
3978         if (atomic_dec_and_test(&tc->refcount))
3979                 complete(&tc->can_destroy);
3980 }
3981
3982 static void thin_dtr(struct dm_target *ti)
3983 {
3984         struct thin_c *tc = ti->private;
3985         unsigned long flags;
3986
3987         spin_lock_irqsave(&tc->pool->lock, flags);
3988         list_del_rcu(&tc->list);
3989         spin_unlock_irqrestore(&tc->pool->lock, flags);
3990         synchronize_rcu();
3991
3992         thin_put(tc);
3993         wait_for_completion(&tc->can_destroy);
3994
3995         mutex_lock(&dm_thin_pool_table.mutex);
3996
3997         __pool_dec(tc->pool);
3998         dm_pool_close_thin_device(tc->td);
3999         dm_put_device(ti, tc->pool_dev);
4000         if (tc->origin_dev)
4001                 dm_put_device(ti, tc->origin_dev);
4002         kfree(tc);
4003
4004         mutex_unlock(&dm_thin_pool_table.mutex);
4005 }
4006
4007 /*
4008  * Thin target parameters:
4009  *
4010  * <pool_dev> <dev_id> [origin_dev]
4011  *
4012  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4013  * dev_id: the internal device identifier
4014  * origin_dev: a device external to the pool that should act as the origin
4015  *
4016  * If the pool device has discards disabled, they get disabled for the thin
4017  * device as well.
4018  */
4019 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4020 {
4021         int r;
4022         struct thin_c *tc;
4023         struct dm_dev *pool_dev, *origin_dev;
4024         struct mapped_device *pool_md;
4025         unsigned long flags;
4026
4027         mutex_lock(&dm_thin_pool_table.mutex);
4028
4029         if (argc != 2 && argc != 3) {
4030                 ti->error = "Invalid argument count";
4031                 r = -EINVAL;
4032                 goto out_unlock;
4033         }
4034
4035         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4036         if (!tc) {
4037                 ti->error = "Out of memory";
4038                 r = -ENOMEM;
4039                 goto out_unlock;
4040         }
4041         tc->thin_md = dm_table_get_md(ti->table);
4042         spin_lock_init(&tc->lock);
4043         INIT_LIST_HEAD(&tc->deferred_cells);
4044         bio_list_init(&tc->deferred_bio_list);
4045         bio_list_init(&tc->retry_on_resume_list);
4046         tc->sort_bio_list = RB_ROOT;
4047
4048         if (argc == 3) {
4049                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4050                 if (r) {
4051                         ti->error = "Error opening origin device";
4052                         goto bad_origin_dev;
4053                 }
4054                 tc->origin_dev = origin_dev;
4055         }
4056
4057         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4058         if (r) {
4059                 ti->error = "Error opening pool device";
4060                 goto bad_pool_dev;
4061         }
4062         tc->pool_dev = pool_dev;
4063
4064         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4065                 ti->error = "Invalid device id";
4066                 r = -EINVAL;
4067                 goto bad_common;
4068         }
4069
4070         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4071         if (!pool_md) {
4072                 ti->error = "Couldn't get pool mapped device";
4073                 r = -EINVAL;
4074                 goto bad_common;
4075         }
4076
4077         tc->pool = __pool_table_lookup(pool_md);
4078         if (!tc->pool) {
4079                 ti->error = "Couldn't find pool object";
4080                 r = -EINVAL;
4081                 goto bad_pool_lookup;
4082         }
4083         __pool_inc(tc->pool);
4084
4085         if (get_pool_mode(tc->pool) == PM_FAIL) {
4086                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4087                 r = -EINVAL;
4088                 goto bad_pool;
4089         }
4090
4091         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4092         if (r) {
4093                 ti->error = "Couldn't open thin internal device";
4094                 goto bad_pool;
4095         }
4096
4097         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4098         if (r)
4099                 goto bad;
4100
4101         ti->num_flush_bios = 1;
4102         ti->flush_supported = true;
4103         ti->per_bio_data_size = sizeof(struct dm_thin_endio_hook);
4104
4105         /* In case the pool supports discards, pass them on. */
4106         ti->discard_zeroes_data_unsupported = true;
4107         if (tc->pool->pf.discard_enabled) {
4108                 ti->discards_supported = true;
4109                 ti->num_discard_bios = 1;
4110                 ti->split_discard_bios = false;
4111         }
4112
4113         mutex_unlock(&dm_thin_pool_table.mutex);
4114
4115         spin_lock_irqsave(&tc->pool->lock, flags);
4116         if (tc->pool->suspended) {
4117                 spin_unlock_irqrestore(&tc->pool->lock, flags);
4118                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4119                 ti->error = "Unable to activate thin device while pool is suspended";
4120                 r = -EINVAL;
4121                 goto bad;
4122         }
4123         atomic_set(&tc->refcount, 1);
4124         init_completion(&tc->can_destroy);
4125         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4126         spin_unlock_irqrestore(&tc->pool->lock, flags);
4127         /*
4128          * This synchronize_rcu() call is needed here otherwise we risk a
4129          * wake_worker() call finding no bios to process (because the newly
4130          * added tc isn't yet visible).  So this reduces latency since we
4131          * aren't then dependent on the periodic commit to wake_worker().
4132          */
4133         synchronize_rcu();
4134
4135         dm_put(pool_md);
4136
4137         return 0;
4138
4139 bad:
4140         dm_pool_close_thin_device(tc->td);
4141 bad_pool:
4142         __pool_dec(tc->pool);
4143 bad_pool_lookup:
4144         dm_put(pool_md);
4145 bad_common:
4146         dm_put_device(ti, tc->pool_dev);
4147 bad_pool_dev:
4148         if (tc->origin_dev)
4149                 dm_put_device(ti, tc->origin_dev);
4150 bad_origin_dev:
4151         kfree(tc);
4152 out_unlock:
4153         mutex_unlock(&dm_thin_pool_table.mutex);
4154
4155         return r;
4156 }
4157
4158 static int thin_map(struct dm_target *ti, struct bio *bio)
4159 {
4160         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4161
4162         return thin_bio_map(ti, bio);
4163 }
4164
4165 static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4166 {
4167         unsigned long flags;
4168         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4169         struct list_head work;
4170         struct dm_thin_new_mapping *m, *tmp;
4171         struct pool *pool = h->tc->pool;
4172
4173         if (h->shared_read_entry) {
4174                 INIT_LIST_HEAD(&work);
4175                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4176
4177                 spin_lock_irqsave(&pool->lock, flags);
4178                 list_for_each_entry_safe(m, tmp, &work, list) {
4179                         list_del(&m->list);
4180                         __complete_mapping_preparation(m);
4181                 }
4182                 spin_unlock_irqrestore(&pool->lock, flags);
4183         }
4184
4185         if (h->all_io_entry) {
4186                 INIT_LIST_HEAD(&work);
4187                 dm_deferred_entry_dec(h->all_io_entry, &work);
4188                 if (!list_empty(&work)) {
4189                         spin_lock_irqsave(&pool->lock, flags);
4190                         list_for_each_entry_safe(m, tmp, &work, list)
4191                                 list_add_tail(&m->list, &pool->prepared_discards);
4192                         spin_unlock_irqrestore(&pool->lock, flags);
4193                         wake_worker(pool);
4194                 }
4195         }
4196
4197         if (h->cell)
4198                 cell_defer_no_holder(h->tc, h->cell);
4199
4200         return 0;
4201 }
4202
4203 static void thin_presuspend(struct dm_target *ti)
4204 {
4205         struct thin_c *tc = ti->private;
4206
4207         if (dm_noflush_suspending(ti))
4208                 noflush_work(tc, do_noflush_start);
4209 }
4210
4211 static void thin_postsuspend(struct dm_target *ti)
4212 {
4213         struct thin_c *tc = ti->private;
4214
4215         /*
4216          * The dm_noflush_suspending flag has been cleared by now, so
4217          * unfortunately we must always run this.
4218          */
4219         noflush_work(tc, do_noflush_stop);
4220 }
4221
4222 static int thin_preresume(struct dm_target *ti)
4223 {
4224         struct thin_c *tc = ti->private;
4225
4226         if (tc->origin_dev)
4227                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4228
4229         return 0;
4230 }
4231
4232 /*
4233  * <nr mapped sectors> <highest mapped sector>
4234  */
4235 static void thin_status(struct dm_target *ti, status_type_t type,
4236                         unsigned status_flags, char *result, unsigned maxlen)
4237 {
4238         int r;
4239         ssize_t sz = 0;
4240         dm_block_t mapped, highest;
4241         char buf[BDEVNAME_SIZE];
4242         struct thin_c *tc = ti->private;
4243
4244         if (get_pool_mode(tc->pool) == PM_FAIL) {
4245                 DMEMIT("Fail");
4246                 return;
4247         }
4248
4249         if (!tc->td)
4250                 DMEMIT("-");
4251         else {
4252                 switch (type) {
4253                 case STATUSTYPE_INFO:
4254                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4255                         if (r) {
4256                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4257                                 goto err;
4258                         }
4259
4260                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4261                         if (r < 0) {
4262                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4263                                 goto err;
4264                         }
4265
4266                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4267                         if (r)
4268                                 DMEMIT("%llu", ((highest + 1) *
4269                                                 tc->pool->sectors_per_block) - 1);
4270                         else
4271                                 DMEMIT("-");
4272                         break;
4273
4274                 case STATUSTYPE_TABLE:
4275                         DMEMIT("%s %lu",
4276                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4277                                (unsigned long) tc->dev_id);
4278                         if (tc->origin_dev)
4279                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4280                         break;
4281                 }
4282         }
4283
4284         return;
4285
4286 err:
4287         DMEMIT("Error");
4288 }
4289
4290 static int thin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
4291                       struct bio_vec *biovec, int max_size)
4292 {
4293         struct thin_c *tc = ti->private;
4294         struct request_queue *q = bdev_get_queue(tc->pool_dev->bdev);
4295
4296         if (!q->merge_bvec_fn)
4297                 return max_size;
4298
4299         bvm->bi_bdev = tc->pool_dev->bdev;
4300         bvm->bi_sector = dm_target_offset(ti, bvm->bi_sector);
4301
4302         return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
4303 }
4304
4305 static int thin_iterate_devices(struct dm_target *ti,
4306                                 iterate_devices_callout_fn fn, void *data)
4307 {
4308         sector_t blocks;
4309         struct thin_c *tc = ti->private;
4310         struct pool *pool = tc->pool;
4311
4312         /*
4313          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4314          * we follow a more convoluted path through to the pool's target.
4315          */
4316         if (!pool->ti)
4317                 return 0;       /* nothing is bound */
4318
4319         blocks = pool->ti->len;
4320         (void) sector_div(blocks, pool->sectors_per_block);
4321         if (blocks)
4322                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4323
4324         return 0;
4325 }
4326
4327 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4328 {
4329         struct thin_c *tc = ti->private;
4330         struct pool *pool = tc->pool;
4331
4332         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4333         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4334 }
4335
4336 static struct target_type thin_target = {
4337         .name = "thin",
4338         .version = {1, 16, 0},
4339         .module = THIS_MODULE,
4340         .ctr = thin_ctr,
4341         .dtr = thin_dtr,
4342         .map = thin_map,
4343         .end_io = thin_endio,
4344         .preresume = thin_preresume,
4345         .presuspend = thin_presuspend,
4346         .postsuspend = thin_postsuspend,
4347         .status = thin_status,
4348         .merge = thin_merge,
4349         .iterate_devices = thin_iterate_devices,
4350         .io_hints = thin_io_hints,
4351 };
4352
4353 /*----------------------------------------------------------------*/
4354
4355 static int __init dm_thin_init(void)
4356 {
4357         int r;
4358
4359         pool_table_init();
4360
4361         r = dm_register_target(&thin_target);
4362         if (r)
4363                 return r;
4364
4365         r = dm_register_target(&pool_target);
4366         if (r)
4367                 goto bad_pool_target;
4368
4369         r = -ENOMEM;
4370
4371         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4372         if (!_new_mapping_cache)
4373                 goto bad_new_mapping_cache;
4374
4375         return 0;
4376
4377 bad_new_mapping_cache:
4378         dm_unregister_target(&pool_target);
4379 bad_pool_target:
4380         dm_unregister_target(&thin_target);
4381
4382         return r;
4383 }
4384
4385 static void dm_thin_exit(void)
4386 {
4387         dm_unregister_target(&thin_target);
4388         dm_unregister_target(&pool_target);
4389
4390         kmem_cache_destroy(_new_mapping_cache);
4391 }
4392
4393 module_init(dm_thin_init);
4394 module_exit(dm_thin_exit);
4395
4396 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4397 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4398
4399 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4400 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4401 MODULE_LICENSE("GPL");