Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[linux-drm-fsl-dcu.git] / drivers / md / dm-thin-metadata.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 48
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74
75 #define DM_MSG_PREFIX   "thin metadata"
76
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 1
80 #define THIN_METADATA_CACHE_SIZE 64
81 #define SECTOR_TO_BLOCK_SHIFT 3
82
83 /*
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  */
87 #define THIN_MAX_CONCURRENT_LOCKS 5
88
89 /* This should be plenty */
90 #define SPACE_MAP_ROOT_SIZE 128
91
92 /*
93  * Little endian on-disk superblock and device details.
94  */
95 struct thin_disk_superblock {
96         __le32 csum;    /* Checksum of superblock except for this field. */
97         __le32 flags;
98         __le64 blocknr; /* This block number, dm_block_t. */
99
100         __u8 uuid[16];
101         __le64 magic;
102         __le32 version;
103         __le32 time;
104
105         __le64 trans_id;
106
107         /*
108          * Root held by userspace transactions.
109          */
110         __le64 held_root;
111
112         __u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
113         __u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
114
115         /*
116          * 2-level btree mapping (dev_id, (dev block, time)) -> data block
117          */
118         __le64 data_mapping_root;
119
120         /*
121          * Device detail root mapping dev_id -> device_details
122          */
123         __le64 device_details_root;
124
125         __le32 data_block_size;         /* In 512-byte sectors. */
126
127         __le32 metadata_block_size;     /* In 512-byte sectors. */
128         __le64 metadata_nr_blocks;
129
130         __le32 compat_flags;
131         __le32 compat_ro_flags;
132         __le32 incompat_flags;
133 } __packed;
134
135 struct disk_device_details {
136         __le64 mapped_blocks;
137         __le64 transaction_id;          /* When created. */
138         __le32 creation_time;
139         __le32 snapshotted_time;
140 } __packed;
141
142 struct dm_pool_metadata {
143         struct hlist_node hash;
144
145         struct block_device *bdev;
146         struct dm_block_manager *bm;
147         struct dm_space_map *metadata_sm;
148         struct dm_space_map *data_sm;
149         struct dm_transaction_manager *tm;
150         struct dm_transaction_manager *nb_tm;
151
152         /*
153          * Two-level btree.
154          * First level holds thin_dev_t.
155          * Second level holds mappings.
156          */
157         struct dm_btree_info info;
158
159         /*
160          * Non-blocking version of the above.
161          */
162         struct dm_btree_info nb_info;
163
164         /*
165          * Just the top level for deleting whole devices.
166          */
167         struct dm_btree_info tl_info;
168
169         /*
170          * Just the bottom level for creating new devices.
171          */
172         struct dm_btree_info bl_info;
173
174         /*
175          * Describes the device details btree.
176          */
177         struct dm_btree_info details_info;
178
179         struct rw_semaphore root_lock;
180         uint32_t time;
181         dm_block_t root;
182         dm_block_t details_root;
183         struct list_head thin_devices;
184         uint64_t trans_id;
185         unsigned long flags;
186         sector_t data_block_size;
187         bool read_only:1;
188
189         /*
190          * Set if a transaction has to be aborted but the attempt to roll back
191          * to the previous (good) transaction failed.  The only pool metadata
192          * operation possible in this state is the closing of the device.
193          */
194         bool fail_io:1;
195 };
196
197 struct dm_thin_device {
198         struct list_head list;
199         struct dm_pool_metadata *pmd;
200         dm_thin_id id;
201
202         int open_count;
203         bool changed:1;
204         bool aborted_with_changes:1;
205         uint64_t mapped_blocks;
206         uint64_t transaction_id;
207         uint32_t creation_time;
208         uint32_t snapshotted_time;
209 };
210
211 /*----------------------------------------------------------------
212  * superblock validator
213  *--------------------------------------------------------------*/
214
215 #define SUPERBLOCK_CSUM_XOR 160774
216
217 static void sb_prepare_for_write(struct dm_block_validator *v,
218                                  struct dm_block *b,
219                                  size_t block_size)
220 {
221         struct thin_disk_superblock *disk_super = dm_block_data(b);
222
223         disk_super->blocknr = cpu_to_le64(dm_block_location(b));
224         disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
225                                                       block_size - sizeof(__le32),
226                                                       SUPERBLOCK_CSUM_XOR));
227 }
228
229 static int sb_check(struct dm_block_validator *v,
230                     struct dm_block *b,
231                     size_t block_size)
232 {
233         struct thin_disk_superblock *disk_super = dm_block_data(b);
234         __le32 csum_le;
235
236         if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
237                 DMERR("sb_check failed: blocknr %llu: "
238                       "wanted %llu", le64_to_cpu(disk_super->blocknr),
239                       (unsigned long long)dm_block_location(b));
240                 return -ENOTBLK;
241         }
242
243         if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
244                 DMERR("sb_check failed: magic %llu: "
245                       "wanted %llu", le64_to_cpu(disk_super->magic),
246                       (unsigned long long)THIN_SUPERBLOCK_MAGIC);
247                 return -EILSEQ;
248         }
249
250         csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
251                                              block_size - sizeof(__le32),
252                                              SUPERBLOCK_CSUM_XOR));
253         if (csum_le != disk_super->csum) {
254                 DMERR("sb_check failed: csum %u: wanted %u",
255                       le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
256                 return -EILSEQ;
257         }
258
259         return 0;
260 }
261
262 static struct dm_block_validator sb_validator = {
263         .name = "superblock",
264         .prepare_for_write = sb_prepare_for_write,
265         .check = sb_check
266 };
267
268 /*----------------------------------------------------------------
269  * Methods for the btree value types
270  *--------------------------------------------------------------*/
271
272 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
273 {
274         return (b << 24) | t;
275 }
276
277 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
278 {
279         *b = v >> 24;
280         *t = v & ((1 << 24) - 1);
281 }
282
283 static void data_block_inc(void *context, const void *value_le)
284 {
285         struct dm_space_map *sm = context;
286         __le64 v_le;
287         uint64_t b;
288         uint32_t t;
289
290         memcpy(&v_le, value_le, sizeof(v_le));
291         unpack_block_time(le64_to_cpu(v_le), &b, &t);
292         dm_sm_inc_block(sm, b);
293 }
294
295 static void data_block_dec(void *context, const void *value_le)
296 {
297         struct dm_space_map *sm = context;
298         __le64 v_le;
299         uint64_t b;
300         uint32_t t;
301
302         memcpy(&v_le, value_le, sizeof(v_le));
303         unpack_block_time(le64_to_cpu(v_le), &b, &t);
304         dm_sm_dec_block(sm, b);
305 }
306
307 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
308 {
309         __le64 v1_le, v2_le;
310         uint64_t b1, b2;
311         uint32_t t;
312
313         memcpy(&v1_le, value1_le, sizeof(v1_le));
314         memcpy(&v2_le, value2_le, sizeof(v2_le));
315         unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
316         unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
317
318         return b1 == b2;
319 }
320
321 static void subtree_inc(void *context, const void *value)
322 {
323         struct dm_btree_info *info = context;
324         __le64 root_le;
325         uint64_t root;
326
327         memcpy(&root_le, value, sizeof(root_le));
328         root = le64_to_cpu(root_le);
329         dm_tm_inc(info->tm, root);
330 }
331
332 static void subtree_dec(void *context, const void *value)
333 {
334         struct dm_btree_info *info = context;
335         __le64 root_le;
336         uint64_t root;
337
338         memcpy(&root_le, value, sizeof(root_le));
339         root = le64_to_cpu(root_le);
340         if (dm_btree_del(info, root))
341                 DMERR("btree delete failed\n");
342 }
343
344 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
345 {
346         __le64 v1_le, v2_le;
347         memcpy(&v1_le, value1_le, sizeof(v1_le));
348         memcpy(&v2_le, value2_le, sizeof(v2_le));
349
350         return v1_le == v2_le;
351 }
352
353 /*----------------------------------------------------------------*/
354
355 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
356                                 struct dm_block **sblock)
357 {
358         return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
359                                      &sb_validator, sblock);
360 }
361
362 static int superblock_lock(struct dm_pool_metadata *pmd,
363                            struct dm_block **sblock)
364 {
365         return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
366                                 &sb_validator, sblock);
367 }
368
369 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
370 {
371         int r;
372         unsigned i;
373         struct dm_block *b;
374         __le64 *data_le, zero = cpu_to_le64(0);
375         unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
376
377         /*
378          * We can't use a validator here - it may be all zeroes.
379          */
380         r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
381         if (r)
382                 return r;
383
384         data_le = dm_block_data(b);
385         *result = 1;
386         for (i = 0; i < block_size; i++) {
387                 if (data_le[i] != zero) {
388                         *result = 0;
389                         break;
390                 }
391         }
392
393         return dm_bm_unlock(b);
394 }
395
396 static void __setup_btree_details(struct dm_pool_metadata *pmd)
397 {
398         pmd->info.tm = pmd->tm;
399         pmd->info.levels = 2;
400         pmd->info.value_type.context = pmd->data_sm;
401         pmd->info.value_type.size = sizeof(__le64);
402         pmd->info.value_type.inc = data_block_inc;
403         pmd->info.value_type.dec = data_block_dec;
404         pmd->info.value_type.equal = data_block_equal;
405
406         memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
407         pmd->nb_info.tm = pmd->nb_tm;
408
409         pmd->tl_info.tm = pmd->tm;
410         pmd->tl_info.levels = 1;
411         pmd->tl_info.value_type.context = &pmd->bl_info;
412         pmd->tl_info.value_type.size = sizeof(__le64);
413         pmd->tl_info.value_type.inc = subtree_inc;
414         pmd->tl_info.value_type.dec = subtree_dec;
415         pmd->tl_info.value_type.equal = subtree_equal;
416
417         pmd->bl_info.tm = pmd->tm;
418         pmd->bl_info.levels = 1;
419         pmd->bl_info.value_type.context = pmd->data_sm;
420         pmd->bl_info.value_type.size = sizeof(__le64);
421         pmd->bl_info.value_type.inc = data_block_inc;
422         pmd->bl_info.value_type.dec = data_block_dec;
423         pmd->bl_info.value_type.equal = data_block_equal;
424
425         pmd->details_info.tm = pmd->tm;
426         pmd->details_info.levels = 1;
427         pmd->details_info.value_type.context = NULL;
428         pmd->details_info.value_type.size = sizeof(struct disk_device_details);
429         pmd->details_info.value_type.inc = NULL;
430         pmd->details_info.value_type.dec = NULL;
431         pmd->details_info.value_type.equal = NULL;
432 }
433
434 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
435 {
436         int r;
437         struct dm_block *sblock;
438         size_t metadata_len, data_len;
439         struct thin_disk_superblock *disk_super;
440         sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
441
442         if (bdev_size > THIN_METADATA_MAX_SECTORS)
443                 bdev_size = THIN_METADATA_MAX_SECTORS;
444
445         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
446         if (r < 0)
447                 return r;
448
449         r = dm_sm_root_size(pmd->data_sm, &data_len);
450         if (r < 0)
451                 return r;
452
453         r = dm_sm_commit(pmd->data_sm);
454         if (r < 0)
455                 return r;
456
457         r = dm_tm_pre_commit(pmd->tm);
458         if (r < 0)
459                 return r;
460
461         r = superblock_lock_zero(pmd, &sblock);
462         if (r)
463                 return r;
464
465         disk_super = dm_block_data(sblock);
466         disk_super->flags = 0;
467         memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
468         disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
469         disk_super->version = cpu_to_le32(THIN_VERSION);
470         disk_super->time = 0;
471         disk_super->trans_id = 0;
472         disk_super->held_root = 0;
473
474         r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
475                             metadata_len);
476         if (r < 0)
477                 goto bad_locked;
478
479         r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
480                             data_len);
481         if (r < 0)
482                 goto bad_locked;
483
484         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
485         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
486         disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
487         disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
488         disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
489
490         return dm_tm_commit(pmd->tm, sblock);
491
492 bad_locked:
493         dm_bm_unlock(sblock);
494         return r;
495 }
496
497 static int __format_metadata(struct dm_pool_metadata *pmd)
498 {
499         int r;
500
501         r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
502                                  &pmd->tm, &pmd->metadata_sm);
503         if (r < 0) {
504                 DMERR("tm_create_with_sm failed");
505                 return r;
506         }
507
508         pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
509         if (IS_ERR(pmd->data_sm)) {
510                 DMERR("sm_disk_create failed");
511                 r = PTR_ERR(pmd->data_sm);
512                 goto bad_cleanup_tm;
513         }
514
515         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
516         if (!pmd->nb_tm) {
517                 DMERR("could not create non-blocking clone tm");
518                 r = -ENOMEM;
519                 goto bad_cleanup_data_sm;
520         }
521
522         __setup_btree_details(pmd);
523
524         r = dm_btree_empty(&pmd->info, &pmd->root);
525         if (r < 0)
526                 goto bad_cleanup_nb_tm;
527
528         r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
529         if (r < 0) {
530                 DMERR("couldn't create devices root");
531                 goto bad_cleanup_nb_tm;
532         }
533
534         r = __write_initial_superblock(pmd);
535         if (r)
536                 goto bad_cleanup_nb_tm;
537
538         return 0;
539
540 bad_cleanup_nb_tm:
541         dm_tm_destroy(pmd->nb_tm);
542 bad_cleanup_data_sm:
543         dm_sm_destroy(pmd->data_sm);
544 bad_cleanup_tm:
545         dm_tm_destroy(pmd->tm);
546         dm_sm_destroy(pmd->metadata_sm);
547
548         return r;
549 }
550
551 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
552                                      struct dm_pool_metadata *pmd)
553 {
554         uint32_t features;
555
556         features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
557         if (features) {
558                 DMERR("could not access metadata due to unsupported optional features (%lx).",
559                       (unsigned long)features);
560                 return -EINVAL;
561         }
562
563         /*
564          * Check for read-only metadata to skip the following RDWR checks.
565          */
566         if (get_disk_ro(pmd->bdev->bd_disk))
567                 return 0;
568
569         features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
570         if (features) {
571                 DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
572                       (unsigned long)features);
573                 return -EINVAL;
574         }
575
576         return 0;
577 }
578
579 static int __open_metadata(struct dm_pool_metadata *pmd)
580 {
581         int r;
582         struct dm_block *sblock;
583         struct thin_disk_superblock *disk_super;
584
585         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
586                             &sb_validator, &sblock);
587         if (r < 0) {
588                 DMERR("couldn't read superblock");
589                 return r;
590         }
591
592         disk_super = dm_block_data(sblock);
593
594         r = __check_incompat_features(disk_super, pmd);
595         if (r < 0)
596                 goto bad_unlock_sblock;
597
598         r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
599                                disk_super->metadata_space_map_root,
600                                sizeof(disk_super->metadata_space_map_root),
601                                &pmd->tm, &pmd->metadata_sm);
602         if (r < 0) {
603                 DMERR("tm_open_with_sm failed");
604                 goto bad_unlock_sblock;
605         }
606
607         pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
608                                        sizeof(disk_super->data_space_map_root));
609         if (IS_ERR(pmd->data_sm)) {
610                 DMERR("sm_disk_open failed");
611                 r = PTR_ERR(pmd->data_sm);
612                 goto bad_cleanup_tm;
613         }
614
615         pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
616         if (!pmd->nb_tm) {
617                 DMERR("could not create non-blocking clone tm");
618                 r = -ENOMEM;
619                 goto bad_cleanup_data_sm;
620         }
621
622         __setup_btree_details(pmd);
623         return dm_bm_unlock(sblock);
624
625 bad_cleanup_data_sm:
626         dm_sm_destroy(pmd->data_sm);
627 bad_cleanup_tm:
628         dm_tm_destroy(pmd->tm);
629         dm_sm_destroy(pmd->metadata_sm);
630 bad_unlock_sblock:
631         dm_bm_unlock(sblock);
632
633         return r;
634 }
635
636 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
637 {
638         int r, unformatted;
639
640         r = __superblock_all_zeroes(pmd->bm, &unformatted);
641         if (r)
642                 return r;
643
644         if (unformatted)
645                 return format_device ? __format_metadata(pmd) : -EPERM;
646
647         return __open_metadata(pmd);
648 }
649
650 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
651 {
652         int r;
653
654         pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE,
655                                           THIN_METADATA_CACHE_SIZE,
656                                           THIN_MAX_CONCURRENT_LOCKS);
657         if (IS_ERR(pmd->bm)) {
658                 DMERR("could not create block manager");
659                 return PTR_ERR(pmd->bm);
660         }
661
662         r = __open_or_format_metadata(pmd, format_device);
663         if (r)
664                 dm_block_manager_destroy(pmd->bm);
665
666         return r;
667 }
668
669 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
670 {
671         dm_sm_destroy(pmd->data_sm);
672         dm_sm_destroy(pmd->metadata_sm);
673         dm_tm_destroy(pmd->nb_tm);
674         dm_tm_destroy(pmd->tm);
675         dm_block_manager_destroy(pmd->bm);
676 }
677
678 static int __begin_transaction(struct dm_pool_metadata *pmd)
679 {
680         int r;
681         struct thin_disk_superblock *disk_super;
682         struct dm_block *sblock;
683
684         /*
685          * We re-read the superblock every time.  Shouldn't need to do this
686          * really.
687          */
688         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
689                             &sb_validator, &sblock);
690         if (r)
691                 return r;
692
693         disk_super = dm_block_data(sblock);
694         pmd->time = le32_to_cpu(disk_super->time);
695         pmd->root = le64_to_cpu(disk_super->data_mapping_root);
696         pmd->details_root = le64_to_cpu(disk_super->device_details_root);
697         pmd->trans_id = le64_to_cpu(disk_super->trans_id);
698         pmd->flags = le32_to_cpu(disk_super->flags);
699         pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
700
701         dm_bm_unlock(sblock);
702         return 0;
703 }
704
705 static int __write_changed_details(struct dm_pool_metadata *pmd)
706 {
707         int r;
708         struct dm_thin_device *td, *tmp;
709         struct disk_device_details details;
710         uint64_t key;
711
712         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
713                 if (!td->changed)
714                         continue;
715
716                 key = td->id;
717
718                 details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
719                 details.transaction_id = cpu_to_le64(td->transaction_id);
720                 details.creation_time = cpu_to_le32(td->creation_time);
721                 details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
722                 __dm_bless_for_disk(&details);
723
724                 r = dm_btree_insert(&pmd->details_info, pmd->details_root,
725                                     &key, &details, &pmd->details_root);
726                 if (r)
727                         return r;
728
729                 if (td->open_count)
730                         td->changed = 0;
731                 else {
732                         list_del(&td->list);
733                         kfree(td);
734                 }
735         }
736
737         return 0;
738 }
739
740 static int __commit_transaction(struct dm_pool_metadata *pmd)
741 {
742         int r;
743         size_t metadata_len, data_len;
744         struct thin_disk_superblock *disk_super;
745         struct dm_block *sblock;
746
747         /*
748          * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
749          */
750         BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
751
752         r = __write_changed_details(pmd);
753         if (r < 0)
754                 return r;
755
756         r = dm_sm_commit(pmd->data_sm);
757         if (r < 0)
758                 return r;
759
760         r = dm_tm_pre_commit(pmd->tm);
761         if (r < 0)
762                 return r;
763
764         r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
765         if (r < 0)
766                 return r;
767
768         r = dm_sm_root_size(pmd->data_sm, &data_len);
769         if (r < 0)
770                 return r;
771
772         r = superblock_lock(pmd, &sblock);
773         if (r)
774                 return r;
775
776         disk_super = dm_block_data(sblock);
777         disk_super->time = cpu_to_le32(pmd->time);
778         disk_super->data_mapping_root = cpu_to_le64(pmd->root);
779         disk_super->device_details_root = cpu_to_le64(pmd->details_root);
780         disk_super->trans_id = cpu_to_le64(pmd->trans_id);
781         disk_super->flags = cpu_to_le32(pmd->flags);
782
783         r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
784                             metadata_len);
785         if (r < 0)
786                 goto out_locked;
787
788         r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
789                             data_len);
790         if (r < 0)
791                 goto out_locked;
792
793         return dm_tm_commit(pmd->tm, sblock);
794
795 out_locked:
796         dm_bm_unlock(sblock);
797         return r;
798 }
799
800 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
801                                                sector_t data_block_size,
802                                                bool format_device)
803 {
804         int r;
805         struct dm_pool_metadata *pmd;
806
807         pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
808         if (!pmd) {
809                 DMERR("could not allocate metadata struct");
810                 return ERR_PTR(-ENOMEM);
811         }
812
813         init_rwsem(&pmd->root_lock);
814         pmd->time = 0;
815         INIT_LIST_HEAD(&pmd->thin_devices);
816         pmd->read_only = false;
817         pmd->fail_io = false;
818         pmd->bdev = bdev;
819         pmd->data_block_size = data_block_size;
820
821         r = __create_persistent_data_objects(pmd, format_device);
822         if (r) {
823                 kfree(pmd);
824                 return ERR_PTR(r);
825         }
826
827         r = __begin_transaction(pmd);
828         if (r < 0) {
829                 if (dm_pool_metadata_close(pmd) < 0)
830                         DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
831                 return ERR_PTR(r);
832         }
833
834         return pmd;
835 }
836
837 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
838 {
839         int r;
840         unsigned open_devices = 0;
841         struct dm_thin_device *td, *tmp;
842
843         down_read(&pmd->root_lock);
844         list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
845                 if (td->open_count)
846                         open_devices++;
847                 else {
848                         list_del(&td->list);
849                         kfree(td);
850                 }
851         }
852         up_read(&pmd->root_lock);
853
854         if (open_devices) {
855                 DMERR("attempt to close pmd when %u device(s) are still open",
856                        open_devices);
857                 return -EBUSY;
858         }
859
860         if (!pmd->read_only && !pmd->fail_io) {
861                 r = __commit_transaction(pmd);
862                 if (r < 0)
863                         DMWARN("%s: __commit_transaction() failed, error = %d",
864                                __func__, r);
865         }
866
867         if (!pmd->fail_io)
868                 __destroy_persistent_data_objects(pmd);
869
870         kfree(pmd);
871         return 0;
872 }
873
874 /*
875  * __open_device: Returns @td corresponding to device with id @dev,
876  * creating it if @create is set and incrementing @td->open_count.
877  * On failure, @td is undefined.
878  */
879 static int __open_device(struct dm_pool_metadata *pmd,
880                          dm_thin_id dev, int create,
881                          struct dm_thin_device **td)
882 {
883         int r, changed = 0;
884         struct dm_thin_device *td2;
885         uint64_t key = dev;
886         struct disk_device_details details_le;
887
888         /*
889          * If the device is already open, return it.
890          */
891         list_for_each_entry(td2, &pmd->thin_devices, list)
892                 if (td2->id == dev) {
893                         /*
894                          * May not create an already-open device.
895                          */
896                         if (create)
897                                 return -EEXIST;
898
899                         td2->open_count++;
900                         *td = td2;
901                         return 0;
902                 }
903
904         /*
905          * Check the device exists.
906          */
907         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
908                             &key, &details_le);
909         if (r) {
910                 if (r != -ENODATA || !create)
911                         return r;
912
913                 /*
914                  * Create new device.
915                  */
916                 changed = 1;
917                 details_le.mapped_blocks = 0;
918                 details_le.transaction_id = cpu_to_le64(pmd->trans_id);
919                 details_le.creation_time = cpu_to_le32(pmd->time);
920                 details_le.snapshotted_time = cpu_to_le32(pmd->time);
921         }
922
923         *td = kmalloc(sizeof(**td), GFP_NOIO);
924         if (!*td)
925                 return -ENOMEM;
926
927         (*td)->pmd = pmd;
928         (*td)->id = dev;
929         (*td)->open_count = 1;
930         (*td)->changed = changed;
931         (*td)->aborted_with_changes = false;
932         (*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
933         (*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
934         (*td)->creation_time = le32_to_cpu(details_le.creation_time);
935         (*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
936
937         list_add(&(*td)->list, &pmd->thin_devices);
938
939         return 0;
940 }
941
942 static void __close_device(struct dm_thin_device *td)
943 {
944         --td->open_count;
945 }
946
947 static int __create_thin(struct dm_pool_metadata *pmd,
948                          dm_thin_id dev)
949 {
950         int r;
951         dm_block_t dev_root;
952         uint64_t key = dev;
953         struct disk_device_details details_le;
954         struct dm_thin_device *td;
955         __le64 value;
956
957         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
958                             &key, &details_le);
959         if (!r)
960                 return -EEXIST;
961
962         /*
963          * Create an empty btree for the mappings.
964          */
965         r = dm_btree_empty(&pmd->bl_info, &dev_root);
966         if (r)
967                 return r;
968
969         /*
970          * Insert it into the main mapping tree.
971          */
972         value = cpu_to_le64(dev_root);
973         __dm_bless_for_disk(&value);
974         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
975         if (r) {
976                 dm_btree_del(&pmd->bl_info, dev_root);
977                 return r;
978         }
979
980         r = __open_device(pmd, dev, 1, &td);
981         if (r) {
982                 dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
983                 dm_btree_del(&pmd->bl_info, dev_root);
984                 return r;
985         }
986         __close_device(td);
987
988         return r;
989 }
990
991 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
992 {
993         int r = -EINVAL;
994
995         down_write(&pmd->root_lock);
996         if (!pmd->fail_io)
997                 r = __create_thin(pmd, dev);
998         up_write(&pmd->root_lock);
999
1000         return r;
1001 }
1002
1003 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1004                                   struct dm_thin_device *snap,
1005                                   dm_thin_id origin, uint32_t time)
1006 {
1007         int r;
1008         struct dm_thin_device *td;
1009
1010         r = __open_device(pmd, origin, 0, &td);
1011         if (r)
1012                 return r;
1013
1014         td->changed = 1;
1015         td->snapshotted_time = time;
1016
1017         snap->mapped_blocks = td->mapped_blocks;
1018         snap->snapshotted_time = time;
1019         __close_device(td);
1020
1021         return 0;
1022 }
1023
1024 static int __create_snap(struct dm_pool_metadata *pmd,
1025                          dm_thin_id dev, dm_thin_id origin)
1026 {
1027         int r;
1028         dm_block_t origin_root;
1029         uint64_t key = origin, dev_key = dev;
1030         struct dm_thin_device *td;
1031         struct disk_device_details details_le;
1032         __le64 value;
1033
1034         /* check this device is unused */
1035         r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1036                             &dev_key, &details_le);
1037         if (!r)
1038                 return -EEXIST;
1039
1040         /* find the mapping tree for the origin */
1041         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1042         if (r)
1043                 return r;
1044         origin_root = le64_to_cpu(value);
1045
1046         /* clone the origin, an inc will do */
1047         dm_tm_inc(pmd->tm, origin_root);
1048
1049         /* insert into the main mapping tree */
1050         value = cpu_to_le64(origin_root);
1051         __dm_bless_for_disk(&value);
1052         key = dev;
1053         r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1054         if (r) {
1055                 dm_tm_dec(pmd->tm, origin_root);
1056                 return r;
1057         }
1058
1059         pmd->time++;
1060
1061         r = __open_device(pmd, dev, 1, &td);
1062         if (r)
1063                 goto bad;
1064
1065         r = __set_snapshot_details(pmd, td, origin, pmd->time);
1066         __close_device(td);
1067
1068         if (r)
1069                 goto bad;
1070
1071         return 0;
1072
1073 bad:
1074         dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1075         dm_btree_remove(&pmd->details_info, pmd->details_root,
1076                         &key, &pmd->details_root);
1077         return r;
1078 }
1079
1080 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1081                                  dm_thin_id dev,
1082                                  dm_thin_id origin)
1083 {
1084         int r = -EINVAL;
1085
1086         down_write(&pmd->root_lock);
1087         if (!pmd->fail_io)
1088                 r = __create_snap(pmd, dev, origin);
1089         up_write(&pmd->root_lock);
1090
1091         return r;
1092 }
1093
1094 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1095 {
1096         int r;
1097         uint64_t key = dev;
1098         struct dm_thin_device *td;
1099
1100         /* TODO: failure should mark the transaction invalid */
1101         r = __open_device(pmd, dev, 0, &td);
1102         if (r)
1103                 return r;
1104
1105         if (td->open_count > 1) {
1106                 __close_device(td);
1107                 return -EBUSY;
1108         }
1109
1110         list_del(&td->list);
1111         kfree(td);
1112         r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1113                             &key, &pmd->details_root);
1114         if (r)
1115                 return r;
1116
1117         r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1118         if (r)
1119                 return r;
1120
1121         return 0;
1122 }
1123
1124 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1125                                dm_thin_id dev)
1126 {
1127         int r = -EINVAL;
1128
1129         down_write(&pmd->root_lock);
1130         if (!pmd->fail_io)
1131                 r = __delete_device(pmd, dev);
1132         up_write(&pmd->root_lock);
1133
1134         return r;
1135 }
1136
1137 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1138                                         uint64_t current_id,
1139                                         uint64_t new_id)
1140 {
1141         int r = -EINVAL;
1142
1143         down_write(&pmd->root_lock);
1144
1145         if (pmd->fail_io)
1146                 goto out;
1147
1148         if (pmd->trans_id != current_id) {
1149                 DMERR("mismatched transaction id");
1150                 goto out;
1151         }
1152
1153         pmd->trans_id = new_id;
1154         r = 0;
1155
1156 out:
1157         up_write(&pmd->root_lock);
1158
1159         return r;
1160 }
1161
1162 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1163                                         uint64_t *result)
1164 {
1165         int r = -EINVAL;
1166
1167         down_read(&pmd->root_lock);
1168         if (!pmd->fail_io) {
1169                 *result = pmd->trans_id;
1170                 r = 0;
1171         }
1172         up_read(&pmd->root_lock);
1173
1174         return r;
1175 }
1176
1177 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1178 {
1179         int r, inc;
1180         struct thin_disk_superblock *disk_super;
1181         struct dm_block *copy, *sblock;
1182         dm_block_t held_root;
1183
1184         /*
1185          * Copy the superblock.
1186          */
1187         dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1188         r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1189                                &sb_validator, &copy, &inc);
1190         if (r)
1191                 return r;
1192
1193         BUG_ON(!inc);
1194
1195         held_root = dm_block_location(copy);
1196         disk_super = dm_block_data(copy);
1197
1198         if (le64_to_cpu(disk_super->held_root)) {
1199                 DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1200
1201                 dm_tm_dec(pmd->tm, held_root);
1202                 dm_tm_unlock(pmd->tm, copy);
1203                 return -EBUSY;
1204         }
1205
1206         /*
1207          * Wipe the spacemap since we're not publishing this.
1208          */
1209         memset(&disk_super->data_space_map_root, 0,
1210                sizeof(disk_super->data_space_map_root));
1211         memset(&disk_super->metadata_space_map_root, 0,
1212                sizeof(disk_super->metadata_space_map_root));
1213
1214         /*
1215          * Increment the data structures that need to be preserved.
1216          */
1217         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1218         dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1219         dm_tm_unlock(pmd->tm, copy);
1220
1221         /*
1222          * Write the held root into the superblock.
1223          */
1224         r = superblock_lock(pmd, &sblock);
1225         if (r) {
1226                 dm_tm_dec(pmd->tm, held_root);
1227                 return r;
1228         }
1229
1230         disk_super = dm_block_data(sblock);
1231         disk_super->held_root = cpu_to_le64(held_root);
1232         dm_bm_unlock(sblock);
1233         return 0;
1234 }
1235
1236 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1237 {
1238         int r = -EINVAL;
1239
1240         down_write(&pmd->root_lock);
1241         if (!pmd->fail_io)
1242                 r = __reserve_metadata_snap(pmd);
1243         up_write(&pmd->root_lock);
1244
1245         return r;
1246 }
1247
1248 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1249 {
1250         int r;
1251         struct thin_disk_superblock *disk_super;
1252         struct dm_block *sblock, *copy;
1253         dm_block_t held_root;
1254
1255         r = superblock_lock(pmd, &sblock);
1256         if (r)
1257                 return r;
1258
1259         disk_super = dm_block_data(sblock);
1260         held_root = le64_to_cpu(disk_super->held_root);
1261         disk_super->held_root = cpu_to_le64(0);
1262
1263         dm_bm_unlock(sblock);
1264
1265         if (!held_root) {
1266                 DMWARN("No pool metadata snapshot found: nothing to release.");
1267                 return -EINVAL;
1268         }
1269
1270         r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1271         if (r)
1272                 return r;
1273
1274         disk_super = dm_block_data(copy);
1275         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->data_mapping_root));
1276         dm_sm_dec_block(pmd->metadata_sm, le64_to_cpu(disk_super->device_details_root));
1277         dm_sm_dec_block(pmd->metadata_sm, held_root);
1278
1279         return dm_tm_unlock(pmd->tm, copy);
1280 }
1281
1282 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1283 {
1284         int r = -EINVAL;
1285
1286         down_write(&pmd->root_lock);
1287         if (!pmd->fail_io)
1288                 r = __release_metadata_snap(pmd);
1289         up_write(&pmd->root_lock);
1290
1291         return r;
1292 }
1293
1294 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1295                                dm_block_t *result)
1296 {
1297         int r;
1298         struct thin_disk_superblock *disk_super;
1299         struct dm_block *sblock;
1300
1301         r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1302                             &sb_validator, &sblock);
1303         if (r)
1304                 return r;
1305
1306         disk_super = dm_block_data(sblock);
1307         *result = le64_to_cpu(disk_super->held_root);
1308
1309         return dm_bm_unlock(sblock);
1310 }
1311
1312 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1313                               dm_block_t *result)
1314 {
1315         int r = -EINVAL;
1316
1317         down_read(&pmd->root_lock);
1318         if (!pmd->fail_io)
1319                 r = __get_metadata_snap(pmd, result);
1320         up_read(&pmd->root_lock);
1321
1322         return r;
1323 }
1324
1325 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1326                              struct dm_thin_device **td)
1327 {
1328         int r = -EINVAL;
1329
1330         down_write(&pmd->root_lock);
1331         if (!pmd->fail_io)
1332                 r = __open_device(pmd, dev, 0, td);
1333         up_write(&pmd->root_lock);
1334
1335         return r;
1336 }
1337
1338 int dm_pool_close_thin_device(struct dm_thin_device *td)
1339 {
1340         down_write(&td->pmd->root_lock);
1341         __close_device(td);
1342         up_write(&td->pmd->root_lock);
1343
1344         return 0;
1345 }
1346
1347 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1348 {
1349         return td->id;
1350 }
1351
1352 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1353 {
1354         return td->snapshotted_time > time;
1355 }
1356
1357 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1358                        int can_block, struct dm_thin_lookup_result *result)
1359 {
1360         int r = -EINVAL;
1361         uint64_t block_time = 0;
1362         __le64 value;
1363         struct dm_pool_metadata *pmd = td->pmd;
1364         dm_block_t keys[2] = { td->id, block };
1365         struct dm_btree_info *info;
1366
1367         if (can_block) {
1368                 down_read(&pmd->root_lock);
1369                 info = &pmd->info;
1370         } else if (down_read_trylock(&pmd->root_lock))
1371                 info = &pmd->nb_info;
1372         else
1373                 return -EWOULDBLOCK;
1374
1375         if (pmd->fail_io)
1376                 goto out;
1377
1378         r = dm_btree_lookup(info, pmd->root, keys, &value);
1379         if (!r)
1380                 block_time = le64_to_cpu(value);
1381
1382 out:
1383         up_read(&pmd->root_lock);
1384
1385         if (!r) {
1386                 dm_block_t exception_block;
1387                 uint32_t exception_time;
1388                 unpack_block_time(block_time, &exception_block,
1389                                   &exception_time);
1390                 result->block = exception_block;
1391                 result->shared = __snapshotted_since(td, exception_time);
1392         }
1393
1394         return r;
1395 }
1396
1397 static int __insert(struct dm_thin_device *td, dm_block_t block,
1398                     dm_block_t data_block)
1399 {
1400         int r, inserted;
1401         __le64 value;
1402         struct dm_pool_metadata *pmd = td->pmd;
1403         dm_block_t keys[2] = { td->id, block };
1404
1405         value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1406         __dm_bless_for_disk(&value);
1407
1408         r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1409                                    &pmd->root, &inserted);
1410         if (r)
1411                 return r;
1412
1413         td->changed = 1;
1414         if (inserted)
1415                 td->mapped_blocks++;
1416
1417         return 0;
1418 }
1419
1420 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1421                          dm_block_t data_block)
1422 {
1423         int r = -EINVAL;
1424
1425         down_write(&td->pmd->root_lock);
1426         if (!td->pmd->fail_io)
1427                 r = __insert(td, block, data_block);
1428         up_write(&td->pmd->root_lock);
1429
1430         return r;
1431 }
1432
1433 static int __remove(struct dm_thin_device *td, dm_block_t block)
1434 {
1435         int r;
1436         struct dm_pool_metadata *pmd = td->pmd;
1437         dm_block_t keys[2] = { td->id, block };
1438
1439         r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1440         if (r)
1441                 return r;
1442
1443         td->mapped_blocks--;
1444         td->changed = 1;
1445
1446         return 0;
1447 }
1448
1449 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1450 {
1451         int r = -EINVAL;
1452
1453         down_write(&td->pmd->root_lock);
1454         if (!td->pmd->fail_io)
1455                 r = __remove(td, block);
1456         up_write(&td->pmd->root_lock);
1457
1458         return r;
1459 }
1460
1461 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1462 {
1463         int r;
1464
1465         down_read(&td->pmd->root_lock);
1466         r = td->changed;
1467         up_read(&td->pmd->root_lock);
1468
1469         return r;
1470 }
1471
1472 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1473 {
1474         bool r;
1475
1476         down_read(&td->pmd->root_lock);
1477         r = td->aborted_with_changes;
1478         up_read(&td->pmd->root_lock);
1479
1480         return r;
1481 }
1482
1483 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1484 {
1485         int r = -EINVAL;
1486
1487         down_write(&pmd->root_lock);
1488         if (!pmd->fail_io)
1489                 r = dm_sm_new_block(pmd->data_sm, result);
1490         up_write(&pmd->root_lock);
1491
1492         return r;
1493 }
1494
1495 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1496 {
1497         int r = -EINVAL;
1498
1499         down_write(&pmd->root_lock);
1500         if (pmd->fail_io)
1501                 goto out;
1502
1503         r = __commit_transaction(pmd);
1504         if (r <= 0)
1505                 goto out;
1506
1507         /*
1508          * Open the next transaction.
1509          */
1510         r = __begin_transaction(pmd);
1511 out:
1512         up_write(&pmd->root_lock);
1513         return r;
1514 }
1515
1516 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1517 {
1518         struct dm_thin_device *td;
1519
1520         list_for_each_entry(td, &pmd->thin_devices, list)
1521                 td->aborted_with_changes = td->changed;
1522 }
1523
1524 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1525 {
1526         int r = -EINVAL;
1527
1528         down_write(&pmd->root_lock);
1529         if (pmd->fail_io)
1530                 goto out;
1531
1532         __set_abort_with_changes_flags(pmd);
1533         __destroy_persistent_data_objects(pmd);
1534         r = __create_persistent_data_objects(pmd, false);
1535         if (r)
1536                 pmd->fail_io = true;
1537
1538 out:
1539         up_write(&pmd->root_lock);
1540
1541         return r;
1542 }
1543
1544 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1545 {
1546         int r = -EINVAL;
1547
1548         down_read(&pmd->root_lock);
1549         if (!pmd->fail_io)
1550                 r = dm_sm_get_nr_free(pmd->data_sm, result);
1551         up_read(&pmd->root_lock);
1552
1553         return r;
1554 }
1555
1556 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1557                                           dm_block_t *result)
1558 {
1559         int r = -EINVAL;
1560
1561         down_read(&pmd->root_lock);
1562         if (!pmd->fail_io)
1563                 r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1564         up_read(&pmd->root_lock);
1565
1566         return r;
1567 }
1568
1569 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1570                                   dm_block_t *result)
1571 {
1572         int r = -EINVAL;
1573
1574         down_read(&pmd->root_lock);
1575         if (!pmd->fail_io)
1576                 r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1577         up_read(&pmd->root_lock);
1578
1579         return r;
1580 }
1581
1582 int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
1583 {
1584         down_read(&pmd->root_lock);
1585         *result = pmd->data_block_size;
1586         up_read(&pmd->root_lock);
1587
1588         return 0;
1589 }
1590
1591 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1592 {
1593         int r = -EINVAL;
1594
1595         down_read(&pmd->root_lock);
1596         if (!pmd->fail_io)
1597                 r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1598         up_read(&pmd->root_lock);
1599
1600         return r;
1601 }
1602
1603 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1604 {
1605         int r = -EINVAL;
1606         struct dm_pool_metadata *pmd = td->pmd;
1607
1608         down_read(&pmd->root_lock);
1609         if (!pmd->fail_io) {
1610                 *result = td->mapped_blocks;
1611                 r = 0;
1612         }
1613         up_read(&pmd->root_lock);
1614
1615         return r;
1616 }
1617
1618 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1619 {
1620         int r;
1621         __le64 value_le;
1622         dm_block_t thin_root;
1623         struct dm_pool_metadata *pmd = td->pmd;
1624
1625         r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1626         if (r)
1627                 return r;
1628
1629         thin_root = le64_to_cpu(value_le);
1630
1631         return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1632 }
1633
1634 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1635                                      dm_block_t *result)
1636 {
1637         int r = -EINVAL;
1638         struct dm_pool_metadata *pmd = td->pmd;
1639
1640         down_read(&pmd->root_lock);
1641         if (!pmd->fail_io)
1642                 r = __highest_block(td, result);
1643         up_read(&pmd->root_lock);
1644
1645         return r;
1646 }
1647
1648 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1649 {
1650         int r;
1651         dm_block_t old_count;
1652
1653         r = dm_sm_get_nr_blocks(sm, &old_count);
1654         if (r)
1655                 return r;
1656
1657         if (new_count == old_count)
1658                 return 0;
1659
1660         if (new_count < old_count) {
1661                 DMERR("cannot reduce size of space map");
1662                 return -EINVAL;
1663         }
1664
1665         return dm_sm_extend(sm, new_count - old_count);
1666 }
1667
1668 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1669 {
1670         int r = -EINVAL;
1671
1672         down_write(&pmd->root_lock);
1673         if (!pmd->fail_io)
1674                 r = __resize_space_map(pmd->data_sm, new_count);
1675         up_write(&pmd->root_lock);
1676
1677         return r;
1678 }
1679
1680 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
1681 {
1682         int r = -EINVAL;
1683
1684         down_write(&pmd->root_lock);
1685         if (!pmd->fail_io)
1686                 r = __resize_space_map(pmd->metadata_sm, new_count);
1687         up_write(&pmd->root_lock);
1688
1689         return r;
1690 }
1691
1692 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
1693 {
1694         down_write(&pmd->root_lock);
1695         pmd->read_only = true;
1696         dm_bm_set_read_only(pmd->bm);
1697         up_write(&pmd->root_lock);
1698 }
1699
1700 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
1701 {
1702         down_write(&pmd->root_lock);
1703         pmd->read_only = false;
1704         dm_bm_set_read_write(pmd->bm);
1705         up_write(&pmd->root_lock);
1706 }
1707
1708 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
1709                                         dm_block_t threshold,
1710                                         dm_sm_threshold_fn fn,
1711                                         void *context)
1712 {
1713         int r;
1714
1715         down_write(&pmd->root_lock);
1716         r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
1717         up_write(&pmd->root_lock);
1718
1719         return r;
1720 }