[PATCH] KVM: MMU: Replace atomic allocations by preallocated objects
[linux-drm-fsl-dcu.git] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19 #include <linux/types.h>
20 #include <linux/string.h>
21 #include <asm/page.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <linux/module.h>
25
26 #include "vmx.h"
27 #include "kvm.h"
28
29 #define pgprintk(x...) do { printk(x); } while (0)
30 #define rmap_printk(x...) do { printk(x); } while (0)
31
32 #define ASSERT(x)                                                       \
33         if (!(x)) {                                                     \
34                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
35                        __FILE__, __LINE__, #x);                         \
36         }
37
38 #define PT64_PT_BITS 9
39 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
40 #define PT32_PT_BITS 10
41 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
42
43 #define PT_WRITABLE_SHIFT 1
44
45 #define PT_PRESENT_MASK (1ULL << 0)
46 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
47 #define PT_USER_MASK (1ULL << 2)
48 #define PT_PWT_MASK (1ULL << 3)
49 #define PT_PCD_MASK (1ULL << 4)
50 #define PT_ACCESSED_MASK (1ULL << 5)
51 #define PT_DIRTY_MASK (1ULL << 6)
52 #define PT_PAGE_SIZE_MASK (1ULL << 7)
53 #define PT_PAT_MASK (1ULL << 7)
54 #define PT_GLOBAL_MASK (1ULL << 8)
55 #define PT64_NX_MASK (1ULL << 63)
56
57 #define PT_PAT_SHIFT 7
58 #define PT_DIR_PAT_SHIFT 12
59 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
60
61 #define PT32_DIR_PSE36_SIZE 4
62 #define PT32_DIR_PSE36_SHIFT 13
63 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
64
65
66 #define PT32_PTE_COPY_MASK \
67         (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
68
69 #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
70
71 #define PT_FIRST_AVAIL_BITS_SHIFT 9
72 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
73
74 #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
75 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
76
77 #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
78 #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
79
80 #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
81 #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
82
83 #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
84
85 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
86
87 #define PT64_LEVEL_BITS 9
88
89 #define PT64_LEVEL_SHIFT(level) \
90                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
91
92 #define PT64_LEVEL_MASK(level) \
93                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
94
95 #define PT64_INDEX(address, level)\
96         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99 #define PT32_LEVEL_BITS 10
100
101 #define PT32_LEVEL_SHIFT(level) \
102                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
103
104 #define PT32_LEVEL_MASK(level) \
105                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
106
107 #define PT32_INDEX(address, level)\
108         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
109
110
111 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
112 #define PT64_DIR_BASE_ADDR_MASK \
113         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118
119
120 #define PFERR_PRESENT_MASK (1U << 0)
121 #define PFERR_WRITE_MASK (1U << 1)
122 #define PFERR_USER_MASK (1U << 2)
123
124 #define PT64_ROOT_LEVEL 4
125 #define PT32_ROOT_LEVEL 2
126 #define PT32E_ROOT_LEVEL 3
127
128 #define PT_DIRECTORY_LEVEL 2
129 #define PT_PAGE_TABLE_LEVEL 1
130
131 #define RMAP_EXT 4
132
133 struct kvm_rmap_desc {
134         u64 *shadow_ptes[RMAP_EXT];
135         struct kvm_rmap_desc *more;
136 };
137
138 static int is_write_protection(struct kvm_vcpu *vcpu)
139 {
140         return vcpu->cr0 & CR0_WP_MASK;
141 }
142
143 static int is_cpuid_PSE36(void)
144 {
145         return 1;
146 }
147
148 static int is_present_pte(unsigned long pte)
149 {
150         return pte & PT_PRESENT_MASK;
151 }
152
153 static int is_writeble_pte(unsigned long pte)
154 {
155         return pte & PT_WRITABLE_MASK;
156 }
157
158 static int is_io_pte(unsigned long pte)
159 {
160         return pte & PT_SHADOW_IO_MARK;
161 }
162
163 static int is_rmap_pte(u64 pte)
164 {
165         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
166                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
167 }
168
169 static void mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
170                                    size_t objsize, int min)
171 {
172         void *obj;
173
174         if (cache->nobjs >= min)
175                 return;
176         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
177                 obj = kzalloc(objsize, GFP_NOWAIT);
178                 if (!obj)
179                         BUG();
180                 cache->objects[cache->nobjs++] = obj;
181         }
182 }
183
184 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
185 {
186         while (mc->nobjs)
187                 kfree(mc->objects[--mc->nobjs]);
188 }
189
190 static void mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
191 {
192         mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
193                                sizeof(struct kvm_pte_chain), 4);
194         mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
195                                sizeof(struct kvm_rmap_desc), 1);
196 }
197
198 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
199 {
200         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
201         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
202 }
203
204 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
205                                     size_t size)
206 {
207         void *p;
208
209         BUG_ON(!mc->nobjs);
210         p = mc->objects[--mc->nobjs];
211         memset(p, 0, size);
212         return p;
213 }
214
215 static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
216 {
217         if (mc->nobjs < KVM_NR_MEM_OBJS)
218                 mc->objects[mc->nobjs++] = obj;
219         else
220                 kfree(obj);
221 }
222
223 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
224 {
225         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
226                                       sizeof(struct kvm_pte_chain));
227 }
228
229 static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
230                                struct kvm_pte_chain *pc)
231 {
232         mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
233 }
234
235 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
236 {
237         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
238                                       sizeof(struct kvm_rmap_desc));
239 }
240
241 static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
242                                struct kvm_rmap_desc *rd)
243 {
244         mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
245 }
246
247 /*
248  * Reverse mapping data structures:
249  *
250  * If page->private bit zero is zero, then page->private points to the
251  * shadow page table entry that points to page_address(page).
252  *
253  * If page->private bit zero is one, (then page->private & ~1) points
254  * to a struct kvm_rmap_desc containing more mappings.
255  */
256 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
257 {
258         struct page *page;
259         struct kvm_rmap_desc *desc;
260         int i;
261
262         if (!is_rmap_pte(*spte))
263                 return;
264         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
265         if (!page->private) {
266                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
267                 page->private = (unsigned long)spte;
268         } else if (!(page->private & 1)) {
269                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
270                 desc = mmu_alloc_rmap_desc(vcpu);
271                 desc->shadow_ptes[0] = (u64 *)page->private;
272                 desc->shadow_ptes[1] = spte;
273                 page->private = (unsigned long)desc | 1;
274         } else {
275                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
276                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
277                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
278                         desc = desc->more;
279                 if (desc->shadow_ptes[RMAP_EXT-1]) {
280                         desc->more = mmu_alloc_rmap_desc(vcpu);
281                         desc = desc->more;
282                 }
283                 for (i = 0; desc->shadow_ptes[i]; ++i)
284                         ;
285                 desc->shadow_ptes[i] = spte;
286         }
287 }
288
289 static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
290                                    struct page *page,
291                                    struct kvm_rmap_desc *desc,
292                                    int i,
293                                    struct kvm_rmap_desc *prev_desc)
294 {
295         int j;
296
297         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
298                 ;
299         desc->shadow_ptes[i] = desc->shadow_ptes[j];
300         desc->shadow_ptes[j] = 0;
301         if (j != 0)
302                 return;
303         if (!prev_desc && !desc->more)
304                 page->private = (unsigned long)desc->shadow_ptes[0];
305         else
306                 if (prev_desc)
307                         prev_desc->more = desc->more;
308                 else
309                         page->private = (unsigned long)desc->more | 1;
310         mmu_free_rmap_desc(vcpu, desc);
311 }
312
313 static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
314 {
315         struct page *page;
316         struct kvm_rmap_desc *desc;
317         struct kvm_rmap_desc *prev_desc;
318         int i;
319
320         if (!is_rmap_pte(*spte))
321                 return;
322         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
323         if (!page->private) {
324                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
325                 BUG();
326         } else if (!(page->private & 1)) {
327                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
328                 if ((u64 *)page->private != spte) {
329                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
330                                spte, *spte);
331                         BUG();
332                 }
333                 page->private = 0;
334         } else {
335                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
336                 desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
337                 prev_desc = NULL;
338                 while (desc) {
339                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
340                                 if (desc->shadow_ptes[i] == spte) {
341                                         rmap_desc_remove_entry(vcpu, page,
342                                                                desc, i,
343                                                                prev_desc);
344                                         return;
345                                 }
346                         prev_desc = desc;
347                         desc = desc->more;
348                 }
349                 BUG();
350         }
351 }
352
353 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
354 {
355         struct kvm *kvm = vcpu->kvm;
356         struct page *page;
357         struct kvm_memory_slot *slot;
358         struct kvm_rmap_desc *desc;
359         u64 *spte;
360
361         slot = gfn_to_memslot(kvm, gfn);
362         BUG_ON(!slot);
363         page = gfn_to_page(slot, gfn);
364
365         while (page->private) {
366                 if (!(page->private & 1))
367                         spte = (u64 *)page->private;
368                 else {
369                         desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
370                         spte = desc->shadow_ptes[0];
371                 }
372                 BUG_ON(!spte);
373                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
374                        page_to_pfn(page) << PAGE_SHIFT);
375                 BUG_ON(!(*spte & PT_PRESENT_MASK));
376                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
377                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
378                 rmap_remove(vcpu, spte);
379                 *spte &= ~(u64)PT_WRITABLE_MASK;
380         }
381 }
382
383 static int is_empty_shadow_page(hpa_t page_hpa)
384 {
385         u64 *pos;
386         u64 *end;
387
388         for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
389                       pos != end; pos++)
390                 if (*pos != 0) {
391                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
392                                pos, *pos);
393                         return 0;
394                 }
395         return 1;
396 }
397
398 static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
399 {
400         struct kvm_mmu_page *page_head = page_header(page_hpa);
401
402         ASSERT(is_empty_shadow_page(page_hpa));
403         list_del(&page_head->link);
404         page_head->page_hpa = page_hpa;
405         list_add(&page_head->link, &vcpu->free_pages);
406         ++vcpu->kvm->n_free_mmu_pages;
407 }
408
409 static unsigned kvm_page_table_hashfn(gfn_t gfn)
410 {
411         return gfn;
412 }
413
414 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
415                                                u64 *parent_pte)
416 {
417         struct kvm_mmu_page *page;
418
419         if (list_empty(&vcpu->free_pages))
420                 return NULL;
421
422         page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
423         list_del(&page->link);
424         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
425         ASSERT(is_empty_shadow_page(page->page_hpa));
426         page->slot_bitmap = 0;
427         page->global = 1;
428         page->multimapped = 0;
429         page->parent_pte = parent_pte;
430         --vcpu->kvm->n_free_mmu_pages;
431         return page;
432 }
433
434 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
435                                     struct kvm_mmu_page *page, u64 *parent_pte)
436 {
437         struct kvm_pte_chain *pte_chain;
438         struct hlist_node *node;
439         int i;
440
441         if (!parent_pte)
442                 return;
443         if (!page->multimapped) {
444                 u64 *old = page->parent_pte;
445
446                 if (!old) {
447                         page->parent_pte = parent_pte;
448                         return;
449                 }
450                 page->multimapped = 1;
451                 pte_chain = mmu_alloc_pte_chain(vcpu);
452                 INIT_HLIST_HEAD(&page->parent_ptes);
453                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
454                 pte_chain->parent_ptes[0] = old;
455         }
456         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
457                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
458                         continue;
459                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
460                         if (!pte_chain->parent_ptes[i]) {
461                                 pte_chain->parent_ptes[i] = parent_pte;
462                                 return;
463                         }
464         }
465         pte_chain = mmu_alloc_pte_chain(vcpu);
466         BUG_ON(!pte_chain);
467         hlist_add_head(&pte_chain->link, &page->parent_ptes);
468         pte_chain->parent_ptes[0] = parent_pte;
469 }
470
471 static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
472                                        struct kvm_mmu_page *page,
473                                        u64 *parent_pte)
474 {
475         struct kvm_pte_chain *pte_chain;
476         struct hlist_node *node;
477         int i;
478
479         if (!page->multimapped) {
480                 BUG_ON(page->parent_pte != parent_pte);
481                 page->parent_pte = NULL;
482                 return;
483         }
484         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
485                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
486                         if (!pte_chain->parent_ptes[i])
487                                 break;
488                         if (pte_chain->parent_ptes[i] != parent_pte)
489                                 continue;
490                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
491                                 && pte_chain->parent_ptes[i + 1]) {
492                                 pte_chain->parent_ptes[i]
493                                         = pte_chain->parent_ptes[i + 1];
494                                 ++i;
495                         }
496                         pte_chain->parent_ptes[i] = NULL;
497                         if (i == 0) {
498                                 hlist_del(&pte_chain->link);
499                                 mmu_free_pte_chain(vcpu, pte_chain);
500                                 if (hlist_empty(&page->parent_ptes)) {
501                                         page->multimapped = 0;
502                                         page->parent_pte = NULL;
503                                 }
504                         }
505                         return;
506                 }
507         BUG();
508 }
509
510 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
511                                                 gfn_t gfn)
512 {
513         unsigned index;
514         struct hlist_head *bucket;
515         struct kvm_mmu_page *page;
516         struct hlist_node *node;
517
518         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
519         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
520         bucket = &vcpu->kvm->mmu_page_hash[index];
521         hlist_for_each_entry(page, node, bucket, hash_link)
522                 if (page->gfn == gfn && !page->role.metaphysical) {
523                         pgprintk("%s: found role %x\n",
524                                  __FUNCTION__, page->role.word);
525                         return page;
526                 }
527         return NULL;
528 }
529
530 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
531                                              gfn_t gfn,
532                                              gva_t gaddr,
533                                              unsigned level,
534                                              int metaphysical,
535                                              u64 *parent_pte)
536 {
537         union kvm_mmu_page_role role;
538         unsigned index;
539         unsigned quadrant;
540         struct hlist_head *bucket;
541         struct kvm_mmu_page *page;
542         struct hlist_node *node;
543
544         role.word = 0;
545         role.glevels = vcpu->mmu.root_level;
546         role.level = level;
547         role.metaphysical = metaphysical;
548         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
549                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
550                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
551                 role.quadrant = quadrant;
552         }
553         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
554                  gfn, role.word);
555         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
556         bucket = &vcpu->kvm->mmu_page_hash[index];
557         hlist_for_each_entry(page, node, bucket, hash_link)
558                 if (page->gfn == gfn && page->role.word == role.word) {
559                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
560                         pgprintk("%s: found\n", __FUNCTION__);
561                         return page;
562                 }
563         page = kvm_mmu_alloc_page(vcpu, parent_pte);
564         if (!page)
565                 return page;
566         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
567         page->gfn = gfn;
568         page->role = role;
569         hlist_add_head(&page->hash_link, bucket);
570         if (!metaphysical)
571                 rmap_write_protect(vcpu, gfn);
572         return page;
573 }
574
575 static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
576                                          struct kvm_mmu_page *page)
577 {
578         unsigned i;
579         u64 *pt;
580         u64 ent;
581
582         pt = __va(page->page_hpa);
583
584         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
585                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
586                         if (pt[i] & PT_PRESENT_MASK)
587                                 rmap_remove(vcpu, &pt[i]);
588                         pt[i] = 0;
589                 }
590                 return;
591         }
592
593         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
594                 ent = pt[i];
595
596                 pt[i] = 0;
597                 if (!(ent & PT_PRESENT_MASK))
598                         continue;
599                 ent &= PT64_BASE_ADDR_MASK;
600                 mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
601         }
602 }
603
604 static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
605                              struct kvm_mmu_page *page,
606                              u64 *parent_pte)
607 {
608         mmu_page_remove_parent_pte(vcpu, page, parent_pte);
609 }
610
611 static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
612                              struct kvm_mmu_page *page)
613 {
614         u64 *parent_pte;
615
616         while (page->multimapped || page->parent_pte) {
617                 if (!page->multimapped)
618                         parent_pte = page->parent_pte;
619                 else {
620                         struct kvm_pte_chain *chain;
621
622                         chain = container_of(page->parent_ptes.first,
623                                              struct kvm_pte_chain, link);
624                         parent_pte = chain->parent_ptes[0];
625                 }
626                 BUG_ON(!parent_pte);
627                 kvm_mmu_put_page(vcpu, page, parent_pte);
628                 *parent_pte = 0;
629         }
630         kvm_mmu_page_unlink_children(vcpu, page);
631         if (!page->root_count) {
632                 hlist_del(&page->hash_link);
633                 kvm_mmu_free_page(vcpu, page->page_hpa);
634         } else {
635                 list_del(&page->link);
636                 list_add(&page->link, &vcpu->kvm->active_mmu_pages);
637         }
638 }
639
640 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
641 {
642         unsigned index;
643         struct hlist_head *bucket;
644         struct kvm_mmu_page *page;
645         struct hlist_node *node, *n;
646         int r;
647
648         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
649         r = 0;
650         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
651         bucket = &vcpu->kvm->mmu_page_hash[index];
652         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
653                 if (page->gfn == gfn && !page->role.metaphysical) {
654                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
655                                  page->role.word);
656                         kvm_mmu_zap_page(vcpu, page);
657                         r = 1;
658                 }
659         return r;
660 }
661
662 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
663 {
664         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
665         struct kvm_mmu_page *page_head = page_header(__pa(pte));
666
667         __set_bit(slot, &page_head->slot_bitmap);
668 }
669
670 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
671 {
672         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
673
674         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
675 }
676
677 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
678 {
679         struct kvm_memory_slot *slot;
680         struct page *page;
681
682         ASSERT((gpa & HPA_ERR_MASK) == 0);
683         slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
684         if (!slot)
685                 return gpa | HPA_ERR_MASK;
686         page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
687         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
688                 | (gpa & (PAGE_SIZE-1));
689 }
690
691 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
692 {
693         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
694
695         if (gpa == UNMAPPED_GVA)
696                 return UNMAPPED_GVA;
697         return gpa_to_hpa(vcpu, gpa);
698 }
699
700 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
701 {
702 }
703
704 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
705 {
706         int level = PT32E_ROOT_LEVEL;
707         hpa_t table_addr = vcpu->mmu.root_hpa;
708
709         for (; ; level--) {
710                 u32 index = PT64_INDEX(v, level);
711                 u64 *table;
712                 u64 pte;
713
714                 ASSERT(VALID_PAGE(table_addr));
715                 table = __va(table_addr);
716
717                 if (level == 1) {
718                         pte = table[index];
719                         if (is_present_pte(pte) && is_writeble_pte(pte))
720                                 return 0;
721                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
722                         page_header_update_slot(vcpu->kvm, table, v);
723                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
724                                                                 PT_USER_MASK;
725                         rmap_add(vcpu, &table[index]);
726                         return 0;
727                 }
728
729                 if (table[index] == 0) {
730                         struct kvm_mmu_page *new_table;
731                         gfn_t pseudo_gfn;
732
733                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
734                                 >> PAGE_SHIFT;
735                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
736                                                      v, level - 1,
737                                                      1, &table[index]);
738                         if (!new_table) {
739                                 pgprintk("nonpaging_map: ENOMEM\n");
740                                 return -ENOMEM;
741                         }
742
743                         table[index] = new_table->page_hpa | PT_PRESENT_MASK
744                                 | PT_WRITABLE_MASK | PT_USER_MASK;
745                 }
746                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
747         }
748 }
749
750 static void mmu_free_roots(struct kvm_vcpu *vcpu)
751 {
752         int i;
753         struct kvm_mmu_page *page;
754
755 #ifdef CONFIG_X86_64
756         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
757                 hpa_t root = vcpu->mmu.root_hpa;
758
759                 ASSERT(VALID_PAGE(root));
760                 page = page_header(root);
761                 --page->root_count;
762                 vcpu->mmu.root_hpa = INVALID_PAGE;
763                 return;
764         }
765 #endif
766         for (i = 0; i < 4; ++i) {
767                 hpa_t root = vcpu->mmu.pae_root[i];
768
769                 ASSERT(VALID_PAGE(root));
770                 root &= PT64_BASE_ADDR_MASK;
771                 page = page_header(root);
772                 --page->root_count;
773                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
774         }
775         vcpu->mmu.root_hpa = INVALID_PAGE;
776 }
777
778 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
779 {
780         int i;
781         gfn_t root_gfn;
782         struct kvm_mmu_page *page;
783
784         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
785
786 #ifdef CONFIG_X86_64
787         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
788                 hpa_t root = vcpu->mmu.root_hpa;
789
790                 ASSERT(!VALID_PAGE(root));
791                 root = kvm_mmu_get_page(vcpu, root_gfn, 0,
792                                         PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
793                 page = page_header(root);
794                 ++page->root_count;
795                 vcpu->mmu.root_hpa = root;
796                 return;
797         }
798 #endif
799         for (i = 0; i < 4; ++i) {
800                 hpa_t root = vcpu->mmu.pae_root[i];
801
802                 ASSERT(!VALID_PAGE(root));
803                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
804                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
805                 else if (vcpu->mmu.root_level == 0)
806                         root_gfn = 0;
807                 root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
808                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
809                                         NULL)->page_hpa;
810                 page = page_header(root);
811                 ++page->root_count;
812                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
813         }
814         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
815 }
816
817 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
818 {
819         return vaddr;
820 }
821
822 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
823                                u32 error_code)
824 {
825         gpa_t addr = gva;
826         hpa_t paddr;
827
828         mmu_topup_memory_caches(vcpu);
829
830         ASSERT(vcpu);
831         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
832
833
834         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
835
836         if (is_error_hpa(paddr))
837                 return 1;
838
839         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
840 }
841
842 static void nonpaging_free(struct kvm_vcpu *vcpu)
843 {
844         mmu_free_roots(vcpu);
845 }
846
847 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
848 {
849         struct kvm_mmu *context = &vcpu->mmu;
850
851         context->new_cr3 = nonpaging_new_cr3;
852         context->page_fault = nonpaging_page_fault;
853         context->gva_to_gpa = nonpaging_gva_to_gpa;
854         context->free = nonpaging_free;
855         context->root_level = 0;
856         context->shadow_root_level = PT32E_ROOT_LEVEL;
857         mmu_alloc_roots(vcpu);
858         ASSERT(VALID_PAGE(context->root_hpa));
859         kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
860         return 0;
861 }
862
863 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
864 {
865         ++kvm_stat.tlb_flush;
866         kvm_arch_ops->tlb_flush(vcpu);
867 }
868
869 static void paging_new_cr3(struct kvm_vcpu *vcpu)
870 {
871         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
872         mmu_free_roots(vcpu);
873         mmu_alloc_roots(vcpu);
874         kvm_mmu_flush_tlb(vcpu);
875         kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
876 }
877
878 static void mark_pagetable_nonglobal(void *shadow_pte)
879 {
880         page_header(__pa(shadow_pte))->global = 0;
881 }
882
883 static inline void set_pte_common(struct kvm_vcpu *vcpu,
884                              u64 *shadow_pte,
885                              gpa_t gaddr,
886                              int dirty,
887                              u64 access_bits,
888                              gfn_t gfn)
889 {
890         hpa_t paddr;
891
892         *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
893         if (!dirty)
894                 access_bits &= ~PT_WRITABLE_MASK;
895
896         paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
897
898         *shadow_pte |= access_bits;
899
900         if (!(*shadow_pte & PT_GLOBAL_MASK))
901                 mark_pagetable_nonglobal(shadow_pte);
902
903         if (is_error_hpa(paddr)) {
904                 *shadow_pte |= gaddr;
905                 *shadow_pte |= PT_SHADOW_IO_MARK;
906                 *shadow_pte &= ~PT_PRESENT_MASK;
907                 return;
908         }
909
910         *shadow_pte |= paddr;
911
912         if (access_bits & PT_WRITABLE_MASK) {
913                 struct kvm_mmu_page *shadow;
914
915                 shadow = kvm_mmu_lookup_page(vcpu, gfn);
916                 if (shadow) {
917                         pgprintk("%s: found shadow page for %lx, marking ro\n",
918                                  __FUNCTION__, gfn);
919                         access_bits &= ~PT_WRITABLE_MASK;
920                         *shadow_pte &= ~PT_WRITABLE_MASK;
921                 }
922         }
923
924         if (access_bits & PT_WRITABLE_MASK)
925                 mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
926
927         page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
928         rmap_add(vcpu, shadow_pte);
929 }
930
931 static void inject_page_fault(struct kvm_vcpu *vcpu,
932                               u64 addr,
933                               u32 err_code)
934 {
935         kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
936 }
937
938 static inline int fix_read_pf(u64 *shadow_ent)
939 {
940         if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
941             !(*shadow_ent & PT_USER_MASK)) {
942                 /*
943                  * If supervisor write protect is disabled, we shadow kernel
944                  * pages as user pages so we can trap the write access.
945                  */
946                 *shadow_ent |= PT_USER_MASK;
947                 *shadow_ent &= ~PT_WRITABLE_MASK;
948
949                 return 1;
950
951         }
952         return 0;
953 }
954
955 static int may_access(u64 pte, int write, int user)
956 {
957
958         if (user && !(pte & PT_USER_MASK))
959                 return 0;
960         if (write && !(pte & PT_WRITABLE_MASK))
961                 return 0;
962         return 1;
963 }
964
965 static void paging_free(struct kvm_vcpu *vcpu)
966 {
967         nonpaging_free(vcpu);
968 }
969
970 #define PTTYPE 64
971 #include "paging_tmpl.h"
972 #undef PTTYPE
973
974 #define PTTYPE 32
975 #include "paging_tmpl.h"
976 #undef PTTYPE
977
978 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
979 {
980         struct kvm_mmu *context = &vcpu->mmu;
981
982         ASSERT(is_pae(vcpu));
983         context->new_cr3 = paging_new_cr3;
984         context->page_fault = paging64_page_fault;
985         context->gva_to_gpa = paging64_gva_to_gpa;
986         context->free = paging_free;
987         context->root_level = level;
988         context->shadow_root_level = level;
989         mmu_alloc_roots(vcpu);
990         ASSERT(VALID_PAGE(context->root_hpa));
991         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
992                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
993         return 0;
994 }
995
996 static int paging64_init_context(struct kvm_vcpu *vcpu)
997 {
998         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
999 }
1000
1001 static int paging32_init_context(struct kvm_vcpu *vcpu)
1002 {
1003         struct kvm_mmu *context = &vcpu->mmu;
1004
1005         context->new_cr3 = paging_new_cr3;
1006         context->page_fault = paging32_page_fault;
1007         context->gva_to_gpa = paging32_gva_to_gpa;
1008         context->free = paging_free;
1009         context->root_level = PT32_ROOT_LEVEL;
1010         context->shadow_root_level = PT32E_ROOT_LEVEL;
1011         mmu_alloc_roots(vcpu);
1012         ASSERT(VALID_PAGE(context->root_hpa));
1013         kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
1014                     (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
1015         return 0;
1016 }
1017
1018 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1019 {
1020         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1021 }
1022
1023 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1024 {
1025         ASSERT(vcpu);
1026         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1027
1028         if (!is_paging(vcpu))
1029                 return nonpaging_init_context(vcpu);
1030         else if (is_long_mode(vcpu))
1031                 return paging64_init_context(vcpu);
1032         else if (is_pae(vcpu))
1033                 return paging32E_init_context(vcpu);
1034         else
1035                 return paging32_init_context(vcpu);
1036 }
1037
1038 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1039 {
1040         ASSERT(vcpu);
1041         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1042                 vcpu->mmu.free(vcpu);
1043                 vcpu->mmu.root_hpa = INVALID_PAGE;
1044         }
1045 }
1046
1047 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1048 {
1049         int r;
1050
1051         destroy_kvm_mmu(vcpu);
1052         r = init_kvm_mmu(vcpu);
1053         if (r < 0)
1054                 goto out;
1055         mmu_topup_memory_caches(vcpu);
1056 out:
1057         return r;
1058 }
1059
1060 void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1061 {
1062         gfn_t gfn = gpa >> PAGE_SHIFT;
1063         struct kvm_mmu_page *page;
1064         struct kvm_mmu_page *child;
1065         struct hlist_node *node, *n;
1066         struct hlist_head *bucket;
1067         unsigned index;
1068         u64 *spte;
1069         u64 pte;
1070         unsigned offset = offset_in_page(gpa);
1071         unsigned pte_size;
1072         unsigned page_offset;
1073         unsigned misaligned;
1074         int level;
1075         int flooded = 0;
1076
1077         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1078         if (gfn == vcpu->last_pt_write_gfn) {
1079                 ++vcpu->last_pt_write_count;
1080                 if (vcpu->last_pt_write_count >= 3)
1081                         flooded = 1;
1082         } else {
1083                 vcpu->last_pt_write_gfn = gfn;
1084                 vcpu->last_pt_write_count = 1;
1085         }
1086         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1087         bucket = &vcpu->kvm->mmu_page_hash[index];
1088         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1089                 if (page->gfn != gfn || page->role.metaphysical)
1090                         continue;
1091                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1092                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1093                 if (misaligned || flooded) {
1094                         /*
1095                          * Misaligned accesses are too much trouble to fix
1096                          * up; also, they usually indicate a page is not used
1097                          * as a page table.
1098                          *
1099                          * If we're seeing too many writes to a page,
1100                          * it may no longer be a page table, or we may be
1101                          * forking, in which case it is better to unmap the
1102                          * page.
1103                          */
1104                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1105                                  gpa, bytes, page->role.word);
1106                         kvm_mmu_zap_page(vcpu, page);
1107                         continue;
1108                 }
1109                 page_offset = offset;
1110                 level = page->role.level;
1111                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1112                         page_offset <<= 1;          /* 32->64 */
1113                         page_offset &= ~PAGE_MASK;
1114                 }
1115                 spte = __va(page->page_hpa);
1116                 spte += page_offset / sizeof(*spte);
1117                 pte = *spte;
1118                 if (is_present_pte(pte)) {
1119                         if (level == PT_PAGE_TABLE_LEVEL)
1120                                 rmap_remove(vcpu, spte);
1121                         else {
1122                                 child = page_header(pte & PT64_BASE_ADDR_MASK);
1123                                 mmu_page_remove_parent_pte(vcpu, child, spte);
1124                         }
1125                 }
1126                 *spte = 0;
1127         }
1128 }
1129
1130 void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
1131 {
1132 }
1133
1134 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1135 {
1136         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1137
1138         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1139 }
1140
1141 void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1142 {
1143         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1144                 struct kvm_mmu_page *page;
1145
1146                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1147                                     struct kvm_mmu_page, link);
1148                 kvm_mmu_zap_page(vcpu, page);
1149         }
1150 }
1151 EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
1152
1153 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1154 {
1155         struct kvm_mmu_page *page;
1156
1157         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1158                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1159                                     struct kvm_mmu_page, link);
1160                 kvm_mmu_zap_page(vcpu, page);
1161         }
1162         while (!list_empty(&vcpu->free_pages)) {
1163                 page = list_entry(vcpu->free_pages.next,
1164                                   struct kvm_mmu_page, link);
1165                 list_del(&page->link);
1166                 __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
1167                 page->page_hpa = INVALID_PAGE;
1168         }
1169         free_page((unsigned long)vcpu->mmu.pae_root);
1170 }
1171
1172 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1173 {
1174         struct page *page;
1175         int i;
1176
1177         ASSERT(vcpu);
1178
1179         for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
1180                 struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
1181
1182                 INIT_LIST_HEAD(&page_header->link);
1183                 if ((page = alloc_page(GFP_KERNEL)) == NULL)
1184                         goto error_1;
1185                 page->private = (unsigned long)page_header;
1186                 page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
1187                 memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
1188                 list_add(&page_header->link, &vcpu->free_pages);
1189                 ++vcpu->kvm->n_free_mmu_pages;
1190         }
1191
1192         /*
1193          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1194          * Therefore we need to allocate shadow page tables in the first
1195          * 4GB of memory, which happens to fit the DMA32 zone.
1196          */
1197         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1198         if (!page)
1199                 goto error_1;
1200         vcpu->mmu.pae_root = page_address(page);
1201         for (i = 0; i < 4; ++i)
1202                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1203
1204         return 0;
1205
1206 error_1:
1207         free_mmu_pages(vcpu);
1208         return -ENOMEM;
1209 }
1210
1211 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1212 {
1213         ASSERT(vcpu);
1214         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1215         ASSERT(list_empty(&vcpu->free_pages));
1216
1217         return alloc_mmu_pages(vcpu);
1218 }
1219
1220 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1221 {
1222         ASSERT(vcpu);
1223         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1224         ASSERT(!list_empty(&vcpu->free_pages));
1225
1226         return init_kvm_mmu(vcpu);
1227 }
1228
1229 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1230 {
1231         ASSERT(vcpu);
1232
1233         destroy_kvm_mmu(vcpu);
1234         free_mmu_pages(vcpu);
1235         mmu_free_memory_caches(vcpu);
1236 }
1237
1238 void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
1239 {
1240         struct kvm *kvm = vcpu->kvm;
1241         struct kvm_mmu_page *page;
1242
1243         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1244                 int i;
1245                 u64 *pt;
1246
1247                 if (!test_bit(slot, &page->slot_bitmap))
1248                         continue;
1249
1250                 pt = __va(page->page_hpa);
1251                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1252                         /* avoid RMW */
1253                         if (pt[i] & PT_WRITABLE_MASK) {
1254                                 rmap_remove(vcpu, &pt[i]);
1255                                 pt[i] &= ~PT_WRITABLE_MASK;
1256                         }
1257         }
1258 }