[PATCH] KVM: Prevent stale bits in cr0 and cr4
[linux-drm-fsl-dcu.git] / drivers / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19
20 #include <linux/kvm.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <asm/processor.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
26 #include <asm/msr.h>
27 #include <linux/mm.h>
28 #include <linux/miscdevice.h>
29 #include <linux/vmalloc.h>
30 #include <asm/uaccess.h>
31 #include <linux/reboot.h>
32 #include <asm/io.h>
33 #include <linux/debugfs.h>
34 #include <linux/highmem.h>
35 #include <linux/file.h>
36 #include <asm/desc.h>
37
38 #include "x86_emulate.h"
39 #include "segment_descriptor.h"
40
41 MODULE_AUTHOR("Qumranet");
42 MODULE_LICENSE("GPL");
43
44 struct kvm_arch_ops *kvm_arch_ops;
45 struct kvm_stat kvm_stat;
46 EXPORT_SYMBOL_GPL(kvm_stat);
47
48 static struct kvm_stats_debugfs_item {
49         const char *name;
50         u32 *data;
51         struct dentry *dentry;
52 } debugfs_entries[] = {
53         { "pf_fixed", &kvm_stat.pf_fixed },
54         { "pf_guest", &kvm_stat.pf_guest },
55         { "tlb_flush", &kvm_stat.tlb_flush },
56         { "invlpg", &kvm_stat.invlpg },
57         { "exits", &kvm_stat.exits },
58         { "io_exits", &kvm_stat.io_exits },
59         { "mmio_exits", &kvm_stat.mmio_exits },
60         { "signal_exits", &kvm_stat.signal_exits },
61         { "irq_window", &kvm_stat.irq_window_exits },
62         { "halt_exits", &kvm_stat.halt_exits },
63         { "request_irq", &kvm_stat.request_irq_exits },
64         { "irq_exits", &kvm_stat.irq_exits },
65         { 0, 0 }
66 };
67
68 static struct dentry *debugfs_dir;
69
70 #define MAX_IO_MSRS 256
71
72 #define CR0_RESEVED_BITS 0xffffffff1ffaffc0ULL
73 #define LMSW_GUEST_MASK 0x0eULL
74 #define CR4_RESEVED_BITS (~((1ULL << 11) - 1))
75 #define CR8_RESEVED_BITS (~0x0fULL)
76 #define EFER_RESERVED_BITS 0xfffffffffffff2fe
77
78 #ifdef CONFIG_X86_64
79 // LDT or TSS descriptor in the GDT. 16 bytes.
80 struct segment_descriptor_64 {
81         struct segment_descriptor s;
82         u32 base_higher;
83         u32 pad_zero;
84 };
85
86 #endif
87
88 unsigned long segment_base(u16 selector)
89 {
90         struct descriptor_table gdt;
91         struct segment_descriptor *d;
92         unsigned long table_base;
93         typedef unsigned long ul;
94         unsigned long v;
95
96         if (selector == 0)
97                 return 0;
98
99         asm ("sgdt %0" : "=m"(gdt));
100         table_base = gdt.base;
101
102         if (selector & 4) {           /* from ldt */
103                 u16 ldt_selector;
104
105                 asm ("sldt %0" : "=g"(ldt_selector));
106                 table_base = segment_base(ldt_selector);
107         }
108         d = (struct segment_descriptor *)(table_base + (selector & ~7));
109         v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
110 #ifdef CONFIG_X86_64
111         if (d->system == 0
112             && (d->type == 2 || d->type == 9 || d->type == 11))
113                 v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
114 #endif
115         return v;
116 }
117 EXPORT_SYMBOL_GPL(segment_base);
118
119 static inline int valid_vcpu(int n)
120 {
121         return likely(n >= 0 && n < KVM_MAX_VCPUS);
122 }
123
124 int kvm_read_guest(struct kvm_vcpu *vcpu,
125                              gva_t addr,
126                              unsigned long size,
127                              void *dest)
128 {
129         unsigned char *host_buf = dest;
130         unsigned long req_size = size;
131
132         while (size) {
133                 hpa_t paddr;
134                 unsigned now;
135                 unsigned offset;
136                 hva_t guest_buf;
137
138                 paddr = gva_to_hpa(vcpu, addr);
139
140                 if (is_error_hpa(paddr))
141                         break;
142
143                 guest_buf = (hva_t)kmap_atomic(
144                                         pfn_to_page(paddr >> PAGE_SHIFT),
145                                         KM_USER0);
146                 offset = addr & ~PAGE_MASK;
147                 guest_buf |= offset;
148                 now = min(size, PAGE_SIZE - offset);
149                 memcpy(host_buf, (void*)guest_buf, now);
150                 host_buf += now;
151                 addr += now;
152                 size -= now;
153                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
154         }
155         return req_size - size;
156 }
157 EXPORT_SYMBOL_GPL(kvm_read_guest);
158
159 int kvm_write_guest(struct kvm_vcpu *vcpu,
160                              gva_t addr,
161                              unsigned long size,
162                              void *data)
163 {
164         unsigned char *host_buf = data;
165         unsigned long req_size = size;
166
167         while (size) {
168                 hpa_t paddr;
169                 unsigned now;
170                 unsigned offset;
171                 hva_t guest_buf;
172
173                 paddr = gva_to_hpa(vcpu, addr);
174
175                 if (is_error_hpa(paddr))
176                         break;
177
178                 guest_buf = (hva_t)kmap_atomic(
179                                 pfn_to_page(paddr >> PAGE_SHIFT), KM_USER0);
180                 offset = addr & ~PAGE_MASK;
181                 guest_buf |= offset;
182                 now = min(size, PAGE_SIZE - offset);
183                 memcpy((void*)guest_buf, host_buf, now);
184                 host_buf += now;
185                 addr += now;
186                 size -= now;
187                 kunmap_atomic((void *)(guest_buf & PAGE_MASK), KM_USER0);
188         }
189         return req_size - size;
190 }
191 EXPORT_SYMBOL_GPL(kvm_write_guest);
192
193 static int vcpu_slot(struct kvm_vcpu *vcpu)
194 {
195         return vcpu - vcpu->kvm->vcpus;
196 }
197
198 /*
199  * Switches to specified vcpu, until a matching vcpu_put()
200  */
201 static struct kvm_vcpu *vcpu_load(struct kvm *kvm, int vcpu_slot)
202 {
203         struct kvm_vcpu *vcpu = &kvm->vcpus[vcpu_slot];
204
205         mutex_lock(&vcpu->mutex);
206         if (unlikely(!vcpu->vmcs)) {
207                 mutex_unlock(&vcpu->mutex);
208                 return 0;
209         }
210         return kvm_arch_ops->vcpu_load(vcpu);
211 }
212
213 static void vcpu_put(struct kvm_vcpu *vcpu)
214 {
215         kvm_arch_ops->vcpu_put(vcpu);
216         mutex_unlock(&vcpu->mutex);
217 }
218
219 static int kvm_dev_open(struct inode *inode, struct file *filp)
220 {
221         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
222         int i;
223
224         if (!kvm)
225                 return -ENOMEM;
226
227         spin_lock_init(&kvm->lock);
228         INIT_LIST_HEAD(&kvm->active_mmu_pages);
229         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
230                 struct kvm_vcpu *vcpu = &kvm->vcpus[i];
231
232                 mutex_init(&vcpu->mutex);
233                 vcpu->mmu.root_hpa = INVALID_PAGE;
234                 INIT_LIST_HEAD(&vcpu->free_pages);
235         }
236         filp->private_data = kvm;
237         return 0;
238 }
239
240 /*
241  * Free any memory in @free but not in @dont.
242  */
243 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
244                                   struct kvm_memory_slot *dont)
245 {
246         int i;
247
248         if (!dont || free->phys_mem != dont->phys_mem)
249                 if (free->phys_mem) {
250                         for (i = 0; i < free->npages; ++i)
251                                 if (free->phys_mem[i])
252                                         __free_page(free->phys_mem[i]);
253                         vfree(free->phys_mem);
254                 }
255
256         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
257                 vfree(free->dirty_bitmap);
258
259         free->phys_mem = 0;
260         free->npages = 0;
261         free->dirty_bitmap = 0;
262 }
263
264 static void kvm_free_physmem(struct kvm *kvm)
265 {
266         int i;
267
268         for (i = 0; i < kvm->nmemslots; ++i)
269                 kvm_free_physmem_slot(&kvm->memslots[i], 0);
270 }
271
272 static void kvm_free_vcpu(struct kvm_vcpu *vcpu)
273 {
274         kvm_arch_ops->vcpu_free(vcpu);
275         kvm_mmu_destroy(vcpu);
276 }
277
278 static void kvm_free_vcpus(struct kvm *kvm)
279 {
280         unsigned int i;
281
282         for (i = 0; i < KVM_MAX_VCPUS; ++i)
283                 kvm_free_vcpu(&kvm->vcpus[i]);
284 }
285
286 static int kvm_dev_release(struct inode *inode, struct file *filp)
287 {
288         struct kvm *kvm = filp->private_data;
289
290         kvm_free_vcpus(kvm);
291         kvm_free_physmem(kvm);
292         kfree(kvm);
293         return 0;
294 }
295
296 static void inject_gp(struct kvm_vcpu *vcpu)
297 {
298         kvm_arch_ops->inject_gp(vcpu, 0);
299 }
300
301 static int pdptrs_have_reserved_bits_set(struct kvm_vcpu *vcpu,
302                                          unsigned long cr3)
303 {
304         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
305         unsigned offset = (cr3 & (PAGE_SIZE-1)) >> 5;
306         int i;
307         u64 pdpte;
308         u64 *pdpt;
309         struct kvm_memory_slot *memslot;
310
311         spin_lock(&vcpu->kvm->lock);
312         memslot = gfn_to_memslot(vcpu->kvm, pdpt_gfn);
313         /* FIXME: !memslot - emulate? 0xff? */
314         pdpt = kmap_atomic(gfn_to_page(memslot, pdpt_gfn), KM_USER0);
315
316         for (i = 0; i < 4; ++i) {
317                 pdpte = pdpt[offset + i];
318                 if ((pdpte & 1) && (pdpte & 0xfffffff0000001e6ull))
319                         break;
320         }
321
322         kunmap_atomic(pdpt, KM_USER0);
323         spin_unlock(&vcpu->kvm->lock);
324
325         return i != 4;
326 }
327
328 void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
329 {
330         if (cr0 & CR0_RESEVED_BITS) {
331                 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
332                        cr0, vcpu->cr0);
333                 inject_gp(vcpu);
334                 return;
335         }
336
337         if ((cr0 & CR0_NW_MASK) && !(cr0 & CR0_CD_MASK)) {
338                 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
339                 inject_gp(vcpu);
340                 return;
341         }
342
343         if ((cr0 & CR0_PG_MASK) && !(cr0 & CR0_PE_MASK)) {
344                 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
345                        "and a clear PE flag\n");
346                 inject_gp(vcpu);
347                 return;
348         }
349
350         if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) {
351 #ifdef CONFIG_X86_64
352                 if ((vcpu->shadow_efer & EFER_LME)) {
353                         int cs_db, cs_l;
354
355                         if (!is_pae(vcpu)) {
356                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
357                                        "in long mode while PAE is disabled\n");
358                                 inject_gp(vcpu);
359                                 return;
360                         }
361                         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
362                         if (cs_l) {
363                                 printk(KERN_DEBUG "set_cr0: #GP, start paging "
364                                        "in long mode while CS.L == 1\n");
365                                 inject_gp(vcpu);
366                                 return;
367
368                         }
369                 } else
370 #endif
371                 if (is_pae(vcpu) &&
372                             pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
373                         printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
374                                "reserved bits\n");
375                         inject_gp(vcpu);
376                         return;
377                 }
378
379         }
380
381         kvm_arch_ops->set_cr0(vcpu, cr0);
382         vcpu->cr0 = cr0;
383
384         spin_lock(&vcpu->kvm->lock);
385         kvm_mmu_reset_context(vcpu);
386         spin_unlock(&vcpu->kvm->lock);
387         return;
388 }
389 EXPORT_SYMBOL_GPL(set_cr0);
390
391 void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
392 {
393         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
394         set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
395 }
396 EXPORT_SYMBOL_GPL(lmsw);
397
398 void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
399 {
400         if (cr4 & CR4_RESEVED_BITS) {
401                 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
402                 inject_gp(vcpu);
403                 return;
404         }
405
406         if (is_long_mode(vcpu)) {
407                 if (!(cr4 & CR4_PAE_MASK)) {
408                         printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
409                                "in long mode\n");
410                         inject_gp(vcpu);
411                         return;
412                 }
413         } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & CR4_PAE_MASK)
414                    && pdptrs_have_reserved_bits_set(vcpu, vcpu->cr3)) {
415                 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
416                 inject_gp(vcpu);
417         }
418
419         if (cr4 & CR4_VMXE_MASK) {
420                 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
421                 inject_gp(vcpu);
422                 return;
423         }
424         kvm_arch_ops->set_cr4(vcpu, cr4);
425         spin_lock(&vcpu->kvm->lock);
426         kvm_mmu_reset_context(vcpu);
427         spin_unlock(&vcpu->kvm->lock);
428 }
429 EXPORT_SYMBOL_GPL(set_cr4);
430
431 void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
432 {
433         if (is_long_mode(vcpu)) {
434                 if ( cr3 & CR3_L_MODE_RESEVED_BITS) {
435                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
436                         inject_gp(vcpu);
437                         return;
438                 }
439         } else {
440                 if (cr3 & CR3_RESEVED_BITS) {
441                         printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
442                         inject_gp(vcpu);
443                         return;
444                 }
445                 if (is_paging(vcpu) && is_pae(vcpu) &&
446                     pdptrs_have_reserved_bits_set(vcpu, cr3)) {
447                         printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
448                                "reserved bits\n");
449                         inject_gp(vcpu);
450                         return;
451                 }
452         }
453
454         vcpu->cr3 = cr3;
455         spin_lock(&vcpu->kvm->lock);
456         vcpu->mmu.new_cr3(vcpu);
457         spin_unlock(&vcpu->kvm->lock);
458 }
459 EXPORT_SYMBOL_GPL(set_cr3);
460
461 void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
462 {
463         if ( cr8 & CR8_RESEVED_BITS) {
464                 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
465                 inject_gp(vcpu);
466                 return;
467         }
468         vcpu->cr8 = cr8;
469 }
470 EXPORT_SYMBOL_GPL(set_cr8);
471
472 void fx_init(struct kvm_vcpu *vcpu)
473 {
474         struct __attribute__ ((__packed__)) fx_image_s {
475                 u16 control; //fcw
476                 u16 status; //fsw
477                 u16 tag; // ftw
478                 u16 opcode; //fop
479                 u64 ip; // fpu ip
480                 u64 operand;// fpu dp
481                 u32 mxcsr;
482                 u32 mxcsr_mask;
483
484         } *fx_image;
485
486         fx_save(vcpu->host_fx_image);
487         fpu_init();
488         fx_save(vcpu->guest_fx_image);
489         fx_restore(vcpu->host_fx_image);
490
491         fx_image = (struct fx_image_s *)vcpu->guest_fx_image;
492         fx_image->mxcsr = 0x1f80;
493         memset(vcpu->guest_fx_image + sizeof(struct fx_image_s),
494                0, FX_IMAGE_SIZE - sizeof(struct fx_image_s));
495 }
496 EXPORT_SYMBOL_GPL(fx_init);
497
498 /*
499  * Creates some virtual cpus.  Good luck creating more than one.
500  */
501 static int kvm_dev_ioctl_create_vcpu(struct kvm *kvm, int n)
502 {
503         int r;
504         struct kvm_vcpu *vcpu;
505
506         r = -EINVAL;
507         if (!valid_vcpu(n))
508                 goto out;
509
510         vcpu = &kvm->vcpus[n];
511
512         mutex_lock(&vcpu->mutex);
513
514         if (vcpu->vmcs) {
515                 mutex_unlock(&vcpu->mutex);
516                 return -EEXIST;
517         }
518
519         vcpu->host_fx_image = (char*)ALIGN((hva_t)vcpu->fx_buf,
520                                            FX_IMAGE_ALIGN);
521         vcpu->guest_fx_image = vcpu->host_fx_image + FX_IMAGE_SIZE;
522
523         vcpu->cpu = -1;  /* First load will set up TR */
524         vcpu->kvm = kvm;
525         r = kvm_arch_ops->vcpu_create(vcpu);
526         if (r < 0)
527                 goto out_free_vcpus;
528
529         r = kvm_mmu_create(vcpu);
530         if (r < 0)
531                 goto out_free_vcpus;
532
533         kvm_arch_ops->vcpu_load(vcpu);
534         r = kvm_mmu_setup(vcpu);
535         if (r >= 0)
536                 r = kvm_arch_ops->vcpu_setup(vcpu);
537         vcpu_put(vcpu);
538
539         if (r < 0)
540                 goto out_free_vcpus;
541
542         return 0;
543
544 out_free_vcpus:
545         kvm_free_vcpu(vcpu);
546         mutex_unlock(&vcpu->mutex);
547 out:
548         return r;
549 }
550
551 /*
552  * Allocate some memory and give it an address in the guest physical address
553  * space.
554  *
555  * Discontiguous memory is allowed, mostly for framebuffers.
556  */
557 static int kvm_dev_ioctl_set_memory_region(struct kvm *kvm,
558                                            struct kvm_memory_region *mem)
559 {
560         int r;
561         gfn_t base_gfn;
562         unsigned long npages;
563         unsigned long i;
564         struct kvm_memory_slot *memslot;
565         struct kvm_memory_slot old, new;
566         int memory_config_version;
567
568         r = -EINVAL;
569         /* General sanity checks */
570         if (mem->memory_size & (PAGE_SIZE - 1))
571                 goto out;
572         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
573                 goto out;
574         if (mem->slot >= KVM_MEMORY_SLOTS)
575                 goto out;
576         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
577                 goto out;
578
579         memslot = &kvm->memslots[mem->slot];
580         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
581         npages = mem->memory_size >> PAGE_SHIFT;
582
583         if (!npages)
584                 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
585
586 raced:
587         spin_lock(&kvm->lock);
588
589         memory_config_version = kvm->memory_config_version;
590         new = old = *memslot;
591
592         new.base_gfn = base_gfn;
593         new.npages = npages;
594         new.flags = mem->flags;
595
596         /* Disallow changing a memory slot's size. */
597         r = -EINVAL;
598         if (npages && old.npages && npages != old.npages)
599                 goto out_unlock;
600
601         /* Check for overlaps */
602         r = -EEXIST;
603         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
604                 struct kvm_memory_slot *s = &kvm->memslots[i];
605
606                 if (s == memslot)
607                         continue;
608                 if (!((base_gfn + npages <= s->base_gfn) ||
609                       (base_gfn >= s->base_gfn + s->npages)))
610                         goto out_unlock;
611         }
612         /*
613          * Do memory allocations outside lock.  memory_config_version will
614          * detect any races.
615          */
616         spin_unlock(&kvm->lock);
617
618         /* Deallocate if slot is being removed */
619         if (!npages)
620                 new.phys_mem = 0;
621
622         /* Free page dirty bitmap if unneeded */
623         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
624                 new.dirty_bitmap = 0;
625
626         r = -ENOMEM;
627
628         /* Allocate if a slot is being created */
629         if (npages && !new.phys_mem) {
630                 new.phys_mem = vmalloc(npages * sizeof(struct page *));
631
632                 if (!new.phys_mem)
633                         goto out_free;
634
635                 memset(new.phys_mem, 0, npages * sizeof(struct page *));
636                 for (i = 0; i < npages; ++i) {
637                         new.phys_mem[i] = alloc_page(GFP_HIGHUSER
638                                                      | __GFP_ZERO);
639                         if (!new.phys_mem[i])
640                                 goto out_free;
641                 }
642         }
643
644         /* Allocate page dirty bitmap if needed */
645         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
646                 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
647
648                 new.dirty_bitmap = vmalloc(dirty_bytes);
649                 if (!new.dirty_bitmap)
650                         goto out_free;
651                 memset(new.dirty_bitmap, 0, dirty_bytes);
652         }
653
654         spin_lock(&kvm->lock);
655
656         if (memory_config_version != kvm->memory_config_version) {
657                 spin_unlock(&kvm->lock);
658                 kvm_free_physmem_slot(&new, &old);
659                 goto raced;
660         }
661
662         r = -EAGAIN;
663         if (kvm->busy)
664                 goto out_unlock;
665
666         if (mem->slot >= kvm->nmemslots)
667                 kvm->nmemslots = mem->slot + 1;
668
669         *memslot = new;
670         ++kvm->memory_config_version;
671
672         spin_unlock(&kvm->lock);
673
674         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
675                 struct kvm_vcpu *vcpu;
676
677                 vcpu = vcpu_load(kvm, i);
678                 if (!vcpu)
679                         continue;
680                 kvm_mmu_reset_context(vcpu);
681                 vcpu_put(vcpu);
682         }
683
684         kvm_free_physmem_slot(&old, &new);
685         return 0;
686
687 out_unlock:
688         spin_unlock(&kvm->lock);
689 out_free:
690         kvm_free_physmem_slot(&new, &old);
691 out:
692         return r;
693 }
694
695 /*
696  * Get (and clear) the dirty memory log for a memory slot.
697  */
698 static int kvm_dev_ioctl_get_dirty_log(struct kvm *kvm,
699                                        struct kvm_dirty_log *log)
700 {
701         struct kvm_memory_slot *memslot;
702         int r, i;
703         int n;
704         unsigned long any = 0;
705
706         spin_lock(&kvm->lock);
707
708         /*
709          * Prevent changes to guest memory configuration even while the lock
710          * is not taken.
711          */
712         ++kvm->busy;
713         spin_unlock(&kvm->lock);
714         r = -EINVAL;
715         if (log->slot >= KVM_MEMORY_SLOTS)
716                 goto out;
717
718         memslot = &kvm->memslots[log->slot];
719         r = -ENOENT;
720         if (!memslot->dirty_bitmap)
721                 goto out;
722
723         n = ALIGN(memslot->npages, 8) / 8;
724
725         for (i = 0; !any && i < n; ++i)
726                 any = memslot->dirty_bitmap[i];
727
728         r = -EFAULT;
729         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
730                 goto out;
731
732
733         if (any) {
734                 spin_lock(&kvm->lock);
735                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
736                 spin_unlock(&kvm->lock);
737                 memset(memslot->dirty_bitmap, 0, n);
738                 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
739                         struct kvm_vcpu *vcpu = vcpu_load(kvm, i);
740
741                         if (!vcpu)
742                                 continue;
743                         kvm_arch_ops->tlb_flush(vcpu);
744                         vcpu_put(vcpu);
745                 }
746         }
747
748         r = 0;
749
750 out:
751         spin_lock(&kvm->lock);
752         --kvm->busy;
753         spin_unlock(&kvm->lock);
754         return r;
755 }
756
757 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
758 {
759         int i;
760
761         for (i = 0; i < kvm->nmemslots; ++i) {
762                 struct kvm_memory_slot *memslot = &kvm->memslots[i];
763
764                 if (gfn >= memslot->base_gfn
765                     && gfn < memslot->base_gfn + memslot->npages)
766                         return memslot;
767         }
768         return 0;
769 }
770 EXPORT_SYMBOL_GPL(gfn_to_memslot);
771
772 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
773 {
774         int i;
775         struct kvm_memory_slot *memslot = 0;
776         unsigned long rel_gfn;
777
778         for (i = 0; i < kvm->nmemslots; ++i) {
779                 memslot = &kvm->memslots[i];
780
781                 if (gfn >= memslot->base_gfn
782                     && gfn < memslot->base_gfn + memslot->npages) {
783
784                         if (!memslot || !memslot->dirty_bitmap)
785                                 return;
786
787                         rel_gfn = gfn - memslot->base_gfn;
788
789                         /* avoid RMW */
790                         if (!test_bit(rel_gfn, memslot->dirty_bitmap))
791                                 set_bit(rel_gfn, memslot->dirty_bitmap);
792                         return;
793                 }
794         }
795 }
796
797 static int emulator_read_std(unsigned long addr,
798                              unsigned long *val,
799                              unsigned int bytes,
800                              struct x86_emulate_ctxt *ctxt)
801 {
802         struct kvm_vcpu *vcpu = ctxt->vcpu;
803         void *data = val;
804
805         while (bytes) {
806                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
807                 unsigned offset = addr & (PAGE_SIZE-1);
808                 unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
809                 unsigned long pfn;
810                 struct kvm_memory_slot *memslot;
811                 void *page;
812
813                 if (gpa == UNMAPPED_GVA)
814                         return X86EMUL_PROPAGATE_FAULT;
815                 pfn = gpa >> PAGE_SHIFT;
816                 memslot = gfn_to_memslot(vcpu->kvm, pfn);
817                 if (!memslot)
818                         return X86EMUL_UNHANDLEABLE;
819                 page = kmap_atomic(gfn_to_page(memslot, pfn), KM_USER0);
820
821                 memcpy(data, page + offset, tocopy);
822
823                 kunmap_atomic(page, KM_USER0);
824
825                 bytes -= tocopy;
826                 data += tocopy;
827                 addr += tocopy;
828         }
829
830         return X86EMUL_CONTINUE;
831 }
832
833 static int emulator_write_std(unsigned long addr,
834                               unsigned long val,
835                               unsigned int bytes,
836                               struct x86_emulate_ctxt *ctxt)
837 {
838         printk(KERN_ERR "emulator_write_std: addr %lx n %d\n",
839                addr, bytes);
840         return X86EMUL_UNHANDLEABLE;
841 }
842
843 static int emulator_read_emulated(unsigned long addr,
844                                   unsigned long *val,
845                                   unsigned int bytes,
846                                   struct x86_emulate_ctxt *ctxt)
847 {
848         struct kvm_vcpu *vcpu = ctxt->vcpu;
849
850         if (vcpu->mmio_read_completed) {
851                 memcpy(val, vcpu->mmio_data, bytes);
852                 vcpu->mmio_read_completed = 0;
853                 return X86EMUL_CONTINUE;
854         } else if (emulator_read_std(addr, val, bytes, ctxt)
855                    == X86EMUL_CONTINUE)
856                 return X86EMUL_CONTINUE;
857         else {
858                 gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
859                 if (gpa == UNMAPPED_GVA)
860                         return vcpu_printf(vcpu, "not present\n"), X86EMUL_PROPAGATE_FAULT;
861                 vcpu->mmio_needed = 1;
862                 vcpu->mmio_phys_addr = gpa;
863                 vcpu->mmio_size = bytes;
864                 vcpu->mmio_is_write = 0;
865
866                 return X86EMUL_UNHANDLEABLE;
867         }
868 }
869
870 static int emulator_write_emulated(unsigned long addr,
871                                    unsigned long val,
872                                    unsigned int bytes,
873                                    struct x86_emulate_ctxt *ctxt)
874 {
875         struct kvm_vcpu *vcpu = ctxt->vcpu;
876         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
877
878         if (gpa == UNMAPPED_GVA)
879                 return X86EMUL_PROPAGATE_FAULT;
880
881         vcpu->mmio_needed = 1;
882         vcpu->mmio_phys_addr = gpa;
883         vcpu->mmio_size = bytes;
884         vcpu->mmio_is_write = 1;
885         memcpy(vcpu->mmio_data, &val, bytes);
886
887         return X86EMUL_CONTINUE;
888 }
889
890 static int emulator_cmpxchg_emulated(unsigned long addr,
891                                      unsigned long old,
892                                      unsigned long new,
893                                      unsigned int bytes,
894                                      struct x86_emulate_ctxt *ctxt)
895 {
896         static int reported;
897
898         if (!reported) {
899                 reported = 1;
900                 printk(KERN_WARNING "kvm: emulating exchange as write\n");
901         }
902         return emulator_write_emulated(addr, new, bytes, ctxt);
903 }
904
905 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
906 {
907         return kvm_arch_ops->get_segment_base(vcpu, seg);
908 }
909
910 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
911 {
912         spin_lock(&vcpu->kvm->lock);
913         vcpu->mmu.inval_page(vcpu, address);
914         spin_unlock(&vcpu->kvm->lock);
915         kvm_arch_ops->invlpg(vcpu, address);
916         return X86EMUL_CONTINUE;
917 }
918
919 int emulate_clts(struct kvm_vcpu *vcpu)
920 {
921         unsigned long cr0;
922
923         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
924         cr0 = vcpu->cr0 & ~CR0_TS_MASK;
925         kvm_arch_ops->set_cr0(vcpu, cr0);
926         return X86EMUL_CONTINUE;
927 }
928
929 int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
930 {
931         struct kvm_vcpu *vcpu = ctxt->vcpu;
932
933         switch (dr) {
934         case 0 ... 3:
935                 *dest = kvm_arch_ops->get_dr(vcpu, dr);
936                 return X86EMUL_CONTINUE;
937         default:
938                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
939                        __FUNCTION__, dr);
940                 return X86EMUL_UNHANDLEABLE;
941         }
942 }
943
944 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
945 {
946         unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
947         int exception;
948
949         kvm_arch_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
950         if (exception) {
951                 /* FIXME: better handling */
952                 return X86EMUL_UNHANDLEABLE;
953         }
954         return X86EMUL_CONTINUE;
955 }
956
957 static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
958 {
959         static int reported;
960         u8 opcodes[4];
961         unsigned long rip = ctxt->vcpu->rip;
962         unsigned long rip_linear;
963
964         rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
965
966         if (reported)
967                 return;
968
969         emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt);
970
971         printk(KERN_ERR "emulation failed but !mmio_needed?"
972                " rip %lx %02x %02x %02x %02x\n",
973                rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
974         reported = 1;
975 }
976
977 struct x86_emulate_ops emulate_ops = {
978         .read_std            = emulator_read_std,
979         .write_std           = emulator_write_std,
980         .read_emulated       = emulator_read_emulated,
981         .write_emulated      = emulator_write_emulated,
982         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
983 };
984
985 int emulate_instruction(struct kvm_vcpu *vcpu,
986                         struct kvm_run *run,
987                         unsigned long cr2,
988                         u16 error_code)
989 {
990         struct x86_emulate_ctxt emulate_ctxt;
991         int r;
992         int cs_db, cs_l;
993
994         kvm_arch_ops->cache_regs(vcpu);
995
996         kvm_arch_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
997
998         emulate_ctxt.vcpu = vcpu;
999         emulate_ctxt.eflags = kvm_arch_ops->get_rflags(vcpu);
1000         emulate_ctxt.cr2 = cr2;
1001         emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
1002                 ? X86EMUL_MODE_REAL : cs_l
1003                 ? X86EMUL_MODE_PROT64 : cs_db
1004                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
1005
1006         if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
1007                 emulate_ctxt.cs_base = 0;
1008                 emulate_ctxt.ds_base = 0;
1009                 emulate_ctxt.es_base = 0;
1010                 emulate_ctxt.ss_base = 0;
1011         } else {
1012                 emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
1013                 emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
1014                 emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
1015                 emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
1016         }
1017
1018         emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
1019         emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
1020
1021         vcpu->mmio_is_write = 0;
1022         r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
1023
1024         if ((r || vcpu->mmio_is_write) && run) {
1025                 run->mmio.phys_addr = vcpu->mmio_phys_addr;
1026                 memcpy(run->mmio.data, vcpu->mmio_data, 8);
1027                 run->mmio.len = vcpu->mmio_size;
1028                 run->mmio.is_write = vcpu->mmio_is_write;
1029         }
1030
1031         if (r) {
1032                 if (!vcpu->mmio_needed) {
1033                         report_emulation_failure(&emulate_ctxt);
1034                         return EMULATE_FAIL;
1035                 }
1036                 return EMULATE_DO_MMIO;
1037         }
1038
1039         kvm_arch_ops->decache_regs(vcpu);
1040         kvm_arch_ops->set_rflags(vcpu, emulate_ctxt.eflags);
1041
1042         if (vcpu->mmio_is_write)
1043                 return EMULATE_DO_MMIO;
1044
1045         return EMULATE_DONE;
1046 }
1047 EXPORT_SYMBOL_GPL(emulate_instruction);
1048
1049 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
1050 {
1051         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
1052 }
1053
1054 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1055 {
1056         struct descriptor_table dt = { limit, base };
1057
1058         kvm_arch_ops->set_gdt(vcpu, &dt);
1059 }
1060
1061 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
1062 {
1063         struct descriptor_table dt = { limit, base };
1064
1065         kvm_arch_ops->set_idt(vcpu, &dt);
1066 }
1067
1068 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
1069                    unsigned long *rflags)
1070 {
1071         lmsw(vcpu, msw);
1072         *rflags = kvm_arch_ops->get_rflags(vcpu);
1073 }
1074
1075 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
1076 {
1077         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1078         switch (cr) {
1079         case 0:
1080                 return vcpu->cr0;
1081         case 2:
1082                 return vcpu->cr2;
1083         case 3:
1084                 return vcpu->cr3;
1085         case 4:
1086                 return vcpu->cr4;
1087         default:
1088                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1089                 return 0;
1090         }
1091 }
1092
1093 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
1094                      unsigned long *rflags)
1095 {
1096         switch (cr) {
1097         case 0:
1098                 set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
1099                 *rflags = kvm_arch_ops->get_rflags(vcpu);
1100                 break;
1101         case 2:
1102                 vcpu->cr2 = val;
1103                 break;
1104         case 3:
1105                 set_cr3(vcpu, val);
1106                 break;
1107         case 4:
1108                 set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
1109                 break;
1110         default:
1111                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
1112         }
1113 }
1114
1115 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1116 {
1117         u64 data;
1118
1119         switch (msr) {
1120         case 0xc0010010: /* SYSCFG */
1121         case 0xc0010015: /* HWCR */
1122         case MSR_IA32_PLATFORM_ID:
1123         case MSR_IA32_P5_MC_ADDR:
1124         case MSR_IA32_P5_MC_TYPE:
1125         case MSR_IA32_MC0_CTL:
1126         case MSR_IA32_MCG_STATUS:
1127         case MSR_IA32_MCG_CAP:
1128         case MSR_IA32_MC0_MISC:
1129         case MSR_IA32_MC0_MISC+4:
1130         case MSR_IA32_MC0_MISC+8:
1131         case MSR_IA32_MC0_MISC+12:
1132         case MSR_IA32_MC0_MISC+16:
1133         case MSR_IA32_UCODE_REV:
1134         case MSR_IA32_PERF_STATUS:
1135                 /* MTRR registers */
1136         case 0xfe:
1137         case 0x200 ... 0x2ff:
1138                 data = 0;
1139                 break;
1140         case 0xcd: /* fsb frequency */
1141                 data = 3;
1142                 break;
1143         case MSR_IA32_APICBASE:
1144                 data = vcpu->apic_base;
1145                 break;
1146 #ifdef CONFIG_X86_64
1147         case MSR_EFER:
1148                 data = vcpu->shadow_efer;
1149                 break;
1150 #endif
1151         default:
1152                 printk(KERN_ERR "kvm: unhandled rdmsr: 0x%x\n", msr);
1153                 return 1;
1154         }
1155         *pdata = data;
1156         return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1159
1160 /*
1161  * Reads an msr value (of 'msr_index') into 'pdata'.
1162  * Returns 0 on success, non-0 otherwise.
1163  * Assumes vcpu_load() was already called.
1164  */
1165 static int get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1166 {
1167         return kvm_arch_ops->get_msr(vcpu, msr_index, pdata);
1168 }
1169
1170 #ifdef CONFIG_X86_64
1171
1172 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
1173 {
1174         if (efer & EFER_RESERVED_BITS) {
1175                 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
1176                        efer);
1177                 inject_gp(vcpu);
1178                 return;
1179         }
1180
1181         if (is_paging(vcpu)
1182             && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
1183                 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
1184                 inject_gp(vcpu);
1185                 return;
1186         }
1187
1188         kvm_arch_ops->set_efer(vcpu, efer);
1189
1190         efer &= ~EFER_LMA;
1191         efer |= vcpu->shadow_efer & EFER_LMA;
1192
1193         vcpu->shadow_efer = efer;
1194 }
1195
1196 #endif
1197
1198 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1199 {
1200         switch (msr) {
1201 #ifdef CONFIG_X86_64
1202         case MSR_EFER:
1203                 set_efer(vcpu, data);
1204                 break;
1205 #endif
1206         case MSR_IA32_MC0_STATUS:
1207                 printk(KERN_WARNING "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
1208                        __FUNCTION__, data);
1209                 break;
1210         case MSR_IA32_UCODE_REV:
1211         case MSR_IA32_UCODE_WRITE:
1212         case 0x200 ... 0x2ff: /* MTRRs */
1213                 break;
1214         case MSR_IA32_APICBASE:
1215                 vcpu->apic_base = data;
1216                 break;
1217         default:
1218                 printk(KERN_ERR "kvm: unhandled wrmsr: 0x%x\n", msr);
1219                 return 1;
1220         }
1221         return 0;
1222 }
1223 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1224
1225 /*
1226  * Writes msr value into into the appropriate "register".
1227  * Returns 0 on success, non-0 otherwise.
1228  * Assumes vcpu_load() was already called.
1229  */
1230 static int set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1231 {
1232         return kvm_arch_ops->set_msr(vcpu, msr_index, data);
1233 }
1234
1235 void kvm_resched(struct kvm_vcpu *vcpu)
1236 {
1237         vcpu_put(vcpu);
1238         cond_resched();
1239         /* Cannot fail -  no vcpu unplug yet. */
1240         vcpu_load(vcpu->kvm, vcpu_slot(vcpu));
1241 }
1242 EXPORT_SYMBOL_GPL(kvm_resched);
1243
1244 void load_msrs(struct vmx_msr_entry *e, int n)
1245 {
1246         int i;
1247
1248         for (i = 0; i < n; ++i)
1249                 wrmsrl(e[i].index, e[i].data);
1250 }
1251 EXPORT_SYMBOL_GPL(load_msrs);
1252
1253 void save_msrs(struct vmx_msr_entry *e, int n)
1254 {
1255         int i;
1256
1257         for (i = 0; i < n; ++i)
1258                 rdmsrl(e[i].index, e[i].data);
1259 }
1260 EXPORT_SYMBOL_GPL(save_msrs);
1261
1262 static int kvm_dev_ioctl_run(struct kvm *kvm, struct kvm_run *kvm_run)
1263 {
1264         struct kvm_vcpu *vcpu;
1265         int r;
1266
1267         if (!valid_vcpu(kvm_run->vcpu))
1268                 return -EINVAL;
1269
1270         vcpu = vcpu_load(kvm, kvm_run->vcpu);
1271         if (!vcpu)
1272                 return -ENOENT;
1273
1274         if (kvm_run->emulated) {
1275                 kvm_arch_ops->skip_emulated_instruction(vcpu);
1276                 kvm_run->emulated = 0;
1277         }
1278
1279         if (kvm_run->mmio_completed) {
1280                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
1281                 vcpu->mmio_read_completed = 1;
1282         }
1283
1284         vcpu->mmio_needed = 0;
1285
1286         r = kvm_arch_ops->run(vcpu, kvm_run);
1287
1288         vcpu_put(vcpu);
1289         return r;
1290 }
1291
1292 static int kvm_dev_ioctl_get_regs(struct kvm *kvm, struct kvm_regs *regs)
1293 {
1294         struct kvm_vcpu *vcpu;
1295
1296         if (!valid_vcpu(regs->vcpu))
1297                 return -EINVAL;
1298
1299         vcpu = vcpu_load(kvm, regs->vcpu);
1300         if (!vcpu)
1301                 return -ENOENT;
1302
1303         kvm_arch_ops->cache_regs(vcpu);
1304
1305         regs->rax = vcpu->regs[VCPU_REGS_RAX];
1306         regs->rbx = vcpu->regs[VCPU_REGS_RBX];
1307         regs->rcx = vcpu->regs[VCPU_REGS_RCX];
1308         regs->rdx = vcpu->regs[VCPU_REGS_RDX];
1309         regs->rsi = vcpu->regs[VCPU_REGS_RSI];
1310         regs->rdi = vcpu->regs[VCPU_REGS_RDI];
1311         regs->rsp = vcpu->regs[VCPU_REGS_RSP];
1312         regs->rbp = vcpu->regs[VCPU_REGS_RBP];
1313 #ifdef CONFIG_X86_64
1314         regs->r8 = vcpu->regs[VCPU_REGS_R8];
1315         regs->r9 = vcpu->regs[VCPU_REGS_R9];
1316         regs->r10 = vcpu->regs[VCPU_REGS_R10];
1317         regs->r11 = vcpu->regs[VCPU_REGS_R11];
1318         regs->r12 = vcpu->regs[VCPU_REGS_R12];
1319         regs->r13 = vcpu->regs[VCPU_REGS_R13];
1320         regs->r14 = vcpu->regs[VCPU_REGS_R14];
1321         regs->r15 = vcpu->regs[VCPU_REGS_R15];
1322 #endif
1323
1324         regs->rip = vcpu->rip;
1325         regs->rflags = kvm_arch_ops->get_rflags(vcpu);
1326
1327         /*
1328          * Don't leak debug flags in case they were set for guest debugging
1329          */
1330         if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
1331                 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1332
1333         vcpu_put(vcpu);
1334
1335         return 0;
1336 }
1337
1338 static int kvm_dev_ioctl_set_regs(struct kvm *kvm, struct kvm_regs *regs)
1339 {
1340         struct kvm_vcpu *vcpu;
1341
1342         if (!valid_vcpu(regs->vcpu))
1343                 return -EINVAL;
1344
1345         vcpu = vcpu_load(kvm, regs->vcpu);
1346         if (!vcpu)
1347                 return -ENOENT;
1348
1349         vcpu->regs[VCPU_REGS_RAX] = regs->rax;
1350         vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
1351         vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
1352         vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
1353         vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
1354         vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
1355         vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
1356         vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
1357 #ifdef CONFIG_X86_64
1358         vcpu->regs[VCPU_REGS_R8] = regs->r8;
1359         vcpu->regs[VCPU_REGS_R9] = regs->r9;
1360         vcpu->regs[VCPU_REGS_R10] = regs->r10;
1361         vcpu->regs[VCPU_REGS_R11] = regs->r11;
1362         vcpu->regs[VCPU_REGS_R12] = regs->r12;
1363         vcpu->regs[VCPU_REGS_R13] = regs->r13;
1364         vcpu->regs[VCPU_REGS_R14] = regs->r14;
1365         vcpu->regs[VCPU_REGS_R15] = regs->r15;
1366 #endif
1367
1368         vcpu->rip = regs->rip;
1369         kvm_arch_ops->set_rflags(vcpu, regs->rflags);
1370
1371         kvm_arch_ops->decache_regs(vcpu);
1372
1373         vcpu_put(vcpu);
1374
1375         return 0;
1376 }
1377
1378 static void get_segment(struct kvm_vcpu *vcpu,
1379                         struct kvm_segment *var, int seg)
1380 {
1381         return kvm_arch_ops->get_segment(vcpu, var, seg);
1382 }
1383
1384 static int kvm_dev_ioctl_get_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1385 {
1386         struct kvm_vcpu *vcpu;
1387         struct descriptor_table dt;
1388
1389         if (!valid_vcpu(sregs->vcpu))
1390                 return -EINVAL;
1391         vcpu = vcpu_load(kvm, sregs->vcpu);
1392         if (!vcpu)
1393                 return -ENOENT;
1394
1395         get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1396         get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1397         get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1398         get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1399         get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1400         get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1401
1402         get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1403         get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1404
1405         kvm_arch_ops->get_idt(vcpu, &dt);
1406         sregs->idt.limit = dt.limit;
1407         sregs->idt.base = dt.base;
1408         kvm_arch_ops->get_gdt(vcpu, &dt);
1409         sregs->gdt.limit = dt.limit;
1410         sregs->gdt.base = dt.base;
1411
1412         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1413         sregs->cr0 = vcpu->cr0;
1414         sregs->cr2 = vcpu->cr2;
1415         sregs->cr3 = vcpu->cr3;
1416         sregs->cr4 = vcpu->cr4;
1417         sregs->cr8 = vcpu->cr8;
1418         sregs->efer = vcpu->shadow_efer;
1419         sregs->apic_base = vcpu->apic_base;
1420
1421         memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
1422                sizeof sregs->interrupt_bitmap);
1423
1424         vcpu_put(vcpu);
1425
1426         return 0;
1427 }
1428
1429 static void set_segment(struct kvm_vcpu *vcpu,
1430                         struct kvm_segment *var, int seg)
1431 {
1432         return kvm_arch_ops->set_segment(vcpu, var, seg);
1433 }
1434
1435 static int kvm_dev_ioctl_set_sregs(struct kvm *kvm, struct kvm_sregs *sregs)
1436 {
1437         struct kvm_vcpu *vcpu;
1438         int mmu_reset_needed = 0;
1439         int i;
1440         struct descriptor_table dt;
1441
1442         if (!valid_vcpu(sregs->vcpu))
1443                 return -EINVAL;
1444         vcpu = vcpu_load(kvm, sregs->vcpu);
1445         if (!vcpu)
1446                 return -ENOENT;
1447
1448         set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
1449         set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
1450         set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
1451         set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
1452         set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
1453         set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
1454
1455         set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
1456         set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
1457
1458         dt.limit = sregs->idt.limit;
1459         dt.base = sregs->idt.base;
1460         kvm_arch_ops->set_idt(vcpu, &dt);
1461         dt.limit = sregs->gdt.limit;
1462         dt.base = sregs->gdt.base;
1463         kvm_arch_ops->set_gdt(vcpu, &dt);
1464
1465         vcpu->cr2 = sregs->cr2;
1466         mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
1467         vcpu->cr3 = sregs->cr3;
1468
1469         vcpu->cr8 = sregs->cr8;
1470
1471         mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
1472 #ifdef CONFIG_X86_64
1473         kvm_arch_ops->set_efer(vcpu, sregs->efer);
1474 #endif
1475         vcpu->apic_base = sregs->apic_base;
1476
1477         kvm_arch_ops->decache_cr0_cr4_guest_bits(vcpu);
1478
1479         mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
1480         kvm_arch_ops->set_cr0_no_modeswitch(vcpu, sregs->cr0);
1481
1482         mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
1483         kvm_arch_ops->set_cr4(vcpu, sregs->cr4);
1484
1485         if (mmu_reset_needed)
1486                 kvm_mmu_reset_context(vcpu);
1487
1488         memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
1489                sizeof vcpu->irq_pending);
1490         vcpu->irq_summary = 0;
1491         for (i = 0; i < NR_IRQ_WORDS; ++i)
1492                 if (vcpu->irq_pending[i])
1493                         __set_bit(i, &vcpu->irq_summary);
1494
1495         vcpu_put(vcpu);
1496
1497         return 0;
1498 }
1499
1500 /*
1501  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1502  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1503  *
1504  * This list is modified at module load time to reflect the
1505  * capabilities of the host cpu.
1506  */
1507 static u32 msrs_to_save[] = {
1508         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1509         MSR_K6_STAR,
1510 #ifdef CONFIG_X86_64
1511         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1512 #endif
1513         MSR_IA32_TIME_STAMP_COUNTER,
1514 };
1515
1516 static unsigned num_msrs_to_save;
1517
1518 static __init void kvm_init_msr_list(void)
1519 {
1520         u32 dummy[2];
1521         unsigned i, j;
1522
1523         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1524                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1525                         continue;
1526                 if (j < i)
1527                         msrs_to_save[j] = msrs_to_save[i];
1528                 j++;
1529         }
1530         num_msrs_to_save = j;
1531 }
1532
1533 /*
1534  * Adapt set_msr() to msr_io()'s calling convention
1535  */
1536 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1537 {
1538         return set_msr(vcpu, index, *data);
1539 }
1540
1541 /*
1542  * Read or write a bunch of msrs. All parameters are kernel addresses.
1543  *
1544  * @return number of msrs set successfully.
1545  */
1546 static int __msr_io(struct kvm *kvm, struct kvm_msrs *msrs,
1547                     struct kvm_msr_entry *entries,
1548                     int (*do_msr)(struct kvm_vcpu *vcpu,
1549                                   unsigned index, u64 *data))
1550 {
1551         struct kvm_vcpu *vcpu;
1552         int i;
1553
1554         if (!valid_vcpu(msrs->vcpu))
1555                 return -EINVAL;
1556
1557         vcpu = vcpu_load(kvm, msrs->vcpu);
1558         if (!vcpu)
1559                 return -ENOENT;
1560
1561         for (i = 0; i < msrs->nmsrs; ++i)
1562                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1563                         break;
1564
1565         vcpu_put(vcpu);
1566
1567         return i;
1568 }
1569
1570 /*
1571  * Read or write a bunch of msrs. Parameters are user addresses.
1572  *
1573  * @return number of msrs set successfully.
1574  */
1575 static int msr_io(struct kvm *kvm, struct kvm_msrs __user *user_msrs,
1576                   int (*do_msr)(struct kvm_vcpu *vcpu,
1577                                 unsigned index, u64 *data),
1578                   int writeback)
1579 {
1580         struct kvm_msrs msrs;
1581         struct kvm_msr_entry *entries;
1582         int r, n;
1583         unsigned size;
1584
1585         r = -EFAULT;
1586         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1587                 goto out;
1588
1589         r = -E2BIG;
1590         if (msrs.nmsrs >= MAX_IO_MSRS)
1591                 goto out;
1592
1593         r = -ENOMEM;
1594         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1595         entries = vmalloc(size);
1596         if (!entries)
1597                 goto out;
1598
1599         r = -EFAULT;
1600         if (copy_from_user(entries, user_msrs->entries, size))
1601                 goto out_free;
1602
1603         r = n = __msr_io(kvm, &msrs, entries, do_msr);
1604         if (r < 0)
1605                 goto out_free;
1606
1607         r = -EFAULT;
1608         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1609                 goto out_free;
1610
1611         r = n;
1612
1613 out_free:
1614         vfree(entries);
1615 out:
1616         return r;
1617 }
1618
1619 /*
1620  * Translate a guest virtual address to a guest physical address.
1621  */
1622 static int kvm_dev_ioctl_translate(struct kvm *kvm, struct kvm_translation *tr)
1623 {
1624         unsigned long vaddr = tr->linear_address;
1625         struct kvm_vcpu *vcpu;
1626         gpa_t gpa;
1627
1628         vcpu = vcpu_load(kvm, tr->vcpu);
1629         if (!vcpu)
1630                 return -ENOENT;
1631         spin_lock(&kvm->lock);
1632         gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
1633         tr->physical_address = gpa;
1634         tr->valid = gpa != UNMAPPED_GVA;
1635         tr->writeable = 1;
1636         tr->usermode = 0;
1637         spin_unlock(&kvm->lock);
1638         vcpu_put(vcpu);
1639
1640         return 0;
1641 }
1642
1643 static int kvm_dev_ioctl_interrupt(struct kvm *kvm, struct kvm_interrupt *irq)
1644 {
1645         struct kvm_vcpu *vcpu;
1646
1647         if (!valid_vcpu(irq->vcpu))
1648                 return -EINVAL;
1649         if (irq->irq < 0 || irq->irq >= 256)
1650                 return -EINVAL;
1651         vcpu = vcpu_load(kvm, irq->vcpu);
1652         if (!vcpu)
1653                 return -ENOENT;
1654
1655         set_bit(irq->irq, vcpu->irq_pending);
1656         set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
1657
1658         vcpu_put(vcpu);
1659
1660         return 0;
1661 }
1662
1663 static int kvm_dev_ioctl_debug_guest(struct kvm *kvm,
1664                                      struct kvm_debug_guest *dbg)
1665 {
1666         struct kvm_vcpu *vcpu;
1667         int r;
1668
1669         if (!valid_vcpu(dbg->vcpu))
1670                 return -EINVAL;
1671         vcpu = vcpu_load(kvm, dbg->vcpu);
1672         if (!vcpu)
1673                 return -ENOENT;
1674
1675         r = kvm_arch_ops->set_guest_debug(vcpu, dbg);
1676
1677         vcpu_put(vcpu);
1678
1679         return r;
1680 }
1681
1682 static long kvm_dev_ioctl(struct file *filp,
1683                           unsigned int ioctl, unsigned long arg)
1684 {
1685         struct kvm *kvm = filp->private_data;
1686         int r = -EINVAL;
1687
1688         switch (ioctl) {
1689         case KVM_GET_API_VERSION:
1690                 r = KVM_API_VERSION;
1691                 break;
1692         case KVM_CREATE_VCPU: {
1693                 r = kvm_dev_ioctl_create_vcpu(kvm, arg);
1694                 if (r)
1695                         goto out;
1696                 break;
1697         }
1698         case KVM_RUN: {
1699                 struct kvm_run kvm_run;
1700
1701                 r = -EFAULT;
1702                 if (copy_from_user(&kvm_run, (void *)arg, sizeof kvm_run))
1703                         goto out;
1704                 r = kvm_dev_ioctl_run(kvm, &kvm_run);
1705                 if (r < 0 &&  r != -EINTR)
1706                         goto out;
1707                 if (copy_to_user((void *)arg, &kvm_run, sizeof kvm_run)) {
1708                         r = -EFAULT;
1709                         goto out;
1710                 }
1711                 break;
1712         }
1713         case KVM_GET_REGS: {
1714                 struct kvm_regs kvm_regs;
1715
1716                 r = -EFAULT;
1717                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1718                         goto out;
1719                 r = kvm_dev_ioctl_get_regs(kvm, &kvm_regs);
1720                 if (r)
1721                         goto out;
1722                 r = -EFAULT;
1723                 if (copy_to_user((void *)arg, &kvm_regs, sizeof kvm_regs))
1724                         goto out;
1725                 r = 0;
1726                 break;
1727         }
1728         case KVM_SET_REGS: {
1729                 struct kvm_regs kvm_regs;
1730
1731                 r = -EFAULT;
1732                 if (copy_from_user(&kvm_regs, (void *)arg, sizeof kvm_regs))
1733                         goto out;
1734                 r = kvm_dev_ioctl_set_regs(kvm, &kvm_regs);
1735                 if (r)
1736                         goto out;
1737                 r = 0;
1738                 break;
1739         }
1740         case KVM_GET_SREGS: {
1741                 struct kvm_sregs kvm_sregs;
1742
1743                 r = -EFAULT;
1744                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1745                         goto out;
1746                 r = kvm_dev_ioctl_get_sregs(kvm, &kvm_sregs);
1747                 if (r)
1748                         goto out;
1749                 r = -EFAULT;
1750                 if (copy_to_user((void *)arg, &kvm_sregs, sizeof kvm_sregs))
1751                         goto out;
1752                 r = 0;
1753                 break;
1754         }
1755         case KVM_SET_SREGS: {
1756                 struct kvm_sregs kvm_sregs;
1757
1758                 r = -EFAULT;
1759                 if (copy_from_user(&kvm_sregs, (void *)arg, sizeof kvm_sregs))
1760                         goto out;
1761                 r = kvm_dev_ioctl_set_sregs(kvm, &kvm_sregs);
1762                 if (r)
1763                         goto out;
1764                 r = 0;
1765                 break;
1766         }
1767         case KVM_TRANSLATE: {
1768                 struct kvm_translation tr;
1769
1770                 r = -EFAULT;
1771                 if (copy_from_user(&tr, (void *)arg, sizeof tr))
1772                         goto out;
1773                 r = kvm_dev_ioctl_translate(kvm, &tr);
1774                 if (r)
1775                         goto out;
1776                 r = -EFAULT;
1777                 if (copy_to_user((void *)arg, &tr, sizeof tr))
1778                         goto out;
1779                 r = 0;
1780                 break;
1781         }
1782         case KVM_INTERRUPT: {
1783                 struct kvm_interrupt irq;
1784
1785                 r = -EFAULT;
1786                 if (copy_from_user(&irq, (void *)arg, sizeof irq))
1787                         goto out;
1788                 r = kvm_dev_ioctl_interrupt(kvm, &irq);
1789                 if (r)
1790                         goto out;
1791                 r = 0;
1792                 break;
1793         }
1794         case KVM_DEBUG_GUEST: {
1795                 struct kvm_debug_guest dbg;
1796
1797                 r = -EFAULT;
1798                 if (copy_from_user(&dbg, (void *)arg, sizeof dbg))
1799                         goto out;
1800                 r = kvm_dev_ioctl_debug_guest(kvm, &dbg);
1801                 if (r)
1802                         goto out;
1803                 r = 0;
1804                 break;
1805         }
1806         case KVM_SET_MEMORY_REGION: {
1807                 struct kvm_memory_region kvm_mem;
1808
1809                 r = -EFAULT;
1810                 if (copy_from_user(&kvm_mem, (void *)arg, sizeof kvm_mem))
1811                         goto out;
1812                 r = kvm_dev_ioctl_set_memory_region(kvm, &kvm_mem);
1813                 if (r)
1814                         goto out;
1815                 break;
1816         }
1817         case KVM_GET_DIRTY_LOG: {
1818                 struct kvm_dirty_log log;
1819
1820                 r = -EFAULT;
1821                 if (copy_from_user(&log, (void *)arg, sizeof log))
1822                         goto out;
1823                 r = kvm_dev_ioctl_get_dirty_log(kvm, &log);
1824                 if (r)
1825                         goto out;
1826                 break;
1827         }
1828         case KVM_GET_MSRS:
1829                 r = msr_io(kvm, (void __user *)arg, get_msr, 1);
1830                 break;
1831         case KVM_SET_MSRS:
1832                 r = msr_io(kvm, (void __user *)arg, do_set_msr, 0);
1833                 break;
1834         case KVM_GET_MSR_INDEX_LIST: {
1835                 struct kvm_msr_list __user *user_msr_list = (void __user *)arg;
1836                 struct kvm_msr_list msr_list;
1837                 unsigned n;
1838
1839                 r = -EFAULT;
1840                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1841                         goto out;
1842                 n = msr_list.nmsrs;
1843                 msr_list.nmsrs = num_msrs_to_save;
1844                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1845                         goto out;
1846                 r = -E2BIG;
1847                 if (n < num_msrs_to_save)
1848                         goto out;
1849                 r = -EFAULT;
1850                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1851                                  num_msrs_to_save * sizeof(u32)))
1852                         goto out;
1853                 r = 0;
1854         }
1855         default:
1856                 ;
1857         }
1858 out:
1859         return r;
1860 }
1861
1862 static struct page *kvm_dev_nopage(struct vm_area_struct *vma,
1863                                    unsigned long address,
1864                                    int *type)
1865 {
1866         struct kvm *kvm = vma->vm_file->private_data;
1867         unsigned long pgoff;
1868         struct kvm_memory_slot *slot;
1869         struct page *page;
1870
1871         *type = VM_FAULT_MINOR;
1872         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1873         slot = gfn_to_memslot(kvm, pgoff);
1874         if (!slot)
1875                 return NOPAGE_SIGBUS;
1876         page = gfn_to_page(slot, pgoff);
1877         if (!page)
1878                 return NOPAGE_SIGBUS;
1879         get_page(page);
1880         return page;
1881 }
1882
1883 static struct vm_operations_struct kvm_dev_vm_ops = {
1884         .nopage = kvm_dev_nopage,
1885 };
1886
1887 static int kvm_dev_mmap(struct file *file, struct vm_area_struct *vma)
1888 {
1889         vma->vm_ops = &kvm_dev_vm_ops;
1890         return 0;
1891 }
1892
1893 static struct file_operations kvm_chardev_ops = {
1894         .open           = kvm_dev_open,
1895         .release        = kvm_dev_release,
1896         .unlocked_ioctl = kvm_dev_ioctl,
1897         .compat_ioctl   = kvm_dev_ioctl,
1898         .mmap           = kvm_dev_mmap,
1899 };
1900
1901 static struct miscdevice kvm_dev = {
1902         MISC_DYNAMIC_MINOR,
1903         "kvm",
1904         &kvm_chardev_ops,
1905 };
1906
1907 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
1908                        void *v)
1909 {
1910         if (val == SYS_RESTART) {
1911                 /*
1912                  * Some (well, at least mine) BIOSes hang on reboot if
1913                  * in vmx root mode.
1914                  */
1915                 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
1916                 on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1917         }
1918         return NOTIFY_OK;
1919 }
1920
1921 static struct notifier_block kvm_reboot_notifier = {
1922         .notifier_call = kvm_reboot,
1923         .priority = 0,
1924 };
1925
1926 static __init void kvm_init_debug(void)
1927 {
1928         struct kvm_stats_debugfs_item *p;
1929
1930         debugfs_dir = debugfs_create_dir("kvm", 0);
1931         for (p = debugfs_entries; p->name; ++p)
1932                 p->dentry = debugfs_create_u32(p->name, 0444, debugfs_dir,
1933                                                p->data);
1934 }
1935
1936 static void kvm_exit_debug(void)
1937 {
1938         struct kvm_stats_debugfs_item *p;
1939
1940         for (p = debugfs_entries; p->name; ++p)
1941                 debugfs_remove(p->dentry);
1942         debugfs_remove(debugfs_dir);
1943 }
1944
1945 hpa_t bad_page_address;
1946
1947 int kvm_init_arch(struct kvm_arch_ops *ops, struct module *module)
1948 {
1949         int r;
1950
1951         if (kvm_arch_ops) {
1952                 printk(KERN_ERR "kvm: already loaded the other module\n");
1953                 return -EEXIST;
1954         }
1955
1956         if (!ops->cpu_has_kvm_support()) {
1957                 printk(KERN_ERR "kvm: no hardware support\n");
1958                 return -EOPNOTSUPP;
1959         }
1960         if (ops->disabled_by_bios()) {
1961                 printk(KERN_ERR "kvm: disabled by bios\n");
1962                 return -EOPNOTSUPP;
1963         }
1964
1965         kvm_arch_ops = ops;
1966
1967         r = kvm_arch_ops->hardware_setup();
1968         if (r < 0)
1969             return r;
1970
1971         on_each_cpu(kvm_arch_ops->hardware_enable, 0, 0, 1);
1972         register_reboot_notifier(&kvm_reboot_notifier);
1973
1974         kvm_chardev_ops.owner = module;
1975
1976         r = misc_register(&kvm_dev);
1977         if (r) {
1978                 printk (KERN_ERR "kvm: misc device register failed\n");
1979                 goto out_free;
1980         }
1981
1982         return r;
1983
1984 out_free:
1985         unregister_reboot_notifier(&kvm_reboot_notifier);
1986         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1987         kvm_arch_ops->hardware_unsetup();
1988         return r;
1989 }
1990
1991 void kvm_exit_arch(void)
1992 {
1993         misc_deregister(&kvm_dev);
1994
1995         unregister_reboot_notifier(&kvm_reboot_notifier);
1996         on_each_cpu(kvm_arch_ops->hardware_disable, 0, 0, 1);
1997         kvm_arch_ops->hardware_unsetup();
1998         kvm_arch_ops = NULL;
1999 }
2000
2001 static __init int kvm_init(void)
2002 {
2003         static struct page *bad_page;
2004         int r = 0;
2005
2006         kvm_init_debug();
2007
2008         kvm_init_msr_list();
2009
2010         if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
2011                 r = -ENOMEM;
2012                 goto out;
2013         }
2014
2015         bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
2016         memset(__va(bad_page_address), 0, PAGE_SIZE);
2017
2018         return r;
2019
2020 out:
2021         kvm_exit_debug();
2022         return r;
2023 }
2024
2025 static __exit void kvm_exit(void)
2026 {
2027         kvm_exit_debug();
2028         __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
2029 }
2030
2031 module_init(kvm_init)
2032 module_exit(kvm_exit)
2033
2034 EXPORT_SYMBOL_GPL(kvm_init_arch);
2035 EXPORT_SYMBOL_GPL(kvm_exit_arch);