Merge tag 'iommu-fixes-v4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[linux-drm-fsl-dcu.git] / drivers / iommu / arm-smmu.c
1 /*
2  * IOMMU API for ARM architected SMMU implementations.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16  *
17  * Copyright (C) 2013 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  *
21  * This driver currently supports:
22  *      - SMMUv1 and v2 implementations
23  *      - Stream-matching and stream-indexing
24  *      - v7/v8 long-descriptor format
25  *      - Non-secure access to the SMMU
26  *      - Context fault reporting
27  */
28
29 #define pr_fmt(fmt) "arm-smmu: " fmt
30
31 #include <linux/delay.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/iommu.h>
37 #include <linux/iopoll.h>
38 #include <linux/module.h>
39 #include <linux/of.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44
45 #include <linux/amba/bus.h>
46
47 #include "io-pgtable.h"
48
49 /* Maximum number of stream IDs assigned to a single device */
50 #define MAX_MASTER_STREAMIDS            MAX_PHANDLE_ARGS
51
52 /* Maximum number of context banks per SMMU */
53 #define ARM_SMMU_MAX_CBS                128
54
55 /* Maximum number of mapping groups per SMMU */
56 #define ARM_SMMU_MAX_SMRS               128
57
58 /* SMMU global address space */
59 #define ARM_SMMU_GR0(smmu)              ((smmu)->base)
60 #define ARM_SMMU_GR1(smmu)              ((smmu)->base + (1 << (smmu)->pgshift))
61
62 /*
63  * SMMU global address space with conditional offset to access secure
64  * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
65  * nsGFSYNR0: 0x450)
66  */
67 #define ARM_SMMU_GR0_NS(smmu)                                           \
68         ((smmu)->base +                                                 \
69                 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS)       \
70                         ? 0x400 : 0))
71
72 /* Configuration registers */
73 #define ARM_SMMU_GR0_sCR0               0x0
74 #define sCR0_CLIENTPD                   (1 << 0)
75 #define sCR0_GFRE                       (1 << 1)
76 #define sCR0_GFIE                       (1 << 2)
77 #define sCR0_GCFGFRE                    (1 << 4)
78 #define sCR0_GCFGFIE                    (1 << 5)
79 #define sCR0_USFCFG                     (1 << 10)
80 #define sCR0_VMIDPNE                    (1 << 11)
81 #define sCR0_PTM                        (1 << 12)
82 #define sCR0_FB                         (1 << 13)
83 #define sCR0_BSU_SHIFT                  14
84 #define sCR0_BSU_MASK                   0x3
85
86 /* Identification registers */
87 #define ARM_SMMU_GR0_ID0                0x20
88 #define ARM_SMMU_GR0_ID1                0x24
89 #define ARM_SMMU_GR0_ID2                0x28
90 #define ARM_SMMU_GR0_ID3                0x2c
91 #define ARM_SMMU_GR0_ID4                0x30
92 #define ARM_SMMU_GR0_ID5                0x34
93 #define ARM_SMMU_GR0_ID6                0x38
94 #define ARM_SMMU_GR0_ID7                0x3c
95 #define ARM_SMMU_GR0_sGFSR              0x48
96 #define ARM_SMMU_GR0_sGFSYNR0           0x50
97 #define ARM_SMMU_GR0_sGFSYNR1           0x54
98 #define ARM_SMMU_GR0_sGFSYNR2           0x58
99
100 #define ID0_S1TS                        (1 << 30)
101 #define ID0_S2TS                        (1 << 29)
102 #define ID0_NTS                         (1 << 28)
103 #define ID0_SMS                         (1 << 27)
104 #define ID0_ATOSNS                      (1 << 26)
105 #define ID0_CTTW                        (1 << 14)
106 #define ID0_NUMIRPT_SHIFT               16
107 #define ID0_NUMIRPT_MASK                0xff
108 #define ID0_NUMSIDB_SHIFT               9
109 #define ID0_NUMSIDB_MASK                0xf
110 #define ID0_NUMSMRG_SHIFT               0
111 #define ID0_NUMSMRG_MASK                0xff
112
113 #define ID1_PAGESIZE                    (1 << 31)
114 #define ID1_NUMPAGENDXB_SHIFT           28
115 #define ID1_NUMPAGENDXB_MASK            7
116 #define ID1_NUMS2CB_SHIFT               16
117 #define ID1_NUMS2CB_MASK                0xff
118 #define ID1_NUMCB_SHIFT                 0
119 #define ID1_NUMCB_MASK                  0xff
120
121 #define ID2_OAS_SHIFT                   4
122 #define ID2_OAS_MASK                    0xf
123 #define ID2_IAS_SHIFT                   0
124 #define ID2_IAS_MASK                    0xf
125 #define ID2_UBS_SHIFT                   8
126 #define ID2_UBS_MASK                    0xf
127 #define ID2_PTFS_4K                     (1 << 12)
128 #define ID2_PTFS_16K                    (1 << 13)
129 #define ID2_PTFS_64K                    (1 << 14)
130
131 /* Global TLB invalidation */
132 #define ARM_SMMU_GR0_TLBIVMID           0x64
133 #define ARM_SMMU_GR0_TLBIALLNSNH        0x68
134 #define ARM_SMMU_GR0_TLBIALLH           0x6c
135 #define ARM_SMMU_GR0_sTLBGSYNC          0x70
136 #define ARM_SMMU_GR0_sTLBGSTATUS        0x74
137 #define sTLBGSTATUS_GSACTIVE            (1 << 0)
138 #define TLB_LOOP_TIMEOUT                1000000 /* 1s! */
139
140 /* Stream mapping registers */
141 #define ARM_SMMU_GR0_SMR(n)             (0x800 + ((n) << 2))
142 #define SMR_VALID                       (1 << 31)
143 #define SMR_MASK_SHIFT                  16
144 #define SMR_MASK_MASK                   0x7fff
145 #define SMR_ID_SHIFT                    0
146 #define SMR_ID_MASK                     0x7fff
147
148 #define ARM_SMMU_GR0_S2CR(n)            (0xc00 + ((n) << 2))
149 #define S2CR_CBNDX_SHIFT                0
150 #define S2CR_CBNDX_MASK                 0xff
151 #define S2CR_TYPE_SHIFT                 16
152 #define S2CR_TYPE_MASK                  0x3
153 #define S2CR_TYPE_TRANS                 (0 << S2CR_TYPE_SHIFT)
154 #define S2CR_TYPE_BYPASS                (1 << S2CR_TYPE_SHIFT)
155 #define S2CR_TYPE_FAULT                 (2 << S2CR_TYPE_SHIFT)
156
157 /* Context bank attribute registers */
158 #define ARM_SMMU_GR1_CBAR(n)            (0x0 + ((n) << 2))
159 #define CBAR_VMID_SHIFT                 0
160 #define CBAR_VMID_MASK                  0xff
161 #define CBAR_S1_BPSHCFG_SHIFT           8
162 #define CBAR_S1_BPSHCFG_MASK            3
163 #define CBAR_S1_BPSHCFG_NSH             3
164 #define CBAR_S1_MEMATTR_SHIFT           12
165 #define CBAR_S1_MEMATTR_MASK            0xf
166 #define CBAR_S1_MEMATTR_WB              0xf
167 #define CBAR_TYPE_SHIFT                 16
168 #define CBAR_TYPE_MASK                  0x3
169 #define CBAR_TYPE_S2_TRANS              (0 << CBAR_TYPE_SHIFT)
170 #define CBAR_TYPE_S1_TRANS_S2_BYPASS    (1 << CBAR_TYPE_SHIFT)
171 #define CBAR_TYPE_S1_TRANS_S2_FAULT     (2 << CBAR_TYPE_SHIFT)
172 #define CBAR_TYPE_S1_TRANS_S2_TRANS     (3 << CBAR_TYPE_SHIFT)
173 #define CBAR_IRPTNDX_SHIFT              24
174 #define CBAR_IRPTNDX_MASK               0xff
175
176 #define ARM_SMMU_GR1_CBA2R(n)           (0x800 + ((n) << 2))
177 #define CBA2R_RW64_32BIT                (0 << 0)
178 #define CBA2R_RW64_64BIT                (1 << 0)
179
180 /* Translation context bank */
181 #define ARM_SMMU_CB_BASE(smmu)          ((smmu)->base + ((smmu)->size >> 1))
182 #define ARM_SMMU_CB(smmu, n)            ((n) * (1 << (smmu)->pgshift))
183
184 #define ARM_SMMU_CB_SCTLR               0x0
185 #define ARM_SMMU_CB_RESUME              0x8
186 #define ARM_SMMU_CB_TTBCR2              0x10
187 #define ARM_SMMU_CB_TTBR0_LO            0x20
188 #define ARM_SMMU_CB_TTBR0_HI            0x24
189 #define ARM_SMMU_CB_TTBR1_LO            0x28
190 #define ARM_SMMU_CB_TTBR1_HI            0x2c
191 #define ARM_SMMU_CB_TTBCR               0x30
192 #define ARM_SMMU_CB_S1_MAIR0            0x38
193 #define ARM_SMMU_CB_S1_MAIR1            0x3c
194 #define ARM_SMMU_CB_PAR_LO              0x50
195 #define ARM_SMMU_CB_PAR_HI              0x54
196 #define ARM_SMMU_CB_FSR                 0x58
197 #define ARM_SMMU_CB_FAR_LO              0x60
198 #define ARM_SMMU_CB_FAR_HI              0x64
199 #define ARM_SMMU_CB_FSYNR0              0x68
200 #define ARM_SMMU_CB_S1_TLBIVA           0x600
201 #define ARM_SMMU_CB_S1_TLBIASID         0x610
202 #define ARM_SMMU_CB_S1_TLBIVAL          0x620
203 #define ARM_SMMU_CB_S2_TLBIIPAS2        0x630
204 #define ARM_SMMU_CB_S2_TLBIIPAS2L       0x638
205 #define ARM_SMMU_CB_ATS1PR              0x800
206 #define ARM_SMMU_CB_ATSR                0x8f0
207
208 #define SCTLR_S1_ASIDPNE                (1 << 12)
209 #define SCTLR_CFCFG                     (1 << 7)
210 #define SCTLR_CFIE                      (1 << 6)
211 #define SCTLR_CFRE                      (1 << 5)
212 #define SCTLR_E                         (1 << 4)
213 #define SCTLR_AFE                       (1 << 2)
214 #define SCTLR_TRE                       (1 << 1)
215 #define SCTLR_M                         (1 << 0)
216 #define SCTLR_EAE_SBOP                  (SCTLR_AFE | SCTLR_TRE)
217
218 #define CB_PAR_F                        (1 << 0)
219
220 #define ATSR_ACTIVE                     (1 << 0)
221
222 #define RESUME_RETRY                    (0 << 0)
223 #define RESUME_TERMINATE                (1 << 0)
224
225 #define TTBCR2_SEP_SHIFT                15
226 #define TTBCR2_SEP_UPSTREAM             (0x7 << TTBCR2_SEP_SHIFT)
227
228 #define TTBRn_HI_ASID_SHIFT            16
229
230 #define FSR_MULTI                       (1 << 31)
231 #define FSR_SS                          (1 << 30)
232 #define FSR_UUT                         (1 << 8)
233 #define FSR_ASF                         (1 << 7)
234 #define FSR_TLBLKF                      (1 << 6)
235 #define FSR_TLBMCF                      (1 << 5)
236 #define FSR_EF                          (1 << 4)
237 #define FSR_PF                          (1 << 3)
238 #define FSR_AFF                         (1 << 2)
239 #define FSR_TF                          (1 << 1)
240
241 #define FSR_IGN                         (FSR_AFF | FSR_ASF | \
242                                          FSR_TLBMCF | FSR_TLBLKF)
243 #define FSR_FAULT                       (FSR_MULTI | FSR_SS | FSR_UUT | \
244                                          FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
245
246 #define FSYNR0_WNR                      (1 << 4)
247
248 static int force_stage;
249 module_param_named(force_stage, force_stage, int, S_IRUGO);
250 MODULE_PARM_DESC(force_stage,
251         "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
252
253 enum arm_smmu_arch_version {
254         ARM_SMMU_V1 = 1,
255         ARM_SMMU_V2,
256 };
257
258 struct arm_smmu_smr {
259         u8                              idx;
260         u16                             mask;
261         u16                             id;
262 };
263
264 struct arm_smmu_master_cfg {
265         int                             num_streamids;
266         u16                             streamids[MAX_MASTER_STREAMIDS];
267         struct arm_smmu_smr             *smrs;
268 };
269
270 struct arm_smmu_master {
271         struct device_node              *of_node;
272         struct rb_node                  node;
273         struct arm_smmu_master_cfg      cfg;
274 };
275
276 struct arm_smmu_device {
277         struct device                   *dev;
278
279         void __iomem                    *base;
280         unsigned long                   size;
281         unsigned long                   pgshift;
282
283 #define ARM_SMMU_FEAT_COHERENT_WALK     (1 << 0)
284 #define ARM_SMMU_FEAT_STREAM_MATCH      (1 << 1)
285 #define ARM_SMMU_FEAT_TRANS_S1          (1 << 2)
286 #define ARM_SMMU_FEAT_TRANS_S2          (1 << 3)
287 #define ARM_SMMU_FEAT_TRANS_NESTED      (1 << 4)
288 #define ARM_SMMU_FEAT_TRANS_OPS         (1 << 5)
289         u32                             features;
290
291 #define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
292         u32                             options;
293         enum arm_smmu_arch_version      version;
294
295         u32                             num_context_banks;
296         u32                             num_s2_context_banks;
297         DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
298         atomic_t                        irptndx;
299
300         u32                             num_mapping_groups;
301         DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
302
303         unsigned long                   va_size;
304         unsigned long                   ipa_size;
305         unsigned long                   pa_size;
306
307         u32                             num_global_irqs;
308         u32                             num_context_irqs;
309         unsigned int                    *irqs;
310
311         struct list_head                list;
312         struct rb_root                  masters;
313 };
314
315 struct arm_smmu_cfg {
316         u8                              cbndx;
317         u8                              irptndx;
318         u32                             cbar;
319 };
320 #define INVALID_IRPTNDX                 0xff
321
322 #define ARM_SMMU_CB_ASID(cfg)           ((cfg)->cbndx)
323 #define ARM_SMMU_CB_VMID(cfg)           ((cfg)->cbndx + 1)
324
325 enum arm_smmu_domain_stage {
326         ARM_SMMU_DOMAIN_S1 = 0,
327         ARM_SMMU_DOMAIN_S2,
328         ARM_SMMU_DOMAIN_NESTED,
329 };
330
331 struct arm_smmu_domain {
332         struct arm_smmu_device          *smmu;
333         struct io_pgtable_ops           *pgtbl_ops;
334         spinlock_t                      pgtbl_lock;
335         struct arm_smmu_cfg             cfg;
336         enum arm_smmu_domain_stage      stage;
337         struct mutex                    init_mutex; /* Protects smmu pointer */
338         struct iommu_domain             domain;
339 };
340
341 static struct iommu_ops arm_smmu_ops;
342
343 static DEFINE_SPINLOCK(arm_smmu_devices_lock);
344 static LIST_HEAD(arm_smmu_devices);
345
346 struct arm_smmu_option_prop {
347         u32 opt;
348         const char *prop;
349 };
350
351 static struct arm_smmu_option_prop arm_smmu_options[] = {
352         { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
353         { 0, NULL},
354 };
355
356 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
357 {
358         return container_of(dom, struct arm_smmu_domain, domain);
359 }
360
361 static void parse_driver_options(struct arm_smmu_device *smmu)
362 {
363         int i = 0;
364
365         do {
366                 if (of_property_read_bool(smmu->dev->of_node,
367                                                 arm_smmu_options[i].prop)) {
368                         smmu->options |= arm_smmu_options[i].opt;
369                         dev_notice(smmu->dev, "option %s\n",
370                                 arm_smmu_options[i].prop);
371                 }
372         } while (arm_smmu_options[++i].opt);
373 }
374
375 static struct device_node *dev_get_dev_node(struct device *dev)
376 {
377         if (dev_is_pci(dev)) {
378                 struct pci_bus *bus = to_pci_dev(dev)->bus;
379
380                 while (!pci_is_root_bus(bus))
381                         bus = bus->parent;
382                 return bus->bridge->parent->of_node;
383         }
384
385         return dev->of_node;
386 }
387
388 static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
389                                                 struct device_node *dev_node)
390 {
391         struct rb_node *node = smmu->masters.rb_node;
392
393         while (node) {
394                 struct arm_smmu_master *master;
395
396                 master = container_of(node, struct arm_smmu_master, node);
397
398                 if (dev_node < master->of_node)
399                         node = node->rb_left;
400                 else if (dev_node > master->of_node)
401                         node = node->rb_right;
402                 else
403                         return master;
404         }
405
406         return NULL;
407 }
408
409 static struct arm_smmu_master_cfg *
410 find_smmu_master_cfg(struct device *dev)
411 {
412         struct arm_smmu_master_cfg *cfg = NULL;
413         struct iommu_group *group = iommu_group_get(dev);
414
415         if (group) {
416                 cfg = iommu_group_get_iommudata(group);
417                 iommu_group_put(group);
418         }
419
420         return cfg;
421 }
422
423 static int insert_smmu_master(struct arm_smmu_device *smmu,
424                               struct arm_smmu_master *master)
425 {
426         struct rb_node **new, *parent;
427
428         new = &smmu->masters.rb_node;
429         parent = NULL;
430         while (*new) {
431                 struct arm_smmu_master *this
432                         = container_of(*new, struct arm_smmu_master, node);
433
434                 parent = *new;
435                 if (master->of_node < this->of_node)
436                         new = &((*new)->rb_left);
437                 else if (master->of_node > this->of_node)
438                         new = &((*new)->rb_right);
439                 else
440                         return -EEXIST;
441         }
442
443         rb_link_node(&master->node, parent, new);
444         rb_insert_color(&master->node, &smmu->masters);
445         return 0;
446 }
447
448 static int register_smmu_master(struct arm_smmu_device *smmu,
449                                 struct device *dev,
450                                 struct of_phandle_args *masterspec)
451 {
452         int i;
453         struct arm_smmu_master *master;
454
455         master = find_smmu_master(smmu, masterspec->np);
456         if (master) {
457                 dev_err(dev,
458                         "rejecting multiple registrations for master device %s\n",
459                         masterspec->np->name);
460                 return -EBUSY;
461         }
462
463         if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
464                 dev_err(dev,
465                         "reached maximum number (%d) of stream IDs for master device %s\n",
466                         MAX_MASTER_STREAMIDS, masterspec->np->name);
467                 return -ENOSPC;
468         }
469
470         master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
471         if (!master)
472                 return -ENOMEM;
473
474         master->of_node                 = masterspec->np;
475         master->cfg.num_streamids       = masterspec->args_count;
476
477         for (i = 0; i < master->cfg.num_streamids; ++i) {
478                 u16 streamid = masterspec->args[i];
479
480                 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
481                      (streamid >= smmu->num_mapping_groups)) {
482                         dev_err(dev,
483                                 "stream ID for master device %s greater than maximum allowed (%d)\n",
484                                 masterspec->np->name, smmu->num_mapping_groups);
485                         return -ERANGE;
486                 }
487                 master->cfg.streamids[i] = streamid;
488         }
489         return insert_smmu_master(smmu, master);
490 }
491
492 static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
493 {
494         struct arm_smmu_device *smmu;
495         struct arm_smmu_master *master = NULL;
496         struct device_node *dev_node = dev_get_dev_node(dev);
497
498         spin_lock(&arm_smmu_devices_lock);
499         list_for_each_entry(smmu, &arm_smmu_devices, list) {
500                 master = find_smmu_master(smmu, dev_node);
501                 if (master)
502                         break;
503         }
504         spin_unlock(&arm_smmu_devices_lock);
505
506         return master ? smmu : NULL;
507 }
508
509 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
510 {
511         int idx;
512
513         do {
514                 idx = find_next_zero_bit(map, end, start);
515                 if (idx == end)
516                         return -ENOSPC;
517         } while (test_and_set_bit(idx, map));
518
519         return idx;
520 }
521
522 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
523 {
524         clear_bit(idx, map);
525 }
526
527 /* Wait for any pending TLB invalidations to complete */
528 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
529 {
530         int count = 0;
531         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
532
533         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
534         while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
535                & sTLBGSTATUS_GSACTIVE) {
536                 cpu_relax();
537                 if (++count == TLB_LOOP_TIMEOUT) {
538                         dev_err_ratelimited(smmu->dev,
539                         "TLB sync timed out -- SMMU may be deadlocked\n");
540                         return;
541                 }
542                 udelay(1);
543         }
544 }
545
546 static void arm_smmu_tlb_sync(void *cookie)
547 {
548         struct arm_smmu_domain *smmu_domain = cookie;
549         __arm_smmu_tlb_sync(smmu_domain->smmu);
550 }
551
552 static void arm_smmu_tlb_inv_context(void *cookie)
553 {
554         struct arm_smmu_domain *smmu_domain = cookie;
555         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
556         struct arm_smmu_device *smmu = smmu_domain->smmu;
557         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
558         void __iomem *base;
559
560         if (stage1) {
561                 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
562                 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
563                                base + ARM_SMMU_CB_S1_TLBIASID);
564         } else {
565                 base = ARM_SMMU_GR0(smmu);
566                 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
567                                base + ARM_SMMU_GR0_TLBIVMID);
568         }
569
570         __arm_smmu_tlb_sync(smmu);
571 }
572
573 static void arm_smmu_tlb_inv_range_nosync(unsigned long iova, size_t size,
574                                           bool leaf, void *cookie)
575 {
576         struct arm_smmu_domain *smmu_domain = cookie;
577         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
578         struct arm_smmu_device *smmu = smmu_domain->smmu;
579         bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
580         void __iomem *reg;
581
582         if (stage1) {
583                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
584                 reg += leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
585
586                 if (!IS_ENABLED(CONFIG_64BIT) || smmu->version == ARM_SMMU_V1) {
587                         iova &= ~12UL;
588                         iova |= ARM_SMMU_CB_ASID(cfg);
589                         writel_relaxed(iova, reg);
590 #ifdef CONFIG_64BIT
591                 } else {
592                         iova >>= 12;
593                         iova |= (u64)ARM_SMMU_CB_ASID(cfg) << 48;
594                         writeq_relaxed(iova, reg);
595 #endif
596                 }
597 #ifdef CONFIG_64BIT
598         } else if (smmu->version == ARM_SMMU_V2) {
599                 reg = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
600                 reg += leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L :
601                               ARM_SMMU_CB_S2_TLBIIPAS2;
602                 writeq_relaxed(iova >> 12, reg);
603 #endif
604         } else {
605                 reg = ARM_SMMU_GR0(smmu) + ARM_SMMU_GR0_TLBIVMID;
606                 writel_relaxed(ARM_SMMU_CB_VMID(cfg), reg);
607         }
608 }
609
610 static void arm_smmu_flush_pgtable(void *addr, size_t size, void *cookie)
611 {
612         struct arm_smmu_domain *smmu_domain = cookie;
613         struct arm_smmu_device *smmu = smmu_domain->smmu;
614         unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
615
616
617         /* Ensure new page tables are visible to the hardware walker */
618         if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
619                 dsb(ishst);
620         } else {
621                 /*
622                  * If the SMMU can't walk tables in the CPU caches, treat them
623                  * like non-coherent DMA since we need to flush the new entries
624                  * all the way out to memory. There's no possibility of
625                  * recursion here as the SMMU table walker will not be wired
626                  * through another SMMU.
627                  */
628                 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
629                              DMA_TO_DEVICE);
630         }
631 }
632
633 static struct iommu_gather_ops arm_smmu_gather_ops = {
634         .tlb_flush_all  = arm_smmu_tlb_inv_context,
635         .tlb_add_flush  = arm_smmu_tlb_inv_range_nosync,
636         .tlb_sync       = arm_smmu_tlb_sync,
637         .flush_pgtable  = arm_smmu_flush_pgtable,
638 };
639
640 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
641 {
642         int flags, ret;
643         u32 fsr, far, fsynr, resume;
644         unsigned long iova;
645         struct iommu_domain *domain = dev;
646         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
647         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
648         struct arm_smmu_device *smmu = smmu_domain->smmu;
649         void __iomem *cb_base;
650
651         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
652         fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
653
654         if (!(fsr & FSR_FAULT))
655                 return IRQ_NONE;
656
657         if (fsr & FSR_IGN)
658                 dev_err_ratelimited(smmu->dev,
659                                     "Unexpected context fault (fsr 0x%x)\n",
660                                     fsr);
661
662         fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
663         flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
664
665         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
666         iova = far;
667 #ifdef CONFIG_64BIT
668         far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
669         iova |= ((unsigned long)far << 32);
670 #endif
671
672         if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
673                 ret = IRQ_HANDLED;
674                 resume = RESUME_RETRY;
675         } else {
676                 dev_err_ratelimited(smmu->dev,
677                     "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
678                     iova, fsynr, cfg->cbndx);
679                 ret = IRQ_NONE;
680                 resume = RESUME_TERMINATE;
681         }
682
683         /* Clear the faulting FSR */
684         writel(fsr, cb_base + ARM_SMMU_CB_FSR);
685
686         /* Retry or terminate any stalled transactions */
687         if (fsr & FSR_SS)
688                 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
689
690         return ret;
691 }
692
693 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
694 {
695         u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
696         struct arm_smmu_device *smmu = dev;
697         void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
698
699         gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
700         gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
701         gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
702         gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
703
704         if (!gfsr)
705                 return IRQ_NONE;
706
707         dev_err_ratelimited(smmu->dev,
708                 "Unexpected global fault, this could be serious\n");
709         dev_err_ratelimited(smmu->dev,
710                 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
711                 gfsr, gfsynr0, gfsynr1, gfsynr2);
712
713         writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
714         return IRQ_HANDLED;
715 }
716
717 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
718                                        struct io_pgtable_cfg *pgtbl_cfg)
719 {
720         u32 reg;
721         bool stage1;
722         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
723         struct arm_smmu_device *smmu = smmu_domain->smmu;
724         void __iomem *cb_base, *gr0_base, *gr1_base;
725
726         gr0_base = ARM_SMMU_GR0(smmu);
727         gr1_base = ARM_SMMU_GR1(smmu);
728         stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
729         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
730
731         if (smmu->version > ARM_SMMU_V1) {
732                 /*
733                  * CBA2R.
734                  * *Must* be initialised before CBAR thanks to VMID16
735                  * architectural oversight affected some implementations.
736                  */
737 #ifdef CONFIG_64BIT
738                 reg = CBA2R_RW64_64BIT;
739 #else
740                 reg = CBA2R_RW64_32BIT;
741 #endif
742                 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
743         }
744
745         /* CBAR */
746         reg = cfg->cbar;
747         if (smmu->version == ARM_SMMU_V1)
748                 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
749
750         /*
751          * Use the weakest shareability/memory types, so they are
752          * overridden by the ttbcr/pte.
753          */
754         if (stage1) {
755                 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
756                         (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
757         } else {
758                 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
759         }
760         writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
761
762         /* TTBRs */
763         if (stage1) {
764                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
765                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
766                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0] >> 32;
767                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
768                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
769
770                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
771                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_LO);
772                 reg = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1] >> 32;
773                 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
774                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR1_HI);
775         } else {
776                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
777                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
778                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vttbr >> 32;
779                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
780         }
781
782         /* TTBCR */
783         if (stage1) {
784                 reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
785                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
786                 if (smmu->version > ARM_SMMU_V1) {
787                         reg = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
788                         reg |= TTBCR2_SEP_UPSTREAM;
789                         writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
790                 }
791         } else {
792                 reg = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
793                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
794         }
795
796         /* MAIRs (stage-1 only) */
797         if (stage1) {
798                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
799                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
800                 reg = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
801                 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR1);
802         }
803
804         /* SCTLR */
805         reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
806         if (stage1)
807                 reg |= SCTLR_S1_ASIDPNE;
808 #ifdef __BIG_ENDIAN
809         reg |= SCTLR_E;
810 #endif
811         writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
812 }
813
814 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
815                                         struct arm_smmu_device *smmu)
816 {
817         int irq, start, ret = 0;
818         unsigned long ias, oas;
819         struct io_pgtable_ops *pgtbl_ops;
820         struct io_pgtable_cfg pgtbl_cfg;
821         enum io_pgtable_fmt fmt;
822         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
823         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
824
825         mutex_lock(&smmu_domain->init_mutex);
826         if (smmu_domain->smmu)
827                 goto out_unlock;
828
829         /*
830          * Mapping the requested stage onto what we support is surprisingly
831          * complicated, mainly because the spec allows S1+S2 SMMUs without
832          * support for nested translation. That means we end up with the
833          * following table:
834          *
835          * Requested        Supported        Actual
836          *     S1               N              S1
837          *     S1             S1+S2            S1
838          *     S1               S2             S2
839          *     S1               S1             S1
840          *     N                N              N
841          *     N              S1+S2            S2
842          *     N                S2             S2
843          *     N                S1             S1
844          *
845          * Note that you can't actually request stage-2 mappings.
846          */
847         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
848                 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
849         if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
850                 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
851
852         switch (smmu_domain->stage) {
853         case ARM_SMMU_DOMAIN_S1:
854                 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
855                 start = smmu->num_s2_context_banks;
856                 ias = smmu->va_size;
857                 oas = smmu->ipa_size;
858                 if (IS_ENABLED(CONFIG_64BIT))
859                         fmt = ARM_64_LPAE_S1;
860                 else
861                         fmt = ARM_32_LPAE_S1;
862                 break;
863         case ARM_SMMU_DOMAIN_NESTED:
864                 /*
865                  * We will likely want to change this if/when KVM gets
866                  * involved.
867                  */
868         case ARM_SMMU_DOMAIN_S2:
869                 cfg->cbar = CBAR_TYPE_S2_TRANS;
870                 start = 0;
871                 ias = smmu->ipa_size;
872                 oas = smmu->pa_size;
873                 if (IS_ENABLED(CONFIG_64BIT))
874                         fmt = ARM_64_LPAE_S2;
875                 else
876                         fmt = ARM_32_LPAE_S2;
877                 break;
878         default:
879                 ret = -EINVAL;
880                 goto out_unlock;
881         }
882
883         ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
884                                       smmu->num_context_banks);
885         if (IS_ERR_VALUE(ret))
886                 goto out_unlock;
887
888         cfg->cbndx = ret;
889         if (smmu->version == ARM_SMMU_V1) {
890                 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
891                 cfg->irptndx %= smmu->num_context_irqs;
892         } else {
893                 cfg->irptndx = cfg->cbndx;
894         }
895
896         pgtbl_cfg = (struct io_pgtable_cfg) {
897                 .pgsize_bitmap  = arm_smmu_ops.pgsize_bitmap,
898                 .ias            = ias,
899                 .oas            = oas,
900                 .tlb            = &arm_smmu_gather_ops,
901         };
902
903         smmu_domain->smmu = smmu;
904         pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
905         if (!pgtbl_ops) {
906                 ret = -ENOMEM;
907                 goto out_clear_smmu;
908         }
909
910         /* Update our support page sizes to reflect the page table format */
911         arm_smmu_ops.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
912
913         /* Initialise the context bank with our page table cfg */
914         arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
915
916         /*
917          * Request context fault interrupt. Do this last to avoid the
918          * handler seeing a half-initialised domain state.
919          */
920         irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
921         ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
922                           "arm-smmu-context-fault", domain);
923         if (IS_ERR_VALUE(ret)) {
924                 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
925                         cfg->irptndx, irq);
926                 cfg->irptndx = INVALID_IRPTNDX;
927         }
928
929         mutex_unlock(&smmu_domain->init_mutex);
930
931         /* Publish page table ops for map/unmap */
932         smmu_domain->pgtbl_ops = pgtbl_ops;
933         return 0;
934
935 out_clear_smmu:
936         smmu_domain->smmu = NULL;
937 out_unlock:
938         mutex_unlock(&smmu_domain->init_mutex);
939         return ret;
940 }
941
942 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
943 {
944         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
945         struct arm_smmu_device *smmu = smmu_domain->smmu;
946         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
947         void __iomem *cb_base;
948         int irq;
949
950         if (!smmu)
951                 return;
952
953         /*
954          * Disable the context bank and free the page tables before freeing
955          * it.
956          */
957         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
958         writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
959
960         if (cfg->irptndx != INVALID_IRPTNDX) {
961                 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
962                 free_irq(irq, domain);
963         }
964
965         if (smmu_domain->pgtbl_ops)
966                 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
967
968         __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
969 }
970
971 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
972 {
973         struct arm_smmu_domain *smmu_domain;
974
975         if (type != IOMMU_DOMAIN_UNMANAGED)
976                 return NULL;
977         /*
978          * Allocate the domain and initialise some of its data structures.
979          * We can't really do anything meaningful until we've added a
980          * master.
981          */
982         smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
983         if (!smmu_domain)
984                 return NULL;
985
986         mutex_init(&smmu_domain->init_mutex);
987         spin_lock_init(&smmu_domain->pgtbl_lock);
988
989         return &smmu_domain->domain;
990 }
991
992 static void arm_smmu_domain_free(struct iommu_domain *domain)
993 {
994         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
995
996         /*
997          * Free the domain resources. We assume that all devices have
998          * already been detached.
999          */
1000         arm_smmu_destroy_domain_context(domain);
1001         kfree(smmu_domain);
1002 }
1003
1004 static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
1005                                           struct arm_smmu_master_cfg *cfg)
1006 {
1007         int i;
1008         struct arm_smmu_smr *smrs;
1009         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1010
1011         if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1012                 return 0;
1013
1014         if (cfg->smrs)
1015                 return -EEXIST;
1016
1017         smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
1018         if (!smrs) {
1019                 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1020                         cfg->num_streamids);
1021                 return -ENOMEM;
1022         }
1023
1024         /* Allocate the SMRs on the SMMU */
1025         for (i = 0; i < cfg->num_streamids; ++i) {
1026                 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1027                                                   smmu->num_mapping_groups);
1028                 if (IS_ERR_VALUE(idx)) {
1029                         dev_err(smmu->dev, "failed to allocate free SMR\n");
1030                         goto err_free_smrs;
1031                 }
1032
1033                 smrs[i] = (struct arm_smmu_smr) {
1034                         .idx    = idx,
1035                         .mask   = 0, /* We don't currently share SMRs */
1036                         .id     = cfg->streamids[i],
1037                 };
1038         }
1039
1040         /* It worked! Now, poke the actual hardware */
1041         for (i = 0; i < cfg->num_streamids; ++i) {
1042                 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1043                           smrs[i].mask << SMR_MASK_SHIFT;
1044                 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1045         }
1046
1047         cfg->smrs = smrs;
1048         return 0;
1049
1050 err_free_smrs:
1051         while (--i >= 0)
1052                 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1053         kfree(smrs);
1054         return -ENOSPC;
1055 }
1056
1057 static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
1058                                       struct arm_smmu_master_cfg *cfg)
1059 {
1060         int i;
1061         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1062         struct arm_smmu_smr *smrs = cfg->smrs;
1063
1064         if (!smrs)
1065                 return;
1066
1067         /* Invalidate the SMRs before freeing back to the allocator */
1068         for (i = 0; i < cfg->num_streamids; ++i) {
1069                 u8 idx = smrs[i].idx;
1070
1071                 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1072                 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1073         }
1074
1075         cfg->smrs = NULL;
1076         kfree(smrs);
1077 }
1078
1079 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1080                                       struct arm_smmu_master_cfg *cfg)
1081 {
1082         int i, ret;
1083         struct arm_smmu_device *smmu = smmu_domain->smmu;
1084         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1085
1086         /* Devices in an IOMMU group may already be configured */
1087         ret = arm_smmu_master_configure_smrs(smmu, cfg);
1088         if (ret)
1089                 return ret == -EEXIST ? 0 : ret;
1090
1091         for (i = 0; i < cfg->num_streamids; ++i) {
1092                 u32 idx, s2cr;
1093
1094                 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1095                 s2cr = S2CR_TYPE_TRANS |
1096                        (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
1097                 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1098         }
1099
1100         return 0;
1101 }
1102
1103 static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
1104                                           struct arm_smmu_master_cfg *cfg)
1105 {
1106         int i;
1107         struct arm_smmu_device *smmu = smmu_domain->smmu;
1108         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1109
1110         /* An IOMMU group is torn down by the first device to be removed */
1111         if ((smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) && !cfg->smrs)
1112                 return;
1113
1114         /*
1115          * We *must* clear the S2CR first, because freeing the SMR means
1116          * that it can be re-allocated immediately.
1117          */
1118         for (i = 0; i < cfg->num_streamids; ++i) {
1119                 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1120
1121                 writel_relaxed(S2CR_TYPE_BYPASS,
1122                                gr0_base + ARM_SMMU_GR0_S2CR(idx));
1123         }
1124
1125         arm_smmu_master_free_smrs(smmu, cfg);
1126 }
1127
1128 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1129 {
1130         int ret;
1131         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1132         struct arm_smmu_device *smmu;
1133         struct arm_smmu_master_cfg *cfg;
1134
1135         smmu = find_smmu_for_device(dev);
1136         if (!smmu) {
1137                 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1138                 return -ENXIO;
1139         }
1140
1141         if (dev->archdata.iommu) {
1142                 dev_err(dev, "already attached to IOMMU domain\n");
1143                 return -EEXIST;
1144         }
1145
1146         /* Ensure that the domain is finalised */
1147         ret = arm_smmu_init_domain_context(domain, smmu);
1148         if (IS_ERR_VALUE(ret))
1149                 return ret;
1150
1151         /*
1152          * Sanity check the domain. We don't support domains across
1153          * different SMMUs.
1154          */
1155         if (smmu_domain->smmu != smmu) {
1156                 dev_err(dev,
1157                         "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1158                         dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1159                 return -EINVAL;
1160         }
1161
1162         /* Looks ok, so add the device to the domain */
1163         cfg = find_smmu_master_cfg(dev);
1164         if (!cfg)
1165                 return -ENODEV;
1166
1167         ret = arm_smmu_domain_add_master(smmu_domain, cfg);
1168         if (!ret)
1169                 dev->archdata.iommu = domain;
1170         return ret;
1171 }
1172
1173 static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1174 {
1175         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1176         struct arm_smmu_master_cfg *cfg;
1177
1178         cfg = find_smmu_master_cfg(dev);
1179         if (!cfg)
1180                 return;
1181
1182         dev->archdata.iommu = NULL;
1183         arm_smmu_domain_remove_master(smmu_domain, cfg);
1184 }
1185
1186 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1187                         phys_addr_t paddr, size_t size, int prot)
1188 {
1189         int ret;
1190         unsigned long flags;
1191         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1192         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1193
1194         if (!ops)
1195                 return -ENODEV;
1196
1197         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1198         ret = ops->map(ops, iova, paddr, size, prot);
1199         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1200         return ret;
1201 }
1202
1203 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1204                              size_t size)
1205 {
1206         size_t ret;
1207         unsigned long flags;
1208         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1209         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1210
1211         if (!ops)
1212                 return 0;
1213
1214         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1215         ret = ops->unmap(ops, iova, size);
1216         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1217         return ret;
1218 }
1219
1220 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1221                                               dma_addr_t iova)
1222 {
1223         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1224         struct arm_smmu_device *smmu = smmu_domain->smmu;
1225         struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1226         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1227         struct device *dev = smmu->dev;
1228         void __iomem *cb_base;
1229         u32 tmp;
1230         u64 phys;
1231         unsigned long va;
1232
1233         cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1234
1235         /* ATS1 registers can only be written atomically */
1236         va = iova & ~0xfffUL;
1237 #ifdef CONFIG_64BIT
1238         if (smmu->version == ARM_SMMU_V2)
1239                 writeq_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1240         else
1241 #endif
1242                 writel_relaxed(va, cb_base + ARM_SMMU_CB_ATS1PR);
1243
1244         if (readl_poll_timeout_atomic(cb_base + ARM_SMMU_CB_ATSR, tmp,
1245                                       !(tmp & ATSR_ACTIVE), 5, 50)) {
1246                 dev_err(dev,
1247                         "iova to phys timed out on 0x%pad. Falling back to software table walk.\n",
1248                         &iova);
1249                 return ops->iova_to_phys(ops, iova);
1250         }
1251
1252         phys = readl_relaxed(cb_base + ARM_SMMU_CB_PAR_LO);
1253         phys |= ((u64)readl_relaxed(cb_base + ARM_SMMU_CB_PAR_HI)) << 32;
1254
1255         if (phys & CB_PAR_F) {
1256                 dev_err(dev, "translation fault!\n");
1257                 dev_err(dev, "PAR = 0x%llx\n", phys);
1258                 return 0;
1259         }
1260
1261         return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1262 }
1263
1264 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1265                                         dma_addr_t iova)
1266 {
1267         phys_addr_t ret;
1268         unsigned long flags;
1269         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1270         struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1271
1272         if (!ops)
1273                 return 0;
1274
1275         spin_lock_irqsave(&smmu_domain->pgtbl_lock, flags);
1276         if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1277                         smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
1278                 ret = arm_smmu_iova_to_phys_hard(domain, iova);
1279         } else {
1280                 ret = ops->iova_to_phys(ops, iova);
1281         }
1282
1283         spin_unlock_irqrestore(&smmu_domain->pgtbl_lock, flags);
1284
1285         return ret;
1286 }
1287
1288 static bool arm_smmu_capable(enum iommu_cap cap)
1289 {
1290         switch (cap) {
1291         case IOMMU_CAP_CACHE_COHERENCY:
1292                 /*
1293                  * Return true here as the SMMU can always send out coherent
1294                  * requests.
1295                  */
1296                 return true;
1297         case IOMMU_CAP_INTR_REMAP:
1298                 return true; /* MSIs are just memory writes */
1299         case IOMMU_CAP_NOEXEC:
1300                 return true;
1301         default:
1302                 return false;
1303         }
1304 }
1305
1306 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1307 {
1308         *((u16 *)data) = alias;
1309         return 0; /* Continue walking */
1310 }
1311
1312 static void __arm_smmu_release_pci_iommudata(void *data)
1313 {
1314         kfree(data);
1315 }
1316
1317 static int arm_smmu_add_pci_device(struct pci_dev *pdev)
1318 {
1319         int i, ret;
1320         u16 sid;
1321         struct iommu_group *group;
1322         struct arm_smmu_master_cfg *cfg;
1323
1324         group = iommu_group_get_for_dev(&pdev->dev);
1325         if (IS_ERR(group))
1326                 return PTR_ERR(group);
1327
1328         cfg = iommu_group_get_iommudata(group);
1329         if (!cfg) {
1330                 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1331                 if (!cfg) {
1332                         ret = -ENOMEM;
1333                         goto out_put_group;
1334                 }
1335
1336                 iommu_group_set_iommudata(group, cfg,
1337                                           __arm_smmu_release_pci_iommudata);
1338         }
1339
1340         if (cfg->num_streamids >= MAX_MASTER_STREAMIDS) {
1341                 ret = -ENOSPC;
1342                 goto out_put_group;
1343         }
1344
1345         /*
1346          * Assume Stream ID == Requester ID for now.
1347          * We need a way to describe the ID mappings in FDT.
1348          */
1349         pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid, &sid);
1350         for (i = 0; i < cfg->num_streamids; ++i)
1351                 if (cfg->streamids[i] == sid)
1352                         break;
1353
1354         /* Avoid duplicate SIDs, as this can lead to SMR conflicts */
1355         if (i == cfg->num_streamids)
1356                 cfg->streamids[cfg->num_streamids++] = sid;
1357
1358         return 0;
1359 out_put_group:
1360         iommu_group_put(group);
1361         return ret;
1362 }
1363
1364 static int arm_smmu_add_platform_device(struct device *dev)
1365 {
1366         struct iommu_group *group;
1367         struct arm_smmu_master *master;
1368         struct arm_smmu_device *smmu = find_smmu_for_device(dev);
1369
1370         if (!smmu)
1371                 return -ENODEV;
1372
1373         master = find_smmu_master(smmu, dev->of_node);
1374         if (!master)
1375                 return -ENODEV;
1376
1377         /* No automatic group creation for platform devices */
1378         group = iommu_group_alloc();
1379         if (IS_ERR(group))
1380                 return PTR_ERR(group);
1381
1382         iommu_group_set_iommudata(group, &master->cfg, NULL);
1383         return iommu_group_add_device(group, dev);
1384 }
1385
1386 static int arm_smmu_add_device(struct device *dev)
1387 {
1388         if (dev_is_pci(dev))
1389                 return arm_smmu_add_pci_device(to_pci_dev(dev));
1390
1391         return arm_smmu_add_platform_device(dev);
1392 }
1393
1394 static void arm_smmu_remove_device(struct device *dev)
1395 {
1396         iommu_group_remove_device(dev);
1397 }
1398
1399 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1400                                     enum iommu_attr attr, void *data)
1401 {
1402         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1403
1404         switch (attr) {
1405         case DOMAIN_ATTR_NESTING:
1406                 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1407                 return 0;
1408         default:
1409                 return -ENODEV;
1410         }
1411 }
1412
1413 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1414                                     enum iommu_attr attr, void *data)
1415 {
1416         int ret = 0;
1417         struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1418
1419         mutex_lock(&smmu_domain->init_mutex);
1420
1421         switch (attr) {
1422         case DOMAIN_ATTR_NESTING:
1423                 if (smmu_domain->smmu) {
1424                         ret = -EPERM;
1425                         goto out_unlock;
1426                 }
1427
1428                 if (*(int *)data)
1429                         smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1430                 else
1431                         smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1432
1433                 break;
1434         default:
1435                 ret = -ENODEV;
1436         }
1437
1438 out_unlock:
1439         mutex_unlock(&smmu_domain->init_mutex);
1440         return ret;
1441 }
1442
1443 static struct iommu_ops arm_smmu_ops = {
1444         .capable                = arm_smmu_capable,
1445         .domain_alloc           = arm_smmu_domain_alloc,
1446         .domain_free            = arm_smmu_domain_free,
1447         .attach_dev             = arm_smmu_attach_dev,
1448         .detach_dev             = arm_smmu_detach_dev,
1449         .map                    = arm_smmu_map,
1450         .unmap                  = arm_smmu_unmap,
1451         .map_sg                 = default_iommu_map_sg,
1452         .iova_to_phys           = arm_smmu_iova_to_phys,
1453         .add_device             = arm_smmu_add_device,
1454         .remove_device          = arm_smmu_remove_device,
1455         .domain_get_attr        = arm_smmu_domain_get_attr,
1456         .domain_set_attr        = arm_smmu_domain_set_attr,
1457         .pgsize_bitmap          = -1UL, /* Restricted during device attach */
1458 };
1459
1460 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1461 {
1462         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1463         void __iomem *cb_base;
1464         int i = 0;
1465         u32 reg;
1466
1467         /* clear global FSR */
1468         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1469         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1470
1471         /* Mark all SMRn as invalid and all S2CRn as bypass */
1472         for (i = 0; i < smmu->num_mapping_groups; ++i) {
1473                 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
1474                 writel_relaxed(S2CR_TYPE_BYPASS,
1475                         gr0_base + ARM_SMMU_GR0_S2CR(i));
1476         }
1477
1478         /* Make sure all context banks are disabled and clear CB_FSR  */
1479         for (i = 0; i < smmu->num_context_banks; ++i) {
1480                 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1481                 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1482                 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1483         }
1484
1485         /* Invalidate the TLB, just in case */
1486         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1487         writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1488
1489         reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1490
1491         /* Enable fault reporting */
1492         reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1493
1494         /* Disable TLB broadcasting. */
1495         reg |= (sCR0_VMIDPNE | sCR0_PTM);
1496
1497         /* Enable client access, but bypass when no mapping is found */
1498         reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
1499
1500         /* Disable forced broadcasting */
1501         reg &= ~sCR0_FB;
1502
1503         /* Don't upgrade barriers */
1504         reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
1505
1506         /* Push the button */
1507         __arm_smmu_tlb_sync(smmu);
1508         writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1509 }
1510
1511 static int arm_smmu_id_size_to_bits(int size)
1512 {
1513         switch (size) {
1514         case 0:
1515                 return 32;
1516         case 1:
1517                 return 36;
1518         case 2:
1519                 return 40;
1520         case 3:
1521                 return 42;
1522         case 4:
1523                 return 44;
1524         case 5:
1525         default:
1526                 return 48;
1527         }
1528 }
1529
1530 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1531 {
1532         unsigned long size;
1533         void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1534         u32 id;
1535
1536         dev_notice(smmu->dev, "probing hardware configuration...\n");
1537         dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1538
1539         /* ID0 */
1540         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1541
1542         /* Restrict available stages based on module parameter */
1543         if (force_stage == 1)
1544                 id &= ~(ID0_S2TS | ID0_NTS);
1545         else if (force_stage == 2)
1546                 id &= ~(ID0_S1TS | ID0_NTS);
1547
1548         if (id & ID0_S1TS) {
1549                 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1550                 dev_notice(smmu->dev, "\tstage 1 translation\n");
1551         }
1552
1553         if (id & ID0_S2TS) {
1554                 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1555                 dev_notice(smmu->dev, "\tstage 2 translation\n");
1556         }
1557
1558         if (id & ID0_NTS) {
1559                 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1560                 dev_notice(smmu->dev, "\tnested translation\n");
1561         }
1562
1563         if (!(smmu->features &
1564                 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1565                 dev_err(smmu->dev, "\tno translation support!\n");
1566                 return -ENODEV;
1567         }
1568
1569         if ((id & ID0_S1TS) && ((smmu->version == 1) || !(id & ID0_ATOSNS))) {
1570                 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1571                 dev_notice(smmu->dev, "\taddress translation ops\n");
1572         }
1573
1574         if (id & ID0_CTTW) {
1575                 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1576                 dev_notice(smmu->dev, "\tcoherent table walk\n");
1577         }
1578
1579         if (id & ID0_SMS) {
1580                 u32 smr, sid, mask;
1581
1582                 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1583                 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1584                                            ID0_NUMSMRG_MASK;
1585                 if (smmu->num_mapping_groups == 0) {
1586                         dev_err(smmu->dev,
1587                                 "stream-matching supported, but no SMRs present!\n");
1588                         return -ENODEV;
1589                 }
1590
1591                 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1592                 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1593                 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1594                 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1595
1596                 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1597                 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1598                 if ((mask & sid) != sid) {
1599                         dev_err(smmu->dev,
1600                                 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1601                                 mask, sid);
1602                         return -ENODEV;
1603                 }
1604
1605                 dev_notice(smmu->dev,
1606                            "\tstream matching with %u register groups, mask 0x%x",
1607                            smmu->num_mapping_groups, mask);
1608         } else {
1609                 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1610                                            ID0_NUMSIDB_MASK;
1611         }
1612
1613         /* ID1 */
1614         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1615         smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1616
1617         /* Check for size mismatch of SMMU address space from mapped region */
1618         size = 1 << (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
1619         size *= 2 << smmu->pgshift;
1620         if (smmu->size != size)
1621                 dev_warn(smmu->dev,
1622                         "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1623                         size, smmu->size);
1624
1625         smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) & ID1_NUMS2CB_MASK;
1626         smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1627         if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1628                 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1629                 return -ENODEV;
1630         }
1631         dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1632                    smmu->num_context_banks, smmu->num_s2_context_banks);
1633
1634         /* ID2 */
1635         id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1636         size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1637         smmu->ipa_size = size;
1638
1639         /* The output mask is also applied for bypass */
1640         size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
1641         smmu->pa_size = size;
1642
1643         /*
1644          * What the page table walker can address actually depends on which
1645          * descriptor format is in use, but since a) we don't know that yet,
1646          * and b) it can vary per context bank, this will have to do...
1647          */
1648         if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1649                 dev_warn(smmu->dev,
1650                          "failed to set DMA mask for table walker\n");
1651
1652         if (smmu->version == ARM_SMMU_V1) {
1653                 smmu->va_size = smmu->ipa_size;
1654                 size = SZ_4K | SZ_2M | SZ_1G;
1655         } else {
1656                 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
1657                 smmu->va_size = arm_smmu_id_size_to_bits(size);
1658 #ifndef CONFIG_64BIT
1659                 smmu->va_size = min(32UL, smmu->va_size);
1660 #endif
1661                 size = 0;
1662                 if (id & ID2_PTFS_4K)
1663                         size |= SZ_4K | SZ_2M | SZ_1G;
1664                 if (id & ID2_PTFS_16K)
1665                         size |= SZ_16K | SZ_32M;
1666                 if (id & ID2_PTFS_64K)
1667                         size |= SZ_64K | SZ_512M;
1668         }
1669
1670         arm_smmu_ops.pgsize_bitmap &= size;
1671         dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n", size);
1672
1673         if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1674                 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1675                            smmu->va_size, smmu->ipa_size);
1676
1677         if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1678                 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1679                            smmu->ipa_size, smmu->pa_size);
1680
1681         return 0;
1682 }
1683
1684 static const struct of_device_id arm_smmu_of_match[] = {
1685         { .compatible = "arm,smmu-v1", .data = (void *)ARM_SMMU_V1 },
1686         { .compatible = "arm,smmu-v2", .data = (void *)ARM_SMMU_V2 },
1687         { .compatible = "arm,mmu-400", .data = (void *)ARM_SMMU_V1 },
1688         { .compatible = "arm,mmu-401", .data = (void *)ARM_SMMU_V1 },
1689         { .compatible = "arm,mmu-500", .data = (void *)ARM_SMMU_V2 },
1690         { },
1691 };
1692 MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
1693
1694 static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1695 {
1696         const struct of_device_id *of_id;
1697         struct resource *res;
1698         struct arm_smmu_device *smmu;
1699         struct device *dev = &pdev->dev;
1700         struct rb_node *node;
1701         struct of_phandle_args masterspec;
1702         int num_irqs, i, err;
1703
1704         smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1705         if (!smmu) {
1706                 dev_err(dev, "failed to allocate arm_smmu_device\n");
1707                 return -ENOMEM;
1708         }
1709         smmu->dev = dev;
1710
1711         of_id = of_match_node(arm_smmu_of_match, dev->of_node);
1712         smmu->version = (enum arm_smmu_arch_version)of_id->data;
1713
1714         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1715         smmu->base = devm_ioremap_resource(dev, res);
1716         if (IS_ERR(smmu->base))
1717                 return PTR_ERR(smmu->base);
1718         smmu->size = resource_size(res);
1719
1720         if (of_property_read_u32(dev->of_node, "#global-interrupts",
1721                                  &smmu->num_global_irqs)) {
1722                 dev_err(dev, "missing #global-interrupts property\n");
1723                 return -ENODEV;
1724         }
1725
1726         num_irqs = 0;
1727         while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1728                 num_irqs++;
1729                 if (num_irqs > smmu->num_global_irqs)
1730                         smmu->num_context_irqs++;
1731         }
1732
1733         if (!smmu->num_context_irqs) {
1734                 dev_err(dev, "found %d interrupts but expected at least %d\n",
1735                         num_irqs, smmu->num_global_irqs + 1);
1736                 return -ENODEV;
1737         }
1738
1739         smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1740                                   GFP_KERNEL);
1741         if (!smmu->irqs) {
1742                 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1743                 return -ENOMEM;
1744         }
1745
1746         for (i = 0; i < num_irqs; ++i) {
1747                 int irq = platform_get_irq(pdev, i);
1748
1749                 if (irq < 0) {
1750                         dev_err(dev, "failed to get irq index %d\n", i);
1751                         return -ENODEV;
1752                 }
1753                 smmu->irqs[i] = irq;
1754         }
1755
1756         err = arm_smmu_device_cfg_probe(smmu);
1757         if (err)
1758                 return err;
1759
1760         i = 0;
1761         smmu->masters = RB_ROOT;
1762         while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1763                                            "#stream-id-cells", i,
1764                                            &masterspec)) {
1765                 err = register_smmu_master(smmu, dev, &masterspec);
1766                 if (err) {
1767                         dev_err(dev, "failed to add master %s\n",
1768                                 masterspec.np->name);
1769                         goto out_put_masters;
1770                 }
1771
1772                 i++;
1773         }
1774         dev_notice(dev, "registered %d master devices\n", i);
1775
1776         parse_driver_options(smmu);
1777
1778         if (smmu->version > ARM_SMMU_V1 &&
1779             smmu->num_context_banks != smmu->num_context_irqs) {
1780                 dev_err(dev,
1781                         "found only %d context interrupt(s) but %d required\n",
1782                         smmu->num_context_irqs, smmu->num_context_banks);
1783                 err = -ENODEV;
1784                 goto out_put_masters;
1785         }
1786
1787         for (i = 0; i < smmu->num_global_irqs; ++i) {
1788                 err = request_irq(smmu->irqs[i],
1789                                   arm_smmu_global_fault,
1790                                   IRQF_SHARED,
1791                                   "arm-smmu global fault",
1792                                   smmu);
1793                 if (err) {
1794                         dev_err(dev, "failed to request global IRQ %d (%u)\n",
1795                                 i, smmu->irqs[i]);
1796                         goto out_free_irqs;
1797                 }
1798         }
1799
1800         INIT_LIST_HEAD(&smmu->list);
1801         spin_lock(&arm_smmu_devices_lock);
1802         list_add(&smmu->list, &arm_smmu_devices);
1803         spin_unlock(&arm_smmu_devices_lock);
1804
1805         arm_smmu_device_reset(smmu);
1806         return 0;
1807
1808 out_free_irqs:
1809         while (i--)
1810                 free_irq(smmu->irqs[i], smmu);
1811
1812 out_put_masters:
1813         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1814                 struct arm_smmu_master *master
1815                         = container_of(node, struct arm_smmu_master, node);
1816                 of_node_put(master->of_node);
1817         }
1818
1819         return err;
1820 }
1821
1822 static int arm_smmu_device_remove(struct platform_device *pdev)
1823 {
1824         int i;
1825         struct device *dev = &pdev->dev;
1826         struct arm_smmu_device *curr, *smmu = NULL;
1827         struct rb_node *node;
1828
1829         spin_lock(&arm_smmu_devices_lock);
1830         list_for_each_entry(curr, &arm_smmu_devices, list) {
1831                 if (curr->dev == dev) {
1832                         smmu = curr;
1833                         list_del(&smmu->list);
1834                         break;
1835                 }
1836         }
1837         spin_unlock(&arm_smmu_devices_lock);
1838
1839         if (!smmu)
1840                 return -ENODEV;
1841
1842         for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
1843                 struct arm_smmu_master *master
1844                         = container_of(node, struct arm_smmu_master, node);
1845                 of_node_put(master->of_node);
1846         }
1847
1848         if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
1849                 dev_err(dev, "removing device with active domains!\n");
1850
1851         for (i = 0; i < smmu->num_global_irqs; ++i)
1852                 free_irq(smmu->irqs[i], smmu);
1853
1854         /* Turn the thing off */
1855         writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
1856         return 0;
1857 }
1858
1859 static struct platform_driver arm_smmu_driver = {
1860         .driver = {
1861                 .name           = "arm-smmu",
1862                 .of_match_table = of_match_ptr(arm_smmu_of_match),
1863         },
1864         .probe  = arm_smmu_device_dt_probe,
1865         .remove = arm_smmu_device_remove,
1866 };
1867
1868 static int __init arm_smmu_init(void)
1869 {
1870         struct device_node *np;
1871         int ret;
1872
1873         /*
1874          * Play nice with systems that don't have an ARM SMMU by checking that
1875          * an ARM SMMU exists in the system before proceeding with the driver
1876          * and IOMMU bus operation registration.
1877          */
1878         np = of_find_matching_node(NULL, arm_smmu_of_match);
1879         if (!np)
1880                 return 0;
1881
1882         of_node_put(np);
1883
1884         ret = platform_driver_register(&arm_smmu_driver);
1885         if (ret)
1886                 return ret;
1887
1888         /* Oh, for a proper bus abstraction */
1889         if (!iommu_present(&platform_bus_type))
1890                 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1891
1892 #ifdef CONFIG_ARM_AMBA
1893         if (!iommu_present(&amba_bustype))
1894                 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1895 #endif
1896
1897 #ifdef CONFIG_PCI
1898         if (!iommu_present(&pci_bus_type))
1899                 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1900 #endif
1901
1902         return 0;
1903 }
1904
1905 static void __exit arm_smmu_exit(void)
1906 {
1907         return platform_driver_unregister(&arm_smmu_driver);
1908 }
1909
1910 subsys_initcall(arm_smmu_init);
1911 module_exit(arm_smmu_exit);
1912
1913 MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
1914 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1915 MODULE_LICENSE("GPL v2");