Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134
135 #include <drm/drmP.h>
136 #include <drm/i915_drm.h>
137 #include "i915_drv.h"
138
139 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
140 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
141 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
142
143 #define RING_EXECLIST_QFULL             (1 << 0x2)
144 #define RING_EXECLIST1_VALID            (1 << 0x3)
145 #define RING_EXECLIST0_VALID            (1 << 0x4)
146 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
147 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
148 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
149
150 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
151 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
152 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
153 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
154 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
155 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
156
157 #define CTX_LRI_HEADER_0                0x01
158 #define CTX_CONTEXT_CONTROL             0x02
159 #define CTX_RING_HEAD                   0x04
160 #define CTX_RING_TAIL                   0x06
161 #define CTX_RING_BUFFER_START           0x08
162 #define CTX_RING_BUFFER_CONTROL         0x0a
163 #define CTX_BB_HEAD_U                   0x0c
164 #define CTX_BB_HEAD_L                   0x0e
165 #define CTX_BB_STATE                    0x10
166 #define CTX_SECOND_BB_HEAD_U            0x12
167 #define CTX_SECOND_BB_HEAD_L            0x14
168 #define CTX_SECOND_BB_STATE             0x16
169 #define CTX_BB_PER_CTX_PTR              0x18
170 #define CTX_RCS_INDIRECT_CTX            0x1a
171 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
172 #define CTX_LRI_HEADER_1                0x21
173 #define CTX_CTX_TIMESTAMP               0x22
174 #define CTX_PDP3_UDW                    0x24
175 #define CTX_PDP3_LDW                    0x26
176 #define CTX_PDP2_UDW                    0x28
177 #define CTX_PDP2_LDW                    0x2a
178 #define CTX_PDP1_UDW                    0x2c
179 #define CTX_PDP1_LDW                    0x2e
180 #define CTX_PDP0_UDW                    0x30
181 #define CTX_PDP0_LDW                    0x32
182 #define CTX_LRI_HEADER_2                0x41
183 #define CTX_R_PWR_CLK_STATE             0x42
184 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
185
186 #define GEN8_CTX_VALID (1<<0)
187 #define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
188 #define GEN8_CTX_FORCE_RESTORE (1<<2)
189 #define GEN8_CTX_L3LLC_COHERENT (1<<5)
190 #define GEN8_CTX_PRIVILEGE (1<<8)
191
192 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) { \
193         const u64 _addr = test_bit(n, ppgtt->pdp.used_pdpes) ? \
194                 ppgtt->pdp.page_directory[n]->daddr : \
195                 ppgtt->scratch_pd->daddr; \
196         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
197         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
198 }
199
200 enum {
201         ADVANCED_CONTEXT = 0,
202         LEGACY_CONTEXT,
203         ADVANCED_AD_CONTEXT,
204         LEGACY_64B_CONTEXT
205 };
206 #define GEN8_CTX_MODE_SHIFT 3
207 enum {
208         FAULT_AND_HANG = 0,
209         FAULT_AND_HALT, /* Debug only */
210         FAULT_AND_STREAM,
211         FAULT_AND_CONTINUE /* Unsupported */
212 };
213 #define GEN8_CTX_ID_SHIFT 32
214
215 static int intel_lr_context_pin(struct intel_engine_cs *ring,
216                 struct intel_context *ctx);
217
218 /**
219  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
220  * @dev: DRM device.
221  * @enable_execlists: value of i915.enable_execlists module parameter.
222  *
223  * Only certain platforms support Execlists (the prerequisites being
224  * support for Logical Ring Contexts and Aliasing PPGTT or better).
225  *
226  * Return: 1 if Execlists is supported and has to be enabled.
227  */
228 int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
229 {
230         WARN_ON(i915.enable_ppgtt == -1);
231
232         if (INTEL_INFO(dev)->gen >= 9)
233                 return 1;
234
235         if (enable_execlists == 0)
236                 return 0;
237
238         if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
239             i915.use_mmio_flip >= 0)
240                 return 1;
241
242         return 0;
243 }
244
245 /**
246  * intel_execlists_ctx_id() - get the Execlists Context ID
247  * @ctx_obj: Logical Ring Context backing object.
248  *
249  * Do not confuse with ctx->id! Unfortunately we have a name overload
250  * here: the old context ID we pass to userspace as a handler so that
251  * they can refer to a context, and the new context ID we pass to the
252  * ELSP so that the GPU can inform us of the context status via
253  * interrupts.
254  *
255  * Return: 20-bits globally unique context ID.
256  */
257 u32 intel_execlists_ctx_id(struct drm_i915_gem_object *ctx_obj)
258 {
259         u32 lrca = i915_gem_obj_ggtt_offset(ctx_obj);
260
261         /* LRCA is required to be 4K aligned so the more significant 20 bits
262          * are globally unique */
263         return lrca >> 12;
264 }
265
266 static uint64_t execlists_ctx_descriptor(struct intel_engine_cs *ring,
267                                          struct drm_i915_gem_object *ctx_obj)
268 {
269         struct drm_device *dev = ring->dev;
270         uint64_t desc;
271         uint64_t lrca = i915_gem_obj_ggtt_offset(ctx_obj);
272
273         WARN_ON(lrca & 0xFFFFFFFF00000FFFULL);
274
275         desc = GEN8_CTX_VALID;
276         desc |= LEGACY_CONTEXT << GEN8_CTX_MODE_SHIFT;
277         if (IS_GEN8(ctx_obj->base.dev))
278                 desc |= GEN8_CTX_L3LLC_COHERENT;
279         desc |= GEN8_CTX_PRIVILEGE;
280         desc |= lrca;
281         desc |= (u64)intel_execlists_ctx_id(ctx_obj) << GEN8_CTX_ID_SHIFT;
282
283         /* TODO: WaDisableLiteRestore when we start using semaphore
284          * signalling between Command Streamers */
285         /* desc |= GEN8_CTX_FORCE_RESTORE; */
286
287         /* WaEnableForceRestoreInCtxtDescForVCS:skl */
288         if (IS_GEN9(dev) &&
289             INTEL_REVID(dev) <= SKL_REVID_B0 &&
290             (ring->id == BCS || ring->id == VCS ||
291             ring->id == VECS || ring->id == VCS2))
292                 desc |= GEN8_CTX_FORCE_RESTORE;
293
294         return desc;
295 }
296
297 static void execlists_elsp_write(struct intel_engine_cs *ring,
298                                  struct drm_i915_gem_object *ctx_obj0,
299                                  struct drm_i915_gem_object *ctx_obj1)
300 {
301         struct drm_device *dev = ring->dev;
302         struct drm_i915_private *dev_priv = dev->dev_private;
303         uint64_t temp = 0;
304         uint32_t desc[4];
305
306         /* XXX: You must always write both descriptors in the order below. */
307         if (ctx_obj1)
308                 temp = execlists_ctx_descriptor(ring, ctx_obj1);
309         else
310                 temp = 0;
311         desc[1] = (u32)(temp >> 32);
312         desc[0] = (u32)temp;
313
314         temp = execlists_ctx_descriptor(ring, ctx_obj0);
315         desc[3] = (u32)(temp >> 32);
316         desc[2] = (u32)temp;
317
318         spin_lock(&dev_priv->uncore.lock);
319         intel_uncore_forcewake_get__locked(dev_priv, FORCEWAKE_ALL);
320         I915_WRITE_FW(RING_ELSP(ring), desc[1]);
321         I915_WRITE_FW(RING_ELSP(ring), desc[0]);
322         I915_WRITE_FW(RING_ELSP(ring), desc[3]);
323
324         /* The context is automatically loaded after the following */
325         I915_WRITE_FW(RING_ELSP(ring), desc[2]);
326
327         /* ELSP is a wo register, so use another nearby reg for posting instead */
328         POSTING_READ_FW(RING_EXECLIST_STATUS(ring));
329         intel_uncore_forcewake_put__locked(dev_priv, FORCEWAKE_ALL);
330         spin_unlock(&dev_priv->uncore.lock);
331 }
332
333 static int execlists_update_context(struct drm_i915_gem_object *ctx_obj,
334                                     struct drm_i915_gem_object *ring_obj,
335                                     struct i915_hw_ppgtt *ppgtt,
336                                     u32 tail)
337 {
338         struct page *page;
339         uint32_t *reg_state;
340
341         page = i915_gem_object_get_page(ctx_obj, 1);
342         reg_state = kmap_atomic(page);
343
344         reg_state[CTX_RING_TAIL+1] = tail;
345         reg_state[CTX_RING_BUFFER_START+1] = i915_gem_obj_ggtt_offset(ring_obj);
346
347         /* True PPGTT with dynamic page allocation: update PDP registers and
348          * point the unallocated PDPs to the scratch page
349          */
350         if (ppgtt) {
351                 ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
352                 ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
353                 ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
354                 ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
355         }
356
357         kunmap_atomic(reg_state);
358
359         return 0;
360 }
361
362 static void execlists_submit_contexts(struct intel_engine_cs *ring,
363                                       struct intel_context *to0, u32 tail0,
364                                       struct intel_context *to1, u32 tail1)
365 {
366         struct drm_i915_gem_object *ctx_obj0 = to0->engine[ring->id].state;
367         struct intel_ringbuffer *ringbuf0 = to0->engine[ring->id].ringbuf;
368         struct drm_i915_gem_object *ctx_obj1 = NULL;
369         struct intel_ringbuffer *ringbuf1 = NULL;
370
371         BUG_ON(!ctx_obj0);
372         WARN_ON(!i915_gem_obj_is_pinned(ctx_obj0));
373         WARN_ON(!i915_gem_obj_is_pinned(ringbuf0->obj));
374
375         execlists_update_context(ctx_obj0, ringbuf0->obj, to0->ppgtt, tail0);
376
377         if (to1) {
378                 ringbuf1 = to1->engine[ring->id].ringbuf;
379                 ctx_obj1 = to1->engine[ring->id].state;
380                 BUG_ON(!ctx_obj1);
381                 WARN_ON(!i915_gem_obj_is_pinned(ctx_obj1));
382                 WARN_ON(!i915_gem_obj_is_pinned(ringbuf1->obj));
383
384                 execlists_update_context(ctx_obj1, ringbuf1->obj, to1->ppgtt, tail1);
385         }
386
387         execlists_elsp_write(ring, ctx_obj0, ctx_obj1);
388 }
389
390 static void execlists_context_unqueue(struct intel_engine_cs *ring)
391 {
392         struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
393         struct drm_i915_gem_request *cursor = NULL, *tmp = NULL;
394
395         assert_spin_locked(&ring->execlist_lock);
396
397         /*
398          * If irqs are not active generate a warning as batches that finish
399          * without the irqs may get lost and a GPU Hang may occur.
400          */
401         WARN_ON(!intel_irqs_enabled(ring->dev->dev_private));
402
403         if (list_empty(&ring->execlist_queue))
404                 return;
405
406         /* Try to read in pairs */
407         list_for_each_entry_safe(cursor, tmp, &ring->execlist_queue,
408                                  execlist_link) {
409                 if (!req0) {
410                         req0 = cursor;
411                 } else if (req0->ctx == cursor->ctx) {
412                         /* Same ctx: ignore first request, as second request
413                          * will update tail past first request's workload */
414                         cursor->elsp_submitted = req0->elsp_submitted;
415                         list_del(&req0->execlist_link);
416                         list_add_tail(&req0->execlist_link,
417                                 &ring->execlist_retired_req_list);
418                         req0 = cursor;
419                 } else {
420                         req1 = cursor;
421                         break;
422                 }
423         }
424
425         if (IS_GEN8(ring->dev) || IS_GEN9(ring->dev)) {
426                 /*
427                  * WaIdleLiteRestore: make sure we never cause a lite
428                  * restore with HEAD==TAIL
429                  */
430                 if (req0->elsp_submitted) {
431                         /*
432                          * Apply the wa NOOPS to prevent ring:HEAD == req:TAIL
433                          * as we resubmit the request. See gen8_emit_request()
434                          * for where we prepare the padding after the end of the
435                          * request.
436                          */
437                         struct intel_ringbuffer *ringbuf;
438
439                         ringbuf = req0->ctx->engine[ring->id].ringbuf;
440                         req0->tail += 8;
441                         req0->tail &= ringbuf->size - 1;
442                 }
443         }
444
445         WARN_ON(req1 && req1->elsp_submitted);
446
447         execlists_submit_contexts(ring, req0->ctx, req0->tail,
448                                   req1 ? req1->ctx : NULL,
449                                   req1 ? req1->tail : 0);
450
451         req0->elsp_submitted++;
452         if (req1)
453                 req1->elsp_submitted++;
454 }
455
456 static bool execlists_check_remove_request(struct intel_engine_cs *ring,
457                                            u32 request_id)
458 {
459         struct drm_i915_gem_request *head_req;
460
461         assert_spin_locked(&ring->execlist_lock);
462
463         head_req = list_first_entry_or_null(&ring->execlist_queue,
464                                             struct drm_i915_gem_request,
465                                             execlist_link);
466
467         if (head_req != NULL) {
468                 struct drm_i915_gem_object *ctx_obj =
469                                 head_req->ctx->engine[ring->id].state;
470                 if (intel_execlists_ctx_id(ctx_obj) == request_id) {
471                         WARN(head_req->elsp_submitted == 0,
472                              "Never submitted head request\n");
473
474                         if (--head_req->elsp_submitted <= 0) {
475                                 list_del(&head_req->execlist_link);
476                                 list_add_tail(&head_req->execlist_link,
477                                         &ring->execlist_retired_req_list);
478                                 return true;
479                         }
480                 }
481         }
482
483         return false;
484 }
485
486 /**
487  * intel_lrc_irq_handler() - handle Context Switch interrupts
488  * @ring: Engine Command Streamer to handle.
489  *
490  * Check the unread Context Status Buffers and manage the submission of new
491  * contexts to the ELSP accordingly.
492  */
493 void intel_lrc_irq_handler(struct intel_engine_cs *ring)
494 {
495         struct drm_i915_private *dev_priv = ring->dev->dev_private;
496         u32 status_pointer;
497         u8 read_pointer;
498         u8 write_pointer;
499         u32 status;
500         u32 status_id;
501         u32 submit_contexts = 0;
502
503         status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
504
505         read_pointer = ring->next_context_status_buffer;
506         write_pointer = status_pointer & 0x07;
507         if (read_pointer > write_pointer)
508                 write_pointer += 6;
509
510         spin_lock(&ring->execlist_lock);
511
512         while (read_pointer < write_pointer) {
513                 read_pointer++;
514                 status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
515                                 (read_pointer % 6) * 8);
516                 status_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) +
517                                 (read_pointer % 6) * 8 + 4);
518
519                 if (status & GEN8_CTX_STATUS_PREEMPTED) {
520                         if (status & GEN8_CTX_STATUS_LITE_RESTORE) {
521                                 if (execlists_check_remove_request(ring, status_id))
522                                         WARN(1, "Lite Restored request removed from queue\n");
523                         } else
524                                 WARN(1, "Preemption without Lite Restore\n");
525                 }
526
527                  if ((status & GEN8_CTX_STATUS_ACTIVE_IDLE) ||
528                      (status & GEN8_CTX_STATUS_ELEMENT_SWITCH)) {
529                         if (execlists_check_remove_request(ring, status_id))
530                                 submit_contexts++;
531                 }
532         }
533
534         if (submit_contexts != 0)
535                 execlists_context_unqueue(ring);
536
537         spin_unlock(&ring->execlist_lock);
538
539         WARN(submit_contexts > 2, "More than two context complete events?\n");
540         ring->next_context_status_buffer = write_pointer % 6;
541
542         I915_WRITE(RING_CONTEXT_STATUS_PTR(ring),
543                    ((u32)ring->next_context_status_buffer & 0x07) << 8);
544 }
545
546 static int execlists_context_queue(struct intel_engine_cs *ring,
547                                    struct intel_context *to,
548                                    u32 tail,
549                                    struct drm_i915_gem_request *request)
550 {
551         struct drm_i915_gem_request *cursor;
552         int num_elements = 0;
553
554         if (to != ring->default_context)
555                 intel_lr_context_pin(ring, to);
556
557         if (!request) {
558                 /*
559                  * If there isn't a request associated with this submission,
560                  * create one as a temporary holder.
561                  */
562                 request = kzalloc(sizeof(*request), GFP_KERNEL);
563                 if (request == NULL)
564                         return -ENOMEM;
565                 request->ring = ring;
566                 request->ctx = to;
567                 kref_init(&request->ref);
568                 i915_gem_context_reference(request->ctx);
569         } else {
570                 i915_gem_request_reference(request);
571                 WARN_ON(to != request->ctx);
572         }
573         request->tail = tail;
574
575         spin_lock_irq(&ring->execlist_lock);
576
577         list_for_each_entry(cursor, &ring->execlist_queue, execlist_link)
578                 if (++num_elements > 2)
579                         break;
580
581         if (num_elements > 2) {
582                 struct drm_i915_gem_request *tail_req;
583
584                 tail_req = list_last_entry(&ring->execlist_queue,
585                                            struct drm_i915_gem_request,
586                                            execlist_link);
587
588                 if (to == tail_req->ctx) {
589                         WARN(tail_req->elsp_submitted != 0,
590                                 "More than 2 already-submitted reqs queued\n");
591                         list_del(&tail_req->execlist_link);
592                         list_add_tail(&tail_req->execlist_link,
593                                 &ring->execlist_retired_req_list);
594                 }
595         }
596
597         list_add_tail(&request->execlist_link, &ring->execlist_queue);
598         if (num_elements == 0)
599                 execlists_context_unqueue(ring);
600
601         spin_unlock_irq(&ring->execlist_lock);
602
603         return 0;
604 }
605
606 static int logical_ring_invalidate_all_caches(struct intel_ringbuffer *ringbuf,
607                                               struct intel_context *ctx)
608 {
609         struct intel_engine_cs *ring = ringbuf->ring;
610         uint32_t flush_domains;
611         int ret;
612
613         flush_domains = 0;
614         if (ring->gpu_caches_dirty)
615                 flush_domains = I915_GEM_GPU_DOMAINS;
616
617         ret = ring->emit_flush(ringbuf, ctx,
618                                I915_GEM_GPU_DOMAINS, flush_domains);
619         if (ret)
620                 return ret;
621
622         ring->gpu_caches_dirty = false;
623         return 0;
624 }
625
626 static int execlists_move_to_gpu(struct intel_ringbuffer *ringbuf,
627                                  struct intel_context *ctx,
628                                  struct list_head *vmas)
629 {
630         struct intel_engine_cs *ring = ringbuf->ring;
631         const unsigned other_rings = ~intel_ring_flag(ring);
632         struct i915_vma *vma;
633         uint32_t flush_domains = 0;
634         bool flush_chipset = false;
635         int ret;
636
637         list_for_each_entry(vma, vmas, exec_list) {
638                 struct drm_i915_gem_object *obj = vma->obj;
639
640                 if (obj->active & other_rings) {
641                         ret = i915_gem_object_sync(obj, ring);
642                         if (ret)
643                                 return ret;
644                 }
645
646                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
647                         flush_chipset |= i915_gem_clflush_object(obj, false);
648
649                 flush_domains |= obj->base.write_domain;
650         }
651
652         if (flush_domains & I915_GEM_DOMAIN_GTT)
653                 wmb();
654
655         /* Unconditionally invalidate gpu caches and ensure that we do flush
656          * any residual writes from the previous batch.
657          */
658         return logical_ring_invalidate_all_caches(ringbuf, ctx);
659 }
660
661 int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request,
662                                             struct intel_context *ctx)
663 {
664         int ret;
665
666         if (ctx != request->ring->default_context) {
667                 ret = intel_lr_context_pin(request->ring, ctx);
668                 if (ret)
669                         return ret;
670         }
671
672         request->ringbuf = ctx->engine[request->ring->id].ringbuf;
673         request->ctx     = ctx;
674         i915_gem_context_reference(request->ctx);
675
676         return 0;
677 }
678
679 static int logical_ring_wait_for_space(struct intel_ringbuffer *ringbuf,
680                                        struct intel_context *ctx,
681                                        int bytes)
682 {
683         struct intel_engine_cs *ring = ringbuf->ring;
684         struct drm_i915_gem_request *request;
685         unsigned space;
686         int ret;
687
688         if (intel_ring_space(ringbuf) >= bytes)
689                 return 0;
690
691         list_for_each_entry(request, &ring->request_list, list) {
692                 /*
693                  * The request queue is per-engine, so can contain requests
694                  * from multiple ringbuffers. Here, we must ignore any that
695                  * aren't from the ringbuffer we're considering.
696                  */
697                 if (request->ringbuf != ringbuf)
698                         continue;
699
700                 /* Would completion of this request free enough space? */
701                 space = __intel_ring_space(request->postfix, ringbuf->tail,
702                                            ringbuf->size);
703                 if (space >= bytes)
704                         break;
705         }
706
707         if (WARN_ON(&request->list == &ring->request_list))
708                 return -ENOSPC;
709
710         ret = i915_wait_request(request);
711         if (ret)
712                 return ret;
713
714         ringbuf->space = space;
715         return 0;
716 }
717
718 /*
719  * intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
720  * @ringbuf: Logical Ringbuffer to advance.
721  *
722  * The tail is updated in our logical ringbuffer struct, not in the actual context. What
723  * really happens during submission is that the context and current tail will be placed
724  * on a queue waiting for the ELSP to be ready to accept a new context submission. At that
725  * point, the tail *inside* the context is updated and the ELSP written to.
726  */
727 static void
728 intel_logical_ring_advance_and_submit(struct intel_ringbuffer *ringbuf,
729                                       struct intel_context *ctx,
730                                       struct drm_i915_gem_request *request)
731 {
732         struct intel_engine_cs *ring = ringbuf->ring;
733
734         intel_logical_ring_advance(ringbuf);
735
736         if (intel_ring_stopped(ring))
737                 return;
738
739         execlists_context_queue(ring, ctx, ringbuf->tail, request);
740 }
741
742 static int logical_ring_wrap_buffer(struct intel_ringbuffer *ringbuf,
743                                     struct intel_context *ctx)
744 {
745         uint32_t __iomem *virt;
746         int rem = ringbuf->size - ringbuf->tail;
747
748         if (ringbuf->space < rem) {
749                 int ret = logical_ring_wait_for_space(ringbuf, ctx, rem);
750
751                 if (ret)
752                         return ret;
753         }
754
755         virt = ringbuf->virtual_start + ringbuf->tail;
756         rem /= 4;
757         while (rem--)
758                 iowrite32(MI_NOOP, virt++);
759
760         ringbuf->tail = 0;
761         intel_ring_update_space(ringbuf);
762
763         return 0;
764 }
765
766 static int logical_ring_prepare(struct intel_ringbuffer *ringbuf,
767                                 struct intel_context *ctx, int bytes)
768 {
769         int ret;
770
771         if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
772                 ret = logical_ring_wrap_buffer(ringbuf, ctx);
773                 if (unlikely(ret))
774                         return ret;
775         }
776
777         if (unlikely(ringbuf->space < bytes)) {
778                 ret = logical_ring_wait_for_space(ringbuf, ctx, bytes);
779                 if (unlikely(ret))
780                         return ret;
781         }
782
783         return 0;
784 }
785
786 /**
787  * intel_logical_ring_begin() - prepare the logical ringbuffer to accept some commands
788  *
789  * @ringbuf: Logical ringbuffer.
790  * @num_dwords: number of DWORDs that we plan to write to the ringbuffer.
791  *
792  * The ringbuffer might not be ready to accept the commands right away (maybe it needs to
793  * be wrapped, or wait a bit for the tail to be updated). This function takes care of that
794  * and also preallocates a request (every workload submission is still mediated through
795  * requests, same as it did with legacy ringbuffer submission).
796  *
797  * Return: non-zero if the ringbuffer is not ready to be written to.
798  */
799 static int intel_logical_ring_begin(struct intel_ringbuffer *ringbuf,
800                                     struct intel_context *ctx, int num_dwords)
801 {
802         struct intel_engine_cs *ring = ringbuf->ring;
803         struct drm_device *dev = ring->dev;
804         struct drm_i915_private *dev_priv = dev->dev_private;
805         int ret;
806
807         ret = i915_gem_check_wedge(&dev_priv->gpu_error,
808                                    dev_priv->mm.interruptible);
809         if (ret)
810                 return ret;
811
812         ret = logical_ring_prepare(ringbuf, ctx, num_dwords * sizeof(uint32_t));
813         if (ret)
814                 return ret;
815
816         /* Preallocate the olr before touching the ring */
817         ret = i915_gem_request_alloc(ring, ctx);
818         if (ret)
819                 return ret;
820
821         ringbuf->space -= num_dwords * sizeof(uint32_t);
822         return 0;
823 }
824
825 /**
826  * execlists_submission() - submit a batchbuffer for execution, Execlists style
827  * @dev: DRM device.
828  * @file: DRM file.
829  * @ring: Engine Command Streamer to submit to.
830  * @ctx: Context to employ for this submission.
831  * @args: execbuffer call arguments.
832  * @vmas: list of vmas.
833  * @batch_obj: the batchbuffer to submit.
834  * @exec_start: batchbuffer start virtual address pointer.
835  * @dispatch_flags: translated execbuffer call flags.
836  *
837  * This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
838  * away the submission details of the execbuffer ioctl call.
839  *
840  * Return: non-zero if the submission fails.
841  */
842 int intel_execlists_submission(struct drm_device *dev, struct drm_file *file,
843                                struct intel_engine_cs *ring,
844                                struct intel_context *ctx,
845                                struct drm_i915_gem_execbuffer2 *args,
846                                struct list_head *vmas,
847                                struct drm_i915_gem_object *batch_obj,
848                                u64 exec_start, u32 dispatch_flags)
849 {
850         struct drm_i915_private *dev_priv = dev->dev_private;
851         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
852         int instp_mode;
853         u32 instp_mask;
854         int ret;
855
856         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
857         instp_mask = I915_EXEC_CONSTANTS_MASK;
858         switch (instp_mode) {
859         case I915_EXEC_CONSTANTS_REL_GENERAL:
860         case I915_EXEC_CONSTANTS_ABSOLUTE:
861         case I915_EXEC_CONSTANTS_REL_SURFACE:
862                 if (instp_mode != 0 && ring != &dev_priv->ring[RCS]) {
863                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
864                         return -EINVAL;
865                 }
866
867                 if (instp_mode != dev_priv->relative_constants_mode) {
868                         if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
869                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
870                                 return -EINVAL;
871                         }
872
873                         /* The HW changed the meaning on this bit on gen6 */
874                         instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
875                 }
876                 break;
877         default:
878                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
879                 return -EINVAL;
880         }
881
882         if (args->num_cliprects != 0) {
883                 DRM_DEBUG("clip rectangles are only valid on pre-gen5\n");
884                 return -EINVAL;
885         } else {
886                 if (args->DR4 == 0xffffffff) {
887                         DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
888                         args->DR4 = 0;
889                 }
890
891                 if (args->DR1 || args->DR4 || args->cliprects_ptr) {
892                         DRM_DEBUG("0 cliprects but dirt in cliprects fields\n");
893                         return -EINVAL;
894                 }
895         }
896
897         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
898                 DRM_DEBUG("sol reset is gen7 only\n");
899                 return -EINVAL;
900         }
901
902         ret = execlists_move_to_gpu(ringbuf, ctx, vmas);
903         if (ret)
904                 return ret;
905
906         if (ring == &dev_priv->ring[RCS] &&
907             instp_mode != dev_priv->relative_constants_mode) {
908                 ret = intel_logical_ring_begin(ringbuf, ctx, 4);
909                 if (ret)
910                         return ret;
911
912                 intel_logical_ring_emit(ringbuf, MI_NOOP);
913                 intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
914                 intel_logical_ring_emit(ringbuf, INSTPM);
915                 intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
916                 intel_logical_ring_advance(ringbuf);
917
918                 dev_priv->relative_constants_mode = instp_mode;
919         }
920
921         ret = ring->emit_bb_start(ringbuf, ctx, exec_start, dispatch_flags);
922         if (ret)
923                 return ret;
924
925         trace_i915_gem_ring_dispatch(intel_ring_get_request(ring), dispatch_flags);
926
927         i915_gem_execbuffer_move_to_active(vmas, ring);
928         i915_gem_execbuffer_retire_commands(dev, file, ring, batch_obj);
929
930         return 0;
931 }
932
933 void intel_execlists_retire_requests(struct intel_engine_cs *ring)
934 {
935         struct drm_i915_gem_request *req, *tmp;
936         struct list_head retired_list;
937
938         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
939         if (list_empty(&ring->execlist_retired_req_list))
940                 return;
941
942         INIT_LIST_HEAD(&retired_list);
943         spin_lock_irq(&ring->execlist_lock);
944         list_replace_init(&ring->execlist_retired_req_list, &retired_list);
945         spin_unlock_irq(&ring->execlist_lock);
946
947         list_for_each_entry_safe(req, tmp, &retired_list, execlist_link) {
948                 struct intel_context *ctx = req->ctx;
949                 struct drm_i915_gem_object *ctx_obj =
950                                 ctx->engine[ring->id].state;
951
952                 if (ctx_obj && (ctx != ring->default_context))
953                         intel_lr_context_unpin(ring, ctx);
954                 list_del(&req->execlist_link);
955                 i915_gem_request_unreference(req);
956         }
957 }
958
959 void intel_logical_ring_stop(struct intel_engine_cs *ring)
960 {
961         struct drm_i915_private *dev_priv = ring->dev->dev_private;
962         int ret;
963
964         if (!intel_ring_initialized(ring))
965                 return;
966
967         ret = intel_ring_idle(ring);
968         if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
969                 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
970                           ring->name, ret);
971
972         /* TODO: Is this correct with Execlists enabled? */
973         I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
974         if (wait_for_atomic((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
975                 DRM_ERROR("%s :timed out trying to stop ring\n", ring->name);
976                 return;
977         }
978         I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
979 }
980
981 int logical_ring_flush_all_caches(struct intel_ringbuffer *ringbuf,
982                                   struct intel_context *ctx)
983 {
984         struct intel_engine_cs *ring = ringbuf->ring;
985         int ret;
986
987         if (!ring->gpu_caches_dirty)
988                 return 0;
989
990         ret = ring->emit_flush(ringbuf, ctx, 0, I915_GEM_GPU_DOMAINS);
991         if (ret)
992                 return ret;
993
994         ring->gpu_caches_dirty = false;
995         return 0;
996 }
997
998 static int intel_lr_context_pin(struct intel_engine_cs *ring,
999                 struct intel_context *ctx)
1000 {
1001         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1002         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1003         int ret = 0;
1004
1005         WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1006         if (ctx->engine[ring->id].pin_count++ == 0) {
1007                 ret = i915_gem_obj_ggtt_pin(ctx_obj,
1008                                 GEN8_LR_CONTEXT_ALIGN, 0);
1009                 if (ret)
1010                         goto reset_pin_count;
1011
1012                 ret = intel_pin_and_map_ringbuffer_obj(ring->dev, ringbuf);
1013                 if (ret)
1014                         goto unpin_ctx_obj;
1015         }
1016
1017         return ret;
1018
1019 unpin_ctx_obj:
1020         i915_gem_object_ggtt_unpin(ctx_obj);
1021 reset_pin_count:
1022         ctx->engine[ring->id].pin_count = 0;
1023
1024         return ret;
1025 }
1026
1027 void intel_lr_context_unpin(struct intel_engine_cs *ring,
1028                 struct intel_context *ctx)
1029 {
1030         struct drm_i915_gem_object *ctx_obj = ctx->engine[ring->id].state;
1031         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1032
1033         if (ctx_obj) {
1034                 WARN_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1035                 if (--ctx->engine[ring->id].pin_count == 0) {
1036                         intel_unpin_ringbuffer_obj(ringbuf);
1037                         i915_gem_object_ggtt_unpin(ctx_obj);
1038                 }
1039         }
1040 }
1041
1042 static int intel_logical_ring_workarounds_emit(struct intel_engine_cs *ring,
1043                                                struct intel_context *ctx)
1044 {
1045         int ret, i;
1046         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1047         struct drm_device *dev = ring->dev;
1048         struct drm_i915_private *dev_priv = dev->dev_private;
1049         struct i915_workarounds *w = &dev_priv->workarounds;
1050
1051         if (WARN_ON_ONCE(w->count == 0))
1052                 return 0;
1053
1054         ring->gpu_caches_dirty = true;
1055         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1056         if (ret)
1057                 return ret;
1058
1059         ret = intel_logical_ring_begin(ringbuf, ctx, w->count * 2 + 2);
1060         if (ret)
1061                 return ret;
1062
1063         intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
1064         for (i = 0; i < w->count; i++) {
1065                 intel_logical_ring_emit(ringbuf, w->reg[i].addr);
1066                 intel_logical_ring_emit(ringbuf, w->reg[i].value);
1067         }
1068         intel_logical_ring_emit(ringbuf, MI_NOOP);
1069
1070         intel_logical_ring_advance(ringbuf);
1071
1072         ring->gpu_caches_dirty = true;
1073         ret = logical_ring_flush_all_caches(ringbuf, ctx);
1074         if (ret)
1075                 return ret;
1076
1077         return 0;
1078 }
1079
1080 static int gen8_init_common_ring(struct intel_engine_cs *ring)
1081 {
1082         struct drm_device *dev = ring->dev;
1083         struct drm_i915_private *dev_priv = dev->dev_private;
1084
1085         I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1086         I915_WRITE(RING_HWSTAM(ring->mmio_base), 0xffffffff);
1087
1088         if (ring->status_page.obj) {
1089                 I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1090                            (u32)ring->status_page.gfx_addr);
1091                 POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1092         }
1093
1094         I915_WRITE(RING_MODE_GEN7(ring),
1095                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1096                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1097         POSTING_READ(RING_MODE_GEN7(ring));
1098         ring->next_context_status_buffer = 0;
1099         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", ring->name);
1100
1101         memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1102
1103         return 0;
1104 }
1105
1106 static int gen8_init_render_ring(struct intel_engine_cs *ring)
1107 {
1108         struct drm_device *dev = ring->dev;
1109         struct drm_i915_private *dev_priv = dev->dev_private;
1110         int ret;
1111
1112         ret = gen8_init_common_ring(ring);
1113         if (ret)
1114                 return ret;
1115
1116         /* We need to disable the AsyncFlip performance optimisations in order
1117          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1118          * programmed to '1' on all products.
1119          *
1120          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1121          */
1122         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1123
1124         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1125
1126         return init_workarounds_ring(ring);
1127 }
1128
1129 static int gen9_init_render_ring(struct intel_engine_cs *ring)
1130 {
1131         int ret;
1132
1133         ret = gen8_init_common_ring(ring);
1134         if (ret)
1135                 return ret;
1136
1137         return init_workarounds_ring(ring);
1138 }
1139
1140 static int gen8_emit_bb_start(struct intel_ringbuffer *ringbuf,
1141                               struct intel_context *ctx,
1142                               u64 offset, unsigned dispatch_flags)
1143 {
1144         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1145         int ret;
1146
1147         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1148         if (ret)
1149                 return ret;
1150
1151         /* FIXME(BDW): Address space and security selectors. */
1152         intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
1153         intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
1154         intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
1155         intel_logical_ring_emit(ringbuf, MI_NOOP);
1156         intel_logical_ring_advance(ringbuf);
1157
1158         return 0;
1159 }
1160
1161 static bool gen8_logical_ring_get_irq(struct intel_engine_cs *ring)
1162 {
1163         struct drm_device *dev = ring->dev;
1164         struct drm_i915_private *dev_priv = dev->dev_private;
1165         unsigned long flags;
1166
1167         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
1168                 return false;
1169
1170         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1171         if (ring->irq_refcount++ == 0) {
1172                 I915_WRITE_IMR(ring, ~(ring->irq_enable_mask | ring->irq_keep_mask));
1173                 POSTING_READ(RING_IMR(ring->mmio_base));
1174         }
1175         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1176
1177         return true;
1178 }
1179
1180 static void gen8_logical_ring_put_irq(struct intel_engine_cs *ring)
1181 {
1182         struct drm_device *dev = ring->dev;
1183         struct drm_i915_private *dev_priv = dev->dev_private;
1184         unsigned long flags;
1185
1186         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1187         if (--ring->irq_refcount == 0) {
1188                 I915_WRITE_IMR(ring, ~ring->irq_keep_mask);
1189                 POSTING_READ(RING_IMR(ring->mmio_base));
1190         }
1191         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1192 }
1193
1194 static int gen8_emit_flush(struct intel_ringbuffer *ringbuf,
1195                            struct intel_context *ctx,
1196                            u32 invalidate_domains,
1197                            u32 unused)
1198 {
1199         struct intel_engine_cs *ring = ringbuf->ring;
1200         struct drm_device *dev = ring->dev;
1201         struct drm_i915_private *dev_priv = dev->dev_private;
1202         uint32_t cmd;
1203         int ret;
1204
1205         ret = intel_logical_ring_begin(ringbuf, ctx, 4);
1206         if (ret)
1207                 return ret;
1208
1209         cmd = MI_FLUSH_DW + 1;
1210
1211         /* We always require a command barrier so that subsequent
1212          * commands, such as breadcrumb interrupts, are strictly ordered
1213          * wrt the contents of the write cache being flushed to memory
1214          * (and thus being coherent from the CPU).
1215          */
1216         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1217
1218         if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
1219                 cmd |= MI_INVALIDATE_TLB;
1220                 if (ring == &dev_priv->ring[VCS])
1221                         cmd |= MI_INVALIDATE_BSD;
1222         }
1223
1224         intel_logical_ring_emit(ringbuf, cmd);
1225         intel_logical_ring_emit(ringbuf,
1226                                 I915_GEM_HWS_SCRATCH_ADDR |
1227                                 MI_FLUSH_DW_USE_GTT);
1228         intel_logical_ring_emit(ringbuf, 0); /* upper addr */
1229         intel_logical_ring_emit(ringbuf, 0); /* value */
1230         intel_logical_ring_advance(ringbuf);
1231
1232         return 0;
1233 }
1234
1235 static int gen8_emit_flush_render(struct intel_ringbuffer *ringbuf,
1236                                   struct intel_context *ctx,
1237                                   u32 invalidate_domains,
1238                                   u32 flush_domains)
1239 {
1240         struct intel_engine_cs *ring = ringbuf->ring;
1241         u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
1242         bool vf_flush_wa;
1243         u32 flags = 0;
1244         int ret;
1245
1246         flags |= PIPE_CONTROL_CS_STALL;
1247
1248         if (flush_domains) {
1249                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1250                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1251         }
1252
1253         if (invalidate_domains) {
1254                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1255                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1256                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1257                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1258                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1259                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1260                 flags |= PIPE_CONTROL_QW_WRITE;
1261                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1262         }
1263
1264         /*
1265          * On GEN9+ Before VF_CACHE_INVALIDATE we need to emit a NULL pipe
1266          * control.
1267          */
1268         vf_flush_wa = INTEL_INFO(ring->dev)->gen >= 9 &&
1269                       flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
1270
1271         ret = intel_logical_ring_begin(ringbuf, ctx, vf_flush_wa ? 12 : 6);
1272         if (ret)
1273                 return ret;
1274
1275         if (vf_flush_wa) {
1276                 intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1277                 intel_logical_ring_emit(ringbuf, 0);
1278                 intel_logical_ring_emit(ringbuf, 0);
1279                 intel_logical_ring_emit(ringbuf, 0);
1280                 intel_logical_ring_emit(ringbuf, 0);
1281                 intel_logical_ring_emit(ringbuf, 0);
1282         }
1283
1284         intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
1285         intel_logical_ring_emit(ringbuf, flags);
1286         intel_logical_ring_emit(ringbuf, scratch_addr);
1287         intel_logical_ring_emit(ringbuf, 0);
1288         intel_logical_ring_emit(ringbuf, 0);
1289         intel_logical_ring_emit(ringbuf, 0);
1290         intel_logical_ring_advance(ringbuf);
1291
1292         return 0;
1293 }
1294
1295 static u32 gen8_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
1296 {
1297         return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1298 }
1299
1300 static void gen8_set_seqno(struct intel_engine_cs *ring, u32 seqno)
1301 {
1302         intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1303 }
1304
1305 static int gen8_emit_request(struct intel_ringbuffer *ringbuf,
1306                              struct drm_i915_gem_request *request)
1307 {
1308         struct intel_engine_cs *ring = ringbuf->ring;
1309         u32 cmd;
1310         int ret;
1311
1312         /*
1313          * Reserve space for 2 NOOPs at the end of each request to be
1314          * used as a workaround for not being allowed to do lite
1315          * restore with HEAD==TAIL (WaIdleLiteRestore).
1316          */
1317         ret = intel_logical_ring_begin(ringbuf, request->ctx, 8);
1318         if (ret)
1319                 return ret;
1320
1321         cmd = MI_STORE_DWORD_IMM_GEN4;
1322         cmd |= MI_GLOBAL_GTT;
1323
1324         intel_logical_ring_emit(ringbuf, cmd);
1325         intel_logical_ring_emit(ringbuf,
1326                                 (ring->status_page.gfx_addr +
1327                                 (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)));
1328         intel_logical_ring_emit(ringbuf, 0);
1329         intel_logical_ring_emit(ringbuf,
1330                 i915_gem_request_get_seqno(ring->outstanding_lazy_request));
1331         intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
1332         intel_logical_ring_emit(ringbuf, MI_NOOP);
1333         intel_logical_ring_advance_and_submit(ringbuf, request->ctx, request);
1334
1335         /*
1336          * Here we add two extra NOOPs as padding to avoid
1337          * lite restore of a context with HEAD==TAIL.
1338          */
1339         intel_logical_ring_emit(ringbuf, MI_NOOP);
1340         intel_logical_ring_emit(ringbuf, MI_NOOP);
1341         intel_logical_ring_advance(ringbuf);
1342
1343         return 0;
1344 }
1345
1346 static int intel_lr_context_render_state_init(struct intel_engine_cs *ring,
1347                                               struct intel_context *ctx)
1348 {
1349         struct intel_ringbuffer *ringbuf = ctx->engine[ring->id].ringbuf;
1350         struct render_state so;
1351         struct drm_i915_file_private *file_priv = ctx->file_priv;
1352         struct drm_file *file = file_priv ? file_priv->file : NULL;
1353         int ret;
1354
1355         ret = i915_gem_render_state_prepare(ring, &so);
1356         if (ret)
1357                 return ret;
1358
1359         if (so.rodata == NULL)
1360                 return 0;
1361
1362         ret = ring->emit_bb_start(ringbuf,
1363                         ctx,
1364                         so.ggtt_offset,
1365                         I915_DISPATCH_SECURE);
1366         if (ret)
1367                 goto out;
1368
1369         i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), ring);
1370
1371         ret = __i915_add_request(ring, file, so.obj);
1372         /* intel_logical_ring_add_request moves object to inactive if it
1373          * fails */
1374 out:
1375         i915_gem_render_state_fini(&so);
1376         return ret;
1377 }
1378
1379 static int gen8_init_rcs_context(struct intel_engine_cs *ring,
1380                        struct intel_context *ctx)
1381 {
1382         int ret;
1383
1384         ret = intel_logical_ring_workarounds_emit(ring, ctx);
1385         if (ret)
1386                 return ret;
1387
1388         return intel_lr_context_render_state_init(ring, ctx);
1389 }
1390
1391 /**
1392  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1393  *
1394  * @ring: Engine Command Streamer.
1395  *
1396  */
1397 void intel_logical_ring_cleanup(struct intel_engine_cs *ring)
1398 {
1399         struct drm_i915_private *dev_priv;
1400
1401         if (!intel_ring_initialized(ring))
1402                 return;
1403
1404         dev_priv = ring->dev->dev_private;
1405
1406         intel_logical_ring_stop(ring);
1407         WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
1408         i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
1409
1410         if (ring->cleanup)
1411                 ring->cleanup(ring);
1412
1413         i915_cmd_parser_fini_ring(ring);
1414         i915_gem_batch_pool_fini(&ring->batch_pool);
1415
1416         if (ring->status_page.obj) {
1417                 kunmap(sg_page(ring->status_page.obj->pages->sgl));
1418                 ring->status_page.obj = NULL;
1419         }
1420 }
1421
1422 static int logical_ring_init(struct drm_device *dev, struct intel_engine_cs *ring)
1423 {
1424         int ret;
1425
1426         /* Intentionally left blank. */
1427         ring->buffer = NULL;
1428
1429         ring->dev = dev;
1430         INIT_LIST_HEAD(&ring->active_list);
1431         INIT_LIST_HEAD(&ring->request_list);
1432         i915_gem_batch_pool_init(dev, &ring->batch_pool);
1433         init_waitqueue_head(&ring->irq_queue);
1434
1435         INIT_LIST_HEAD(&ring->execlist_queue);
1436         INIT_LIST_HEAD(&ring->execlist_retired_req_list);
1437         spin_lock_init(&ring->execlist_lock);
1438
1439         ret = i915_cmd_parser_init_ring(ring);
1440         if (ret)
1441                 return ret;
1442
1443         ret = intel_lr_context_deferred_create(ring->default_context, ring);
1444
1445         return ret;
1446 }
1447
1448 static int logical_render_ring_init(struct drm_device *dev)
1449 {
1450         struct drm_i915_private *dev_priv = dev->dev_private;
1451         struct intel_engine_cs *ring = &dev_priv->ring[RCS];
1452         int ret;
1453
1454         ring->name = "render ring";
1455         ring->id = RCS;
1456         ring->mmio_base = RENDER_RING_BASE;
1457         ring->irq_enable_mask =
1458                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1459         ring->irq_keep_mask =
1460                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT;
1461         if (HAS_L3_DPF(dev))
1462                 ring->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1463
1464         if (INTEL_INFO(dev)->gen >= 9)
1465                 ring->init_hw = gen9_init_render_ring;
1466         else
1467                 ring->init_hw = gen8_init_render_ring;
1468         ring->init_context = gen8_init_rcs_context;
1469         ring->cleanup = intel_fini_pipe_control;
1470         ring->get_seqno = gen8_get_seqno;
1471         ring->set_seqno = gen8_set_seqno;
1472         ring->emit_request = gen8_emit_request;
1473         ring->emit_flush = gen8_emit_flush_render;
1474         ring->irq_get = gen8_logical_ring_get_irq;
1475         ring->irq_put = gen8_logical_ring_put_irq;
1476         ring->emit_bb_start = gen8_emit_bb_start;
1477
1478         ring->dev = dev;
1479         ret = logical_ring_init(dev, ring);
1480         if (ret)
1481                 return ret;
1482
1483         return intel_init_pipe_control(ring);
1484 }
1485
1486 static int logical_bsd_ring_init(struct drm_device *dev)
1487 {
1488         struct drm_i915_private *dev_priv = dev->dev_private;
1489         struct intel_engine_cs *ring = &dev_priv->ring[VCS];
1490
1491         ring->name = "bsd ring";
1492         ring->id = VCS;
1493         ring->mmio_base = GEN6_BSD_RING_BASE;
1494         ring->irq_enable_mask =
1495                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1496         ring->irq_keep_mask =
1497                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
1498
1499         ring->init_hw = gen8_init_common_ring;
1500         ring->get_seqno = gen8_get_seqno;
1501         ring->set_seqno = gen8_set_seqno;
1502         ring->emit_request = gen8_emit_request;
1503         ring->emit_flush = gen8_emit_flush;
1504         ring->irq_get = gen8_logical_ring_get_irq;
1505         ring->irq_put = gen8_logical_ring_put_irq;
1506         ring->emit_bb_start = gen8_emit_bb_start;
1507
1508         return logical_ring_init(dev, ring);
1509 }
1510
1511 static int logical_bsd2_ring_init(struct drm_device *dev)
1512 {
1513         struct drm_i915_private *dev_priv = dev->dev_private;
1514         struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
1515
1516         ring->name = "bds2 ring";
1517         ring->id = VCS2;
1518         ring->mmio_base = GEN8_BSD2_RING_BASE;
1519         ring->irq_enable_mask =
1520                 GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1521         ring->irq_keep_mask =
1522                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
1523
1524         ring->init_hw = gen8_init_common_ring;
1525         ring->get_seqno = gen8_get_seqno;
1526         ring->set_seqno = gen8_set_seqno;
1527         ring->emit_request = gen8_emit_request;
1528         ring->emit_flush = gen8_emit_flush;
1529         ring->irq_get = gen8_logical_ring_get_irq;
1530         ring->irq_put = gen8_logical_ring_put_irq;
1531         ring->emit_bb_start = gen8_emit_bb_start;
1532
1533         return logical_ring_init(dev, ring);
1534 }
1535
1536 static int logical_blt_ring_init(struct drm_device *dev)
1537 {
1538         struct drm_i915_private *dev_priv = dev->dev_private;
1539         struct intel_engine_cs *ring = &dev_priv->ring[BCS];
1540
1541         ring->name = "blitter ring";
1542         ring->id = BCS;
1543         ring->mmio_base = BLT_RING_BASE;
1544         ring->irq_enable_mask =
1545                 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1546         ring->irq_keep_mask =
1547                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1548
1549         ring->init_hw = gen8_init_common_ring;
1550         ring->get_seqno = gen8_get_seqno;
1551         ring->set_seqno = gen8_set_seqno;
1552         ring->emit_request = gen8_emit_request;
1553         ring->emit_flush = gen8_emit_flush;
1554         ring->irq_get = gen8_logical_ring_get_irq;
1555         ring->irq_put = gen8_logical_ring_put_irq;
1556         ring->emit_bb_start = gen8_emit_bb_start;
1557
1558         return logical_ring_init(dev, ring);
1559 }
1560
1561 static int logical_vebox_ring_init(struct drm_device *dev)
1562 {
1563         struct drm_i915_private *dev_priv = dev->dev_private;
1564         struct intel_engine_cs *ring = &dev_priv->ring[VECS];
1565
1566         ring->name = "video enhancement ring";
1567         ring->id = VECS;
1568         ring->mmio_base = VEBOX_RING_BASE;
1569         ring->irq_enable_mask =
1570                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1571         ring->irq_keep_mask =
1572                 GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
1573
1574         ring->init_hw = gen8_init_common_ring;
1575         ring->get_seqno = gen8_get_seqno;
1576         ring->set_seqno = gen8_set_seqno;
1577         ring->emit_request = gen8_emit_request;
1578         ring->emit_flush = gen8_emit_flush;
1579         ring->irq_get = gen8_logical_ring_get_irq;
1580         ring->irq_put = gen8_logical_ring_put_irq;
1581         ring->emit_bb_start = gen8_emit_bb_start;
1582
1583         return logical_ring_init(dev, ring);
1584 }
1585
1586 /**
1587  * intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
1588  * @dev: DRM device.
1589  *
1590  * This function inits the engines for an Execlists submission style (the equivalent in the
1591  * legacy ringbuffer submission world would be i915_gem_init_rings). It does it only for
1592  * those engines that are present in the hardware.
1593  *
1594  * Return: non-zero if the initialization failed.
1595  */
1596 int intel_logical_rings_init(struct drm_device *dev)
1597 {
1598         struct drm_i915_private *dev_priv = dev->dev_private;
1599         int ret;
1600
1601         ret = logical_render_ring_init(dev);
1602         if (ret)
1603                 return ret;
1604
1605         if (HAS_BSD(dev)) {
1606                 ret = logical_bsd_ring_init(dev);
1607                 if (ret)
1608                         goto cleanup_render_ring;
1609         }
1610
1611         if (HAS_BLT(dev)) {
1612                 ret = logical_blt_ring_init(dev);
1613                 if (ret)
1614                         goto cleanup_bsd_ring;
1615         }
1616
1617         if (HAS_VEBOX(dev)) {
1618                 ret = logical_vebox_ring_init(dev);
1619                 if (ret)
1620                         goto cleanup_blt_ring;
1621         }
1622
1623         if (HAS_BSD2(dev)) {
1624                 ret = logical_bsd2_ring_init(dev);
1625                 if (ret)
1626                         goto cleanup_vebox_ring;
1627         }
1628
1629         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1630         if (ret)
1631                 goto cleanup_bsd2_ring;
1632
1633         return 0;
1634
1635 cleanup_bsd2_ring:
1636         intel_logical_ring_cleanup(&dev_priv->ring[VCS2]);
1637 cleanup_vebox_ring:
1638         intel_logical_ring_cleanup(&dev_priv->ring[VECS]);
1639 cleanup_blt_ring:
1640         intel_logical_ring_cleanup(&dev_priv->ring[BCS]);
1641 cleanup_bsd_ring:
1642         intel_logical_ring_cleanup(&dev_priv->ring[VCS]);
1643 cleanup_render_ring:
1644         intel_logical_ring_cleanup(&dev_priv->ring[RCS]);
1645
1646         return ret;
1647 }
1648
1649 static u32
1650 make_rpcs(struct drm_device *dev)
1651 {
1652         u32 rpcs = 0;
1653
1654         /*
1655          * No explicit RPCS request is needed to ensure full
1656          * slice/subslice/EU enablement prior to Gen9.
1657         */
1658         if (INTEL_INFO(dev)->gen < 9)
1659                 return 0;
1660
1661         /*
1662          * Starting in Gen9, render power gating can leave
1663          * slice/subslice/EU in a partially enabled state. We
1664          * must make an explicit request through RPCS for full
1665          * enablement.
1666         */
1667         if (INTEL_INFO(dev)->has_slice_pg) {
1668                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1669                 rpcs |= INTEL_INFO(dev)->slice_total <<
1670                         GEN8_RPCS_S_CNT_SHIFT;
1671                 rpcs |= GEN8_RPCS_ENABLE;
1672         }
1673
1674         if (INTEL_INFO(dev)->has_subslice_pg) {
1675                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1676                 rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
1677                         GEN8_RPCS_SS_CNT_SHIFT;
1678                 rpcs |= GEN8_RPCS_ENABLE;
1679         }
1680
1681         if (INTEL_INFO(dev)->has_eu_pg) {
1682                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1683                         GEN8_RPCS_EU_MIN_SHIFT;
1684                 rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
1685                         GEN8_RPCS_EU_MAX_SHIFT;
1686                 rpcs |= GEN8_RPCS_ENABLE;
1687         }
1688
1689         return rpcs;
1690 }
1691
1692 static int
1693 populate_lr_context(struct intel_context *ctx, struct drm_i915_gem_object *ctx_obj,
1694                     struct intel_engine_cs *ring, struct intel_ringbuffer *ringbuf)
1695 {
1696         struct drm_device *dev = ring->dev;
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
1699         struct page *page;
1700         uint32_t *reg_state;
1701         int ret;
1702
1703         if (!ppgtt)
1704                 ppgtt = dev_priv->mm.aliasing_ppgtt;
1705
1706         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1707         if (ret) {
1708                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1709                 return ret;
1710         }
1711
1712         ret = i915_gem_object_get_pages(ctx_obj);
1713         if (ret) {
1714                 DRM_DEBUG_DRIVER("Could not get object pages\n");
1715                 return ret;
1716         }
1717
1718         i915_gem_object_pin_pages(ctx_obj);
1719
1720         /* The second page of the context object contains some fields which must
1721          * be set up prior to the first execution. */
1722         page = i915_gem_object_get_page(ctx_obj, 1);
1723         reg_state = kmap_atomic(page);
1724
1725         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1726          * commands followed by (reg, value) pairs. The values we are setting here are
1727          * only for the first context restore: on a subsequent save, the GPU will
1728          * recreate this batchbuffer with new values (including all the missing
1729          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1730         if (ring->id == RCS)
1731                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(14);
1732         else
1733                 reg_state[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(11);
1734         reg_state[CTX_LRI_HEADER_0] |= MI_LRI_FORCE_POSTED;
1735         reg_state[CTX_CONTEXT_CONTROL] = RING_CONTEXT_CONTROL(ring);
1736         reg_state[CTX_CONTEXT_CONTROL+1] =
1737                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1738                                 CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
1739         reg_state[CTX_RING_HEAD] = RING_HEAD(ring->mmio_base);
1740         reg_state[CTX_RING_HEAD+1] = 0;
1741         reg_state[CTX_RING_TAIL] = RING_TAIL(ring->mmio_base);
1742         reg_state[CTX_RING_TAIL+1] = 0;
1743         reg_state[CTX_RING_BUFFER_START] = RING_START(ring->mmio_base);
1744         /* Ring buffer start address is not known until the buffer is pinned.
1745          * It is written to the context image in execlists_update_context()
1746          */
1747         reg_state[CTX_RING_BUFFER_CONTROL] = RING_CTL(ring->mmio_base);
1748         reg_state[CTX_RING_BUFFER_CONTROL+1] =
1749                         ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID;
1750         reg_state[CTX_BB_HEAD_U] = ring->mmio_base + 0x168;
1751         reg_state[CTX_BB_HEAD_U+1] = 0;
1752         reg_state[CTX_BB_HEAD_L] = ring->mmio_base + 0x140;
1753         reg_state[CTX_BB_HEAD_L+1] = 0;
1754         reg_state[CTX_BB_STATE] = ring->mmio_base + 0x110;
1755         reg_state[CTX_BB_STATE+1] = (1<<5);
1756         reg_state[CTX_SECOND_BB_HEAD_U] = ring->mmio_base + 0x11c;
1757         reg_state[CTX_SECOND_BB_HEAD_U+1] = 0;
1758         reg_state[CTX_SECOND_BB_HEAD_L] = ring->mmio_base + 0x114;
1759         reg_state[CTX_SECOND_BB_HEAD_L+1] = 0;
1760         reg_state[CTX_SECOND_BB_STATE] = ring->mmio_base + 0x118;
1761         reg_state[CTX_SECOND_BB_STATE+1] = 0;
1762         if (ring->id == RCS) {
1763                 /* TODO: according to BSpec, the register state context
1764                  * for CHV does not have these. OTOH, these registers do
1765                  * exist in CHV. I'm waiting for a clarification */
1766                 reg_state[CTX_BB_PER_CTX_PTR] = ring->mmio_base + 0x1c0;
1767                 reg_state[CTX_BB_PER_CTX_PTR+1] = 0;
1768                 reg_state[CTX_RCS_INDIRECT_CTX] = ring->mmio_base + 0x1c4;
1769                 reg_state[CTX_RCS_INDIRECT_CTX+1] = 0;
1770                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET] = ring->mmio_base + 0x1c8;
1771                 reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] = 0;
1772         }
1773         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9);
1774         reg_state[CTX_LRI_HEADER_1] |= MI_LRI_FORCE_POSTED;
1775         reg_state[CTX_CTX_TIMESTAMP] = ring->mmio_base + 0x3a8;
1776         reg_state[CTX_CTX_TIMESTAMP+1] = 0;
1777         reg_state[CTX_PDP3_UDW] = GEN8_RING_PDP_UDW(ring, 3);
1778         reg_state[CTX_PDP3_LDW] = GEN8_RING_PDP_LDW(ring, 3);
1779         reg_state[CTX_PDP2_UDW] = GEN8_RING_PDP_UDW(ring, 2);
1780         reg_state[CTX_PDP2_LDW] = GEN8_RING_PDP_LDW(ring, 2);
1781         reg_state[CTX_PDP1_UDW] = GEN8_RING_PDP_UDW(ring, 1);
1782         reg_state[CTX_PDP1_LDW] = GEN8_RING_PDP_LDW(ring, 1);
1783         reg_state[CTX_PDP0_UDW] = GEN8_RING_PDP_UDW(ring, 0);
1784         reg_state[CTX_PDP0_LDW] = GEN8_RING_PDP_LDW(ring, 0);
1785
1786         /* With dynamic page allocation, PDPs may not be allocated at this point,
1787          * Point the unallocated PDPs to the scratch page
1788          */
1789         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
1790         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
1791         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
1792         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
1793         if (ring->id == RCS) {
1794                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1795                 reg_state[CTX_R_PWR_CLK_STATE] = GEN8_R_PWR_CLK_STATE;
1796                 reg_state[CTX_R_PWR_CLK_STATE+1] = make_rpcs(dev);
1797         }
1798
1799         kunmap_atomic(reg_state);
1800
1801         ctx_obj->dirty = 1;
1802         set_page_dirty(page);
1803         i915_gem_object_unpin_pages(ctx_obj);
1804
1805         return 0;
1806 }
1807
1808 /**
1809  * intel_lr_context_free() - free the LRC specific bits of a context
1810  * @ctx: the LR context to free.
1811  *
1812  * The real context freeing is done in i915_gem_context_free: this only
1813  * takes care of the bits that are LRC related: the per-engine backing
1814  * objects and the logical ringbuffer.
1815  */
1816 void intel_lr_context_free(struct intel_context *ctx)
1817 {
1818         int i;
1819
1820         for (i = 0; i < I915_NUM_RINGS; i++) {
1821                 struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1822
1823                 if (ctx_obj) {
1824                         struct intel_ringbuffer *ringbuf =
1825                                         ctx->engine[i].ringbuf;
1826                         struct intel_engine_cs *ring = ringbuf->ring;
1827
1828                         if (ctx == ring->default_context) {
1829                                 intel_unpin_ringbuffer_obj(ringbuf);
1830                                 i915_gem_object_ggtt_unpin(ctx_obj);
1831                         }
1832                         WARN_ON(ctx->engine[ring->id].pin_count);
1833                         intel_destroy_ringbuffer_obj(ringbuf);
1834                         kfree(ringbuf);
1835                         drm_gem_object_unreference(&ctx_obj->base);
1836                 }
1837         }
1838 }
1839
1840 static uint32_t get_lr_context_size(struct intel_engine_cs *ring)
1841 {
1842         int ret = 0;
1843
1844         WARN_ON(INTEL_INFO(ring->dev)->gen < 8);
1845
1846         switch (ring->id) {
1847         case RCS:
1848                 if (INTEL_INFO(ring->dev)->gen >= 9)
1849                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1850                 else
1851                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1852                 break;
1853         case VCS:
1854         case BCS:
1855         case VECS:
1856         case VCS2:
1857                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
1858                 break;
1859         }
1860
1861         return ret;
1862 }
1863
1864 static void lrc_setup_hardware_status_page(struct intel_engine_cs *ring,
1865                 struct drm_i915_gem_object *default_ctx_obj)
1866 {
1867         struct drm_i915_private *dev_priv = ring->dev->dev_private;
1868
1869         /* The status page is offset 0 from the default context object
1870          * in LRC mode. */
1871         ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(default_ctx_obj);
1872         ring->status_page.page_addr =
1873                         kmap(sg_page(default_ctx_obj->pages->sgl));
1874         ring->status_page.obj = default_ctx_obj;
1875
1876         I915_WRITE(RING_HWS_PGA(ring->mmio_base),
1877                         (u32)ring->status_page.gfx_addr);
1878         POSTING_READ(RING_HWS_PGA(ring->mmio_base));
1879 }
1880
1881 /**
1882  * intel_lr_context_deferred_create() - create the LRC specific bits of a context
1883  * @ctx: LR context to create.
1884  * @ring: engine to be used with the context.
1885  *
1886  * This function can be called more than once, with different engines, if we plan
1887  * to use the context with them. The context backing objects and the ringbuffers
1888  * (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
1889  * the creation is a deferred call: it's better to make sure first that we need to use
1890  * a given ring with the context.
1891  *
1892  * Return: non-zero on error.
1893  */
1894 int intel_lr_context_deferred_create(struct intel_context *ctx,
1895                                      struct intel_engine_cs *ring)
1896 {
1897         const bool is_global_default_ctx = (ctx == ring->default_context);
1898         struct drm_device *dev = ring->dev;
1899         struct drm_i915_gem_object *ctx_obj;
1900         uint32_t context_size;
1901         struct intel_ringbuffer *ringbuf;
1902         int ret;
1903
1904         WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
1905         WARN_ON(ctx->engine[ring->id].state);
1906
1907         context_size = round_up(get_lr_context_size(ring), 4096);
1908
1909         ctx_obj = i915_gem_alloc_object(dev, context_size);
1910         if (!ctx_obj) {
1911                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
1912                 return -ENOMEM;
1913         }
1914
1915         if (is_global_default_ctx) {
1916                 ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN, 0);
1917                 if (ret) {
1918                         DRM_DEBUG_DRIVER("Pin LRC backing obj failed: %d\n",
1919                                         ret);
1920                         drm_gem_object_unreference(&ctx_obj->base);
1921                         return ret;
1922                 }
1923         }
1924
1925         ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
1926         if (!ringbuf) {
1927                 DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
1928                                 ring->name);
1929                 ret = -ENOMEM;
1930                 goto error_unpin_ctx;
1931         }
1932
1933         ringbuf->ring = ring;
1934
1935         ringbuf->size = 32 * PAGE_SIZE;
1936         ringbuf->effective_size = ringbuf->size;
1937         ringbuf->head = 0;
1938         ringbuf->tail = 0;
1939         ringbuf->last_retired_head = -1;
1940         intel_ring_update_space(ringbuf);
1941
1942         if (ringbuf->obj == NULL) {
1943                 ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
1944                 if (ret) {
1945                         DRM_DEBUG_DRIVER(
1946                                 "Failed to allocate ringbuffer obj %s: %d\n",
1947                                 ring->name, ret);
1948                         goto error_free_rbuf;
1949                 }
1950
1951                 if (is_global_default_ctx) {
1952                         ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
1953                         if (ret) {
1954                                 DRM_ERROR(
1955                                         "Failed to pin and map ringbuffer %s: %d\n",
1956                                         ring->name, ret);
1957                                 goto error_destroy_rbuf;
1958                         }
1959                 }
1960
1961         }
1962
1963         ret = populate_lr_context(ctx, ctx_obj, ring, ringbuf);
1964         if (ret) {
1965                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
1966                 goto error;
1967         }
1968
1969         ctx->engine[ring->id].ringbuf = ringbuf;
1970         ctx->engine[ring->id].state = ctx_obj;
1971
1972         if (ctx == ring->default_context)
1973                 lrc_setup_hardware_status_page(ring, ctx_obj);
1974         else if (ring->id == RCS && !ctx->rcs_initialized) {
1975                 if (ring->init_context) {
1976                         ret = ring->init_context(ring, ctx);
1977                         if (ret) {
1978                                 DRM_ERROR("ring init context: %d\n", ret);
1979                                 ctx->engine[ring->id].ringbuf = NULL;
1980                                 ctx->engine[ring->id].state = NULL;
1981                                 goto error;
1982                         }
1983                 }
1984
1985                 ctx->rcs_initialized = true;
1986         }
1987
1988         return 0;
1989
1990 error:
1991         if (is_global_default_ctx)
1992                 intel_unpin_ringbuffer_obj(ringbuf);
1993 error_destroy_rbuf:
1994         intel_destroy_ringbuffer_obj(ringbuf);
1995 error_free_rbuf:
1996         kfree(ringbuf);
1997 error_unpin_ctx:
1998         if (is_global_default_ctx)
1999                 i915_gem_object_ggtt_unpin(ctx_obj);
2000         drm_gem_object_unreference(&ctx_obj->base);
2001         return ret;
2002 }
2003
2004 void intel_lr_context_reset(struct drm_device *dev,
2005                         struct intel_context *ctx)
2006 {
2007         struct drm_i915_private *dev_priv = dev->dev_private;
2008         struct intel_engine_cs *ring;
2009         int i;
2010
2011         for_each_ring(ring, dev_priv, i) {
2012                 struct drm_i915_gem_object *ctx_obj =
2013                                 ctx->engine[ring->id].state;
2014                 struct intel_ringbuffer *ringbuf =
2015                                 ctx->engine[ring->id].ringbuf;
2016                 uint32_t *reg_state;
2017                 struct page *page;
2018
2019                 if (!ctx_obj)
2020                         continue;
2021
2022                 if (i915_gem_object_get_pages(ctx_obj)) {
2023                         WARN(1, "Failed get_pages for context obj\n");
2024                         continue;
2025                 }
2026                 page = i915_gem_object_get_page(ctx_obj, 1);
2027                 reg_state = kmap_atomic(page);
2028
2029                 reg_state[CTX_RING_HEAD+1] = 0;
2030                 reg_state[CTX_RING_TAIL+1] = 0;
2031
2032                 kunmap_atomic(reg_state);
2033
2034                 ringbuf->head = 0;
2035                 ringbuf->tail = 0;
2036         }
2037 }