Merge branch 'acpi-ec'
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ibx[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
54 };
55
56 static const u32 hpd_cpt[] = {
57         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62 };
63
64 static const u32 hpd_mask_i915[] = {
65         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
66         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71 };
72
73 static const u32 hpd_status_g4x[] = {
74         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80 };
81
82 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
83         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89 };
90
91 /* IIR can theoretically queue up two events. Be paranoid. */
92 #define GEN8_IRQ_RESET_NDX(type, which) do { \
93         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94         POSTING_READ(GEN8_##type##_IMR(which)); \
95         I915_WRITE(GEN8_##type##_IER(which), 0); \
96         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97         POSTING_READ(GEN8_##type##_IIR(which)); \
98         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99         POSTING_READ(GEN8_##type##_IIR(which)); \
100 } while (0)
101
102 #define GEN5_IRQ_RESET(type) do { \
103         I915_WRITE(type##IMR, 0xffffffff); \
104         POSTING_READ(type##IMR); \
105         I915_WRITE(type##IER, 0); \
106         I915_WRITE(type##IIR, 0xffffffff); \
107         POSTING_READ(type##IIR); \
108         I915_WRITE(type##IIR, 0xffffffff); \
109         POSTING_READ(type##IIR); \
110 } while (0)
111
112 /*
113  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114  */
115 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116         u32 val = I915_READ(reg); \
117         if (val) { \
118                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119                      (reg), val); \
120                 I915_WRITE((reg), 0xffffffff); \
121                 POSTING_READ(reg); \
122                 I915_WRITE((reg), 0xffffffff); \
123                 POSTING_READ(reg); \
124         } \
125 } while (0)
126
127 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131         POSTING_READ(GEN8_##type##_IMR(which)); \
132 } while (0)
133
134 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136         I915_WRITE(type##IER, (ier_val)); \
137         I915_WRITE(type##IMR, (imr_val)); \
138         POSTING_READ(type##IMR); \
139 } while (0)
140
141 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143 /* For display hotplug interrupt */
144 void
145 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146 {
147         assert_spin_locked(&dev_priv->irq_lock);
148
149         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150                 return;
151
152         if ((dev_priv->irq_mask & mask) != 0) {
153                 dev_priv->irq_mask &= ~mask;
154                 I915_WRITE(DEIMR, dev_priv->irq_mask);
155                 POSTING_READ(DEIMR);
156         }
157 }
158
159 void
160 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161 {
162         assert_spin_locked(&dev_priv->irq_lock);
163
164         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165                 return;
166
167         if ((dev_priv->irq_mask & mask) != mask) {
168                 dev_priv->irq_mask |= mask;
169                 I915_WRITE(DEIMR, dev_priv->irq_mask);
170                 POSTING_READ(DEIMR);
171         }
172 }
173
174 /**
175  * ilk_update_gt_irq - update GTIMR
176  * @dev_priv: driver private
177  * @interrupt_mask: mask of interrupt bits to update
178  * @enabled_irq_mask: mask of interrupt bits to enable
179  */
180 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181                               uint32_t interrupt_mask,
182                               uint32_t enabled_irq_mask)
183 {
184         assert_spin_locked(&dev_priv->irq_lock);
185
186         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
187                 return;
188
189         dev_priv->gt_irq_mask &= ~interrupt_mask;
190         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
191         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
192         POSTING_READ(GTIMR);
193 }
194
195 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
196 {
197         ilk_update_gt_irq(dev_priv, mask, mask);
198 }
199
200 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
201 {
202         ilk_update_gt_irq(dev_priv, mask, 0);
203 }
204
205 static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
206 {
207         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
208 }
209
210 static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
211 {
212         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
213 }
214
215 static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
216 {
217         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
218 }
219
220 /**
221   * snb_update_pm_irq - update GEN6_PMIMR
222   * @dev_priv: driver private
223   * @interrupt_mask: mask of interrupt bits to update
224   * @enabled_irq_mask: mask of interrupt bits to enable
225   */
226 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
227                               uint32_t interrupt_mask,
228                               uint32_t enabled_irq_mask)
229 {
230         uint32_t new_val;
231
232         assert_spin_locked(&dev_priv->irq_lock);
233
234         new_val = dev_priv->pm_irq_mask;
235         new_val &= ~interrupt_mask;
236         new_val |= (~enabled_irq_mask & interrupt_mask);
237
238         if (new_val != dev_priv->pm_irq_mask) {
239                 dev_priv->pm_irq_mask = new_val;
240                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
241                 POSTING_READ(gen6_pm_imr(dev_priv));
242         }
243 }
244
245 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
246 {
247         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
248                 return;
249
250         snb_update_pm_irq(dev_priv, mask, mask);
251 }
252
253 static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
254                                   uint32_t mask)
255 {
256         snb_update_pm_irq(dev_priv, mask, 0);
257 }
258
259 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
260 {
261         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
262                 return;
263
264         __gen6_disable_pm_irq(dev_priv, mask);
265 }
266
267 void gen6_reset_rps_interrupts(struct drm_device *dev)
268 {
269         struct drm_i915_private *dev_priv = dev->dev_private;
270         uint32_t reg = gen6_pm_iir(dev_priv);
271
272         spin_lock_irq(&dev_priv->irq_lock);
273         I915_WRITE(reg, dev_priv->pm_rps_events);
274         I915_WRITE(reg, dev_priv->pm_rps_events);
275         POSTING_READ(reg);
276         spin_unlock_irq(&dev_priv->irq_lock);
277 }
278
279 void gen6_enable_rps_interrupts(struct drm_device *dev)
280 {
281         struct drm_i915_private *dev_priv = dev->dev_private;
282
283         spin_lock_irq(&dev_priv->irq_lock);
284
285         WARN_ON(dev_priv->rps.pm_iir);
286         WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
287         dev_priv->rps.interrupts_enabled = true;
288         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
289                                 dev_priv->pm_rps_events);
290         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
291
292         spin_unlock_irq(&dev_priv->irq_lock);
293 }
294
295 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
296 {
297         /*
298          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
299          * if GEN6_PM_UP_EI_EXPIRED is masked.
300          *
301          * TODO: verify if this can be reproduced on VLV,CHV.
302          */
303         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
304                 mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
305
306         if (INTEL_INFO(dev_priv)->gen >= 8)
307                 mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
308
309         return mask;
310 }
311
312 void gen6_disable_rps_interrupts(struct drm_device *dev)
313 {
314         struct drm_i915_private *dev_priv = dev->dev_private;
315
316         spin_lock_irq(&dev_priv->irq_lock);
317         dev_priv->rps.interrupts_enabled = false;
318         spin_unlock_irq(&dev_priv->irq_lock);
319
320         cancel_work_sync(&dev_priv->rps.work);
321
322         spin_lock_irq(&dev_priv->irq_lock);
323
324         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
325
326         __gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
327         I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
328                                 ~dev_priv->pm_rps_events);
329         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
330         I915_WRITE(gen6_pm_iir(dev_priv), dev_priv->pm_rps_events);
331
332         dev_priv->rps.pm_iir = 0;
333
334         spin_unlock_irq(&dev_priv->irq_lock);
335 }
336
337 /**
338  * ibx_display_interrupt_update - update SDEIMR
339  * @dev_priv: driver private
340  * @interrupt_mask: mask of interrupt bits to update
341  * @enabled_irq_mask: mask of interrupt bits to enable
342  */
343 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
344                                   uint32_t interrupt_mask,
345                                   uint32_t enabled_irq_mask)
346 {
347         uint32_t sdeimr = I915_READ(SDEIMR);
348         sdeimr &= ~interrupt_mask;
349         sdeimr |= (~enabled_irq_mask & interrupt_mask);
350
351         assert_spin_locked(&dev_priv->irq_lock);
352
353         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
354                 return;
355
356         I915_WRITE(SDEIMR, sdeimr);
357         POSTING_READ(SDEIMR);
358 }
359
360 static void
361 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
362                        u32 enable_mask, u32 status_mask)
363 {
364         u32 reg = PIPESTAT(pipe);
365         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
366
367         assert_spin_locked(&dev_priv->irq_lock);
368         WARN_ON(!intel_irqs_enabled(dev_priv));
369
370         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
371                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
372                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
373                       pipe_name(pipe), enable_mask, status_mask))
374                 return;
375
376         if ((pipestat & enable_mask) == enable_mask)
377                 return;
378
379         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
380
381         /* Enable the interrupt, clear any pending status */
382         pipestat |= enable_mask | status_mask;
383         I915_WRITE(reg, pipestat);
384         POSTING_READ(reg);
385 }
386
387 static void
388 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
389                         u32 enable_mask, u32 status_mask)
390 {
391         u32 reg = PIPESTAT(pipe);
392         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
393
394         assert_spin_locked(&dev_priv->irq_lock);
395         WARN_ON(!intel_irqs_enabled(dev_priv));
396
397         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
398                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
399                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
400                       pipe_name(pipe), enable_mask, status_mask))
401                 return;
402
403         if ((pipestat & enable_mask) == 0)
404                 return;
405
406         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
407
408         pipestat &= ~enable_mask;
409         I915_WRITE(reg, pipestat);
410         POSTING_READ(reg);
411 }
412
413 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
414 {
415         u32 enable_mask = status_mask << 16;
416
417         /*
418          * On pipe A we don't support the PSR interrupt yet,
419          * on pipe B and C the same bit MBZ.
420          */
421         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
422                 return 0;
423         /*
424          * On pipe B and C we don't support the PSR interrupt yet, on pipe
425          * A the same bit is for perf counters which we don't use either.
426          */
427         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
428                 return 0;
429
430         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
431                          SPRITE0_FLIP_DONE_INT_EN_VLV |
432                          SPRITE1_FLIP_DONE_INT_EN_VLV);
433         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
434                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
435         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
436                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
437
438         return enable_mask;
439 }
440
441 void
442 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
443                      u32 status_mask)
444 {
445         u32 enable_mask;
446
447         if (IS_VALLEYVIEW(dev_priv->dev))
448                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
449                                                            status_mask);
450         else
451                 enable_mask = status_mask << 16;
452         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
453 }
454
455 void
456 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
457                       u32 status_mask)
458 {
459         u32 enable_mask;
460
461         if (IS_VALLEYVIEW(dev_priv->dev))
462                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
463                                                            status_mask);
464         else
465                 enable_mask = status_mask << 16;
466         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
467 }
468
469 /**
470  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
471  */
472 static void i915_enable_asle_pipestat(struct drm_device *dev)
473 {
474         struct drm_i915_private *dev_priv = dev->dev_private;
475
476         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
477                 return;
478
479         spin_lock_irq(&dev_priv->irq_lock);
480
481         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
482         if (INTEL_INFO(dev)->gen >= 4)
483                 i915_enable_pipestat(dev_priv, PIPE_A,
484                                      PIPE_LEGACY_BLC_EVENT_STATUS);
485
486         spin_unlock_irq(&dev_priv->irq_lock);
487 }
488
489 /**
490  * i915_pipe_enabled - check if a pipe is enabled
491  * @dev: DRM device
492  * @pipe: pipe to check
493  *
494  * Reading certain registers when the pipe is disabled can hang the chip.
495  * Use this routine to make sure the PLL is running and the pipe is active
496  * before reading such registers if unsure.
497  */
498 static int
499 i915_pipe_enabled(struct drm_device *dev, int pipe)
500 {
501         struct drm_i915_private *dev_priv = dev->dev_private;
502
503         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
504                 /* Locking is horribly broken here, but whatever. */
505                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
506                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
507
508                 return intel_crtc->active;
509         } else {
510                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
511         }
512 }
513
514 /*
515  * This timing diagram depicts the video signal in and
516  * around the vertical blanking period.
517  *
518  * Assumptions about the fictitious mode used in this example:
519  *  vblank_start >= 3
520  *  vsync_start = vblank_start + 1
521  *  vsync_end = vblank_start + 2
522  *  vtotal = vblank_start + 3
523  *
524  *           start of vblank:
525  *           latch double buffered registers
526  *           increment frame counter (ctg+)
527  *           generate start of vblank interrupt (gen4+)
528  *           |
529  *           |          frame start:
530  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
531  *           |          may be shifted forward 1-3 extra lines via PIPECONF
532  *           |          |
533  *           |          |  start of vsync:
534  *           |          |  generate vsync interrupt
535  *           |          |  |
536  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
537  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
538  * ----va---> <-----------------vb--------------------> <--------va-------------
539  *       |          |       <----vs----->                     |
540  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
541  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
542  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
543  *       |          |                                         |
544  *       last visible pixel                                   first visible pixel
545  *                  |                                         increment frame counter (gen3/4)
546  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
547  *
548  * x  = horizontal active
549  * _  = horizontal blanking
550  * hs = horizontal sync
551  * va = vertical active
552  * vb = vertical blanking
553  * vs = vertical sync
554  * vbs = vblank_start (number)
555  *
556  * Summary:
557  * - most events happen at the start of horizontal sync
558  * - frame start happens at the start of horizontal blank, 1-4 lines
559  *   (depending on PIPECONF settings) after the start of vblank
560  * - gen3/4 pixel and frame counter are synchronized with the start
561  *   of horizontal active on the first line of vertical active
562  */
563
564 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
565 {
566         /* Gen2 doesn't have a hardware frame counter */
567         return 0;
568 }
569
570 /* Called from drm generic code, passed a 'crtc', which
571  * we use as a pipe index
572  */
573 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
574 {
575         struct drm_i915_private *dev_priv = dev->dev_private;
576         unsigned long high_frame;
577         unsigned long low_frame;
578         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
579
580         if (!i915_pipe_enabled(dev, pipe)) {
581                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
582                                 "pipe %c\n", pipe_name(pipe));
583                 return 0;
584         }
585
586         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
587                 struct intel_crtc *intel_crtc =
588                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
589                 const struct drm_display_mode *mode =
590                         &intel_crtc->config.adjusted_mode;
591
592                 htotal = mode->crtc_htotal;
593                 hsync_start = mode->crtc_hsync_start;
594                 vbl_start = mode->crtc_vblank_start;
595                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
596                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
597         } else {
598                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
599
600                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
601                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
602                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
603                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
604                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
605                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
606         }
607
608         /* Convert to pixel count */
609         vbl_start *= htotal;
610
611         /* Start of vblank event occurs at start of hsync */
612         vbl_start -= htotal - hsync_start;
613
614         high_frame = PIPEFRAME(pipe);
615         low_frame = PIPEFRAMEPIXEL(pipe);
616
617         /*
618          * High & low register fields aren't synchronized, so make sure
619          * we get a low value that's stable across two reads of the high
620          * register.
621          */
622         do {
623                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
624                 low   = I915_READ(low_frame);
625                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
626         } while (high1 != high2);
627
628         high1 >>= PIPE_FRAME_HIGH_SHIFT;
629         pixel = low & PIPE_PIXEL_MASK;
630         low >>= PIPE_FRAME_LOW_SHIFT;
631
632         /*
633          * The frame counter increments at beginning of active.
634          * Cook up a vblank counter by also checking the pixel
635          * counter against vblank start.
636          */
637         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
638 }
639
640 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
641 {
642         struct drm_i915_private *dev_priv = dev->dev_private;
643         int reg = PIPE_FRMCOUNT_GM45(pipe);
644
645         if (!i915_pipe_enabled(dev, pipe)) {
646                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
647                                  "pipe %c\n", pipe_name(pipe));
648                 return 0;
649         }
650
651         return I915_READ(reg);
652 }
653
654 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
655 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
656
657 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
658 {
659         struct drm_device *dev = crtc->base.dev;
660         struct drm_i915_private *dev_priv = dev->dev_private;
661         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
662         enum pipe pipe = crtc->pipe;
663         int position, vtotal;
664
665         vtotal = mode->crtc_vtotal;
666         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
667                 vtotal /= 2;
668
669         if (IS_GEN2(dev))
670                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
671         else
672                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
673
674         /*
675          * See update_scanline_offset() for the details on the
676          * scanline_offset adjustment.
677          */
678         return (position + crtc->scanline_offset) % vtotal;
679 }
680
681 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
682                                     unsigned int flags, int *vpos, int *hpos,
683                                     ktime_t *stime, ktime_t *etime)
684 {
685         struct drm_i915_private *dev_priv = dev->dev_private;
686         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
687         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
688         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
689         int position;
690         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
691         bool in_vbl = true;
692         int ret = 0;
693         unsigned long irqflags;
694
695         if (!intel_crtc->active) {
696                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
697                                  "pipe %c\n", pipe_name(pipe));
698                 return 0;
699         }
700
701         htotal = mode->crtc_htotal;
702         hsync_start = mode->crtc_hsync_start;
703         vtotal = mode->crtc_vtotal;
704         vbl_start = mode->crtc_vblank_start;
705         vbl_end = mode->crtc_vblank_end;
706
707         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
708                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
709                 vbl_end /= 2;
710                 vtotal /= 2;
711         }
712
713         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
714
715         /*
716          * Lock uncore.lock, as we will do multiple timing critical raw
717          * register reads, potentially with preemption disabled, so the
718          * following code must not block on uncore.lock.
719          */
720         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
721
722         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
723
724         /* Get optional system timestamp before query. */
725         if (stime)
726                 *stime = ktime_get();
727
728         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
729                 /* No obvious pixelcount register. Only query vertical
730                  * scanout position from Display scan line register.
731                  */
732                 position = __intel_get_crtc_scanline(intel_crtc);
733         } else {
734                 /* Have access to pixelcount since start of frame.
735                  * We can split this into vertical and horizontal
736                  * scanout position.
737                  */
738                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
739
740                 /* convert to pixel counts */
741                 vbl_start *= htotal;
742                 vbl_end *= htotal;
743                 vtotal *= htotal;
744
745                 /*
746                  * In interlaced modes, the pixel counter counts all pixels,
747                  * so one field will have htotal more pixels. In order to avoid
748                  * the reported position from jumping backwards when the pixel
749                  * counter is beyond the length of the shorter field, just
750                  * clamp the position the length of the shorter field. This
751                  * matches how the scanline counter based position works since
752                  * the scanline counter doesn't count the two half lines.
753                  */
754                 if (position >= vtotal)
755                         position = vtotal - 1;
756
757                 /*
758                  * Start of vblank interrupt is triggered at start of hsync,
759                  * just prior to the first active line of vblank. However we
760                  * consider lines to start at the leading edge of horizontal
761                  * active. So, should we get here before we've crossed into
762                  * the horizontal active of the first line in vblank, we would
763                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
764                  * always add htotal-hsync_start to the current pixel position.
765                  */
766                 position = (position + htotal - hsync_start) % vtotal;
767         }
768
769         /* Get optional system timestamp after query. */
770         if (etime)
771                 *etime = ktime_get();
772
773         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
774
775         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
776
777         in_vbl = position >= vbl_start && position < vbl_end;
778
779         /*
780          * While in vblank, position will be negative
781          * counting up towards 0 at vbl_end. And outside
782          * vblank, position will be positive counting
783          * up since vbl_end.
784          */
785         if (position >= vbl_start)
786                 position -= vbl_end;
787         else
788                 position += vtotal - vbl_end;
789
790         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
791                 *vpos = position;
792                 *hpos = 0;
793         } else {
794                 *vpos = position / htotal;
795                 *hpos = position - (*vpos * htotal);
796         }
797
798         /* In vblank? */
799         if (in_vbl)
800                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
801
802         return ret;
803 }
804
805 int intel_get_crtc_scanline(struct intel_crtc *crtc)
806 {
807         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
808         unsigned long irqflags;
809         int position;
810
811         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
812         position = __intel_get_crtc_scanline(crtc);
813         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
814
815         return position;
816 }
817
818 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
819                               int *max_error,
820                               struct timeval *vblank_time,
821                               unsigned flags)
822 {
823         struct drm_crtc *crtc;
824
825         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
826                 DRM_ERROR("Invalid crtc %d\n", pipe);
827                 return -EINVAL;
828         }
829
830         /* Get drm_crtc to timestamp: */
831         crtc = intel_get_crtc_for_pipe(dev, pipe);
832         if (crtc == NULL) {
833                 DRM_ERROR("Invalid crtc %d\n", pipe);
834                 return -EINVAL;
835         }
836
837         if (!crtc->enabled) {
838                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
839                 return -EBUSY;
840         }
841
842         /* Helper routine in DRM core does all the work: */
843         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
844                                                      vblank_time, flags,
845                                                      crtc,
846                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
847 }
848
849 static bool intel_hpd_irq_event(struct drm_device *dev,
850                                 struct drm_connector *connector)
851 {
852         enum drm_connector_status old_status;
853
854         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
855         old_status = connector->status;
856
857         connector->status = connector->funcs->detect(connector, false);
858         if (old_status == connector->status)
859                 return false;
860
861         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
862                       connector->base.id,
863                       connector->name,
864                       drm_get_connector_status_name(old_status),
865                       drm_get_connector_status_name(connector->status));
866
867         return true;
868 }
869
870 static void i915_digport_work_func(struct work_struct *work)
871 {
872         struct drm_i915_private *dev_priv =
873                 container_of(work, struct drm_i915_private, dig_port_work);
874         u32 long_port_mask, short_port_mask;
875         struct intel_digital_port *intel_dig_port;
876         int i, ret;
877         u32 old_bits = 0;
878
879         spin_lock_irq(&dev_priv->irq_lock);
880         long_port_mask = dev_priv->long_hpd_port_mask;
881         dev_priv->long_hpd_port_mask = 0;
882         short_port_mask = dev_priv->short_hpd_port_mask;
883         dev_priv->short_hpd_port_mask = 0;
884         spin_unlock_irq(&dev_priv->irq_lock);
885
886         for (i = 0; i < I915_MAX_PORTS; i++) {
887                 bool valid = false;
888                 bool long_hpd = false;
889                 intel_dig_port = dev_priv->hpd_irq_port[i];
890                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
891                         continue;
892
893                 if (long_port_mask & (1 << i))  {
894                         valid = true;
895                         long_hpd = true;
896                 } else if (short_port_mask & (1 << i))
897                         valid = true;
898
899                 if (valid) {
900                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
901                         if (ret == true) {
902                                 /* if we get true fallback to old school hpd */
903                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
904                         }
905                 }
906         }
907
908         if (old_bits) {
909                 spin_lock_irq(&dev_priv->irq_lock);
910                 dev_priv->hpd_event_bits |= old_bits;
911                 spin_unlock_irq(&dev_priv->irq_lock);
912                 schedule_work(&dev_priv->hotplug_work);
913         }
914 }
915
916 /*
917  * Handle hotplug events outside the interrupt handler proper.
918  */
919 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
920
921 static void i915_hotplug_work_func(struct work_struct *work)
922 {
923         struct drm_i915_private *dev_priv =
924                 container_of(work, struct drm_i915_private, hotplug_work);
925         struct drm_device *dev = dev_priv->dev;
926         struct drm_mode_config *mode_config = &dev->mode_config;
927         struct intel_connector *intel_connector;
928         struct intel_encoder *intel_encoder;
929         struct drm_connector *connector;
930         bool hpd_disabled = false;
931         bool changed = false;
932         u32 hpd_event_bits;
933
934         mutex_lock(&mode_config->mutex);
935         DRM_DEBUG_KMS("running encoder hotplug functions\n");
936
937         spin_lock_irq(&dev_priv->irq_lock);
938
939         hpd_event_bits = dev_priv->hpd_event_bits;
940         dev_priv->hpd_event_bits = 0;
941         list_for_each_entry(connector, &mode_config->connector_list, head) {
942                 intel_connector = to_intel_connector(connector);
943                 if (!intel_connector->encoder)
944                         continue;
945                 intel_encoder = intel_connector->encoder;
946                 if (intel_encoder->hpd_pin > HPD_NONE &&
947                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
948                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
949                         DRM_INFO("HPD interrupt storm detected on connector %s: "
950                                  "switching from hotplug detection to polling\n",
951                                 connector->name);
952                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
953                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
954                                 | DRM_CONNECTOR_POLL_DISCONNECT;
955                         hpd_disabled = true;
956                 }
957                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
958                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
959                                       connector->name, intel_encoder->hpd_pin);
960                 }
961         }
962          /* if there were no outputs to poll, poll was disabled,
963           * therefore make sure it's enabled when disabling HPD on
964           * some connectors */
965         if (hpd_disabled) {
966                 drm_kms_helper_poll_enable(dev);
967                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
968                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
969         }
970
971         spin_unlock_irq(&dev_priv->irq_lock);
972
973         list_for_each_entry(connector, &mode_config->connector_list, head) {
974                 intel_connector = to_intel_connector(connector);
975                 if (!intel_connector->encoder)
976                         continue;
977                 intel_encoder = intel_connector->encoder;
978                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
979                         if (intel_encoder->hot_plug)
980                                 intel_encoder->hot_plug(intel_encoder);
981                         if (intel_hpd_irq_event(dev, connector))
982                                 changed = true;
983                 }
984         }
985         mutex_unlock(&mode_config->mutex);
986
987         if (changed)
988                 drm_kms_helper_hotplug_event(dev);
989 }
990
991 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
992 {
993         struct drm_i915_private *dev_priv = dev->dev_private;
994         u32 busy_up, busy_down, max_avg, min_avg;
995         u8 new_delay;
996
997         spin_lock(&mchdev_lock);
998
999         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1000
1001         new_delay = dev_priv->ips.cur_delay;
1002
1003         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1004         busy_up = I915_READ(RCPREVBSYTUPAVG);
1005         busy_down = I915_READ(RCPREVBSYTDNAVG);
1006         max_avg = I915_READ(RCBMAXAVG);
1007         min_avg = I915_READ(RCBMINAVG);
1008
1009         /* Handle RCS change request from hw */
1010         if (busy_up > max_avg) {
1011                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1012                         new_delay = dev_priv->ips.cur_delay - 1;
1013                 if (new_delay < dev_priv->ips.max_delay)
1014                         new_delay = dev_priv->ips.max_delay;
1015         } else if (busy_down < min_avg) {
1016                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1017                         new_delay = dev_priv->ips.cur_delay + 1;
1018                 if (new_delay > dev_priv->ips.min_delay)
1019                         new_delay = dev_priv->ips.min_delay;
1020         }
1021
1022         if (ironlake_set_drps(dev, new_delay))
1023                 dev_priv->ips.cur_delay = new_delay;
1024
1025         spin_unlock(&mchdev_lock);
1026
1027         return;
1028 }
1029
1030 static void notify_ring(struct drm_device *dev,
1031                         struct intel_engine_cs *ring)
1032 {
1033         if (!intel_ring_initialized(ring))
1034                 return;
1035
1036         trace_i915_gem_request_complete(ring);
1037
1038         wake_up_all(&ring->irq_queue);
1039 }
1040
1041 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1042                             struct intel_rps_ei *rps_ei)
1043 {
1044         u32 cz_ts, cz_freq_khz;
1045         u32 render_count, media_count;
1046         u32 elapsed_render, elapsed_media, elapsed_time;
1047         u32 residency = 0;
1048
1049         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1050         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1051
1052         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1053         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1054
1055         if (rps_ei->cz_clock == 0) {
1056                 rps_ei->cz_clock = cz_ts;
1057                 rps_ei->render_c0 = render_count;
1058                 rps_ei->media_c0 = media_count;
1059
1060                 return dev_priv->rps.cur_freq;
1061         }
1062
1063         elapsed_time = cz_ts - rps_ei->cz_clock;
1064         rps_ei->cz_clock = cz_ts;
1065
1066         elapsed_render = render_count - rps_ei->render_c0;
1067         rps_ei->render_c0 = render_count;
1068
1069         elapsed_media = media_count - rps_ei->media_c0;
1070         rps_ei->media_c0 = media_count;
1071
1072         /* Convert all the counters into common unit of milli sec */
1073         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1074         elapsed_render /=  cz_freq_khz;
1075         elapsed_media /= cz_freq_khz;
1076
1077         /*
1078          * Calculate overall C0 residency percentage
1079          * only if elapsed time is non zero
1080          */
1081         if (elapsed_time) {
1082                 residency =
1083                         ((max(elapsed_render, elapsed_media) * 100)
1084                                 / elapsed_time);
1085         }
1086
1087         return residency;
1088 }
1089
1090 /**
1091  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1092  * busy-ness calculated from C0 counters of render & media power wells
1093  * @dev_priv: DRM device private
1094  *
1095  */
1096 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1097 {
1098         u32 residency_C0_up = 0, residency_C0_down = 0;
1099         int new_delay, adj;
1100
1101         dev_priv->rps.ei_interrupt_count++;
1102
1103         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1104
1105
1106         if (dev_priv->rps.up_ei.cz_clock == 0) {
1107                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1108                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1109                 return dev_priv->rps.cur_freq;
1110         }
1111
1112
1113         /*
1114          * To down throttle, C0 residency should be less than down threshold
1115          * for continous EI intervals. So calculate down EI counters
1116          * once in VLV_INT_COUNT_FOR_DOWN_EI
1117          */
1118         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1119
1120                 dev_priv->rps.ei_interrupt_count = 0;
1121
1122                 residency_C0_down = vlv_c0_residency(dev_priv,
1123                                                      &dev_priv->rps.down_ei);
1124         } else {
1125                 residency_C0_up = vlv_c0_residency(dev_priv,
1126                                                    &dev_priv->rps.up_ei);
1127         }
1128
1129         new_delay = dev_priv->rps.cur_freq;
1130
1131         adj = dev_priv->rps.last_adj;
1132         /* C0 residency is greater than UP threshold. Increase Frequency */
1133         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1134                 if (adj > 0)
1135                         adj *= 2;
1136                 else
1137                         adj = 1;
1138
1139                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1140                         new_delay = dev_priv->rps.cur_freq + adj;
1141
1142                 /*
1143                  * For better performance, jump directly
1144                  * to RPe if we're below it.
1145                  */
1146                 if (new_delay < dev_priv->rps.efficient_freq)
1147                         new_delay = dev_priv->rps.efficient_freq;
1148
1149         } else if (!dev_priv->rps.ei_interrupt_count &&
1150                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1151                 if (adj < 0)
1152                         adj *= 2;
1153                 else
1154                         adj = -1;
1155                 /*
1156                  * This means, C0 residency is less than down threshold over
1157                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1158                  */
1159                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1160                         new_delay = dev_priv->rps.cur_freq + adj;
1161         }
1162
1163         return new_delay;
1164 }
1165
1166 static void gen6_pm_rps_work(struct work_struct *work)
1167 {
1168         struct drm_i915_private *dev_priv =
1169                 container_of(work, struct drm_i915_private, rps.work);
1170         u32 pm_iir;
1171         int new_delay, adj;
1172
1173         spin_lock_irq(&dev_priv->irq_lock);
1174         /* Speed up work cancelation during disabling rps interrupts. */
1175         if (!dev_priv->rps.interrupts_enabled) {
1176                 spin_unlock_irq(&dev_priv->irq_lock);
1177                 return;
1178         }
1179         pm_iir = dev_priv->rps.pm_iir;
1180         dev_priv->rps.pm_iir = 0;
1181         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1182         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1183         spin_unlock_irq(&dev_priv->irq_lock);
1184
1185         /* Make sure we didn't queue anything we're not going to process. */
1186         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1187
1188         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1189                 return;
1190
1191         mutex_lock(&dev_priv->rps.hw_lock);
1192
1193         adj = dev_priv->rps.last_adj;
1194         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1195                 if (adj > 0)
1196                         adj *= 2;
1197                 else {
1198                         /* CHV needs even encode values */
1199                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1200                 }
1201                 new_delay = dev_priv->rps.cur_freq + adj;
1202
1203                 /*
1204                  * For better performance, jump directly
1205                  * to RPe if we're below it.
1206                  */
1207                 if (new_delay < dev_priv->rps.efficient_freq)
1208                         new_delay = dev_priv->rps.efficient_freq;
1209         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1210                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1211                         new_delay = dev_priv->rps.efficient_freq;
1212                 else
1213                         new_delay = dev_priv->rps.min_freq_softlimit;
1214                 adj = 0;
1215         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1216                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1217         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1218                 if (adj < 0)
1219                         adj *= 2;
1220                 else {
1221                         /* CHV needs even encode values */
1222                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1223                 }
1224                 new_delay = dev_priv->rps.cur_freq + adj;
1225         } else { /* unknown event */
1226                 new_delay = dev_priv->rps.cur_freq;
1227         }
1228
1229         /* sysfs frequency interfaces may have snuck in while servicing the
1230          * interrupt
1231          */
1232         new_delay = clamp_t(int, new_delay,
1233                             dev_priv->rps.min_freq_softlimit,
1234                             dev_priv->rps.max_freq_softlimit);
1235
1236         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1237
1238         if (IS_VALLEYVIEW(dev_priv->dev))
1239                 valleyview_set_rps(dev_priv->dev, new_delay);
1240         else
1241                 gen6_set_rps(dev_priv->dev, new_delay);
1242
1243         mutex_unlock(&dev_priv->rps.hw_lock);
1244 }
1245
1246
1247 /**
1248  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1249  * occurred.
1250  * @work: workqueue struct
1251  *
1252  * Doesn't actually do anything except notify userspace. As a consequence of
1253  * this event, userspace should try to remap the bad rows since statistically
1254  * it is likely the same row is more likely to go bad again.
1255  */
1256 static void ivybridge_parity_work(struct work_struct *work)
1257 {
1258         struct drm_i915_private *dev_priv =
1259                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1260         u32 error_status, row, bank, subbank;
1261         char *parity_event[6];
1262         uint32_t misccpctl;
1263         uint8_t slice = 0;
1264
1265         /* We must turn off DOP level clock gating to access the L3 registers.
1266          * In order to prevent a get/put style interface, acquire struct mutex
1267          * any time we access those registers.
1268          */
1269         mutex_lock(&dev_priv->dev->struct_mutex);
1270
1271         /* If we've screwed up tracking, just let the interrupt fire again */
1272         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1273                 goto out;
1274
1275         misccpctl = I915_READ(GEN7_MISCCPCTL);
1276         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1277         POSTING_READ(GEN7_MISCCPCTL);
1278
1279         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1280                 u32 reg;
1281
1282                 slice--;
1283                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1284                         break;
1285
1286                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1287
1288                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1289
1290                 error_status = I915_READ(reg);
1291                 row = GEN7_PARITY_ERROR_ROW(error_status);
1292                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1293                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1294
1295                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1296                 POSTING_READ(reg);
1297
1298                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1299                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1300                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1301                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1302                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1303                 parity_event[5] = NULL;
1304
1305                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1306                                    KOBJ_CHANGE, parity_event);
1307
1308                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1309                           slice, row, bank, subbank);
1310
1311                 kfree(parity_event[4]);
1312                 kfree(parity_event[3]);
1313                 kfree(parity_event[2]);
1314                 kfree(parity_event[1]);
1315         }
1316
1317         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1318
1319 out:
1320         WARN_ON(dev_priv->l3_parity.which_slice);
1321         spin_lock_irq(&dev_priv->irq_lock);
1322         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1323         spin_unlock_irq(&dev_priv->irq_lock);
1324
1325         mutex_unlock(&dev_priv->dev->struct_mutex);
1326 }
1327
1328 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1329 {
1330         struct drm_i915_private *dev_priv = dev->dev_private;
1331
1332         if (!HAS_L3_DPF(dev))
1333                 return;
1334
1335         spin_lock(&dev_priv->irq_lock);
1336         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1337         spin_unlock(&dev_priv->irq_lock);
1338
1339         iir &= GT_PARITY_ERROR(dev);
1340         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1341                 dev_priv->l3_parity.which_slice |= 1 << 1;
1342
1343         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1344                 dev_priv->l3_parity.which_slice |= 1 << 0;
1345
1346         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1347 }
1348
1349 static void ilk_gt_irq_handler(struct drm_device *dev,
1350                                struct drm_i915_private *dev_priv,
1351                                u32 gt_iir)
1352 {
1353         if (gt_iir &
1354             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1355                 notify_ring(dev, &dev_priv->ring[RCS]);
1356         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1357                 notify_ring(dev, &dev_priv->ring[VCS]);
1358 }
1359
1360 static void snb_gt_irq_handler(struct drm_device *dev,
1361                                struct drm_i915_private *dev_priv,
1362                                u32 gt_iir)
1363 {
1364
1365         if (gt_iir &
1366             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1367                 notify_ring(dev, &dev_priv->ring[RCS]);
1368         if (gt_iir & GT_BSD_USER_INTERRUPT)
1369                 notify_ring(dev, &dev_priv->ring[VCS]);
1370         if (gt_iir & GT_BLT_USER_INTERRUPT)
1371                 notify_ring(dev, &dev_priv->ring[BCS]);
1372
1373         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1374                       GT_BSD_CS_ERROR_INTERRUPT |
1375                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1376                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1377
1378         if (gt_iir & GT_PARITY_ERROR(dev))
1379                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1380 }
1381
1382 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1383                                        struct drm_i915_private *dev_priv,
1384                                        u32 master_ctl)
1385 {
1386         struct intel_engine_cs *ring;
1387         u32 rcs, bcs, vcs;
1388         uint32_t tmp = 0;
1389         irqreturn_t ret = IRQ_NONE;
1390
1391         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1392                 tmp = I915_READ(GEN8_GT_IIR(0));
1393                 if (tmp) {
1394                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1395                         ret = IRQ_HANDLED;
1396
1397                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1398                         ring = &dev_priv->ring[RCS];
1399                         if (rcs & GT_RENDER_USER_INTERRUPT)
1400                                 notify_ring(dev, ring);
1401                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1402                                 intel_execlists_handle_ctx_events(ring);
1403
1404                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1405                         ring = &dev_priv->ring[BCS];
1406                         if (bcs & GT_RENDER_USER_INTERRUPT)
1407                                 notify_ring(dev, ring);
1408                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1409                                 intel_execlists_handle_ctx_events(ring);
1410                 } else
1411                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1412         }
1413
1414         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1415                 tmp = I915_READ(GEN8_GT_IIR(1));
1416                 if (tmp) {
1417                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1418                         ret = IRQ_HANDLED;
1419
1420                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1421                         ring = &dev_priv->ring[VCS];
1422                         if (vcs & GT_RENDER_USER_INTERRUPT)
1423                                 notify_ring(dev, ring);
1424                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1425                                 intel_execlists_handle_ctx_events(ring);
1426
1427                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1428                         ring = &dev_priv->ring[VCS2];
1429                         if (vcs & GT_RENDER_USER_INTERRUPT)
1430                                 notify_ring(dev, ring);
1431                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1432                                 intel_execlists_handle_ctx_events(ring);
1433                 } else
1434                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1435         }
1436
1437         if (master_ctl & GEN8_GT_PM_IRQ) {
1438                 tmp = I915_READ(GEN8_GT_IIR(2));
1439                 if (tmp & dev_priv->pm_rps_events) {
1440                         I915_WRITE(GEN8_GT_IIR(2),
1441                                    tmp & dev_priv->pm_rps_events);
1442                         ret = IRQ_HANDLED;
1443                         gen6_rps_irq_handler(dev_priv, tmp);
1444                 } else
1445                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1446         }
1447
1448         if (master_ctl & GEN8_GT_VECS_IRQ) {
1449                 tmp = I915_READ(GEN8_GT_IIR(3));
1450                 if (tmp) {
1451                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1452                         ret = IRQ_HANDLED;
1453
1454                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1455                         ring = &dev_priv->ring[VECS];
1456                         if (vcs & GT_RENDER_USER_INTERRUPT)
1457                                 notify_ring(dev, ring);
1458                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1459                                 intel_execlists_handle_ctx_events(ring);
1460                 } else
1461                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1462         }
1463
1464         return ret;
1465 }
1466
1467 #define HPD_STORM_DETECT_PERIOD 1000
1468 #define HPD_STORM_THRESHOLD 5
1469
1470 static int pch_port_to_hotplug_shift(enum port port)
1471 {
1472         switch (port) {
1473         case PORT_A:
1474         case PORT_E:
1475         default:
1476                 return -1;
1477         case PORT_B:
1478                 return 0;
1479         case PORT_C:
1480                 return 8;
1481         case PORT_D:
1482                 return 16;
1483         }
1484 }
1485
1486 static int i915_port_to_hotplug_shift(enum port port)
1487 {
1488         switch (port) {
1489         case PORT_A:
1490         case PORT_E:
1491         default:
1492                 return -1;
1493         case PORT_B:
1494                 return 17;
1495         case PORT_C:
1496                 return 19;
1497         case PORT_D:
1498                 return 21;
1499         }
1500 }
1501
1502 static inline enum port get_port_from_pin(enum hpd_pin pin)
1503 {
1504         switch (pin) {
1505         case HPD_PORT_B:
1506                 return PORT_B;
1507         case HPD_PORT_C:
1508                 return PORT_C;
1509         case HPD_PORT_D:
1510                 return PORT_D;
1511         default:
1512                 return PORT_A; /* no hpd */
1513         }
1514 }
1515
1516 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1517                                          u32 hotplug_trigger,
1518                                          u32 dig_hotplug_reg,
1519                                          const u32 *hpd)
1520 {
1521         struct drm_i915_private *dev_priv = dev->dev_private;
1522         int i;
1523         enum port port;
1524         bool storm_detected = false;
1525         bool queue_dig = false, queue_hp = false;
1526         u32 dig_shift;
1527         u32 dig_port_mask = 0;
1528
1529         if (!hotplug_trigger)
1530                 return;
1531
1532         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1533                          hotplug_trigger, dig_hotplug_reg);
1534
1535         spin_lock(&dev_priv->irq_lock);
1536         for (i = 1; i < HPD_NUM_PINS; i++) {
1537                 if (!(hpd[i] & hotplug_trigger))
1538                         continue;
1539
1540                 port = get_port_from_pin(i);
1541                 if (port && dev_priv->hpd_irq_port[port]) {
1542                         bool long_hpd;
1543
1544                         if (HAS_PCH_SPLIT(dev)) {
1545                                 dig_shift = pch_port_to_hotplug_shift(port);
1546                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1547                         } else {
1548                                 dig_shift = i915_port_to_hotplug_shift(port);
1549                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1550                         }
1551
1552                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1553                                          port_name(port),
1554                                          long_hpd ? "long" : "short");
1555                         /* for long HPD pulses we want to have the digital queue happen,
1556                            but we still want HPD storm detection to function. */
1557                         if (long_hpd) {
1558                                 dev_priv->long_hpd_port_mask |= (1 << port);
1559                                 dig_port_mask |= hpd[i];
1560                         } else {
1561                                 /* for short HPD just trigger the digital queue */
1562                                 dev_priv->short_hpd_port_mask |= (1 << port);
1563                                 hotplug_trigger &= ~hpd[i];
1564                         }
1565                         queue_dig = true;
1566                 }
1567         }
1568
1569         for (i = 1; i < HPD_NUM_PINS; i++) {
1570                 if (hpd[i] & hotplug_trigger &&
1571                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1572                         /*
1573                          * On GMCH platforms the interrupt mask bits only
1574                          * prevent irq generation, not the setting of the
1575                          * hotplug bits itself. So only WARN about unexpected
1576                          * interrupts on saner platforms.
1577                          */
1578                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1579                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1580                                   hotplug_trigger, i, hpd[i]);
1581
1582                         continue;
1583                 }
1584
1585                 if (!(hpd[i] & hotplug_trigger) ||
1586                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1587                         continue;
1588
1589                 if (!(dig_port_mask & hpd[i])) {
1590                         dev_priv->hpd_event_bits |= (1 << i);
1591                         queue_hp = true;
1592                 }
1593
1594                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1595                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1596                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1597                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1598                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1599                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1600                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1601                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1602                         dev_priv->hpd_event_bits &= ~(1 << i);
1603                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1604                         storm_detected = true;
1605                 } else {
1606                         dev_priv->hpd_stats[i].hpd_cnt++;
1607                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1608                                       dev_priv->hpd_stats[i].hpd_cnt);
1609                 }
1610         }
1611
1612         if (storm_detected)
1613                 dev_priv->display.hpd_irq_setup(dev);
1614         spin_unlock(&dev_priv->irq_lock);
1615
1616         /*
1617          * Our hotplug handler can grab modeset locks (by calling down into the
1618          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1619          * queue for otherwise the flush_work in the pageflip code will
1620          * deadlock.
1621          */
1622         if (queue_dig)
1623                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1624         if (queue_hp)
1625                 schedule_work(&dev_priv->hotplug_work);
1626 }
1627
1628 static void gmbus_irq_handler(struct drm_device *dev)
1629 {
1630         struct drm_i915_private *dev_priv = dev->dev_private;
1631
1632         wake_up_all(&dev_priv->gmbus_wait_queue);
1633 }
1634
1635 static void dp_aux_irq_handler(struct drm_device *dev)
1636 {
1637         struct drm_i915_private *dev_priv = dev->dev_private;
1638
1639         wake_up_all(&dev_priv->gmbus_wait_queue);
1640 }
1641
1642 #if defined(CONFIG_DEBUG_FS)
1643 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1644                                          uint32_t crc0, uint32_t crc1,
1645                                          uint32_t crc2, uint32_t crc3,
1646                                          uint32_t crc4)
1647 {
1648         struct drm_i915_private *dev_priv = dev->dev_private;
1649         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1650         struct intel_pipe_crc_entry *entry;
1651         int head, tail;
1652
1653         spin_lock(&pipe_crc->lock);
1654
1655         if (!pipe_crc->entries) {
1656                 spin_unlock(&pipe_crc->lock);
1657                 DRM_DEBUG_KMS("spurious interrupt\n");
1658                 return;
1659         }
1660
1661         head = pipe_crc->head;
1662         tail = pipe_crc->tail;
1663
1664         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1665                 spin_unlock(&pipe_crc->lock);
1666                 DRM_ERROR("CRC buffer overflowing\n");
1667                 return;
1668         }
1669
1670         entry = &pipe_crc->entries[head];
1671
1672         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1673         entry->crc[0] = crc0;
1674         entry->crc[1] = crc1;
1675         entry->crc[2] = crc2;
1676         entry->crc[3] = crc3;
1677         entry->crc[4] = crc4;
1678
1679         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1680         pipe_crc->head = head;
1681
1682         spin_unlock(&pipe_crc->lock);
1683
1684         wake_up_interruptible(&pipe_crc->wq);
1685 }
1686 #else
1687 static inline void
1688 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1689                              uint32_t crc0, uint32_t crc1,
1690                              uint32_t crc2, uint32_t crc3,
1691                              uint32_t crc4) {}
1692 #endif
1693
1694
1695 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1696 {
1697         struct drm_i915_private *dev_priv = dev->dev_private;
1698
1699         display_pipe_crc_irq_handler(dev, pipe,
1700                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1701                                      0, 0, 0, 0);
1702 }
1703
1704 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1705 {
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707
1708         display_pipe_crc_irq_handler(dev, pipe,
1709                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1710                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1711                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1712                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1713                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1714 }
1715
1716 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1717 {
1718         struct drm_i915_private *dev_priv = dev->dev_private;
1719         uint32_t res1, res2;
1720
1721         if (INTEL_INFO(dev)->gen >= 3)
1722                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1723         else
1724                 res1 = 0;
1725
1726         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1727                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1728         else
1729                 res2 = 0;
1730
1731         display_pipe_crc_irq_handler(dev, pipe,
1732                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1733                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1734                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1735                                      res1, res2);
1736 }
1737
1738 /* The RPS events need forcewake, so we add them to a work queue and mask their
1739  * IMR bits until the work is done. Other interrupts can be processed without
1740  * the work queue. */
1741 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1742 {
1743         /* TODO: RPS on GEN9+ is not supported yet. */
1744         if (WARN_ONCE(INTEL_INFO(dev_priv)->gen >= 9,
1745                       "GEN9+: unexpected RPS IRQ\n"))
1746                 return;
1747
1748         if (pm_iir & dev_priv->pm_rps_events) {
1749                 spin_lock(&dev_priv->irq_lock);
1750                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1751                 if (dev_priv->rps.interrupts_enabled) {
1752                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1753                         queue_work(dev_priv->wq, &dev_priv->rps.work);
1754                 }
1755                 spin_unlock(&dev_priv->irq_lock);
1756         }
1757
1758         if (INTEL_INFO(dev_priv)->gen >= 8)
1759                 return;
1760
1761         if (HAS_VEBOX(dev_priv->dev)) {
1762                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1763                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1764
1765                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1766                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1767         }
1768 }
1769
1770 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1771 {
1772         if (!drm_handle_vblank(dev, pipe))
1773                 return false;
1774
1775         return true;
1776 }
1777
1778 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1779 {
1780         struct drm_i915_private *dev_priv = dev->dev_private;
1781         u32 pipe_stats[I915_MAX_PIPES] = { };
1782         int pipe;
1783
1784         spin_lock(&dev_priv->irq_lock);
1785         for_each_pipe(dev_priv, pipe) {
1786                 int reg;
1787                 u32 mask, iir_bit = 0;
1788
1789                 /*
1790                  * PIPESTAT bits get signalled even when the interrupt is
1791                  * disabled with the mask bits, and some of the status bits do
1792                  * not generate interrupts at all (like the underrun bit). Hence
1793                  * we need to be careful that we only handle what we want to
1794                  * handle.
1795                  */
1796
1797                 /* fifo underruns are filterered in the underrun handler. */
1798                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1799
1800                 switch (pipe) {
1801                 case PIPE_A:
1802                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1803                         break;
1804                 case PIPE_B:
1805                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1806                         break;
1807                 case PIPE_C:
1808                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1809                         break;
1810                 }
1811                 if (iir & iir_bit)
1812                         mask |= dev_priv->pipestat_irq_mask[pipe];
1813
1814                 if (!mask)
1815                         continue;
1816
1817                 reg = PIPESTAT(pipe);
1818                 mask |= PIPESTAT_INT_ENABLE_MASK;
1819                 pipe_stats[pipe] = I915_READ(reg) & mask;
1820
1821                 /*
1822                  * Clear the PIPE*STAT regs before the IIR
1823                  */
1824                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1825                                         PIPESTAT_INT_STATUS_MASK))
1826                         I915_WRITE(reg, pipe_stats[pipe]);
1827         }
1828         spin_unlock(&dev_priv->irq_lock);
1829
1830         for_each_pipe(dev_priv, pipe) {
1831                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1832                     intel_pipe_handle_vblank(dev, pipe))
1833                         intel_check_page_flip(dev, pipe);
1834
1835                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1836                         intel_prepare_page_flip(dev, pipe);
1837                         intel_finish_page_flip(dev, pipe);
1838                 }
1839
1840                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1841                         i9xx_pipe_crc_irq_handler(dev, pipe);
1842
1843                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1844                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1845         }
1846
1847         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1848                 gmbus_irq_handler(dev);
1849 }
1850
1851 static void i9xx_hpd_irq_handler(struct drm_device *dev)
1852 {
1853         struct drm_i915_private *dev_priv = dev->dev_private;
1854         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1855
1856         if (hotplug_status) {
1857                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1858                 /*
1859                  * Make sure hotplug status is cleared before we clear IIR, or else we
1860                  * may miss hotplug events.
1861                  */
1862                 POSTING_READ(PORT_HOTPLUG_STAT);
1863
1864                 if (IS_G4X(dev)) {
1865                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1866
1867                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1868                 } else {
1869                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1870
1871                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1872                 }
1873
1874                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1875                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1876                         dp_aux_irq_handler(dev);
1877         }
1878 }
1879
1880 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1881 {
1882         struct drm_device *dev = arg;
1883         struct drm_i915_private *dev_priv = dev->dev_private;
1884         u32 iir, gt_iir, pm_iir;
1885         irqreturn_t ret = IRQ_NONE;
1886
1887         while (true) {
1888                 /* Find, clear, then process each source of interrupt */
1889
1890                 gt_iir = I915_READ(GTIIR);
1891                 if (gt_iir)
1892                         I915_WRITE(GTIIR, gt_iir);
1893
1894                 pm_iir = I915_READ(GEN6_PMIIR);
1895                 if (pm_iir)
1896                         I915_WRITE(GEN6_PMIIR, pm_iir);
1897
1898                 iir = I915_READ(VLV_IIR);
1899                 if (iir) {
1900                         /* Consume port before clearing IIR or we'll miss events */
1901                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1902                                 i9xx_hpd_irq_handler(dev);
1903                         I915_WRITE(VLV_IIR, iir);
1904                 }
1905
1906                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1907                         goto out;
1908
1909                 ret = IRQ_HANDLED;
1910
1911                 if (gt_iir)
1912                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
1913                 if (pm_iir)
1914                         gen6_rps_irq_handler(dev_priv, pm_iir);
1915                 /* Call regardless, as some status bits might not be
1916                  * signalled in iir */
1917                 valleyview_pipestat_irq_handler(dev, iir);
1918         }
1919
1920 out:
1921         return ret;
1922 }
1923
1924 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1925 {
1926         struct drm_device *dev = arg;
1927         struct drm_i915_private *dev_priv = dev->dev_private;
1928         u32 master_ctl, iir;
1929         irqreturn_t ret = IRQ_NONE;
1930
1931         for (;;) {
1932                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1933                 iir = I915_READ(VLV_IIR);
1934
1935                 if (master_ctl == 0 && iir == 0)
1936                         break;
1937
1938                 ret = IRQ_HANDLED;
1939
1940                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1941
1942                 /* Find, clear, then process each source of interrupt */
1943
1944                 if (iir) {
1945                         /* Consume port before clearing IIR or we'll miss events */
1946                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
1947                                 i9xx_hpd_irq_handler(dev);
1948                         I915_WRITE(VLV_IIR, iir);
1949                 }
1950
1951                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1952
1953                 /* Call regardless, as some status bits might not be
1954                  * signalled in iir */
1955                 valleyview_pipestat_irq_handler(dev, iir);
1956
1957                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1958                 POSTING_READ(GEN8_MASTER_IRQ);
1959         }
1960
1961         return ret;
1962 }
1963
1964 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1965 {
1966         struct drm_i915_private *dev_priv = dev->dev_private;
1967         int pipe;
1968         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1969         u32 dig_hotplug_reg;
1970
1971         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1972         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1973
1974         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1975
1976         if (pch_iir & SDE_AUDIO_POWER_MASK) {
1977                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1978                                SDE_AUDIO_POWER_SHIFT);
1979                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1980                                  port_name(port));
1981         }
1982
1983         if (pch_iir & SDE_AUX_MASK)
1984                 dp_aux_irq_handler(dev);
1985
1986         if (pch_iir & SDE_GMBUS)
1987                 gmbus_irq_handler(dev);
1988
1989         if (pch_iir & SDE_AUDIO_HDCP_MASK)
1990                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1991
1992         if (pch_iir & SDE_AUDIO_TRANS_MASK)
1993                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1994
1995         if (pch_iir & SDE_POISON)
1996                 DRM_ERROR("PCH poison interrupt\n");
1997
1998         if (pch_iir & SDE_FDI_MASK)
1999                 for_each_pipe(dev_priv, pipe)
2000                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2001                                          pipe_name(pipe),
2002                                          I915_READ(FDI_RX_IIR(pipe)));
2003
2004         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2005                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2006
2007         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2008                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2009
2010         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2011                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2012
2013         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2014                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2015 }
2016
2017 static void ivb_err_int_handler(struct drm_device *dev)
2018 {
2019         struct drm_i915_private *dev_priv = dev->dev_private;
2020         u32 err_int = I915_READ(GEN7_ERR_INT);
2021         enum pipe pipe;
2022
2023         if (err_int & ERR_INT_POISON)
2024                 DRM_ERROR("Poison interrupt\n");
2025
2026         for_each_pipe(dev_priv, pipe) {
2027                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2028                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2029
2030                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2031                         if (IS_IVYBRIDGE(dev))
2032                                 ivb_pipe_crc_irq_handler(dev, pipe);
2033                         else
2034                                 hsw_pipe_crc_irq_handler(dev, pipe);
2035                 }
2036         }
2037
2038         I915_WRITE(GEN7_ERR_INT, err_int);
2039 }
2040
2041 static void cpt_serr_int_handler(struct drm_device *dev)
2042 {
2043         struct drm_i915_private *dev_priv = dev->dev_private;
2044         u32 serr_int = I915_READ(SERR_INT);
2045
2046         if (serr_int & SERR_INT_POISON)
2047                 DRM_ERROR("PCH poison interrupt\n");
2048
2049         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2050                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2051
2052         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2053                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2054
2055         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2056                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2057
2058         I915_WRITE(SERR_INT, serr_int);
2059 }
2060
2061 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2062 {
2063         struct drm_i915_private *dev_priv = dev->dev_private;
2064         int pipe;
2065         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2066         u32 dig_hotplug_reg;
2067
2068         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2069         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2070
2071         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2072
2073         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2074                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2075                                SDE_AUDIO_POWER_SHIFT_CPT);
2076                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2077                                  port_name(port));
2078         }
2079
2080         if (pch_iir & SDE_AUX_MASK_CPT)
2081                 dp_aux_irq_handler(dev);
2082
2083         if (pch_iir & SDE_GMBUS_CPT)
2084                 gmbus_irq_handler(dev);
2085
2086         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2087                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2088
2089         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2090                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2091
2092         if (pch_iir & SDE_FDI_MASK_CPT)
2093                 for_each_pipe(dev_priv, pipe)
2094                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2095                                          pipe_name(pipe),
2096                                          I915_READ(FDI_RX_IIR(pipe)));
2097
2098         if (pch_iir & SDE_ERROR_CPT)
2099                 cpt_serr_int_handler(dev);
2100 }
2101
2102 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2103 {
2104         struct drm_i915_private *dev_priv = dev->dev_private;
2105         enum pipe pipe;
2106
2107         if (de_iir & DE_AUX_CHANNEL_A)
2108                 dp_aux_irq_handler(dev);
2109
2110         if (de_iir & DE_GSE)
2111                 intel_opregion_asle_intr(dev);
2112
2113         if (de_iir & DE_POISON)
2114                 DRM_ERROR("Poison interrupt\n");
2115
2116         for_each_pipe(dev_priv, pipe) {
2117                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2118                     intel_pipe_handle_vblank(dev, pipe))
2119                         intel_check_page_flip(dev, pipe);
2120
2121                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2122                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2123
2124                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2125                         i9xx_pipe_crc_irq_handler(dev, pipe);
2126
2127                 /* plane/pipes map 1:1 on ilk+ */
2128                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2129                         intel_prepare_page_flip(dev, pipe);
2130                         intel_finish_page_flip_plane(dev, pipe);
2131                 }
2132         }
2133
2134         /* check event from PCH */
2135         if (de_iir & DE_PCH_EVENT) {
2136                 u32 pch_iir = I915_READ(SDEIIR);
2137
2138                 if (HAS_PCH_CPT(dev))
2139                         cpt_irq_handler(dev, pch_iir);
2140                 else
2141                         ibx_irq_handler(dev, pch_iir);
2142
2143                 /* should clear PCH hotplug event before clear CPU irq */
2144                 I915_WRITE(SDEIIR, pch_iir);
2145         }
2146
2147         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2148                 ironlake_rps_change_irq_handler(dev);
2149 }
2150
2151 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2152 {
2153         struct drm_i915_private *dev_priv = dev->dev_private;
2154         enum pipe pipe;
2155
2156         if (de_iir & DE_ERR_INT_IVB)
2157                 ivb_err_int_handler(dev);
2158
2159         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2160                 dp_aux_irq_handler(dev);
2161
2162         if (de_iir & DE_GSE_IVB)
2163                 intel_opregion_asle_intr(dev);
2164
2165         for_each_pipe(dev_priv, pipe) {
2166                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2167                     intel_pipe_handle_vblank(dev, pipe))
2168                         intel_check_page_flip(dev, pipe);
2169
2170                 /* plane/pipes map 1:1 on ilk+ */
2171                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2172                         intel_prepare_page_flip(dev, pipe);
2173                         intel_finish_page_flip_plane(dev, pipe);
2174                 }
2175         }
2176
2177         /* check event from PCH */
2178         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2179                 u32 pch_iir = I915_READ(SDEIIR);
2180
2181                 cpt_irq_handler(dev, pch_iir);
2182
2183                 /* clear PCH hotplug event before clear CPU irq */
2184                 I915_WRITE(SDEIIR, pch_iir);
2185         }
2186 }
2187
2188 /*
2189  * To handle irqs with the minimum potential races with fresh interrupts, we:
2190  * 1 - Disable Master Interrupt Control.
2191  * 2 - Find the source(s) of the interrupt.
2192  * 3 - Clear the Interrupt Identity bits (IIR).
2193  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2194  * 5 - Re-enable Master Interrupt Control.
2195  */
2196 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2197 {
2198         struct drm_device *dev = arg;
2199         struct drm_i915_private *dev_priv = dev->dev_private;
2200         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2201         irqreturn_t ret = IRQ_NONE;
2202
2203         /* We get interrupts on unclaimed registers, so check for this before we
2204          * do any I915_{READ,WRITE}. */
2205         intel_uncore_check_errors(dev);
2206
2207         /* disable master interrupt before clearing iir  */
2208         de_ier = I915_READ(DEIER);
2209         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2210         POSTING_READ(DEIER);
2211
2212         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2213          * interrupts will will be stored on its back queue, and then we'll be
2214          * able to process them after we restore SDEIER (as soon as we restore
2215          * it, we'll get an interrupt if SDEIIR still has something to process
2216          * due to its back queue). */
2217         if (!HAS_PCH_NOP(dev)) {
2218                 sde_ier = I915_READ(SDEIER);
2219                 I915_WRITE(SDEIER, 0);
2220                 POSTING_READ(SDEIER);
2221         }
2222
2223         /* Find, clear, then process each source of interrupt */
2224
2225         gt_iir = I915_READ(GTIIR);
2226         if (gt_iir) {
2227                 I915_WRITE(GTIIR, gt_iir);
2228                 ret = IRQ_HANDLED;
2229                 if (INTEL_INFO(dev)->gen >= 6)
2230                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2231                 else
2232                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2233         }
2234
2235         de_iir = I915_READ(DEIIR);
2236         if (de_iir) {
2237                 I915_WRITE(DEIIR, de_iir);
2238                 ret = IRQ_HANDLED;
2239                 if (INTEL_INFO(dev)->gen >= 7)
2240                         ivb_display_irq_handler(dev, de_iir);
2241                 else
2242                         ilk_display_irq_handler(dev, de_iir);
2243         }
2244
2245         if (INTEL_INFO(dev)->gen >= 6) {
2246                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2247                 if (pm_iir) {
2248                         I915_WRITE(GEN6_PMIIR, pm_iir);
2249                         ret = IRQ_HANDLED;
2250                         gen6_rps_irq_handler(dev_priv, pm_iir);
2251                 }
2252         }
2253
2254         I915_WRITE(DEIER, de_ier);
2255         POSTING_READ(DEIER);
2256         if (!HAS_PCH_NOP(dev)) {
2257                 I915_WRITE(SDEIER, sde_ier);
2258                 POSTING_READ(SDEIER);
2259         }
2260
2261         return ret;
2262 }
2263
2264 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2265 {
2266         struct drm_device *dev = arg;
2267         struct drm_i915_private *dev_priv = dev->dev_private;
2268         u32 master_ctl;
2269         irqreturn_t ret = IRQ_NONE;
2270         uint32_t tmp = 0;
2271         enum pipe pipe;
2272         u32 aux_mask = GEN8_AUX_CHANNEL_A;
2273
2274         if (IS_GEN9(dev))
2275                 aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2276                         GEN9_AUX_CHANNEL_D;
2277
2278         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2279         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2280         if (!master_ctl)
2281                 return IRQ_NONE;
2282
2283         I915_WRITE(GEN8_MASTER_IRQ, 0);
2284         POSTING_READ(GEN8_MASTER_IRQ);
2285
2286         /* Find, clear, then process each source of interrupt */
2287
2288         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2289
2290         if (master_ctl & GEN8_DE_MISC_IRQ) {
2291                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2292                 if (tmp) {
2293                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2294                         ret = IRQ_HANDLED;
2295                         if (tmp & GEN8_DE_MISC_GSE)
2296                                 intel_opregion_asle_intr(dev);
2297                         else
2298                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2299                 }
2300                 else
2301                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2302         }
2303
2304         if (master_ctl & GEN8_DE_PORT_IRQ) {
2305                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2306                 if (tmp) {
2307                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2308                         ret = IRQ_HANDLED;
2309
2310                         if (tmp & aux_mask)
2311                                 dp_aux_irq_handler(dev);
2312                         else
2313                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2314                 }
2315                 else
2316                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2317         }
2318
2319         for_each_pipe(dev_priv, pipe) {
2320                 uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2321
2322                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2323                         continue;
2324
2325                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2326                 if (pipe_iir) {
2327                         ret = IRQ_HANDLED;
2328                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2329
2330                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2331                             intel_pipe_handle_vblank(dev, pipe))
2332                                 intel_check_page_flip(dev, pipe);
2333
2334                         if (IS_GEN9(dev))
2335                                 flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2336                         else
2337                                 flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2338
2339                         if (flip_done) {
2340                                 intel_prepare_page_flip(dev, pipe);
2341                                 intel_finish_page_flip_plane(dev, pipe);
2342                         }
2343
2344                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2345                                 hsw_pipe_crc_irq_handler(dev, pipe);
2346
2347                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2348                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
2349                                                                     pipe);
2350
2351
2352                         if (IS_GEN9(dev))
2353                                 fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2354                         else
2355                                 fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2356
2357                         if (fault_errors)
2358                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2359                                           pipe_name(pipe),
2360                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2361                 } else
2362                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2363         }
2364
2365         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2366                 /*
2367                  * FIXME(BDW): Assume for now that the new interrupt handling
2368                  * scheme also closed the SDE interrupt handling race we've seen
2369                  * on older pch-split platforms. But this needs testing.
2370                  */
2371                 u32 pch_iir = I915_READ(SDEIIR);
2372                 if (pch_iir) {
2373                         I915_WRITE(SDEIIR, pch_iir);
2374                         ret = IRQ_HANDLED;
2375                         cpt_irq_handler(dev, pch_iir);
2376                 } else
2377                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2378
2379         }
2380
2381         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2382         POSTING_READ(GEN8_MASTER_IRQ);
2383
2384         return ret;
2385 }
2386
2387 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2388                                bool reset_completed)
2389 {
2390         struct intel_engine_cs *ring;
2391         int i;
2392
2393         /*
2394          * Notify all waiters for GPU completion events that reset state has
2395          * been changed, and that they need to restart their wait after
2396          * checking for potential errors (and bail out to drop locks if there is
2397          * a gpu reset pending so that i915_error_work_func can acquire them).
2398          */
2399
2400         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2401         for_each_ring(ring, dev_priv, i)
2402                 wake_up_all(&ring->irq_queue);
2403
2404         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2405         wake_up_all(&dev_priv->pending_flip_queue);
2406
2407         /*
2408          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2409          * reset state is cleared.
2410          */
2411         if (reset_completed)
2412                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2413 }
2414
2415 /**
2416  * i915_error_work_func - do process context error handling work
2417  * @work: work struct
2418  *
2419  * Fire an error uevent so userspace can see that a hang or error
2420  * was detected.
2421  */
2422 static void i915_error_work_func(struct work_struct *work)
2423 {
2424         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2425                                                     work);
2426         struct drm_i915_private *dev_priv =
2427                 container_of(error, struct drm_i915_private, gpu_error);
2428         struct drm_device *dev = dev_priv->dev;
2429         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2430         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2431         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2432         int ret;
2433
2434         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2435
2436         /*
2437          * Note that there's only one work item which does gpu resets, so we
2438          * need not worry about concurrent gpu resets potentially incrementing
2439          * error->reset_counter twice. We only need to take care of another
2440          * racing irq/hangcheck declaring the gpu dead for a second time. A
2441          * quick check for that is good enough: schedule_work ensures the
2442          * correct ordering between hang detection and this work item, and since
2443          * the reset in-progress bit is only ever set by code outside of this
2444          * work we don't need to worry about any other races.
2445          */
2446         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2447                 DRM_DEBUG_DRIVER("resetting chip\n");
2448                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2449                                    reset_event);
2450
2451                 /*
2452                  * In most cases it's guaranteed that we get here with an RPM
2453                  * reference held, for example because there is a pending GPU
2454                  * request that won't finish until the reset is done. This
2455                  * isn't the case at least when we get here by doing a
2456                  * simulated reset via debugs, so get an RPM reference.
2457                  */
2458                 intel_runtime_pm_get(dev_priv);
2459
2460                 intel_prepare_reset(dev);
2461
2462                 /*
2463                  * All state reset _must_ be completed before we update the
2464                  * reset counter, for otherwise waiters might miss the reset
2465                  * pending state and not properly drop locks, resulting in
2466                  * deadlocks with the reset work.
2467                  */
2468                 ret = i915_reset(dev);
2469
2470                 intel_finish_reset(dev);
2471
2472                 intel_runtime_pm_put(dev_priv);
2473
2474                 if (ret == 0) {
2475                         /*
2476                          * After all the gem state is reset, increment the reset
2477                          * counter and wake up everyone waiting for the reset to
2478                          * complete.
2479                          *
2480                          * Since unlock operations are a one-sided barrier only,
2481                          * we need to insert a barrier here to order any seqno
2482                          * updates before
2483                          * the counter increment.
2484                          */
2485                         smp_mb__before_atomic();
2486                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2487
2488                         kobject_uevent_env(&dev->primary->kdev->kobj,
2489                                            KOBJ_CHANGE, reset_done_event);
2490                 } else {
2491                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2492                 }
2493
2494                 /*
2495                  * Note: The wake_up also serves as a memory barrier so that
2496                  * waiters see the update value of the reset counter atomic_t.
2497                  */
2498                 i915_error_wake_up(dev_priv, true);
2499         }
2500 }
2501
2502 static void i915_report_and_clear_eir(struct drm_device *dev)
2503 {
2504         struct drm_i915_private *dev_priv = dev->dev_private;
2505         uint32_t instdone[I915_NUM_INSTDONE_REG];
2506         u32 eir = I915_READ(EIR);
2507         int pipe, i;
2508
2509         if (!eir)
2510                 return;
2511
2512         pr_err("render error detected, EIR: 0x%08x\n", eir);
2513
2514         i915_get_extra_instdone(dev, instdone);
2515
2516         if (IS_G4X(dev)) {
2517                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2518                         u32 ipeir = I915_READ(IPEIR_I965);
2519
2520                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2521                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2522                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2523                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2524                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2525                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2526                         I915_WRITE(IPEIR_I965, ipeir);
2527                         POSTING_READ(IPEIR_I965);
2528                 }
2529                 if (eir & GM45_ERROR_PAGE_TABLE) {
2530                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2531                         pr_err("page table error\n");
2532                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2533                         I915_WRITE(PGTBL_ER, pgtbl_err);
2534                         POSTING_READ(PGTBL_ER);
2535                 }
2536         }
2537
2538         if (!IS_GEN2(dev)) {
2539                 if (eir & I915_ERROR_PAGE_TABLE) {
2540                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2541                         pr_err("page table error\n");
2542                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2543                         I915_WRITE(PGTBL_ER, pgtbl_err);
2544                         POSTING_READ(PGTBL_ER);
2545                 }
2546         }
2547
2548         if (eir & I915_ERROR_MEMORY_REFRESH) {
2549                 pr_err("memory refresh error:\n");
2550                 for_each_pipe(dev_priv, pipe)
2551                         pr_err("pipe %c stat: 0x%08x\n",
2552                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2553                 /* pipestat has already been acked */
2554         }
2555         if (eir & I915_ERROR_INSTRUCTION) {
2556                 pr_err("instruction error\n");
2557                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2558                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2559                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2560                 if (INTEL_INFO(dev)->gen < 4) {
2561                         u32 ipeir = I915_READ(IPEIR);
2562
2563                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2564                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2565                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2566                         I915_WRITE(IPEIR, ipeir);
2567                         POSTING_READ(IPEIR);
2568                 } else {
2569                         u32 ipeir = I915_READ(IPEIR_I965);
2570
2571                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2572                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2573                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2574                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2575                         I915_WRITE(IPEIR_I965, ipeir);
2576                         POSTING_READ(IPEIR_I965);
2577                 }
2578         }
2579
2580         I915_WRITE(EIR, eir);
2581         POSTING_READ(EIR);
2582         eir = I915_READ(EIR);
2583         if (eir) {
2584                 /*
2585                  * some errors might have become stuck,
2586                  * mask them.
2587                  */
2588                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2589                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2590                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2591         }
2592 }
2593
2594 /**
2595  * i915_handle_error - handle an error interrupt
2596  * @dev: drm device
2597  *
2598  * Do some basic checking of regsiter state at error interrupt time and
2599  * dump it to the syslog.  Also call i915_capture_error_state() to make
2600  * sure we get a record and make it available in debugfs.  Fire a uevent
2601  * so userspace knows something bad happened (should trigger collection
2602  * of a ring dump etc.).
2603  */
2604 void i915_handle_error(struct drm_device *dev, bool wedged,
2605                        const char *fmt, ...)
2606 {
2607         struct drm_i915_private *dev_priv = dev->dev_private;
2608         va_list args;
2609         char error_msg[80];
2610
2611         va_start(args, fmt);
2612         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2613         va_end(args);
2614
2615         i915_capture_error_state(dev, wedged, error_msg);
2616         i915_report_and_clear_eir(dev);
2617
2618         if (wedged) {
2619                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2620                                 &dev_priv->gpu_error.reset_counter);
2621
2622                 /*
2623                  * Wakeup waiting processes so that the reset work function
2624                  * i915_error_work_func doesn't deadlock trying to grab various
2625                  * locks. By bumping the reset counter first, the woken
2626                  * processes will see a reset in progress and back off,
2627                  * releasing their locks and then wait for the reset completion.
2628                  * We must do this for _all_ gpu waiters that might hold locks
2629                  * that the reset work needs to acquire.
2630                  *
2631                  * Note: The wake_up serves as the required memory barrier to
2632                  * ensure that the waiters see the updated value of the reset
2633                  * counter atomic_t.
2634                  */
2635                 i915_error_wake_up(dev_priv, false);
2636         }
2637
2638         /*
2639          * Our reset work can grab modeset locks (since it needs to reset the
2640          * state of outstanding pagelips). Hence it must not be run on our own
2641          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2642          * code will deadlock.
2643          */
2644         schedule_work(&dev_priv->gpu_error.work);
2645 }
2646
2647 /* Called from drm generic code, passed 'crtc' which
2648  * we use as a pipe index
2649  */
2650 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2651 {
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653         unsigned long irqflags;
2654
2655         if (!i915_pipe_enabled(dev, pipe))
2656                 return -EINVAL;
2657
2658         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2659         if (INTEL_INFO(dev)->gen >= 4)
2660                 i915_enable_pipestat(dev_priv, pipe,
2661                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2662         else
2663                 i915_enable_pipestat(dev_priv, pipe,
2664                                      PIPE_VBLANK_INTERRUPT_STATUS);
2665         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2666
2667         return 0;
2668 }
2669
2670 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2671 {
2672         struct drm_i915_private *dev_priv = dev->dev_private;
2673         unsigned long irqflags;
2674         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2675                                                      DE_PIPE_VBLANK(pipe);
2676
2677         if (!i915_pipe_enabled(dev, pipe))
2678                 return -EINVAL;
2679
2680         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2681         ironlake_enable_display_irq(dev_priv, bit);
2682         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2683
2684         return 0;
2685 }
2686
2687 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2688 {
2689         struct drm_i915_private *dev_priv = dev->dev_private;
2690         unsigned long irqflags;
2691
2692         if (!i915_pipe_enabled(dev, pipe))
2693                 return -EINVAL;
2694
2695         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2696         i915_enable_pipestat(dev_priv, pipe,
2697                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2698         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2699
2700         return 0;
2701 }
2702
2703 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2704 {
2705         struct drm_i915_private *dev_priv = dev->dev_private;
2706         unsigned long irqflags;
2707
2708         if (!i915_pipe_enabled(dev, pipe))
2709                 return -EINVAL;
2710
2711         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2712         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2713         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2714         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2715         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716         return 0;
2717 }
2718
2719 /* Called from drm generic code, passed 'crtc' which
2720  * we use as a pipe index
2721  */
2722 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2723 {
2724         struct drm_i915_private *dev_priv = dev->dev_private;
2725         unsigned long irqflags;
2726
2727         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728         i915_disable_pipestat(dev_priv, pipe,
2729                               PIPE_VBLANK_INTERRUPT_STATUS |
2730                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2731         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2732 }
2733
2734 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2735 {
2736         struct drm_i915_private *dev_priv = dev->dev_private;
2737         unsigned long irqflags;
2738         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2739                                                      DE_PIPE_VBLANK(pipe);
2740
2741         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2742         ironlake_disable_display_irq(dev_priv, bit);
2743         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2744 }
2745
2746 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2747 {
2748         struct drm_i915_private *dev_priv = dev->dev_private;
2749         unsigned long irqflags;
2750
2751         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2752         i915_disable_pipestat(dev_priv, pipe,
2753                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2754         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755 }
2756
2757 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2758 {
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         unsigned long irqflags;
2761
2762         if (!i915_pipe_enabled(dev, pipe))
2763                 return;
2764
2765         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2766         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2767         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2768         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2769         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2770 }
2771
2772 static u32
2773 ring_last_seqno(struct intel_engine_cs *ring)
2774 {
2775         return list_entry(ring->request_list.prev,
2776                           struct drm_i915_gem_request, list)->seqno;
2777 }
2778
2779 static bool
2780 ring_idle(struct intel_engine_cs *ring, u32 seqno)
2781 {
2782         return (list_empty(&ring->request_list) ||
2783                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
2784 }
2785
2786 static bool
2787 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2788 {
2789         if (INTEL_INFO(dev)->gen >= 8) {
2790                 return (ipehr >> 23) == 0x1c;
2791         } else {
2792                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2793                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2794                                  MI_SEMAPHORE_REGISTER);
2795         }
2796 }
2797
2798 static struct intel_engine_cs *
2799 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2800 {
2801         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2802         struct intel_engine_cs *signaller;
2803         int i;
2804
2805         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2806                 for_each_ring(signaller, dev_priv, i) {
2807                         if (ring == signaller)
2808                                 continue;
2809
2810                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
2811                                 return signaller;
2812                 }
2813         } else {
2814                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2815
2816                 for_each_ring(signaller, dev_priv, i) {
2817                         if(ring == signaller)
2818                                 continue;
2819
2820                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2821                                 return signaller;
2822                 }
2823         }
2824
2825         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2826                   ring->id, ipehr, offset);
2827
2828         return NULL;
2829 }
2830
2831 static struct intel_engine_cs *
2832 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2833 {
2834         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2835         u32 cmd, ipehr, head;
2836         u64 offset = 0;
2837         int i, backwards;
2838
2839         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2840         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2841                 return NULL;
2842
2843         /*
2844          * HEAD is likely pointing to the dword after the actual command,
2845          * so scan backwards until we find the MBOX. But limit it to just 3
2846          * or 4 dwords depending on the semaphore wait command size.
2847          * Note that we don't care about ACTHD here since that might
2848          * point at at batch, and semaphores are always emitted into the
2849          * ringbuffer itself.
2850          */
2851         head = I915_READ_HEAD(ring) & HEAD_ADDR;
2852         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2853
2854         for (i = backwards; i; --i) {
2855                 /*
2856                  * Be paranoid and presume the hw has gone off into the wild -
2857                  * our ring is smaller than what the hardware (and hence
2858                  * HEAD_ADDR) allows. Also handles wrap-around.
2859                  */
2860                 head &= ring->buffer->size - 1;
2861
2862                 /* This here seems to blow up */
2863                 cmd = ioread32(ring->buffer->virtual_start + head);
2864                 if (cmd == ipehr)
2865                         break;
2866
2867                 head -= 4;
2868         }
2869
2870         if (!i)
2871                 return NULL;
2872
2873         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2874         if (INTEL_INFO(ring->dev)->gen >= 8) {
2875                 offset = ioread32(ring->buffer->virtual_start + head + 12);
2876                 offset <<= 32;
2877                 offset = ioread32(ring->buffer->virtual_start + head + 8);
2878         }
2879         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2880 }
2881
2882 static int semaphore_passed(struct intel_engine_cs *ring)
2883 {
2884         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2885         struct intel_engine_cs *signaller;
2886         u32 seqno;
2887
2888         ring->hangcheck.deadlock++;
2889
2890         signaller = semaphore_waits_for(ring, &seqno);
2891         if (signaller == NULL)
2892                 return -1;
2893
2894         /* Prevent pathological recursion due to driver bugs */
2895         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2896                 return -1;
2897
2898         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2899                 return 1;
2900
2901         /* cursory check for an unkickable deadlock */
2902         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2903             semaphore_passed(signaller) < 0)
2904                 return -1;
2905
2906         return 0;
2907 }
2908
2909 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2910 {
2911         struct intel_engine_cs *ring;
2912         int i;
2913
2914         for_each_ring(ring, dev_priv, i)
2915                 ring->hangcheck.deadlock = 0;
2916 }
2917
2918 static enum intel_ring_hangcheck_action
2919 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2920 {
2921         struct drm_device *dev = ring->dev;
2922         struct drm_i915_private *dev_priv = dev->dev_private;
2923         u32 tmp;
2924
2925         if (acthd != ring->hangcheck.acthd) {
2926                 if (acthd > ring->hangcheck.max_acthd) {
2927                         ring->hangcheck.max_acthd = acthd;
2928                         return HANGCHECK_ACTIVE;
2929                 }
2930
2931                 return HANGCHECK_ACTIVE_LOOP;
2932         }
2933
2934         if (IS_GEN2(dev))
2935                 return HANGCHECK_HUNG;
2936
2937         /* Is the chip hanging on a WAIT_FOR_EVENT?
2938          * If so we can simply poke the RB_WAIT bit
2939          * and break the hang. This should work on
2940          * all but the second generation chipsets.
2941          */
2942         tmp = I915_READ_CTL(ring);
2943         if (tmp & RING_WAIT) {
2944                 i915_handle_error(dev, false,
2945                                   "Kicking stuck wait on %s",
2946                                   ring->name);
2947                 I915_WRITE_CTL(ring, tmp);
2948                 return HANGCHECK_KICK;
2949         }
2950
2951         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2952                 switch (semaphore_passed(ring)) {
2953                 default:
2954                         return HANGCHECK_HUNG;
2955                 case 1:
2956                         i915_handle_error(dev, false,
2957                                           "Kicking stuck semaphore on %s",
2958                                           ring->name);
2959                         I915_WRITE_CTL(ring, tmp);
2960                         return HANGCHECK_KICK;
2961                 case 0:
2962                         return HANGCHECK_WAIT;
2963                 }
2964         }
2965
2966         return HANGCHECK_HUNG;
2967 }
2968
2969 /**
2970  * This is called when the chip hasn't reported back with completed
2971  * batchbuffers in a long time. We keep track per ring seqno progress and
2972  * if there are no progress, hangcheck score for that ring is increased.
2973  * Further, acthd is inspected to see if the ring is stuck. On stuck case
2974  * we kick the ring. If we see no progress on three subsequent calls
2975  * we assume chip is wedged and try to fix it by resetting the chip.
2976  */
2977 static void i915_hangcheck_elapsed(unsigned long data)
2978 {
2979         struct drm_device *dev = (struct drm_device *)data;
2980         struct drm_i915_private *dev_priv = dev->dev_private;
2981         struct intel_engine_cs *ring;
2982         int i;
2983         int busy_count = 0, rings_hung = 0;
2984         bool stuck[I915_NUM_RINGS] = { 0 };
2985 #define BUSY 1
2986 #define KICK 5
2987 #define HUNG 20
2988
2989         if (!i915.enable_hangcheck)
2990                 return;
2991
2992         for_each_ring(ring, dev_priv, i) {
2993                 u64 acthd;
2994                 u32 seqno;
2995                 bool busy = true;
2996
2997                 semaphore_clear_deadlocks(dev_priv);
2998
2999                 seqno = ring->get_seqno(ring, false);
3000                 acthd = intel_ring_get_active_head(ring);
3001
3002                 if (ring->hangcheck.seqno == seqno) {
3003                         if (ring_idle(ring, seqno)) {
3004                                 ring->hangcheck.action = HANGCHECK_IDLE;
3005
3006                                 if (waitqueue_active(&ring->irq_queue)) {
3007                                         /* Issue a wake-up to catch stuck h/w. */
3008                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3009                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3010                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3011                                                                   ring->name);
3012                                                 else
3013                                                         DRM_INFO("Fake missed irq on %s\n",
3014                                                                  ring->name);
3015                                                 wake_up_all(&ring->irq_queue);
3016                                         }
3017                                         /* Safeguard against driver failure */
3018                                         ring->hangcheck.score += BUSY;
3019                                 } else
3020                                         busy = false;
3021                         } else {
3022                                 /* We always increment the hangcheck score
3023                                  * if the ring is busy and still processing
3024                                  * the same request, so that no single request
3025                                  * can run indefinitely (such as a chain of
3026                                  * batches). The only time we do not increment
3027                                  * the hangcheck score on this ring, if this
3028                                  * ring is in a legitimate wait for another
3029                                  * ring. In that case the waiting ring is a
3030                                  * victim and we want to be sure we catch the
3031                                  * right culprit. Then every time we do kick
3032                                  * the ring, add a small increment to the
3033                                  * score so that we can catch a batch that is
3034                                  * being repeatedly kicked and so responsible
3035                                  * for stalling the machine.
3036                                  */
3037                                 ring->hangcheck.action = ring_stuck(ring,
3038                                                                     acthd);
3039
3040                                 switch (ring->hangcheck.action) {
3041                                 case HANGCHECK_IDLE:
3042                                 case HANGCHECK_WAIT:
3043                                 case HANGCHECK_ACTIVE:
3044                                         break;
3045                                 case HANGCHECK_ACTIVE_LOOP:
3046                                         ring->hangcheck.score += BUSY;
3047                                         break;
3048                                 case HANGCHECK_KICK:
3049                                         ring->hangcheck.score += KICK;
3050                                         break;
3051                                 case HANGCHECK_HUNG:
3052                                         ring->hangcheck.score += HUNG;
3053                                         stuck[i] = true;
3054                                         break;
3055                                 }
3056                         }
3057                 } else {
3058                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3059
3060                         /* Gradually reduce the count so that we catch DoS
3061                          * attempts across multiple batches.
3062                          */
3063                         if (ring->hangcheck.score > 0)
3064                                 ring->hangcheck.score--;
3065
3066                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3067                 }
3068
3069                 ring->hangcheck.seqno = seqno;
3070                 ring->hangcheck.acthd = acthd;
3071                 busy_count += busy;
3072         }
3073
3074         for_each_ring(ring, dev_priv, i) {
3075                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3076                         DRM_INFO("%s on %s\n",
3077                                  stuck[i] ? "stuck" : "no progress",
3078                                  ring->name);
3079                         rings_hung++;
3080                 }
3081         }
3082
3083         if (rings_hung)
3084                 return i915_handle_error(dev, true, "Ring hung");
3085
3086         if (busy_count)
3087                 /* Reset timer case chip hangs without another request
3088                  * being added */
3089                 i915_queue_hangcheck(dev);
3090 }
3091
3092 void i915_queue_hangcheck(struct drm_device *dev)
3093 {
3094         struct drm_i915_private *dev_priv = dev->dev_private;
3095         struct timer_list *timer = &dev_priv->gpu_error.hangcheck_timer;
3096
3097         if (!i915.enable_hangcheck)
3098                 return;
3099
3100         /* Don't continually defer the hangcheck, but make sure it is active */
3101         if (timer_pending(timer))
3102                 return;
3103         mod_timer(timer,
3104                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3105 }
3106
3107 static void ibx_irq_reset(struct drm_device *dev)
3108 {
3109         struct drm_i915_private *dev_priv = dev->dev_private;
3110
3111         if (HAS_PCH_NOP(dev))
3112                 return;
3113
3114         GEN5_IRQ_RESET(SDE);
3115
3116         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3117                 I915_WRITE(SERR_INT, 0xffffffff);
3118 }
3119
3120 /*
3121  * SDEIER is also touched by the interrupt handler to work around missed PCH
3122  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3123  * instead we unconditionally enable all PCH interrupt sources here, but then
3124  * only unmask them as needed with SDEIMR.
3125  *
3126  * This function needs to be called before interrupts are enabled.
3127  */
3128 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3129 {
3130         struct drm_i915_private *dev_priv = dev->dev_private;
3131
3132         if (HAS_PCH_NOP(dev))
3133                 return;
3134
3135         WARN_ON(I915_READ(SDEIER) != 0);
3136         I915_WRITE(SDEIER, 0xffffffff);
3137         POSTING_READ(SDEIER);
3138 }
3139
3140 static void gen5_gt_irq_reset(struct drm_device *dev)
3141 {
3142         struct drm_i915_private *dev_priv = dev->dev_private;
3143
3144         GEN5_IRQ_RESET(GT);
3145         if (INTEL_INFO(dev)->gen >= 6)
3146                 GEN5_IRQ_RESET(GEN6_PM);
3147 }
3148
3149 /* drm_dma.h hooks
3150 */
3151 static void ironlake_irq_reset(struct drm_device *dev)
3152 {
3153         struct drm_i915_private *dev_priv = dev->dev_private;
3154
3155         I915_WRITE(HWSTAM, 0xffffffff);
3156
3157         GEN5_IRQ_RESET(DE);
3158         if (IS_GEN7(dev))
3159                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3160
3161         gen5_gt_irq_reset(dev);
3162
3163         ibx_irq_reset(dev);
3164 }
3165
3166 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3167 {
3168         enum pipe pipe;
3169
3170         I915_WRITE(PORT_HOTPLUG_EN, 0);
3171         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3172
3173         for_each_pipe(dev_priv, pipe)
3174                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3175
3176         GEN5_IRQ_RESET(VLV_);
3177 }
3178
3179 static void valleyview_irq_preinstall(struct drm_device *dev)
3180 {
3181         struct drm_i915_private *dev_priv = dev->dev_private;
3182
3183         /* VLV magic */
3184         I915_WRITE(VLV_IMR, 0);
3185         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3186         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3187         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3188
3189         gen5_gt_irq_reset(dev);
3190
3191         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3192
3193         vlv_display_irq_reset(dev_priv);
3194 }
3195
3196 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3197 {
3198         GEN8_IRQ_RESET_NDX(GT, 0);
3199         GEN8_IRQ_RESET_NDX(GT, 1);
3200         GEN8_IRQ_RESET_NDX(GT, 2);
3201         GEN8_IRQ_RESET_NDX(GT, 3);
3202 }
3203
3204 static void gen8_irq_reset(struct drm_device *dev)
3205 {
3206         struct drm_i915_private *dev_priv = dev->dev_private;
3207         int pipe;
3208
3209         I915_WRITE(GEN8_MASTER_IRQ, 0);
3210         POSTING_READ(GEN8_MASTER_IRQ);
3211
3212         gen8_gt_irq_reset(dev_priv);
3213
3214         for_each_pipe(dev_priv, pipe)
3215                 if (intel_display_power_is_enabled(dev_priv,
3216                                                    POWER_DOMAIN_PIPE(pipe)))
3217                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3218
3219         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3220         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3221         GEN5_IRQ_RESET(GEN8_PCU_);
3222
3223         ibx_irq_reset(dev);
3224 }
3225
3226 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3227 {
3228         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3229
3230         spin_lock_irq(&dev_priv->irq_lock);
3231         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3232                           ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3233         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3234                           ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3235         spin_unlock_irq(&dev_priv->irq_lock);
3236 }
3237
3238 static void cherryview_irq_preinstall(struct drm_device *dev)
3239 {
3240         struct drm_i915_private *dev_priv = dev->dev_private;
3241
3242         I915_WRITE(GEN8_MASTER_IRQ, 0);
3243         POSTING_READ(GEN8_MASTER_IRQ);
3244
3245         gen8_gt_irq_reset(dev_priv);
3246
3247         GEN5_IRQ_RESET(GEN8_PCU_);
3248
3249         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3250
3251         vlv_display_irq_reset(dev_priv);
3252 }
3253
3254 static void ibx_hpd_irq_setup(struct drm_device *dev)
3255 {
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         struct intel_encoder *intel_encoder;
3258         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3259
3260         if (HAS_PCH_IBX(dev)) {
3261                 hotplug_irqs = SDE_HOTPLUG_MASK;
3262                 for_each_intel_encoder(dev, intel_encoder)
3263                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3264                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3265         } else {
3266                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3267                 for_each_intel_encoder(dev, intel_encoder)
3268                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3269                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3270         }
3271
3272         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3273
3274         /*
3275          * Enable digital hotplug on the PCH, and configure the DP short pulse
3276          * duration to 2ms (which is the minimum in the Display Port spec)
3277          *
3278          * This register is the same on all known PCH chips.
3279          */
3280         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3281         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3282         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3283         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3284         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3285         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3286 }
3287
3288 static void ibx_irq_postinstall(struct drm_device *dev)
3289 {
3290         struct drm_i915_private *dev_priv = dev->dev_private;
3291         u32 mask;
3292
3293         if (HAS_PCH_NOP(dev))
3294                 return;
3295
3296         if (HAS_PCH_IBX(dev))
3297                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3298         else
3299                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3300
3301         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3302         I915_WRITE(SDEIMR, ~mask);
3303 }
3304
3305 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3306 {
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         u32 pm_irqs, gt_irqs;
3309
3310         pm_irqs = gt_irqs = 0;
3311
3312         dev_priv->gt_irq_mask = ~0;
3313         if (HAS_L3_DPF(dev)) {
3314                 /* L3 parity interrupt is always unmasked. */
3315                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3316                 gt_irqs |= GT_PARITY_ERROR(dev);
3317         }
3318
3319         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3320         if (IS_GEN5(dev)) {
3321                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3322                            ILK_BSD_USER_INTERRUPT;
3323         } else {
3324                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3325         }
3326
3327         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3328
3329         if (INTEL_INFO(dev)->gen >= 6) {
3330                 /*
3331                  * RPS interrupts will get enabled/disabled on demand when RPS
3332                  * itself is enabled/disabled.
3333                  */
3334                 if (HAS_VEBOX(dev))
3335                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3336
3337                 dev_priv->pm_irq_mask = 0xffffffff;
3338                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3339         }
3340 }
3341
3342 static int ironlake_irq_postinstall(struct drm_device *dev)
3343 {
3344         struct drm_i915_private *dev_priv = dev->dev_private;
3345         u32 display_mask, extra_mask;
3346
3347         if (INTEL_INFO(dev)->gen >= 7) {
3348                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3349                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3350                                 DE_PLANEB_FLIP_DONE_IVB |
3351                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3352                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3353                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3354         } else {
3355                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3356                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3357                                 DE_AUX_CHANNEL_A |
3358                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3359                                 DE_POISON);
3360                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3361                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3362         }
3363
3364         dev_priv->irq_mask = ~display_mask;
3365
3366         I915_WRITE(HWSTAM, 0xeffe);
3367
3368         ibx_irq_pre_postinstall(dev);
3369
3370         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3371
3372         gen5_gt_irq_postinstall(dev);
3373
3374         ibx_irq_postinstall(dev);
3375
3376         if (IS_IRONLAKE_M(dev)) {
3377                 /* Enable PCU event interrupts
3378                  *
3379                  * spinlocking not required here for correctness since interrupt
3380                  * setup is guaranteed to run in single-threaded context. But we
3381                  * need it to make the assert_spin_locked happy. */
3382                 spin_lock_irq(&dev_priv->irq_lock);
3383                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3384                 spin_unlock_irq(&dev_priv->irq_lock);
3385         }
3386
3387         return 0;
3388 }
3389
3390 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3391 {
3392         u32 pipestat_mask;
3393         u32 iir_mask;
3394         enum pipe pipe;
3395
3396         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3397                         PIPE_FIFO_UNDERRUN_STATUS;
3398
3399         for_each_pipe(dev_priv, pipe)
3400                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3401         POSTING_READ(PIPESTAT(PIPE_A));
3402
3403         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3404                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3405
3406         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3407         for_each_pipe(dev_priv, pipe)
3408                       i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3409
3410         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3411                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3412                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3413         if (IS_CHERRYVIEW(dev_priv))
3414                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3415         dev_priv->irq_mask &= ~iir_mask;
3416
3417         I915_WRITE(VLV_IIR, iir_mask);
3418         I915_WRITE(VLV_IIR, iir_mask);
3419         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3420         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3421         POSTING_READ(VLV_IMR);
3422 }
3423
3424 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3425 {
3426         u32 pipestat_mask;
3427         u32 iir_mask;
3428         enum pipe pipe;
3429
3430         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3431                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3432                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3433         if (IS_CHERRYVIEW(dev_priv))
3434                 iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3435
3436         dev_priv->irq_mask |= iir_mask;
3437         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3438         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3439         I915_WRITE(VLV_IIR, iir_mask);
3440         I915_WRITE(VLV_IIR, iir_mask);
3441         POSTING_READ(VLV_IIR);
3442
3443         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3444                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3445
3446         i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3447         for_each_pipe(dev_priv, pipe)
3448                 i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3449
3450         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3451                         PIPE_FIFO_UNDERRUN_STATUS;
3452
3453         for_each_pipe(dev_priv, pipe)
3454                 I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3455         POSTING_READ(PIPESTAT(PIPE_A));
3456 }
3457
3458 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3459 {
3460         assert_spin_locked(&dev_priv->irq_lock);
3461
3462         if (dev_priv->display_irqs_enabled)
3463                 return;
3464
3465         dev_priv->display_irqs_enabled = true;
3466
3467         if (intel_irqs_enabled(dev_priv))
3468                 valleyview_display_irqs_install(dev_priv);
3469 }
3470
3471 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3472 {
3473         assert_spin_locked(&dev_priv->irq_lock);
3474
3475         if (!dev_priv->display_irqs_enabled)
3476                 return;
3477
3478         dev_priv->display_irqs_enabled = false;
3479
3480         if (intel_irqs_enabled(dev_priv))
3481                 valleyview_display_irqs_uninstall(dev_priv);
3482 }
3483
3484 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3485 {
3486         dev_priv->irq_mask = ~0;
3487
3488         I915_WRITE(PORT_HOTPLUG_EN, 0);
3489         POSTING_READ(PORT_HOTPLUG_EN);
3490
3491         I915_WRITE(VLV_IIR, 0xffffffff);
3492         I915_WRITE(VLV_IIR, 0xffffffff);
3493         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3494         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3495         POSTING_READ(VLV_IMR);
3496
3497         /* Interrupt setup is already guaranteed to be single-threaded, this is
3498          * just to make the assert_spin_locked check happy. */
3499         spin_lock_irq(&dev_priv->irq_lock);
3500         if (dev_priv->display_irqs_enabled)
3501                 valleyview_display_irqs_install(dev_priv);
3502         spin_unlock_irq(&dev_priv->irq_lock);
3503 }
3504
3505 static int valleyview_irq_postinstall(struct drm_device *dev)
3506 {
3507         struct drm_i915_private *dev_priv = dev->dev_private;
3508
3509         vlv_display_irq_postinstall(dev_priv);
3510
3511         gen5_gt_irq_postinstall(dev);
3512
3513         /* ack & enable invalid PTE error interrupts */
3514 #if 0 /* FIXME: add support to irq handler for checking these bits */
3515         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3516         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3517 #endif
3518
3519         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3520
3521         return 0;
3522 }
3523
3524 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3525 {
3526         /* These are interrupts we'll toggle with the ring mask register */
3527         uint32_t gt_interrupts[] = {
3528                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3529                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3530                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3531                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3532                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3533                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3534                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3535                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3536                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3537                 0,
3538                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3539                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3540                 };
3541
3542         dev_priv->pm_irq_mask = 0xffffffff;
3543         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3544         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3545         /*
3546          * RPS interrupts will get enabled/disabled on demand when RPS itself
3547          * is enabled/disabled.
3548          */
3549         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3550         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3551 }
3552
3553 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3554 {
3555         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3556         uint32_t de_pipe_enables;
3557         int pipe;
3558         u32 aux_en = GEN8_AUX_CHANNEL_A;
3559
3560         if (IS_GEN9(dev_priv)) {
3561                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3562                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3563                 aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3564                         GEN9_AUX_CHANNEL_D;
3565         } else
3566                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3567                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3568
3569         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3570                                            GEN8_PIPE_FIFO_UNDERRUN;
3571
3572         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3573         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3574         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3575
3576         for_each_pipe(dev_priv, pipe)
3577                 if (intel_display_power_is_enabled(dev_priv,
3578                                 POWER_DOMAIN_PIPE(pipe)))
3579                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3580                                           dev_priv->de_irq_mask[pipe],
3581                                           de_pipe_enables);
3582
3583         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3584 }
3585
3586 static int gen8_irq_postinstall(struct drm_device *dev)
3587 {
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589
3590         ibx_irq_pre_postinstall(dev);
3591
3592         gen8_gt_irq_postinstall(dev_priv);
3593         gen8_de_irq_postinstall(dev_priv);
3594
3595         ibx_irq_postinstall(dev);
3596
3597         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3598         POSTING_READ(GEN8_MASTER_IRQ);
3599
3600         return 0;
3601 }
3602
3603 static int cherryview_irq_postinstall(struct drm_device *dev)
3604 {
3605         struct drm_i915_private *dev_priv = dev->dev_private;
3606
3607         vlv_display_irq_postinstall(dev_priv);
3608
3609         gen8_gt_irq_postinstall(dev_priv);
3610
3611         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3612         POSTING_READ(GEN8_MASTER_IRQ);
3613
3614         return 0;
3615 }
3616
3617 static void gen8_irq_uninstall(struct drm_device *dev)
3618 {
3619         struct drm_i915_private *dev_priv = dev->dev_private;
3620
3621         if (!dev_priv)
3622                 return;
3623
3624         gen8_irq_reset(dev);
3625 }
3626
3627 static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3628 {
3629         /* Interrupt setup is already guaranteed to be single-threaded, this is
3630          * just to make the assert_spin_locked check happy. */
3631         spin_lock_irq(&dev_priv->irq_lock);
3632         if (dev_priv->display_irqs_enabled)
3633                 valleyview_display_irqs_uninstall(dev_priv);
3634         spin_unlock_irq(&dev_priv->irq_lock);
3635
3636         vlv_display_irq_reset(dev_priv);
3637
3638         dev_priv->irq_mask = ~0;
3639 }
3640
3641 static void valleyview_irq_uninstall(struct drm_device *dev)
3642 {
3643         struct drm_i915_private *dev_priv = dev->dev_private;
3644
3645         if (!dev_priv)
3646                 return;
3647
3648         I915_WRITE(VLV_MASTER_IER, 0);
3649
3650         gen5_gt_irq_reset(dev);
3651
3652         I915_WRITE(HWSTAM, 0xffffffff);
3653
3654         vlv_display_irq_uninstall(dev_priv);
3655 }
3656
3657 static void cherryview_irq_uninstall(struct drm_device *dev)
3658 {
3659         struct drm_i915_private *dev_priv = dev->dev_private;
3660
3661         if (!dev_priv)
3662                 return;
3663
3664         I915_WRITE(GEN8_MASTER_IRQ, 0);
3665         POSTING_READ(GEN8_MASTER_IRQ);
3666
3667         gen8_gt_irq_reset(dev_priv);
3668
3669         GEN5_IRQ_RESET(GEN8_PCU_);
3670
3671         vlv_display_irq_uninstall(dev_priv);
3672 }
3673
3674 static void ironlake_irq_uninstall(struct drm_device *dev)
3675 {
3676         struct drm_i915_private *dev_priv = dev->dev_private;
3677
3678         if (!dev_priv)
3679                 return;
3680
3681         ironlake_irq_reset(dev);
3682 }
3683
3684 static void i8xx_irq_preinstall(struct drm_device * dev)
3685 {
3686         struct drm_i915_private *dev_priv = dev->dev_private;
3687         int pipe;
3688
3689         for_each_pipe(dev_priv, pipe)
3690                 I915_WRITE(PIPESTAT(pipe), 0);
3691         I915_WRITE16(IMR, 0xffff);
3692         I915_WRITE16(IER, 0x0);
3693         POSTING_READ16(IER);
3694 }
3695
3696 static int i8xx_irq_postinstall(struct drm_device *dev)
3697 {
3698         struct drm_i915_private *dev_priv = dev->dev_private;
3699
3700         I915_WRITE16(EMR,
3701                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3702
3703         /* Unmask the interrupts that we always want on. */
3704         dev_priv->irq_mask =
3705                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3706                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3707                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3708                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3709                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3710         I915_WRITE16(IMR, dev_priv->irq_mask);
3711
3712         I915_WRITE16(IER,
3713                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3714                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3715                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3716                      I915_USER_INTERRUPT);
3717         POSTING_READ16(IER);
3718
3719         /* Interrupt setup is already guaranteed to be single-threaded, this is
3720          * just to make the assert_spin_locked check happy. */
3721         spin_lock_irq(&dev_priv->irq_lock);
3722         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3723         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3724         spin_unlock_irq(&dev_priv->irq_lock);
3725
3726         return 0;
3727 }
3728
3729 /*
3730  * Returns true when a page flip has completed.
3731  */
3732 static bool i8xx_handle_vblank(struct drm_device *dev,
3733                                int plane, int pipe, u32 iir)
3734 {
3735         struct drm_i915_private *dev_priv = dev->dev_private;
3736         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3737
3738         if (!intel_pipe_handle_vblank(dev, pipe))
3739                 return false;
3740
3741         if ((iir & flip_pending) == 0)
3742                 goto check_page_flip;
3743
3744         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3745          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3746          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3747          * the flip is completed (no longer pending). Since this doesn't raise
3748          * an interrupt per se, we watch for the change at vblank.
3749          */
3750         if (I915_READ16(ISR) & flip_pending)
3751                 goto check_page_flip;
3752
3753         intel_prepare_page_flip(dev, plane);
3754         intel_finish_page_flip(dev, pipe);
3755         return true;
3756
3757 check_page_flip:
3758         intel_check_page_flip(dev, pipe);
3759         return false;
3760 }
3761
3762 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3763 {
3764         struct drm_device *dev = arg;
3765         struct drm_i915_private *dev_priv = dev->dev_private;
3766         u16 iir, new_iir;
3767         u32 pipe_stats[2];
3768         int pipe;
3769         u16 flip_mask =
3770                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3771                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3772
3773         iir = I915_READ16(IIR);
3774         if (iir == 0)
3775                 return IRQ_NONE;
3776
3777         while (iir & ~flip_mask) {
3778                 /* Can't rely on pipestat interrupt bit in iir as it might
3779                  * have been cleared after the pipestat interrupt was received.
3780                  * It doesn't set the bit in iir again, but it still produces
3781                  * interrupts (for non-MSI).
3782                  */
3783                 spin_lock(&dev_priv->irq_lock);
3784                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3785                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3786
3787                 for_each_pipe(dev_priv, pipe) {
3788                         int reg = PIPESTAT(pipe);
3789                         pipe_stats[pipe] = I915_READ(reg);
3790
3791                         /*
3792                          * Clear the PIPE*STAT regs before the IIR
3793                          */
3794                         if (pipe_stats[pipe] & 0x8000ffff)
3795                                 I915_WRITE(reg, pipe_stats[pipe]);
3796                 }
3797                 spin_unlock(&dev_priv->irq_lock);
3798
3799                 I915_WRITE16(IIR, iir & ~flip_mask);
3800                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3801
3802                 if (iir & I915_USER_INTERRUPT)
3803                         notify_ring(dev, &dev_priv->ring[RCS]);
3804
3805                 for_each_pipe(dev_priv, pipe) {
3806                         int plane = pipe;
3807                         if (HAS_FBC(dev))
3808                                 plane = !plane;
3809
3810                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3811                             i8xx_handle_vblank(dev, plane, pipe, iir))
3812                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3813
3814                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3815                                 i9xx_pipe_crc_irq_handler(dev, pipe);
3816
3817                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3818                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3819                                                                     pipe);
3820                 }
3821
3822                 iir = new_iir;
3823         }
3824
3825         return IRQ_HANDLED;
3826 }
3827
3828 static void i8xx_irq_uninstall(struct drm_device * dev)
3829 {
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         int pipe;
3832
3833         for_each_pipe(dev_priv, pipe) {
3834                 /* Clear enable bits; then clear status bits */
3835                 I915_WRITE(PIPESTAT(pipe), 0);
3836                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3837         }
3838         I915_WRITE16(IMR, 0xffff);
3839         I915_WRITE16(IER, 0x0);
3840         I915_WRITE16(IIR, I915_READ16(IIR));
3841 }
3842
3843 static void i915_irq_preinstall(struct drm_device * dev)
3844 {
3845         struct drm_i915_private *dev_priv = dev->dev_private;
3846         int pipe;
3847
3848         if (I915_HAS_HOTPLUG(dev)) {
3849                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3850                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3851         }
3852
3853         I915_WRITE16(HWSTAM, 0xeffe);
3854         for_each_pipe(dev_priv, pipe)
3855                 I915_WRITE(PIPESTAT(pipe), 0);
3856         I915_WRITE(IMR, 0xffffffff);
3857         I915_WRITE(IER, 0x0);
3858         POSTING_READ(IER);
3859 }
3860
3861 static int i915_irq_postinstall(struct drm_device *dev)
3862 {
3863         struct drm_i915_private *dev_priv = dev->dev_private;
3864         u32 enable_mask;
3865
3866         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3867
3868         /* Unmask the interrupts that we always want on. */
3869         dev_priv->irq_mask =
3870                 ~(I915_ASLE_INTERRUPT |
3871                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3872                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3873                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3874                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3875                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3876
3877         enable_mask =
3878                 I915_ASLE_INTERRUPT |
3879                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3880                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3881                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3882                 I915_USER_INTERRUPT;
3883
3884         if (I915_HAS_HOTPLUG(dev)) {
3885                 I915_WRITE(PORT_HOTPLUG_EN, 0);
3886                 POSTING_READ(PORT_HOTPLUG_EN);
3887
3888                 /* Enable in IER... */
3889                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3890                 /* and unmask in IMR */
3891                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3892         }
3893
3894         I915_WRITE(IMR, dev_priv->irq_mask);
3895         I915_WRITE(IER, enable_mask);
3896         POSTING_READ(IER);
3897
3898         i915_enable_asle_pipestat(dev);
3899
3900         /* Interrupt setup is already guaranteed to be single-threaded, this is
3901          * just to make the assert_spin_locked check happy. */
3902         spin_lock_irq(&dev_priv->irq_lock);
3903         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3904         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3905         spin_unlock_irq(&dev_priv->irq_lock);
3906
3907         return 0;
3908 }
3909
3910 /*
3911  * Returns true when a page flip has completed.
3912  */
3913 static bool i915_handle_vblank(struct drm_device *dev,
3914                                int plane, int pipe, u32 iir)
3915 {
3916         struct drm_i915_private *dev_priv = dev->dev_private;
3917         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3918
3919         if (!intel_pipe_handle_vblank(dev, pipe))
3920                 return false;
3921
3922         if ((iir & flip_pending) == 0)
3923                 goto check_page_flip;
3924
3925         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3926          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3927          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3928          * the flip is completed (no longer pending). Since this doesn't raise
3929          * an interrupt per se, we watch for the change at vblank.
3930          */
3931         if (I915_READ(ISR) & flip_pending)
3932                 goto check_page_flip;
3933
3934         intel_prepare_page_flip(dev, plane);
3935         intel_finish_page_flip(dev, pipe);
3936         return true;
3937
3938 check_page_flip:
3939         intel_check_page_flip(dev, pipe);
3940         return false;
3941 }
3942
3943 static irqreturn_t i915_irq_handler(int irq, void *arg)
3944 {
3945         struct drm_device *dev = arg;
3946         struct drm_i915_private *dev_priv = dev->dev_private;
3947         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3948         u32 flip_mask =
3949                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3950                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3951         int pipe, ret = IRQ_NONE;
3952
3953         iir = I915_READ(IIR);
3954         do {
3955                 bool irq_received = (iir & ~flip_mask) != 0;
3956                 bool blc_event = false;
3957
3958                 /* Can't rely on pipestat interrupt bit in iir as it might
3959                  * have been cleared after the pipestat interrupt was received.
3960                  * It doesn't set the bit in iir again, but it still produces
3961                  * interrupts (for non-MSI).
3962                  */
3963                 spin_lock(&dev_priv->irq_lock);
3964                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3965                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3966
3967                 for_each_pipe(dev_priv, pipe) {
3968                         int reg = PIPESTAT(pipe);
3969                         pipe_stats[pipe] = I915_READ(reg);
3970
3971                         /* Clear the PIPE*STAT regs before the IIR */
3972                         if (pipe_stats[pipe] & 0x8000ffff) {
3973                                 I915_WRITE(reg, pipe_stats[pipe]);
3974                                 irq_received = true;
3975                         }
3976                 }
3977                 spin_unlock(&dev_priv->irq_lock);
3978
3979                 if (!irq_received)
3980                         break;
3981
3982                 /* Consume port.  Then clear IIR or we'll miss events */
3983                 if (I915_HAS_HOTPLUG(dev) &&
3984                     iir & I915_DISPLAY_PORT_INTERRUPT)
3985                         i9xx_hpd_irq_handler(dev);
3986
3987                 I915_WRITE(IIR, iir & ~flip_mask);
3988                 new_iir = I915_READ(IIR); /* Flush posted writes */
3989
3990                 if (iir & I915_USER_INTERRUPT)
3991                         notify_ring(dev, &dev_priv->ring[RCS]);
3992
3993                 for_each_pipe(dev_priv, pipe) {
3994                         int plane = pipe;
3995                         if (HAS_FBC(dev))
3996                                 plane = !plane;
3997
3998                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3999                             i915_handle_vblank(dev, plane, pipe, iir))
4000                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4001
4002                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4003                                 blc_event = true;
4004
4005                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4006                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4007
4008                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4009                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
4010                                                                     pipe);
4011                 }
4012
4013                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4014                         intel_opregion_asle_intr(dev);
4015
4016                 /* With MSI, interrupts are only generated when iir
4017                  * transitions from zero to nonzero.  If another bit got
4018                  * set while we were handling the existing iir bits, then
4019                  * we would never get another interrupt.
4020                  *
4021                  * This is fine on non-MSI as well, as if we hit this path
4022                  * we avoid exiting the interrupt handler only to generate
4023                  * another one.
4024                  *
4025                  * Note that for MSI this could cause a stray interrupt report
4026                  * if an interrupt landed in the time between writing IIR and
4027                  * the posting read.  This should be rare enough to never
4028                  * trigger the 99% of 100,000 interrupts test for disabling
4029                  * stray interrupts.
4030                  */
4031                 ret = IRQ_HANDLED;
4032                 iir = new_iir;
4033         } while (iir & ~flip_mask);
4034
4035         return ret;
4036 }
4037
4038 static void i915_irq_uninstall(struct drm_device * dev)
4039 {
4040         struct drm_i915_private *dev_priv = dev->dev_private;
4041         int pipe;
4042
4043         if (I915_HAS_HOTPLUG(dev)) {
4044                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4045                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4046         }
4047
4048         I915_WRITE16(HWSTAM, 0xffff);
4049         for_each_pipe(dev_priv, pipe) {
4050                 /* Clear enable bits; then clear status bits */
4051                 I915_WRITE(PIPESTAT(pipe), 0);
4052                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4053         }
4054         I915_WRITE(IMR, 0xffffffff);
4055         I915_WRITE(IER, 0x0);
4056
4057         I915_WRITE(IIR, I915_READ(IIR));
4058 }
4059
4060 static void i965_irq_preinstall(struct drm_device * dev)
4061 {
4062         struct drm_i915_private *dev_priv = dev->dev_private;
4063         int pipe;
4064
4065         I915_WRITE(PORT_HOTPLUG_EN, 0);
4066         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4067
4068         I915_WRITE(HWSTAM, 0xeffe);
4069         for_each_pipe(dev_priv, pipe)
4070                 I915_WRITE(PIPESTAT(pipe), 0);
4071         I915_WRITE(IMR, 0xffffffff);
4072         I915_WRITE(IER, 0x0);
4073         POSTING_READ(IER);
4074 }
4075
4076 static int i965_irq_postinstall(struct drm_device *dev)
4077 {
4078         struct drm_i915_private *dev_priv = dev->dev_private;
4079         u32 enable_mask;
4080         u32 error_mask;
4081
4082         /* Unmask the interrupts that we always want on. */
4083         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4084                                I915_DISPLAY_PORT_INTERRUPT |
4085                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4086                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4087                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4088                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4089                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4090
4091         enable_mask = ~dev_priv->irq_mask;
4092         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4093                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4094         enable_mask |= I915_USER_INTERRUPT;
4095
4096         if (IS_G4X(dev))
4097                 enable_mask |= I915_BSD_USER_INTERRUPT;
4098
4099         /* Interrupt setup is already guaranteed to be single-threaded, this is
4100          * just to make the assert_spin_locked check happy. */
4101         spin_lock_irq(&dev_priv->irq_lock);
4102         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4103         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4104         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4105         spin_unlock_irq(&dev_priv->irq_lock);
4106
4107         /*
4108          * Enable some error detection, note the instruction error mask
4109          * bit is reserved, so we leave it masked.
4110          */
4111         if (IS_G4X(dev)) {
4112                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4113                                GM45_ERROR_MEM_PRIV |
4114                                GM45_ERROR_CP_PRIV |
4115                                I915_ERROR_MEMORY_REFRESH);
4116         } else {
4117                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4118                                I915_ERROR_MEMORY_REFRESH);
4119         }
4120         I915_WRITE(EMR, error_mask);
4121
4122         I915_WRITE(IMR, dev_priv->irq_mask);
4123         I915_WRITE(IER, enable_mask);
4124         POSTING_READ(IER);
4125
4126         I915_WRITE(PORT_HOTPLUG_EN, 0);
4127         POSTING_READ(PORT_HOTPLUG_EN);
4128
4129         i915_enable_asle_pipestat(dev);
4130
4131         return 0;
4132 }
4133
4134 static void i915_hpd_irq_setup(struct drm_device *dev)
4135 {
4136         struct drm_i915_private *dev_priv = dev->dev_private;
4137         struct intel_encoder *intel_encoder;
4138         u32 hotplug_en;
4139
4140         assert_spin_locked(&dev_priv->irq_lock);
4141
4142         if (I915_HAS_HOTPLUG(dev)) {
4143                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4144                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4145                 /* Note HDMI and DP share hotplug bits */
4146                 /* enable bits are the same for all generations */
4147                 for_each_intel_encoder(dev, intel_encoder)
4148                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4149                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4150                 /* Programming the CRT detection parameters tends
4151                    to generate a spurious hotplug event about three
4152                    seconds later.  So just do it once.
4153                 */
4154                 if (IS_G4X(dev))
4155                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4156                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4157                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4158
4159                 /* Ignore TV since it's buggy */
4160                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4161         }
4162 }
4163
4164 static irqreturn_t i965_irq_handler(int irq, void *arg)
4165 {
4166         struct drm_device *dev = arg;
4167         struct drm_i915_private *dev_priv = dev->dev_private;
4168         u32 iir, new_iir;
4169         u32 pipe_stats[I915_MAX_PIPES];
4170         int ret = IRQ_NONE, pipe;
4171         u32 flip_mask =
4172                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4173                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4174
4175         iir = I915_READ(IIR);
4176
4177         for (;;) {
4178                 bool irq_received = (iir & ~flip_mask) != 0;
4179                 bool blc_event = false;
4180
4181                 /* Can't rely on pipestat interrupt bit in iir as it might
4182                  * have been cleared after the pipestat interrupt was received.
4183                  * It doesn't set the bit in iir again, but it still produces
4184                  * interrupts (for non-MSI).
4185                  */
4186                 spin_lock(&dev_priv->irq_lock);
4187                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4188                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4189
4190                 for_each_pipe(dev_priv, pipe) {
4191                         int reg = PIPESTAT(pipe);
4192                         pipe_stats[pipe] = I915_READ(reg);
4193
4194                         /*
4195                          * Clear the PIPE*STAT regs before the IIR
4196                          */
4197                         if (pipe_stats[pipe] & 0x8000ffff) {
4198                                 I915_WRITE(reg, pipe_stats[pipe]);
4199                                 irq_received = true;
4200                         }
4201                 }
4202                 spin_unlock(&dev_priv->irq_lock);
4203
4204                 if (!irq_received)
4205                         break;
4206
4207                 ret = IRQ_HANDLED;
4208
4209                 /* Consume port.  Then clear IIR or we'll miss events */
4210                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4211                         i9xx_hpd_irq_handler(dev);
4212
4213                 I915_WRITE(IIR, iir & ~flip_mask);
4214                 new_iir = I915_READ(IIR); /* Flush posted writes */
4215
4216                 if (iir & I915_USER_INTERRUPT)
4217                         notify_ring(dev, &dev_priv->ring[RCS]);
4218                 if (iir & I915_BSD_USER_INTERRUPT)
4219                         notify_ring(dev, &dev_priv->ring[VCS]);
4220
4221                 for_each_pipe(dev_priv, pipe) {
4222                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4223                             i915_handle_vblank(dev, pipe, pipe, iir))
4224                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4225
4226                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4227                                 blc_event = true;
4228
4229                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4230                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4231
4232                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4233                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4234                 }
4235
4236                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4237                         intel_opregion_asle_intr(dev);
4238
4239                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4240                         gmbus_irq_handler(dev);
4241
4242                 /* With MSI, interrupts are only generated when iir
4243                  * transitions from zero to nonzero.  If another bit got
4244                  * set while we were handling the existing iir bits, then
4245                  * we would never get another interrupt.
4246                  *
4247                  * This is fine on non-MSI as well, as if we hit this path
4248                  * we avoid exiting the interrupt handler only to generate
4249                  * another one.
4250                  *
4251                  * Note that for MSI this could cause a stray interrupt report
4252                  * if an interrupt landed in the time between writing IIR and
4253                  * the posting read.  This should be rare enough to never
4254                  * trigger the 99% of 100,000 interrupts test for disabling
4255                  * stray interrupts.
4256                  */
4257                 iir = new_iir;
4258         }
4259
4260         return ret;
4261 }
4262
4263 static void i965_irq_uninstall(struct drm_device * dev)
4264 {
4265         struct drm_i915_private *dev_priv = dev->dev_private;
4266         int pipe;
4267
4268         if (!dev_priv)
4269                 return;
4270
4271         I915_WRITE(PORT_HOTPLUG_EN, 0);
4272         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4273
4274         I915_WRITE(HWSTAM, 0xffffffff);
4275         for_each_pipe(dev_priv, pipe)
4276                 I915_WRITE(PIPESTAT(pipe), 0);
4277         I915_WRITE(IMR, 0xffffffff);
4278         I915_WRITE(IER, 0x0);
4279
4280         for_each_pipe(dev_priv, pipe)
4281                 I915_WRITE(PIPESTAT(pipe),
4282                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4283         I915_WRITE(IIR, I915_READ(IIR));
4284 }
4285
4286 static void intel_hpd_irq_reenable_work(struct work_struct *work)
4287 {
4288         struct drm_i915_private *dev_priv =
4289                 container_of(work, typeof(*dev_priv),
4290                              hotplug_reenable_work.work);
4291         struct drm_device *dev = dev_priv->dev;
4292         struct drm_mode_config *mode_config = &dev->mode_config;
4293         int i;
4294
4295         intel_runtime_pm_get(dev_priv);
4296
4297         spin_lock_irq(&dev_priv->irq_lock);
4298         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4299                 struct drm_connector *connector;
4300
4301                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4302                         continue;
4303
4304                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4305
4306                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4307                         struct intel_connector *intel_connector = to_intel_connector(connector);
4308
4309                         if (intel_connector->encoder->hpd_pin == i) {
4310                                 if (connector->polled != intel_connector->polled)
4311                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4312                                                          connector->name);
4313                                 connector->polled = intel_connector->polled;
4314                                 if (!connector->polled)
4315                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4316                         }
4317                 }
4318         }
4319         if (dev_priv->display.hpd_irq_setup)
4320                 dev_priv->display.hpd_irq_setup(dev);
4321         spin_unlock_irq(&dev_priv->irq_lock);
4322
4323         intel_runtime_pm_put(dev_priv);
4324 }
4325
4326 /**
4327  * intel_irq_init - initializes irq support
4328  * @dev_priv: i915 device instance
4329  *
4330  * This function initializes all the irq support including work items, timers
4331  * and all the vtables. It does not setup the interrupt itself though.
4332  */
4333 void intel_irq_init(struct drm_i915_private *dev_priv)
4334 {
4335         struct drm_device *dev = dev_priv->dev;
4336
4337         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4338         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4339         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4340         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4341         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4342
4343         /* Let's track the enabled rps events */
4344         if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4345                 /* WaGsvRC0ResidencyMethod:vlv */
4346                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4347         else
4348                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4349
4350         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4351                     i915_hangcheck_elapsed,
4352                     (unsigned long) dev);
4353         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4354                           intel_hpd_irq_reenable_work);
4355
4356         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4357
4358         if (IS_GEN2(dev_priv)) {
4359                 dev->max_vblank_count = 0;
4360                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4361         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4362                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4363                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4364         } else {
4365                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4366                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4367         }
4368
4369         /*
4370          * Opt out of the vblank disable timer on everything except gen2.
4371          * Gen2 doesn't have a hardware frame counter and so depends on
4372          * vblank interrupts to produce sane vblank seuquence numbers.
4373          */
4374         if (!IS_GEN2(dev_priv))
4375                 dev->vblank_disable_immediate = true;
4376
4377         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4378                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4379                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4380         }
4381
4382         if (IS_CHERRYVIEW(dev_priv)) {
4383                 dev->driver->irq_handler = cherryview_irq_handler;
4384                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4385                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4386                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4387                 dev->driver->enable_vblank = valleyview_enable_vblank;
4388                 dev->driver->disable_vblank = valleyview_disable_vblank;
4389                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4390         } else if (IS_VALLEYVIEW(dev_priv)) {
4391                 dev->driver->irq_handler = valleyview_irq_handler;
4392                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4393                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4394                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4395                 dev->driver->enable_vblank = valleyview_enable_vblank;
4396                 dev->driver->disable_vblank = valleyview_disable_vblank;
4397                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4398         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4399                 dev->driver->irq_handler = gen8_irq_handler;
4400                 dev->driver->irq_preinstall = gen8_irq_reset;
4401                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4402                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4403                 dev->driver->enable_vblank = gen8_enable_vblank;
4404                 dev->driver->disable_vblank = gen8_disable_vblank;
4405                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4406         } else if (HAS_PCH_SPLIT(dev)) {
4407                 dev->driver->irq_handler = ironlake_irq_handler;
4408                 dev->driver->irq_preinstall = ironlake_irq_reset;
4409                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4410                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4411                 dev->driver->enable_vblank = ironlake_enable_vblank;
4412                 dev->driver->disable_vblank = ironlake_disable_vblank;
4413                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4414         } else {
4415                 if (INTEL_INFO(dev_priv)->gen == 2) {
4416                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4417                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4418                         dev->driver->irq_handler = i8xx_irq_handler;
4419                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4420                 } else if (INTEL_INFO(dev_priv)->gen == 3) {
4421                         dev->driver->irq_preinstall = i915_irq_preinstall;
4422                         dev->driver->irq_postinstall = i915_irq_postinstall;
4423                         dev->driver->irq_uninstall = i915_irq_uninstall;
4424                         dev->driver->irq_handler = i915_irq_handler;
4425                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4426                 } else {
4427                         dev->driver->irq_preinstall = i965_irq_preinstall;
4428                         dev->driver->irq_postinstall = i965_irq_postinstall;
4429                         dev->driver->irq_uninstall = i965_irq_uninstall;
4430                         dev->driver->irq_handler = i965_irq_handler;
4431                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4432                 }
4433                 dev->driver->enable_vblank = i915_enable_vblank;
4434                 dev->driver->disable_vblank = i915_disable_vblank;
4435         }
4436 }
4437
4438 /**
4439  * intel_hpd_init - initializes and enables hpd support
4440  * @dev_priv: i915 device instance
4441  *
4442  * This function enables the hotplug support. It requires that interrupts have
4443  * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4444  * poll request can run concurrently to other code, so locking rules must be
4445  * obeyed.
4446  *
4447  * This is a separate step from interrupt enabling to simplify the locking rules
4448  * in the driver load and resume code.
4449  */
4450 void intel_hpd_init(struct drm_i915_private *dev_priv)
4451 {
4452         struct drm_device *dev = dev_priv->dev;
4453         struct drm_mode_config *mode_config = &dev->mode_config;
4454         struct drm_connector *connector;
4455         int i;
4456
4457         for (i = 1; i < HPD_NUM_PINS; i++) {
4458                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4459                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4460         }
4461         list_for_each_entry(connector, &mode_config->connector_list, head) {
4462                 struct intel_connector *intel_connector = to_intel_connector(connector);
4463                 connector->polled = intel_connector->polled;
4464                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4465                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4466                 if (intel_connector->mst_port)
4467                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4468         }
4469
4470         /* Interrupt setup is already guaranteed to be single-threaded, this is
4471          * just to make the assert_spin_locked checks happy. */
4472         spin_lock_irq(&dev_priv->irq_lock);
4473         if (dev_priv->display.hpd_irq_setup)
4474                 dev_priv->display.hpd_irq_setup(dev);
4475         spin_unlock_irq(&dev_priv->irq_lock);
4476 }
4477
4478 /**
4479  * intel_irq_install - enables the hardware interrupt
4480  * @dev_priv: i915 device instance
4481  *
4482  * This function enables the hardware interrupt handling, but leaves the hotplug
4483  * handling still disabled. It is called after intel_irq_init().
4484  *
4485  * In the driver load and resume code we need working interrupts in a few places
4486  * but don't want to deal with the hassle of concurrent probe and hotplug
4487  * workers. Hence the split into this two-stage approach.
4488  */
4489 int intel_irq_install(struct drm_i915_private *dev_priv)
4490 {
4491         /*
4492          * We enable some interrupt sources in our postinstall hooks, so mark
4493          * interrupts as enabled _before_ actually enabling them to avoid
4494          * special cases in our ordering checks.
4495          */
4496         dev_priv->pm.irqs_enabled = true;
4497
4498         return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4499 }
4500
4501 /**
4502  * intel_irq_uninstall - finilizes all irq handling
4503  * @dev_priv: i915 device instance
4504  *
4505  * This stops interrupt and hotplug handling and unregisters and frees all
4506  * resources acquired in the init functions.
4507  */
4508 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4509 {
4510         drm_irq_uninstall(dev_priv->dev);
4511         intel_hpd_cancel_work(dev_priv);
4512         dev_priv->pm.irqs_enabled = false;
4513 }
4514
4515 /**
4516  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4517  * @dev_priv: i915 device instance
4518  *
4519  * This function is used to disable interrupts at runtime, both in the runtime
4520  * pm and the system suspend/resume code.
4521  */
4522 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4523 {
4524         dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4525         dev_priv->pm.irqs_enabled = false;
4526 }
4527
4528 /**
4529  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4530  * @dev_priv: i915 device instance
4531  *
4532  * This function is used to enable interrupts at runtime, both in the runtime
4533  * pm and the system suspend/resume code.
4534  */
4535 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4536 {
4537         dev_priv->pm.irqs_enabled = true;
4538         dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4539         dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4540 }