powerpc: Fix up the kdump base cap to 128M
[linux-drm-fsl-dcu.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
61
62 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
63 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
64 #define GEN8_LEGACY_PDPS                4
65
66 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
67 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
68 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
69 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
70
71 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
72                                              enum i915_cache_level level,
73                                              bool valid)
74 {
75         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
76         pte |= addr;
77         if (level != I915_CACHE_NONE)
78                 pte |= PPAT_CACHED_INDEX;
79         else
80                 pte |= PPAT_UNCACHED_INDEX;
81         return pte;
82 }
83
84 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
85                                              dma_addr_t addr,
86                                              enum i915_cache_level level)
87 {
88         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
89         pde |= addr;
90         if (level != I915_CACHE_NONE)
91                 pde |= PPAT_CACHED_PDE_INDEX;
92         else
93                 pde |= PPAT_UNCACHED_INDEX;
94         return pde;
95 }
96
97 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
98                                      enum i915_cache_level level,
99                                      bool valid)
100 {
101         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
102         pte |= GEN6_PTE_ADDR_ENCODE(addr);
103
104         switch (level) {
105         case I915_CACHE_L3_LLC:
106         case I915_CACHE_LLC:
107                 pte |= GEN6_PTE_CACHE_LLC;
108                 break;
109         case I915_CACHE_NONE:
110                 pte |= GEN6_PTE_UNCACHED;
111                 break;
112         default:
113                 WARN_ON(1);
114         }
115
116         return pte;
117 }
118
119 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
120                                      enum i915_cache_level level,
121                                      bool valid)
122 {
123         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
124         pte |= GEN6_PTE_ADDR_ENCODE(addr);
125
126         switch (level) {
127         case I915_CACHE_L3_LLC:
128                 pte |= GEN7_PTE_CACHE_L3_LLC;
129                 break;
130         case I915_CACHE_LLC:
131                 pte |= GEN6_PTE_CACHE_LLC;
132                 break;
133         case I915_CACHE_NONE:
134                 pte |= GEN6_PTE_UNCACHED;
135                 break;
136         default:
137                 WARN_ON(1);
138         }
139
140         return pte;
141 }
142
143 #define BYT_PTE_WRITEABLE               (1 << 1)
144 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
145
146 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
147                                      enum i915_cache_level level,
148                                      bool valid)
149 {
150         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
151         pte |= GEN6_PTE_ADDR_ENCODE(addr);
152
153         /* Mark the page as writeable.  Other platforms don't have a
154          * setting for read-only/writable, so this matches that behavior.
155          */
156         pte |= BYT_PTE_WRITEABLE;
157
158         if (level != I915_CACHE_NONE)
159                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
160
161         return pte;
162 }
163
164 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
165                                      enum i915_cache_level level,
166                                      bool valid)
167 {
168         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
169         pte |= HSW_PTE_ADDR_ENCODE(addr);
170
171         if (level != I915_CACHE_NONE)
172                 pte |= HSW_WB_LLC_AGE3;
173
174         return pte;
175 }
176
177 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
178                                       enum i915_cache_level level,
179                                       bool valid)
180 {
181         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
182         pte |= HSW_PTE_ADDR_ENCODE(addr);
183
184         switch (level) {
185         case I915_CACHE_NONE:
186                 break;
187         case I915_CACHE_WT:
188                 pte |= HSW_WT_ELLC_LLC_AGE0;
189                 break;
190         default:
191                 pte |= HSW_WB_ELLC_LLC_AGE0;
192                 break;
193         }
194
195         return pte;
196 }
197
198 /* Broadwell Page Directory Pointer Descriptors */
199 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
200                            uint64_t val)
201 {
202         int ret;
203
204         BUG_ON(entry >= 4);
205
206         ret = intel_ring_begin(ring, 6);
207         if (ret)
208                 return ret;
209
210         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
211         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
212         intel_ring_emit(ring, (u32)(val >> 32));
213         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
214         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
215         intel_ring_emit(ring, (u32)(val));
216         intel_ring_advance(ring);
217
218         return 0;
219 }
220
221 static int gen8_ppgtt_enable(struct drm_device *dev)
222 {
223         struct drm_i915_private *dev_priv = dev->dev_private;
224         struct intel_ring_buffer *ring;
225         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
226         int i, j, ret;
227
228         /* bit of a hack to find the actual last used pd */
229         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
230
231         for_each_ring(ring, dev_priv, j) {
232                 I915_WRITE(RING_MODE_GEN7(ring),
233                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
234         }
235
236         for (i = used_pd - 1; i >= 0; i--) {
237                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
238                 for_each_ring(ring, dev_priv, j) {
239                         ret = gen8_write_pdp(ring, i, addr);
240                         if (ret)
241                                 return ret;
242                 }
243         }
244         return 0;
245 }
246
247 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
248                                    unsigned first_entry,
249                                    unsigned num_entries,
250                                    bool use_scratch)
251 {
252         struct i915_hw_ppgtt *ppgtt =
253                 container_of(vm, struct i915_hw_ppgtt, base);
254         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
255         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
256         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
257         unsigned last_pte, i;
258
259         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
260                                       I915_CACHE_LLC, use_scratch);
261
262         while (num_entries) {
263                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
264
265                 last_pte = first_pte + num_entries;
266                 if (last_pte > GEN8_PTES_PER_PAGE)
267                         last_pte = GEN8_PTES_PER_PAGE;
268
269                 pt_vaddr = kmap_atomic(page_table);
270
271                 for (i = first_pte; i < last_pte; i++)
272                         pt_vaddr[i] = scratch_pte;
273
274                 kunmap_atomic(pt_vaddr);
275
276                 num_entries -= last_pte - first_pte;
277                 first_pte = 0;
278                 act_pt++;
279         }
280 }
281
282 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
283                                       struct sg_table *pages,
284                                       unsigned first_entry,
285                                       enum i915_cache_level cache_level)
286 {
287         struct i915_hw_ppgtt *ppgtt =
288                 container_of(vm, struct i915_hw_ppgtt, base);
289         gen8_gtt_pte_t *pt_vaddr;
290         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
291         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
292         struct sg_page_iter sg_iter;
293
294         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
295         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
296                 dma_addr_t page_addr;
297
298                 page_addr = sg_dma_address(sg_iter.sg) +
299                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
300                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
301                                                     true);
302                 if (++act_pte == GEN8_PTES_PER_PAGE) {
303                         kunmap_atomic(pt_vaddr);
304                         act_pt++;
305                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
306                         act_pte = 0;
307
308                 }
309         }
310         kunmap_atomic(pt_vaddr);
311 }
312
313 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
314 {
315         struct i915_hw_ppgtt *ppgtt =
316                 container_of(vm, struct i915_hw_ppgtt, base);
317         int i, j;
318
319         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
320                 if (ppgtt->pd_dma_addr[i]) {
321                         pci_unmap_page(ppgtt->base.dev->pdev,
322                                        ppgtt->pd_dma_addr[i],
323                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
324
325                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
326                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
327                                 if (addr)
328                                         pci_unmap_page(ppgtt->base.dev->pdev,
329                                                        addr,
330                                                        PAGE_SIZE,
331                                                        PCI_DMA_BIDIRECTIONAL);
332
333                         }
334                 }
335                 kfree(ppgtt->gen8_pt_dma_addr[i]);
336         }
337
338         __free_pages(ppgtt->gen8_pt_pages, ppgtt->num_pt_pages << PAGE_SHIFT);
339         __free_pages(ppgtt->pd_pages, ppgtt->num_pd_pages << PAGE_SHIFT);
340 }
341
342 /**
343  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
344  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
345  * represents 1GB of memory
346  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
347  *
348  * TODO: Do something with the size parameter
349  **/
350 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
351 {
352         struct page *pt_pages;
353         int i, j, ret = -ENOMEM;
354         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
355         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
356
357         if (size % (1<<30))
358                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
359
360         /* FIXME: split allocation into smaller pieces. For now we only ever do
361          * this once, but with full PPGTT, the multiple contiguous allocations
362          * will be bad.
363          */
364         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
365         if (!ppgtt->pd_pages)
366                 return -ENOMEM;
367
368         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
369         if (!pt_pages) {
370                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
371                 return -ENOMEM;
372         }
373
374         ppgtt->gen8_pt_pages = pt_pages;
375         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
376         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
377         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
378         ppgtt->enable = gen8_ppgtt_enable;
379         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
380         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
381         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
382
383         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
384
385         /*
386          * - Create a mapping for the page directories.
387          * - For each page directory:
388          *      allocate space for page table mappings.
389          *      map each page table
390          */
391         for (i = 0; i < max_pdp; i++) {
392                 dma_addr_t temp;
393                 temp = pci_map_page(ppgtt->base.dev->pdev,
394                                     &ppgtt->pd_pages[i], 0,
395                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
396                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
397                         goto err_out;
398
399                 ppgtt->pd_dma_addr[i] = temp;
400
401                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
402                 if (!ppgtt->gen8_pt_dma_addr[i])
403                         goto err_out;
404
405                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
406                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
407                         temp = pci_map_page(ppgtt->base.dev->pdev,
408                                             p, 0, PAGE_SIZE,
409                                             PCI_DMA_BIDIRECTIONAL);
410
411                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
412                                 goto err_out;
413
414                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
415                 }
416         }
417
418         /* For now, the PPGTT helper functions all require that the PDEs are
419          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
420          * will never need to touch the PDEs again */
421         for (i = 0; i < max_pdp; i++) {
422                 gen8_ppgtt_pde_t *pd_vaddr;
423                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
424                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
425                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
426                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
427                                                       I915_CACHE_LLC);
428                 }
429                 kunmap_atomic(pd_vaddr);
430         }
431
432         ppgtt->base.clear_range(&ppgtt->base, 0,
433                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
434                                 true);
435
436         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
437                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
438         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
439                          ppgtt->num_pt_pages,
440                          (ppgtt->num_pt_pages - num_pt_pages) +
441                          size % (1<<30));
442         return 0;
443
444 err_out:
445         ppgtt->base.cleanup(&ppgtt->base);
446         return ret;
447 }
448
449 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
450 {
451         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
452         gen6_gtt_pte_t __iomem *pd_addr;
453         uint32_t pd_entry;
454         int i;
455
456         WARN_ON(ppgtt->pd_offset & 0x3f);
457         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
458                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
459         for (i = 0; i < ppgtt->num_pd_entries; i++) {
460                 dma_addr_t pt_addr;
461
462                 pt_addr = ppgtt->pt_dma_addr[i];
463                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
464                 pd_entry |= GEN6_PDE_VALID;
465
466                 writel(pd_entry, pd_addr + i);
467         }
468         readl(pd_addr);
469 }
470
471 static int gen6_ppgtt_enable(struct drm_device *dev)
472 {
473         drm_i915_private_t *dev_priv = dev->dev_private;
474         uint32_t pd_offset;
475         struct intel_ring_buffer *ring;
476         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
477         int i;
478
479         BUG_ON(ppgtt->pd_offset & 0x3f);
480
481         gen6_write_pdes(ppgtt);
482
483         pd_offset = ppgtt->pd_offset;
484         pd_offset /= 64; /* in cachelines, */
485         pd_offset <<= 16;
486
487         if (INTEL_INFO(dev)->gen == 6) {
488                 uint32_t ecochk, gab_ctl, ecobits;
489
490                 ecobits = I915_READ(GAC_ECO_BITS);
491                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
492                                          ECOBITS_PPGTT_CACHE64B);
493
494                 gab_ctl = I915_READ(GAB_CTL);
495                 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
496
497                 ecochk = I915_READ(GAM_ECOCHK);
498                 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
499                                        ECOCHK_PPGTT_CACHE64B);
500                 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
501         } else if (INTEL_INFO(dev)->gen >= 7) {
502                 uint32_t ecochk, ecobits;
503
504                 ecobits = I915_READ(GAC_ECO_BITS);
505                 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
506
507                 ecochk = I915_READ(GAM_ECOCHK);
508                 if (IS_HASWELL(dev)) {
509                         ecochk |= ECOCHK_PPGTT_WB_HSW;
510                 } else {
511                         ecochk |= ECOCHK_PPGTT_LLC_IVB;
512                         ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
513                 }
514                 I915_WRITE(GAM_ECOCHK, ecochk);
515                 /* GFX_MODE is per-ring on gen7+ */
516         }
517
518         for_each_ring(ring, dev_priv, i) {
519                 if (INTEL_INFO(dev)->gen >= 7)
520                         I915_WRITE(RING_MODE_GEN7(ring),
521                                    _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
522
523                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
524                 I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
525         }
526         return 0;
527 }
528
529 /* PPGTT support for Sandybdrige/Gen6 and later */
530 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
531                                    unsigned first_entry,
532                                    unsigned num_entries,
533                                    bool use_scratch)
534 {
535         struct i915_hw_ppgtt *ppgtt =
536                 container_of(vm, struct i915_hw_ppgtt, base);
537         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
538         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
539         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
540         unsigned last_pte, i;
541
542         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
543
544         while (num_entries) {
545                 last_pte = first_pte + num_entries;
546                 if (last_pte > I915_PPGTT_PT_ENTRIES)
547                         last_pte = I915_PPGTT_PT_ENTRIES;
548
549                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
550
551                 for (i = first_pte; i < last_pte; i++)
552                         pt_vaddr[i] = scratch_pte;
553
554                 kunmap_atomic(pt_vaddr);
555
556                 num_entries -= last_pte - first_pte;
557                 first_pte = 0;
558                 act_pt++;
559         }
560 }
561
562 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
563                                       struct sg_table *pages,
564                                       unsigned first_entry,
565                                       enum i915_cache_level cache_level)
566 {
567         struct i915_hw_ppgtt *ppgtt =
568                 container_of(vm, struct i915_hw_ppgtt, base);
569         gen6_gtt_pte_t *pt_vaddr;
570         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
571         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
572         struct sg_page_iter sg_iter;
573
574         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
575         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
576                 dma_addr_t page_addr;
577
578                 page_addr = sg_page_iter_dma_address(&sg_iter);
579                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
580                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
581                         kunmap_atomic(pt_vaddr);
582                         act_pt++;
583                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
584                         act_pte = 0;
585
586                 }
587         }
588         kunmap_atomic(pt_vaddr);
589 }
590
591 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
592 {
593         struct i915_hw_ppgtt *ppgtt =
594                 container_of(vm, struct i915_hw_ppgtt, base);
595         int i;
596
597         drm_mm_takedown(&ppgtt->base.mm);
598
599         if (ppgtt->pt_dma_addr) {
600                 for (i = 0; i < ppgtt->num_pd_entries; i++)
601                         pci_unmap_page(ppgtt->base.dev->pdev,
602                                        ppgtt->pt_dma_addr[i],
603                                        4096, PCI_DMA_BIDIRECTIONAL);
604         }
605
606         kfree(ppgtt->pt_dma_addr);
607         for (i = 0; i < ppgtt->num_pd_entries; i++)
608                 __free_page(ppgtt->pt_pages[i]);
609         kfree(ppgtt->pt_pages);
610         kfree(ppgtt);
611 }
612
613 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
614 {
615         struct drm_device *dev = ppgtt->base.dev;
616         struct drm_i915_private *dev_priv = dev->dev_private;
617         unsigned first_pd_entry_in_global_pt;
618         int i;
619         int ret = -ENOMEM;
620
621         /* ppgtt PDEs reside in the global gtt pagetable, which has 512*1024
622          * entries. For aliasing ppgtt support we just steal them at the end for
623          * now. */
624         first_pd_entry_in_global_pt = gtt_total_entries(dev_priv->gtt);
625
626         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
627         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
628         ppgtt->enable = gen6_ppgtt_enable;
629         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
630         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
631         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
632         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
633         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
634                                   GFP_KERNEL);
635         if (!ppgtt->pt_pages)
636                 return -ENOMEM;
637
638         for (i = 0; i < ppgtt->num_pd_entries; i++) {
639                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
640                 if (!ppgtt->pt_pages[i])
641                         goto err_pt_alloc;
642         }
643
644         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
645                                      GFP_KERNEL);
646         if (!ppgtt->pt_dma_addr)
647                 goto err_pt_alloc;
648
649         for (i = 0; i < ppgtt->num_pd_entries; i++) {
650                 dma_addr_t pt_addr;
651
652                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
653                                        PCI_DMA_BIDIRECTIONAL);
654
655                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
656                         ret = -EIO;
657                         goto err_pd_pin;
658
659                 }
660                 ppgtt->pt_dma_addr[i] = pt_addr;
661         }
662
663         ppgtt->base.clear_range(&ppgtt->base, 0,
664                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
665
666         ppgtt->pd_offset = first_pd_entry_in_global_pt * sizeof(gen6_gtt_pte_t);
667
668         return 0;
669
670 err_pd_pin:
671         if (ppgtt->pt_dma_addr) {
672                 for (i--; i >= 0; i--)
673                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
674                                        4096, PCI_DMA_BIDIRECTIONAL);
675         }
676 err_pt_alloc:
677         kfree(ppgtt->pt_dma_addr);
678         for (i = 0; i < ppgtt->num_pd_entries; i++) {
679                 if (ppgtt->pt_pages[i])
680                         __free_page(ppgtt->pt_pages[i]);
681         }
682         kfree(ppgtt->pt_pages);
683
684         return ret;
685 }
686
687 static int i915_gem_init_aliasing_ppgtt(struct drm_device *dev)
688 {
689         struct drm_i915_private *dev_priv = dev->dev_private;
690         struct i915_hw_ppgtt *ppgtt;
691         int ret;
692
693         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
694         if (!ppgtt)
695                 return -ENOMEM;
696
697         ppgtt->base.dev = dev;
698
699         if (INTEL_INFO(dev)->gen < 8)
700                 ret = gen6_ppgtt_init(ppgtt);
701         else if (IS_GEN8(dev))
702                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
703         else
704                 BUG();
705
706         if (ret)
707                 kfree(ppgtt);
708         else {
709                 dev_priv->mm.aliasing_ppgtt = ppgtt;
710                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
711                             ppgtt->base.total);
712         }
713
714         return ret;
715 }
716
717 void i915_gem_cleanup_aliasing_ppgtt(struct drm_device *dev)
718 {
719         struct drm_i915_private *dev_priv = dev->dev_private;
720         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
721
722         if (!ppgtt)
723                 return;
724
725         ppgtt->base.cleanup(&ppgtt->base);
726         dev_priv->mm.aliasing_ppgtt = NULL;
727 }
728
729 void i915_ppgtt_bind_object(struct i915_hw_ppgtt *ppgtt,
730                             struct drm_i915_gem_object *obj,
731                             enum i915_cache_level cache_level)
732 {
733         ppgtt->base.insert_entries(&ppgtt->base, obj->pages,
734                                    i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
735                                    cache_level);
736 }
737
738 void i915_ppgtt_unbind_object(struct i915_hw_ppgtt *ppgtt,
739                               struct drm_i915_gem_object *obj)
740 {
741         ppgtt->base.clear_range(&ppgtt->base,
742                                 i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT,
743                                 obj->base.size >> PAGE_SHIFT,
744                                 true);
745 }
746
747 extern int intel_iommu_gfx_mapped;
748 /* Certain Gen5 chipsets require require idling the GPU before
749  * unmapping anything from the GTT when VT-d is enabled.
750  */
751 static inline bool needs_idle_maps(struct drm_device *dev)
752 {
753 #ifdef CONFIG_INTEL_IOMMU
754         /* Query intel_iommu to see if we need the workaround. Presumably that
755          * was loaded first.
756          */
757         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
758                 return true;
759 #endif
760         return false;
761 }
762
763 static bool do_idling(struct drm_i915_private *dev_priv)
764 {
765         bool ret = dev_priv->mm.interruptible;
766
767         if (unlikely(dev_priv->gtt.do_idle_maps)) {
768                 dev_priv->mm.interruptible = false;
769                 if (i915_gpu_idle(dev_priv->dev)) {
770                         DRM_ERROR("Couldn't idle GPU\n");
771                         /* Wait a bit, in hopes it avoids the hang */
772                         udelay(10);
773                 }
774         }
775
776         return ret;
777 }
778
779 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
780 {
781         if (unlikely(dev_priv->gtt.do_idle_maps))
782                 dev_priv->mm.interruptible = interruptible;
783 }
784
785 void i915_check_and_clear_faults(struct drm_device *dev)
786 {
787         struct drm_i915_private *dev_priv = dev->dev_private;
788         struct intel_ring_buffer *ring;
789         int i;
790
791         if (INTEL_INFO(dev)->gen < 6)
792                 return;
793
794         for_each_ring(ring, dev_priv, i) {
795                 u32 fault_reg;
796                 fault_reg = I915_READ(RING_FAULT_REG(ring));
797                 if (fault_reg & RING_FAULT_VALID) {
798                         DRM_DEBUG_DRIVER("Unexpected fault\n"
799                                          "\tAddr: 0x%08lx\\n"
800                                          "\tAddress space: %s\n"
801                                          "\tSource ID: %d\n"
802                                          "\tType: %d\n",
803                                          fault_reg & PAGE_MASK,
804                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
805                                          RING_FAULT_SRCID(fault_reg),
806                                          RING_FAULT_FAULT_TYPE(fault_reg));
807                         I915_WRITE(RING_FAULT_REG(ring),
808                                    fault_reg & ~RING_FAULT_VALID);
809                 }
810         }
811         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
812 }
813
814 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
815 {
816         struct drm_i915_private *dev_priv = dev->dev_private;
817
818         /* Don't bother messing with faults pre GEN6 as we have little
819          * documentation supporting that it's a good idea.
820          */
821         if (INTEL_INFO(dev)->gen < 6)
822                 return;
823
824         i915_check_and_clear_faults(dev);
825
826         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
827                                        dev_priv->gtt.base.start / PAGE_SIZE,
828                                        dev_priv->gtt.base.total / PAGE_SIZE,
829                                        false);
830 }
831
832 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
833 {
834         struct drm_i915_private *dev_priv = dev->dev_private;
835         struct drm_i915_gem_object *obj;
836
837         i915_check_and_clear_faults(dev);
838
839         /* First fill our portion of the GTT with scratch pages */
840         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
841                                        dev_priv->gtt.base.start / PAGE_SIZE,
842                                        dev_priv->gtt.base.total / PAGE_SIZE,
843                                        true);
844
845         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
846                 i915_gem_clflush_object(obj, obj->pin_display);
847                 i915_gem_gtt_bind_object(obj, obj->cache_level);
848         }
849
850         i915_gem_chipset_flush(dev);
851 }
852
853 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
854 {
855         if (obj->has_dma_mapping)
856                 return 0;
857
858         if (!dma_map_sg(&obj->base.dev->pdev->dev,
859                         obj->pages->sgl, obj->pages->nents,
860                         PCI_DMA_BIDIRECTIONAL))
861                 return -ENOSPC;
862
863         return 0;
864 }
865
866 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
867 {
868 #ifdef writeq
869         writeq(pte, addr);
870 #else
871         iowrite32((u32)pte, addr);
872         iowrite32(pte >> 32, addr + 4);
873 #endif
874 }
875
876 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
877                                      struct sg_table *st,
878                                      unsigned int first_entry,
879                                      enum i915_cache_level level)
880 {
881         struct drm_i915_private *dev_priv = vm->dev->dev_private;
882         gen8_gtt_pte_t __iomem *gtt_entries =
883                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
884         int i = 0;
885         struct sg_page_iter sg_iter;
886         dma_addr_t addr;
887
888         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
889                 addr = sg_dma_address(sg_iter.sg) +
890                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
891                 gen8_set_pte(&gtt_entries[i],
892                              gen8_pte_encode(addr, level, true));
893                 i++;
894         }
895
896         /*
897          * XXX: This serves as a posting read to make sure that the PTE has
898          * actually been updated. There is some concern that even though
899          * registers and PTEs are within the same BAR that they are potentially
900          * of NUMA access patterns. Therefore, even with the way we assume
901          * hardware should work, we must keep this posting read for paranoia.
902          */
903         if (i != 0)
904                 WARN_ON(readq(&gtt_entries[i-1])
905                         != gen8_pte_encode(addr, level, true));
906
907 #if 0 /* TODO: Still needed on GEN8? */
908         /* This next bit makes the above posting read even more important. We
909          * want to flush the TLBs only after we're certain all the PTE updates
910          * have finished.
911          */
912         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
913         POSTING_READ(GFX_FLSH_CNTL_GEN6);
914 #endif
915 }
916
917 /*
918  * Binds an object into the global gtt with the specified cache level. The object
919  * will be accessible to the GPU via commands whose operands reference offsets
920  * within the global GTT as well as accessible by the GPU through the GMADR
921  * mapped BAR (dev_priv->mm.gtt->gtt).
922  */
923 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
924                                      struct sg_table *st,
925                                      unsigned int first_entry,
926                                      enum i915_cache_level level)
927 {
928         struct drm_i915_private *dev_priv = vm->dev->dev_private;
929         gen6_gtt_pte_t __iomem *gtt_entries =
930                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
931         int i = 0;
932         struct sg_page_iter sg_iter;
933         dma_addr_t addr;
934
935         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
936                 addr = sg_page_iter_dma_address(&sg_iter);
937                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
938                 i++;
939         }
940
941         /* XXX: This serves as a posting read to make sure that the PTE has
942          * actually been updated. There is some concern that even though
943          * registers and PTEs are within the same BAR that they are potentially
944          * of NUMA access patterns. Therefore, even with the way we assume
945          * hardware should work, we must keep this posting read for paranoia.
946          */
947         if (i != 0)
948                 WARN_ON(readl(&gtt_entries[i-1]) !=
949                         vm->pte_encode(addr, level, true));
950
951         /* This next bit makes the above posting read even more important. We
952          * want to flush the TLBs only after we're certain all the PTE updates
953          * have finished.
954          */
955         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
956         POSTING_READ(GFX_FLSH_CNTL_GEN6);
957 }
958
959 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
960                                   unsigned int first_entry,
961                                   unsigned int num_entries,
962                                   bool use_scratch)
963 {
964         struct drm_i915_private *dev_priv = vm->dev->dev_private;
965         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
966                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
967         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
968         int i;
969
970         if (WARN(num_entries > max_entries,
971                  "First entry = %d; Num entries = %d (max=%d)\n",
972                  first_entry, num_entries, max_entries))
973                 num_entries = max_entries;
974
975         scratch_pte = gen8_pte_encode(vm->scratch.addr,
976                                       I915_CACHE_LLC,
977                                       use_scratch);
978         for (i = 0; i < num_entries; i++)
979                 gen8_set_pte(&gtt_base[i], scratch_pte);
980         readl(gtt_base);
981 }
982
983 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
984                                   unsigned int first_entry,
985                                   unsigned int num_entries,
986                                   bool use_scratch)
987 {
988         struct drm_i915_private *dev_priv = vm->dev->dev_private;
989         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
990                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
991         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
992         int i;
993
994         if (WARN(num_entries > max_entries,
995                  "First entry = %d; Num entries = %d (max=%d)\n",
996                  first_entry, num_entries, max_entries))
997                 num_entries = max_entries;
998
999         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1000
1001         for (i = 0; i < num_entries; i++)
1002                 iowrite32(scratch_pte, &gtt_base[i]);
1003         readl(gtt_base);
1004 }
1005
1006 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
1007                                      struct sg_table *st,
1008                                      unsigned int pg_start,
1009                                      enum i915_cache_level cache_level)
1010 {
1011         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1012                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1013
1014         intel_gtt_insert_sg_entries(st, pg_start, flags);
1015
1016 }
1017
1018 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1019                                   unsigned int first_entry,
1020                                   unsigned int num_entries,
1021                                   bool unused)
1022 {
1023         intel_gtt_clear_range(first_entry, num_entries);
1024 }
1025
1026
1027 void i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj,
1028                               enum i915_cache_level cache_level)
1029 {
1030         struct drm_device *dev = obj->base.dev;
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1033
1034         dev_priv->gtt.base.insert_entries(&dev_priv->gtt.base, obj->pages,
1035                                           entry,
1036                                           cache_level);
1037
1038         obj->has_global_gtt_mapping = 1;
1039 }
1040
1041 void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
1042 {
1043         struct drm_device *dev = obj->base.dev;
1044         struct drm_i915_private *dev_priv = dev->dev_private;
1045         const unsigned long entry = i915_gem_obj_ggtt_offset(obj) >> PAGE_SHIFT;
1046
1047         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1048                                        entry,
1049                                        obj->base.size >> PAGE_SHIFT,
1050                                        true);
1051
1052         obj->has_global_gtt_mapping = 0;
1053 }
1054
1055 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1056 {
1057         struct drm_device *dev = obj->base.dev;
1058         struct drm_i915_private *dev_priv = dev->dev_private;
1059         bool interruptible;
1060
1061         interruptible = do_idling(dev_priv);
1062
1063         if (!obj->has_dma_mapping)
1064                 dma_unmap_sg(&dev->pdev->dev,
1065                              obj->pages->sgl, obj->pages->nents,
1066                              PCI_DMA_BIDIRECTIONAL);
1067
1068         undo_idling(dev_priv, interruptible);
1069 }
1070
1071 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1072                                   unsigned long color,
1073                                   unsigned long *start,
1074                                   unsigned long *end)
1075 {
1076         if (node->color != color)
1077                 *start += 4096;
1078
1079         if (!list_empty(&node->node_list)) {
1080                 node = list_entry(node->node_list.next,
1081                                   struct drm_mm_node,
1082                                   node_list);
1083                 if (node->allocated && node->color != color)
1084                         *end -= 4096;
1085         }
1086 }
1087
1088 void i915_gem_setup_global_gtt(struct drm_device *dev,
1089                                unsigned long start,
1090                                unsigned long mappable_end,
1091                                unsigned long end)
1092 {
1093         /* Let GEM Manage all of the aperture.
1094          *
1095          * However, leave one page at the end still bound to the scratch page.
1096          * There are a number of places where the hardware apparently prefetches
1097          * past the end of the object, and we've seen multiple hangs with the
1098          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1099          * aperture.  One page should be enough to keep any prefetching inside
1100          * of the aperture.
1101          */
1102         struct drm_i915_private *dev_priv = dev->dev_private;
1103         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1104         struct drm_mm_node *entry;
1105         struct drm_i915_gem_object *obj;
1106         unsigned long hole_start, hole_end;
1107
1108         BUG_ON(mappable_end > end);
1109
1110         /* Subtract the guard page ... */
1111         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1112         if (!HAS_LLC(dev))
1113                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1114
1115         /* Mark any preallocated objects as occupied */
1116         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1117                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1118                 int ret;
1119                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1120                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1121
1122                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1123                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1124                 if (ret)
1125                         DRM_DEBUG_KMS("Reservation failed\n");
1126                 obj->has_global_gtt_mapping = 1;
1127                 list_add(&vma->vma_link, &obj->vma_list);
1128         }
1129
1130         dev_priv->gtt.base.start = start;
1131         dev_priv->gtt.base.total = end - start;
1132
1133         /* Clear any non-preallocated blocks */
1134         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1135                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1136                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1137                               hole_start, hole_end);
1138                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1139         }
1140
1141         /* And finally clear the reserved guard page */
1142         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1143 }
1144
1145 static bool
1146 intel_enable_ppgtt(struct drm_device *dev)
1147 {
1148         if (i915_enable_ppgtt >= 0)
1149                 return i915_enable_ppgtt;
1150
1151 #ifdef CONFIG_INTEL_IOMMU
1152         /* Disable ppgtt on SNB if VT-d is on. */
1153         if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped)
1154                 return false;
1155 #endif
1156
1157         return true;
1158 }
1159
1160 void i915_gem_init_global_gtt(struct drm_device *dev)
1161 {
1162         struct drm_i915_private *dev_priv = dev->dev_private;
1163         unsigned long gtt_size, mappable_size;
1164
1165         gtt_size = dev_priv->gtt.base.total;
1166         mappable_size = dev_priv->gtt.mappable_end;
1167
1168         if (intel_enable_ppgtt(dev) && HAS_ALIASING_PPGTT(dev)) {
1169                 int ret;
1170
1171                 if (INTEL_INFO(dev)->gen <= 7) {
1172                         /* PPGTT pdes are stolen from global gtt ptes, so shrink the
1173                          * aperture accordingly when using aliasing ppgtt. */
1174                         gtt_size -= GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE;
1175                 }
1176
1177                 i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1178
1179                 ret = i915_gem_init_aliasing_ppgtt(dev);
1180                 if (!ret)
1181                         return;
1182
1183                 DRM_ERROR("Aliased PPGTT setup failed %d\n", ret);
1184                 drm_mm_takedown(&dev_priv->gtt.base.mm);
1185                 if (INTEL_INFO(dev)->gen < 8)
1186                         gtt_size += GEN6_PPGTT_PD_ENTRIES*PAGE_SIZE;
1187         }
1188         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1189 }
1190
1191 static int setup_scratch_page(struct drm_device *dev)
1192 {
1193         struct drm_i915_private *dev_priv = dev->dev_private;
1194         struct page *page;
1195         dma_addr_t dma_addr;
1196
1197         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1198         if (page == NULL)
1199                 return -ENOMEM;
1200         get_page(page);
1201         set_pages_uc(page, 1);
1202
1203 #ifdef CONFIG_INTEL_IOMMU
1204         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1205                                 PCI_DMA_BIDIRECTIONAL);
1206         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1207                 return -EINVAL;
1208 #else
1209         dma_addr = page_to_phys(page);
1210 #endif
1211         dev_priv->gtt.base.scratch.page = page;
1212         dev_priv->gtt.base.scratch.addr = dma_addr;
1213
1214         return 0;
1215 }
1216
1217 static void teardown_scratch_page(struct drm_device *dev)
1218 {
1219         struct drm_i915_private *dev_priv = dev->dev_private;
1220         struct page *page = dev_priv->gtt.base.scratch.page;
1221
1222         set_pages_wb(page, 1);
1223         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1224                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1225         put_page(page);
1226         __free_page(page);
1227 }
1228
1229 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1230 {
1231         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1232         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1233         return snb_gmch_ctl << 20;
1234 }
1235
1236 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1237 {
1238         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1239         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1240         if (bdw_gmch_ctl)
1241                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1242         return bdw_gmch_ctl << 20;
1243 }
1244
1245 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1246 {
1247         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1248         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1249         return snb_gmch_ctl << 25; /* 32 MB units */
1250 }
1251
1252 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1253 {
1254         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1255         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1256         return bdw_gmch_ctl << 25; /* 32 MB units */
1257 }
1258
1259 static int ggtt_probe_common(struct drm_device *dev,
1260                              size_t gtt_size)
1261 {
1262         struct drm_i915_private *dev_priv = dev->dev_private;
1263         phys_addr_t gtt_bus_addr;
1264         int ret;
1265
1266         /* For Modern GENs the PTEs and register space are split in the BAR */
1267         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1268                 (pci_resource_len(dev->pdev, 0) / 2);
1269
1270         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1271         if (!dev_priv->gtt.gsm) {
1272                 DRM_ERROR("Failed to map the gtt page table\n");
1273                 return -ENOMEM;
1274         }
1275
1276         ret = setup_scratch_page(dev);
1277         if (ret) {
1278                 DRM_ERROR("Scratch setup failed\n");
1279                 /* iounmap will also get called at remove, but meh */
1280                 iounmap(dev_priv->gtt.gsm);
1281         }
1282
1283         return ret;
1284 }
1285
1286 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1287  * bits. When using advanced contexts each context stores its own PAT, but
1288  * writing this data shouldn't be harmful even in those cases. */
1289 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1290 {
1291 #define GEN8_PPAT_UC            (0<<0)
1292 #define GEN8_PPAT_WC            (1<<0)
1293 #define GEN8_PPAT_WT            (2<<0)
1294 #define GEN8_PPAT_WB            (3<<0)
1295 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1296 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1297 #define GEN8_PPAT_LLC           (1<<2)
1298 #define GEN8_PPAT_LLCELLC       (2<<2)
1299 #define GEN8_PPAT_LLCeLLC       (3<<2)
1300 #define GEN8_PPAT_AGE(x)        (x<<4)
1301 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1302         uint64_t pat;
1303
1304         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1305               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1306               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1307               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1308               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1309               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1310               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1311               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1312
1313         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1314          * write would work. */
1315         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1316         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1317 }
1318
1319 static int gen8_gmch_probe(struct drm_device *dev,
1320                            size_t *gtt_total,
1321                            size_t *stolen,
1322                            phys_addr_t *mappable_base,
1323                            unsigned long *mappable_end)
1324 {
1325         struct drm_i915_private *dev_priv = dev->dev_private;
1326         unsigned int gtt_size;
1327         u16 snb_gmch_ctl;
1328         int ret;
1329
1330         /* TODO: We're not aware of mappable constraints on gen8 yet */
1331         *mappable_base = pci_resource_start(dev->pdev, 2);
1332         *mappable_end = pci_resource_len(dev->pdev, 2);
1333
1334         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1335                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1336
1337         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1338
1339         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1340
1341         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1342         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1343
1344         gen8_setup_private_ppat(dev_priv);
1345
1346         ret = ggtt_probe_common(dev, gtt_size);
1347
1348         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1349         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1350
1351         return ret;
1352 }
1353
1354 static int gen6_gmch_probe(struct drm_device *dev,
1355                            size_t *gtt_total,
1356                            size_t *stolen,
1357                            phys_addr_t *mappable_base,
1358                            unsigned long *mappable_end)
1359 {
1360         struct drm_i915_private *dev_priv = dev->dev_private;
1361         unsigned int gtt_size;
1362         u16 snb_gmch_ctl;
1363         int ret;
1364
1365         *mappable_base = pci_resource_start(dev->pdev, 2);
1366         *mappable_end = pci_resource_len(dev->pdev, 2);
1367
1368         /* 64/512MB is the current min/max we actually know of, but this is just
1369          * a coarse sanity check.
1370          */
1371         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1372                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1373                           dev_priv->gtt.mappable_end);
1374                 return -ENXIO;
1375         }
1376
1377         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1378                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1379         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1380
1381         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1382
1383         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1384         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1385
1386         ret = ggtt_probe_common(dev, gtt_size);
1387
1388         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1389         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1390
1391         return ret;
1392 }
1393
1394 static void gen6_gmch_remove(struct i915_address_space *vm)
1395 {
1396
1397         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1398         iounmap(gtt->gsm);
1399         teardown_scratch_page(vm->dev);
1400 }
1401
1402 static int i915_gmch_probe(struct drm_device *dev,
1403                            size_t *gtt_total,
1404                            size_t *stolen,
1405                            phys_addr_t *mappable_base,
1406                            unsigned long *mappable_end)
1407 {
1408         struct drm_i915_private *dev_priv = dev->dev_private;
1409         int ret;
1410
1411         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1412         if (!ret) {
1413                 DRM_ERROR("failed to set up gmch\n");
1414                 return -EIO;
1415         }
1416
1417         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1418
1419         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1420         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1421         dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
1422
1423         return 0;
1424 }
1425
1426 static void i915_gmch_remove(struct i915_address_space *vm)
1427 {
1428         intel_gmch_remove();
1429 }
1430
1431 int i915_gem_gtt_init(struct drm_device *dev)
1432 {
1433         struct drm_i915_private *dev_priv = dev->dev_private;
1434         struct i915_gtt *gtt = &dev_priv->gtt;
1435         int ret;
1436
1437         if (INTEL_INFO(dev)->gen <= 5) {
1438                 gtt->gtt_probe = i915_gmch_probe;
1439                 gtt->base.cleanup = i915_gmch_remove;
1440         } else if (INTEL_INFO(dev)->gen < 8) {
1441                 gtt->gtt_probe = gen6_gmch_probe;
1442                 gtt->base.cleanup = gen6_gmch_remove;
1443                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1444                         gtt->base.pte_encode = iris_pte_encode;
1445                 else if (IS_HASWELL(dev))
1446                         gtt->base.pte_encode = hsw_pte_encode;
1447                 else if (IS_VALLEYVIEW(dev))
1448                         gtt->base.pte_encode = byt_pte_encode;
1449                 else if (INTEL_INFO(dev)->gen >= 7)
1450                         gtt->base.pte_encode = ivb_pte_encode;
1451                 else
1452                         gtt->base.pte_encode = snb_pte_encode;
1453         } else {
1454                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1455                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1456         }
1457
1458         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1459                              &gtt->mappable_base, &gtt->mappable_end);
1460         if (ret)
1461                 return ret;
1462
1463         gtt->base.dev = dev;
1464
1465         /* GMADR is the PCI mmio aperture into the global GTT. */
1466         DRM_INFO("Memory usable by graphics device = %zdM\n",
1467                  gtt->base.total >> 20);
1468         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1469         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1470
1471         return 0;
1472 }