Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-drm-fsl-dcu.git] / drivers / cpufreq / intel_pstate.c
1 /*
2  * intel_pstate.c: Native P state management for Intel processors
3  *
4  * (C) Copyright 2012 Intel Corporation
5  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS              0x66a
36 #define BYT_VIDS                0x66b
37 #define BYT_TURBO_RATIOS        0x66c
38 #define BYT_TURBO_VIDS          0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52         return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57         int mask, ret;
58
59         ret = fp_toint(x);
60         mask = (1 << FRAC_BITS) - 1;
61         if (x & mask)
62                 ret += 1;
63         return ret;
64 }
65
66 struct sample {
67         int32_t core_pct_busy;
68         u64 aperf;
69         u64 mperf;
70         int freq;
71         ktime_t time;
72 };
73
74 struct pstate_data {
75         int     current_pstate;
76         int     min_pstate;
77         int     max_pstate;
78         int     scaling;
79         int     turbo_pstate;
80 };
81
82 struct vid_data {
83         int min;
84         int max;
85         int turbo;
86         int32_t ratio;
87 };
88
89 struct _pid {
90         int setpoint;
91         int32_t integral;
92         int32_t p_gain;
93         int32_t i_gain;
94         int32_t d_gain;
95         int deadband;
96         int32_t last_err;
97 };
98
99 struct cpudata {
100         int cpu;
101
102         struct timer_list timer;
103
104         struct pstate_data pstate;
105         struct vid_data vid;
106         struct _pid pid;
107
108         ktime_t last_sample_time;
109         u64     prev_aperf;
110         u64     prev_mperf;
111         struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116         int sample_rate_ms;
117         int deadband;
118         int setpoint;
119         int p_gain_pct;
120         int d_gain_pct;
121         int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125         int (*get_max)(void);
126         int (*get_min)(void);
127         int (*get_turbo)(void);
128         int (*get_scaling)(void);
129         void (*set)(struct cpudata*, int pstate);
130         void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134         struct pstate_adjust_policy pid_policy;
135         struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143         int no_turbo;
144         int turbo_disabled;
145         int max_perf_pct;
146         int min_perf_pct;
147         int32_t max_perf;
148         int32_t min_perf;
149         int max_policy_pct;
150         int max_sysfs_pct;
151 };
152
153 static struct perf_limits limits = {
154         .no_turbo = 0,
155         .turbo_disabled = 0,
156         .max_perf_pct = 100,
157         .max_perf = int_tofp(1),
158         .min_perf_pct = 0,
159         .min_perf = 0,
160         .max_policy_pct = 100,
161         .max_sysfs_pct = 100,
162 };
163
164 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
165                              int deadband, int integral) {
166         pid->setpoint = setpoint;
167         pid->deadband  = deadband;
168         pid->integral  = int_tofp(integral);
169         pid->last_err  = int_tofp(setpoint) - int_tofp(busy);
170 }
171
172 static inline void pid_p_gain_set(struct _pid *pid, int percent)
173 {
174         pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static inline void pid_i_gain_set(struct _pid *pid, int percent)
178 {
179         pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
182 static inline void pid_d_gain_set(struct _pid *pid, int percent)
183 {
184         pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
187 static signed int pid_calc(struct _pid *pid, int32_t busy)
188 {
189         signed int result;
190         int32_t pterm, dterm, fp_error;
191         int32_t integral_limit;
192
193         fp_error = int_tofp(pid->setpoint) - busy;
194
195         if (abs(fp_error) <= int_tofp(pid->deadband))
196                 return 0;
197
198         pterm = mul_fp(pid->p_gain, fp_error);
199
200         pid->integral += fp_error;
201
202         /*
203          * We limit the integral here so that it will never
204          * get higher than 30.  This prevents it from becoming
205          * too large an input over long periods of time and allows
206          * it to get factored out sooner.
207          *
208          * The value of 30 was chosen through experimentation.
209          */
210         integral_limit = int_tofp(30);
211         if (pid->integral > integral_limit)
212                 pid->integral = integral_limit;
213         if (pid->integral < -integral_limit)
214                 pid->integral = -integral_limit;
215
216         dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
217         pid->last_err = fp_error;
218
219         result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
220         result = result + (1 << (FRAC_BITS-1));
221         return (signed int)fp_toint(result);
222 }
223
224 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
225 {
226         pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
227         pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
228         pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
229
230         pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
231 }
232
233 static inline void intel_pstate_reset_all_pid(void)
234 {
235         unsigned int cpu;
236
237         for_each_online_cpu(cpu) {
238                 if (all_cpu_data[cpu])
239                         intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
240         }
241 }
242
243 static inline void update_turbo_state(void)
244 {
245         u64 misc_en;
246         struct cpudata *cpu;
247
248         cpu = all_cpu_data[0];
249         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
250         limits.turbo_disabled =
251                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
252                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
253 }
254
255 #define PCT_TO_HWP(x) (x * 255 / 100)
256 static void intel_pstate_hwp_set(void)
257 {
258         int min, max, cpu;
259         u64 value, freq;
260
261         get_online_cpus();
262
263         for_each_online_cpu(cpu) {
264                 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
265                 min = PCT_TO_HWP(limits.min_perf_pct);
266                 value &= ~HWP_MIN_PERF(~0L);
267                 value |= HWP_MIN_PERF(min);
268
269                 max = PCT_TO_HWP(limits.max_perf_pct);
270                 if (limits.no_turbo) {
271                         rdmsrl( MSR_HWP_CAPABILITIES, freq);
272                         max = HWP_GUARANTEED_PERF(freq);
273                 }
274
275                 value &= ~HWP_MAX_PERF(~0L);
276                 value |= HWP_MAX_PERF(max);
277                 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
278         }
279
280         put_online_cpus();
281 }
282
283 /************************** debugfs begin ************************/
284 static int pid_param_set(void *data, u64 val)
285 {
286         *(u32 *)data = val;
287         intel_pstate_reset_all_pid();
288         return 0;
289 }
290
291 static int pid_param_get(void *data, u64 *val)
292 {
293         *val = *(u32 *)data;
294         return 0;
295 }
296 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
297
298 struct pid_param {
299         char *name;
300         void *value;
301 };
302
303 static struct pid_param pid_files[] = {
304         {"sample_rate_ms", &pid_params.sample_rate_ms},
305         {"d_gain_pct", &pid_params.d_gain_pct},
306         {"i_gain_pct", &pid_params.i_gain_pct},
307         {"deadband", &pid_params.deadband},
308         {"setpoint", &pid_params.setpoint},
309         {"p_gain_pct", &pid_params.p_gain_pct},
310         {NULL, NULL}
311 };
312
313 static void __init intel_pstate_debug_expose_params(void)
314 {
315         struct dentry *debugfs_parent;
316         int i = 0;
317
318         if (hwp_active)
319                 return;
320         debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
321         if (IS_ERR_OR_NULL(debugfs_parent))
322                 return;
323         while (pid_files[i].name) {
324                 debugfs_create_file(pid_files[i].name, 0660,
325                                     debugfs_parent, pid_files[i].value,
326                                     &fops_pid_param);
327                 i++;
328         }
329 }
330
331 /************************** debugfs end ************************/
332
333 /************************** sysfs begin ************************/
334 #define show_one(file_name, object)                                     \
335         static ssize_t show_##file_name                                 \
336         (struct kobject *kobj, struct attribute *attr, char *buf)       \
337         {                                                               \
338                 return sprintf(buf, "%u\n", limits.object);             \
339         }
340
341 static ssize_t show_no_turbo(struct kobject *kobj,
342                              struct attribute *attr, char *buf)
343 {
344         ssize_t ret;
345
346         update_turbo_state();
347         if (limits.turbo_disabled)
348                 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
349         else
350                 ret = sprintf(buf, "%u\n", limits.no_turbo);
351
352         return ret;
353 }
354
355 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
356                               const char *buf, size_t count)
357 {
358         unsigned int input;
359         int ret;
360
361         ret = sscanf(buf, "%u", &input);
362         if (ret != 1)
363                 return -EINVAL;
364
365         update_turbo_state();
366         if (limits.turbo_disabled) {
367                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
368                 return -EPERM;
369         }
370
371         limits.no_turbo = clamp_t(int, input, 0, 1);
372
373         if (hwp_active)
374                 intel_pstate_hwp_set();
375
376         return count;
377 }
378
379 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
380                                   const char *buf, size_t count)
381 {
382         unsigned int input;
383         int ret;
384
385         ret = sscanf(buf, "%u", &input);
386         if (ret != 1)
387                 return -EINVAL;
388
389         limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
390         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
391         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
392
393         if (hwp_active)
394                 intel_pstate_hwp_set();
395         return count;
396 }
397
398 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
399                                   const char *buf, size_t count)
400 {
401         unsigned int input;
402         int ret;
403
404         ret = sscanf(buf, "%u", &input);
405         if (ret != 1)
406                 return -EINVAL;
407         limits.min_perf_pct = clamp_t(int, input, 0 , 100);
408         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
409
410         if (hwp_active)
411                 intel_pstate_hwp_set();
412         return count;
413 }
414
415 show_one(max_perf_pct, max_perf_pct);
416 show_one(min_perf_pct, min_perf_pct);
417
418 define_one_global_rw(no_turbo);
419 define_one_global_rw(max_perf_pct);
420 define_one_global_rw(min_perf_pct);
421
422 static struct attribute *intel_pstate_attributes[] = {
423         &no_turbo.attr,
424         &max_perf_pct.attr,
425         &min_perf_pct.attr,
426         NULL
427 };
428
429 static struct attribute_group intel_pstate_attr_group = {
430         .attrs = intel_pstate_attributes,
431 };
432
433 static void __init intel_pstate_sysfs_expose_params(void)
434 {
435         struct kobject *intel_pstate_kobject;
436         int rc;
437
438         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
439                                                 &cpu_subsys.dev_root->kobj);
440         BUG_ON(!intel_pstate_kobject);
441         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
442         BUG_ON(rc);
443 }
444 /************************** sysfs end ************************/
445
446 static void intel_pstate_hwp_enable(void)
447 {
448         hwp_active++;
449         pr_info("intel_pstate HWP enabled\n");
450
451         wrmsrl( MSR_PM_ENABLE, 0x1);
452 }
453
454 static int byt_get_min_pstate(void)
455 {
456         u64 value;
457
458         rdmsrl(BYT_RATIOS, value);
459         return (value >> 8) & 0x7F;
460 }
461
462 static int byt_get_max_pstate(void)
463 {
464         u64 value;
465
466         rdmsrl(BYT_RATIOS, value);
467         return (value >> 16) & 0x7F;
468 }
469
470 static int byt_get_turbo_pstate(void)
471 {
472         u64 value;
473
474         rdmsrl(BYT_TURBO_RATIOS, value);
475         return value & 0x7F;
476 }
477
478 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
479 {
480         u64 val;
481         int32_t vid_fp;
482         u32 vid;
483
484         val = pstate << 8;
485         if (limits.no_turbo && !limits.turbo_disabled)
486                 val |= (u64)1 << 32;
487
488         vid_fp = cpudata->vid.min + mul_fp(
489                 int_tofp(pstate - cpudata->pstate.min_pstate),
490                 cpudata->vid.ratio);
491
492         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
493         vid = ceiling_fp(vid_fp);
494
495         if (pstate > cpudata->pstate.max_pstate)
496                 vid = cpudata->vid.turbo;
497
498         val |= vid;
499
500         wrmsrl(MSR_IA32_PERF_CTL, val);
501 }
502
503 #define BYT_BCLK_FREQS 5
504 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
505
506 static int byt_get_scaling(void)
507 {
508         u64 value;
509         int i;
510
511         rdmsrl(MSR_FSB_FREQ, value);
512         i = value & 0x3;
513
514         BUG_ON(i > BYT_BCLK_FREQS);
515
516         return byt_freq_table[i] * 100;
517 }
518
519 static void byt_get_vid(struct cpudata *cpudata)
520 {
521         u64 value;
522
523         rdmsrl(BYT_VIDS, value);
524         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
525         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
526         cpudata->vid.ratio = div_fp(
527                 cpudata->vid.max - cpudata->vid.min,
528                 int_tofp(cpudata->pstate.max_pstate -
529                         cpudata->pstate.min_pstate));
530
531         rdmsrl(BYT_TURBO_VIDS, value);
532         cpudata->vid.turbo = value & 0x7f;
533 }
534
535 static int core_get_min_pstate(void)
536 {
537         u64 value;
538
539         rdmsrl(MSR_PLATFORM_INFO, value);
540         return (value >> 40) & 0xFF;
541 }
542
543 static int core_get_max_pstate(void)
544 {
545         u64 value;
546
547         rdmsrl(MSR_PLATFORM_INFO, value);
548         return (value >> 8) & 0xFF;
549 }
550
551 static int core_get_turbo_pstate(void)
552 {
553         u64 value;
554         int nont, ret;
555
556         rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
557         nont = core_get_max_pstate();
558         ret = (value) & 255;
559         if (ret <= nont)
560                 ret = nont;
561         return ret;
562 }
563
564 static inline int core_get_scaling(void)
565 {
566         return 100000;
567 }
568
569 static void core_set_pstate(struct cpudata *cpudata, int pstate)
570 {
571         u64 val;
572
573         val = pstate << 8;
574         if (limits.no_turbo && !limits.turbo_disabled)
575                 val |= (u64)1 << 32;
576
577         wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
578 }
579
580 static struct cpu_defaults core_params = {
581         .pid_policy = {
582                 .sample_rate_ms = 10,
583                 .deadband = 0,
584                 .setpoint = 97,
585                 .p_gain_pct = 20,
586                 .d_gain_pct = 0,
587                 .i_gain_pct = 0,
588         },
589         .funcs = {
590                 .get_max = core_get_max_pstate,
591                 .get_min = core_get_min_pstate,
592                 .get_turbo = core_get_turbo_pstate,
593                 .get_scaling = core_get_scaling,
594                 .set = core_set_pstate,
595         },
596 };
597
598 static struct cpu_defaults byt_params = {
599         .pid_policy = {
600                 .sample_rate_ms = 10,
601                 .deadband = 0,
602                 .setpoint = 97,
603                 .p_gain_pct = 14,
604                 .d_gain_pct = 0,
605                 .i_gain_pct = 4,
606         },
607         .funcs = {
608                 .get_max = byt_get_max_pstate,
609                 .get_min = byt_get_min_pstate,
610                 .get_turbo = byt_get_turbo_pstate,
611                 .set = byt_set_pstate,
612                 .get_scaling = byt_get_scaling,
613                 .get_vid = byt_get_vid,
614         },
615 };
616
617 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
618 {
619         int max_perf = cpu->pstate.turbo_pstate;
620         int max_perf_adj;
621         int min_perf;
622
623         if (limits.no_turbo || limits.turbo_disabled)
624                 max_perf = cpu->pstate.max_pstate;
625
626         /*
627          * performance can be limited by user through sysfs, by cpufreq
628          * policy, or by cpu specific default values determined through
629          * experimentation.
630          */
631         max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
632         *max = clamp_t(int, max_perf_adj,
633                         cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
634
635         min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
636         *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
637 }
638
639 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
640 {
641         int max_perf, min_perf;
642
643         update_turbo_state();
644
645         intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
646
647         pstate = clamp_t(int, pstate, min_perf, max_perf);
648
649         if (pstate == cpu->pstate.current_pstate)
650                 return;
651
652         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
653
654         cpu->pstate.current_pstate = pstate;
655
656         pstate_funcs.set(cpu, pstate);
657 }
658
659 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
660 {
661         cpu->pstate.min_pstate = pstate_funcs.get_min();
662         cpu->pstate.max_pstate = pstate_funcs.get_max();
663         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
664         cpu->pstate.scaling = pstate_funcs.get_scaling();
665
666         if (pstate_funcs.get_vid)
667                 pstate_funcs.get_vid(cpu);
668         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
669 }
670
671 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
672 {
673         struct sample *sample = &cpu->sample;
674         int64_t core_pct;
675
676         core_pct = int_tofp(sample->aperf) * int_tofp(100);
677         core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
678
679         sample->freq = fp_toint(
680                 mul_fp(int_tofp(
681                         cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
682                         core_pct));
683
684         sample->core_pct_busy = (int32_t)core_pct;
685 }
686
687 static inline void intel_pstate_sample(struct cpudata *cpu)
688 {
689         u64 aperf, mperf;
690         unsigned long flags;
691
692         local_irq_save(flags);
693         rdmsrl(MSR_IA32_APERF, aperf);
694         rdmsrl(MSR_IA32_MPERF, mperf);
695         local_irq_restore(flags);
696
697         cpu->last_sample_time = cpu->sample.time;
698         cpu->sample.time = ktime_get();
699         cpu->sample.aperf = aperf;
700         cpu->sample.mperf = mperf;
701         cpu->sample.aperf -= cpu->prev_aperf;
702         cpu->sample.mperf -= cpu->prev_mperf;
703
704         intel_pstate_calc_busy(cpu);
705
706         cpu->prev_aperf = aperf;
707         cpu->prev_mperf = mperf;
708 }
709
710 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
711 {
712         int delay;
713
714         delay = msecs_to_jiffies(50);
715         mod_timer_pinned(&cpu->timer, jiffies + delay);
716 }
717
718 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
719 {
720         int delay;
721
722         delay = msecs_to_jiffies(pid_params.sample_rate_ms);
723         mod_timer_pinned(&cpu->timer, jiffies + delay);
724 }
725
726 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
727 {
728         int32_t core_busy, max_pstate, current_pstate, sample_ratio;
729         u32 duration_us;
730         u32 sample_time;
731
732         /*
733          * core_busy is the ratio of actual performance to max
734          * max_pstate is the max non turbo pstate available
735          * current_pstate was the pstate that was requested during
736          *      the last sample period.
737          *
738          * We normalize core_busy, which was our actual percent
739          * performance to what we requested during the last sample
740          * period. The result will be a percentage of busy at a
741          * specified pstate.
742          */
743         core_busy = cpu->sample.core_pct_busy;
744         max_pstate = int_tofp(cpu->pstate.max_pstate);
745         current_pstate = int_tofp(cpu->pstate.current_pstate);
746         core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
747
748         /*
749          * Since we have a deferred timer, it will not fire unless
750          * we are in C0.  So, determine if the actual elapsed time
751          * is significantly greater (3x) than our sample interval.  If it
752          * is, then we were idle for a long enough period of time
753          * to adjust our busyness.
754          */
755         sample_time = pid_params.sample_rate_ms  * USEC_PER_MSEC;
756         duration_us = (u32) ktime_us_delta(cpu->sample.time,
757                                            cpu->last_sample_time);
758         if (duration_us > sample_time * 3) {
759                 sample_ratio = div_fp(int_tofp(sample_time),
760                                       int_tofp(duration_us));
761                 core_busy = mul_fp(core_busy, sample_ratio);
762         }
763
764         return core_busy;
765 }
766
767 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
768 {
769         int32_t busy_scaled;
770         struct _pid *pid;
771         signed int ctl;
772
773         pid = &cpu->pid;
774         busy_scaled = intel_pstate_get_scaled_busy(cpu);
775
776         ctl = pid_calc(pid, busy_scaled);
777
778         /* Negative values of ctl increase the pstate and vice versa */
779         intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
780 }
781
782 static void intel_hwp_timer_func(unsigned long __data)
783 {
784         struct cpudata *cpu = (struct cpudata *) __data;
785
786         intel_pstate_sample(cpu);
787         intel_hwp_set_sample_time(cpu);
788 }
789
790 static void intel_pstate_timer_func(unsigned long __data)
791 {
792         struct cpudata *cpu = (struct cpudata *) __data;
793         struct sample *sample;
794
795         intel_pstate_sample(cpu);
796
797         sample = &cpu->sample;
798
799         intel_pstate_adjust_busy_pstate(cpu);
800
801         trace_pstate_sample(fp_toint(sample->core_pct_busy),
802                         fp_toint(intel_pstate_get_scaled_busy(cpu)),
803                         cpu->pstate.current_pstate,
804                         sample->mperf,
805                         sample->aperf,
806                         sample->freq);
807
808         intel_pstate_set_sample_time(cpu);
809 }
810
811 #define ICPU(model, policy) \
812         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
813                         (unsigned long)&policy }
814
815 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
816         ICPU(0x2a, core_params),
817         ICPU(0x2d, core_params),
818         ICPU(0x37, byt_params),
819         ICPU(0x3a, core_params),
820         ICPU(0x3c, core_params),
821         ICPU(0x3d, core_params),
822         ICPU(0x3e, core_params),
823         ICPU(0x3f, core_params),
824         ICPU(0x45, core_params),
825         ICPU(0x46, core_params),
826         ICPU(0x47, core_params),
827         ICPU(0x4c, byt_params),
828         ICPU(0x4f, core_params),
829         ICPU(0x56, core_params),
830         {}
831 };
832 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
833
834 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
835         ICPU(0x56, core_params),
836         {}
837 };
838
839 static int intel_pstate_init_cpu(unsigned int cpunum)
840 {
841         struct cpudata *cpu;
842
843         if (!all_cpu_data[cpunum])
844                 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
845                                                GFP_KERNEL);
846         if (!all_cpu_data[cpunum])
847                 return -ENOMEM;
848
849         cpu = all_cpu_data[cpunum];
850
851         cpu->cpu = cpunum;
852         intel_pstate_get_cpu_pstates(cpu);
853
854         init_timer_deferrable(&cpu->timer);
855         cpu->timer.data = (unsigned long)cpu;
856         cpu->timer.expires = jiffies + HZ/100;
857
858         if (!hwp_active)
859                 cpu->timer.function = intel_pstate_timer_func;
860         else
861                 cpu->timer.function = intel_hwp_timer_func;
862
863         intel_pstate_busy_pid_reset(cpu);
864         intel_pstate_sample(cpu);
865
866         add_timer_on(&cpu->timer, cpunum);
867
868         pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
869
870         return 0;
871 }
872
873 static unsigned int intel_pstate_get(unsigned int cpu_num)
874 {
875         struct sample *sample;
876         struct cpudata *cpu;
877
878         cpu = all_cpu_data[cpu_num];
879         if (!cpu)
880                 return 0;
881         sample = &cpu->sample;
882         return sample->freq;
883 }
884
885 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
886 {
887         if (!policy->cpuinfo.max_freq)
888                 return -ENODEV;
889
890         if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
891                 limits.min_perf_pct = 100;
892                 limits.min_perf = int_tofp(1);
893                 limits.max_policy_pct = 100;
894                 limits.max_perf_pct = 100;
895                 limits.max_perf = int_tofp(1);
896                 limits.no_turbo = 0;
897                 return 0;
898         }
899
900         limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
901         limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
902         limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
903
904         limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
905         limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
906         limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
907         limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
908
909         if (hwp_active)
910                 intel_pstate_hwp_set();
911
912         return 0;
913 }
914
915 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
916 {
917         cpufreq_verify_within_cpu_limits(policy);
918
919         if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
920             policy->policy != CPUFREQ_POLICY_PERFORMANCE)
921                 return -EINVAL;
922
923         return 0;
924 }
925
926 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
927 {
928         int cpu_num = policy->cpu;
929         struct cpudata *cpu = all_cpu_data[cpu_num];
930
931         pr_info("intel_pstate CPU %d exiting\n", cpu_num);
932
933         del_timer_sync(&all_cpu_data[cpu_num]->timer);
934         if (hwp_active)
935                 return;
936
937         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
938 }
939
940 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
941 {
942         struct cpudata *cpu;
943         int rc;
944
945         rc = intel_pstate_init_cpu(policy->cpu);
946         if (rc)
947                 return rc;
948
949         cpu = all_cpu_data[policy->cpu];
950
951         if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
952                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
953         else
954                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
955
956         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
957         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
958
959         /* cpuinfo and default policy values */
960         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
961         policy->cpuinfo.max_freq =
962                 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
963         policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
964         cpumask_set_cpu(policy->cpu, policy->cpus);
965
966         return 0;
967 }
968
969 static struct cpufreq_driver intel_pstate_driver = {
970         .flags          = CPUFREQ_CONST_LOOPS,
971         .verify         = intel_pstate_verify_policy,
972         .setpolicy      = intel_pstate_set_policy,
973         .get            = intel_pstate_get,
974         .init           = intel_pstate_cpu_init,
975         .stop_cpu       = intel_pstate_stop_cpu,
976         .name           = "intel_pstate",
977 };
978
979 static int __initdata no_load;
980 static int __initdata no_hwp;
981 static unsigned int force_load;
982
983 static int intel_pstate_msrs_not_valid(void)
984 {
985         /* Check that all the msr's we are using are valid. */
986         u64 aperf, mperf, tmp;
987
988         rdmsrl(MSR_IA32_APERF, aperf);
989         rdmsrl(MSR_IA32_MPERF, mperf);
990
991         if (!pstate_funcs.get_max() ||
992             !pstate_funcs.get_min() ||
993             !pstate_funcs.get_turbo())
994                 return -ENODEV;
995
996         rdmsrl(MSR_IA32_APERF, tmp);
997         if (!(tmp - aperf))
998                 return -ENODEV;
999
1000         rdmsrl(MSR_IA32_MPERF, tmp);
1001         if (!(tmp - mperf))
1002                 return -ENODEV;
1003
1004         return 0;
1005 }
1006
1007 static void copy_pid_params(struct pstate_adjust_policy *policy)
1008 {
1009         pid_params.sample_rate_ms = policy->sample_rate_ms;
1010         pid_params.p_gain_pct = policy->p_gain_pct;
1011         pid_params.i_gain_pct = policy->i_gain_pct;
1012         pid_params.d_gain_pct = policy->d_gain_pct;
1013         pid_params.deadband = policy->deadband;
1014         pid_params.setpoint = policy->setpoint;
1015 }
1016
1017 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1018 {
1019         pstate_funcs.get_max   = funcs->get_max;
1020         pstate_funcs.get_min   = funcs->get_min;
1021         pstate_funcs.get_turbo = funcs->get_turbo;
1022         pstate_funcs.get_scaling = funcs->get_scaling;
1023         pstate_funcs.set       = funcs->set;
1024         pstate_funcs.get_vid   = funcs->get_vid;
1025 }
1026
1027 #if IS_ENABLED(CONFIG_ACPI)
1028 #include <acpi/processor.h>
1029
1030 static bool intel_pstate_no_acpi_pss(void)
1031 {
1032         int i;
1033
1034         for_each_possible_cpu(i) {
1035                 acpi_status status;
1036                 union acpi_object *pss;
1037                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1038                 struct acpi_processor *pr = per_cpu(processors, i);
1039
1040                 if (!pr)
1041                         continue;
1042
1043                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1044                 if (ACPI_FAILURE(status))
1045                         continue;
1046
1047                 pss = buffer.pointer;
1048                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1049                         kfree(pss);
1050                         return false;
1051                 }
1052
1053                 kfree(pss);
1054         }
1055
1056         return true;
1057 }
1058
1059 static bool intel_pstate_has_acpi_ppc(void)
1060 {
1061         int i;
1062
1063         for_each_possible_cpu(i) {
1064                 struct acpi_processor *pr = per_cpu(processors, i);
1065
1066                 if (!pr)
1067                         continue;
1068                 if (acpi_has_method(pr->handle, "_PPC"))
1069                         return true;
1070         }
1071         return false;
1072 }
1073
1074 enum {
1075         PSS,
1076         PPC,
1077 };
1078
1079 struct hw_vendor_info {
1080         u16  valid;
1081         char oem_id[ACPI_OEM_ID_SIZE];
1082         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1083         int  oem_pwr_table;
1084 };
1085
1086 /* Hardware vendor-specific info that has its own power management modes */
1087 static struct hw_vendor_info vendor_info[] = {
1088         {1, "HP    ", "ProLiant", PSS},
1089         {1, "ORACLE", "X4-2    ", PPC},
1090         {1, "ORACLE", "X4-2L   ", PPC},
1091         {1, "ORACLE", "X4-2B   ", PPC},
1092         {1, "ORACLE", "X3-2    ", PPC},
1093         {1, "ORACLE", "X3-2L   ", PPC},
1094         {1, "ORACLE", "X3-2B   ", PPC},
1095         {1, "ORACLE", "X4470M2 ", PPC},
1096         {1, "ORACLE", "X4270M3 ", PPC},
1097         {1, "ORACLE", "X4270M2 ", PPC},
1098         {1, "ORACLE", "X4170M2 ", PPC},
1099         {0, "", ""},
1100 };
1101
1102 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1103 {
1104         struct acpi_table_header hdr;
1105         struct hw_vendor_info *v_info;
1106         const struct x86_cpu_id *id;
1107         u64 misc_pwr;
1108
1109         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1110         if (id) {
1111                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1112                 if ( misc_pwr & (1 << 8))
1113                         return true;
1114         }
1115
1116         if (acpi_disabled ||
1117             ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1118                 return false;
1119
1120         for (v_info = vendor_info; v_info->valid; v_info++) {
1121                 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1122                         !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1123                                                 ACPI_OEM_TABLE_ID_SIZE))
1124                         switch (v_info->oem_pwr_table) {
1125                         case PSS:
1126                                 return intel_pstate_no_acpi_pss();
1127                         case PPC:
1128                                 return intel_pstate_has_acpi_ppc() &&
1129                                         (!force_load);
1130                         }
1131         }
1132
1133         return false;
1134 }
1135 #else /* CONFIG_ACPI not enabled */
1136 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1137 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1138 #endif /* CONFIG_ACPI */
1139
1140 static int __init intel_pstate_init(void)
1141 {
1142         int cpu, rc = 0;
1143         const struct x86_cpu_id *id;
1144         struct cpu_defaults *cpu_info;
1145         struct cpuinfo_x86 *c = &boot_cpu_data;
1146
1147         if (no_load)
1148                 return -ENODEV;
1149
1150         id = x86_match_cpu(intel_pstate_cpu_ids);
1151         if (!id)
1152                 return -ENODEV;
1153
1154         /*
1155          * The Intel pstate driver will be ignored if the platform
1156          * firmware has its own power management modes.
1157          */
1158         if (intel_pstate_platform_pwr_mgmt_exists())
1159                 return -ENODEV;
1160
1161         cpu_info = (struct cpu_defaults *)id->driver_data;
1162
1163         copy_pid_params(&cpu_info->pid_policy);
1164         copy_cpu_funcs(&cpu_info->funcs);
1165
1166         if (intel_pstate_msrs_not_valid())
1167                 return -ENODEV;
1168
1169         pr_info("Intel P-state driver initializing.\n");
1170
1171         all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1172         if (!all_cpu_data)
1173                 return -ENOMEM;
1174
1175         if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1176                 intel_pstate_hwp_enable();
1177
1178         rc = cpufreq_register_driver(&intel_pstate_driver);
1179         if (rc)
1180                 goto out;
1181
1182         intel_pstate_debug_expose_params();
1183         intel_pstate_sysfs_expose_params();
1184
1185         return rc;
1186 out:
1187         get_online_cpus();
1188         for_each_online_cpu(cpu) {
1189                 if (all_cpu_data[cpu]) {
1190                         del_timer_sync(&all_cpu_data[cpu]->timer);
1191                         kfree(all_cpu_data[cpu]);
1192                 }
1193         }
1194
1195         put_online_cpus();
1196         vfree(all_cpu_data);
1197         return -ENODEV;
1198 }
1199 device_initcall(intel_pstate_init);
1200
1201 static int __init intel_pstate_setup(char *str)
1202 {
1203         if (!str)
1204                 return -EINVAL;
1205
1206         if (!strcmp(str, "disable"))
1207                 no_load = 1;
1208         if (!strcmp(str, "no_hwp"))
1209                 no_hwp = 1;
1210         if (!strcmp(str, "force"))
1211                 force_load = 1;
1212         return 0;
1213 }
1214 early_param("intel_pstate", intel_pstate_setup);
1215
1216 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1217 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1218 MODULE_LICENSE("GPL");