Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[linux-drm-fsl-dcu.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/sched.h>
27 #include <linux/kmod.h>
28 #include <linux/workqueue.h>
29 #include <linux/jiffies.h>
30 #include <linux/kernel_stat.h>
31 #include <linux/percpu.h>
32 #include <linux/mutex.h>
33 /*
34  * dbs is used in this file as a shortform for demandbased switching
35  * It helps to keep variable names smaller, simpler
36  */
37
38 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
39 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
40
41 /* 
42  * The polling frequency of this governor depends on the capability of 
43  * the processor. Default polling frequency is 1000 times the transition
44  * latency of the processor. The governor will work on any processor with 
45  * transition latency <= 10mS, using appropriate sampling 
46  * rate.
47  * For CPUs with transition latency > 10mS (mostly drivers
48  * with CPUFREQ_ETERNAL), this governor will not work.
49  * All times here are in uS.
50  */
51 static unsigned int                             def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO                 (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE                  \
55                         (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
56 #define MIN_SAMPLING_RATE                       \
57                         (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
58 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
59 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
60 #define DEF_SAMPLING_DOWN_FACTOR                (1)
61 #define MAX_SAMPLING_DOWN_FACTOR                (10)
62 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
63
64 static void do_dbs_timer(struct work_struct *work);
65
66 struct cpu_dbs_info_s {
67         struct cpufreq_policy   *cur_policy;
68         unsigned int            prev_cpu_idle_up;
69         unsigned int            prev_cpu_idle_down;
70         unsigned int            enable;
71         unsigned int            down_skip;
72         unsigned int            requested_freq;
73 };
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
75
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
77
78 /*
79  * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
80  * lock and dbs_mutex. cpu_hotplug lock should always be held before
81  * dbs_mutex. If any function that can potentially take cpu_hotplug lock
82  * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
83  * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
84  * is recursive for the same process. -Venki
85  */
86 static DEFINE_MUTEX     (dbs_mutex);
87 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
88
89 struct dbs_tuners {
90         unsigned int            sampling_rate;
91         unsigned int            sampling_down_factor;
92         unsigned int            up_threshold;
93         unsigned int            down_threshold;
94         unsigned int            ignore_nice;
95         unsigned int            freq_step;
96 };
97
98 static struct dbs_tuners dbs_tuners_ins = {
99         .up_threshold           = DEF_FREQUENCY_UP_THRESHOLD,
100         .down_threshold         = DEF_FREQUENCY_DOWN_THRESHOLD,
101         .sampling_down_factor   = DEF_SAMPLING_DOWN_FACTOR,
102         .ignore_nice            = 0,
103         .freq_step              = 5,
104 };
105
106 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
107 {
108         unsigned int add_nice = 0, ret;
109
110         if (dbs_tuners_ins.ignore_nice)
111                 add_nice = kstat_cpu(cpu).cpustat.nice;
112
113         ret =   kstat_cpu(cpu).cpustat.idle +
114                 kstat_cpu(cpu).cpustat.iowait +
115                 add_nice;
116
117         return ret;
118 }
119
120 /************************** sysfs interface ************************/
121 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
122 {
123         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
124 }
125
126 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
127 {
128         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
129 }
130
131 #define define_one_ro(_name)                                    \
132 static struct freq_attr _name =                                 \
133 __ATTR(_name, 0444, show_##_name, NULL)
134
135 define_one_ro(sampling_rate_max);
136 define_one_ro(sampling_rate_min);
137
138 /* cpufreq_conservative Governor Tunables */
139 #define show_one(file_name, object)                                     \
140 static ssize_t show_##file_name                                         \
141 (struct cpufreq_policy *unused, char *buf)                              \
142 {                                                                       \
143         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
144 }
145 show_one(sampling_rate, sampling_rate);
146 show_one(sampling_down_factor, sampling_down_factor);
147 show_one(up_threshold, up_threshold);
148 show_one(down_threshold, down_threshold);
149 show_one(ignore_nice_load, ignore_nice);
150 show_one(freq_step, freq_step);
151
152 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
153                 const char *buf, size_t count)
154 {
155         unsigned int input;
156         int ret;
157         ret = sscanf (buf, "%u", &input);
158         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
159                 return -EINVAL;
160
161         mutex_lock(&dbs_mutex);
162         dbs_tuners_ins.sampling_down_factor = input;
163         mutex_unlock(&dbs_mutex);
164
165         return count;
166 }
167
168 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
169                 const char *buf, size_t count)
170 {
171         unsigned int input;
172         int ret;
173         ret = sscanf (buf, "%u", &input);
174
175         mutex_lock(&dbs_mutex);
176         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
177                 mutex_unlock(&dbs_mutex);
178                 return -EINVAL;
179         }
180
181         dbs_tuners_ins.sampling_rate = input;
182         mutex_unlock(&dbs_mutex);
183
184         return count;
185 }
186
187 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
188                 const char *buf, size_t count)
189 {
190         unsigned int input;
191         int ret;
192         ret = sscanf (buf, "%u", &input);
193
194         mutex_lock(&dbs_mutex);
195         if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
196                 mutex_unlock(&dbs_mutex);
197                 return -EINVAL;
198         }
199
200         dbs_tuners_ins.up_threshold = input;
201         mutex_unlock(&dbs_mutex);
202
203         return count;
204 }
205
206 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
207                 const char *buf, size_t count)
208 {
209         unsigned int input;
210         int ret;
211         ret = sscanf (buf, "%u", &input);
212
213         mutex_lock(&dbs_mutex);
214         if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
215                 mutex_unlock(&dbs_mutex);
216                 return -EINVAL;
217         }
218
219         dbs_tuners_ins.down_threshold = input;
220         mutex_unlock(&dbs_mutex);
221
222         return count;
223 }
224
225 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
226                 const char *buf, size_t count)
227 {
228         unsigned int input;
229         int ret;
230
231         unsigned int j;
232         
233         ret = sscanf (buf, "%u", &input);
234         if ( ret != 1 )
235                 return -EINVAL;
236
237         if ( input > 1 )
238                 input = 1;
239         
240         mutex_lock(&dbs_mutex);
241         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
242                 mutex_unlock(&dbs_mutex);
243                 return count;
244         }
245         dbs_tuners_ins.ignore_nice = input;
246
247         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
248         for_each_online_cpu(j) {
249                 struct cpu_dbs_info_s *j_dbs_info;
250                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
251                 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
252                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
253         }
254         mutex_unlock(&dbs_mutex);
255
256         return count;
257 }
258
259 static ssize_t store_freq_step(struct cpufreq_policy *policy,
260                 const char *buf, size_t count)
261 {
262         unsigned int input;
263         int ret;
264
265         ret = sscanf (buf, "%u", &input);
266
267         if ( ret != 1 )
268                 return -EINVAL;
269
270         if ( input > 100 )
271                 input = 100;
272         
273         /* no need to test here if freq_step is zero as the user might actually
274          * want this, they would be crazy though :) */
275         mutex_lock(&dbs_mutex);
276         dbs_tuners_ins.freq_step = input;
277         mutex_unlock(&dbs_mutex);
278
279         return count;
280 }
281
282 #define define_one_rw(_name) \
283 static struct freq_attr _name = \
284 __ATTR(_name, 0644, show_##_name, store_##_name)
285
286 define_one_rw(sampling_rate);
287 define_one_rw(sampling_down_factor);
288 define_one_rw(up_threshold);
289 define_one_rw(down_threshold);
290 define_one_rw(ignore_nice_load);
291 define_one_rw(freq_step);
292
293 static struct attribute * dbs_attributes[] = {
294         &sampling_rate_max.attr,
295         &sampling_rate_min.attr,
296         &sampling_rate.attr,
297         &sampling_down_factor.attr,
298         &up_threshold.attr,
299         &down_threshold.attr,
300         &ignore_nice_load.attr,
301         &freq_step.attr,
302         NULL
303 };
304
305 static struct attribute_group dbs_attr_group = {
306         .attrs = dbs_attributes,
307         .name = "conservative",
308 };
309
310 /************************** sysfs end ************************/
311
312 static void dbs_check_cpu(int cpu)
313 {
314         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
315         unsigned int tmp_idle_ticks, total_idle_ticks;
316         unsigned int freq_step;
317         unsigned int freq_down_sampling_rate;
318         struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
319         struct cpufreq_policy *policy;
320
321         if (!this_dbs_info->enable)
322                 return;
323
324         policy = this_dbs_info->cur_policy;
325
326         /* 
327          * The default safe range is 20% to 80% 
328          * Every sampling_rate, we check
329          *      - If current idle time is less than 20%, then we try to 
330          *        increase frequency
331          * Every sampling_rate*sampling_down_factor, we check
332          *      - If current idle time is more than 80%, then we try to
333          *        decrease frequency
334          *
335          * Any frequency increase takes it to the maximum frequency. 
336          * Frequency reduction happens at minimum steps of 
337          * 5% (default) of max_frequency 
338          */
339
340         /* Check for frequency increase */
341         idle_ticks = UINT_MAX;
342
343         /* Check for frequency increase */
344         total_idle_ticks = get_cpu_idle_time(cpu);
345         tmp_idle_ticks = total_idle_ticks -
346                 this_dbs_info->prev_cpu_idle_up;
347         this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
348
349         if (tmp_idle_ticks < idle_ticks)
350                 idle_ticks = tmp_idle_ticks;
351
352         /* Scale idle ticks by 100 and compare with up and down ticks */
353         idle_ticks *= 100;
354         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
355                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
356
357         if (idle_ticks < up_idle_ticks) {
358                 this_dbs_info->down_skip = 0;
359                 this_dbs_info->prev_cpu_idle_down =
360                         this_dbs_info->prev_cpu_idle_up;
361
362                 /* if we are already at full speed then break out early */
363                 if (this_dbs_info->requested_freq == policy->max)
364                         return;
365                 
366                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
367
368                 /* max freq cannot be less than 100. But who knows.... */
369                 if (unlikely(freq_step == 0))
370                         freq_step = 5;
371                 
372                 this_dbs_info->requested_freq += freq_step;
373                 if (this_dbs_info->requested_freq > policy->max)
374                         this_dbs_info->requested_freq = policy->max;
375
376                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
377                         CPUFREQ_RELATION_H);
378                 return;
379         }
380
381         /* Check for frequency decrease */
382         this_dbs_info->down_skip++;
383         if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
384                 return;
385
386         /* Check for frequency decrease */
387         total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
388         tmp_idle_ticks = total_idle_ticks -
389                 this_dbs_info->prev_cpu_idle_down;
390         this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
391
392         if (tmp_idle_ticks < idle_ticks)
393                 idle_ticks = tmp_idle_ticks;
394
395         /* Scale idle ticks by 100 and compare with up and down ticks */
396         idle_ticks *= 100;
397         this_dbs_info->down_skip = 0;
398
399         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
400                 dbs_tuners_ins.sampling_down_factor;
401         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
402                 usecs_to_jiffies(freq_down_sampling_rate);
403
404         if (idle_ticks > down_idle_ticks) {
405                 /*
406                  * if we are already at the lowest speed then break out early
407                  * or if we 'cannot' reduce the speed as the user might want
408                  * freq_step to be zero
409                  */
410                 if (this_dbs_info->requested_freq == policy->min
411                                 || dbs_tuners_ins.freq_step == 0)
412                         return;
413
414                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
415
416                 /* max freq cannot be less than 100. But who knows.... */
417                 if (unlikely(freq_step == 0))
418                         freq_step = 5;
419
420                 this_dbs_info->requested_freq -= freq_step;
421                 if (this_dbs_info->requested_freq < policy->min)
422                         this_dbs_info->requested_freq = policy->min;
423
424                 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
425                                 CPUFREQ_RELATION_H);
426                 return;
427         }
428 }
429
430 static void do_dbs_timer(struct work_struct *work)
431
432         int i;
433         lock_cpu_hotplug();
434         mutex_lock(&dbs_mutex);
435         for_each_online_cpu(i)
436                 dbs_check_cpu(i);
437         schedule_delayed_work(&dbs_work, 
438                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
439         mutex_unlock(&dbs_mutex);
440         unlock_cpu_hotplug();
441
442
443 static inline void dbs_timer_init(void)
444 {
445         schedule_delayed_work(&dbs_work,
446                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
447         return;
448 }
449
450 static inline void dbs_timer_exit(void)
451 {
452         cancel_delayed_work(&dbs_work);
453         return;
454 }
455
456 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
457                                    unsigned int event)
458 {
459         unsigned int cpu = policy->cpu;
460         struct cpu_dbs_info_s *this_dbs_info;
461         unsigned int j;
462         int rc;
463
464         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
465
466         switch (event) {
467         case CPUFREQ_GOV_START:
468                 if ((!cpu_online(cpu)) || 
469                     (!policy->cur))
470                         return -EINVAL;
471
472                 if (policy->cpuinfo.transition_latency >
473                                 (TRANSITION_LATENCY_LIMIT * 1000))
474                         return -EINVAL;
475                 if (this_dbs_info->enable) /* Already enabled */
476                         break;
477                  
478                 mutex_lock(&dbs_mutex);
479
480                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
481                 if (rc) {
482                         mutex_unlock(&dbs_mutex);
483                         return rc;
484                 }
485
486                 for_each_cpu_mask(j, policy->cpus) {
487                         struct cpu_dbs_info_s *j_dbs_info;
488                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
489                         j_dbs_info->cur_policy = policy;
490                 
491                         j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
492                         j_dbs_info->prev_cpu_idle_down
493                                 = j_dbs_info->prev_cpu_idle_up;
494                 }
495                 this_dbs_info->enable = 1;
496                 this_dbs_info->down_skip = 0;
497                 this_dbs_info->requested_freq = policy->cur;
498
499                 dbs_enable++;
500                 /*
501                  * Start the timerschedule work, when this governor
502                  * is used for first time
503                  */
504                 if (dbs_enable == 1) {
505                         unsigned int latency;
506                         /* policy latency is in nS. Convert it to uS first */
507                         latency = policy->cpuinfo.transition_latency / 1000;
508                         if (latency == 0)
509                                 latency = 1;
510
511                         def_sampling_rate = 10 * latency *
512                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
513
514                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
515                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
516
517                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
518
519                         dbs_timer_init();
520                 }
521                 
522                 mutex_unlock(&dbs_mutex);
523                 break;
524
525         case CPUFREQ_GOV_STOP:
526                 mutex_lock(&dbs_mutex);
527                 this_dbs_info->enable = 0;
528                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
529                 dbs_enable--;
530                 /*
531                  * Stop the timerschedule work, when this governor
532                  * is used for first time
533                  */
534                 if (dbs_enable == 0) 
535                         dbs_timer_exit();
536                 
537                 mutex_unlock(&dbs_mutex);
538
539                 break;
540
541         case CPUFREQ_GOV_LIMITS:
542                 mutex_lock(&dbs_mutex);
543                 if (policy->max < this_dbs_info->cur_policy->cur)
544                         __cpufreq_driver_target(
545                                         this_dbs_info->cur_policy,
546                                         policy->max, CPUFREQ_RELATION_H);
547                 else if (policy->min > this_dbs_info->cur_policy->cur)
548                         __cpufreq_driver_target(
549                                         this_dbs_info->cur_policy,
550                                         policy->min, CPUFREQ_RELATION_L);
551                 mutex_unlock(&dbs_mutex);
552                 break;
553         }
554         return 0;
555 }
556
557 static struct cpufreq_governor cpufreq_gov_dbs = {
558         .name           = "conservative",
559         .governor       = cpufreq_governor_dbs,
560         .owner          = THIS_MODULE,
561 };
562
563 static int __init cpufreq_gov_dbs_init(void)
564 {
565         return cpufreq_register_governor(&cpufreq_gov_dbs);
566 }
567
568 static void __exit cpufreq_gov_dbs_exit(void)
569 {
570         /* Make sure that the scheduled work is indeed not running */
571         flush_scheduled_work();
572
573         cpufreq_unregister_governor(&cpufreq_gov_dbs);
574 }
575
576
577 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
578 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
579                 "Low Latency Frequency Transition capable processors "
580                 "optimised for use in a battery environment");
581 MODULE_LICENSE ("GPL");
582
583 module_init(cpufreq_gov_dbs_init);
584 module_exit(cpufreq_gov_dbs_exit);