Merge branch 'for-linus' of git://git.samba.org/sfrench/cifs-2.6
[linux-drm-fsl-dcu.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2009 Alexander Clouter <alex@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
20 #define DEF_FREQUENCY_STEP                      (5)
21 #define DEF_SAMPLING_DOWN_FACTOR                (1)
22 #define MAX_SAMPLING_DOWN_FACTOR                (10)
23
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27                                            struct cpufreq_policy *policy)
28 {
29         unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30
31         /* max freq cannot be less than 100. But who knows... */
32         if (unlikely(freq_target == 0))
33                 freq_target = DEF_FREQUENCY_STEP;
34
35         return freq_target;
36 }
37
38 /*
39  * Every sampling_rate, we check, if current idle time is less than 20%
40  * (default), then we try to increase frequency. Every sampling_rate *
41  * sampling_down_factor, we check, if current idle time is more than 80%
42  * (default), then we try to decrease frequency
43  *
44  * Any frequency increase takes it to the maximum frequency. Frequency reduction
45  * happens at minimum steps of 5% (default) of maximum frequency
46  */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49         struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50         struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51         struct dbs_data *dbs_data = policy->governor_data;
52         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53
54         /*
55          * break out if we 'cannot' reduce the speed as the user might
56          * want freq_step to be zero
57          */
58         if (cs_tuners->freq_step == 0)
59                 return;
60
61         /* Check for frequency increase */
62         if (load > cs_tuners->up_threshold) {
63                 dbs_info->down_skip = 0;
64
65                 /* if we are already at full speed then break out early */
66                 if (dbs_info->requested_freq == policy->max)
67                         return;
68
69                 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70
71                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
72                         CPUFREQ_RELATION_H);
73                 return;
74         }
75
76         /* if sampling_down_factor is active break out early */
77         if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
78                 return;
79         dbs_info->down_skip = 0;
80
81         /* Check for frequency decrease */
82         if (load < cs_tuners->down_threshold) {
83                 unsigned int freq_target;
84                 /*
85                  * if we cannot reduce the frequency anymore, break out early
86                  */
87                 if (policy->cur == policy->min)
88                         return;
89
90                 freq_target = get_freq_target(cs_tuners, policy);
91                 if (dbs_info->requested_freq > freq_target)
92                         dbs_info->requested_freq -= freq_target;
93                 else
94                         dbs_info->requested_freq = policy->min;
95
96                 __cpufreq_driver_target(policy, dbs_info->requested_freq,
97                                 CPUFREQ_RELATION_L);
98                 return;
99         }
100 }
101
102 static void cs_dbs_timer(struct work_struct *work)
103 {
104         struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
105                         struct cs_cpu_dbs_info_s, cdbs.work.work);
106         unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
107         struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
108                         cpu);
109         struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
110         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
111         int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
112         bool modify_all = true;
113
114         mutex_lock(&core_dbs_info->cdbs.timer_mutex);
115         if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
116                 modify_all = false;
117         else
118                 dbs_check_cpu(dbs_data, cpu);
119
120         gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
121         mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
122 }
123
124 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
125                 void *data)
126 {
127         struct cpufreq_freqs *freq = data;
128         struct cs_cpu_dbs_info_s *dbs_info =
129                                         &per_cpu(cs_cpu_dbs_info, freq->cpu);
130         struct cpufreq_policy *policy;
131
132         if (!dbs_info->enable)
133                 return 0;
134
135         policy = dbs_info->cdbs.cur_policy;
136
137         /*
138          * we only care if our internally tracked freq moves outside the 'valid'
139          * ranges of frequency available to us otherwise we do not change it
140         */
141         if (dbs_info->requested_freq > policy->max
142                         || dbs_info->requested_freq < policy->min)
143                 dbs_info->requested_freq = freq->new;
144
145         return 0;
146 }
147
148 /************************** sysfs interface ************************/
149 static struct common_dbs_data cs_dbs_cdata;
150
151 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
152                 const char *buf, size_t count)
153 {
154         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
155         unsigned int input;
156         int ret;
157         ret = sscanf(buf, "%u", &input);
158
159         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
160                 return -EINVAL;
161
162         cs_tuners->sampling_down_factor = input;
163         return count;
164 }
165
166 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
167                 size_t count)
168 {
169         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
170         unsigned int input;
171         int ret;
172         ret = sscanf(buf, "%u", &input);
173
174         if (ret != 1)
175                 return -EINVAL;
176
177         cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
178         return count;
179 }
180
181 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
182                 size_t count)
183 {
184         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
185         unsigned int input;
186         int ret;
187         ret = sscanf(buf, "%u", &input);
188
189         if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
190                 return -EINVAL;
191
192         cs_tuners->up_threshold = input;
193         return count;
194 }
195
196 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
197                 size_t count)
198 {
199         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
200         unsigned int input;
201         int ret;
202         ret = sscanf(buf, "%u", &input);
203
204         /* cannot be lower than 11 otherwise freq will not fall */
205         if (ret != 1 || input < 11 || input > 100 ||
206                         input >= cs_tuners->up_threshold)
207                 return -EINVAL;
208
209         cs_tuners->down_threshold = input;
210         return count;
211 }
212
213 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
214                 const char *buf, size_t count)
215 {
216         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
217         unsigned int input, j;
218         int ret;
219
220         ret = sscanf(buf, "%u", &input);
221         if (ret != 1)
222                 return -EINVAL;
223
224         if (input > 1)
225                 input = 1;
226
227         if (input == cs_tuners->ignore_nice_load) /* nothing to do */
228                 return count;
229
230         cs_tuners->ignore_nice_load = input;
231
232         /* we need to re-evaluate prev_cpu_idle */
233         for_each_online_cpu(j) {
234                 struct cs_cpu_dbs_info_s *dbs_info;
235                 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
236                 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
237                                         &dbs_info->cdbs.prev_cpu_wall, 0);
238                 if (cs_tuners->ignore_nice_load)
239                         dbs_info->cdbs.prev_cpu_nice =
240                                 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
241         }
242         return count;
243 }
244
245 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
246                 size_t count)
247 {
248         struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
249         unsigned int input;
250         int ret;
251         ret = sscanf(buf, "%u", &input);
252
253         if (ret != 1)
254                 return -EINVAL;
255
256         if (input > 100)
257                 input = 100;
258
259         /*
260          * no need to test here if freq_step is zero as the user might actually
261          * want this, they would be crazy though :)
262          */
263         cs_tuners->freq_step = input;
264         return count;
265 }
266
267 show_store_one(cs, sampling_rate);
268 show_store_one(cs, sampling_down_factor);
269 show_store_one(cs, up_threshold);
270 show_store_one(cs, down_threshold);
271 show_store_one(cs, ignore_nice_load);
272 show_store_one(cs, freq_step);
273 declare_show_sampling_rate_min(cs);
274
275 gov_sys_pol_attr_rw(sampling_rate);
276 gov_sys_pol_attr_rw(sampling_down_factor);
277 gov_sys_pol_attr_rw(up_threshold);
278 gov_sys_pol_attr_rw(down_threshold);
279 gov_sys_pol_attr_rw(ignore_nice_load);
280 gov_sys_pol_attr_rw(freq_step);
281 gov_sys_pol_attr_ro(sampling_rate_min);
282
283 static struct attribute *dbs_attributes_gov_sys[] = {
284         &sampling_rate_min_gov_sys.attr,
285         &sampling_rate_gov_sys.attr,
286         &sampling_down_factor_gov_sys.attr,
287         &up_threshold_gov_sys.attr,
288         &down_threshold_gov_sys.attr,
289         &ignore_nice_load_gov_sys.attr,
290         &freq_step_gov_sys.attr,
291         NULL
292 };
293
294 static struct attribute_group cs_attr_group_gov_sys = {
295         .attrs = dbs_attributes_gov_sys,
296         .name = "conservative",
297 };
298
299 static struct attribute *dbs_attributes_gov_pol[] = {
300         &sampling_rate_min_gov_pol.attr,
301         &sampling_rate_gov_pol.attr,
302         &sampling_down_factor_gov_pol.attr,
303         &up_threshold_gov_pol.attr,
304         &down_threshold_gov_pol.attr,
305         &ignore_nice_load_gov_pol.attr,
306         &freq_step_gov_pol.attr,
307         NULL
308 };
309
310 static struct attribute_group cs_attr_group_gov_pol = {
311         .attrs = dbs_attributes_gov_pol,
312         .name = "conservative",
313 };
314
315 /************************** sysfs end ************************/
316
317 static int cs_init(struct dbs_data *dbs_data)
318 {
319         struct cs_dbs_tuners *tuners;
320
321         tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
322         if (!tuners) {
323                 pr_err("%s: kzalloc failed\n", __func__);
324                 return -ENOMEM;
325         }
326
327         tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
328         tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
329         tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
330         tuners->ignore_nice_load = 0;
331         tuners->freq_step = DEF_FREQUENCY_STEP;
332
333         dbs_data->tuners = tuners;
334         dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
335                 jiffies_to_usecs(10);
336         mutex_init(&dbs_data->mutex);
337         return 0;
338 }
339
340 static void cs_exit(struct dbs_data *dbs_data)
341 {
342         kfree(dbs_data->tuners);
343 }
344
345 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
346
347 static struct notifier_block cs_cpufreq_notifier_block = {
348         .notifier_call = dbs_cpufreq_notifier,
349 };
350
351 static struct cs_ops cs_ops = {
352         .notifier_block = &cs_cpufreq_notifier_block,
353 };
354
355 static struct common_dbs_data cs_dbs_cdata = {
356         .governor = GOV_CONSERVATIVE,
357         .attr_group_gov_sys = &cs_attr_group_gov_sys,
358         .attr_group_gov_pol = &cs_attr_group_gov_pol,
359         .get_cpu_cdbs = get_cpu_cdbs,
360         .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
361         .gov_dbs_timer = cs_dbs_timer,
362         .gov_check_cpu = cs_check_cpu,
363         .gov_ops = &cs_ops,
364         .init = cs_init,
365         .exit = cs_exit,
366 };
367
368 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
369                                    unsigned int event)
370 {
371         return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
372 }
373
374 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
375 static
376 #endif
377 struct cpufreq_governor cpufreq_gov_conservative = {
378         .name                   = "conservative",
379         .governor               = cs_cpufreq_governor_dbs,
380         .max_transition_latency = TRANSITION_LATENCY_LIMIT,
381         .owner                  = THIS_MODULE,
382 };
383
384 static int __init cpufreq_gov_dbs_init(void)
385 {
386         return cpufreq_register_governor(&cpufreq_gov_conservative);
387 }
388
389 static void __exit cpufreq_gov_dbs_exit(void)
390 {
391         cpufreq_unregister_governor(&cpufreq_gov_conservative);
392 }
393
394 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
395 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
396                 "Low Latency Frequency Transition capable processors "
397                 "optimised for use in a battery environment");
398 MODULE_LICENSE("GPL");
399
400 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
401 fs_initcall(cpufreq_gov_dbs_init);
402 #else
403 module_init(cpufreq_gov_dbs_init);
404 #endif
405 module_exit(cpufreq_gov_dbs_exit);