[PATCH] cpufreq_conservative: make for_each_cpu() safe
[linux-drm-fsl-dcu.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2  *  drivers/cpufreq/cpufreq_conservative.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33  * dbs is used in this file as a shortform for demandbased switching
34  * It helps to keep variable names smaller, simpler
35  */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD            (20)
39
40 /* 
41  * The polling frequency of this governor depends on the capability of 
42  * the processor. Default polling frequency is 1000 times the transition
43  * latency of the processor. The governor will work on any processor with 
44  * transition latency <= 10mS, using appropriate sampling 
45  * rate.
46  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47  * this governor will not work.
48  * All times here are in uS.
49  */
50 static unsigned int                             def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO                 (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE                  (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54 #define MIN_SAMPLING_RATE                       (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE                       (500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER    (1000)
57 #define DEF_SAMPLING_DOWN_FACTOR                (1)
58 #define MAX_SAMPLING_DOWN_FACTOR                (10)
59 #define TRANSITION_LATENCY_LIMIT                (10 * 1000)
60
61 static void do_dbs_timer(void *data);
62
63 struct cpu_dbs_info_s {
64         struct cpufreq_policy   *cur_policy;
65         unsigned int            prev_cpu_idle_up;
66         unsigned int            prev_cpu_idle_down;
67         unsigned int            enable;
68 };
69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70
71 static unsigned int dbs_enable; /* number of CPUs using this policy */
72
73 static DEFINE_MUTEX     (dbs_mutex);
74 static DECLARE_WORK     (dbs_work, do_dbs_timer, NULL);
75
76 struct dbs_tuners {
77         unsigned int            sampling_rate;
78         unsigned int            sampling_down_factor;
79         unsigned int            up_threshold;
80         unsigned int            down_threshold;
81         unsigned int            ignore_nice;
82         unsigned int            freq_step;
83 };
84
85 static struct dbs_tuners dbs_tuners_ins = {
86         .up_threshold           = DEF_FREQUENCY_UP_THRESHOLD,
87         .down_threshold         = DEF_FREQUENCY_DOWN_THRESHOLD,
88         .sampling_down_factor   = DEF_SAMPLING_DOWN_FACTOR,
89 };
90
91 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
92 {
93         return  kstat_cpu(cpu).cpustat.idle +
94                 kstat_cpu(cpu).cpustat.iowait +
95                 ( dbs_tuners_ins.ignore_nice ?
96                   kstat_cpu(cpu).cpustat.nice :
97                   0);
98 }
99
100 /************************** sysfs interface ************************/
101 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
102 {
103         return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
104 }
105
106 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
107 {
108         return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
109 }
110
111 #define define_one_ro(_name)                                    \
112 static struct freq_attr _name =                                 \
113 __ATTR(_name, 0444, show_##_name, NULL)
114
115 define_one_ro(sampling_rate_max);
116 define_one_ro(sampling_rate_min);
117
118 /* cpufreq_conservative Governor Tunables */
119 #define show_one(file_name, object)                                     \
120 static ssize_t show_##file_name                                         \
121 (struct cpufreq_policy *unused, char *buf)                              \
122 {                                                                       \
123         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
124 }
125 show_one(sampling_rate, sampling_rate);
126 show_one(sampling_down_factor, sampling_down_factor);
127 show_one(up_threshold, up_threshold);
128 show_one(down_threshold, down_threshold);
129 show_one(ignore_nice_load, ignore_nice);
130 show_one(freq_step, freq_step);
131
132 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, 
133                 const char *buf, size_t count)
134 {
135         unsigned int input;
136         int ret;
137         ret = sscanf (buf, "%u", &input);
138         if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
139                 return -EINVAL;
140
141         mutex_lock(&dbs_mutex);
142         dbs_tuners_ins.sampling_down_factor = input;
143         mutex_unlock(&dbs_mutex);
144
145         return count;
146 }
147
148 static ssize_t store_sampling_rate(struct cpufreq_policy *unused, 
149                 const char *buf, size_t count)
150 {
151         unsigned int input;
152         int ret;
153         ret = sscanf (buf, "%u", &input);
154
155         mutex_lock(&dbs_mutex);
156         if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
157                 mutex_unlock(&dbs_mutex);
158                 return -EINVAL;
159         }
160
161         dbs_tuners_ins.sampling_rate = input;
162         mutex_unlock(&dbs_mutex);
163
164         return count;
165 }
166
167 static ssize_t store_up_threshold(struct cpufreq_policy *unused, 
168                 const char *buf, size_t count)
169 {
170         unsigned int input;
171         int ret;
172         ret = sscanf (buf, "%u", &input);
173
174         mutex_lock(&dbs_mutex);
175         if (ret != 1 || input > 100 || input < 0 ||
176                         input <= dbs_tuners_ins.down_threshold) {
177                 mutex_unlock(&dbs_mutex);
178                 return -EINVAL;
179         }
180
181         dbs_tuners_ins.up_threshold = input;
182         mutex_unlock(&dbs_mutex);
183
184         return count;
185 }
186
187 static ssize_t store_down_threshold(struct cpufreq_policy *unused, 
188                 const char *buf, size_t count)
189 {
190         unsigned int input;
191         int ret;
192         ret = sscanf (buf, "%u", &input);
193
194         mutex_lock(&dbs_mutex);
195         if (ret != 1 || input > 100 || input < 0 ||
196                         input >= dbs_tuners_ins.up_threshold) {
197                 mutex_unlock(&dbs_mutex);
198                 return -EINVAL;
199         }
200
201         dbs_tuners_ins.down_threshold = input;
202         mutex_unlock(&dbs_mutex);
203
204         return count;
205 }
206
207 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
208                 const char *buf, size_t count)
209 {
210         unsigned int input;
211         int ret;
212
213         unsigned int j;
214         
215         ret = sscanf (buf, "%u", &input);
216         if ( ret != 1 )
217                 return -EINVAL;
218
219         if ( input > 1 )
220                 input = 1;
221         
222         mutex_lock(&dbs_mutex);
223         if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
224                 mutex_unlock(&dbs_mutex);
225                 return count;
226         }
227         dbs_tuners_ins.ignore_nice = input;
228
229         /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
230         for_each_online_cpu(j) {
231                 struct cpu_dbs_info_s *j_dbs_info;
232                 j_dbs_info = &per_cpu(cpu_dbs_info, j);
233                 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
234                 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
235         }
236         mutex_unlock(&dbs_mutex);
237
238         return count;
239 }
240
241 static ssize_t store_freq_step(struct cpufreq_policy *policy,
242                 const char *buf, size_t count)
243 {
244         unsigned int input;
245         int ret;
246
247         ret = sscanf (buf, "%u", &input);
248
249         if ( ret != 1 )
250                 return -EINVAL;
251
252         if ( input > 100 )
253                 input = 100;
254         
255         /* no need to test here if freq_step is zero as the user might actually
256          * want this, they would be crazy though :) */
257         mutex_lock(&dbs_mutex);
258         dbs_tuners_ins.freq_step = input;
259         mutex_unlock(&dbs_mutex);
260
261         return count;
262 }
263
264 #define define_one_rw(_name) \
265 static struct freq_attr _name = \
266 __ATTR(_name, 0644, show_##_name, store_##_name)
267
268 define_one_rw(sampling_rate);
269 define_one_rw(sampling_down_factor);
270 define_one_rw(up_threshold);
271 define_one_rw(down_threshold);
272 define_one_rw(ignore_nice_load);
273 define_one_rw(freq_step);
274
275 static struct attribute * dbs_attributes[] = {
276         &sampling_rate_max.attr,
277         &sampling_rate_min.attr,
278         &sampling_rate.attr,
279         &sampling_down_factor.attr,
280         &up_threshold.attr,
281         &down_threshold.attr,
282         &ignore_nice_load.attr,
283         &freq_step.attr,
284         NULL
285 };
286
287 static struct attribute_group dbs_attr_group = {
288         .attrs = dbs_attributes,
289         .name = "conservative",
290 };
291
292 /************************** sysfs end ************************/
293
294 static void dbs_check_cpu(int cpu)
295 {
296         unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
297         unsigned int tmp_idle_ticks, total_idle_ticks;
298         unsigned int freq_step;
299         unsigned int freq_down_sampling_rate;
300         static unsigned short down_skip[NR_CPUS];
301         static unsigned int requested_freq[NR_CPUS];
302         static unsigned int init_flag = NR_CPUS;
303         struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
304         struct cpufreq_policy *policy;
305
306         if (!this_dbs_info->enable)
307                 return;
308
309         if ( init_flag != 0 ) {
310                 for_each_cpu(init_flag) {
311                         down_skip[init_flag] = 0;
312                         /* I doubt a CPU exists with a freq of 0hz :) */
313                         requested_freq[init_flag] = 0;
314                 }
315                 init_flag = 0;
316         }
317         
318         /*
319          * If its a freshly initialised cpu we setup requested_freq.  This
320          * check could be avoided if we did not care about a first time
321          * stunted increase in CPU speed when there is a load.  I feel we
322          * should be initialising this to something.  The removal of a CPU
323          * is not a problem, after a short time the CPU should settle down
324          * to a 'natural' frequency.
325          */
326         if (requested_freq[cpu] == 0)
327                 requested_freq[cpu] = this_dbs_info->cur_policy->cur;
328
329         policy = this_dbs_info->cur_policy;
330
331         /* 
332          * The default safe range is 20% to 80% 
333          * Every sampling_rate, we check
334          *      - If current idle time is less than 20%, then we try to 
335          *        increase frequency
336          * Every sampling_rate*sampling_down_factor, we check
337          *      - If current idle time is more than 80%, then we try to
338          *        decrease frequency
339          *
340          * Any frequency increase takes it to the maximum frequency. 
341          * Frequency reduction happens at minimum steps of 
342          * 5% (default) of max_frequency 
343          */
344
345         /* Check for frequency increase */
346         idle_ticks = UINT_MAX;
347
348         /* Check for frequency increase */
349         total_idle_ticks = get_cpu_idle_time(cpu);
350         tmp_idle_ticks = total_idle_ticks -
351                 this_dbs_info->prev_cpu_idle_up;
352         this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
353
354         if (tmp_idle_ticks < idle_ticks)
355                 idle_ticks = tmp_idle_ticks;
356
357         /* Scale idle ticks by 100 and compare with up and down ticks */
358         idle_ticks *= 100;
359         up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
360                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
361
362         if (idle_ticks < up_idle_ticks) {
363                 down_skip[cpu] = 0;
364                 this_dbs_info->prev_cpu_idle_down =
365                         this_dbs_info->prev_cpu_idle_up;
366
367                 /* if we are already at full speed then break out early */
368                 if (requested_freq[cpu] == policy->max)
369                         return;
370                 
371                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
372
373                 /* max freq cannot be less than 100. But who knows.... */
374                 if (unlikely(freq_step == 0))
375                         freq_step = 5;
376                 
377                 requested_freq[cpu] += freq_step;
378                 if (requested_freq[cpu] > policy->max)
379                         requested_freq[cpu] = policy->max;
380
381                 __cpufreq_driver_target(policy, requested_freq[cpu], 
382                         CPUFREQ_RELATION_H);
383                 return;
384         }
385
386         /* Check for frequency decrease */
387         down_skip[cpu]++;
388         if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
389                 return;
390
391         /* Check for frequency decrease */
392         total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
393         tmp_idle_ticks = total_idle_ticks -
394                 this_dbs_info->prev_cpu_idle_down;
395         this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
396
397         if (tmp_idle_ticks < idle_ticks)
398                 idle_ticks = tmp_idle_ticks;
399
400         /* Scale idle ticks by 100 and compare with up and down ticks */
401         idle_ticks *= 100;
402         down_skip[cpu] = 0;
403
404         freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
405                 dbs_tuners_ins.sampling_down_factor;
406         down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
407                 usecs_to_jiffies(freq_down_sampling_rate);
408
409         if (idle_ticks > down_idle_ticks) {
410                 /*
411                  * if we are already at the lowest speed then break out early
412                  * or if we 'cannot' reduce the speed as the user might want
413                  * freq_step to be zero
414                  */
415                 if (requested_freq[cpu] == policy->min
416                                 || dbs_tuners_ins.freq_step == 0)
417                         return;
418
419                 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
420
421                 /* max freq cannot be less than 100. But who knows.... */
422                 if (unlikely(freq_step == 0))
423                         freq_step = 5;
424
425                 requested_freq[cpu] -= freq_step;
426                 if (requested_freq[cpu] < policy->min)
427                         requested_freq[cpu] = policy->min;
428
429                 __cpufreq_driver_target(policy, requested_freq[cpu],
430                                 CPUFREQ_RELATION_H);
431                 return;
432         }
433 }
434
435 static void do_dbs_timer(void *data)
436
437         int i;
438         mutex_lock(&dbs_mutex);
439         for_each_online_cpu(i)
440                 dbs_check_cpu(i);
441         schedule_delayed_work(&dbs_work, 
442                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
443         mutex_unlock(&dbs_mutex);
444
445
446 static inline void dbs_timer_init(void)
447 {
448         INIT_WORK(&dbs_work, do_dbs_timer, NULL);
449         schedule_delayed_work(&dbs_work,
450                         usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
451         return;
452 }
453
454 static inline void dbs_timer_exit(void)
455 {
456         cancel_delayed_work(&dbs_work);
457         return;
458 }
459
460 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
461                                    unsigned int event)
462 {
463         unsigned int cpu = policy->cpu;
464         struct cpu_dbs_info_s *this_dbs_info;
465         unsigned int j;
466
467         this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
468
469         switch (event) {
470         case CPUFREQ_GOV_START:
471                 if ((!cpu_online(cpu)) || 
472                     (!policy->cur))
473                         return -EINVAL;
474
475                 if (policy->cpuinfo.transition_latency >
476                                 (TRANSITION_LATENCY_LIMIT * 1000))
477                         return -EINVAL;
478                 if (this_dbs_info->enable) /* Already enabled */
479                         break;
480                  
481                 mutex_lock(&dbs_mutex);
482                 for_each_cpu_mask(j, policy->cpus) {
483                         struct cpu_dbs_info_s *j_dbs_info;
484                         j_dbs_info = &per_cpu(cpu_dbs_info, j);
485                         j_dbs_info->cur_policy = policy;
486                 
487                         j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
488                         j_dbs_info->prev_cpu_idle_down
489                                 = j_dbs_info->prev_cpu_idle_up;
490                 }
491                 this_dbs_info->enable = 1;
492                 sysfs_create_group(&policy->kobj, &dbs_attr_group);
493                 dbs_enable++;
494                 /*
495                  * Start the timerschedule work, when this governor
496                  * is used for first time
497                  */
498                 if (dbs_enable == 1) {
499                         unsigned int latency;
500                         /* policy latency is in nS. Convert it to uS first */
501                         latency = policy->cpuinfo.transition_latency / 1000;
502                         if (latency == 0)
503                                 latency = 1;
504
505                         def_sampling_rate = 10 * latency *
506                                         DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
507
508                         if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
509                                 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
510
511                         dbs_tuners_ins.sampling_rate = def_sampling_rate;
512                         dbs_tuners_ins.ignore_nice = 0;
513                         dbs_tuners_ins.freq_step = 5;
514
515                         dbs_timer_init();
516                 }
517                 
518                 mutex_unlock(&dbs_mutex);
519                 break;
520
521         case CPUFREQ_GOV_STOP:
522                 mutex_lock(&dbs_mutex);
523                 this_dbs_info->enable = 0;
524                 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
525                 dbs_enable--;
526                 /*
527                  * Stop the timerschedule work, when this governor
528                  * is used for first time
529                  */
530                 if (dbs_enable == 0) 
531                         dbs_timer_exit();
532                 
533                 mutex_unlock(&dbs_mutex);
534
535                 break;
536
537         case CPUFREQ_GOV_LIMITS:
538                 mutex_lock(&dbs_mutex);
539                 if (policy->max < this_dbs_info->cur_policy->cur)
540                         __cpufreq_driver_target(
541                                         this_dbs_info->cur_policy,
542                                         policy->max, CPUFREQ_RELATION_H);
543                 else if (policy->min > this_dbs_info->cur_policy->cur)
544                         __cpufreq_driver_target(
545                                         this_dbs_info->cur_policy,
546                                         policy->min, CPUFREQ_RELATION_L);
547                 mutex_unlock(&dbs_mutex);
548                 break;
549         }
550         return 0;
551 }
552
553 static struct cpufreq_governor cpufreq_gov_dbs = {
554         .name           = "conservative",
555         .governor       = cpufreq_governor_dbs,
556         .owner          = THIS_MODULE,
557 };
558
559 static int __init cpufreq_gov_dbs_init(void)
560 {
561         return cpufreq_register_governor(&cpufreq_gov_dbs);
562 }
563
564 static void __exit cpufreq_gov_dbs_exit(void)
565 {
566         /* Make sure that the scheduled work is indeed not running */
567         flush_scheduled_work();
568
569         cpufreq_unregister_governor(&cpufreq_gov_dbs);
570 }
571
572
573 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
574 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
575                 "Low Latency Frequency Transition capable processors "
576                 "optimised for use in a battery environment");
577 MODULE_LICENSE ("GPL");
578
579 module_init(cpufreq_gov_dbs_init);
580 module_exit(cpufreq_gov_dbs_exit);