Merge branch 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-drm-fsl-dcu.git] / drivers / block / xen-blkfront.c
1 /*
2  * blkfront.c
3  *
4  * XenLinux virtual block device driver.
5  *
6  * Copyright (c) 2003-2004, Keir Fraser & Steve Hand
7  * Modifications by Mark A. Williamson are (c) Intel Research Cambridge
8  * Copyright (c) 2004, Christian Limpach
9  * Copyright (c) 2004, Andrew Warfield
10  * Copyright (c) 2005, Christopher Clark
11  * Copyright (c) 2005, XenSource Ltd
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation; or, when distributed
16  * separately from the Linux kernel or incorporated into other
17  * software packages, subject to the following license:
18  *
19  * Permission is hereby granted, free of charge, to any person obtaining a copy
20  * of this source file (the "Software"), to deal in the Software without
21  * restriction, including without limitation the rights to use, copy, modify,
22  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
23  * and to permit persons to whom the Software is furnished to do so, subject to
24  * the following conditions:
25  *
26  * The above copyright notice and this permission notice shall be included in
27  * all copies or substantial portions of the Software.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
30  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
31  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
32  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
33  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
34  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
35  * IN THE SOFTWARE.
36  */
37
38 #include <linux/interrupt.h>
39 #include <linux/blkdev.h>
40 #include <linux/hdreg.h>
41 #include <linux/cdrom.h>
42 #include <linux/module.h>
43 #include <linux/slab.h>
44 #include <linux/mutex.h>
45 #include <linux/scatterlist.h>
46 #include <linux/bitmap.h>
47 #include <linux/list.h>
48
49 #include <xen/xen.h>
50 #include <xen/xenbus.h>
51 #include <xen/grant_table.h>
52 #include <xen/events.h>
53 #include <xen/page.h>
54 #include <xen/platform_pci.h>
55
56 #include <xen/interface/grant_table.h>
57 #include <xen/interface/io/blkif.h>
58 #include <xen/interface/io/protocols.h>
59
60 #include <asm/xen/hypervisor.h>
61
62 enum blkif_state {
63         BLKIF_STATE_DISCONNECTED,
64         BLKIF_STATE_CONNECTED,
65         BLKIF_STATE_SUSPENDED,
66 };
67
68 struct grant {
69         grant_ref_t gref;
70         unsigned long pfn;
71         struct list_head node;
72 };
73
74 struct blk_shadow {
75         struct blkif_request req;
76         struct request *request;
77         struct grant **grants_used;
78         struct grant **indirect_grants;
79         struct scatterlist *sg;
80 };
81
82 struct split_bio {
83         struct bio *bio;
84         atomic_t pending;
85         int err;
86 };
87
88 static DEFINE_MUTEX(blkfront_mutex);
89 static const struct block_device_operations xlvbd_block_fops;
90
91 /*
92  * Maximum number of segments in indirect requests, the actual value used by
93  * the frontend driver is the minimum of this value and the value provided
94  * by the backend driver.
95  */
96
97 static unsigned int xen_blkif_max_segments = 32;
98 module_param_named(max, xen_blkif_max_segments, int, S_IRUGO);
99 MODULE_PARM_DESC(max, "Maximum amount of segments in indirect requests (default is 32)");
100
101 /*
102  * Maximum order of pages to be used for the shared ring between front and
103  * backend, 4KB page granularity is used.
104  */
105 static unsigned int xen_blkif_max_ring_order;
106 module_param_named(max_ring_page_order, xen_blkif_max_ring_order, int, S_IRUGO);
107 MODULE_PARM_DESC(max_ring_page_order, "Maximum order of pages to be used for the shared ring");
108
109 #define BLK_RING_SIZE(info) __CONST_RING_SIZE(blkif, PAGE_SIZE * (info)->nr_ring_pages)
110 #define BLK_MAX_RING_SIZE __CONST_RING_SIZE(blkif, PAGE_SIZE * XENBUS_MAX_RING_PAGES)
111 /*
112  * ring-ref%i i=(-1UL) would take 11 characters + 'ring-ref' is 8, so 19
113  * characters are enough. Define to 20 to keep consist with backend.
114  */
115 #define RINGREF_NAME_LEN (20)
116
117 /*
118  * We have one of these per vbd, whether ide, scsi or 'other'.  They
119  * hang in private_data off the gendisk structure. We may end up
120  * putting all kinds of interesting stuff here :-)
121  */
122 struct blkfront_info
123 {
124         spinlock_t io_lock;
125         struct mutex mutex;
126         struct xenbus_device *xbdev;
127         struct gendisk *gd;
128         int vdevice;
129         blkif_vdev_t handle;
130         enum blkif_state connected;
131         int ring_ref[XENBUS_MAX_RING_PAGES];
132         unsigned int nr_ring_pages;
133         struct blkif_front_ring ring;
134         unsigned int evtchn, irq;
135         struct request_queue *rq;
136         struct work_struct work;
137         struct gnttab_free_callback callback;
138         struct blk_shadow shadow[BLK_MAX_RING_SIZE];
139         struct list_head grants;
140         struct list_head indirect_pages;
141         unsigned int persistent_gnts_c;
142         unsigned long shadow_free;
143         unsigned int feature_flush;
144         unsigned int feature_discard:1;
145         unsigned int feature_secdiscard:1;
146         unsigned int discard_granularity;
147         unsigned int discard_alignment;
148         unsigned int feature_persistent:1;
149         unsigned int max_indirect_segments;
150         int is_ready;
151 };
152
153 static unsigned int nr_minors;
154 static unsigned long *minors;
155 static DEFINE_SPINLOCK(minor_lock);
156
157 #define GRANT_INVALID_REF       0
158
159 #define PARTS_PER_DISK          16
160 #define PARTS_PER_EXT_DISK      256
161
162 #define BLKIF_MAJOR(dev) ((dev)>>8)
163 #define BLKIF_MINOR(dev) ((dev) & 0xff)
164
165 #define EXT_SHIFT 28
166 #define EXTENDED (1<<EXT_SHIFT)
167 #define VDEV_IS_EXTENDED(dev) ((dev)&(EXTENDED))
168 #define BLKIF_MINOR_EXT(dev) ((dev)&(~EXTENDED))
169 #define EMULATED_HD_DISK_MINOR_OFFSET (0)
170 #define EMULATED_HD_DISK_NAME_OFFSET (EMULATED_HD_DISK_MINOR_OFFSET / 256)
171 #define EMULATED_SD_DISK_MINOR_OFFSET (0)
172 #define EMULATED_SD_DISK_NAME_OFFSET (EMULATED_SD_DISK_MINOR_OFFSET / 256)
173
174 #define DEV_NAME        "xvd"   /* name in /dev */
175
176 #define SEGS_PER_INDIRECT_FRAME \
177         (PAGE_SIZE/sizeof(struct blkif_request_segment))
178 #define INDIRECT_GREFS(_segs) \
179         ((_segs + SEGS_PER_INDIRECT_FRAME - 1)/SEGS_PER_INDIRECT_FRAME)
180
181 static int blkfront_setup_indirect(struct blkfront_info *info);
182
183 static int get_id_from_freelist(struct blkfront_info *info)
184 {
185         unsigned long free = info->shadow_free;
186         BUG_ON(free >= BLK_RING_SIZE(info));
187         info->shadow_free = info->shadow[free].req.u.rw.id;
188         info->shadow[free].req.u.rw.id = 0x0fffffee; /* debug */
189         return free;
190 }
191
192 static int add_id_to_freelist(struct blkfront_info *info,
193                                unsigned long id)
194 {
195         if (info->shadow[id].req.u.rw.id != id)
196                 return -EINVAL;
197         if (info->shadow[id].request == NULL)
198                 return -EINVAL;
199         info->shadow[id].req.u.rw.id  = info->shadow_free;
200         info->shadow[id].request = NULL;
201         info->shadow_free = id;
202         return 0;
203 }
204
205 static int fill_grant_buffer(struct blkfront_info *info, int num)
206 {
207         struct page *granted_page;
208         struct grant *gnt_list_entry, *n;
209         int i = 0;
210
211         while(i < num) {
212                 gnt_list_entry = kzalloc(sizeof(struct grant), GFP_NOIO);
213                 if (!gnt_list_entry)
214                         goto out_of_memory;
215
216                 if (info->feature_persistent) {
217                         granted_page = alloc_page(GFP_NOIO);
218                         if (!granted_page) {
219                                 kfree(gnt_list_entry);
220                                 goto out_of_memory;
221                         }
222                         gnt_list_entry->pfn = page_to_pfn(granted_page);
223                 }
224
225                 gnt_list_entry->gref = GRANT_INVALID_REF;
226                 list_add(&gnt_list_entry->node, &info->grants);
227                 i++;
228         }
229
230         return 0;
231
232 out_of_memory:
233         list_for_each_entry_safe(gnt_list_entry, n,
234                                  &info->grants, node) {
235                 list_del(&gnt_list_entry->node);
236                 if (info->feature_persistent)
237                         __free_page(pfn_to_page(gnt_list_entry->pfn));
238                 kfree(gnt_list_entry);
239                 i--;
240         }
241         BUG_ON(i != 0);
242         return -ENOMEM;
243 }
244
245 static struct grant *get_grant(grant_ref_t *gref_head,
246                                unsigned long pfn,
247                                struct blkfront_info *info)
248 {
249         struct grant *gnt_list_entry;
250         unsigned long buffer_mfn;
251
252         BUG_ON(list_empty(&info->grants));
253         gnt_list_entry = list_first_entry(&info->grants, struct grant,
254                                           node);
255         list_del(&gnt_list_entry->node);
256
257         if (gnt_list_entry->gref != GRANT_INVALID_REF) {
258                 info->persistent_gnts_c--;
259                 return gnt_list_entry;
260         }
261
262         /* Assign a gref to this page */
263         gnt_list_entry->gref = gnttab_claim_grant_reference(gref_head);
264         BUG_ON(gnt_list_entry->gref == -ENOSPC);
265         if (!info->feature_persistent) {
266                 BUG_ON(!pfn);
267                 gnt_list_entry->pfn = pfn;
268         }
269         buffer_mfn = pfn_to_mfn(gnt_list_entry->pfn);
270         gnttab_grant_foreign_access_ref(gnt_list_entry->gref,
271                                         info->xbdev->otherend_id,
272                                         buffer_mfn, 0);
273         return gnt_list_entry;
274 }
275
276 static const char *op_name(int op)
277 {
278         static const char *const names[] = {
279                 [BLKIF_OP_READ] = "read",
280                 [BLKIF_OP_WRITE] = "write",
281                 [BLKIF_OP_WRITE_BARRIER] = "barrier",
282                 [BLKIF_OP_FLUSH_DISKCACHE] = "flush",
283                 [BLKIF_OP_DISCARD] = "discard" };
284
285         if (op < 0 || op >= ARRAY_SIZE(names))
286                 return "unknown";
287
288         if (!names[op])
289                 return "reserved";
290
291         return names[op];
292 }
293 static int xlbd_reserve_minors(unsigned int minor, unsigned int nr)
294 {
295         unsigned int end = minor + nr;
296         int rc;
297
298         if (end > nr_minors) {
299                 unsigned long *bitmap, *old;
300
301                 bitmap = kcalloc(BITS_TO_LONGS(end), sizeof(*bitmap),
302                                  GFP_KERNEL);
303                 if (bitmap == NULL)
304                         return -ENOMEM;
305
306                 spin_lock(&minor_lock);
307                 if (end > nr_minors) {
308                         old = minors;
309                         memcpy(bitmap, minors,
310                                BITS_TO_LONGS(nr_minors) * sizeof(*bitmap));
311                         minors = bitmap;
312                         nr_minors = BITS_TO_LONGS(end) * BITS_PER_LONG;
313                 } else
314                         old = bitmap;
315                 spin_unlock(&minor_lock);
316                 kfree(old);
317         }
318
319         spin_lock(&minor_lock);
320         if (find_next_bit(minors, end, minor) >= end) {
321                 bitmap_set(minors, minor, nr);
322                 rc = 0;
323         } else
324                 rc = -EBUSY;
325         spin_unlock(&minor_lock);
326
327         return rc;
328 }
329
330 static void xlbd_release_minors(unsigned int minor, unsigned int nr)
331 {
332         unsigned int end = minor + nr;
333
334         BUG_ON(end > nr_minors);
335         spin_lock(&minor_lock);
336         bitmap_clear(minors,  minor, nr);
337         spin_unlock(&minor_lock);
338 }
339
340 static void blkif_restart_queue_callback(void *arg)
341 {
342         struct blkfront_info *info = (struct blkfront_info *)arg;
343         schedule_work(&info->work);
344 }
345
346 static int blkif_getgeo(struct block_device *bd, struct hd_geometry *hg)
347 {
348         /* We don't have real geometry info, but let's at least return
349            values consistent with the size of the device */
350         sector_t nsect = get_capacity(bd->bd_disk);
351         sector_t cylinders = nsect;
352
353         hg->heads = 0xff;
354         hg->sectors = 0x3f;
355         sector_div(cylinders, hg->heads * hg->sectors);
356         hg->cylinders = cylinders;
357         if ((sector_t)(hg->cylinders + 1) * hg->heads * hg->sectors < nsect)
358                 hg->cylinders = 0xffff;
359         return 0;
360 }
361
362 static int blkif_ioctl(struct block_device *bdev, fmode_t mode,
363                        unsigned command, unsigned long argument)
364 {
365         struct blkfront_info *info = bdev->bd_disk->private_data;
366         int i;
367
368         dev_dbg(&info->xbdev->dev, "command: 0x%x, argument: 0x%lx\n",
369                 command, (long)argument);
370
371         switch (command) {
372         case CDROMMULTISESSION:
373                 dev_dbg(&info->xbdev->dev, "FIXME: support multisession CDs later\n");
374                 for (i = 0; i < sizeof(struct cdrom_multisession); i++)
375                         if (put_user(0, (char __user *)(argument + i)))
376                                 return -EFAULT;
377                 return 0;
378
379         case CDROM_GET_CAPABILITY: {
380                 struct gendisk *gd = info->gd;
381                 if (gd->flags & GENHD_FL_CD)
382                         return 0;
383                 return -EINVAL;
384         }
385
386         default:
387                 /*printk(KERN_ALERT "ioctl %08x not supported by Xen blkdev\n",
388                   command);*/
389                 return -EINVAL; /* same return as native Linux */
390         }
391
392         return 0;
393 }
394
395 /*
396  * Generate a Xen blkfront IO request from a blk layer request.  Reads
397  * and writes are handled as expected.
398  *
399  * @req: a request struct
400  */
401 static int blkif_queue_request(struct request *req)
402 {
403         struct blkfront_info *info = req->rq_disk->private_data;
404         struct blkif_request *ring_req;
405         unsigned long id;
406         unsigned int fsect, lsect;
407         int i, ref, n;
408         struct blkif_request_segment *segments = NULL;
409
410         /*
411          * Used to store if we are able to queue the request by just using
412          * existing persistent grants, or if we have to get new grants,
413          * as there are not sufficiently many free.
414          */
415         bool new_persistent_gnts;
416         grant_ref_t gref_head;
417         struct grant *gnt_list_entry = NULL;
418         struct scatterlist *sg;
419         int nseg, max_grefs;
420
421         if (unlikely(info->connected != BLKIF_STATE_CONNECTED))
422                 return 1;
423
424         max_grefs = req->nr_phys_segments;
425         if (max_grefs > BLKIF_MAX_SEGMENTS_PER_REQUEST)
426                 /*
427                  * If we are using indirect segments we need to account
428                  * for the indirect grefs used in the request.
429                  */
430                 max_grefs += INDIRECT_GREFS(req->nr_phys_segments);
431
432         /* Check if we have enough grants to allocate a requests */
433         if (info->persistent_gnts_c < max_grefs) {
434                 new_persistent_gnts = 1;
435                 if (gnttab_alloc_grant_references(
436                     max_grefs - info->persistent_gnts_c,
437                     &gref_head) < 0) {
438                         gnttab_request_free_callback(
439                                 &info->callback,
440                                 blkif_restart_queue_callback,
441                                 info,
442                                 max_grefs);
443                         return 1;
444                 }
445         } else
446                 new_persistent_gnts = 0;
447
448         /* Fill out a communications ring structure. */
449         ring_req = RING_GET_REQUEST(&info->ring, info->ring.req_prod_pvt);
450         id = get_id_from_freelist(info);
451         info->shadow[id].request = req;
452
453         if (unlikely(req->cmd_flags & (REQ_DISCARD | REQ_SECURE))) {
454                 ring_req->operation = BLKIF_OP_DISCARD;
455                 ring_req->u.discard.nr_sectors = blk_rq_sectors(req);
456                 ring_req->u.discard.id = id;
457                 ring_req->u.discard.sector_number = (blkif_sector_t)blk_rq_pos(req);
458                 if ((req->cmd_flags & REQ_SECURE) && info->feature_secdiscard)
459                         ring_req->u.discard.flag = BLKIF_DISCARD_SECURE;
460                 else
461                         ring_req->u.discard.flag = 0;
462         } else {
463                 BUG_ON(info->max_indirect_segments == 0 &&
464                        req->nr_phys_segments > BLKIF_MAX_SEGMENTS_PER_REQUEST);
465                 BUG_ON(info->max_indirect_segments &&
466                        req->nr_phys_segments > info->max_indirect_segments);
467                 nseg = blk_rq_map_sg(req->q, req, info->shadow[id].sg);
468                 ring_req->u.rw.id = id;
469                 if (nseg > BLKIF_MAX_SEGMENTS_PER_REQUEST) {
470                         /*
471                          * The indirect operation can only be a BLKIF_OP_READ or
472                          * BLKIF_OP_WRITE
473                          */
474                         BUG_ON(req->cmd_flags & (REQ_FLUSH | REQ_FUA));
475                         ring_req->operation = BLKIF_OP_INDIRECT;
476                         ring_req->u.indirect.indirect_op = rq_data_dir(req) ?
477                                 BLKIF_OP_WRITE : BLKIF_OP_READ;
478                         ring_req->u.indirect.sector_number = (blkif_sector_t)blk_rq_pos(req);
479                         ring_req->u.indirect.handle = info->handle;
480                         ring_req->u.indirect.nr_segments = nseg;
481                 } else {
482                         ring_req->u.rw.sector_number = (blkif_sector_t)blk_rq_pos(req);
483                         ring_req->u.rw.handle = info->handle;
484                         ring_req->operation = rq_data_dir(req) ?
485                                 BLKIF_OP_WRITE : BLKIF_OP_READ;
486                         if (req->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
487                                 /*
488                                  * Ideally we can do an unordered flush-to-disk. In case the
489                                  * backend onlysupports barriers, use that. A barrier request
490                                  * a superset of FUA, so we can implement it the same
491                                  * way.  (It's also a FLUSH+FUA, since it is
492                                  * guaranteed ordered WRT previous writes.)
493                                  */
494                                 switch (info->feature_flush &
495                                         ((REQ_FLUSH|REQ_FUA))) {
496                                 case REQ_FLUSH|REQ_FUA:
497                                         ring_req->operation =
498                                                 BLKIF_OP_WRITE_BARRIER;
499                                         break;
500                                 case REQ_FLUSH:
501                                         ring_req->operation =
502                                                 BLKIF_OP_FLUSH_DISKCACHE;
503                                         break;
504                                 default:
505                                         ring_req->operation = 0;
506                                 }
507                         }
508                         ring_req->u.rw.nr_segments = nseg;
509                 }
510                 for_each_sg(info->shadow[id].sg, sg, nseg, i) {
511                         fsect = sg->offset >> 9;
512                         lsect = fsect + (sg->length >> 9) - 1;
513
514                         if ((ring_req->operation == BLKIF_OP_INDIRECT) &&
515                             (i % SEGS_PER_INDIRECT_FRAME == 0)) {
516                                 unsigned long uninitialized_var(pfn);
517
518                                 if (segments)
519                                         kunmap_atomic(segments);
520
521                                 n = i / SEGS_PER_INDIRECT_FRAME;
522                                 if (!info->feature_persistent) {
523                                         struct page *indirect_page;
524
525                                         /* Fetch a pre-allocated page to use for indirect grefs */
526                                         BUG_ON(list_empty(&info->indirect_pages));
527                                         indirect_page = list_first_entry(&info->indirect_pages,
528                                                                          struct page, lru);
529                                         list_del(&indirect_page->lru);
530                                         pfn = page_to_pfn(indirect_page);
531                                 }
532                                 gnt_list_entry = get_grant(&gref_head, pfn, info);
533                                 info->shadow[id].indirect_grants[n] = gnt_list_entry;
534                                 segments = kmap_atomic(pfn_to_page(gnt_list_entry->pfn));
535                                 ring_req->u.indirect.indirect_grefs[n] = gnt_list_entry->gref;
536                         }
537
538                         gnt_list_entry = get_grant(&gref_head, page_to_pfn(sg_page(sg)), info);
539                         ref = gnt_list_entry->gref;
540
541                         info->shadow[id].grants_used[i] = gnt_list_entry;
542
543                         if (rq_data_dir(req) && info->feature_persistent) {
544                                 char *bvec_data;
545                                 void *shared_data;
546
547                                 BUG_ON(sg->offset + sg->length > PAGE_SIZE);
548
549                                 shared_data = kmap_atomic(pfn_to_page(gnt_list_entry->pfn));
550                                 bvec_data = kmap_atomic(sg_page(sg));
551
552                                 /*
553                                  * this does not wipe data stored outside the
554                                  * range sg->offset..sg->offset+sg->length.
555                                  * Therefore, blkback *could* see data from
556                                  * previous requests. This is OK as long as
557                                  * persistent grants are shared with just one
558                                  * domain. It may need refactoring if this
559                                  * changes
560                                  */
561                                 memcpy(shared_data + sg->offset,
562                                        bvec_data   + sg->offset,
563                                        sg->length);
564
565                                 kunmap_atomic(bvec_data);
566                                 kunmap_atomic(shared_data);
567                         }
568                         if (ring_req->operation != BLKIF_OP_INDIRECT) {
569                                 ring_req->u.rw.seg[i] =
570                                                 (struct blkif_request_segment) {
571                                                         .gref       = ref,
572                                                         .first_sect = fsect,
573                                                         .last_sect  = lsect };
574                         } else {
575                                 n = i % SEGS_PER_INDIRECT_FRAME;
576                                 segments[n] =
577                                         (struct blkif_request_segment) {
578                                                         .gref       = ref,
579                                                         .first_sect = fsect,
580                                                         .last_sect  = lsect };
581                         }
582                 }
583                 if (segments)
584                         kunmap_atomic(segments);
585         }
586
587         info->ring.req_prod_pvt++;
588
589         /* Keep a private copy so we can reissue requests when recovering. */
590         info->shadow[id].req = *ring_req;
591
592         if (new_persistent_gnts)
593                 gnttab_free_grant_references(gref_head);
594
595         return 0;
596 }
597
598
599 static inline void flush_requests(struct blkfront_info *info)
600 {
601         int notify;
602
603         RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&info->ring, notify);
604
605         if (notify)
606                 notify_remote_via_irq(info->irq);
607 }
608
609 static inline bool blkif_request_flush_invalid(struct request *req,
610                                                struct blkfront_info *info)
611 {
612         return ((req->cmd_type != REQ_TYPE_FS) ||
613                 ((req->cmd_flags & REQ_FLUSH) &&
614                  !(info->feature_flush & REQ_FLUSH)) ||
615                 ((req->cmd_flags & REQ_FUA) &&
616                  !(info->feature_flush & REQ_FUA)));
617 }
618
619 /*
620  * do_blkif_request
621  *  read a block; request is in a request queue
622  */
623 static void do_blkif_request(struct request_queue *rq)
624 {
625         struct blkfront_info *info = NULL;
626         struct request *req;
627         int queued;
628
629         pr_debug("Entered do_blkif_request\n");
630
631         queued = 0;
632
633         while ((req = blk_peek_request(rq)) != NULL) {
634                 info = req->rq_disk->private_data;
635
636                 if (RING_FULL(&info->ring))
637                         goto wait;
638
639                 blk_start_request(req);
640
641                 if (blkif_request_flush_invalid(req, info)) {
642                         __blk_end_request_all(req, -EOPNOTSUPP);
643                         continue;
644                 }
645
646                 pr_debug("do_blk_req %p: cmd %p, sec %lx, "
647                          "(%u/%u) [%s]\n",
648                          req, req->cmd, (unsigned long)blk_rq_pos(req),
649                          blk_rq_cur_sectors(req), blk_rq_sectors(req),
650                          rq_data_dir(req) ? "write" : "read");
651
652                 if (blkif_queue_request(req)) {
653                         blk_requeue_request(rq, req);
654 wait:
655                         /* Avoid pointless unplugs. */
656                         blk_stop_queue(rq);
657                         break;
658                 }
659
660                 queued++;
661         }
662
663         if (queued != 0)
664                 flush_requests(info);
665 }
666
667 static int xlvbd_init_blk_queue(struct gendisk *gd, u16 sector_size,
668                                 unsigned int physical_sector_size,
669                                 unsigned int segments)
670 {
671         struct request_queue *rq;
672         struct blkfront_info *info = gd->private_data;
673
674         rq = blk_init_queue(do_blkif_request, &info->io_lock);
675         if (rq == NULL)
676                 return -1;
677
678         queue_flag_set_unlocked(QUEUE_FLAG_VIRT, rq);
679
680         if (info->feature_discard) {
681                 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, rq);
682                 blk_queue_max_discard_sectors(rq, get_capacity(gd));
683                 rq->limits.discard_granularity = info->discard_granularity;
684                 rq->limits.discard_alignment = info->discard_alignment;
685                 if (info->feature_secdiscard)
686                         queue_flag_set_unlocked(QUEUE_FLAG_SECDISCARD, rq);
687         }
688
689         /* Hard sector size and max sectors impersonate the equiv. hardware. */
690         blk_queue_logical_block_size(rq, sector_size);
691         blk_queue_physical_block_size(rq, physical_sector_size);
692         blk_queue_max_hw_sectors(rq, (segments * PAGE_SIZE) / 512);
693
694         /* Each segment in a request is up to an aligned page in size. */
695         blk_queue_segment_boundary(rq, PAGE_SIZE - 1);
696         blk_queue_max_segment_size(rq, PAGE_SIZE);
697
698         /* Ensure a merged request will fit in a single I/O ring slot. */
699         blk_queue_max_segments(rq, segments);
700
701         /* Make sure buffer addresses are sector-aligned. */
702         blk_queue_dma_alignment(rq, 511);
703
704         /* Make sure we don't use bounce buffers. */
705         blk_queue_bounce_limit(rq, BLK_BOUNCE_ANY);
706
707         gd->queue = rq;
708
709         return 0;
710 }
711
712 static const char *flush_info(unsigned int feature_flush)
713 {
714         switch (feature_flush & ((REQ_FLUSH | REQ_FUA))) {
715         case REQ_FLUSH|REQ_FUA:
716                 return "barrier: enabled;";
717         case REQ_FLUSH:
718                 return "flush diskcache: enabled;";
719         default:
720                 return "barrier or flush: disabled;";
721         }
722 }
723
724 static void xlvbd_flush(struct blkfront_info *info)
725 {
726         blk_queue_flush(info->rq, info->feature_flush);
727         pr_info("blkfront: %s: %s %s %s %s %s\n",
728                 info->gd->disk_name, flush_info(info->feature_flush),
729                 "persistent grants:", info->feature_persistent ?
730                 "enabled;" : "disabled;", "indirect descriptors:",
731                 info->max_indirect_segments ? "enabled;" : "disabled;");
732 }
733
734 static int xen_translate_vdev(int vdevice, int *minor, unsigned int *offset)
735 {
736         int major;
737         major = BLKIF_MAJOR(vdevice);
738         *minor = BLKIF_MINOR(vdevice);
739         switch (major) {
740                 case XEN_IDE0_MAJOR:
741                         *offset = (*minor / 64) + EMULATED_HD_DISK_NAME_OFFSET;
742                         *minor = ((*minor / 64) * PARTS_PER_DISK) +
743                                 EMULATED_HD_DISK_MINOR_OFFSET;
744                         break;
745                 case XEN_IDE1_MAJOR:
746                         *offset = (*minor / 64) + 2 + EMULATED_HD_DISK_NAME_OFFSET;
747                         *minor = (((*minor / 64) + 2) * PARTS_PER_DISK) +
748                                 EMULATED_HD_DISK_MINOR_OFFSET;
749                         break;
750                 case XEN_SCSI_DISK0_MAJOR:
751                         *offset = (*minor / PARTS_PER_DISK) + EMULATED_SD_DISK_NAME_OFFSET;
752                         *minor = *minor + EMULATED_SD_DISK_MINOR_OFFSET;
753                         break;
754                 case XEN_SCSI_DISK1_MAJOR:
755                 case XEN_SCSI_DISK2_MAJOR:
756                 case XEN_SCSI_DISK3_MAJOR:
757                 case XEN_SCSI_DISK4_MAJOR:
758                 case XEN_SCSI_DISK5_MAJOR:
759                 case XEN_SCSI_DISK6_MAJOR:
760                 case XEN_SCSI_DISK7_MAJOR:
761                         *offset = (*minor / PARTS_PER_DISK) + 
762                                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16) +
763                                 EMULATED_SD_DISK_NAME_OFFSET;
764                         *minor = *minor +
765                                 ((major - XEN_SCSI_DISK1_MAJOR + 1) * 16 * PARTS_PER_DISK) +
766                                 EMULATED_SD_DISK_MINOR_OFFSET;
767                         break;
768                 case XEN_SCSI_DISK8_MAJOR:
769                 case XEN_SCSI_DISK9_MAJOR:
770                 case XEN_SCSI_DISK10_MAJOR:
771                 case XEN_SCSI_DISK11_MAJOR:
772                 case XEN_SCSI_DISK12_MAJOR:
773                 case XEN_SCSI_DISK13_MAJOR:
774                 case XEN_SCSI_DISK14_MAJOR:
775                 case XEN_SCSI_DISK15_MAJOR:
776                         *offset = (*minor / PARTS_PER_DISK) + 
777                                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16) +
778                                 EMULATED_SD_DISK_NAME_OFFSET;
779                         *minor = *minor +
780                                 ((major - XEN_SCSI_DISK8_MAJOR + 8) * 16 * PARTS_PER_DISK) +
781                                 EMULATED_SD_DISK_MINOR_OFFSET;
782                         break;
783                 case XENVBD_MAJOR:
784                         *offset = *minor / PARTS_PER_DISK;
785                         break;
786                 default:
787                         printk(KERN_WARNING "blkfront: your disk configuration is "
788                                         "incorrect, please use an xvd device instead\n");
789                         return -ENODEV;
790         }
791         return 0;
792 }
793
794 static char *encode_disk_name(char *ptr, unsigned int n)
795 {
796         if (n >= 26)
797                 ptr = encode_disk_name(ptr, n / 26 - 1);
798         *ptr = 'a' + n % 26;
799         return ptr + 1;
800 }
801
802 static int xlvbd_alloc_gendisk(blkif_sector_t capacity,
803                                struct blkfront_info *info,
804                                u16 vdisk_info, u16 sector_size,
805                                unsigned int physical_sector_size)
806 {
807         struct gendisk *gd;
808         int nr_minors = 1;
809         int err;
810         unsigned int offset;
811         int minor;
812         int nr_parts;
813         char *ptr;
814
815         BUG_ON(info->gd != NULL);
816         BUG_ON(info->rq != NULL);
817
818         if ((info->vdevice>>EXT_SHIFT) > 1) {
819                 /* this is above the extended range; something is wrong */
820                 printk(KERN_WARNING "blkfront: vdevice 0x%x is above the extended range; ignoring\n", info->vdevice);
821                 return -ENODEV;
822         }
823
824         if (!VDEV_IS_EXTENDED(info->vdevice)) {
825                 err = xen_translate_vdev(info->vdevice, &minor, &offset);
826                 if (err)
827                         return err;             
828                 nr_parts = PARTS_PER_DISK;
829         } else {
830                 minor = BLKIF_MINOR_EXT(info->vdevice);
831                 nr_parts = PARTS_PER_EXT_DISK;
832                 offset = minor / nr_parts;
833                 if (xen_hvm_domain() && offset < EMULATED_HD_DISK_NAME_OFFSET + 4)
834                         printk(KERN_WARNING "blkfront: vdevice 0x%x might conflict with "
835                                         "emulated IDE disks,\n\t choose an xvd device name"
836                                         "from xvde on\n", info->vdevice);
837         }
838         if (minor >> MINORBITS) {
839                 pr_warn("blkfront: %#x's minor (%#x) out of range; ignoring\n",
840                         info->vdevice, minor);
841                 return -ENODEV;
842         }
843
844         if ((minor % nr_parts) == 0)
845                 nr_minors = nr_parts;
846
847         err = xlbd_reserve_minors(minor, nr_minors);
848         if (err)
849                 goto out;
850         err = -ENODEV;
851
852         gd = alloc_disk(nr_minors);
853         if (gd == NULL)
854                 goto release;
855
856         strcpy(gd->disk_name, DEV_NAME);
857         ptr = encode_disk_name(gd->disk_name + sizeof(DEV_NAME) - 1, offset);
858         BUG_ON(ptr >= gd->disk_name + DISK_NAME_LEN);
859         if (nr_minors > 1)
860                 *ptr = 0;
861         else
862                 snprintf(ptr, gd->disk_name + DISK_NAME_LEN - ptr,
863                          "%d", minor & (nr_parts - 1));
864
865         gd->major = XENVBD_MAJOR;
866         gd->first_minor = minor;
867         gd->fops = &xlvbd_block_fops;
868         gd->private_data = info;
869         gd->driverfs_dev = &(info->xbdev->dev);
870         set_capacity(gd, capacity);
871
872         if (xlvbd_init_blk_queue(gd, sector_size, physical_sector_size,
873                                  info->max_indirect_segments ? :
874                                  BLKIF_MAX_SEGMENTS_PER_REQUEST)) {
875                 del_gendisk(gd);
876                 goto release;
877         }
878
879         info->rq = gd->queue;
880         info->gd = gd;
881
882         xlvbd_flush(info);
883
884         if (vdisk_info & VDISK_READONLY)
885                 set_disk_ro(gd, 1);
886
887         if (vdisk_info & VDISK_REMOVABLE)
888                 gd->flags |= GENHD_FL_REMOVABLE;
889
890         if (vdisk_info & VDISK_CDROM)
891                 gd->flags |= GENHD_FL_CD;
892
893         return 0;
894
895  release:
896         xlbd_release_minors(minor, nr_minors);
897  out:
898         return err;
899 }
900
901 static void xlvbd_release_gendisk(struct blkfront_info *info)
902 {
903         unsigned int minor, nr_minors;
904         unsigned long flags;
905
906         if (info->rq == NULL)
907                 return;
908
909         spin_lock_irqsave(&info->io_lock, flags);
910
911         /* No more blkif_request(). */
912         blk_stop_queue(info->rq);
913
914         /* No more gnttab callback work. */
915         gnttab_cancel_free_callback(&info->callback);
916         spin_unlock_irqrestore(&info->io_lock, flags);
917
918         /* Flush gnttab callback work. Must be done with no locks held. */
919         flush_work(&info->work);
920
921         del_gendisk(info->gd);
922
923         minor = info->gd->first_minor;
924         nr_minors = info->gd->minors;
925         xlbd_release_minors(minor, nr_minors);
926
927         blk_cleanup_queue(info->rq);
928         info->rq = NULL;
929
930         put_disk(info->gd);
931         info->gd = NULL;
932 }
933
934 static void kick_pending_request_queues(struct blkfront_info *info)
935 {
936         if (!RING_FULL(&info->ring)) {
937                 /* Re-enable calldowns. */
938                 blk_start_queue(info->rq);
939                 /* Kick things off immediately. */
940                 do_blkif_request(info->rq);
941         }
942 }
943
944 static void blkif_restart_queue(struct work_struct *work)
945 {
946         struct blkfront_info *info = container_of(work, struct blkfront_info, work);
947
948         spin_lock_irq(&info->io_lock);
949         if (info->connected == BLKIF_STATE_CONNECTED)
950                 kick_pending_request_queues(info);
951         spin_unlock_irq(&info->io_lock);
952 }
953
954 static void blkif_free(struct blkfront_info *info, int suspend)
955 {
956         struct grant *persistent_gnt;
957         struct grant *n;
958         int i, j, segs;
959
960         /* Prevent new requests being issued until we fix things up. */
961         spin_lock_irq(&info->io_lock);
962         info->connected = suspend ?
963                 BLKIF_STATE_SUSPENDED : BLKIF_STATE_DISCONNECTED;
964         /* No more blkif_request(). */
965         if (info->rq)
966                 blk_stop_queue(info->rq);
967
968         /* Remove all persistent grants */
969         if (!list_empty(&info->grants)) {
970                 list_for_each_entry_safe(persistent_gnt, n,
971                                          &info->grants, node) {
972                         list_del(&persistent_gnt->node);
973                         if (persistent_gnt->gref != GRANT_INVALID_REF) {
974                                 gnttab_end_foreign_access(persistent_gnt->gref,
975                                                           0, 0UL);
976                                 info->persistent_gnts_c--;
977                         }
978                         if (info->feature_persistent)
979                                 __free_page(pfn_to_page(persistent_gnt->pfn));
980                         kfree(persistent_gnt);
981                 }
982         }
983         BUG_ON(info->persistent_gnts_c != 0);
984
985         /*
986          * Remove indirect pages, this only happens when using indirect
987          * descriptors but not persistent grants
988          */
989         if (!list_empty(&info->indirect_pages)) {
990                 struct page *indirect_page, *n;
991
992                 BUG_ON(info->feature_persistent);
993                 list_for_each_entry_safe(indirect_page, n, &info->indirect_pages, lru) {
994                         list_del(&indirect_page->lru);
995                         __free_page(indirect_page);
996                 }
997         }
998
999         for (i = 0; i < BLK_RING_SIZE(info); i++) {
1000                 /*
1001                  * Clear persistent grants present in requests already
1002                  * on the shared ring
1003                  */
1004                 if (!info->shadow[i].request)
1005                         goto free_shadow;
1006
1007                 segs = info->shadow[i].req.operation == BLKIF_OP_INDIRECT ?
1008                        info->shadow[i].req.u.indirect.nr_segments :
1009                        info->shadow[i].req.u.rw.nr_segments;
1010                 for (j = 0; j < segs; j++) {
1011                         persistent_gnt = info->shadow[i].grants_used[j];
1012                         gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1013                         if (info->feature_persistent)
1014                                 __free_page(pfn_to_page(persistent_gnt->pfn));
1015                         kfree(persistent_gnt);
1016                 }
1017
1018                 if (info->shadow[i].req.operation != BLKIF_OP_INDIRECT)
1019                         /*
1020                          * If this is not an indirect operation don't try to
1021                          * free indirect segments
1022                          */
1023                         goto free_shadow;
1024
1025                 for (j = 0; j < INDIRECT_GREFS(segs); j++) {
1026                         persistent_gnt = info->shadow[i].indirect_grants[j];
1027                         gnttab_end_foreign_access(persistent_gnt->gref, 0, 0UL);
1028                         __free_page(pfn_to_page(persistent_gnt->pfn));
1029                         kfree(persistent_gnt);
1030                 }
1031
1032 free_shadow:
1033                 kfree(info->shadow[i].grants_used);
1034                 info->shadow[i].grants_used = NULL;
1035                 kfree(info->shadow[i].indirect_grants);
1036                 info->shadow[i].indirect_grants = NULL;
1037                 kfree(info->shadow[i].sg);
1038                 info->shadow[i].sg = NULL;
1039         }
1040
1041         /* No more gnttab callback work. */
1042         gnttab_cancel_free_callback(&info->callback);
1043         spin_unlock_irq(&info->io_lock);
1044
1045         /* Flush gnttab callback work. Must be done with no locks held. */
1046         flush_work(&info->work);
1047
1048         /* Free resources associated with old device channel. */
1049         for (i = 0; i < info->nr_ring_pages; i++) {
1050                 if (info->ring_ref[i] != GRANT_INVALID_REF) {
1051                         gnttab_end_foreign_access(info->ring_ref[i], 0, 0);
1052                         info->ring_ref[i] = GRANT_INVALID_REF;
1053                 }
1054         }
1055         free_pages((unsigned long)info->ring.sring, get_order(info->nr_ring_pages * PAGE_SIZE));
1056         info->ring.sring = NULL;
1057
1058         if (info->irq)
1059                 unbind_from_irqhandler(info->irq, info);
1060         info->evtchn = info->irq = 0;
1061
1062 }
1063
1064 static void blkif_completion(struct blk_shadow *s, struct blkfront_info *info,
1065                              struct blkif_response *bret)
1066 {
1067         int i = 0;
1068         struct scatterlist *sg;
1069         char *bvec_data;
1070         void *shared_data;
1071         int nseg;
1072
1073         nseg = s->req.operation == BLKIF_OP_INDIRECT ?
1074                 s->req.u.indirect.nr_segments : s->req.u.rw.nr_segments;
1075
1076         if (bret->operation == BLKIF_OP_READ && info->feature_persistent) {
1077                 for_each_sg(s->sg, sg, nseg, i) {
1078                         BUG_ON(sg->offset + sg->length > PAGE_SIZE);
1079                         shared_data = kmap_atomic(
1080                                 pfn_to_page(s->grants_used[i]->pfn));
1081                         bvec_data = kmap_atomic(sg_page(sg));
1082                         memcpy(bvec_data   + sg->offset,
1083                                shared_data + sg->offset,
1084                                sg->length);
1085                         kunmap_atomic(bvec_data);
1086                         kunmap_atomic(shared_data);
1087                 }
1088         }
1089         /* Add the persistent grant into the list of free grants */
1090         for (i = 0; i < nseg; i++) {
1091                 if (gnttab_query_foreign_access(s->grants_used[i]->gref)) {
1092                         /*
1093                          * If the grant is still mapped by the backend (the
1094                          * backend has chosen to make this grant persistent)
1095                          * we add it at the head of the list, so it will be
1096                          * reused first.
1097                          */
1098                         if (!info->feature_persistent)
1099                                 pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1100                                                      s->grants_used[i]->gref);
1101                         list_add(&s->grants_used[i]->node, &info->grants);
1102                         info->persistent_gnts_c++;
1103                 } else {
1104                         /*
1105                          * If the grant is not mapped by the backend we end the
1106                          * foreign access and add it to the tail of the list,
1107                          * so it will not be picked again unless we run out of
1108                          * persistent grants.
1109                          */
1110                         gnttab_end_foreign_access(s->grants_used[i]->gref, 0, 0UL);
1111                         s->grants_used[i]->gref = GRANT_INVALID_REF;
1112                         list_add_tail(&s->grants_used[i]->node, &info->grants);
1113                 }
1114         }
1115         if (s->req.operation == BLKIF_OP_INDIRECT) {
1116                 for (i = 0; i < INDIRECT_GREFS(nseg); i++) {
1117                         if (gnttab_query_foreign_access(s->indirect_grants[i]->gref)) {
1118                                 if (!info->feature_persistent)
1119                                         pr_alert_ratelimited("backed has not unmapped grant: %u\n",
1120                                                              s->indirect_grants[i]->gref);
1121                                 list_add(&s->indirect_grants[i]->node, &info->grants);
1122                                 info->persistent_gnts_c++;
1123                         } else {
1124                                 struct page *indirect_page;
1125
1126                                 gnttab_end_foreign_access(s->indirect_grants[i]->gref, 0, 0UL);
1127                                 /*
1128                                  * Add the used indirect page back to the list of
1129                                  * available pages for indirect grefs.
1130                                  */
1131                                 indirect_page = pfn_to_page(s->indirect_grants[i]->pfn);
1132                                 list_add(&indirect_page->lru, &info->indirect_pages);
1133                                 s->indirect_grants[i]->gref = GRANT_INVALID_REF;
1134                                 list_add_tail(&s->indirect_grants[i]->node, &info->grants);
1135                         }
1136                 }
1137         }
1138 }
1139
1140 static irqreturn_t blkif_interrupt(int irq, void *dev_id)
1141 {
1142         struct request *req;
1143         struct blkif_response *bret;
1144         RING_IDX i, rp;
1145         unsigned long flags;
1146         struct blkfront_info *info = (struct blkfront_info *)dev_id;
1147         int error;
1148
1149         spin_lock_irqsave(&info->io_lock, flags);
1150
1151         if (unlikely(info->connected != BLKIF_STATE_CONNECTED)) {
1152                 spin_unlock_irqrestore(&info->io_lock, flags);
1153                 return IRQ_HANDLED;
1154         }
1155
1156  again:
1157         rp = info->ring.sring->rsp_prod;
1158         rmb(); /* Ensure we see queued responses up to 'rp'. */
1159
1160         for (i = info->ring.rsp_cons; i != rp; i++) {
1161                 unsigned long id;
1162
1163                 bret = RING_GET_RESPONSE(&info->ring, i);
1164                 id   = bret->id;
1165                 /*
1166                  * The backend has messed up and given us an id that we would
1167                  * never have given to it (we stamp it up to BLK_RING_SIZE -
1168                  * look in get_id_from_freelist.
1169                  */
1170                 if (id >= BLK_RING_SIZE(info)) {
1171                         WARN(1, "%s: response to %s has incorrect id (%ld)\n",
1172                              info->gd->disk_name, op_name(bret->operation), id);
1173                         /* We can't safely get the 'struct request' as
1174                          * the id is busted. */
1175                         continue;
1176                 }
1177                 req  = info->shadow[id].request;
1178
1179                 if (bret->operation != BLKIF_OP_DISCARD)
1180                         blkif_completion(&info->shadow[id], info, bret);
1181
1182                 if (add_id_to_freelist(info, id)) {
1183                         WARN(1, "%s: response to %s (id %ld) couldn't be recycled!\n",
1184                              info->gd->disk_name, op_name(bret->operation), id);
1185                         continue;
1186                 }
1187
1188                 error = (bret->status == BLKIF_RSP_OKAY) ? 0 : -EIO;
1189                 switch (bret->operation) {
1190                 case BLKIF_OP_DISCARD:
1191                         if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1192                                 struct request_queue *rq = info->rq;
1193                                 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1194                                            info->gd->disk_name, op_name(bret->operation));
1195                                 error = -EOPNOTSUPP;
1196                                 info->feature_discard = 0;
1197                                 info->feature_secdiscard = 0;
1198                                 queue_flag_clear(QUEUE_FLAG_DISCARD, rq);
1199                                 queue_flag_clear(QUEUE_FLAG_SECDISCARD, rq);
1200                         }
1201                         __blk_end_request_all(req, error);
1202                         break;
1203                 case BLKIF_OP_FLUSH_DISKCACHE:
1204                 case BLKIF_OP_WRITE_BARRIER:
1205                         if (unlikely(bret->status == BLKIF_RSP_EOPNOTSUPP)) {
1206                                 printk(KERN_WARNING "blkfront: %s: %s op failed\n",
1207                                        info->gd->disk_name, op_name(bret->operation));
1208                                 error = -EOPNOTSUPP;
1209                         }
1210                         if (unlikely(bret->status == BLKIF_RSP_ERROR &&
1211                                      info->shadow[id].req.u.rw.nr_segments == 0)) {
1212                                 printk(KERN_WARNING "blkfront: %s: empty %s op failed\n",
1213                                        info->gd->disk_name, op_name(bret->operation));
1214                                 error = -EOPNOTSUPP;
1215                         }
1216                         if (unlikely(error)) {
1217                                 if (error == -EOPNOTSUPP)
1218                                         error = 0;
1219                                 info->feature_flush = 0;
1220                                 xlvbd_flush(info);
1221                         }
1222                         /* fall through */
1223                 case BLKIF_OP_READ:
1224                 case BLKIF_OP_WRITE:
1225                         if (unlikely(bret->status != BLKIF_RSP_OKAY))
1226                                 dev_dbg(&info->xbdev->dev, "Bad return from blkdev data "
1227                                         "request: %x\n", bret->status);
1228
1229                         __blk_end_request_all(req, error);
1230                         break;
1231                 default:
1232                         BUG();
1233                 }
1234         }
1235
1236         info->ring.rsp_cons = i;
1237
1238         if (i != info->ring.req_prod_pvt) {
1239                 int more_to_do;
1240                 RING_FINAL_CHECK_FOR_RESPONSES(&info->ring, more_to_do);
1241                 if (more_to_do)
1242                         goto again;
1243         } else
1244                 info->ring.sring->rsp_event = i + 1;
1245
1246         kick_pending_request_queues(info);
1247
1248         spin_unlock_irqrestore(&info->io_lock, flags);
1249
1250         return IRQ_HANDLED;
1251 }
1252
1253
1254 static int setup_blkring(struct xenbus_device *dev,
1255                          struct blkfront_info *info)
1256 {
1257         struct blkif_sring *sring;
1258         int err, i;
1259         unsigned long ring_size = info->nr_ring_pages * PAGE_SIZE;
1260         grant_ref_t gref[XENBUS_MAX_RING_PAGES];
1261
1262         for (i = 0; i < info->nr_ring_pages; i++)
1263                 info->ring_ref[i] = GRANT_INVALID_REF;
1264
1265         sring = (struct blkif_sring *)__get_free_pages(GFP_NOIO | __GFP_HIGH,
1266                                                        get_order(ring_size));
1267         if (!sring) {
1268                 xenbus_dev_fatal(dev, -ENOMEM, "allocating shared ring");
1269                 return -ENOMEM;
1270         }
1271         SHARED_RING_INIT(sring);
1272         FRONT_RING_INIT(&info->ring, sring, ring_size);
1273
1274         err = xenbus_grant_ring(dev, info->ring.sring, info->nr_ring_pages, gref);
1275         if (err < 0) {
1276                 free_pages((unsigned long)sring, get_order(ring_size));
1277                 info->ring.sring = NULL;
1278                 goto fail;
1279         }
1280         for (i = 0; i < info->nr_ring_pages; i++)
1281                 info->ring_ref[i] = gref[i];
1282
1283         err = xenbus_alloc_evtchn(dev, &info->evtchn);
1284         if (err)
1285                 goto fail;
1286
1287         err = bind_evtchn_to_irqhandler(info->evtchn, blkif_interrupt, 0,
1288                                         "blkif", info);
1289         if (err <= 0) {
1290                 xenbus_dev_fatal(dev, err,
1291                                  "bind_evtchn_to_irqhandler failed");
1292                 goto fail;
1293         }
1294         info->irq = err;
1295
1296         return 0;
1297 fail:
1298         blkif_free(info, 0);
1299         return err;
1300 }
1301
1302
1303 /* Common code used when first setting up, and when resuming. */
1304 static int talk_to_blkback(struct xenbus_device *dev,
1305                            struct blkfront_info *info)
1306 {
1307         const char *message = NULL;
1308         struct xenbus_transaction xbt;
1309         int err, i;
1310         unsigned int max_page_order = 0;
1311         unsigned int ring_page_order = 0;
1312
1313         err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1314                            "max-ring-page-order", "%u", &max_page_order);
1315         if (err != 1)
1316                 info->nr_ring_pages = 1;
1317         else {
1318                 ring_page_order = min(xen_blkif_max_ring_order, max_page_order);
1319                 info->nr_ring_pages = 1 << ring_page_order;
1320         }
1321
1322         /* Create shared ring, alloc event channel. */
1323         err = setup_blkring(dev, info);
1324         if (err)
1325                 goto out;
1326
1327 again:
1328         err = xenbus_transaction_start(&xbt);
1329         if (err) {
1330                 xenbus_dev_fatal(dev, err, "starting transaction");
1331                 goto destroy_blkring;
1332         }
1333
1334         if (info->nr_ring_pages == 1) {
1335                 err = xenbus_printf(xbt, dev->nodename,
1336                                     "ring-ref", "%u", info->ring_ref[0]);
1337                 if (err) {
1338                         message = "writing ring-ref";
1339                         goto abort_transaction;
1340                 }
1341         } else {
1342                 err = xenbus_printf(xbt, dev->nodename,
1343                                     "ring-page-order", "%u", ring_page_order);
1344                 if (err) {
1345                         message = "writing ring-page-order";
1346                         goto abort_transaction;
1347                 }
1348
1349                 for (i = 0; i < info->nr_ring_pages; i++) {
1350                         char ring_ref_name[RINGREF_NAME_LEN];
1351
1352                         snprintf(ring_ref_name, RINGREF_NAME_LEN, "ring-ref%u", i);
1353                         err = xenbus_printf(xbt, dev->nodename, ring_ref_name,
1354                                             "%u", info->ring_ref[i]);
1355                         if (err) {
1356                                 message = "writing ring-ref";
1357                                 goto abort_transaction;
1358                         }
1359                 }
1360         }
1361         err = xenbus_printf(xbt, dev->nodename,
1362                             "event-channel", "%u", info->evtchn);
1363         if (err) {
1364                 message = "writing event-channel";
1365                 goto abort_transaction;
1366         }
1367         err = xenbus_printf(xbt, dev->nodename, "protocol", "%s",
1368                             XEN_IO_PROTO_ABI_NATIVE);
1369         if (err) {
1370                 message = "writing protocol";
1371                 goto abort_transaction;
1372         }
1373         err = xenbus_printf(xbt, dev->nodename,
1374                             "feature-persistent", "%u", 1);
1375         if (err)
1376                 dev_warn(&dev->dev,
1377                          "writing persistent grants feature to xenbus");
1378
1379         err = xenbus_transaction_end(xbt, 0);
1380         if (err) {
1381                 if (err == -EAGAIN)
1382                         goto again;
1383                 xenbus_dev_fatal(dev, err, "completing transaction");
1384                 goto destroy_blkring;
1385         }
1386
1387         for (i = 0; i < BLK_RING_SIZE(info); i++)
1388                 info->shadow[i].req.u.rw.id = i+1;
1389         info->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1390         xenbus_switch_state(dev, XenbusStateInitialised);
1391
1392         return 0;
1393
1394  abort_transaction:
1395         xenbus_transaction_end(xbt, 1);
1396         if (message)
1397                 xenbus_dev_fatal(dev, err, "%s", message);
1398  destroy_blkring:
1399         blkif_free(info, 0);
1400  out:
1401         return err;
1402 }
1403
1404 /**
1405  * Entry point to this code when a new device is created.  Allocate the basic
1406  * structures and the ring buffer for communication with the backend, and
1407  * inform the backend of the appropriate details for those.  Switch to
1408  * Initialised state.
1409  */
1410 static int blkfront_probe(struct xenbus_device *dev,
1411                           const struct xenbus_device_id *id)
1412 {
1413         int err, vdevice;
1414         struct blkfront_info *info;
1415
1416         /* FIXME: Use dynamic device id if this is not set. */
1417         err = xenbus_scanf(XBT_NIL, dev->nodename,
1418                            "virtual-device", "%i", &vdevice);
1419         if (err != 1) {
1420                 /* go looking in the extended area instead */
1421                 err = xenbus_scanf(XBT_NIL, dev->nodename, "virtual-device-ext",
1422                                    "%i", &vdevice);
1423                 if (err != 1) {
1424                         xenbus_dev_fatal(dev, err, "reading virtual-device");
1425                         return err;
1426                 }
1427         }
1428
1429         if (xen_hvm_domain()) {
1430                 char *type;
1431                 int len;
1432                 /* no unplug has been done: do not hook devices != xen vbds */
1433                 if (xen_has_pv_and_legacy_disk_devices()) {
1434                         int major;
1435
1436                         if (!VDEV_IS_EXTENDED(vdevice))
1437                                 major = BLKIF_MAJOR(vdevice);
1438                         else
1439                                 major = XENVBD_MAJOR;
1440
1441                         if (major != XENVBD_MAJOR) {
1442                                 printk(KERN_INFO
1443                                                 "%s: HVM does not support vbd %d as xen block device\n",
1444                                                 __func__, vdevice);
1445                                 return -ENODEV;
1446                         }
1447                 }
1448                 /* do not create a PV cdrom device if we are an HVM guest */
1449                 type = xenbus_read(XBT_NIL, dev->nodename, "device-type", &len);
1450                 if (IS_ERR(type))
1451                         return -ENODEV;
1452                 if (strncmp(type, "cdrom", 5) == 0) {
1453                         kfree(type);
1454                         return -ENODEV;
1455                 }
1456                 kfree(type);
1457         }
1458         info = kzalloc(sizeof(*info), GFP_KERNEL);
1459         if (!info) {
1460                 xenbus_dev_fatal(dev, -ENOMEM, "allocating info structure");
1461                 return -ENOMEM;
1462         }
1463
1464         mutex_init(&info->mutex);
1465         spin_lock_init(&info->io_lock);
1466         info->xbdev = dev;
1467         info->vdevice = vdevice;
1468         INIT_LIST_HEAD(&info->grants);
1469         INIT_LIST_HEAD(&info->indirect_pages);
1470         info->persistent_gnts_c = 0;
1471         info->connected = BLKIF_STATE_DISCONNECTED;
1472         INIT_WORK(&info->work, blkif_restart_queue);
1473
1474         /* Front end dir is a number, which is used as the id. */
1475         info->handle = simple_strtoul(strrchr(dev->nodename, '/')+1, NULL, 0);
1476         dev_set_drvdata(&dev->dev, info);
1477
1478         return 0;
1479 }
1480
1481 static void split_bio_end(struct bio *bio, int error)
1482 {
1483         struct split_bio *split_bio = bio->bi_private;
1484
1485         if (error)
1486                 split_bio->err = error;
1487
1488         if (atomic_dec_and_test(&split_bio->pending)) {
1489                 split_bio->bio->bi_phys_segments = 0;
1490                 bio_endio(split_bio->bio, split_bio->err);
1491                 kfree(split_bio);
1492         }
1493         bio_put(bio);
1494 }
1495
1496 static int blkif_recover(struct blkfront_info *info)
1497 {
1498         int i;
1499         struct request *req, *n;
1500         struct blk_shadow *copy;
1501         int rc;
1502         struct bio *bio, *cloned_bio;
1503         struct bio_list bio_list, merge_bio;
1504         unsigned int segs, offset;
1505         int pending, size;
1506         struct split_bio *split_bio;
1507         struct list_head requests;
1508
1509         /* Stage 1: Make a safe copy of the shadow state. */
1510         copy = kmemdup(info->shadow, sizeof(info->shadow),
1511                        GFP_NOIO | __GFP_REPEAT | __GFP_HIGH);
1512         if (!copy)
1513                 return -ENOMEM;
1514
1515         /* Stage 2: Set up free list. */
1516         memset(&info->shadow, 0, sizeof(info->shadow));
1517         for (i = 0; i < BLK_RING_SIZE(info); i++)
1518                 info->shadow[i].req.u.rw.id = i+1;
1519         info->shadow_free = info->ring.req_prod_pvt;
1520         info->shadow[BLK_RING_SIZE(info)-1].req.u.rw.id = 0x0fffffff;
1521
1522         rc = blkfront_setup_indirect(info);
1523         if (rc) {
1524                 kfree(copy);
1525                 return rc;
1526         }
1527
1528         segs = info->max_indirect_segments ? : BLKIF_MAX_SEGMENTS_PER_REQUEST;
1529         blk_queue_max_segments(info->rq, segs);
1530         bio_list_init(&bio_list);
1531         INIT_LIST_HEAD(&requests);
1532         for (i = 0; i < BLK_RING_SIZE(info); i++) {
1533                 /* Not in use? */
1534                 if (!copy[i].request)
1535                         continue;
1536
1537                 /*
1538                  * Get the bios in the request so we can re-queue them.
1539                  */
1540                 if (copy[i].request->cmd_flags &
1541                     (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) {
1542                         /*
1543                          * Flush operations don't contain bios, so
1544                          * we need to requeue the whole request
1545                          */
1546                         list_add(&copy[i].request->queuelist, &requests);
1547                         continue;
1548                 }
1549                 merge_bio.head = copy[i].request->bio;
1550                 merge_bio.tail = copy[i].request->biotail;
1551                 bio_list_merge(&bio_list, &merge_bio);
1552                 copy[i].request->bio = NULL;
1553                 blk_end_request_all(copy[i].request, 0);
1554         }
1555
1556         kfree(copy);
1557
1558         /*
1559          * Empty the queue, this is important because we might have
1560          * requests in the queue with more segments than what we
1561          * can handle now.
1562          */
1563         spin_lock_irq(&info->io_lock);
1564         while ((req = blk_fetch_request(info->rq)) != NULL) {
1565                 if (req->cmd_flags &
1566                     (REQ_FLUSH | REQ_FUA | REQ_DISCARD | REQ_SECURE)) {
1567                         list_add(&req->queuelist, &requests);
1568                         continue;
1569                 }
1570                 merge_bio.head = req->bio;
1571                 merge_bio.tail = req->biotail;
1572                 bio_list_merge(&bio_list, &merge_bio);
1573                 req->bio = NULL;
1574                 if (req->cmd_flags & (REQ_FLUSH | REQ_FUA))
1575                         pr_alert("diskcache flush request found!\n");
1576                 __blk_end_request_all(req, 0);
1577         }
1578         spin_unlock_irq(&info->io_lock);
1579
1580         xenbus_switch_state(info->xbdev, XenbusStateConnected);
1581
1582         spin_lock_irq(&info->io_lock);
1583
1584         /* Now safe for us to use the shared ring */
1585         info->connected = BLKIF_STATE_CONNECTED;
1586
1587         /* Kick any other new requests queued since we resumed */
1588         kick_pending_request_queues(info);
1589
1590         list_for_each_entry_safe(req, n, &requests, queuelist) {
1591                 /* Requeue pending requests (flush or discard) */
1592                 list_del_init(&req->queuelist);
1593                 BUG_ON(req->nr_phys_segments > segs);
1594                 blk_requeue_request(info->rq, req);
1595         }
1596         spin_unlock_irq(&info->io_lock);
1597
1598         while ((bio = bio_list_pop(&bio_list)) != NULL) {
1599                 /* Traverse the list of pending bios and re-queue them */
1600                 if (bio_segments(bio) > segs) {
1601                         /*
1602                          * This bio has more segments than what we can
1603                          * handle, we have to split it.
1604                          */
1605                         pending = (bio_segments(bio) + segs - 1) / segs;
1606                         split_bio = kzalloc(sizeof(*split_bio), GFP_NOIO);
1607                         BUG_ON(split_bio == NULL);
1608                         atomic_set(&split_bio->pending, pending);
1609                         split_bio->bio = bio;
1610                         for (i = 0; i < pending; i++) {
1611                                 offset = (i * segs * PAGE_SIZE) >> 9;
1612                                 size = min((unsigned int)(segs * PAGE_SIZE) >> 9,
1613                                            (unsigned int)bio_sectors(bio) - offset);
1614                                 cloned_bio = bio_clone(bio, GFP_NOIO);
1615                                 BUG_ON(cloned_bio == NULL);
1616                                 bio_trim(cloned_bio, offset, size);
1617                                 cloned_bio->bi_private = split_bio;
1618                                 cloned_bio->bi_end_io = split_bio_end;
1619                                 submit_bio(cloned_bio->bi_rw, cloned_bio);
1620                         }
1621                         /*
1622                          * Now we have to wait for all those smaller bios to
1623                          * end, so we can also end the "parent" bio.
1624                          */
1625                         continue;
1626                 }
1627                 /* We don't need to split this bio */
1628                 submit_bio(bio->bi_rw, bio);
1629         }
1630
1631         return 0;
1632 }
1633
1634 /**
1635  * We are reconnecting to the backend, due to a suspend/resume, or a backend
1636  * driver restart.  We tear down our blkif structure and recreate it, but
1637  * leave the device-layer structures intact so that this is transparent to the
1638  * rest of the kernel.
1639  */
1640 static int blkfront_resume(struct xenbus_device *dev)
1641 {
1642         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
1643         int err;
1644
1645         dev_dbg(&dev->dev, "blkfront_resume: %s\n", dev->nodename);
1646
1647         blkif_free(info, info->connected == BLKIF_STATE_CONNECTED);
1648
1649         err = talk_to_blkback(dev, info);
1650
1651         /*
1652          * We have to wait for the backend to switch to
1653          * connected state, since we want to read which
1654          * features it supports.
1655          */
1656
1657         return err;
1658 }
1659
1660 static void
1661 blkfront_closing(struct blkfront_info *info)
1662 {
1663         struct xenbus_device *xbdev = info->xbdev;
1664         struct block_device *bdev = NULL;
1665
1666         mutex_lock(&info->mutex);
1667
1668         if (xbdev->state == XenbusStateClosing) {
1669                 mutex_unlock(&info->mutex);
1670                 return;
1671         }
1672
1673         if (info->gd)
1674                 bdev = bdget_disk(info->gd, 0);
1675
1676         mutex_unlock(&info->mutex);
1677
1678         if (!bdev) {
1679                 xenbus_frontend_closed(xbdev);
1680                 return;
1681         }
1682
1683         mutex_lock(&bdev->bd_mutex);
1684
1685         if (bdev->bd_openers) {
1686                 xenbus_dev_error(xbdev, -EBUSY,
1687                                  "Device in use; refusing to close");
1688                 xenbus_switch_state(xbdev, XenbusStateClosing);
1689         } else {
1690                 xlvbd_release_gendisk(info);
1691                 xenbus_frontend_closed(xbdev);
1692         }
1693
1694         mutex_unlock(&bdev->bd_mutex);
1695         bdput(bdev);
1696 }
1697
1698 static void blkfront_setup_discard(struct blkfront_info *info)
1699 {
1700         int err;
1701         unsigned int discard_granularity;
1702         unsigned int discard_alignment;
1703         unsigned int discard_secure;
1704
1705         info->feature_discard = 1;
1706         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1707                 "discard-granularity", "%u", &discard_granularity,
1708                 "discard-alignment", "%u", &discard_alignment,
1709                 NULL);
1710         if (!err) {
1711                 info->discard_granularity = discard_granularity;
1712                 info->discard_alignment = discard_alignment;
1713         }
1714         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1715                     "discard-secure", "%d", &discard_secure,
1716                     NULL);
1717         if (!err)
1718                 info->feature_secdiscard = !!discard_secure;
1719 }
1720
1721 static int blkfront_setup_indirect(struct blkfront_info *info)
1722 {
1723         unsigned int indirect_segments, segs;
1724         int err, i;
1725
1726         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1727                             "feature-max-indirect-segments", "%u", &indirect_segments,
1728                             NULL);
1729         if (err) {
1730                 info->max_indirect_segments = 0;
1731                 segs = BLKIF_MAX_SEGMENTS_PER_REQUEST;
1732         } else {
1733                 info->max_indirect_segments = min(indirect_segments,
1734                                                   xen_blkif_max_segments);
1735                 segs = info->max_indirect_segments;
1736         }
1737
1738         err = fill_grant_buffer(info, (segs + INDIRECT_GREFS(segs)) * BLK_RING_SIZE(info));
1739         if (err)
1740                 goto out_of_memory;
1741
1742         if (!info->feature_persistent && info->max_indirect_segments) {
1743                 /*
1744                  * We are using indirect descriptors but not persistent
1745                  * grants, we need to allocate a set of pages that can be
1746                  * used for mapping indirect grefs
1747                  */
1748                 int num = INDIRECT_GREFS(segs) * BLK_RING_SIZE(info);
1749
1750                 BUG_ON(!list_empty(&info->indirect_pages));
1751                 for (i = 0; i < num; i++) {
1752                         struct page *indirect_page = alloc_page(GFP_NOIO);
1753                         if (!indirect_page)
1754                                 goto out_of_memory;
1755                         list_add(&indirect_page->lru, &info->indirect_pages);
1756                 }
1757         }
1758
1759         for (i = 0; i < BLK_RING_SIZE(info); i++) {
1760                 info->shadow[i].grants_used = kzalloc(
1761                         sizeof(info->shadow[i].grants_used[0]) * segs,
1762                         GFP_NOIO);
1763                 info->shadow[i].sg = kzalloc(sizeof(info->shadow[i].sg[0]) * segs, GFP_NOIO);
1764                 if (info->max_indirect_segments)
1765                         info->shadow[i].indirect_grants = kzalloc(
1766                                 sizeof(info->shadow[i].indirect_grants[0]) *
1767                                 INDIRECT_GREFS(segs),
1768                                 GFP_NOIO);
1769                 if ((info->shadow[i].grants_used == NULL) ||
1770                         (info->shadow[i].sg == NULL) ||
1771                      (info->max_indirect_segments &&
1772                      (info->shadow[i].indirect_grants == NULL)))
1773                         goto out_of_memory;
1774                 sg_init_table(info->shadow[i].sg, segs);
1775         }
1776
1777
1778         return 0;
1779
1780 out_of_memory:
1781         for (i = 0; i < BLK_RING_SIZE(info); i++) {
1782                 kfree(info->shadow[i].grants_used);
1783                 info->shadow[i].grants_used = NULL;
1784                 kfree(info->shadow[i].sg);
1785                 info->shadow[i].sg = NULL;
1786                 kfree(info->shadow[i].indirect_grants);
1787                 info->shadow[i].indirect_grants = NULL;
1788         }
1789         if (!list_empty(&info->indirect_pages)) {
1790                 struct page *indirect_page, *n;
1791                 list_for_each_entry_safe(indirect_page, n, &info->indirect_pages, lru) {
1792                         list_del(&indirect_page->lru);
1793                         __free_page(indirect_page);
1794                 }
1795         }
1796         return -ENOMEM;
1797 }
1798
1799 /*
1800  * Invoked when the backend is finally 'ready' (and has told produced
1801  * the details about the physical device - #sectors, size, etc).
1802  */
1803 static void blkfront_connect(struct blkfront_info *info)
1804 {
1805         unsigned long long sectors;
1806         unsigned long sector_size;
1807         unsigned int physical_sector_size;
1808         unsigned int binfo;
1809         int err;
1810         int barrier, flush, discard, persistent;
1811
1812         switch (info->connected) {
1813         case BLKIF_STATE_CONNECTED:
1814                 /*
1815                  * Potentially, the back-end may be signalling
1816                  * a capacity change; update the capacity.
1817                  */
1818                 err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1819                                    "sectors", "%Lu", &sectors);
1820                 if (XENBUS_EXIST_ERR(err))
1821                         return;
1822                 printk(KERN_INFO "Setting capacity to %Lu\n",
1823                        sectors);
1824                 set_capacity(info->gd, sectors);
1825                 revalidate_disk(info->gd);
1826
1827                 return;
1828         case BLKIF_STATE_SUSPENDED:
1829                 /*
1830                  * If we are recovering from suspension, we need to wait
1831                  * for the backend to announce it's features before
1832                  * reconnecting, at least we need to know if the backend
1833                  * supports indirect descriptors, and how many.
1834                  */
1835                 blkif_recover(info);
1836                 return;
1837
1838         default:
1839                 break;
1840         }
1841
1842         dev_dbg(&info->xbdev->dev, "%s:%s.\n",
1843                 __func__, info->xbdev->otherend);
1844
1845         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1846                             "sectors", "%llu", &sectors,
1847                             "info", "%u", &binfo,
1848                             "sector-size", "%lu", &sector_size,
1849                             NULL);
1850         if (err) {
1851                 xenbus_dev_fatal(info->xbdev, err,
1852                                  "reading backend fields at %s",
1853                                  info->xbdev->otherend);
1854                 return;
1855         }
1856
1857         /*
1858          * physcial-sector-size is a newer field, so old backends may not
1859          * provide this. Assume physical sector size to be the same as
1860          * sector_size in that case.
1861          */
1862         err = xenbus_scanf(XBT_NIL, info->xbdev->otherend,
1863                            "physical-sector-size", "%u", &physical_sector_size);
1864         if (err != 1)
1865                 physical_sector_size = sector_size;
1866
1867         info->feature_flush = 0;
1868
1869         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1870                             "feature-barrier", "%d", &barrier,
1871                             NULL);
1872
1873         /*
1874          * If there's no "feature-barrier" defined, then it means
1875          * we're dealing with a very old backend which writes
1876          * synchronously; nothing to do.
1877          *
1878          * If there are barriers, then we use flush.
1879          */
1880         if (!err && barrier)
1881                 info->feature_flush = REQ_FLUSH | REQ_FUA;
1882         /*
1883          * And if there is "feature-flush-cache" use that above
1884          * barriers.
1885          */
1886         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1887                             "feature-flush-cache", "%d", &flush,
1888                             NULL);
1889
1890         if (!err && flush)
1891                 info->feature_flush = REQ_FLUSH;
1892
1893         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1894                             "feature-discard", "%d", &discard,
1895                             NULL);
1896
1897         if (!err && discard)
1898                 blkfront_setup_discard(info);
1899
1900         err = xenbus_gather(XBT_NIL, info->xbdev->otherend,
1901                             "feature-persistent", "%u", &persistent,
1902                             NULL);
1903         if (err)
1904                 info->feature_persistent = 0;
1905         else
1906                 info->feature_persistent = persistent;
1907
1908         err = blkfront_setup_indirect(info);
1909         if (err) {
1910                 xenbus_dev_fatal(info->xbdev, err, "setup_indirect at %s",
1911                                  info->xbdev->otherend);
1912                 return;
1913         }
1914
1915         err = xlvbd_alloc_gendisk(sectors, info, binfo, sector_size,
1916                                   physical_sector_size);
1917         if (err) {
1918                 xenbus_dev_fatal(info->xbdev, err, "xlvbd_add at %s",
1919                                  info->xbdev->otherend);
1920                 return;
1921         }
1922
1923         xenbus_switch_state(info->xbdev, XenbusStateConnected);
1924
1925         /* Kick pending requests. */
1926         spin_lock_irq(&info->io_lock);
1927         info->connected = BLKIF_STATE_CONNECTED;
1928         kick_pending_request_queues(info);
1929         spin_unlock_irq(&info->io_lock);
1930
1931         add_disk(info->gd);
1932
1933         info->is_ready = 1;
1934 }
1935
1936 /**
1937  * Callback received when the backend's state changes.
1938  */
1939 static void blkback_changed(struct xenbus_device *dev,
1940                             enum xenbus_state backend_state)
1941 {
1942         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
1943
1944         dev_dbg(&dev->dev, "blkfront:blkback_changed to state %d.\n", backend_state);
1945
1946         switch (backend_state) {
1947         case XenbusStateInitWait:
1948                 if (dev->state != XenbusStateInitialising)
1949                         break;
1950                 if (talk_to_blkback(dev, info)) {
1951                         kfree(info);
1952                         dev_set_drvdata(&dev->dev, NULL);
1953                         break;
1954                 }
1955         case XenbusStateInitialising:
1956         case XenbusStateInitialised:
1957         case XenbusStateReconfiguring:
1958         case XenbusStateReconfigured:
1959         case XenbusStateUnknown:
1960                 break;
1961
1962         case XenbusStateConnected:
1963                 blkfront_connect(info);
1964                 break;
1965
1966         case XenbusStateClosed:
1967                 if (dev->state == XenbusStateClosed)
1968                         break;
1969                 /* Missed the backend's Closing state -- fallthrough */
1970         case XenbusStateClosing:
1971                 blkfront_closing(info);
1972                 break;
1973         }
1974 }
1975
1976 static int blkfront_remove(struct xenbus_device *xbdev)
1977 {
1978         struct blkfront_info *info = dev_get_drvdata(&xbdev->dev);
1979         struct block_device *bdev = NULL;
1980         struct gendisk *disk;
1981
1982         dev_dbg(&xbdev->dev, "%s removed", xbdev->nodename);
1983
1984         blkif_free(info, 0);
1985
1986         mutex_lock(&info->mutex);
1987
1988         disk = info->gd;
1989         if (disk)
1990                 bdev = bdget_disk(disk, 0);
1991
1992         info->xbdev = NULL;
1993         mutex_unlock(&info->mutex);
1994
1995         if (!bdev) {
1996                 kfree(info);
1997                 return 0;
1998         }
1999
2000         /*
2001          * The xbdev was removed before we reached the Closed
2002          * state. See if it's safe to remove the disk. If the bdev
2003          * isn't closed yet, we let release take care of it.
2004          */
2005
2006         mutex_lock(&bdev->bd_mutex);
2007         info = disk->private_data;
2008
2009         dev_warn(disk_to_dev(disk),
2010                  "%s was hot-unplugged, %d stale handles\n",
2011                  xbdev->nodename, bdev->bd_openers);
2012
2013         if (info && !bdev->bd_openers) {
2014                 xlvbd_release_gendisk(info);
2015                 disk->private_data = NULL;
2016                 kfree(info);
2017         }
2018
2019         mutex_unlock(&bdev->bd_mutex);
2020         bdput(bdev);
2021
2022         return 0;
2023 }
2024
2025 static int blkfront_is_ready(struct xenbus_device *dev)
2026 {
2027         struct blkfront_info *info = dev_get_drvdata(&dev->dev);
2028
2029         return info->is_ready && info->xbdev;
2030 }
2031
2032 static int blkif_open(struct block_device *bdev, fmode_t mode)
2033 {
2034         struct gendisk *disk = bdev->bd_disk;
2035         struct blkfront_info *info;
2036         int err = 0;
2037
2038         mutex_lock(&blkfront_mutex);
2039
2040         info = disk->private_data;
2041         if (!info) {
2042                 /* xbdev gone */
2043                 err = -ERESTARTSYS;
2044                 goto out;
2045         }
2046
2047         mutex_lock(&info->mutex);
2048
2049         if (!info->gd)
2050                 /* xbdev is closed */
2051                 err = -ERESTARTSYS;
2052
2053         mutex_unlock(&info->mutex);
2054
2055 out:
2056         mutex_unlock(&blkfront_mutex);
2057         return err;
2058 }
2059
2060 static void blkif_release(struct gendisk *disk, fmode_t mode)
2061 {
2062         struct blkfront_info *info = disk->private_data;
2063         struct block_device *bdev;
2064         struct xenbus_device *xbdev;
2065
2066         mutex_lock(&blkfront_mutex);
2067
2068         bdev = bdget_disk(disk, 0);
2069
2070         if (!bdev) {
2071                 WARN(1, "Block device %s yanked out from us!\n", disk->disk_name);
2072                 goto out_mutex;
2073         }
2074         if (bdev->bd_openers)
2075                 goto out;
2076
2077         /*
2078          * Check if we have been instructed to close. We will have
2079          * deferred this request, because the bdev was still open.
2080          */
2081
2082         mutex_lock(&info->mutex);
2083         xbdev = info->xbdev;
2084
2085         if (xbdev && xbdev->state == XenbusStateClosing) {
2086                 /* pending switch to state closed */
2087                 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2088                 xlvbd_release_gendisk(info);
2089                 xenbus_frontend_closed(info->xbdev);
2090         }
2091
2092         mutex_unlock(&info->mutex);
2093
2094         if (!xbdev) {
2095                 /* sudden device removal */
2096                 dev_info(disk_to_dev(bdev->bd_disk), "releasing disk\n");
2097                 xlvbd_release_gendisk(info);
2098                 disk->private_data = NULL;
2099                 kfree(info);
2100         }
2101
2102 out:
2103         bdput(bdev);
2104 out_mutex:
2105         mutex_unlock(&blkfront_mutex);
2106 }
2107
2108 static const struct block_device_operations xlvbd_block_fops =
2109 {
2110         .owner = THIS_MODULE,
2111         .open = blkif_open,
2112         .release = blkif_release,
2113         .getgeo = blkif_getgeo,
2114         .ioctl = blkif_ioctl,
2115 };
2116
2117
2118 static const struct xenbus_device_id blkfront_ids[] = {
2119         { "vbd" },
2120         { "" }
2121 };
2122
2123 static struct xenbus_driver blkfront_driver = {
2124         .ids  = blkfront_ids,
2125         .probe = blkfront_probe,
2126         .remove = blkfront_remove,
2127         .resume = blkfront_resume,
2128         .otherend_changed = blkback_changed,
2129         .is_ready = blkfront_is_ready,
2130 };
2131
2132 static int __init xlblk_init(void)
2133 {
2134         int ret;
2135
2136         if (!xen_domain())
2137                 return -ENODEV;
2138
2139         if (xen_blkif_max_ring_order > XENBUS_MAX_RING_PAGE_ORDER) {
2140                 pr_info("Invalid max_ring_order (%d), will use default max: %d.\n",
2141                         xen_blkif_max_ring_order, XENBUS_MAX_RING_PAGE_ORDER);
2142                 xen_blkif_max_ring_order = 0;
2143         }
2144
2145         if (!xen_has_pv_disk_devices())
2146                 return -ENODEV;
2147
2148         if (register_blkdev(XENVBD_MAJOR, DEV_NAME)) {
2149                 printk(KERN_WARNING "xen_blk: can't get major %d with name %s\n",
2150                        XENVBD_MAJOR, DEV_NAME);
2151                 return -ENODEV;
2152         }
2153
2154         ret = xenbus_register_frontend(&blkfront_driver);
2155         if (ret) {
2156                 unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2157                 return ret;
2158         }
2159
2160         return 0;
2161 }
2162 module_init(xlblk_init);
2163
2164
2165 static void __exit xlblk_exit(void)
2166 {
2167         xenbus_unregister_driver(&blkfront_driver);
2168         unregister_blkdev(XENVBD_MAJOR, DEV_NAME);
2169         kfree(minors);
2170 }
2171 module_exit(xlblk_exit);
2172
2173 MODULE_DESCRIPTION("Xen virtual block device frontend");
2174 MODULE_LICENSE("GPL");
2175 MODULE_ALIAS_BLOCKDEV_MAJOR(XENVBD_MAJOR);
2176 MODULE_ALIAS("xen:vbd");
2177 MODULE_ALIAS("xenblk");