a153d0a01b72152fa34b5fc22cfeec9a2c6ffda3
[linux-drm-fsl-dcu.git] / arch / x86_64 / kernel / traps.c
1 /*
2  *  linux/arch/x86-64/traps.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
6  *
7  *  Pentium III FXSR, SSE support
8  *      Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10
11 /*
12  * 'Traps.c' handles hardware traps and faults after we have saved some
13  * state in 'entry.S'.
14  */
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/errno.h>
19 #include <linux/ptrace.h>
20 #include <linux/timer.h>
21 #include <linux/mm.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/kallsyms.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/nmi.h>
30 #include <linux/kprobes.h>
31 #include <linux/kexec.h>
32 #include <linux/unwind.h>
33
34 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/atomic.h>
38 #include <asm/debugreg.h>
39 #include <asm/desc.h>
40 #include <asm/i387.h>
41 #include <asm/kdebug.h>
42 #include <asm/processor.h>
43 #include <asm/unwind.h>
44 #include <asm/smp.h>
45 #include <asm/pgalloc.h>
46 #include <asm/pda.h>
47 #include <asm/proto.h>
48 #include <asm/nmi.h>
49 #include <asm/stacktrace.h>
50
51 asmlinkage void divide_error(void);
52 asmlinkage void debug(void);
53 asmlinkage void nmi(void);
54 asmlinkage void int3(void);
55 asmlinkage void overflow(void);
56 asmlinkage void bounds(void);
57 asmlinkage void invalid_op(void);
58 asmlinkage void device_not_available(void);
59 asmlinkage void double_fault(void);
60 asmlinkage void coprocessor_segment_overrun(void);
61 asmlinkage void invalid_TSS(void);
62 asmlinkage void segment_not_present(void);
63 asmlinkage void stack_segment(void);
64 asmlinkage void general_protection(void);
65 asmlinkage void page_fault(void);
66 asmlinkage void coprocessor_error(void);
67 asmlinkage void simd_coprocessor_error(void);
68 asmlinkage void reserved(void);
69 asmlinkage void alignment_check(void);
70 asmlinkage void machine_check(void);
71 asmlinkage void spurious_interrupt_bug(void);
72
73 ATOMIC_NOTIFIER_HEAD(die_chain);
74 EXPORT_SYMBOL(die_chain);
75
76 int register_die_notifier(struct notifier_block *nb)
77 {
78         vmalloc_sync_all();
79         return atomic_notifier_chain_register(&die_chain, nb);
80 }
81 EXPORT_SYMBOL(register_die_notifier); /* used modular by kdb */
82
83 int unregister_die_notifier(struct notifier_block *nb)
84 {
85         return atomic_notifier_chain_unregister(&die_chain, nb);
86 }
87 EXPORT_SYMBOL(unregister_die_notifier); /* used modular by kdb */
88
89 static inline void conditional_sti(struct pt_regs *regs)
90 {
91         if (regs->eflags & X86_EFLAGS_IF)
92                 local_irq_enable();
93 }
94
95 static inline void preempt_conditional_sti(struct pt_regs *regs)
96 {
97         preempt_disable();
98         if (regs->eflags & X86_EFLAGS_IF)
99                 local_irq_enable();
100 }
101
102 static inline void preempt_conditional_cli(struct pt_regs *regs)
103 {
104         if (regs->eflags & X86_EFLAGS_IF)
105                 local_irq_disable();
106         /* Make sure to not schedule here because we could be running
107            on an exception stack. */
108         preempt_enable_no_resched();
109 }
110
111 static int kstack_depth_to_print = 12;
112 #ifdef CONFIG_STACK_UNWIND
113 static int call_trace = 1;
114 #else
115 #define call_trace (-1)
116 #endif
117
118 #ifdef CONFIG_KALLSYMS
119 void printk_address(unsigned long address)
120 {
121         unsigned long offset = 0, symsize;
122         const char *symname;
123         char *modname;
124         char *delim = ":";
125         char namebuf[128];
126
127         symname = kallsyms_lookup(address, &symsize, &offset,
128                                         &modname, namebuf);
129         if (!symname) {
130                 printk(" [<%016lx>]\n", address);
131                 return;
132         }
133         if (!modname)
134                 modname = delim = "";           
135         printk(" [<%016lx>] %s%s%s%s+0x%lx/0x%lx\n",
136                 address, delim, modname, delim, symname, offset, symsize);
137 }
138 #else
139 void printk_address(unsigned long address)
140 {
141         printk(" [<%016lx>]\n", address);
142 }
143 #endif
144
145 static unsigned long *in_exception_stack(unsigned cpu, unsigned long stack,
146                                         unsigned *usedp, char **idp)
147 {
148         static char ids[][8] = {
149                 [DEBUG_STACK - 1] = "#DB",
150                 [NMI_STACK - 1] = "NMI",
151                 [DOUBLEFAULT_STACK - 1] = "#DF",
152                 [STACKFAULT_STACK - 1] = "#SS",
153                 [MCE_STACK - 1] = "#MC",
154 #if DEBUG_STKSZ > EXCEPTION_STKSZ
155                 [N_EXCEPTION_STACKS ... N_EXCEPTION_STACKS + DEBUG_STKSZ / EXCEPTION_STKSZ - 2] = "#DB[?]"
156 #endif
157         };
158         unsigned k;
159
160         /*
161          * Iterate over all exception stacks, and figure out whether
162          * 'stack' is in one of them:
163          */
164         for (k = 0; k < N_EXCEPTION_STACKS; k++) {
165                 unsigned long end = per_cpu(orig_ist, cpu).ist[k];
166                 /*
167                  * Is 'stack' above this exception frame's end?
168                  * If yes then skip to the next frame.
169                  */
170                 if (stack >= end)
171                         continue;
172                 /*
173                  * Is 'stack' above this exception frame's start address?
174                  * If yes then we found the right frame.
175                  */
176                 if (stack >= end - EXCEPTION_STKSZ) {
177                         /*
178                          * Make sure we only iterate through an exception
179                          * stack once. If it comes up for the second time
180                          * then there's something wrong going on - just
181                          * break out and return NULL:
182                          */
183                         if (*usedp & (1U << k))
184                                 break;
185                         *usedp |= 1U << k;
186                         *idp = ids[k];
187                         return (unsigned long *)end;
188                 }
189                 /*
190                  * If this is a debug stack, and if it has a larger size than
191                  * the usual exception stacks, then 'stack' might still
192                  * be within the lower portion of the debug stack:
193                  */
194 #if DEBUG_STKSZ > EXCEPTION_STKSZ
195                 if (k == DEBUG_STACK - 1 && stack >= end - DEBUG_STKSZ) {
196                         unsigned j = N_EXCEPTION_STACKS - 1;
197
198                         /*
199                          * Black magic. A large debug stack is composed of
200                          * multiple exception stack entries, which we
201                          * iterate through now. Dont look:
202                          */
203                         do {
204                                 ++j;
205                                 end -= EXCEPTION_STKSZ;
206                                 ids[j][4] = '1' + (j - N_EXCEPTION_STACKS);
207                         } while (stack < end - EXCEPTION_STKSZ);
208                         if (*usedp & (1U << j))
209                                 break;
210                         *usedp |= 1U << j;
211                         *idp = ids[j];
212                         return (unsigned long *)end;
213                 }
214 #endif
215         }
216         return NULL;
217 }
218
219 struct ops_and_data {
220         struct stacktrace_ops *ops;
221         void *data;
222 };
223
224 static int dump_trace_unwind(struct unwind_frame_info *info, void *context)
225 {
226         struct ops_and_data *oad = (struct ops_and_data *)context;
227         int n = 0;
228
229         while (unwind(info) == 0 && UNW_PC(info)) {
230                 n++;
231                 oad->ops->address(oad->data, UNW_PC(info));
232                 if (arch_unw_user_mode(info))
233                         break;
234         }
235         return n;
236 }
237
238 /*
239  * x86-64 can have upto three kernel stacks: 
240  * process stack
241  * interrupt stack
242  * severe exception (double fault, nmi, stack fault, debug, mce) hardware stack
243  */
244
245 void dump_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long * stack,
246                 struct stacktrace_ops *ops, void *data)
247 {
248         const unsigned cpu = smp_processor_id();
249         unsigned long *irqstack_end = (unsigned long *)cpu_pda(cpu)->irqstackptr;
250         unsigned used = 0;
251
252         if (!tsk)
253                 tsk = current;
254
255         if (call_trace >= 0) {
256                 int unw_ret = 0;
257                 struct unwind_frame_info info;
258                 struct ops_and_data oad = { .ops = ops, .data = data };
259
260                 if (regs) {
261                         if (unwind_init_frame_info(&info, tsk, regs) == 0)
262                                 unw_ret = dump_trace_unwind(&info, &oad);
263                 } else if (tsk == current)
264                         unw_ret = unwind_init_running(&info, dump_trace_unwind, &oad);
265                 else {
266                         if (unwind_init_blocked(&info, tsk) == 0)
267                                 unw_ret = dump_trace_unwind(&info, &oad);
268                 }
269                 if (unw_ret > 0) {
270                         if (call_trace == 1 && !arch_unw_user_mode(&info)) {
271                                 ops->warning_symbol(data, "DWARF2 unwinder stuck at %s\n",
272                                              UNW_PC(&info));
273                                 if ((long)UNW_SP(&info) < 0) {
274                                         ops->warning(data, "Leftover inexact backtrace:\n");
275                                         stack = (unsigned long *)UNW_SP(&info);
276                                         if (!stack)
277                                                 return;
278                                 } else
279                                         ops->warning(data, "Full inexact backtrace again:\n");
280                         } else if (call_trace >= 1)
281                                 return;
282                         else
283                                 ops->warning(data, "Full inexact backtrace again:\n");
284                 } else
285                         ops->warning(data, "Inexact backtrace:\n");
286         }
287         if (!stack) {
288                 unsigned long dummy;
289                 stack = &dummy;
290                 if (tsk && tsk != current)
291                         stack = (unsigned long *)tsk->thread.rsp;
292         }
293         /*
294          * Align the stack pointer on word boundary, later loops
295          * rely on that (and corruption / debug info bugs can cause
296          * unaligned values here):
297          */
298         stack = (unsigned long *)((unsigned long)stack & ~(sizeof(long)-1));
299
300         /*
301          * Print function call entries within a stack. 'cond' is the
302          * "end of stackframe" condition, that the 'stack++'
303          * iteration will eventually trigger.
304          */
305 #define HANDLE_STACK(cond) \
306         do while (cond) { \
307                 unsigned long addr = *stack++; \
308                 if (oops_in_progress ?          \
309                         __kernel_text_address(addr) : \
310                         kernel_text_address(addr)) { \
311                         /* \
312                          * If the address is either in the text segment of the \
313                          * kernel, or in the region which contains vmalloc'ed \
314                          * memory, it *may* be the address of a calling \
315                          * routine; if so, print it so that someone tracing \
316                          * down the cause of the crash will be able to figure \
317                          * out the call path that was taken. \
318                          */ \
319                         ops->address(data, addr);   \
320                 } \
321         } while (0)
322
323         /*
324          * Print function call entries in all stacks, starting at the
325          * current stack address. If the stacks consist of nested
326          * exceptions
327          */
328         for (;;) {
329                 char *id;
330                 unsigned long *estack_end;
331                 estack_end = in_exception_stack(cpu, (unsigned long)stack,
332                                                 &used, &id);
333
334                 if (estack_end) {
335                         if (ops->stack(data, id) < 0)
336                                 break;
337                         HANDLE_STACK (stack < estack_end);
338                         ops->stack(data, "<EOE>");
339                         /*
340                          * We link to the next stack via the
341                          * second-to-last pointer (index -2 to end) in the
342                          * exception stack:
343                          */
344                         stack = (unsigned long *) estack_end[-2];
345                         continue;
346                 }
347                 if (irqstack_end) {
348                         unsigned long *irqstack;
349                         irqstack = irqstack_end -
350                                 (IRQSTACKSIZE - 64) / sizeof(*irqstack);
351
352                         if (stack >= irqstack && stack < irqstack_end) {
353                                 if (ops->stack(data, "IRQ") < 0)
354                                         break;
355                                 HANDLE_STACK (stack < irqstack_end);
356                                 /*
357                                  * We link to the next stack (which would be
358                                  * the process stack normally) the last
359                                  * pointer (index -1 to end) in the IRQ stack:
360                                  */
361                                 stack = (unsigned long *) (irqstack_end[-1]);
362                                 irqstack_end = NULL;
363                                 ops->stack(data, "EOI");
364                                 continue;
365                         }
366                 }
367                 break;
368         }
369
370         /*
371          * This handles the process stack:
372          */
373         HANDLE_STACK (((long) stack & (THREAD_SIZE-1)) != 0);
374 #undef HANDLE_STACK
375 }
376 EXPORT_SYMBOL(dump_trace);
377
378 static void
379 print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
380 {
381         print_symbol(msg, symbol);
382         printk("\n");
383 }
384
385 static void print_trace_warning(void *data, char *msg)
386 {
387         printk("%s\n", msg);
388 }
389
390 static int print_trace_stack(void *data, char *name)
391 {
392         printk(" <%s> ", name);
393         return 0;
394 }
395
396 static void print_trace_address(void *data, unsigned long addr)
397 {
398         printk_address(addr);
399 }
400
401 static struct stacktrace_ops print_trace_ops = {
402         .warning = print_trace_warning,
403         .warning_symbol = print_trace_warning_symbol,
404         .stack = print_trace_stack,
405         .address = print_trace_address,
406 };
407
408 void
409 show_trace(struct task_struct *tsk, struct pt_regs *regs, unsigned long *stack)
410 {
411         printk("\nCall Trace:\n");
412         dump_trace(tsk, regs, stack, &print_trace_ops, NULL);
413         printk("\n");
414 }
415
416 static void
417 _show_stack(struct task_struct *tsk, struct pt_regs *regs, unsigned long *rsp)
418 {
419         unsigned long *stack;
420         int i;
421         const int cpu = smp_processor_id();
422         unsigned long *irqstack_end = (unsigned long *) (cpu_pda(cpu)->irqstackptr);
423         unsigned long *irqstack = (unsigned long *) (cpu_pda(cpu)->irqstackptr - IRQSTACKSIZE);
424
425         // debugging aid: "show_stack(NULL, NULL);" prints the
426         // back trace for this cpu.
427
428         if (rsp == NULL) {
429                 if (tsk)
430                         rsp = (unsigned long *)tsk->thread.rsp;
431                 else
432                         rsp = (unsigned long *)&rsp;
433         }
434
435         stack = rsp;
436         for(i=0; i < kstack_depth_to_print; i++) {
437                 if (stack >= irqstack && stack <= irqstack_end) {
438                         if (stack == irqstack_end) {
439                                 stack = (unsigned long *) (irqstack_end[-1]);
440                                 printk(" <EOI> ");
441                         }
442                 } else {
443                 if (((long) stack & (THREAD_SIZE-1)) == 0)
444                         break;
445                 }
446                 if (i && ((i % 4) == 0))
447                         printk("\n");
448                 printk(" %016lx", *stack++);
449                 touch_nmi_watchdog();
450         }
451         show_trace(tsk, regs, rsp);
452 }
453
454 void show_stack(struct task_struct *tsk, unsigned long * rsp)
455 {
456         _show_stack(tsk, NULL, rsp);
457 }
458
459 /*
460  * The architecture-independent dump_stack generator
461  */
462 void dump_stack(void)
463 {
464         unsigned long dummy;
465         show_trace(NULL, NULL, &dummy);
466 }
467
468 EXPORT_SYMBOL(dump_stack);
469
470 void show_registers(struct pt_regs *regs)
471 {
472         int i;
473         int in_kernel = !user_mode(regs);
474         unsigned long rsp;
475         const int cpu = smp_processor_id();
476         struct task_struct *cur = cpu_pda(cpu)->pcurrent;
477
478                 rsp = regs->rsp;
479
480         printk("CPU %d ", cpu);
481         __show_regs(regs);
482         printk("Process %s (pid: %d, threadinfo %p, task %p)\n",
483                 cur->comm, cur->pid, task_thread_info(cur), cur);
484
485         /*
486          * When in-kernel, we also print out the stack and code at the
487          * time of the fault..
488          */
489         if (in_kernel) {
490
491                 printk("Stack: ");
492                 _show_stack(NULL, regs, (unsigned long*)rsp);
493
494                 printk("\nCode: ");
495                 if (regs->rip < PAGE_OFFSET)
496                         goto bad;
497
498                 for (i=0; i<20; i++) {
499                         unsigned char c;
500                         if (__get_user(c, &((unsigned char*)regs->rip)[i])) {
501 bad:
502                                 printk(" Bad RIP value.");
503                                 break;
504                         }
505                         printk("%02x ", c);
506                 }
507         }
508         printk("\n");
509 }       
510
511 void handle_BUG(struct pt_regs *regs)
512
513         struct bug_frame f;
514         long len;
515         const char *prefix = "";
516
517         if (user_mode(regs))
518                 return; 
519         if (__copy_from_user(&f, (const void __user *) regs->rip,
520                              sizeof(struct bug_frame)))
521                 return; 
522         if (f.filename >= 0 ||
523             f.ud2[0] != 0x0f || f.ud2[1] != 0x0b) 
524                 return;
525         len = __strnlen_user((char *)(long)f.filename, PATH_MAX) - 1;
526         if (len < 0 || len >= PATH_MAX)
527                 f.filename = (int)(long)"unmapped filename";
528         else if (len > 50) {
529                 f.filename += len - 50;
530                 prefix = "...";
531         }
532         printk("----------- [cut here ] --------- [please bite here ] ---------\n");
533         printk(KERN_ALERT "Kernel BUG at %s%.50s:%d\n", prefix, (char *)(long)f.filename, f.line);
534
535
536 #ifdef CONFIG_BUG
537 void out_of_line_bug(void)
538
539         BUG(); 
540
541 EXPORT_SYMBOL(out_of_line_bug);
542 #endif
543
544 static DEFINE_SPINLOCK(die_lock);
545 static int die_owner = -1;
546 static unsigned int die_nest_count;
547
548 unsigned __kprobes long oops_begin(void)
549 {
550         int cpu = smp_processor_id();
551         unsigned long flags;
552
553         oops_enter();
554
555         /* racy, but better than risking deadlock. */
556         local_irq_save(flags);
557         if (!spin_trylock(&die_lock)) { 
558                 if (cpu == die_owner) 
559                         /* nested oops. should stop eventually */;
560                 else
561                         spin_lock(&die_lock);
562         }
563         die_nest_count++;
564         die_owner = cpu;
565         console_verbose();
566         bust_spinlocks(1);
567         return flags;
568 }
569
570 void __kprobes oops_end(unsigned long flags)
571
572         die_owner = -1;
573         bust_spinlocks(0);
574         die_nest_count--;
575         if (die_nest_count)
576                 /* We still own the lock */
577                 local_irq_restore(flags);
578         else
579                 /* Nest count reaches zero, release the lock. */
580                 spin_unlock_irqrestore(&die_lock, flags);
581         if (panic_on_oops)
582                 panic("Fatal exception");
583         oops_exit();
584 }
585
586 void __kprobes __die(const char * str, struct pt_regs * regs, long err)
587 {
588         static int die_counter;
589         printk(KERN_EMERG "%s: %04lx [%u] ", str, err & 0xffff,++die_counter);
590 #ifdef CONFIG_PREEMPT
591         printk("PREEMPT ");
592 #endif
593 #ifdef CONFIG_SMP
594         printk("SMP ");
595 #endif
596 #ifdef CONFIG_DEBUG_PAGEALLOC
597         printk("DEBUG_PAGEALLOC");
598 #endif
599         printk("\n");
600         notify_die(DIE_OOPS, str, regs, err, current->thread.trap_no, SIGSEGV);
601         show_registers(regs);
602         /* Executive summary in case the oops scrolled away */
603         printk(KERN_ALERT "RIP ");
604         printk_address(regs->rip); 
605         printk(" RSP <%016lx>\n", regs->rsp); 
606         if (kexec_should_crash(current))
607                 crash_kexec(regs);
608 }
609
610 void die(const char * str, struct pt_regs * regs, long err)
611 {
612         unsigned long flags = oops_begin();
613
614         handle_BUG(regs);
615         __die(str, regs, err);
616         oops_end(flags);
617         do_exit(SIGSEGV); 
618 }
619
620 void __kprobes die_nmi(char *str, struct pt_regs *regs, int do_panic)
621 {
622         unsigned long flags = oops_begin();
623
624         /*
625          * We are in trouble anyway, lets at least try
626          * to get a message out.
627          */
628         printk(str, smp_processor_id());
629         show_registers(regs);
630         if (kexec_should_crash(current))
631                 crash_kexec(regs);
632         if (do_panic || panic_on_oops)
633                 panic("Non maskable interrupt");
634         oops_end(flags);
635         nmi_exit();
636         local_irq_enable();
637         do_exit(SIGSEGV);
638 }
639
640 static void __kprobes do_trap(int trapnr, int signr, char *str,
641                               struct pt_regs * regs, long error_code,
642                               siginfo_t *info)
643 {
644         struct task_struct *tsk = current;
645
646         tsk->thread.error_code = error_code;
647         tsk->thread.trap_no = trapnr;
648
649         if (user_mode(regs)) {
650                 if (exception_trace && unhandled_signal(tsk, signr))
651                         printk(KERN_INFO
652                                "%s[%d] trap %s rip:%lx rsp:%lx error:%lx\n",
653                                tsk->comm, tsk->pid, str,
654                                regs->rip, regs->rsp, error_code); 
655
656                 if (info)
657                         force_sig_info(signr, info, tsk);
658                 else
659                         force_sig(signr, tsk);
660                 return;
661         }
662
663
664         /* kernel trap */ 
665         {            
666                 const struct exception_table_entry *fixup;
667                 fixup = search_exception_tables(regs->rip);
668                 if (fixup)
669                         regs->rip = fixup->fixup;
670                 else    
671                         die(str, regs, error_code);
672                 return;
673         }
674 }
675
676 #define DO_ERROR(trapnr, signr, str, name) \
677 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
678 { \
679         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
680                                                         == NOTIFY_STOP) \
681                 return; \
682         conditional_sti(regs);                                          \
683         do_trap(trapnr, signr, str, regs, error_code, NULL); \
684 }
685
686 #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr) \
687 asmlinkage void do_##name(struct pt_regs * regs, long error_code) \
688 { \
689         siginfo_t info; \
690         info.si_signo = signr; \
691         info.si_errno = 0; \
692         info.si_code = sicode; \
693         info.si_addr = (void __user *)siaddr; \
694         if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr) \
695                                                         == NOTIFY_STOP) \
696                 return; \
697         conditional_sti(regs);                                          \
698         do_trap(trapnr, signr, str, regs, error_code, &info); \
699 }
700
701 DO_ERROR_INFO( 0, SIGFPE,  "divide error", divide_error, FPE_INTDIV, regs->rip)
702 DO_ERROR( 4, SIGSEGV, "overflow", overflow)
703 DO_ERROR( 5, SIGSEGV, "bounds", bounds)
704 DO_ERROR_INFO( 6, SIGILL,  "invalid opcode", invalid_op, ILL_ILLOPN, regs->rip)
705 DO_ERROR( 7, SIGSEGV, "device not available", device_not_available)
706 DO_ERROR( 9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun)
707 DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS)
708 DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present)
709 DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0)
710 DO_ERROR(18, SIGSEGV, "reserved", reserved)
711
712 /* Runs on IST stack */
713 asmlinkage void do_stack_segment(struct pt_regs *regs, long error_code)
714 {
715         if (notify_die(DIE_TRAP, "stack segment", regs, error_code,
716                         12, SIGBUS) == NOTIFY_STOP)
717                 return;
718         preempt_conditional_sti(regs);
719         do_trap(12, SIGBUS, "stack segment", regs, error_code, NULL);
720         preempt_conditional_cli(regs);
721 }
722
723 asmlinkage void do_double_fault(struct pt_regs * regs, long error_code)
724 {
725         static const char str[] = "double fault";
726         struct task_struct *tsk = current;
727
728         /* Return not checked because double check cannot be ignored */
729         notify_die(DIE_TRAP, str, regs, error_code, 8, SIGSEGV);
730
731         tsk->thread.error_code = error_code;
732         tsk->thread.trap_no = 8;
733
734         /* This is always a kernel trap and never fixable (and thus must
735            never return). */
736         for (;;)
737                 die(str, regs, error_code);
738 }
739
740 asmlinkage void __kprobes do_general_protection(struct pt_regs * regs,
741                                                 long error_code)
742 {
743         struct task_struct *tsk = current;
744
745         conditional_sti(regs);
746
747         tsk->thread.error_code = error_code;
748         tsk->thread.trap_no = 13;
749
750         if (user_mode(regs)) {
751                 if (exception_trace && unhandled_signal(tsk, SIGSEGV))
752                         printk(KERN_INFO
753                        "%s[%d] general protection rip:%lx rsp:%lx error:%lx\n",
754                                tsk->comm, tsk->pid,
755                                regs->rip, regs->rsp, error_code); 
756
757                 force_sig(SIGSEGV, tsk);
758                 return;
759         } 
760
761         /* kernel gp */
762         {
763                 const struct exception_table_entry *fixup;
764                 fixup = search_exception_tables(regs->rip);
765                 if (fixup) {
766                         regs->rip = fixup->fixup;
767                         return;
768                 }
769                 if (notify_die(DIE_GPF, "general protection fault", regs,
770                                         error_code, 13, SIGSEGV) == NOTIFY_STOP)
771                         return;
772                 die("general protection fault", regs, error_code);
773         }
774 }
775
776 static __kprobes void
777 mem_parity_error(unsigned char reason, struct pt_regs * regs)
778 {
779         printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
780                 reason);
781         printk(KERN_EMERG "You probably have a hardware problem with your "
782                 "RAM chips\n");
783
784         if (panic_on_unrecovered_nmi)
785                 panic("NMI: Not continuing");
786
787         printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
788
789         /* Clear and disable the memory parity error line. */
790         reason = (reason & 0xf) | 4;
791         outb(reason, 0x61);
792 }
793
794 static __kprobes void
795 io_check_error(unsigned char reason, struct pt_regs * regs)
796 {
797         printk("NMI: IOCK error (debug interrupt?)\n");
798         show_registers(regs);
799
800         /* Re-enable the IOCK line, wait for a few seconds */
801         reason = (reason & 0xf) | 8;
802         outb(reason, 0x61);
803         mdelay(2000);
804         reason &= ~8;
805         outb(reason, 0x61);
806 }
807
808 static __kprobes void
809 unknown_nmi_error(unsigned char reason, struct pt_regs * regs)
810 {
811         printk(KERN_EMERG "Uhhuh. NMI received for unknown reason %02x.\n",
812                 reason);
813         printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n");
814
815         if (panic_on_unrecovered_nmi)
816                 panic("NMI: Not continuing");
817
818         printk(KERN_EMERG "Dazed and confused, but trying to continue\n");
819 }
820
821 /* Runs on IST stack. This code must keep interrupts off all the time.
822    Nested NMIs are prevented by the CPU. */
823 asmlinkage __kprobes void default_do_nmi(struct pt_regs *regs)
824 {
825         unsigned char reason = 0;
826         int cpu;
827
828         cpu = smp_processor_id();
829
830         /* Only the BSP gets external NMIs from the system.  */
831         if (!cpu)
832                 reason = get_nmi_reason();
833
834         if (!(reason & 0xc0)) {
835                 if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT)
836                                                                 == NOTIFY_STOP)
837                         return;
838                 /*
839                  * Ok, so this is none of the documented NMI sources,
840                  * so it must be the NMI watchdog.
841                  */
842                 if (nmi_watchdog_tick(regs,reason))
843                         return;
844                 if (!do_nmi_callback(regs,cpu))
845                         unknown_nmi_error(reason, regs);
846
847                 return;
848         }
849         if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP)
850                 return; 
851
852         /* AK: following checks seem to be broken on modern chipsets. FIXME */
853
854         if (reason & 0x80)
855                 mem_parity_error(reason, regs);
856         if (reason & 0x40)
857                 io_check_error(reason, regs);
858 }
859
860 /* runs on IST stack. */
861 asmlinkage void __kprobes do_int3(struct pt_regs * regs, long error_code)
862 {
863         if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) == NOTIFY_STOP) {
864                 return;
865         }
866         preempt_conditional_sti(regs);
867         do_trap(3, SIGTRAP, "int3", regs, error_code, NULL);
868         preempt_conditional_cli(regs);
869 }
870
871 /* Help handler running on IST stack to switch back to user stack
872    for scheduling or signal handling. The actual stack switch is done in
873    entry.S */
874 asmlinkage __kprobes struct pt_regs *sync_regs(struct pt_regs *eregs)
875 {
876         struct pt_regs *regs = eregs;
877         /* Did already sync */
878         if (eregs == (struct pt_regs *)eregs->rsp)
879                 ;
880         /* Exception from user space */
881         else if (user_mode(eregs))
882                 regs = task_pt_regs(current);
883         /* Exception from kernel and interrupts are enabled. Move to
884            kernel process stack. */
885         else if (eregs->eflags & X86_EFLAGS_IF)
886                 regs = (struct pt_regs *)(eregs->rsp -= sizeof(struct pt_regs));
887         if (eregs != regs)
888                 *regs = *eregs;
889         return regs;
890 }
891
892 /* runs on IST stack. */
893 asmlinkage void __kprobes do_debug(struct pt_regs * regs,
894                                    unsigned long error_code)
895 {
896         unsigned long condition;
897         struct task_struct *tsk = current;
898         siginfo_t info;
899
900         get_debugreg(condition, 6);
901
902         if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code,
903                                                 SIGTRAP) == NOTIFY_STOP)
904                 return;
905
906         preempt_conditional_sti(regs);
907
908         /* Mask out spurious debug traps due to lazy DR7 setting */
909         if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) {
910                 if (!tsk->thread.debugreg7) { 
911                         goto clear_dr7;
912                 }
913         }
914
915         tsk->thread.debugreg6 = condition;
916
917         /* Mask out spurious TF errors due to lazy TF clearing */
918         if (condition & DR_STEP) {
919                 /*
920                  * The TF error should be masked out only if the current
921                  * process is not traced and if the TRAP flag has been set
922                  * previously by a tracing process (condition detected by
923                  * the PT_DTRACE flag); remember that the i386 TRAP flag
924                  * can be modified by the process itself in user mode,
925                  * allowing programs to debug themselves without the ptrace()
926                  * interface.
927                  */
928                 if (!user_mode(regs))
929                        goto clear_TF_reenable;
930                 /*
931                  * Was the TF flag set by a debugger? If so, clear it now,
932                  * so that register information is correct.
933                  */
934                 if (tsk->ptrace & PT_DTRACE) {
935                         regs->eflags &= ~TF_MASK;
936                         tsk->ptrace &= ~PT_DTRACE;
937                 }
938         }
939
940         /* Ok, finally something we can handle */
941         tsk->thread.trap_no = 1;
942         tsk->thread.error_code = error_code;
943         info.si_signo = SIGTRAP;
944         info.si_errno = 0;
945         info.si_code = TRAP_BRKPT;
946         info.si_addr = user_mode(regs) ? (void __user *)regs->rip : NULL;
947         force_sig_info(SIGTRAP, &info, tsk);
948
949 clear_dr7:
950         set_debugreg(0UL, 7);
951         preempt_conditional_cli(regs);
952         return;
953
954 clear_TF_reenable:
955         set_tsk_thread_flag(tsk, TIF_SINGLESTEP);
956         regs->eflags &= ~TF_MASK;
957         preempt_conditional_cli(regs);
958 }
959
960 static int kernel_math_error(struct pt_regs *regs, const char *str, int trapnr)
961 {
962         const struct exception_table_entry *fixup;
963         fixup = search_exception_tables(regs->rip);
964         if (fixup) {
965                 regs->rip = fixup->fixup;
966                 return 1;
967         }
968         notify_die(DIE_GPF, str, regs, 0, trapnr, SIGFPE);
969         /* Illegal floating point operation in the kernel */
970         current->thread.trap_no = trapnr;
971         die(str, regs, 0);
972         return 0;
973 }
974
975 /*
976  * Note that we play around with the 'TS' bit in an attempt to get
977  * the correct behaviour even in the presence of the asynchronous
978  * IRQ13 behaviour
979  */
980 asmlinkage void do_coprocessor_error(struct pt_regs *regs)
981 {
982         void __user *rip = (void __user *)(regs->rip);
983         struct task_struct * task;
984         siginfo_t info;
985         unsigned short cwd, swd;
986
987         conditional_sti(regs);
988         if (!user_mode(regs) &&
989             kernel_math_error(regs, "kernel x87 math error", 16))
990                 return;
991
992         /*
993          * Save the info for the exception handler and clear the error.
994          */
995         task = current;
996         save_init_fpu(task);
997         task->thread.trap_no = 16;
998         task->thread.error_code = 0;
999         info.si_signo = SIGFPE;
1000         info.si_errno = 0;
1001         info.si_code = __SI_FAULT;
1002         info.si_addr = rip;
1003         /*
1004          * (~cwd & swd) will mask out exceptions that are not set to unmasked
1005          * status.  0x3f is the exception bits in these regs, 0x200 is the
1006          * C1 reg you need in case of a stack fault, 0x040 is the stack
1007          * fault bit.  We should only be taking one exception at a time,
1008          * so if this combination doesn't produce any single exception,
1009          * then we have a bad program that isn't synchronizing its FPU usage
1010          * and it will suffer the consequences since we won't be able to
1011          * fully reproduce the context of the exception
1012          */
1013         cwd = get_fpu_cwd(task);
1014         swd = get_fpu_swd(task);
1015         switch (swd & ~cwd & 0x3f) {
1016                 case 0x000:
1017                 default:
1018                         break;
1019                 case 0x001: /* Invalid Op */
1020                         /*
1021                          * swd & 0x240 == 0x040: Stack Underflow
1022                          * swd & 0x240 == 0x240: Stack Overflow
1023                          * User must clear the SF bit (0x40) if set
1024                          */
1025                         info.si_code = FPE_FLTINV;
1026                         break;
1027                 case 0x002: /* Denormalize */
1028                 case 0x010: /* Underflow */
1029                         info.si_code = FPE_FLTUND;
1030                         break;
1031                 case 0x004: /* Zero Divide */
1032                         info.si_code = FPE_FLTDIV;
1033                         break;
1034                 case 0x008: /* Overflow */
1035                         info.si_code = FPE_FLTOVF;
1036                         break;
1037                 case 0x020: /* Precision */
1038                         info.si_code = FPE_FLTRES;
1039                         break;
1040         }
1041         force_sig_info(SIGFPE, &info, task);
1042 }
1043
1044 asmlinkage void bad_intr(void)
1045 {
1046         printk("bad interrupt"); 
1047 }
1048
1049 asmlinkage void do_simd_coprocessor_error(struct pt_regs *regs)
1050 {
1051         void __user *rip = (void __user *)(regs->rip);
1052         struct task_struct * task;
1053         siginfo_t info;
1054         unsigned short mxcsr;
1055
1056         conditional_sti(regs);
1057         if (!user_mode(regs) &&
1058                 kernel_math_error(regs, "kernel simd math error", 19))
1059                 return;
1060
1061         /*
1062          * Save the info for the exception handler and clear the error.
1063          */
1064         task = current;
1065         save_init_fpu(task);
1066         task->thread.trap_no = 19;
1067         task->thread.error_code = 0;
1068         info.si_signo = SIGFPE;
1069         info.si_errno = 0;
1070         info.si_code = __SI_FAULT;
1071         info.si_addr = rip;
1072         /*
1073          * The SIMD FPU exceptions are handled a little differently, as there
1074          * is only a single status/control register.  Thus, to determine which
1075          * unmasked exception was caught we must mask the exception mask bits
1076          * at 0x1f80, and then use these to mask the exception bits at 0x3f.
1077          */
1078         mxcsr = get_fpu_mxcsr(task);
1079         switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) {
1080                 case 0x000:
1081                 default:
1082                         break;
1083                 case 0x001: /* Invalid Op */
1084                         info.si_code = FPE_FLTINV;
1085                         break;
1086                 case 0x002: /* Denormalize */
1087                 case 0x010: /* Underflow */
1088                         info.si_code = FPE_FLTUND;
1089                         break;
1090                 case 0x004: /* Zero Divide */
1091                         info.si_code = FPE_FLTDIV;
1092                         break;
1093                 case 0x008: /* Overflow */
1094                         info.si_code = FPE_FLTOVF;
1095                         break;
1096                 case 0x020: /* Precision */
1097                         info.si_code = FPE_FLTRES;
1098                         break;
1099         }
1100         force_sig_info(SIGFPE, &info, task);
1101 }
1102
1103 asmlinkage void do_spurious_interrupt_bug(struct pt_regs * regs)
1104 {
1105 }
1106
1107 asmlinkage void __attribute__((weak)) smp_thermal_interrupt(void)
1108 {
1109 }
1110
1111 asmlinkage void __attribute__((weak)) mce_threshold_interrupt(void)
1112 {
1113 }
1114
1115 /*
1116  *  'math_state_restore()' saves the current math information in the
1117  * old math state array, and gets the new ones from the current task
1118  *
1119  * Careful.. There are problems with IBM-designed IRQ13 behaviour.
1120  * Don't touch unless you *really* know how it works.
1121  */
1122 asmlinkage void math_state_restore(void)
1123 {
1124         struct task_struct *me = current;
1125         clts();                 /* Allow maths ops (or we recurse) */
1126
1127         if (!used_math())
1128                 init_fpu(me);
1129         restore_fpu_checking(&me->thread.i387.fxsave);
1130         task_thread_info(me)->status |= TS_USEDFPU;
1131         me->fpu_counter++;
1132 }
1133
1134 void __init trap_init(void)
1135 {
1136         set_intr_gate(0,&divide_error);
1137         set_intr_gate_ist(1,&debug,DEBUG_STACK);
1138         set_intr_gate_ist(2,&nmi,NMI_STACK);
1139         set_system_gate_ist(3,&int3,DEBUG_STACK); /* int3 can be called from all */
1140         set_system_gate(4,&overflow);   /* int4 can be called from all */
1141         set_intr_gate(5,&bounds);
1142         set_intr_gate(6,&invalid_op);
1143         set_intr_gate(7,&device_not_available);
1144         set_intr_gate_ist(8,&double_fault, DOUBLEFAULT_STACK);
1145         set_intr_gate(9,&coprocessor_segment_overrun);
1146         set_intr_gate(10,&invalid_TSS);
1147         set_intr_gate(11,&segment_not_present);
1148         set_intr_gate_ist(12,&stack_segment,STACKFAULT_STACK);
1149         set_intr_gate(13,&general_protection);
1150         set_intr_gate(14,&page_fault);
1151         set_intr_gate(15,&spurious_interrupt_bug);
1152         set_intr_gate(16,&coprocessor_error);
1153         set_intr_gate(17,&alignment_check);
1154 #ifdef CONFIG_X86_MCE
1155         set_intr_gate_ist(18,&machine_check, MCE_STACK); 
1156 #endif
1157         set_intr_gate(19,&simd_coprocessor_error);
1158
1159 #ifdef CONFIG_IA32_EMULATION
1160         set_system_gate(IA32_SYSCALL_VECTOR, ia32_syscall);
1161 #endif
1162        
1163         /*
1164          * Should be a barrier for any external CPU state.
1165          */
1166         cpu_init();
1167 }
1168
1169
1170 static int __init oops_setup(char *s)
1171
1172         if (!s)
1173                 return -EINVAL;
1174         if (!strcmp(s, "panic"))
1175                 panic_on_oops = 1;
1176         return 0;
1177
1178 early_param("oops", oops_setup);
1179
1180 static int __init kstack_setup(char *s)
1181 {
1182         if (!s)
1183                 return -EINVAL;
1184         kstack_depth_to_print = simple_strtoul(s,NULL,0);
1185         return 0;
1186 }
1187 early_param("kstack", kstack_setup);
1188
1189 #ifdef CONFIG_STACK_UNWIND
1190 static int __init call_trace_setup(char *s)
1191 {
1192         if (!s)
1193                 return -EINVAL;
1194         if (strcmp(s, "old") == 0)
1195                 call_trace = -1;
1196         else if (strcmp(s, "both") == 0)
1197                 call_trace = 0;
1198         else if (strcmp(s, "newfallback") == 0)
1199                 call_trace = 1;
1200         else if (strcmp(s, "new") == 0)
1201                 call_trace = 2;
1202         return 0;
1203 }
1204 early_param("call_trace", call_trace_setup);
1205 #endif