rcu: Suppress lockdep false positive for rcp->exp_funnel_mutex
[linux-drm-fsl-dcu.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <trace/events/kvm.h>
55
56 #define CREATE_TRACE_POINTS
57 #include "trace.h"
58
59 #include <asm/debugreg.h>
60 #include <asm/msr.h>
61 #include <asm/desc.h>
62 #include <asm/mce.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71
72 #define emul_to_vcpu(ctxt) \
73         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74
75 /* EFER defaults:
76  * - enable syscall per default because its emulated by KVM
77  * - enable LME and LMA per default on 64 bit KVM
78  */
79 #ifdef CONFIG_X86_64
80 static
81 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
82 #else
83 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
84 #endif
85
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88
89 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
90 static void process_nmi(struct kvm_vcpu *vcpu);
91 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
92
93 struct kvm_x86_ops *kvm_x86_ops;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops);
95
96 static bool ignore_msrs = 0;
97 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
98
99 unsigned int min_timer_period_us = 500;
100 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
101
102 static bool __read_mostly kvmclock_periodic_sync = true;
103 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
104
105 bool kvm_has_tsc_control;
106 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
107 u32  kvm_max_guest_tsc_khz;
108 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
109
110 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
111 static u32 tsc_tolerance_ppm = 250;
112 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
113
114 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
115 unsigned int lapic_timer_advance_ns = 0;
116 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
117
118 static bool backwards_tsc_observed = false;
119
120 #define KVM_NR_SHARED_MSRS 16
121
122 struct kvm_shared_msrs_global {
123         int nr;
124         u32 msrs[KVM_NR_SHARED_MSRS];
125 };
126
127 struct kvm_shared_msrs {
128         struct user_return_notifier urn;
129         bool registered;
130         struct kvm_shared_msr_values {
131                 u64 host;
132                 u64 curr;
133         } values[KVM_NR_SHARED_MSRS];
134 };
135
136 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
137 static struct kvm_shared_msrs __percpu *shared_msrs;
138
139 struct kvm_stats_debugfs_item debugfs_entries[] = {
140         { "pf_fixed", VCPU_STAT(pf_fixed) },
141         { "pf_guest", VCPU_STAT(pf_guest) },
142         { "tlb_flush", VCPU_STAT(tlb_flush) },
143         { "invlpg", VCPU_STAT(invlpg) },
144         { "exits", VCPU_STAT(exits) },
145         { "io_exits", VCPU_STAT(io_exits) },
146         { "mmio_exits", VCPU_STAT(mmio_exits) },
147         { "signal_exits", VCPU_STAT(signal_exits) },
148         { "irq_window", VCPU_STAT(irq_window_exits) },
149         { "nmi_window", VCPU_STAT(nmi_window_exits) },
150         { "halt_exits", VCPU_STAT(halt_exits) },
151         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
152         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
153         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
154         { "hypercalls", VCPU_STAT(hypercalls) },
155         { "request_irq", VCPU_STAT(request_irq_exits) },
156         { "irq_exits", VCPU_STAT(irq_exits) },
157         { "host_state_reload", VCPU_STAT(host_state_reload) },
158         { "efer_reload", VCPU_STAT(efer_reload) },
159         { "fpu_reload", VCPU_STAT(fpu_reload) },
160         { "insn_emulation", VCPU_STAT(insn_emulation) },
161         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
162         { "irq_injections", VCPU_STAT(irq_injections) },
163         { "nmi_injections", VCPU_STAT(nmi_injections) },
164         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
165         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
166         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
167         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
168         { "mmu_flooded", VM_STAT(mmu_flooded) },
169         { "mmu_recycled", VM_STAT(mmu_recycled) },
170         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
171         { "mmu_unsync", VM_STAT(mmu_unsync) },
172         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
173         { "largepages", VM_STAT(lpages) },
174         { NULL }
175 };
176
177 u64 __read_mostly host_xcr0;
178
179 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
180
181 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
182 {
183         int i;
184         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
185                 vcpu->arch.apf.gfns[i] = ~0;
186 }
187
188 static void kvm_on_user_return(struct user_return_notifier *urn)
189 {
190         unsigned slot;
191         struct kvm_shared_msrs *locals
192                 = container_of(urn, struct kvm_shared_msrs, urn);
193         struct kvm_shared_msr_values *values;
194
195         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
196                 values = &locals->values[slot];
197                 if (values->host != values->curr) {
198                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
199                         values->curr = values->host;
200                 }
201         }
202         locals->registered = false;
203         user_return_notifier_unregister(urn);
204 }
205
206 static void shared_msr_update(unsigned slot, u32 msr)
207 {
208         u64 value;
209         unsigned int cpu = smp_processor_id();
210         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
211
212         /* only read, and nobody should modify it at this time,
213          * so don't need lock */
214         if (slot >= shared_msrs_global.nr) {
215                 printk(KERN_ERR "kvm: invalid MSR slot!");
216                 return;
217         }
218         rdmsrl_safe(msr, &value);
219         smsr->values[slot].host = value;
220         smsr->values[slot].curr = value;
221 }
222
223 void kvm_define_shared_msr(unsigned slot, u32 msr)
224 {
225         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
226         shared_msrs_global.msrs[slot] = msr;
227         if (slot >= shared_msrs_global.nr)
228                 shared_msrs_global.nr = slot + 1;
229 }
230 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
231
232 static void kvm_shared_msr_cpu_online(void)
233 {
234         unsigned i;
235
236         for (i = 0; i < shared_msrs_global.nr; ++i)
237                 shared_msr_update(i, shared_msrs_global.msrs[i]);
238 }
239
240 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
241 {
242         unsigned int cpu = smp_processor_id();
243         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
244         int err;
245
246         if (((value ^ smsr->values[slot].curr) & mask) == 0)
247                 return 0;
248         smsr->values[slot].curr = value;
249         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
250         if (err)
251                 return 1;
252
253         if (!smsr->registered) {
254                 smsr->urn.on_user_return = kvm_on_user_return;
255                 user_return_notifier_register(&smsr->urn);
256                 smsr->registered = true;
257         }
258         return 0;
259 }
260 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
261
262 static void drop_user_return_notifiers(void)
263 {
264         unsigned int cpu = smp_processor_id();
265         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
266
267         if (smsr->registered)
268                 kvm_on_user_return(&smsr->urn);
269 }
270
271 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
272 {
273         return vcpu->arch.apic_base;
274 }
275 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
276
277 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
278 {
279         u64 old_state = vcpu->arch.apic_base &
280                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
281         u64 new_state = msr_info->data &
282                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
283         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
284                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
285
286         if (!msr_info->host_initiated &&
287             ((msr_info->data & reserved_bits) != 0 ||
288              new_state == X2APIC_ENABLE ||
289              (new_state == MSR_IA32_APICBASE_ENABLE &&
290               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
291              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
292               old_state == 0)))
293                 return 1;
294
295         kvm_lapic_set_base(vcpu, msr_info->data);
296         return 0;
297 }
298 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
299
300 asmlinkage __visible void kvm_spurious_fault(void)
301 {
302         /* Fault while not rebooting.  We want the trace. */
303         BUG();
304 }
305 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
306
307 #define EXCPT_BENIGN            0
308 #define EXCPT_CONTRIBUTORY      1
309 #define EXCPT_PF                2
310
311 static int exception_class(int vector)
312 {
313         switch (vector) {
314         case PF_VECTOR:
315                 return EXCPT_PF;
316         case DE_VECTOR:
317         case TS_VECTOR:
318         case NP_VECTOR:
319         case SS_VECTOR:
320         case GP_VECTOR:
321                 return EXCPT_CONTRIBUTORY;
322         default:
323                 break;
324         }
325         return EXCPT_BENIGN;
326 }
327
328 #define EXCPT_FAULT             0
329 #define EXCPT_TRAP              1
330 #define EXCPT_ABORT             2
331 #define EXCPT_INTERRUPT         3
332
333 static int exception_type(int vector)
334 {
335         unsigned int mask;
336
337         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
338                 return EXCPT_INTERRUPT;
339
340         mask = 1 << vector;
341
342         /* #DB is trap, as instruction watchpoints are handled elsewhere */
343         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
344                 return EXCPT_TRAP;
345
346         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
347                 return EXCPT_ABORT;
348
349         /* Reserved exceptions will result in fault */
350         return EXCPT_FAULT;
351 }
352
353 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
354                 unsigned nr, bool has_error, u32 error_code,
355                 bool reinject)
356 {
357         u32 prev_nr;
358         int class1, class2;
359
360         kvm_make_request(KVM_REQ_EVENT, vcpu);
361
362         if (!vcpu->arch.exception.pending) {
363         queue:
364                 if (has_error && !is_protmode(vcpu))
365                         has_error = false;
366                 vcpu->arch.exception.pending = true;
367                 vcpu->arch.exception.has_error_code = has_error;
368                 vcpu->arch.exception.nr = nr;
369                 vcpu->arch.exception.error_code = error_code;
370                 vcpu->arch.exception.reinject = reinject;
371                 return;
372         }
373
374         /* to check exception */
375         prev_nr = vcpu->arch.exception.nr;
376         if (prev_nr == DF_VECTOR) {
377                 /* triple fault -> shutdown */
378                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
379                 return;
380         }
381         class1 = exception_class(prev_nr);
382         class2 = exception_class(nr);
383         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
384                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
385                 /* generate double fault per SDM Table 5-5 */
386                 vcpu->arch.exception.pending = true;
387                 vcpu->arch.exception.has_error_code = true;
388                 vcpu->arch.exception.nr = DF_VECTOR;
389                 vcpu->arch.exception.error_code = 0;
390         } else
391                 /* replace previous exception with a new one in a hope
392                    that instruction re-execution will regenerate lost
393                    exception */
394                 goto queue;
395 }
396
397 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
398 {
399         kvm_multiple_exception(vcpu, nr, false, 0, false);
400 }
401 EXPORT_SYMBOL_GPL(kvm_queue_exception);
402
403 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
404 {
405         kvm_multiple_exception(vcpu, nr, false, 0, true);
406 }
407 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
408
409 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
410 {
411         if (err)
412                 kvm_inject_gp(vcpu, 0);
413         else
414                 kvm_x86_ops->skip_emulated_instruction(vcpu);
415 }
416 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
417
418 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
419 {
420         ++vcpu->stat.pf_guest;
421         vcpu->arch.cr2 = fault->address;
422         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
423 }
424 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
425
426 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
429                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
430         else
431                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
432
433         return fault->nested_page_fault;
434 }
435
436 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
437 {
438         atomic_inc(&vcpu->arch.nmi_queued);
439         kvm_make_request(KVM_REQ_NMI, vcpu);
440 }
441 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
442
443 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
444 {
445         kvm_multiple_exception(vcpu, nr, true, error_code, false);
446 }
447 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
448
449 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
450 {
451         kvm_multiple_exception(vcpu, nr, true, error_code, true);
452 }
453 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
454
455 /*
456  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
457  * a #GP and return false.
458  */
459 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
460 {
461         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
462                 return true;
463         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
464         return false;
465 }
466 EXPORT_SYMBOL_GPL(kvm_require_cpl);
467
468 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
469 {
470         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
471                 return true;
472
473         kvm_queue_exception(vcpu, UD_VECTOR);
474         return false;
475 }
476 EXPORT_SYMBOL_GPL(kvm_require_dr);
477
478 /*
479  * This function will be used to read from the physical memory of the currently
480  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
481  * can read from guest physical or from the guest's guest physical memory.
482  */
483 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
484                             gfn_t ngfn, void *data, int offset, int len,
485                             u32 access)
486 {
487         struct x86_exception exception;
488         gfn_t real_gfn;
489         gpa_t ngpa;
490
491         ngpa     = gfn_to_gpa(ngfn);
492         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
493         if (real_gfn == UNMAPPED_GVA)
494                 return -EFAULT;
495
496         real_gfn = gpa_to_gfn(real_gfn);
497
498         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
499 }
500 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
501
502 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
503                                void *data, int offset, int len, u32 access)
504 {
505         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
506                                        data, offset, len, access);
507 }
508
509 /*
510  * Load the pae pdptrs.  Return true is they are all valid.
511  */
512 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
513 {
514         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
515         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
516         int i;
517         int ret;
518         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
519
520         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
521                                       offset * sizeof(u64), sizeof(pdpte),
522                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
523         if (ret < 0) {
524                 ret = 0;
525                 goto out;
526         }
527         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
528                 if (is_present_gpte(pdpte[i]) &&
529                     (pdpte[i] &
530                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
531                         ret = 0;
532                         goto out;
533                 }
534         }
535         ret = 1;
536
537         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
538         __set_bit(VCPU_EXREG_PDPTR,
539                   (unsigned long *)&vcpu->arch.regs_avail);
540         __set_bit(VCPU_EXREG_PDPTR,
541                   (unsigned long *)&vcpu->arch.regs_dirty);
542 out:
543
544         return ret;
545 }
546 EXPORT_SYMBOL_GPL(load_pdptrs);
547
548 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
549 {
550         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
551         bool changed = true;
552         int offset;
553         gfn_t gfn;
554         int r;
555
556         if (is_long_mode(vcpu) || !is_pae(vcpu))
557                 return false;
558
559         if (!test_bit(VCPU_EXREG_PDPTR,
560                       (unsigned long *)&vcpu->arch.regs_avail))
561                 return true;
562
563         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
564         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
565         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
566                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
567         if (r < 0)
568                 goto out;
569         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
570 out:
571
572         return changed;
573 }
574
575 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
576 {
577         unsigned long old_cr0 = kvm_read_cr0(vcpu);
578         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
579
580         cr0 |= X86_CR0_ET;
581
582 #ifdef CONFIG_X86_64
583         if (cr0 & 0xffffffff00000000UL)
584                 return 1;
585 #endif
586
587         cr0 &= ~CR0_RESERVED_BITS;
588
589         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
590                 return 1;
591
592         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
593                 return 1;
594
595         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
596 #ifdef CONFIG_X86_64
597                 if ((vcpu->arch.efer & EFER_LME)) {
598                         int cs_db, cs_l;
599
600                         if (!is_pae(vcpu))
601                                 return 1;
602                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
603                         if (cs_l)
604                                 return 1;
605                 } else
606 #endif
607                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
608                                                  kvm_read_cr3(vcpu)))
609                         return 1;
610         }
611
612         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
613                 return 1;
614
615         kvm_x86_ops->set_cr0(vcpu, cr0);
616
617         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
618                 kvm_clear_async_pf_completion_queue(vcpu);
619                 kvm_async_pf_hash_reset(vcpu);
620         }
621
622         if ((cr0 ^ old_cr0) & update_bits)
623                 kvm_mmu_reset_context(vcpu);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_CD)
626                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
627
628         return 0;
629 }
630 EXPORT_SYMBOL_GPL(kvm_set_cr0);
631
632 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
633 {
634         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
635 }
636 EXPORT_SYMBOL_GPL(kvm_lmsw);
637
638 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
639 {
640         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
641                         !vcpu->guest_xcr0_loaded) {
642                 /* kvm_set_xcr() also depends on this */
643                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
644                 vcpu->guest_xcr0_loaded = 1;
645         }
646 }
647
648 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (vcpu->guest_xcr0_loaded) {
651                 if (vcpu->arch.xcr0 != host_xcr0)
652                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
653                 vcpu->guest_xcr0_loaded = 0;
654         }
655 }
656
657 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
658 {
659         u64 xcr0 = xcr;
660         u64 old_xcr0 = vcpu->arch.xcr0;
661         u64 valid_bits;
662
663         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
664         if (index != XCR_XFEATURE_ENABLED_MASK)
665                 return 1;
666         if (!(xcr0 & XSTATE_FP))
667                 return 1;
668         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
669                 return 1;
670
671         /*
672          * Do not allow the guest to set bits that we do not support
673          * saving.  However, xcr0 bit 0 is always set, even if the
674          * emulated CPU does not support XSAVE (see fx_init).
675          */
676         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
677         if (xcr0 & ~valid_bits)
678                 return 1;
679
680         if ((!(xcr0 & XSTATE_BNDREGS)) != (!(xcr0 & XSTATE_BNDCSR)))
681                 return 1;
682
683         if (xcr0 & XSTATE_AVX512) {
684                 if (!(xcr0 & XSTATE_YMM))
685                         return 1;
686                 if ((xcr0 & XSTATE_AVX512) != XSTATE_AVX512)
687                         return 1;
688         }
689         kvm_put_guest_xcr0(vcpu);
690         vcpu->arch.xcr0 = xcr0;
691
692         if ((xcr0 ^ old_xcr0) & XSTATE_EXTEND_MASK)
693                 kvm_update_cpuid(vcpu);
694         return 0;
695 }
696
697 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
698 {
699         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
700             __kvm_set_xcr(vcpu, index, xcr)) {
701                 kvm_inject_gp(vcpu, 0);
702                 return 1;
703         }
704         return 0;
705 }
706 EXPORT_SYMBOL_GPL(kvm_set_xcr);
707
708 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
709 {
710         unsigned long old_cr4 = kvm_read_cr4(vcpu);
711         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
712                                    X86_CR4_SMEP | X86_CR4_SMAP;
713
714         if (cr4 & CR4_RESERVED_BITS)
715                 return 1;
716
717         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
718                 return 1;
719
720         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
721                 return 1;
722
723         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
724                 return 1;
725
726         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
727                 return 1;
728
729         if (is_long_mode(vcpu)) {
730                 if (!(cr4 & X86_CR4_PAE))
731                         return 1;
732         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
733                    && ((cr4 ^ old_cr4) & pdptr_bits)
734                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
735                                    kvm_read_cr3(vcpu)))
736                 return 1;
737
738         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
739                 if (!guest_cpuid_has_pcid(vcpu))
740                         return 1;
741
742                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
743                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
744                         return 1;
745         }
746
747         if (kvm_x86_ops->set_cr4(vcpu, cr4))
748                 return 1;
749
750         if (((cr4 ^ old_cr4) & pdptr_bits) ||
751             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
752                 kvm_mmu_reset_context(vcpu);
753
754         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
755                 kvm_update_cpuid(vcpu);
756
757         return 0;
758 }
759 EXPORT_SYMBOL_GPL(kvm_set_cr4);
760
761 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
762 {
763 #ifdef CONFIG_X86_64
764         cr3 &= ~CR3_PCID_INVD;
765 #endif
766
767         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
768                 kvm_mmu_sync_roots(vcpu);
769                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
770                 return 0;
771         }
772
773         if (is_long_mode(vcpu)) {
774                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
775                         return 1;
776         } else if (is_pae(vcpu) && is_paging(vcpu) &&
777                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
778                 return 1;
779
780         vcpu->arch.cr3 = cr3;
781         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
782         kvm_mmu_new_cr3(vcpu);
783         return 0;
784 }
785 EXPORT_SYMBOL_GPL(kvm_set_cr3);
786
787 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
788 {
789         if (cr8 & CR8_RESERVED_BITS)
790                 return 1;
791         if (irqchip_in_kernel(vcpu->kvm))
792                 kvm_lapic_set_tpr(vcpu, cr8);
793         else
794                 vcpu->arch.cr8 = cr8;
795         return 0;
796 }
797 EXPORT_SYMBOL_GPL(kvm_set_cr8);
798
799 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
800 {
801         if (irqchip_in_kernel(vcpu->kvm))
802                 return kvm_lapic_get_cr8(vcpu);
803         else
804                 return vcpu->arch.cr8;
805 }
806 EXPORT_SYMBOL_GPL(kvm_get_cr8);
807
808 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
809 {
810         int i;
811
812         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
813                 for (i = 0; i < KVM_NR_DB_REGS; i++)
814                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
815                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
816         }
817 }
818
819 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
820 {
821         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
822                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
823 }
824
825 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
826 {
827         unsigned long dr7;
828
829         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
830                 dr7 = vcpu->arch.guest_debug_dr7;
831         else
832                 dr7 = vcpu->arch.dr7;
833         kvm_x86_ops->set_dr7(vcpu, dr7);
834         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
835         if (dr7 & DR7_BP_EN_MASK)
836                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
837 }
838
839 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
840 {
841         u64 fixed = DR6_FIXED_1;
842
843         if (!guest_cpuid_has_rtm(vcpu))
844                 fixed |= DR6_RTM;
845         return fixed;
846 }
847
848 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
849 {
850         switch (dr) {
851         case 0 ... 3:
852                 vcpu->arch.db[dr] = val;
853                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
854                         vcpu->arch.eff_db[dr] = val;
855                 break;
856         case 4:
857                 /* fall through */
858         case 6:
859                 if (val & 0xffffffff00000000ULL)
860                         return -1; /* #GP */
861                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
862                 kvm_update_dr6(vcpu);
863                 break;
864         case 5:
865                 /* fall through */
866         default: /* 7 */
867                 if (val & 0xffffffff00000000ULL)
868                         return -1; /* #GP */
869                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
870                 kvm_update_dr7(vcpu);
871                 break;
872         }
873
874         return 0;
875 }
876
877 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
878 {
879         if (__kvm_set_dr(vcpu, dr, val)) {
880                 kvm_inject_gp(vcpu, 0);
881                 return 1;
882         }
883         return 0;
884 }
885 EXPORT_SYMBOL_GPL(kvm_set_dr);
886
887 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
888 {
889         switch (dr) {
890         case 0 ... 3:
891                 *val = vcpu->arch.db[dr];
892                 break;
893         case 4:
894                 /* fall through */
895         case 6:
896                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
897                         *val = vcpu->arch.dr6;
898                 else
899                         *val = kvm_x86_ops->get_dr6(vcpu);
900                 break;
901         case 5:
902                 /* fall through */
903         default: /* 7 */
904                 *val = vcpu->arch.dr7;
905                 break;
906         }
907         return 0;
908 }
909 EXPORT_SYMBOL_GPL(kvm_get_dr);
910
911 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
912 {
913         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
914         u64 data;
915         int err;
916
917         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
918         if (err)
919                 return err;
920         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
921         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
922         return err;
923 }
924 EXPORT_SYMBOL_GPL(kvm_rdpmc);
925
926 /*
927  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
928  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
929  *
930  * This list is modified at module load time to reflect the
931  * capabilities of the host cpu. This capabilities test skips MSRs that are
932  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
933  * may depend on host virtualization features rather than host cpu features.
934  */
935
936 static u32 msrs_to_save[] = {
937         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
938         MSR_STAR,
939 #ifdef CONFIG_X86_64
940         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
941 #endif
942         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
943         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS
944 };
945
946 static unsigned num_msrs_to_save;
947
948 static u32 emulated_msrs[] = {
949         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
950         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
951         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
952         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
953         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
954         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
955         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
956         MSR_KVM_PV_EOI_EN,
957
958         MSR_IA32_TSC_ADJUST,
959         MSR_IA32_TSCDEADLINE,
960         MSR_IA32_MISC_ENABLE,
961         MSR_IA32_MCG_STATUS,
962         MSR_IA32_MCG_CTL,
963         MSR_IA32_SMBASE,
964 };
965
966 static unsigned num_emulated_msrs;
967
968 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
969 {
970         if (efer & efer_reserved_bits)
971                 return false;
972
973         if (efer & EFER_FFXSR) {
974                 struct kvm_cpuid_entry2 *feat;
975
976                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
977                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
978                         return false;
979         }
980
981         if (efer & EFER_SVME) {
982                 struct kvm_cpuid_entry2 *feat;
983
984                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
985                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
986                         return false;
987         }
988
989         return true;
990 }
991 EXPORT_SYMBOL_GPL(kvm_valid_efer);
992
993 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
994 {
995         u64 old_efer = vcpu->arch.efer;
996
997         if (!kvm_valid_efer(vcpu, efer))
998                 return 1;
999
1000         if (is_paging(vcpu)
1001             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1002                 return 1;
1003
1004         efer &= ~EFER_LMA;
1005         efer |= vcpu->arch.efer & EFER_LMA;
1006
1007         kvm_x86_ops->set_efer(vcpu, efer);
1008
1009         /* Update reserved bits */
1010         if ((efer ^ old_efer) & EFER_NX)
1011                 kvm_mmu_reset_context(vcpu);
1012
1013         return 0;
1014 }
1015
1016 void kvm_enable_efer_bits(u64 mask)
1017 {
1018        efer_reserved_bits &= ~mask;
1019 }
1020 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1021
1022 /*
1023  * Writes msr value into into the appropriate "register".
1024  * Returns 0 on success, non-0 otherwise.
1025  * Assumes vcpu_load() was already called.
1026  */
1027 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1028 {
1029         switch (msr->index) {
1030         case MSR_FS_BASE:
1031         case MSR_GS_BASE:
1032         case MSR_KERNEL_GS_BASE:
1033         case MSR_CSTAR:
1034         case MSR_LSTAR:
1035                 if (is_noncanonical_address(msr->data))
1036                         return 1;
1037                 break;
1038         case MSR_IA32_SYSENTER_EIP:
1039         case MSR_IA32_SYSENTER_ESP:
1040                 /*
1041                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1042                  * non-canonical address is written on Intel but not on
1043                  * AMD (which ignores the top 32-bits, because it does
1044                  * not implement 64-bit SYSENTER).
1045                  *
1046                  * 64-bit code should hence be able to write a non-canonical
1047                  * value on AMD.  Making the address canonical ensures that
1048                  * vmentry does not fail on Intel after writing a non-canonical
1049                  * value, and that something deterministic happens if the guest
1050                  * invokes 64-bit SYSENTER.
1051                  */
1052                 msr->data = get_canonical(msr->data);
1053         }
1054         return kvm_x86_ops->set_msr(vcpu, msr);
1055 }
1056 EXPORT_SYMBOL_GPL(kvm_set_msr);
1057
1058 /*
1059  * Adapt set_msr() to msr_io()'s calling convention
1060  */
1061 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1062 {
1063         struct msr_data msr;
1064         int r;
1065
1066         msr.index = index;
1067         msr.host_initiated = true;
1068         r = kvm_get_msr(vcpu, &msr);
1069         if (r)
1070                 return r;
1071
1072         *data = msr.data;
1073         return 0;
1074 }
1075
1076 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1077 {
1078         struct msr_data msr;
1079
1080         msr.data = *data;
1081         msr.index = index;
1082         msr.host_initiated = true;
1083         return kvm_set_msr(vcpu, &msr);
1084 }
1085
1086 #ifdef CONFIG_X86_64
1087 struct pvclock_gtod_data {
1088         seqcount_t      seq;
1089
1090         struct { /* extract of a clocksource struct */
1091                 int vclock_mode;
1092                 cycle_t cycle_last;
1093                 cycle_t mask;
1094                 u32     mult;
1095                 u32     shift;
1096         } clock;
1097
1098         u64             boot_ns;
1099         u64             nsec_base;
1100 };
1101
1102 static struct pvclock_gtod_data pvclock_gtod_data;
1103
1104 static void update_pvclock_gtod(struct timekeeper *tk)
1105 {
1106         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1107         u64 boot_ns;
1108
1109         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1110
1111         write_seqcount_begin(&vdata->seq);
1112
1113         /* copy pvclock gtod data */
1114         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1115         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1116         vdata->clock.mask               = tk->tkr_mono.mask;
1117         vdata->clock.mult               = tk->tkr_mono.mult;
1118         vdata->clock.shift              = tk->tkr_mono.shift;
1119
1120         vdata->boot_ns                  = boot_ns;
1121         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1122
1123         write_seqcount_end(&vdata->seq);
1124 }
1125 #endif
1126
1127 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1128 {
1129         /*
1130          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1131          * vcpu_enter_guest.  This function is only called from
1132          * the physical CPU that is running vcpu.
1133          */
1134         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1135 }
1136
1137 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1138 {
1139         int version;
1140         int r;
1141         struct pvclock_wall_clock wc;
1142         struct timespec boot;
1143
1144         if (!wall_clock)
1145                 return;
1146
1147         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1148         if (r)
1149                 return;
1150
1151         if (version & 1)
1152                 ++version;  /* first time write, random junk */
1153
1154         ++version;
1155
1156         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1157
1158         /*
1159          * The guest calculates current wall clock time by adding
1160          * system time (updated by kvm_guest_time_update below) to the
1161          * wall clock specified here.  guest system time equals host
1162          * system time for us, thus we must fill in host boot time here.
1163          */
1164         getboottime(&boot);
1165
1166         if (kvm->arch.kvmclock_offset) {
1167                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1168                 boot = timespec_sub(boot, ts);
1169         }
1170         wc.sec = boot.tv_sec;
1171         wc.nsec = boot.tv_nsec;
1172         wc.version = version;
1173
1174         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1175
1176         version++;
1177         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1178 }
1179
1180 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1181 {
1182         uint32_t quotient, remainder;
1183
1184         /* Don't try to replace with do_div(), this one calculates
1185          * "(dividend << 32) / divisor" */
1186         __asm__ ( "divl %4"
1187                   : "=a" (quotient), "=d" (remainder)
1188                   : "0" (0), "1" (dividend), "r" (divisor) );
1189         return quotient;
1190 }
1191
1192 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1193                                s8 *pshift, u32 *pmultiplier)
1194 {
1195         uint64_t scaled64;
1196         int32_t  shift = 0;
1197         uint64_t tps64;
1198         uint32_t tps32;
1199
1200         tps64 = base_khz * 1000LL;
1201         scaled64 = scaled_khz * 1000LL;
1202         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1203                 tps64 >>= 1;
1204                 shift--;
1205         }
1206
1207         tps32 = (uint32_t)tps64;
1208         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1209                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1210                         scaled64 >>= 1;
1211                 else
1212                         tps32 <<= 1;
1213                 shift++;
1214         }
1215
1216         *pshift = shift;
1217         *pmultiplier = div_frac(scaled64, tps32);
1218
1219         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1220                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1221 }
1222
1223 #ifdef CONFIG_X86_64
1224 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1225 #endif
1226
1227 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1228 static unsigned long max_tsc_khz;
1229
1230 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1231 {
1232         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1233                                    vcpu->arch.virtual_tsc_shift);
1234 }
1235
1236 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1237 {
1238         u64 v = (u64)khz * (1000000 + ppm);
1239         do_div(v, 1000000);
1240         return v;
1241 }
1242
1243 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1244 {
1245         u32 thresh_lo, thresh_hi;
1246         int use_scaling = 0;
1247
1248         /* tsc_khz can be zero if TSC calibration fails */
1249         if (this_tsc_khz == 0)
1250                 return;
1251
1252         /* Compute a scale to convert nanoseconds in TSC cycles */
1253         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1254                            &vcpu->arch.virtual_tsc_shift,
1255                            &vcpu->arch.virtual_tsc_mult);
1256         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1257
1258         /*
1259          * Compute the variation in TSC rate which is acceptable
1260          * within the range of tolerance and decide if the
1261          * rate being applied is within that bounds of the hardware
1262          * rate.  If so, no scaling or compensation need be done.
1263          */
1264         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1265         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1266         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1267                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1268                 use_scaling = 1;
1269         }
1270         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1271 }
1272
1273 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1274 {
1275         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1276                                       vcpu->arch.virtual_tsc_mult,
1277                                       vcpu->arch.virtual_tsc_shift);
1278         tsc += vcpu->arch.this_tsc_write;
1279         return tsc;
1280 }
1281
1282 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1283 {
1284 #ifdef CONFIG_X86_64
1285         bool vcpus_matched;
1286         struct kvm_arch *ka = &vcpu->kvm->arch;
1287         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1288
1289         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1290                          atomic_read(&vcpu->kvm->online_vcpus));
1291
1292         /*
1293          * Once the masterclock is enabled, always perform request in
1294          * order to update it.
1295          *
1296          * In order to enable masterclock, the host clocksource must be TSC
1297          * and the vcpus need to have matched TSCs.  When that happens,
1298          * perform request to enable masterclock.
1299          */
1300         if (ka->use_master_clock ||
1301             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1302                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1303
1304         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1305                             atomic_read(&vcpu->kvm->online_vcpus),
1306                             ka->use_master_clock, gtod->clock.vclock_mode);
1307 #endif
1308 }
1309
1310 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1311 {
1312         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1313         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1314 }
1315
1316 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1317 {
1318         struct kvm *kvm = vcpu->kvm;
1319         u64 offset, ns, elapsed;
1320         unsigned long flags;
1321         s64 usdiff;
1322         bool matched;
1323         bool already_matched;
1324         u64 data = msr->data;
1325
1326         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1327         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1328         ns = get_kernel_ns();
1329         elapsed = ns - kvm->arch.last_tsc_nsec;
1330
1331         if (vcpu->arch.virtual_tsc_khz) {
1332                 int faulted = 0;
1333
1334                 /* n.b - signed multiplication and division required */
1335                 usdiff = data - kvm->arch.last_tsc_write;
1336 #ifdef CONFIG_X86_64
1337                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1338 #else
1339                 /* do_div() only does unsigned */
1340                 asm("1: idivl %[divisor]\n"
1341                     "2: xor %%edx, %%edx\n"
1342                     "   movl $0, %[faulted]\n"
1343                     "3:\n"
1344                     ".section .fixup,\"ax\"\n"
1345                     "4: movl $1, %[faulted]\n"
1346                     "   jmp  3b\n"
1347                     ".previous\n"
1348
1349                 _ASM_EXTABLE(1b, 4b)
1350
1351                 : "=A"(usdiff), [faulted] "=r" (faulted)
1352                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1353
1354 #endif
1355                 do_div(elapsed, 1000);
1356                 usdiff -= elapsed;
1357                 if (usdiff < 0)
1358                         usdiff = -usdiff;
1359
1360                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1361                 if (faulted)
1362                         usdiff = USEC_PER_SEC;
1363         } else
1364                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1365
1366         /*
1367          * Special case: TSC write with a small delta (1 second) of virtual
1368          * cycle time against real time is interpreted as an attempt to
1369          * synchronize the CPU.
1370          *
1371          * For a reliable TSC, we can match TSC offsets, and for an unstable
1372          * TSC, we add elapsed time in this computation.  We could let the
1373          * compensation code attempt to catch up if we fall behind, but
1374          * it's better to try to match offsets from the beginning.
1375          */
1376         if (usdiff < USEC_PER_SEC &&
1377             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1378                 if (!check_tsc_unstable()) {
1379                         offset = kvm->arch.cur_tsc_offset;
1380                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1381                 } else {
1382                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1383                         data += delta;
1384                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1385                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1386                 }
1387                 matched = true;
1388                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1389         } else {
1390                 /*
1391                  * We split periods of matched TSC writes into generations.
1392                  * For each generation, we track the original measured
1393                  * nanosecond time, offset, and write, so if TSCs are in
1394                  * sync, we can match exact offset, and if not, we can match
1395                  * exact software computation in compute_guest_tsc()
1396                  *
1397                  * These values are tracked in kvm->arch.cur_xxx variables.
1398                  */
1399                 kvm->arch.cur_tsc_generation++;
1400                 kvm->arch.cur_tsc_nsec = ns;
1401                 kvm->arch.cur_tsc_write = data;
1402                 kvm->arch.cur_tsc_offset = offset;
1403                 matched = false;
1404                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1405                          kvm->arch.cur_tsc_generation, data);
1406         }
1407
1408         /*
1409          * We also track th most recent recorded KHZ, write and time to
1410          * allow the matching interval to be extended at each write.
1411          */
1412         kvm->arch.last_tsc_nsec = ns;
1413         kvm->arch.last_tsc_write = data;
1414         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1415
1416         vcpu->arch.last_guest_tsc = data;
1417
1418         /* Keep track of which generation this VCPU has synchronized to */
1419         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1420         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1421         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1422
1423         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1424                 update_ia32_tsc_adjust_msr(vcpu, offset);
1425         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1426         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1427
1428         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1429         if (!matched) {
1430                 kvm->arch.nr_vcpus_matched_tsc = 0;
1431         } else if (!already_matched) {
1432                 kvm->arch.nr_vcpus_matched_tsc++;
1433         }
1434
1435         kvm_track_tsc_matching(vcpu);
1436         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1437 }
1438
1439 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1440
1441 #ifdef CONFIG_X86_64
1442
1443 static cycle_t read_tsc(void)
1444 {
1445         cycle_t ret = (cycle_t)rdtsc_ordered();
1446         u64 last = pvclock_gtod_data.clock.cycle_last;
1447
1448         if (likely(ret >= last))
1449                 return ret;
1450
1451         /*
1452          * GCC likes to generate cmov here, but this branch is extremely
1453          * predictable (it's just a funciton of time and the likely is
1454          * very likely) and there's a data dependence, so force GCC
1455          * to generate a branch instead.  I don't barrier() because
1456          * we don't actually need a barrier, and if this function
1457          * ever gets inlined it will generate worse code.
1458          */
1459         asm volatile ("");
1460         return last;
1461 }
1462
1463 static inline u64 vgettsc(cycle_t *cycle_now)
1464 {
1465         long v;
1466         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1467
1468         *cycle_now = read_tsc();
1469
1470         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1471         return v * gtod->clock.mult;
1472 }
1473
1474 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1475 {
1476         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1477         unsigned long seq;
1478         int mode;
1479         u64 ns;
1480
1481         do {
1482                 seq = read_seqcount_begin(&gtod->seq);
1483                 mode = gtod->clock.vclock_mode;
1484                 ns = gtod->nsec_base;
1485                 ns += vgettsc(cycle_now);
1486                 ns >>= gtod->clock.shift;
1487                 ns += gtod->boot_ns;
1488         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1489         *t = ns;
1490
1491         return mode;
1492 }
1493
1494 /* returns true if host is using tsc clocksource */
1495 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1496 {
1497         /* checked again under seqlock below */
1498         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1499                 return false;
1500
1501         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1502 }
1503 #endif
1504
1505 /*
1506  *
1507  * Assuming a stable TSC across physical CPUS, and a stable TSC
1508  * across virtual CPUs, the following condition is possible.
1509  * Each numbered line represents an event visible to both
1510  * CPUs at the next numbered event.
1511  *
1512  * "timespecX" represents host monotonic time. "tscX" represents
1513  * RDTSC value.
1514  *
1515  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1516  *
1517  * 1.  read timespec0,tsc0
1518  * 2.                                   | timespec1 = timespec0 + N
1519  *                                      | tsc1 = tsc0 + M
1520  * 3. transition to guest               | transition to guest
1521  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1522  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1523  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1524  *
1525  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1526  *
1527  *      - ret0 < ret1
1528  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1529  *              ...
1530  *      - 0 < N - M => M < N
1531  *
1532  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1533  * always the case (the difference between two distinct xtime instances
1534  * might be smaller then the difference between corresponding TSC reads,
1535  * when updating guest vcpus pvclock areas).
1536  *
1537  * To avoid that problem, do not allow visibility of distinct
1538  * system_timestamp/tsc_timestamp values simultaneously: use a master
1539  * copy of host monotonic time values. Update that master copy
1540  * in lockstep.
1541  *
1542  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1543  *
1544  */
1545
1546 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1547 {
1548 #ifdef CONFIG_X86_64
1549         struct kvm_arch *ka = &kvm->arch;
1550         int vclock_mode;
1551         bool host_tsc_clocksource, vcpus_matched;
1552
1553         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1554                         atomic_read(&kvm->online_vcpus));
1555
1556         /*
1557          * If the host uses TSC clock, then passthrough TSC as stable
1558          * to the guest.
1559          */
1560         host_tsc_clocksource = kvm_get_time_and_clockread(
1561                                         &ka->master_kernel_ns,
1562                                         &ka->master_cycle_now);
1563
1564         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1565                                 && !backwards_tsc_observed
1566                                 && !ka->boot_vcpu_runs_old_kvmclock;
1567
1568         if (ka->use_master_clock)
1569                 atomic_set(&kvm_guest_has_master_clock, 1);
1570
1571         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1572         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1573                                         vcpus_matched);
1574 #endif
1575 }
1576
1577 static void kvm_gen_update_masterclock(struct kvm *kvm)
1578 {
1579 #ifdef CONFIG_X86_64
1580         int i;
1581         struct kvm_vcpu *vcpu;
1582         struct kvm_arch *ka = &kvm->arch;
1583
1584         spin_lock(&ka->pvclock_gtod_sync_lock);
1585         kvm_make_mclock_inprogress_request(kvm);
1586         /* no guest entries from this point */
1587         pvclock_update_vm_gtod_copy(kvm);
1588
1589         kvm_for_each_vcpu(i, vcpu, kvm)
1590                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1591
1592         /* guest entries allowed */
1593         kvm_for_each_vcpu(i, vcpu, kvm)
1594                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1595
1596         spin_unlock(&ka->pvclock_gtod_sync_lock);
1597 #endif
1598 }
1599
1600 static int kvm_guest_time_update(struct kvm_vcpu *v)
1601 {
1602         unsigned long flags, this_tsc_khz;
1603         struct kvm_vcpu_arch *vcpu = &v->arch;
1604         struct kvm_arch *ka = &v->kvm->arch;
1605         s64 kernel_ns;
1606         u64 tsc_timestamp, host_tsc;
1607         struct pvclock_vcpu_time_info guest_hv_clock;
1608         u8 pvclock_flags;
1609         bool use_master_clock;
1610
1611         kernel_ns = 0;
1612         host_tsc = 0;
1613
1614         /*
1615          * If the host uses TSC clock, then passthrough TSC as stable
1616          * to the guest.
1617          */
1618         spin_lock(&ka->pvclock_gtod_sync_lock);
1619         use_master_clock = ka->use_master_clock;
1620         if (use_master_clock) {
1621                 host_tsc = ka->master_cycle_now;
1622                 kernel_ns = ka->master_kernel_ns;
1623         }
1624         spin_unlock(&ka->pvclock_gtod_sync_lock);
1625
1626         /* Keep irq disabled to prevent changes to the clock */
1627         local_irq_save(flags);
1628         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1629         if (unlikely(this_tsc_khz == 0)) {
1630                 local_irq_restore(flags);
1631                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1632                 return 1;
1633         }
1634         if (!use_master_clock) {
1635                 host_tsc = rdtsc();
1636                 kernel_ns = get_kernel_ns();
1637         }
1638
1639         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1640
1641         /*
1642          * We may have to catch up the TSC to match elapsed wall clock
1643          * time for two reasons, even if kvmclock is used.
1644          *   1) CPU could have been running below the maximum TSC rate
1645          *   2) Broken TSC compensation resets the base at each VCPU
1646          *      entry to avoid unknown leaps of TSC even when running
1647          *      again on the same CPU.  This may cause apparent elapsed
1648          *      time to disappear, and the guest to stand still or run
1649          *      very slowly.
1650          */
1651         if (vcpu->tsc_catchup) {
1652                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1653                 if (tsc > tsc_timestamp) {
1654                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1655                         tsc_timestamp = tsc;
1656                 }
1657         }
1658
1659         local_irq_restore(flags);
1660
1661         if (!vcpu->pv_time_enabled)
1662                 return 0;
1663
1664         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1665                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1666                                    &vcpu->hv_clock.tsc_shift,
1667                                    &vcpu->hv_clock.tsc_to_system_mul);
1668                 vcpu->hw_tsc_khz = this_tsc_khz;
1669         }
1670
1671         /* With all the info we got, fill in the values */
1672         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1673         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1674         vcpu->last_guest_tsc = tsc_timestamp;
1675
1676         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1677                 &guest_hv_clock, sizeof(guest_hv_clock))))
1678                 return 0;
1679
1680         /* This VCPU is paused, but it's legal for a guest to read another
1681          * VCPU's kvmclock, so we really have to follow the specification where
1682          * it says that version is odd if data is being modified, and even after
1683          * it is consistent.
1684          *
1685          * Version field updates must be kept separate.  This is because
1686          * kvm_write_guest_cached might use a "rep movs" instruction, and
1687          * writes within a string instruction are weakly ordered.  So there
1688          * are three writes overall.
1689          *
1690          * As a small optimization, only write the version field in the first
1691          * and third write.  The vcpu->pv_time cache is still valid, because the
1692          * version field is the first in the struct.
1693          */
1694         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1695
1696         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1697         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1698                                 &vcpu->hv_clock,
1699                                 sizeof(vcpu->hv_clock.version));
1700
1701         smp_wmb();
1702
1703         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1704         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1705
1706         if (vcpu->pvclock_set_guest_stopped_request) {
1707                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1708                 vcpu->pvclock_set_guest_stopped_request = false;
1709         }
1710
1711         pvclock_flags |= PVCLOCK_COUNTS_FROM_ZERO;
1712
1713         /* If the host uses TSC clocksource, then it is stable */
1714         if (use_master_clock)
1715                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1716
1717         vcpu->hv_clock.flags = pvclock_flags;
1718
1719         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1720
1721         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1722                                 &vcpu->hv_clock,
1723                                 sizeof(vcpu->hv_clock));
1724
1725         smp_wmb();
1726
1727         vcpu->hv_clock.version++;
1728         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1729                                 &vcpu->hv_clock,
1730                                 sizeof(vcpu->hv_clock.version));
1731         return 0;
1732 }
1733
1734 /*
1735  * kvmclock updates which are isolated to a given vcpu, such as
1736  * vcpu->cpu migration, should not allow system_timestamp from
1737  * the rest of the vcpus to remain static. Otherwise ntp frequency
1738  * correction applies to one vcpu's system_timestamp but not
1739  * the others.
1740  *
1741  * So in those cases, request a kvmclock update for all vcpus.
1742  * We need to rate-limit these requests though, as they can
1743  * considerably slow guests that have a large number of vcpus.
1744  * The time for a remote vcpu to update its kvmclock is bound
1745  * by the delay we use to rate-limit the updates.
1746  */
1747
1748 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1749
1750 static void kvmclock_update_fn(struct work_struct *work)
1751 {
1752         int i;
1753         struct delayed_work *dwork = to_delayed_work(work);
1754         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1755                                            kvmclock_update_work);
1756         struct kvm *kvm = container_of(ka, struct kvm, arch);
1757         struct kvm_vcpu *vcpu;
1758
1759         kvm_for_each_vcpu(i, vcpu, kvm) {
1760                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1761                 kvm_vcpu_kick(vcpu);
1762         }
1763 }
1764
1765 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1766 {
1767         struct kvm *kvm = v->kvm;
1768
1769         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1770         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1771                                         KVMCLOCK_UPDATE_DELAY);
1772 }
1773
1774 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1775
1776 static void kvmclock_sync_fn(struct work_struct *work)
1777 {
1778         struct delayed_work *dwork = to_delayed_work(work);
1779         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1780                                            kvmclock_sync_work);
1781         struct kvm *kvm = container_of(ka, struct kvm, arch);
1782
1783         if (!kvmclock_periodic_sync)
1784                 return;
1785
1786         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1787         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1788                                         KVMCLOCK_SYNC_PERIOD);
1789 }
1790
1791 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1792 {
1793         u64 mcg_cap = vcpu->arch.mcg_cap;
1794         unsigned bank_num = mcg_cap & 0xff;
1795
1796         switch (msr) {
1797         case MSR_IA32_MCG_STATUS:
1798                 vcpu->arch.mcg_status = data;
1799                 break;
1800         case MSR_IA32_MCG_CTL:
1801                 if (!(mcg_cap & MCG_CTL_P))
1802                         return 1;
1803                 if (data != 0 && data != ~(u64)0)
1804                         return -1;
1805                 vcpu->arch.mcg_ctl = data;
1806                 break;
1807         default:
1808                 if (msr >= MSR_IA32_MC0_CTL &&
1809                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1810                         u32 offset = msr - MSR_IA32_MC0_CTL;
1811                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1812                          * some Linux kernels though clear bit 10 in bank 4 to
1813                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1814                          * this to avoid an uncatched #GP in the guest
1815                          */
1816                         if ((offset & 0x3) == 0 &&
1817                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1818                                 return -1;
1819                         vcpu->arch.mce_banks[offset] = data;
1820                         break;
1821                 }
1822                 return 1;
1823         }
1824         return 0;
1825 }
1826
1827 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1828 {
1829         struct kvm *kvm = vcpu->kvm;
1830         int lm = is_long_mode(vcpu);
1831         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1832                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1833         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1834                 : kvm->arch.xen_hvm_config.blob_size_32;
1835         u32 page_num = data & ~PAGE_MASK;
1836         u64 page_addr = data & PAGE_MASK;
1837         u8 *page;
1838         int r;
1839
1840         r = -E2BIG;
1841         if (page_num >= blob_size)
1842                 goto out;
1843         r = -ENOMEM;
1844         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1845         if (IS_ERR(page)) {
1846                 r = PTR_ERR(page);
1847                 goto out;
1848         }
1849         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1850                 goto out_free;
1851         r = 0;
1852 out_free:
1853         kfree(page);
1854 out:
1855         return r;
1856 }
1857
1858 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1859 {
1860         gpa_t gpa = data & ~0x3f;
1861
1862         /* Bits 2:5 are reserved, Should be zero */
1863         if (data & 0x3c)
1864                 return 1;
1865
1866         vcpu->arch.apf.msr_val = data;
1867
1868         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1869                 kvm_clear_async_pf_completion_queue(vcpu);
1870                 kvm_async_pf_hash_reset(vcpu);
1871                 return 0;
1872         }
1873
1874         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1875                                         sizeof(u32)))
1876                 return 1;
1877
1878         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1879         kvm_async_pf_wakeup_all(vcpu);
1880         return 0;
1881 }
1882
1883 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1884 {
1885         vcpu->arch.pv_time_enabled = false;
1886 }
1887
1888 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1889 {
1890         u64 delta;
1891
1892         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1893                 return;
1894
1895         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1896         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1897         vcpu->arch.st.accum_steal = delta;
1898 }
1899
1900 static void record_steal_time(struct kvm_vcpu *vcpu)
1901 {
1902         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1903                 return;
1904
1905         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1906                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1907                 return;
1908
1909         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1910         vcpu->arch.st.steal.version += 2;
1911         vcpu->arch.st.accum_steal = 0;
1912
1913         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1914                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1915 }
1916
1917 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1918 {
1919         bool pr = false;
1920         u32 msr = msr_info->index;
1921         u64 data = msr_info->data;
1922
1923         switch (msr) {
1924         case MSR_AMD64_NB_CFG:
1925         case MSR_IA32_UCODE_REV:
1926         case MSR_IA32_UCODE_WRITE:
1927         case MSR_VM_HSAVE_PA:
1928         case MSR_AMD64_PATCH_LOADER:
1929         case MSR_AMD64_BU_CFG2:
1930                 break;
1931
1932         case MSR_EFER:
1933                 return set_efer(vcpu, data);
1934         case MSR_K7_HWCR:
1935                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1936                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1937                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1938                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
1939                 if (data != 0) {
1940                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1941                                     data);
1942                         return 1;
1943                 }
1944                 break;
1945         case MSR_FAM10H_MMIO_CONF_BASE:
1946                 if (data != 0) {
1947                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1948                                     "0x%llx\n", data);
1949                         return 1;
1950                 }
1951                 break;
1952         case MSR_IA32_DEBUGCTLMSR:
1953                 if (!data) {
1954                         /* We support the non-activated case already */
1955                         break;
1956                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1957                         /* Values other than LBR and BTF are vendor-specific,
1958                            thus reserved and should throw a #GP */
1959                         return 1;
1960                 }
1961                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1962                             __func__, data);
1963                 break;
1964         case 0x200 ... 0x2ff:
1965                 return kvm_mtrr_set_msr(vcpu, msr, data);
1966         case MSR_IA32_APICBASE:
1967                 return kvm_set_apic_base(vcpu, msr_info);
1968         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1969                 return kvm_x2apic_msr_write(vcpu, msr, data);
1970         case MSR_IA32_TSCDEADLINE:
1971                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1972                 break;
1973         case MSR_IA32_TSC_ADJUST:
1974                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
1975                         if (!msr_info->host_initiated) {
1976                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
1977                                 adjust_tsc_offset_guest(vcpu, adj);
1978                         }
1979                         vcpu->arch.ia32_tsc_adjust_msr = data;
1980                 }
1981                 break;
1982         case MSR_IA32_MISC_ENABLE:
1983                 vcpu->arch.ia32_misc_enable_msr = data;
1984                 break;
1985         case MSR_IA32_SMBASE:
1986                 if (!msr_info->host_initiated)
1987                         return 1;
1988                 vcpu->arch.smbase = data;
1989                 break;
1990         case MSR_KVM_WALL_CLOCK_NEW:
1991         case MSR_KVM_WALL_CLOCK:
1992                 vcpu->kvm->arch.wall_clock = data;
1993                 kvm_write_wall_clock(vcpu->kvm, data);
1994                 break;
1995         case MSR_KVM_SYSTEM_TIME_NEW:
1996         case MSR_KVM_SYSTEM_TIME: {
1997                 u64 gpa_offset;
1998                 struct kvm_arch *ka = &vcpu->kvm->arch;
1999
2000                 kvmclock_reset(vcpu);
2001
2002                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2003                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2004
2005                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2006                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2007                                         &vcpu->requests);
2008
2009                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2010
2011                         ka->kvmclock_offset = -get_kernel_ns();
2012                 }
2013
2014                 vcpu->arch.time = data;
2015                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2016
2017                 /* we verify if the enable bit is set... */
2018                 if (!(data & 1))
2019                         break;
2020
2021                 gpa_offset = data & ~(PAGE_MASK | 1);
2022
2023                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2024                      &vcpu->arch.pv_time, data & ~1ULL,
2025                      sizeof(struct pvclock_vcpu_time_info)))
2026                         vcpu->arch.pv_time_enabled = false;
2027                 else
2028                         vcpu->arch.pv_time_enabled = true;
2029
2030                 break;
2031         }
2032         case MSR_KVM_ASYNC_PF_EN:
2033                 if (kvm_pv_enable_async_pf(vcpu, data))
2034                         return 1;
2035                 break;
2036         case MSR_KVM_STEAL_TIME:
2037
2038                 if (unlikely(!sched_info_on()))
2039                         return 1;
2040
2041                 if (data & KVM_STEAL_RESERVED_MASK)
2042                         return 1;
2043
2044                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2045                                                 data & KVM_STEAL_VALID_BITS,
2046                                                 sizeof(struct kvm_steal_time)))
2047                         return 1;
2048
2049                 vcpu->arch.st.msr_val = data;
2050
2051                 if (!(data & KVM_MSR_ENABLED))
2052                         break;
2053
2054                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2055
2056                 preempt_disable();
2057                 accumulate_steal_time(vcpu);
2058                 preempt_enable();
2059
2060                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2061
2062                 break;
2063         case MSR_KVM_PV_EOI_EN:
2064                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2065                         return 1;
2066                 break;
2067
2068         case MSR_IA32_MCG_CTL:
2069         case MSR_IA32_MCG_STATUS:
2070         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2071                 return set_msr_mce(vcpu, msr, data);
2072
2073         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2074         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2075                 pr = true; /* fall through */
2076         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2077         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2078                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2079                         return kvm_pmu_set_msr(vcpu, msr_info);
2080
2081                 if (pr || data != 0)
2082                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2083                                     "0x%x data 0x%llx\n", msr, data);
2084                 break;
2085         case MSR_K7_CLK_CTL:
2086                 /*
2087                  * Ignore all writes to this no longer documented MSR.
2088                  * Writes are only relevant for old K7 processors,
2089                  * all pre-dating SVM, but a recommended workaround from
2090                  * AMD for these chips. It is possible to specify the
2091                  * affected processor models on the command line, hence
2092                  * the need to ignore the workaround.
2093                  */
2094                 break;
2095         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2096         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2097         case HV_X64_MSR_CRASH_CTL:
2098                 return kvm_hv_set_msr_common(vcpu, msr, data,
2099                                              msr_info->host_initiated);
2100         case MSR_IA32_BBL_CR_CTL3:
2101                 /* Drop writes to this legacy MSR -- see rdmsr
2102                  * counterpart for further detail.
2103                  */
2104                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2105                 break;
2106         case MSR_AMD64_OSVW_ID_LENGTH:
2107                 if (!guest_cpuid_has_osvw(vcpu))
2108                         return 1;
2109                 vcpu->arch.osvw.length = data;
2110                 break;
2111         case MSR_AMD64_OSVW_STATUS:
2112                 if (!guest_cpuid_has_osvw(vcpu))
2113                         return 1;
2114                 vcpu->arch.osvw.status = data;
2115                 break;
2116         default:
2117                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2118                         return xen_hvm_config(vcpu, data);
2119                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2120                         return kvm_pmu_set_msr(vcpu, msr_info);
2121                 if (!ignore_msrs) {
2122                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2123                                     msr, data);
2124                         return 1;
2125                 } else {
2126                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2127                                     msr, data);
2128                         break;
2129                 }
2130         }
2131         return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2134
2135
2136 /*
2137  * Reads an msr value (of 'msr_index') into 'pdata'.
2138  * Returns 0 on success, non-0 otherwise.
2139  * Assumes vcpu_load() was already called.
2140  */
2141 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2142 {
2143         return kvm_x86_ops->get_msr(vcpu, msr);
2144 }
2145 EXPORT_SYMBOL_GPL(kvm_get_msr);
2146
2147 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2148 {
2149         u64 data;
2150         u64 mcg_cap = vcpu->arch.mcg_cap;
2151         unsigned bank_num = mcg_cap & 0xff;
2152
2153         switch (msr) {
2154         case MSR_IA32_P5_MC_ADDR:
2155         case MSR_IA32_P5_MC_TYPE:
2156                 data = 0;
2157                 break;
2158         case MSR_IA32_MCG_CAP:
2159                 data = vcpu->arch.mcg_cap;
2160                 break;
2161         case MSR_IA32_MCG_CTL:
2162                 if (!(mcg_cap & MCG_CTL_P))
2163                         return 1;
2164                 data = vcpu->arch.mcg_ctl;
2165                 break;
2166         case MSR_IA32_MCG_STATUS:
2167                 data = vcpu->arch.mcg_status;
2168                 break;
2169         default:
2170                 if (msr >= MSR_IA32_MC0_CTL &&
2171                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2172                         u32 offset = msr - MSR_IA32_MC0_CTL;
2173                         data = vcpu->arch.mce_banks[offset];
2174                         break;
2175                 }
2176                 return 1;
2177         }
2178         *pdata = data;
2179         return 0;
2180 }
2181
2182 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2183 {
2184         switch (msr_info->index) {
2185         case MSR_IA32_PLATFORM_ID:
2186         case MSR_IA32_EBL_CR_POWERON:
2187         case MSR_IA32_DEBUGCTLMSR:
2188         case MSR_IA32_LASTBRANCHFROMIP:
2189         case MSR_IA32_LASTBRANCHTOIP:
2190         case MSR_IA32_LASTINTFROMIP:
2191         case MSR_IA32_LASTINTTOIP:
2192         case MSR_K8_SYSCFG:
2193         case MSR_K7_HWCR:
2194         case MSR_VM_HSAVE_PA:
2195         case MSR_K8_INT_PENDING_MSG:
2196         case MSR_AMD64_NB_CFG:
2197         case MSR_FAM10H_MMIO_CONF_BASE:
2198         case MSR_AMD64_BU_CFG2:
2199                 msr_info->data = 0;
2200                 break;
2201         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2202         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2203         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2204         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2205                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2206                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2207                 msr_info->data = 0;
2208                 break;
2209         case MSR_IA32_UCODE_REV:
2210                 msr_info->data = 0x100000000ULL;
2211                 break;
2212         case MSR_MTRRcap:
2213         case 0x200 ... 0x2ff:
2214                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2215         case 0xcd: /* fsb frequency */
2216                 msr_info->data = 3;
2217                 break;
2218                 /*
2219                  * MSR_EBC_FREQUENCY_ID
2220                  * Conservative value valid for even the basic CPU models.
2221                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2222                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2223                  * and 266MHz for model 3, or 4. Set Core Clock
2224                  * Frequency to System Bus Frequency Ratio to 1 (bits
2225                  * 31:24) even though these are only valid for CPU
2226                  * models > 2, however guests may end up dividing or
2227                  * multiplying by zero otherwise.
2228                  */
2229         case MSR_EBC_FREQUENCY_ID:
2230                 msr_info->data = 1 << 24;
2231                 break;
2232         case MSR_IA32_APICBASE:
2233                 msr_info->data = kvm_get_apic_base(vcpu);
2234                 break;
2235         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2236                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2237                 break;
2238         case MSR_IA32_TSCDEADLINE:
2239                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2240                 break;
2241         case MSR_IA32_TSC_ADJUST:
2242                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2243                 break;
2244         case MSR_IA32_MISC_ENABLE:
2245                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2246                 break;
2247         case MSR_IA32_SMBASE:
2248                 if (!msr_info->host_initiated)
2249                         return 1;
2250                 msr_info->data = vcpu->arch.smbase;
2251                 break;
2252         case MSR_IA32_PERF_STATUS:
2253                 /* TSC increment by tick */
2254                 msr_info->data = 1000ULL;
2255                 /* CPU multiplier */
2256                 msr_info->data |= (((uint64_t)4ULL) << 40);
2257                 break;
2258         case MSR_EFER:
2259                 msr_info->data = vcpu->arch.efer;
2260                 break;
2261         case MSR_KVM_WALL_CLOCK:
2262         case MSR_KVM_WALL_CLOCK_NEW:
2263                 msr_info->data = vcpu->kvm->arch.wall_clock;
2264                 break;
2265         case MSR_KVM_SYSTEM_TIME:
2266         case MSR_KVM_SYSTEM_TIME_NEW:
2267                 msr_info->data = vcpu->arch.time;
2268                 break;
2269         case MSR_KVM_ASYNC_PF_EN:
2270                 msr_info->data = vcpu->arch.apf.msr_val;
2271                 break;
2272         case MSR_KVM_STEAL_TIME:
2273                 msr_info->data = vcpu->arch.st.msr_val;
2274                 break;
2275         case MSR_KVM_PV_EOI_EN:
2276                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2277                 break;
2278         case MSR_IA32_P5_MC_ADDR:
2279         case MSR_IA32_P5_MC_TYPE:
2280         case MSR_IA32_MCG_CAP:
2281         case MSR_IA32_MCG_CTL:
2282         case MSR_IA32_MCG_STATUS:
2283         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2284                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2285         case MSR_K7_CLK_CTL:
2286                 /*
2287                  * Provide expected ramp-up count for K7. All other
2288                  * are set to zero, indicating minimum divisors for
2289                  * every field.
2290                  *
2291                  * This prevents guest kernels on AMD host with CPU
2292                  * type 6, model 8 and higher from exploding due to
2293                  * the rdmsr failing.
2294                  */
2295                 msr_info->data = 0x20000000;
2296                 break;
2297         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2298         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2299         case HV_X64_MSR_CRASH_CTL:
2300                 return kvm_hv_get_msr_common(vcpu,
2301                                              msr_info->index, &msr_info->data);
2302                 break;
2303         case MSR_IA32_BBL_CR_CTL3:
2304                 /* This legacy MSR exists but isn't fully documented in current
2305                  * silicon.  It is however accessed by winxp in very narrow
2306                  * scenarios where it sets bit #19, itself documented as
2307                  * a "reserved" bit.  Best effort attempt to source coherent
2308                  * read data here should the balance of the register be
2309                  * interpreted by the guest:
2310                  *
2311                  * L2 cache control register 3: 64GB range, 256KB size,
2312                  * enabled, latency 0x1, configured
2313                  */
2314                 msr_info->data = 0xbe702111;
2315                 break;
2316         case MSR_AMD64_OSVW_ID_LENGTH:
2317                 if (!guest_cpuid_has_osvw(vcpu))
2318                         return 1;
2319                 msr_info->data = vcpu->arch.osvw.length;
2320                 break;
2321         case MSR_AMD64_OSVW_STATUS:
2322                 if (!guest_cpuid_has_osvw(vcpu))
2323                         return 1;
2324                 msr_info->data = vcpu->arch.osvw.status;
2325                 break;
2326         default:
2327                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2328                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2329                 if (!ignore_msrs) {
2330                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2331                         return 1;
2332                 } else {
2333                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2334                         msr_info->data = 0;
2335                 }
2336                 break;
2337         }
2338         return 0;
2339 }
2340 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2341
2342 /*
2343  * Read or write a bunch of msrs. All parameters are kernel addresses.
2344  *
2345  * @return number of msrs set successfully.
2346  */
2347 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2348                     struct kvm_msr_entry *entries,
2349                     int (*do_msr)(struct kvm_vcpu *vcpu,
2350                                   unsigned index, u64 *data))
2351 {
2352         int i, idx;
2353
2354         idx = srcu_read_lock(&vcpu->kvm->srcu);
2355         for (i = 0; i < msrs->nmsrs; ++i)
2356                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2357                         break;
2358         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2359
2360         return i;
2361 }
2362
2363 /*
2364  * Read or write a bunch of msrs. Parameters are user addresses.
2365  *
2366  * @return number of msrs set successfully.
2367  */
2368 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2369                   int (*do_msr)(struct kvm_vcpu *vcpu,
2370                                 unsigned index, u64 *data),
2371                   int writeback)
2372 {
2373         struct kvm_msrs msrs;
2374         struct kvm_msr_entry *entries;
2375         int r, n;
2376         unsigned size;
2377
2378         r = -EFAULT;
2379         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2380                 goto out;
2381
2382         r = -E2BIG;
2383         if (msrs.nmsrs >= MAX_IO_MSRS)
2384                 goto out;
2385
2386         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2387         entries = memdup_user(user_msrs->entries, size);
2388         if (IS_ERR(entries)) {
2389                 r = PTR_ERR(entries);
2390                 goto out;
2391         }
2392
2393         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2394         if (r < 0)
2395                 goto out_free;
2396
2397         r = -EFAULT;
2398         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2399                 goto out_free;
2400
2401         r = n;
2402
2403 out_free:
2404         kfree(entries);
2405 out:
2406         return r;
2407 }
2408
2409 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2410 {
2411         int r;
2412
2413         switch (ext) {
2414         case KVM_CAP_IRQCHIP:
2415         case KVM_CAP_HLT:
2416         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2417         case KVM_CAP_SET_TSS_ADDR:
2418         case KVM_CAP_EXT_CPUID:
2419         case KVM_CAP_EXT_EMUL_CPUID:
2420         case KVM_CAP_CLOCKSOURCE:
2421         case KVM_CAP_PIT:
2422         case KVM_CAP_NOP_IO_DELAY:
2423         case KVM_CAP_MP_STATE:
2424         case KVM_CAP_SYNC_MMU:
2425         case KVM_CAP_USER_NMI:
2426         case KVM_CAP_REINJECT_CONTROL:
2427         case KVM_CAP_IRQ_INJECT_STATUS:
2428         case KVM_CAP_IOEVENTFD:
2429         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2430         case KVM_CAP_PIT2:
2431         case KVM_CAP_PIT_STATE2:
2432         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2433         case KVM_CAP_XEN_HVM:
2434         case KVM_CAP_ADJUST_CLOCK:
2435         case KVM_CAP_VCPU_EVENTS:
2436         case KVM_CAP_HYPERV:
2437         case KVM_CAP_HYPERV_VAPIC:
2438         case KVM_CAP_HYPERV_SPIN:
2439         case KVM_CAP_PCI_SEGMENT:
2440         case KVM_CAP_DEBUGREGS:
2441         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2442         case KVM_CAP_XSAVE:
2443         case KVM_CAP_ASYNC_PF:
2444         case KVM_CAP_GET_TSC_KHZ:
2445         case KVM_CAP_KVMCLOCK_CTRL:
2446         case KVM_CAP_READONLY_MEM:
2447         case KVM_CAP_HYPERV_TIME:
2448         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2449         case KVM_CAP_TSC_DEADLINE_TIMER:
2450         case KVM_CAP_ENABLE_CAP_VM:
2451         case KVM_CAP_DISABLE_QUIRKS:
2452         case KVM_CAP_SET_BOOT_CPU_ID:
2453 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2454         case KVM_CAP_ASSIGN_DEV_IRQ:
2455         case KVM_CAP_PCI_2_3:
2456 #endif
2457                 r = 1;
2458                 break;
2459         case KVM_CAP_X86_SMM:
2460                 /* SMBASE is usually relocated above 1M on modern chipsets,
2461                  * and SMM handlers might indeed rely on 4G segment limits,
2462                  * so do not report SMM to be available if real mode is
2463                  * emulated via vm86 mode.  Still, do not go to great lengths
2464                  * to avoid userspace's usage of the feature, because it is a
2465                  * fringe case that is not enabled except via specific settings
2466                  * of the module parameters.
2467                  */
2468                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2469                 break;
2470         case KVM_CAP_COALESCED_MMIO:
2471                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2472                 break;
2473         case KVM_CAP_VAPIC:
2474                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2475                 break;
2476         case KVM_CAP_NR_VCPUS:
2477                 r = KVM_SOFT_MAX_VCPUS;
2478                 break;
2479         case KVM_CAP_MAX_VCPUS:
2480                 r = KVM_MAX_VCPUS;
2481                 break;
2482         case KVM_CAP_NR_MEMSLOTS:
2483                 r = KVM_USER_MEM_SLOTS;
2484                 break;
2485         case KVM_CAP_PV_MMU:    /* obsolete */
2486                 r = 0;
2487                 break;
2488 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2489         case KVM_CAP_IOMMU:
2490                 r = iommu_present(&pci_bus_type);
2491                 break;
2492 #endif
2493         case KVM_CAP_MCE:
2494                 r = KVM_MAX_MCE_BANKS;
2495                 break;
2496         case KVM_CAP_XCRS:
2497                 r = cpu_has_xsave;
2498                 break;
2499         case KVM_CAP_TSC_CONTROL:
2500                 r = kvm_has_tsc_control;
2501                 break;
2502         default:
2503                 r = 0;
2504                 break;
2505         }
2506         return r;
2507
2508 }
2509
2510 long kvm_arch_dev_ioctl(struct file *filp,
2511                         unsigned int ioctl, unsigned long arg)
2512 {
2513         void __user *argp = (void __user *)arg;
2514         long r;
2515
2516         switch (ioctl) {
2517         case KVM_GET_MSR_INDEX_LIST: {
2518                 struct kvm_msr_list __user *user_msr_list = argp;
2519                 struct kvm_msr_list msr_list;
2520                 unsigned n;
2521
2522                 r = -EFAULT;
2523                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2524                         goto out;
2525                 n = msr_list.nmsrs;
2526                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2527                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2528                         goto out;
2529                 r = -E2BIG;
2530                 if (n < msr_list.nmsrs)
2531                         goto out;
2532                 r = -EFAULT;
2533                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2534                                  num_msrs_to_save * sizeof(u32)))
2535                         goto out;
2536                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2537                                  &emulated_msrs,
2538                                  num_emulated_msrs * sizeof(u32)))
2539                         goto out;
2540                 r = 0;
2541                 break;
2542         }
2543         case KVM_GET_SUPPORTED_CPUID:
2544         case KVM_GET_EMULATED_CPUID: {
2545                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2546                 struct kvm_cpuid2 cpuid;
2547
2548                 r = -EFAULT;
2549                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2550                         goto out;
2551
2552                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2553                                             ioctl);
2554                 if (r)
2555                         goto out;
2556
2557                 r = -EFAULT;
2558                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2559                         goto out;
2560                 r = 0;
2561                 break;
2562         }
2563         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2564                 u64 mce_cap;
2565
2566                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2567                 r = -EFAULT;
2568                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2569                         goto out;
2570                 r = 0;
2571                 break;
2572         }
2573         default:
2574                 r = -EINVAL;
2575         }
2576 out:
2577         return r;
2578 }
2579
2580 static void wbinvd_ipi(void *garbage)
2581 {
2582         wbinvd();
2583 }
2584
2585 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2586 {
2587         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2588 }
2589
2590 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2591 {
2592         /* Address WBINVD may be executed by guest */
2593         if (need_emulate_wbinvd(vcpu)) {
2594                 if (kvm_x86_ops->has_wbinvd_exit())
2595                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2596                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2597                         smp_call_function_single(vcpu->cpu,
2598                                         wbinvd_ipi, NULL, 1);
2599         }
2600
2601         kvm_x86_ops->vcpu_load(vcpu, cpu);
2602
2603         /* Apply any externally detected TSC adjustments (due to suspend) */
2604         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2605                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2606                 vcpu->arch.tsc_offset_adjustment = 0;
2607                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2608         }
2609
2610         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2611                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2612                                 rdtsc() - vcpu->arch.last_host_tsc;
2613                 if (tsc_delta < 0)
2614                         mark_tsc_unstable("KVM discovered backwards TSC");
2615                 if (check_tsc_unstable()) {
2616                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2617                                                 vcpu->arch.last_guest_tsc);
2618                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2619                         vcpu->arch.tsc_catchup = 1;
2620                 }
2621                 /*
2622                  * On a host with synchronized TSC, there is no need to update
2623                  * kvmclock on vcpu->cpu migration
2624                  */
2625                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2626                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2627                 if (vcpu->cpu != cpu)
2628                         kvm_migrate_timers(vcpu);
2629                 vcpu->cpu = cpu;
2630         }
2631
2632         accumulate_steal_time(vcpu);
2633         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2634 }
2635
2636 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2637 {
2638         kvm_x86_ops->vcpu_put(vcpu);
2639         kvm_put_guest_fpu(vcpu);
2640         vcpu->arch.last_host_tsc = rdtsc();
2641 }
2642
2643 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2644                                     struct kvm_lapic_state *s)
2645 {
2646         kvm_x86_ops->sync_pir_to_irr(vcpu);
2647         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2648
2649         return 0;
2650 }
2651
2652 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2653                                     struct kvm_lapic_state *s)
2654 {
2655         kvm_apic_post_state_restore(vcpu, s);
2656         update_cr8_intercept(vcpu);
2657
2658         return 0;
2659 }
2660
2661 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2662                                     struct kvm_interrupt *irq)
2663 {
2664         if (irq->irq >= KVM_NR_INTERRUPTS)
2665                 return -EINVAL;
2666         if (irqchip_in_kernel(vcpu->kvm))
2667                 return -ENXIO;
2668
2669         kvm_queue_interrupt(vcpu, irq->irq, false);
2670         kvm_make_request(KVM_REQ_EVENT, vcpu);
2671
2672         return 0;
2673 }
2674
2675 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2676 {
2677         kvm_inject_nmi(vcpu);
2678
2679         return 0;
2680 }
2681
2682 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2683 {
2684         kvm_make_request(KVM_REQ_SMI, vcpu);
2685
2686         return 0;
2687 }
2688
2689 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2690                                            struct kvm_tpr_access_ctl *tac)
2691 {
2692         if (tac->flags)
2693                 return -EINVAL;
2694         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2695         return 0;
2696 }
2697
2698 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2699                                         u64 mcg_cap)
2700 {
2701         int r;
2702         unsigned bank_num = mcg_cap & 0xff, bank;
2703
2704         r = -EINVAL;
2705         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2706                 goto out;
2707         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2708                 goto out;
2709         r = 0;
2710         vcpu->arch.mcg_cap = mcg_cap;
2711         /* Init IA32_MCG_CTL to all 1s */
2712         if (mcg_cap & MCG_CTL_P)
2713                 vcpu->arch.mcg_ctl = ~(u64)0;
2714         /* Init IA32_MCi_CTL to all 1s */
2715         for (bank = 0; bank < bank_num; bank++)
2716                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2717 out:
2718         return r;
2719 }
2720
2721 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2722                                       struct kvm_x86_mce *mce)
2723 {
2724         u64 mcg_cap = vcpu->arch.mcg_cap;
2725         unsigned bank_num = mcg_cap & 0xff;
2726         u64 *banks = vcpu->arch.mce_banks;
2727
2728         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2729                 return -EINVAL;
2730         /*
2731          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2732          * reporting is disabled
2733          */
2734         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2735             vcpu->arch.mcg_ctl != ~(u64)0)
2736                 return 0;
2737         banks += 4 * mce->bank;
2738         /*
2739          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2740          * reporting is disabled for the bank
2741          */
2742         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2743                 return 0;
2744         if (mce->status & MCI_STATUS_UC) {
2745                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2746                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2747                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2748                         return 0;
2749                 }
2750                 if (banks[1] & MCI_STATUS_VAL)
2751                         mce->status |= MCI_STATUS_OVER;
2752                 banks[2] = mce->addr;
2753                 banks[3] = mce->misc;
2754                 vcpu->arch.mcg_status = mce->mcg_status;
2755                 banks[1] = mce->status;
2756                 kvm_queue_exception(vcpu, MC_VECTOR);
2757         } else if (!(banks[1] & MCI_STATUS_VAL)
2758                    || !(banks[1] & MCI_STATUS_UC)) {
2759                 if (banks[1] & MCI_STATUS_VAL)
2760                         mce->status |= MCI_STATUS_OVER;
2761                 banks[2] = mce->addr;
2762                 banks[3] = mce->misc;
2763                 banks[1] = mce->status;
2764         } else
2765                 banks[1] |= MCI_STATUS_OVER;
2766         return 0;
2767 }
2768
2769 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2770                                                struct kvm_vcpu_events *events)
2771 {
2772         process_nmi(vcpu);
2773         events->exception.injected =
2774                 vcpu->arch.exception.pending &&
2775                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2776         events->exception.nr = vcpu->arch.exception.nr;
2777         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2778         events->exception.pad = 0;
2779         events->exception.error_code = vcpu->arch.exception.error_code;
2780
2781         events->interrupt.injected =
2782                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2783         events->interrupt.nr = vcpu->arch.interrupt.nr;
2784         events->interrupt.soft = 0;
2785         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2786
2787         events->nmi.injected = vcpu->arch.nmi_injected;
2788         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2789         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2790         events->nmi.pad = 0;
2791
2792         events->sipi_vector = 0; /* never valid when reporting to user space */
2793
2794         events->smi.smm = is_smm(vcpu);
2795         events->smi.pending = vcpu->arch.smi_pending;
2796         events->smi.smm_inside_nmi =
2797                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2798         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2799
2800         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2801                          | KVM_VCPUEVENT_VALID_SHADOW
2802                          | KVM_VCPUEVENT_VALID_SMM);
2803         memset(&events->reserved, 0, sizeof(events->reserved));
2804 }
2805
2806 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2807                                               struct kvm_vcpu_events *events)
2808 {
2809         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2810                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2811                               | KVM_VCPUEVENT_VALID_SHADOW
2812                               | KVM_VCPUEVENT_VALID_SMM))
2813                 return -EINVAL;
2814
2815         process_nmi(vcpu);
2816         vcpu->arch.exception.pending = events->exception.injected;
2817         vcpu->arch.exception.nr = events->exception.nr;
2818         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2819         vcpu->arch.exception.error_code = events->exception.error_code;
2820
2821         vcpu->arch.interrupt.pending = events->interrupt.injected;
2822         vcpu->arch.interrupt.nr = events->interrupt.nr;
2823         vcpu->arch.interrupt.soft = events->interrupt.soft;
2824         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2825                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2826                                                   events->interrupt.shadow);
2827
2828         vcpu->arch.nmi_injected = events->nmi.injected;
2829         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2830                 vcpu->arch.nmi_pending = events->nmi.pending;
2831         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2832
2833         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2834             kvm_vcpu_has_lapic(vcpu))
2835                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2836
2837         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2838                 if (events->smi.smm)
2839                         vcpu->arch.hflags |= HF_SMM_MASK;
2840                 else
2841                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2842                 vcpu->arch.smi_pending = events->smi.pending;
2843                 if (events->smi.smm_inside_nmi)
2844                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2845                 else
2846                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2847                 if (kvm_vcpu_has_lapic(vcpu)) {
2848                         if (events->smi.latched_init)
2849                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2850                         else
2851                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
2852                 }
2853         }
2854
2855         kvm_make_request(KVM_REQ_EVENT, vcpu);
2856
2857         return 0;
2858 }
2859
2860 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2861                                              struct kvm_debugregs *dbgregs)
2862 {
2863         unsigned long val;
2864
2865         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2866         kvm_get_dr(vcpu, 6, &val);
2867         dbgregs->dr6 = val;
2868         dbgregs->dr7 = vcpu->arch.dr7;
2869         dbgregs->flags = 0;
2870         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2871 }
2872
2873 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2874                                             struct kvm_debugregs *dbgregs)
2875 {
2876         if (dbgregs->flags)
2877                 return -EINVAL;
2878
2879         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2880         kvm_update_dr0123(vcpu);
2881         vcpu->arch.dr6 = dbgregs->dr6;
2882         kvm_update_dr6(vcpu);
2883         vcpu->arch.dr7 = dbgregs->dr7;
2884         kvm_update_dr7(vcpu);
2885
2886         return 0;
2887 }
2888
2889 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
2890
2891 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
2892 {
2893         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2894         u64 xstate_bv = xsave->header.xfeatures;
2895         u64 valid;
2896
2897         /*
2898          * Copy legacy XSAVE area, to avoid complications with CPUID
2899          * leaves 0 and 1 in the loop below.
2900          */
2901         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
2902
2903         /* Set XSTATE_BV */
2904         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
2905
2906         /*
2907          * Copy each region from the possibly compacted offset to the
2908          * non-compacted offset.
2909          */
2910         valid = xstate_bv & ~XSTATE_FPSSE;
2911         while (valid) {
2912                 u64 feature = valid & -valid;
2913                 int index = fls64(feature) - 1;
2914                 void *src = get_xsave_addr(xsave, feature);
2915
2916                 if (src) {
2917                         u32 size, offset, ecx, edx;
2918                         cpuid_count(XSTATE_CPUID, index,
2919                                     &size, &offset, &ecx, &edx);
2920                         memcpy(dest + offset, src, size);
2921                 }
2922
2923                 valid -= feature;
2924         }
2925 }
2926
2927 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
2928 {
2929         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
2930         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
2931         u64 valid;
2932
2933         /*
2934          * Copy legacy XSAVE area, to avoid complications with CPUID
2935          * leaves 0 and 1 in the loop below.
2936          */
2937         memcpy(xsave, src, XSAVE_HDR_OFFSET);
2938
2939         /* Set XSTATE_BV and possibly XCOMP_BV.  */
2940         xsave->header.xfeatures = xstate_bv;
2941         if (cpu_has_xsaves)
2942                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
2943
2944         /*
2945          * Copy each region from the non-compacted offset to the
2946          * possibly compacted offset.
2947          */
2948         valid = xstate_bv & ~XSTATE_FPSSE;
2949         while (valid) {
2950                 u64 feature = valid & -valid;
2951                 int index = fls64(feature) - 1;
2952                 void *dest = get_xsave_addr(xsave, feature);
2953
2954                 if (dest) {
2955                         u32 size, offset, ecx, edx;
2956                         cpuid_count(XSTATE_CPUID, index,
2957                                     &size, &offset, &ecx, &edx);
2958                         memcpy(dest, src + offset, size);
2959                 }
2960
2961                 valid -= feature;
2962         }
2963 }
2964
2965 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2966                                          struct kvm_xsave *guest_xsave)
2967 {
2968         if (cpu_has_xsave) {
2969                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
2970                 fill_xsave((u8 *) guest_xsave->region, vcpu);
2971         } else {
2972                 memcpy(guest_xsave->region,
2973                         &vcpu->arch.guest_fpu.state.fxsave,
2974                         sizeof(struct fxregs_state));
2975                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2976                         XSTATE_FPSSE;
2977         }
2978 }
2979
2980 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2981                                         struct kvm_xsave *guest_xsave)
2982 {
2983         u64 xstate_bv =
2984                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2985
2986         if (cpu_has_xsave) {
2987                 /*
2988                  * Here we allow setting states that are not present in
2989                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
2990                  * with old userspace.
2991                  */
2992                 if (xstate_bv & ~kvm_supported_xcr0())
2993                         return -EINVAL;
2994                 load_xsave(vcpu, (u8 *)guest_xsave->region);
2995         } else {
2996                 if (xstate_bv & ~XSTATE_FPSSE)
2997                         return -EINVAL;
2998                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
2999                         guest_xsave->region, sizeof(struct fxregs_state));
3000         }
3001         return 0;
3002 }
3003
3004 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3005                                         struct kvm_xcrs *guest_xcrs)
3006 {
3007         if (!cpu_has_xsave) {
3008                 guest_xcrs->nr_xcrs = 0;
3009                 return;
3010         }
3011
3012         guest_xcrs->nr_xcrs = 1;
3013         guest_xcrs->flags = 0;
3014         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3015         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3016 }
3017
3018 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3019                                        struct kvm_xcrs *guest_xcrs)
3020 {
3021         int i, r = 0;
3022
3023         if (!cpu_has_xsave)
3024                 return -EINVAL;
3025
3026         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3027                 return -EINVAL;
3028
3029         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3030                 /* Only support XCR0 currently */
3031                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3032                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3033                                 guest_xcrs->xcrs[i].value);
3034                         break;
3035                 }
3036         if (r)
3037                 r = -EINVAL;
3038         return r;
3039 }
3040
3041 /*
3042  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3043  * stopped by the hypervisor.  This function will be called from the host only.
3044  * EINVAL is returned when the host attempts to set the flag for a guest that
3045  * does not support pv clocks.
3046  */
3047 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3048 {
3049         if (!vcpu->arch.pv_time_enabled)
3050                 return -EINVAL;
3051         vcpu->arch.pvclock_set_guest_stopped_request = true;
3052         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3053         return 0;
3054 }
3055
3056 long kvm_arch_vcpu_ioctl(struct file *filp,
3057                          unsigned int ioctl, unsigned long arg)
3058 {
3059         struct kvm_vcpu *vcpu = filp->private_data;
3060         void __user *argp = (void __user *)arg;
3061         int r;
3062         union {
3063                 struct kvm_lapic_state *lapic;
3064                 struct kvm_xsave *xsave;
3065                 struct kvm_xcrs *xcrs;
3066                 void *buffer;
3067         } u;
3068
3069         u.buffer = NULL;
3070         switch (ioctl) {
3071         case KVM_GET_LAPIC: {
3072                 r = -EINVAL;
3073                 if (!vcpu->arch.apic)
3074                         goto out;
3075                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3076
3077                 r = -ENOMEM;
3078                 if (!u.lapic)
3079                         goto out;
3080                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3081                 if (r)
3082                         goto out;
3083                 r = -EFAULT;
3084                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3085                         goto out;
3086                 r = 0;
3087                 break;
3088         }
3089         case KVM_SET_LAPIC: {
3090                 r = -EINVAL;
3091                 if (!vcpu->arch.apic)
3092                         goto out;
3093                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3094                 if (IS_ERR(u.lapic))
3095                         return PTR_ERR(u.lapic);
3096
3097                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3098                 break;
3099         }
3100         case KVM_INTERRUPT: {
3101                 struct kvm_interrupt irq;
3102
3103                 r = -EFAULT;
3104                 if (copy_from_user(&irq, argp, sizeof irq))
3105                         goto out;
3106                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3107                 break;
3108         }
3109         case KVM_NMI: {
3110                 r = kvm_vcpu_ioctl_nmi(vcpu);
3111                 break;
3112         }
3113         case KVM_SMI: {
3114                 r = kvm_vcpu_ioctl_smi(vcpu);
3115                 break;
3116         }
3117         case KVM_SET_CPUID: {
3118                 struct kvm_cpuid __user *cpuid_arg = argp;
3119                 struct kvm_cpuid cpuid;
3120
3121                 r = -EFAULT;
3122                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3123                         goto out;
3124                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3125                 break;
3126         }
3127         case KVM_SET_CPUID2: {
3128                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3129                 struct kvm_cpuid2 cpuid;
3130
3131                 r = -EFAULT;
3132                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3133                         goto out;
3134                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3135                                               cpuid_arg->entries);
3136                 break;
3137         }
3138         case KVM_GET_CPUID2: {
3139                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3140                 struct kvm_cpuid2 cpuid;
3141
3142                 r = -EFAULT;
3143                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3144                         goto out;
3145                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3146                                               cpuid_arg->entries);
3147                 if (r)
3148                         goto out;
3149                 r = -EFAULT;
3150                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3151                         goto out;
3152                 r = 0;
3153                 break;
3154         }
3155         case KVM_GET_MSRS:
3156                 r = msr_io(vcpu, argp, do_get_msr, 1);
3157                 break;
3158         case KVM_SET_MSRS:
3159                 r = msr_io(vcpu, argp, do_set_msr, 0);
3160                 break;
3161         case KVM_TPR_ACCESS_REPORTING: {
3162                 struct kvm_tpr_access_ctl tac;
3163
3164                 r = -EFAULT;
3165                 if (copy_from_user(&tac, argp, sizeof tac))
3166                         goto out;
3167                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3168                 if (r)
3169                         goto out;
3170                 r = -EFAULT;
3171                 if (copy_to_user(argp, &tac, sizeof tac))
3172                         goto out;
3173                 r = 0;
3174                 break;
3175         };
3176         case KVM_SET_VAPIC_ADDR: {
3177                 struct kvm_vapic_addr va;
3178
3179                 r = -EINVAL;
3180                 if (!irqchip_in_kernel(vcpu->kvm))
3181                         goto out;
3182                 r = -EFAULT;
3183                 if (copy_from_user(&va, argp, sizeof va))
3184                         goto out;
3185                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3186                 break;
3187         }
3188         case KVM_X86_SETUP_MCE: {
3189                 u64 mcg_cap;
3190
3191                 r = -EFAULT;
3192                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3193                         goto out;
3194                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3195                 break;
3196         }
3197         case KVM_X86_SET_MCE: {
3198                 struct kvm_x86_mce mce;
3199
3200                 r = -EFAULT;
3201                 if (copy_from_user(&mce, argp, sizeof mce))
3202                         goto out;
3203                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3204                 break;
3205         }
3206         case KVM_GET_VCPU_EVENTS: {
3207                 struct kvm_vcpu_events events;
3208
3209                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3210
3211                 r = -EFAULT;
3212                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3213                         break;
3214                 r = 0;
3215                 break;
3216         }
3217         case KVM_SET_VCPU_EVENTS: {
3218                 struct kvm_vcpu_events events;
3219
3220                 r = -EFAULT;
3221                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3222                         break;
3223
3224                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3225                 break;
3226         }
3227         case KVM_GET_DEBUGREGS: {
3228                 struct kvm_debugregs dbgregs;
3229
3230                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3231
3232                 r = -EFAULT;
3233                 if (copy_to_user(argp, &dbgregs,
3234                                  sizeof(struct kvm_debugregs)))
3235                         break;
3236                 r = 0;
3237                 break;
3238         }
3239         case KVM_SET_DEBUGREGS: {
3240                 struct kvm_debugregs dbgregs;
3241
3242                 r = -EFAULT;
3243                 if (copy_from_user(&dbgregs, argp,
3244                                    sizeof(struct kvm_debugregs)))
3245                         break;
3246
3247                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3248                 break;
3249         }
3250         case KVM_GET_XSAVE: {
3251                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3252                 r = -ENOMEM;
3253                 if (!u.xsave)
3254                         break;
3255
3256                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3257
3258                 r = -EFAULT;
3259                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3260                         break;
3261                 r = 0;
3262                 break;
3263         }
3264         case KVM_SET_XSAVE: {
3265                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3266                 if (IS_ERR(u.xsave))
3267                         return PTR_ERR(u.xsave);
3268
3269                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3270                 break;
3271         }
3272         case KVM_GET_XCRS: {
3273                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3274                 r = -ENOMEM;
3275                 if (!u.xcrs)
3276                         break;
3277
3278                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3279
3280                 r = -EFAULT;
3281                 if (copy_to_user(argp, u.xcrs,
3282                                  sizeof(struct kvm_xcrs)))
3283                         break;
3284                 r = 0;
3285                 break;
3286         }
3287         case KVM_SET_XCRS: {
3288                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3289                 if (IS_ERR(u.xcrs))
3290                         return PTR_ERR(u.xcrs);
3291
3292                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3293                 break;
3294         }
3295         case KVM_SET_TSC_KHZ: {
3296                 u32 user_tsc_khz;
3297
3298                 r = -EINVAL;
3299                 user_tsc_khz = (u32)arg;
3300
3301                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3302                         goto out;
3303
3304                 if (user_tsc_khz == 0)
3305                         user_tsc_khz = tsc_khz;
3306
3307                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3308
3309                 r = 0;
3310                 goto out;
3311         }
3312         case KVM_GET_TSC_KHZ: {
3313                 r = vcpu->arch.virtual_tsc_khz;
3314                 goto out;
3315         }
3316         case KVM_KVMCLOCK_CTRL: {
3317                 r = kvm_set_guest_paused(vcpu);
3318                 goto out;
3319         }
3320         default:
3321                 r = -EINVAL;
3322         }
3323 out:
3324         kfree(u.buffer);
3325         return r;
3326 }
3327
3328 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3329 {
3330         return VM_FAULT_SIGBUS;
3331 }
3332
3333 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3334 {
3335         int ret;
3336
3337         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3338                 return -EINVAL;
3339         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3340         return ret;
3341 }
3342
3343 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3344                                               u64 ident_addr)
3345 {
3346         kvm->arch.ept_identity_map_addr = ident_addr;
3347         return 0;
3348 }
3349
3350 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3351                                           u32 kvm_nr_mmu_pages)
3352 {
3353         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3354                 return -EINVAL;
3355
3356         mutex_lock(&kvm->slots_lock);
3357
3358         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3359         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3360
3361         mutex_unlock(&kvm->slots_lock);
3362         return 0;
3363 }
3364
3365 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3366 {
3367         return kvm->arch.n_max_mmu_pages;
3368 }
3369
3370 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3371 {
3372         int r;
3373
3374         r = 0;
3375         switch (chip->chip_id) {
3376         case KVM_IRQCHIP_PIC_MASTER:
3377                 memcpy(&chip->chip.pic,
3378                         &pic_irqchip(kvm)->pics[0],
3379                         sizeof(struct kvm_pic_state));
3380                 break;
3381         case KVM_IRQCHIP_PIC_SLAVE:
3382                 memcpy(&chip->chip.pic,
3383                         &pic_irqchip(kvm)->pics[1],
3384                         sizeof(struct kvm_pic_state));
3385                 break;
3386         case KVM_IRQCHIP_IOAPIC:
3387                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3388                 break;
3389         default:
3390                 r = -EINVAL;
3391                 break;
3392         }
3393         return r;
3394 }
3395
3396 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3397 {
3398         int r;
3399
3400         r = 0;
3401         switch (chip->chip_id) {
3402         case KVM_IRQCHIP_PIC_MASTER:
3403                 spin_lock(&pic_irqchip(kvm)->lock);
3404                 memcpy(&pic_irqchip(kvm)->pics[0],
3405                         &chip->chip.pic,
3406                         sizeof(struct kvm_pic_state));
3407                 spin_unlock(&pic_irqchip(kvm)->lock);
3408                 break;
3409         case KVM_IRQCHIP_PIC_SLAVE:
3410                 spin_lock(&pic_irqchip(kvm)->lock);
3411                 memcpy(&pic_irqchip(kvm)->pics[1],
3412                         &chip->chip.pic,
3413                         sizeof(struct kvm_pic_state));
3414                 spin_unlock(&pic_irqchip(kvm)->lock);
3415                 break;
3416         case KVM_IRQCHIP_IOAPIC:
3417                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3418                 break;
3419         default:
3420                 r = -EINVAL;
3421                 break;
3422         }
3423         kvm_pic_update_irq(pic_irqchip(kvm));
3424         return r;
3425 }
3426
3427 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3428 {
3429         int r = 0;
3430
3431         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3432         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3433         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3434         return r;
3435 }
3436
3437 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3438 {
3439         int r = 0;
3440
3441         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3442         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3443         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3444         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3445         return r;
3446 }
3447
3448 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3449 {
3450         int r = 0;
3451
3452         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3453         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3454                 sizeof(ps->channels));
3455         ps->flags = kvm->arch.vpit->pit_state.flags;
3456         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3457         memset(&ps->reserved, 0, sizeof(ps->reserved));
3458         return r;
3459 }
3460
3461 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3462 {
3463         int r = 0, start = 0;
3464         u32 prev_legacy, cur_legacy;
3465         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3466         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3467         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3468         if (!prev_legacy && cur_legacy)
3469                 start = 1;
3470         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3471                sizeof(kvm->arch.vpit->pit_state.channels));
3472         kvm->arch.vpit->pit_state.flags = ps->flags;
3473         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3474         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3475         return r;
3476 }
3477
3478 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3479                                  struct kvm_reinject_control *control)
3480 {
3481         if (!kvm->arch.vpit)
3482                 return -ENXIO;
3483         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3484         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3485         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3486         return 0;
3487 }
3488
3489 /**
3490  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3491  * @kvm: kvm instance
3492  * @log: slot id and address to which we copy the log
3493  *
3494  * Steps 1-4 below provide general overview of dirty page logging. See
3495  * kvm_get_dirty_log_protect() function description for additional details.
3496  *
3497  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3498  * always flush the TLB (step 4) even if previous step failed  and the dirty
3499  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3500  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3501  * writes will be marked dirty for next log read.
3502  *
3503  *   1. Take a snapshot of the bit and clear it if needed.
3504  *   2. Write protect the corresponding page.
3505  *   3. Copy the snapshot to the userspace.
3506  *   4. Flush TLB's if needed.
3507  */
3508 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3509 {
3510         bool is_dirty = false;
3511         int r;
3512
3513         mutex_lock(&kvm->slots_lock);
3514
3515         /*
3516          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3517          */
3518         if (kvm_x86_ops->flush_log_dirty)
3519                 kvm_x86_ops->flush_log_dirty(kvm);
3520
3521         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3522
3523         /*
3524          * All the TLBs can be flushed out of mmu lock, see the comments in
3525          * kvm_mmu_slot_remove_write_access().
3526          */
3527         lockdep_assert_held(&kvm->slots_lock);
3528         if (is_dirty)
3529                 kvm_flush_remote_tlbs(kvm);
3530
3531         mutex_unlock(&kvm->slots_lock);
3532         return r;
3533 }
3534
3535 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3536                         bool line_status)
3537 {
3538         if (!irqchip_in_kernel(kvm))
3539                 return -ENXIO;
3540
3541         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3542                                         irq_event->irq, irq_event->level,
3543                                         line_status);
3544         return 0;
3545 }
3546
3547 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3548                                    struct kvm_enable_cap *cap)
3549 {
3550         int r;
3551
3552         if (cap->flags)
3553                 return -EINVAL;
3554
3555         switch (cap->cap) {
3556         case KVM_CAP_DISABLE_QUIRKS:
3557                 kvm->arch.disabled_quirks = cap->args[0];
3558                 r = 0;
3559                 break;
3560         default:
3561                 r = -EINVAL;
3562                 break;
3563         }
3564         return r;
3565 }
3566
3567 long kvm_arch_vm_ioctl(struct file *filp,
3568                        unsigned int ioctl, unsigned long arg)
3569 {
3570         struct kvm *kvm = filp->private_data;
3571         void __user *argp = (void __user *)arg;
3572         int r = -ENOTTY;
3573         /*
3574          * This union makes it completely explicit to gcc-3.x
3575          * that these two variables' stack usage should be
3576          * combined, not added together.
3577          */
3578         union {
3579                 struct kvm_pit_state ps;
3580                 struct kvm_pit_state2 ps2;
3581                 struct kvm_pit_config pit_config;
3582         } u;
3583
3584         switch (ioctl) {
3585         case KVM_SET_TSS_ADDR:
3586                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3587                 break;
3588         case KVM_SET_IDENTITY_MAP_ADDR: {
3589                 u64 ident_addr;
3590
3591                 r = -EFAULT;
3592                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3593                         goto out;
3594                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3595                 break;
3596         }
3597         case KVM_SET_NR_MMU_PAGES:
3598                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3599                 break;
3600         case KVM_GET_NR_MMU_PAGES:
3601                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3602                 break;
3603         case KVM_CREATE_IRQCHIP: {
3604                 struct kvm_pic *vpic;
3605
3606                 mutex_lock(&kvm->lock);
3607                 r = -EEXIST;
3608                 if (kvm->arch.vpic)
3609                         goto create_irqchip_unlock;
3610                 r = -EINVAL;
3611                 if (atomic_read(&kvm->online_vcpus))
3612                         goto create_irqchip_unlock;
3613                 r = -ENOMEM;
3614                 vpic = kvm_create_pic(kvm);
3615                 if (vpic) {
3616                         r = kvm_ioapic_init(kvm);
3617                         if (r) {
3618                                 mutex_lock(&kvm->slots_lock);
3619                                 kvm_destroy_pic(vpic);
3620                                 mutex_unlock(&kvm->slots_lock);
3621                                 goto create_irqchip_unlock;
3622                         }
3623                 } else
3624                         goto create_irqchip_unlock;
3625                 r = kvm_setup_default_irq_routing(kvm);
3626                 if (r) {
3627                         mutex_lock(&kvm->slots_lock);
3628                         mutex_lock(&kvm->irq_lock);
3629                         kvm_ioapic_destroy(kvm);
3630                         kvm_destroy_pic(vpic);
3631                         mutex_unlock(&kvm->irq_lock);
3632                         mutex_unlock(&kvm->slots_lock);
3633                         goto create_irqchip_unlock;
3634                 }
3635                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3636                 smp_wmb();
3637                 kvm->arch.vpic = vpic;
3638         create_irqchip_unlock:
3639                 mutex_unlock(&kvm->lock);
3640                 break;
3641         }
3642         case KVM_CREATE_PIT:
3643                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3644                 goto create_pit;
3645         case KVM_CREATE_PIT2:
3646                 r = -EFAULT;
3647                 if (copy_from_user(&u.pit_config, argp,
3648                                    sizeof(struct kvm_pit_config)))
3649                         goto out;
3650         create_pit:
3651                 mutex_lock(&kvm->slots_lock);
3652                 r = -EEXIST;
3653                 if (kvm->arch.vpit)
3654                         goto create_pit_unlock;
3655                 r = -ENOMEM;
3656                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3657                 if (kvm->arch.vpit)
3658                         r = 0;
3659         create_pit_unlock:
3660                 mutex_unlock(&kvm->slots_lock);
3661                 break;
3662         case KVM_GET_IRQCHIP: {
3663                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3664                 struct kvm_irqchip *chip;
3665
3666                 chip = memdup_user(argp, sizeof(*chip));
3667                 if (IS_ERR(chip)) {
3668                         r = PTR_ERR(chip);
3669                         goto out;
3670                 }
3671
3672                 r = -ENXIO;
3673                 if (!irqchip_in_kernel(kvm))
3674                         goto get_irqchip_out;
3675                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3676                 if (r)
3677                         goto get_irqchip_out;
3678                 r = -EFAULT;
3679                 if (copy_to_user(argp, chip, sizeof *chip))
3680                         goto get_irqchip_out;
3681                 r = 0;
3682         get_irqchip_out:
3683                 kfree(chip);
3684                 break;
3685         }
3686         case KVM_SET_IRQCHIP: {
3687                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3688                 struct kvm_irqchip *chip;
3689
3690                 chip = memdup_user(argp, sizeof(*chip));
3691                 if (IS_ERR(chip)) {
3692                         r = PTR_ERR(chip);
3693                         goto out;
3694                 }
3695
3696                 r = -ENXIO;
3697                 if (!irqchip_in_kernel(kvm))
3698                         goto set_irqchip_out;
3699                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3700                 if (r)
3701                         goto set_irqchip_out;
3702                 r = 0;
3703         set_irqchip_out:
3704                 kfree(chip);
3705                 break;
3706         }
3707         case KVM_GET_PIT: {
3708                 r = -EFAULT;
3709                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3710                         goto out;
3711                 r = -ENXIO;
3712                 if (!kvm->arch.vpit)
3713                         goto out;
3714                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3715                 if (r)
3716                         goto out;
3717                 r = -EFAULT;
3718                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3719                         goto out;
3720                 r = 0;
3721                 break;
3722         }
3723         case KVM_SET_PIT: {
3724                 r = -EFAULT;
3725                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3726                         goto out;
3727                 r = -ENXIO;
3728                 if (!kvm->arch.vpit)
3729                         goto out;
3730                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3731                 break;
3732         }
3733         case KVM_GET_PIT2: {
3734                 r = -ENXIO;
3735                 if (!kvm->arch.vpit)
3736                         goto out;
3737                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3738                 if (r)
3739                         goto out;
3740                 r = -EFAULT;
3741                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3742                         goto out;
3743                 r = 0;
3744                 break;
3745         }
3746         case KVM_SET_PIT2: {
3747                 r = -EFAULT;
3748                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3749                         goto out;
3750                 r = -ENXIO;
3751                 if (!kvm->arch.vpit)
3752                         goto out;
3753                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3754                 break;
3755         }
3756         case KVM_REINJECT_CONTROL: {
3757                 struct kvm_reinject_control control;
3758                 r =  -EFAULT;
3759                 if (copy_from_user(&control, argp, sizeof(control)))
3760                         goto out;
3761                 r = kvm_vm_ioctl_reinject(kvm, &control);
3762                 break;
3763         }
3764         case KVM_SET_BOOT_CPU_ID:
3765                 r = 0;
3766                 mutex_lock(&kvm->lock);
3767                 if (atomic_read(&kvm->online_vcpus) != 0)
3768                         r = -EBUSY;
3769                 else
3770                         kvm->arch.bsp_vcpu_id = arg;
3771                 mutex_unlock(&kvm->lock);
3772                 break;
3773         case KVM_XEN_HVM_CONFIG: {
3774                 r = -EFAULT;
3775                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3776                                    sizeof(struct kvm_xen_hvm_config)))
3777                         goto out;
3778                 r = -EINVAL;
3779                 if (kvm->arch.xen_hvm_config.flags)
3780                         goto out;
3781                 r = 0;
3782                 break;
3783         }
3784         case KVM_SET_CLOCK: {
3785                 struct kvm_clock_data user_ns;
3786                 u64 now_ns;
3787                 s64 delta;
3788
3789                 r = -EFAULT;
3790                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3791                         goto out;
3792
3793                 r = -EINVAL;
3794                 if (user_ns.flags)
3795                         goto out;
3796
3797                 r = 0;
3798                 local_irq_disable();
3799                 now_ns = get_kernel_ns();
3800                 delta = user_ns.clock - now_ns;
3801                 local_irq_enable();
3802                 kvm->arch.kvmclock_offset = delta;
3803                 kvm_gen_update_masterclock(kvm);
3804                 break;
3805         }
3806         case KVM_GET_CLOCK: {
3807                 struct kvm_clock_data user_ns;
3808                 u64 now_ns;
3809
3810                 local_irq_disable();
3811                 now_ns = get_kernel_ns();
3812                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3813                 local_irq_enable();
3814                 user_ns.flags = 0;
3815                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3816
3817                 r = -EFAULT;
3818                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3819                         goto out;
3820                 r = 0;
3821                 break;
3822         }
3823         case KVM_ENABLE_CAP: {
3824                 struct kvm_enable_cap cap;
3825
3826                 r = -EFAULT;
3827                 if (copy_from_user(&cap, argp, sizeof(cap)))
3828                         goto out;
3829                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
3830                 break;
3831         }
3832         default:
3833                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
3834         }
3835 out:
3836         return r;
3837 }
3838
3839 static void kvm_init_msr_list(void)
3840 {
3841         u32 dummy[2];
3842         unsigned i, j;
3843
3844         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
3845                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3846                         continue;
3847
3848                 /*
3849                  * Even MSRs that are valid in the host may not be exposed
3850                  * to the guests in some cases.  We could work around this
3851                  * in VMX with the generic MSR save/load machinery, but it
3852                  * is not really worthwhile since it will really only
3853                  * happen with nested virtualization.
3854                  */
3855                 switch (msrs_to_save[i]) {
3856                 case MSR_IA32_BNDCFGS:
3857                         if (!kvm_x86_ops->mpx_supported())
3858                                 continue;
3859                         break;
3860                 default:
3861                         break;
3862                 }
3863
3864                 if (j < i)
3865                         msrs_to_save[j] = msrs_to_save[i];
3866                 j++;
3867         }
3868         num_msrs_to_save = j;
3869
3870         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
3871                 switch (emulated_msrs[i]) {
3872                 case MSR_IA32_SMBASE:
3873                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
3874                                 continue;
3875                         break;
3876                 default:
3877                         break;
3878                 }
3879
3880                 if (j < i)
3881                         emulated_msrs[j] = emulated_msrs[i];
3882                 j++;
3883         }
3884         num_emulated_msrs = j;
3885 }
3886
3887 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3888                            const void *v)
3889 {
3890         int handled = 0;
3891         int n;
3892
3893         do {
3894                 n = min(len, 8);
3895                 if (!(vcpu->arch.apic &&
3896                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
3897                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
3898                         break;
3899                 handled += n;
3900                 addr += n;
3901                 len -= n;
3902                 v += n;
3903         } while (len);
3904
3905         return handled;
3906 }
3907
3908 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3909 {
3910         int handled = 0;
3911         int n;
3912
3913         do {
3914                 n = min(len, 8);
3915                 if (!(vcpu->arch.apic &&
3916                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
3917                                          addr, n, v))
3918                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
3919                         break;
3920                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3921                 handled += n;
3922                 addr += n;
3923                 len -= n;
3924                 v += n;
3925         } while (len);
3926
3927         return handled;
3928 }
3929
3930 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3931                         struct kvm_segment *var, int seg)
3932 {
3933         kvm_x86_ops->set_segment(vcpu, var, seg);
3934 }
3935
3936 void kvm_get_segment(struct kvm_vcpu *vcpu,
3937                      struct kvm_segment *var, int seg)
3938 {
3939         kvm_x86_ops->get_segment(vcpu, var, seg);
3940 }
3941
3942 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
3943                            struct x86_exception *exception)
3944 {
3945         gpa_t t_gpa;
3946
3947         BUG_ON(!mmu_is_nested(vcpu));
3948
3949         /* NPT walks are always user-walks */
3950         access |= PFERR_USER_MASK;
3951         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
3952
3953         return t_gpa;
3954 }
3955
3956 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3957                               struct x86_exception *exception)
3958 {
3959         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3960         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3961 }
3962
3963  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3964                                 struct x86_exception *exception)
3965 {
3966         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3967         access |= PFERR_FETCH_MASK;
3968         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3969 }
3970
3971 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3972                                struct x86_exception *exception)
3973 {
3974         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3975         access |= PFERR_WRITE_MASK;
3976         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3977 }
3978
3979 /* uses this to access any guest's mapped memory without checking CPL */
3980 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3981                                 struct x86_exception *exception)
3982 {
3983         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3984 }
3985
3986 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3987                                       struct kvm_vcpu *vcpu, u32 access,
3988                                       struct x86_exception *exception)
3989 {
3990         void *data = val;
3991         int r = X86EMUL_CONTINUE;
3992
3993         while (bytes) {
3994                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3995                                                             exception);
3996                 unsigned offset = addr & (PAGE_SIZE-1);
3997                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3998                 int ret;
3999
4000                 if (gpa == UNMAPPED_GVA)
4001                         return X86EMUL_PROPAGATE_FAULT;
4002                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4003                                                offset, toread);
4004                 if (ret < 0) {
4005                         r = X86EMUL_IO_NEEDED;
4006                         goto out;
4007                 }
4008
4009                 bytes -= toread;
4010                 data += toread;
4011                 addr += toread;
4012         }
4013 out:
4014         return r;
4015 }
4016
4017 /* used for instruction fetching */
4018 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4019                                 gva_t addr, void *val, unsigned int bytes,
4020                                 struct x86_exception *exception)
4021 {
4022         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4023         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4024         unsigned offset;
4025         int ret;
4026
4027         /* Inline kvm_read_guest_virt_helper for speed.  */
4028         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4029                                                     exception);
4030         if (unlikely(gpa == UNMAPPED_GVA))
4031                 return X86EMUL_PROPAGATE_FAULT;
4032
4033         offset = addr & (PAGE_SIZE-1);
4034         if (WARN_ON(offset + bytes > PAGE_SIZE))
4035                 bytes = (unsigned)PAGE_SIZE - offset;
4036         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4037                                        offset, bytes);
4038         if (unlikely(ret < 0))
4039                 return X86EMUL_IO_NEEDED;
4040
4041         return X86EMUL_CONTINUE;
4042 }
4043
4044 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4045                                gva_t addr, void *val, unsigned int bytes,
4046                                struct x86_exception *exception)
4047 {
4048         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4049         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4050
4051         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4052                                           exception);
4053 }
4054 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4055
4056 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4057                                       gva_t addr, void *val, unsigned int bytes,
4058                                       struct x86_exception *exception)
4059 {
4060         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4061         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4062 }
4063
4064 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4065                                        gva_t addr, void *val,
4066                                        unsigned int bytes,
4067                                        struct x86_exception *exception)
4068 {
4069         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4070         void *data = val;
4071         int r = X86EMUL_CONTINUE;
4072
4073         while (bytes) {
4074                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4075                                                              PFERR_WRITE_MASK,
4076                                                              exception);
4077                 unsigned offset = addr & (PAGE_SIZE-1);
4078                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4079                 int ret;
4080
4081                 if (gpa == UNMAPPED_GVA)
4082                         return X86EMUL_PROPAGATE_FAULT;
4083                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4084                 if (ret < 0) {
4085                         r = X86EMUL_IO_NEEDED;
4086                         goto out;
4087                 }
4088
4089                 bytes -= towrite;
4090                 data += towrite;
4091                 addr += towrite;
4092         }
4093 out:
4094         return r;
4095 }
4096 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4097
4098 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4099                                 gpa_t *gpa, struct x86_exception *exception,
4100                                 bool write)
4101 {
4102         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4103                 | (write ? PFERR_WRITE_MASK : 0);
4104
4105         if (vcpu_match_mmio_gva(vcpu, gva)
4106             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4107                                  vcpu->arch.access, access)) {
4108                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4109                                         (gva & (PAGE_SIZE - 1));
4110                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4111                 return 1;
4112         }
4113
4114         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4115
4116         if (*gpa == UNMAPPED_GVA)
4117                 return -1;
4118
4119         /* For APIC access vmexit */
4120         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4121                 return 1;
4122
4123         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4124                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4125                 return 1;
4126         }
4127
4128         return 0;
4129 }
4130
4131 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4132                         const void *val, int bytes)
4133 {
4134         int ret;
4135
4136         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4137         if (ret < 0)
4138                 return 0;
4139         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4140         return 1;
4141 }
4142
4143 struct read_write_emulator_ops {
4144         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4145                                   int bytes);
4146         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4147                                   void *val, int bytes);
4148         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4149                                int bytes, void *val);
4150         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4151                                     void *val, int bytes);
4152         bool write;
4153 };
4154
4155 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4156 {
4157         if (vcpu->mmio_read_completed) {
4158                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4159                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4160                 vcpu->mmio_read_completed = 0;
4161                 return 1;
4162         }
4163
4164         return 0;
4165 }
4166
4167 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4168                         void *val, int bytes)
4169 {
4170         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4171 }
4172
4173 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4174                          void *val, int bytes)
4175 {
4176         return emulator_write_phys(vcpu, gpa, val, bytes);
4177 }
4178
4179 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4180 {
4181         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4182         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4183 }
4184
4185 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4186                           void *val, int bytes)
4187 {
4188         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4189         return X86EMUL_IO_NEEDED;
4190 }
4191
4192 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4193                            void *val, int bytes)
4194 {
4195         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4196
4197         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4198         return X86EMUL_CONTINUE;
4199 }
4200
4201 static const struct read_write_emulator_ops read_emultor = {
4202         .read_write_prepare = read_prepare,
4203         .read_write_emulate = read_emulate,
4204         .read_write_mmio = vcpu_mmio_read,
4205         .read_write_exit_mmio = read_exit_mmio,
4206 };
4207
4208 static const struct read_write_emulator_ops write_emultor = {
4209         .read_write_emulate = write_emulate,
4210         .read_write_mmio = write_mmio,
4211         .read_write_exit_mmio = write_exit_mmio,
4212         .write = true,
4213 };
4214
4215 static int emulator_read_write_onepage(unsigned long addr, void *val,
4216                                        unsigned int bytes,
4217                                        struct x86_exception *exception,
4218                                        struct kvm_vcpu *vcpu,
4219                                        const struct read_write_emulator_ops *ops)
4220 {
4221         gpa_t gpa;
4222         int handled, ret;
4223         bool write = ops->write;
4224         struct kvm_mmio_fragment *frag;
4225
4226         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4227
4228         if (ret < 0)
4229                 return X86EMUL_PROPAGATE_FAULT;
4230
4231         /* For APIC access vmexit */
4232         if (ret)
4233                 goto mmio;
4234
4235         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4236                 return X86EMUL_CONTINUE;
4237
4238 mmio:
4239         /*
4240          * Is this MMIO handled locally?
4241          */
4242         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4243         if (handled == bytes)
4244                 return X86EMUL_CONTINUE;
4245
4246         gpa += handled;
4247         bytes -= handled;
4248         val += handled;
4249
4250         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4251         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4252         frag->gpa = gpa;
4253         frag->data = val;
4254         frag->len = bytes;
4255         return X86EMUL_CONTINUE;
4256 }
4257
4258 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4259                         unsigned long addr,
4260                         void *val, unsigned int bytes,
4261                         struct x86_exception *exception,
4262                         const struct read_write_emulator_ops *ops)
4263 {
4264         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4265         gpa_t gpa;
4266         int rc;
4267
4268         if (ops->read_write_prepare &&
4269                   ops->read_write_prepare(vcpu, val, bytes))
4270                 return X86EMUL_CONTINUE;
4271
4272         vcpu->mmio_nr_fragments = 0;
4273
4274         /* Crossing a page boundary? */
4275         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4276                 int now;
4277
4278                 now = -addr & ~PAGE_MASK;
4279                 rc = emulator_read_write_onepage(addr, val, now, exception,
4280                                                  vcpu, ops);
4281
4282                 if (rc != X86EMUL_CONTINUE)
4283                         return rc;
4284                 addr += now;
4285                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4286                         addr = (u32)addr;
4287                 val += now;
4288                 bytes -= now;
4289         }
4290
4291         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4292                                          vcpu, ops);
4293         if (rc != X86EMUL_CONTINUE)
4294                 return rc;
4295
4296         if (!vcpu->mmio_nr_fragments)
4297                 return rc;
4298
4299         gpa = vcpu->mmio_fragments[0].gpa;
4300
4301         vcpu->mmio_needed = 1;
4302         vcpu->mmio_cur_fragment = 0;
4303
4304         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4305         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4306         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4307         vcpu->run->mmio.phys_addr = gpa;
4308
4309         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4310 }
4311
4312 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4313                                   unsigned long addr,
4314                                   void *val,
4315                                   unsigned int bytes,
4316                                   struct x86_exception *exception)
4317 {
4318         return emulator_read_write(ctxt, addr, val, bytes,
4319                                    exception, &read_emultor);
4320 }
4321
4322 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4323                             unsigned long addr,
4324                             const void *val,
4325                             unsigned int bytes,
4326                             struct x86_exception *exception)
4327 {
4328         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4329                                    exception, &write_emultor);
4330 }
4331
4332 #define CMPXCHG_TYPE(t, ptr, old, new) \
4333         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4334
4335 #ifdef CONFIG_X86_64
4336 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4337 #else
4338 #  define CMPXCHG64(ptr, old, new) \
4339         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4340 #endif
4341
4342 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4343                                      unsigned long addr,
4344                                      const void *old,
4345                                      const void *new,
4346                                      unsigned int bytes,
4347                                      struct x86_exception *exception)
4348 {
4349         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4350         gpa_t gpa;
4351         struct page *page;
4352         char *kaddr;
4353         bool exchanged;
4354
4355         /* guests cmpxchg8b have to be emulated atomically */
4356         if (bytes > 8 || (bytes & (bytes - 1)))
4357                 goto emul_write;
4358
4359         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4360
4361         if (gpa == UNMAPPED_GVA ||
4362             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4363                 goto emul_write;
4364
4365         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4366                 goto emul_write;
4367
4368         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4369         if (is_error_page(page))
4370                 goto emul_write;
4371
4372         kaddr = kmap_atomic(page);
4373         kaddr += offset_in_page(gpa);
4374         switch (bytes) {
4375         case 1:
4376                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4377                 break;
4378         case 2:
4379                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4380                 break;
4381         case 4:
4382                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4383                 break;
4384         case 8:
4385                 exchanged = CMPXCHG64(kaddr, old, new);
4386                 break;
4387         default:
4388                 BUG();
4389         }
4390         kunmap_atomic(kaddr);
4391         kvm_release_page_dirty(page);
4392
4393         if (!exchanged)
4394                 return X86EMUL_CMPXCHG_FAILED;
4395
4396         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4397         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4398
4399         return X86EMUL_CONTINUE;
4400
4401 emul_write:
4402         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4403
4404         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4405 }
4406
4407 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4408 {
4409         /* TODO: String I/O for in kernel device */
4410         int r;
4411
4412         if (vcpu->arch.pio.in)
4413                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4414                                     vcpu->arch.pio.size, pd);
4415         else
4416                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4417                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4418                                      pd);
4419         return r;
4420 }
4421
4422 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4423                                unsigned short port, void *val,
4424                                unsigned int count, bool in)
4425 {
4426         vcpu->arch.pio.port = port;
4427         vcpu->arch.pio.in = in;
4428         vcpu->arch.pio.count  = count;
4429         vcpu->arch.pio.size = size;
4430
4431         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4432                 vcpu->arch.pio.count = 0;
4433                 return 1;
4434         }
4435
4436         vcpu->run->exit_reason = KVM_EXIT_IO;
4437         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4438         vcpu->run->io.size = size;
4439         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4440         vcpu->run->io.count = count;
4441         vcpu->run->io.port = port;
4442
4443         return 0;
4444 }
4445
4446 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4447                                     int size, unsigned short port, void *val,
4448                                     unsigned int count)
4449 {
4450         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4451         int ret;
4452
4453         if (vcpu->arch.pio.count)
4454                 goto data_avail;
4455
4456         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4457         if (ret) {
4458 data_avail:
4459                 memcpy(val, vcpu->arch.pio_data, size * count);
4460                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4461                 vcpu->arch.pio.count = 0;
4462                 return 1;
4463         }
4464
4465         return 0;
4466 }
4467
4468 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4469                                      int size, unsigned short port,
4470                                      const void *val, unsigned int count)
4471 {
4472         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4473
4474         memcpy(vcpu->arch.pio_data, val, size * count);
4475         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4476         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4477 }
4478
4479 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4480 {
4481         return kvm_x86_ops->get_segment_base(vcpu, seg);
4482 }
4483
4484 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4485 {
4486         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4487 }
4488
4489 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4490 {
4491         if (!need_emulate_wbinvd(vcpu))
4492                 return X86EMUL_CONTINUE;
4493
4494         if (kvm_x86_ops->has_wbinvd_exit()) {
4495                 int cpu = get_cpu();
4496
4497                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4498                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4499                                 wbinvd_ipi, NULL, 1);
4500                 put_cpu();
4501                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4502         } else
4503                 wbinvd();
4504         return X86EMUL_CONTINUE;
4505 }
4506
4507 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4508 {
4509         kvm_x86_ops->skip_emulated_instruction(vcpu);
4510         return kvm_emulate_wbinvd_noskip(vcpu);
4511 }
4512 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4513
4514
4515
4516 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4517 {
4518         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4519 }
4520
4521 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4522                            unsigned long *dest)
4523 {
4524         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4525 }
4526
4527 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4528                            unsigned long value)
4529 {
4530
4531         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4532 }
4533
4534 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4535 {
4536         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4537 }
4538
4539 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4540 {
4541         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4542         unsigned long value;
4543
4544         switch (cr) {
4545         case 0:
4546                 value = kvm_read_cr0(vcpu);
4547                 break;
4548         case 2:
4549                 value = vcpu->arch.cr2;
4550                 break;
4551         case 3:
4552                 value = kvm_read_cr3(vcpu);
4553                 break;
4554         case 4:
4555                 value = kvm_read_cr4(vcpu);
4556                 break;
4557         case 8:
4558                 value = kvm_get_cr8(vcpu);
4559                 break;
4560         default:
4561                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4562                 return 0;
4563         }
4564
4565         return value;
4566 }
4567
4568 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4569 {
4570         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4571         int res = 0;
4572
4573         switch (cr) {
4574         case 0:
4575                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4576                 break;
4577         case 2:
4578                 vcpu->arch.cr2 = val;
4579                 break;
4580         case 3:
4581                 res = kvm_set_cr3(vcpu, val);
4582                 break;
4583         case 4:
4584                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4585                 break;
4586         case 8:
4587                 res = kvm_set_cr8(vcpu, val);
4588                 break;
4589         default:
4590                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4591                 res = -1;
4592         }
4593
4594         return res;
4595 }
4596
4597 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4598 {
4599         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4600 }
4601
4602 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4603 {
4604         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4605 }
4606
4607 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4608 {
4609         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4610 }
4611
4612 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4613 {
4614         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4615 }
4616
4617 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4618 {
4619         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4620 }
4621
4622 static unsigned long emulator_get_cached_segment_base(
4623         struct x86_emulate_ctxt *ctxt, int seg)
4624 {
4625         return get_segment_base(emul_to_vcpu(ctxt), seg);
4626 }
4627
4628 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4629                                  struct desc_struct *desc, u32 *base3,
4630                                  int seg)
4631 {
4632         struct kvm_segment var;
4633
4634         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4635         *selector = var.selector;
4636
4637         if (var.unusable) {
4638                 memset(desc, 0, sizeof(*desc));
4639                 return false;
4640         }
4641
4642         if (var.g)
4643                 var.limit >>= 12;
4644         set_desc_limit(desc, var.limit);
4645         set_desc_base(desc, (unsigned long)var.base);
4646 #ifdef CONFIG_X86_64
4647         if (base3)
4648                 *base3 = var.base >> 32;
4649 #endif
4650         desc->type = var.type;
4651         desc->s = var.s;
4652         desc->dpl = var.dpl;
4653         desc->p = var.present;
4654         desc->avl = var.avl;
4655         desc->l = var.l;
4656         desc->d = var.db;
4657         desc->g = var.g;
4658
4659         return true;
4660 }
4661
4662 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4663                                  struct desc_struct *desc, u32 base3,
4664                                  int seg)
4665 {
4666         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4667         struct kvm_segment var;
4668
4669         var.selector = selector;
4670         var.base = get_desc_base(desc);
4671 #ifdef CONFIG_X86_64
4672         var.base |= ((u64)base3) << 32;
4673 #endif
4674         var.limit = get_desc_limit(desc);
4675         if (desc->g)
4676                 var.limit = (var.limit << 12) | 0xfff;
4677         var.type = desc->type;
4678         var.dpl = desc->dpl;
4679         var.db = desc->d;
4680         var.s = desc->s;
4681         var.l = desc->l;
4682         var.g = desc->g;
4683         var.avl = desc->avl;
4684         var.present = desc->p;
4685         var.unusable = !var.present;
4686         var.padding = 0;
4687
4688         kvm_set_segment(vcpu, &var, seg);
4689         return;
4690 }
4691
4692 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4693                             u32 msr_index, u64 *pdata)
4694 {
4695         struct msr_data msr;
4696         int r;
4697
4698         msr.index = msr_index;
4699         msr.host_initiated = false;
4700         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4701         if (r)
4702                 return r;
4703
4704         *pdata = msr.data;
4705         return 0;
4706 }
4707
4708 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4709                             u32 msr_index, u64 data)
4710 {
4711         struct msr_data msr;
4712
4713         msr.data = data;
4714         msr.index = msr_index;
4715         msr.host_initiated = false;
4716         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4717 }
4718
4719 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4720 {
4721         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4722
4723         return vcpu->arch.smbase;
4724 }
4725
4726 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4727 {
4728         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4729
4730         vcpu->arch.smbase = smbase;
4731 }
4732
4733 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4734                               u32 pmc)
4735 {
4736         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4737 }
4738
4739 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4740                              u32 pmc, u64 *pdata)
4741 {
4742         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4743 }
4744
4745 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4746 {
4747         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4748 }
4749
4750 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4751 {
4752         preempt_disable();
4753         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4754         /*
4755          * CR0.TS may reference the host fpu state, not the guest fpu state,
4756          * so it may be clear at this point.
4757          */
4758         clts();
4759 }
4760
4761 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4762 {
4763         preempt_enable();
4764 }
4765
4766 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4767                               struct x86_instruction_info *info,
4768                               enum x86_intercept_stage stage)
4769 {
4770         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4771 }
4772
4773 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4774                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4775 {
4776         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4777 }
4778
4779 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4780 {
4781         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4782 }
4783
4784 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4785 {
4786         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4787 }
4788
4789 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4790 {
4791         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4792 }
4793
4794 static const struct x86_emulate_ops emulate_ops = {
4795         .read_gpr            = emulator_read_gpr,
4796         .write_gpr           = emulator_write_gpr,
4797         .read_std            = kvm_read_guest_virt_system,
4798         .write_std           = kvm_write_guest_virt_system,
4799         .fetch               = kvm_fetch_guest_virt,
4800         .read_emulated       = emulator_read_emulated,
4801         .write_emulated      = emulator_write_emulated,
4802         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4803         .invlpg              = emulator_invlpg,
4804         .pio_in_emulated     = emulator_pio_in_emulated,
4805         .pio_out_emulated    = emulator_pio_out_emulated,
4806         .get_segment         = emulator_get_segment,
4807         .set_segment         = emulator_set_segment,
4808         .get_cached_segment_base = emulator_get_cached_segment_base,
4809         .get_gdt             = emulator_get_gdt,
4810         .get_idt             = emulator_get_idt,
4811         .set_gdt             = emulator_set_gdt,
4812         .set_idt             = emulator_set_idt,
4813         .get_cr              = emulator_get_cr,
4814         .set_cr              = emulator_set_cr,
4815         .cpl                 = emulator_get_cpl,
4816         .get_dr              = emulator_get_dr,
4817         .set_dr              = emulator_set_dr,
4818         .get_smbase          = emulator_get_smbase,
4819         .set_smbase          = emulator_set_smbase,
4820         .set_msr             = emulator_set_msr,
4821         .get_msr             = emulator_get_msr,
4822         .check_pmc           = emulator_check_pmc,
4823         .read_pmc            = emulator_read_pmc,
4824         .halt                = emulator_halt,
4825         .wbinvd              = emulator_wbinvd,
4826         .fix_hypercall       = emulator_fix_hypercall,
4827         .get_fpu             = emulator_get_fpu,
4828         .put_fpu             = emulator_put_fpu,
4829         .intercept           = emulator_intercept,
4830         .get_cpuid           = emulator_get_cpuid,
4831         .set_nmi_mask        = emulator_set_nmi_mask,
4832 };
4833
4834 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4835 {
4836         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
4837         /*
4838          * an sti; sti; sequence only disable interrupts for the first
4839          * instruction. So, if the last instruction, be it emulated or
4840          * not, left the system with the INT_STI flag enabled, it
4841          * means that the last instruction is an sti. We should not
4842          * leave the flag on in this case. The same goes for mov ss
4843          */
4844         if (int_shadow & mask)
4845                 mask = 0;
4846         if (unlikely(int_shadow || mask)) {
4847                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4848                 if (!mask)
4849                         kvm_make_request(KVM_REQ_EVENT, vcpu);
4850         }
4851 }
4852
4853 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
4854 {
4855         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4856         if (ctxt->exception.vector == PF_VECTOR)
4857                 return kvm_propagate_fault(vcpu, &ctxt->exception);
4858
4859         if (ctxt->exception.error_code_valid)
4860                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4861                                       ctxt->exception.error_code);
4862         else
4863                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4864         return false;
4865 }
4866
4867 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4868 {
4869         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4870         int cs_db, cs_l;
4871
4872         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4873
4874         ctxt->eflags = kvm_get_rflags(vcpu);
4875         ctxt->eip = kvm_rip_read(vcpu);
4876         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4877                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4878                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
4879                      cs_db                              ? X86EMUL_MODE_PROT32 :
4880                                                           X86EMUL_MODE_PROT16;
4881         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
4882         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
4883         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
4884         ctxt->emul_flags = vcpu->arch.hflags;
4885
4886         init_decode_cache(ctxt);
4887         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4888 }
4889
4890 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4891 {
4892         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4893         int ret;
4894
4895         init_emulate_ctxt(vcpu);
4896
4897         ctxt->op_bytes = 2;
4898         ctxt->ad_bytes = 2;
4899         ctxt->_eip = ctxt->eip + inc_eip;
4900         ret = emulate_int_real(ctxt, irq);
4901
4902         if (ret != X86EMUL_CONTINUE)
4903                 return EMULATE_FAIL;
4904
4905         ctxt->eip = ctxt->_eip;
4906         kvm_rip_write(vcpu, ctxt->eip);
4907         kvm_set_rflags(vcpu, ctxt->eflags);
4908
4909         if (irq == NMI_VECTOR)
4910                 vcpu->arch.nmi_pending = 0;
4911         else
4912                 vcpu->arch.interrupt.pending = false;
4913
4914         return EMULATE_DONE;
4915 }
4916 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4917
4918 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4919 {
4920         int r = EMULATE_DONE;
4921
4922         ++vcpu->stat.insn_emulation_fail;
4923         trace_kvm_emulate_insn_failed(vcpu);
4924         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
4925                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4926                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4927                 vcpu->run->internal.ndata = 0;
4928                 r = EMULATE_FAIL;
4929         }
4930         kvm_queue_exception(vcpu, UD_VECTOR);
4931
4932         return r;
4933 }
4934
4935 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4936                                   bool write_fault_to_shadow_pgtable,
4937                                   int emulation_type)
4938 {
4939         gpa_t gpa = cr2;
4940         pfn_t pfn;
4941
4942         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4943                 return false;
4944
4945         if (!vcpu->arch.mmu.direct_map) {
4946                 /*
4947                  * Write permission should be allowed since only
4948                  * write access need to be emulated.
4949                  */
4950                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4951
4952                 /*
4953                  * If the mapping is invalid in guest, let cpu retry
4954                  * it to generate fault.
4955                  */
4956                 if (gpa == UNMAPPED_GVA)
4957                         return true;
4958         }
4959
4960         /*
4961          * Do not retry the unhandleable instruction if it faults on the
4962          * readonly host memory, otherwise it will goto a infinite loop:
4963          * retry instruction -> write #PF -> emulation fail -> retry
4964          * instruction -> ...
4965          */
4966         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4967
4968         /*
4969          * If the instruction failed on the error pfn, it can not be fixed,
4970          * report the error to userspace.
4971          */
4972         if (is_error_noslot_pfn(pfn))
4973                 return false;
4974
4975         kvm_release_pfn_clean(pfn);
4976
4977         /* The instructions are well-emulated on direct mmu. */
4978         if (vcpu->arch.mmu.direct_map) {
4979                 unsigned int indirect_shadow_pages;
4980
4981                 spin_lock(&vcpu->kvm->mmu_lock);
4982                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4983                 spin_unlock(&vcpu->kvm->mmu_lock);
4984
4985                 if (indirect_shadow_pages)
4986                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4987
4988                 return true;
4989         }
4990
4991         /*
4992          * if emulation was due to access to shadowed page table
4993          * and it failed try to unshadow page and re-enter the
4994          * guest to let CPU execute the instruction.
4995          */
4996         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4997
4998         /*
4999          * If the access faults on its page table, it can not
5000          * be fixed by unprotecting shadow page and it should
5001          * be reported to userspace.
5002          */
5003         return !write_fault_to_shadow_pgtable;
5004 }
5005
5006 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5007                               unsigned long cr2,  int emulation_type)
5008 {
5009         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5010         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5011
5012         last_retry_eip = vcpu->arch.last_retry_eip;
5013         last_retry_addr = vcpu->arch.last_retry_addr;
5014
5015         /*
5016          * If the emulation is caused by #PF and it is non-page_table
5017          * writing instruction, it means the VM-EXIT is caused by shadow
5018          * page protected, we can zap the shadow page and retry this
5019          * instruction directly.
5020          *
5021          * Note: if the guest uses a non-page-table modifying instruction
5022          * on the PDE that points to the instruction, then we will unmap
5023          * the instruction and go to an infinite loop. So, we cache the
5024          * last retried eip and the last fault address, if we meet the eip
5025          * and the address again, we can break out of the potential infinite
5026          * loop.
5027          */
5028         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5029
5030         if (!(emulation_type & EMULTYPE_RETRY))
5031                 return false;
5032
5033         if (x86_page_table_writing_insn(ctxt))
5034                 return false;
5035
5036         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5037                 return false;
5038
5039         vcpu->arch.last_retry_eip = ctxt->eip;
5040         vcpu->arch.last_retry_addr = cr2;
5041
5042         if (!vcpu->arch.mmu.direct_map)
5043                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5044
5045         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5046
5047         return true;
5048 }
5049
5050 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5051 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5052
5053 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5054 {
5055         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5056                 /* This is a good place to trace that we are exiting SMM.  */
5057                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5058
5059                 if (unlikely(vcpu->arch.smi_pending)) {
5060                         kvm_make_request(KVM_REQ_SMI, vcpu);
5061                         vcpu->arch.smi_pending = 0;
5062                 } else {
5063                         /* Process a latched INIT, if any.  */
5064                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5065                 }
5066         }
5067
5068         kvm_mmu_reset_context(vcpu);
5069 }
5070
5071 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5072 {
5073         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5074
5075         vcpu->arch.hflags = emul_flags;
5076
5077         if (changed & HF_SMM_MASK)
5078                 kvm_smm_changed(vcpu);
5079 }
5080
5081 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5082                                 unsigned long *db)
5083 {
5084         u32 dr6 = 0;
5085         int i;
5086         u32 enable, rwlen;
5087
5088         enable = dr7;
5089         rwlen = dr7 >> 16;
5090         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5091                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5092                         dr6 |= (1 << i);
5093         return dr6;
5094 }
5095
5096 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5097 {
5098         struct kvm_run *kvm_run = vcpu->run;
5099
5100         /*
5101          * rflags is the old, "raw" value of the flags.  The new value has
5102          * not been saved yet.
5103          *
5104          * This is correct even for TF set by the guest, because "the
5105          * processor will not generate this exception after the instruction
5106          * that sets the TF flag".
5107          */
5108         if (unlikely(rflags & X86_EFLAGS_TF)) {
5109                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5110                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5111                                                   DR6_RTM;
5112                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5113                         kvm_run->debug.arch.exception = DB_VECTOR;
5114                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5115                         *r = EMULATE_USER_EXIT;
5116                 } else {
5117                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5118                         /*
5119                          * "Certain debug exceptions may clear bit 0-3.  The
5120                          * remaining contents of the DR6 register are never
5121                          * cleared by the processor".
5122                          */
5123                         vcpu->arch.dr6 &= ~15;
5124                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5125                         kvm_queue_exception(vcpu, DB_VECTOR);
5126                 }
5127         }
5128 }
5129
5130 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5131 {
5132         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5133             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5134                 struct kvm_run *kvm_run = vcpu->run;
5135                 unsigned long eip = kvm_get_linear_rip(vcpu);
5136                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5137                                            vcpu->arch.guest_debug_dr7,
5138                                            vcpu->arch.eff_db);
5139
5140                 if (dr6 != 0) {
5141                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5142                         kvm_run->debug.arch.pc = eip;
5143                         kvm_run->debug.arch.exception = DB_VECTOR;
5144                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5145                         *r = EMULATE_USER_EXIT;
5146                         return true;
5147                 }
5148         }
5149
5150         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5151             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5152                 unsigned long eip = kvm_get_linear_rip(vcpu);
5153                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5154                                            vcpu->arch.dr7,
5155                                            vcpu->arch.db);
5156
5157                 if (dr6 != 0) {
5158                         vcpu->arch.dr6 &= ~15;
5159                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5160                         kvm_queue_exception(vcpu, DB_VECTOR);
5161                         *r = EMULATE_DONE;
5162                         return true;
5163                 }
5164         }
5165
5166         return false;
5167 }
5168
5169 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5170                             unsigned long cr2,
5171                             int emulation_type,
5172                             void *insn,
5173                             int insn_len)
5174 {
5175         int r;
5176         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5177         bool writeback = true;
5178         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5179
5180         /*
5181          * Clear write_fault_to_shadow_pgtable here to ensure it is
5182          * never reused.
5183          */
5184         vcpu->arch.write_fault_to_shadow_pgtable = false;
5185         kvm_clear_exception_queue(vcpu);
5186
5187         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5188                 init_emulate_ctxt(vcpu);
5189
5190                 /*
5191                  * We will reenter on the same instruction since
5192                  * we do not set complete_userspace_io.  This does not
5193                  * handle watchpoints yet, those would be handled in
5194                  * the emulate_ops.
5195                  */
5196                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5197                         return r;
5198
5199                 ctxt->interruptibility = 0;
5200                 ctxt->have_exception = false;
5201                 ctxt->exception.vector = -1;
5202                 ctxt->perm_ok = false;
5203
5204                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5205
5206                 r = x86_decode_insn(ctxt, insn, insn_len);
5207
5208                 trace_kvm_emulate_insn_start(vcpu);
5209                 ++vcpu->stat.insn_emulation;
5210                 if (r != EMULATION_OK)  {
5211                         if (emulation_type & EMULTYPE_TRAP_UD)
5212                                 return EMULATE_FAIL;
5213                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5214                                                 emulation_type))
5215                                 return EMULATE_DONE;
5216                         if (emulation_type & EMULTYPE_SKIP)
5217                                 return EMULATE_FAIL;
5218                         return handle_emulation_failure(vcpu);
5219                 }
5220         }
5221
5222         if (emulation_type & EMULTYPE_SKIP) {
5223                 kvm_rip_write(vcpu, ctxt->_eip);
5224                 if (ctxt->eflags & X86_EFLAGS_RF)
5225                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5226                 return EMULATE_DONE;
5227         }
5228
5229         if (retry_instruction(ctxt, cr2, emulation_type))
5230                 return EMULATE_DONE;
5231
5232         /* this is needed for vmware backdoor interface to work since it
5233            changes registers values  during IO operation */
5234         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5235                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5236                 emulator_invalidate_register_cache(ctxt);
5237         }
5238
5239 restart:
5240         r = x86_emulate_insn(ctxt);
5241
5242         if (r == EMULATION_INTERCEPTED)
5243                 return EMULATE_DONE;
5244
5245         if (r == EMULATION_FAILED) {
5246                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5247                                         emulation_type))
5248                         return EMULATE_DONE;
5249
5250                 return handle_emulation_failure(vcpu);
5251         }
5252
5253         if (ctxt->have_exception) {
5254                 r = EMULATE_DONE;
5255                 if (inject_emulated_exception(vcpu))
5256                         return r;
5257         } else if (vcpu->arch.pio.count) {
5258                 if (!vcpu->arch.pio.in) {
5259                         /* FIXME: return into emulator if single-stepping.  */
5260                         vcpu->arch.pio.count = 0;
5261                 } else {
5262                         writeback = false;
5263                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5264                 }
5265                 r = EMULATE_USER_EXIT;
5266         } else if (vcpu->mmio_needed) {
5267                 if (!vcpu->mmio_is_write)
5268                         writeback = false;
5269                 r = EMULATE_USER_EXIT;
5270                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5271         } else if (r == EMULATION_RESTART)
5272                 goto restart;
5273         else
5274                 r = EMULATE_DONE;
5275
5276         if (writeback) {
5277                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5278                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5279                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5280                 if (vcpu->arch.hflags != ctxt->emul_flags)
5281                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5282                 kvm_rip_write(vcpu, ctxt->eip);
5283                 if (r == EMULATE_DONE)
5284                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5285                 if (!ctxt->have_exception ||
5286                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5287                         __kvm_set_rflags(vcpu, ctxt->eflags);
5288
5289                 /*
5290                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5291                  * do nothing, and it will be requested again as soon as
5292                  * the shadow expires.  But we still need to check here,
5293                  * because POPF has no interrupt shadow.
5294                  */
5295                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5296                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5297         } else
5298                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5299
5300         return r;
5301 }
5302 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5303
5304 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5305 {
5306         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5307         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5308                                             size, port, &val, 1);
5309         /* do not return to emulator after return from userspace */
5310         vcpu->arch.pio.count = 0;
5311         return ret;
5312 }
5313 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5314
5315 static void tsc_bad(void *info)
5316 {
5317         __this_cpu_write(cpu_tsc_khz, 0);
5318 }
5319
5320 static void tsc_khz_changed(void *data)
5321 {
5322         struct cpufreq_freqs *freq = data;
5323         unsigned long khz = 0;
5324
5325         if (data)
5326                 khz = freq->new;
5327         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5328                 khz = cpufreq_quick_get(raw_smp_processor_id());
5329         if (!khz)
5330                 khz = tsc_khz;
5331         __this_cpu_write(cpu_tsc_khz, khz);
5332 }
5333
5334 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5335                                      void *data)
5336 {
5337         struct cpufreq_freqs *freq = data;
5338         struct kvm *kvm;
5339         struct kvm_vcpu *vcpu;
5340         int i, send_ipi = 0;
5341
5342         /*
5343          * We allow guests to temporarily run on slowing clocks,
5344          * provided we notify them after, or to run on accelerating
5345          * clocks, provided we notify them before.  Thus time never
5346          * goes backwards.
5347          *
5348          * However, we have a problem.  We can't atomically update
5349          * the frequency of a given CPU from this function; it is
5350          * merely a notifier, which can be called from any CPU.
5351          * Changing the TSC frequency at arbitrary points in time
5352          * requires a recomputation of local variables related to
5353          * the TSC for each VCPU.  We must flag these local variables
5354          * to be updated and be sure the update takes place with the
5355          * new frequency before any guests proceed.
5356          *
5357          * Unfortunately, the combination of hotplug CPU and frequency
5358          * change creates an intractable locking scenario; the order
5359          * of when these callouts happen is undefined with respect to
5360          * CPU hotplug, and they can race with each other.  As such,
5361          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5362          * undefined; you can actually have a CPU frequency change take
5363          * place in between the computation of X and the setting of the
5364          * variable.  To protect against this problem, all updates of
5365          * the per_cpu tsc_khz variable are done in an interrupt
5366          * protected IPI, and all callers wishing to update the value
5367          * must wait for a synchronous IPI to complete (which is trivial
5368          * if the caller is on the CPU already).  This establishes the
5369          * necessary total order on variable updates.
5370          *
5371          * Note that because a guest time update may take place
5372          * anytime after the setting of the VCPU's request bit, the
5373          * correct TSC value must be set before the request.  However,
5374          * to ensure the update actually makes it to any guest which
5375          * starts running in hardware virtualization between the set
5376          * and the acquisition of the spinlock, we must also ping the
5377          * CPU after setting the request bit.
5378          *
5379          */
5380
5381         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5382                 return 0;
5383         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5384                 return 0;
5385
5386         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5387
5388         spin_lock(&kvm_lock);
5389         list_for_each_entry(kvm, &vm_list, vm_list) {
5390                 kvm_for_each_vcpu(i, vcpu, kvm) {
5391                         if (vcpu->cpu != freq->cpu)
5392                                 continue;
5393                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5394                         if (vcpu->cpu != smp_processor_id())
5395                                 send_ipi = 1;
5396                 }
5397         }
5398         spin_unlock(&kvm_lock);
5399
5400         if (freq->old < freq->new && send_ipi) {
5401                 /*
5402                  * We upscale the frequency.  Must make the guest
5403                  * doesn't see old kvmclock values while running with
5404                  * the new frequency, otherwise we risk the guest sees
5405                  * time go backwards.
5406                  *
5407                  * In case we update the frequency for another cpu
5408                  * (which might be in guest context) send an interrupt
5409                  * to kick the cpu out of guest context.  Next time
5410                  * guest context is entered kvmclock will be updated,
5411                  * so the guest will not see stale values.
5412                  */
5413                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5414         }
5415         return 0;
5416 }
5417
5418 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5419         .notifier_call  = kvmclock_cpufreq_notifier
5420 };
5421
5422 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5423                                         unsigned long action, void *hcpu)
5424 {
5425         unsigned int cpu = (unsigned long)hcpu;
5426
5427         switch (action) {
5428                 case CPU_ONLINE:
5429                 case CPU_DOWN_FAILED:
5430                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5431                         break;
5432                 case CPU_DOWN_PREPARE:
5433                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5434                         break;
5435         }
5436         return NOTIFY_OK;
5437 }
5438
5439 static struct notifier_block kvmclock_cpu_notifier_block = {
5440         .notifier_call  = kvmclock_cpu_notifier,
5441         .priority = -INT_MAX
5442 };
5443
5444 static void kvm_timer_init(void)
5445 {
5446         int cpu;
5447
5448         max_tsc_khz = tsc_khz;
5449
5450         cpu_notifier_register_begin();
5451         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5452 #ifdef CONFIG_CPU_FREQ
5453                 struct cpufreq_policy policy;
5454                 memset(&policy, 0, sizeof(policy));
5455                 cpu = get_cpu();
5456                 cpufreq_get_policy(&policy, cpu);
5457                 if (policy.cpuinfo.max_freq)
5458                         max_tsc_khz = policy.cpuinfo.max_freq;
5459                 put_cpu();
5460 #endif
5461                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5462                                           CPUFREQ_TRANSITION_NOTIFIER);
5463         }
5464         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5465         for_each_online_cpu(cpu)
5466                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5467
5468         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5469         cpu_notifier_register_done();
5470
5471 }
5472
5473 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5474
5475 int kvm_is_in_guest(void)
5476 {
5477         return __this_cpu_read(current_vcpu) != NULL;
5478 }
5479
5480 static int kvm_is_user_mode(void)
5481 {
5482         int user_mode = 3;
5483
5484         if (__this_cpu_read(current_vcpu))
5485                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5486
5487         return user_mode != 0;
5488 }
5489
5490 static unsigned long kvm_get_guest_ip(void)
5491 {
5492         unsigned long ip = 0;
5493
5494         if (__this_cpu_read(current_vcpu))
5495                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5496
5497         return ip;
5498 }
5499
5500 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5501         .is_in_guest            = kvm_is_in_guest,
5502         .is_user_mode           = kvm_is_user_mode,
5503         .get_guest_ip           = kvm_get_guest_ip,
5504 };
5505
5506 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5507 {
5508         __this_cpu_write(current_vcpu, vcpu);
5509 }
5510 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5511
5512 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5513 {
5514         __this_cpu_write(current_vcpu, NULL);
5515 }
5516 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5517
5518 static void kvm_set_mmio_spte_mask(void)
5519 {
5520         u64 mask;
5521         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5522
5523         /*
5524          * Set the reserved bits and the present bit of an paging-structure
5525          * entry to generate page fault with PFER.RSV = 1.
5526          */
5527          /* Mask the reserved physical address bits. */
5528         mask = rsvd_bits(maxphyaddr, 51);
5529
5530         /* Bit 62 is always reserved for 32bit host. */
5531         mask |= 0x3ull << 62;
5532
5533         /* Set the present bit. */
5534         mask |= 1ull;
5535
5536 #ifdef CONFIG_X86_64
5537         /*
5538          * If reserved bit is not supported, clear the present bit to disable
5539          * mmio page fault.
5540          */
5541         if (maxphyaddr == 52)
5542                 mask &= ~1ull;
5543 #endif
5544
5545         kvm_mmu_set_mmio_spte_mask(mask);
5546 }
5547
5548 #ifdef CONFIG_X86_64
5549 static void pvclock_gtod_update_fn(struct work_struct *work)
5550 {
5551         struct kvm *kvm;
5552
5553         struct kvm_vcpu *vcpu;
5554         int i;
5555
5556         spin_lock(&kvm_lock);
5557         list_for_each_entry(kvm, &vm_list, vm_list)
5558                 kvm_for_each_vcpu(i, vcpu, kvm)
5559                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5560         atomic_set(&kvm_guest_has_master_clock, 0);
5561         spin_unlock(&kvm_lock);
5562 }
5563
5564 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5565
5566 /*
5567  * Notification about pvclock gtod data update.
5568  */
5569 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5570                                void *priv)
5571 {
5572         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5573         struct timekeeper *tk = priv;
5574
5575         update_pvclock_gtod(tk);
5576
5577         /* disable master clock if host does not trust, or does not
5578          * use, TSC clocksource
5579          */
5580         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5581             atomic_read(&kvm_guest_has_master_clock) != 0)
5582                 queue_work(system_long_wq, &pvclock_gtod_work);
5583
5584         return 0;
5585 }
5586
5587 static struct notifier_block pvclock_gtod_notifier = {
5588         .notifier_call = pvclock_gtod_notify,
5589 };
5590 #endif
5591
5592 int kvm_arch_init(void *opaque)
5593 {
5594         int r;
5595         struct kvm_x86_ops *ops = opaque;
5596
5597         if (kvm_x86_ops) {
5598                 printk(KERN_ERR "kvm: already loaded the other module\n");
5599                 r = -EEXIST;
5600                 goto out;
5601         }
5602
5603         if (!ops->cpu_has_kvm_support()) {
5604                 printk(KERN_ERR "kvm: no hardware support\n");
5605                 r = -EOPNOTSUPP;
5606                 goto out;
5607         }
5608         if (ops->disabled_by_bios()) {
5609                 printk(KERN_ERR "kvm: disabled by bios\n");
5610                 r = -EOPNOTSUPP;
5611                 goto out;
5612         }
5613
5614         r = -ENOMEM;
5615         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5616         if (!shared_msrs) {
5617                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5618                 goto out;
5619         }
5620
5621         r = kvm_mmu_module_init();
5622         if (r)
5623                 goto out_free_percpu;
5624
5625         kvm_set_mmio_spte_mask();
5626
5627         kvm_x86_ops = ops;
5628
5629         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5630                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5631
5632         kvm_timer_init();
5633
5634         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5635
5636         if (cpu_has_xsave)
5637                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5638
5639         kvm_lapic_init();
5640 #ifdef CONFIG_X86_64
5641         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5642 #endif
5643
5644         return 0;
5645
5646 out_free_percpu:
5647         free_percpu(shared_msrs);
5648 out:
5649         return r;
5650 }
5651
5652 void kvm_arch_exit(void)
5653 {
5654         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5655
5656         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5657                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5658                                             CPUFREQ_TRANSITION_NOTIFIER);
5659         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5660 #ifdef CONFIG_X86_64
5661         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5662 #endif
5663         kvm_x86_ops = NULL;
5664         kvm_mmu_module_exit();
5665         free_percpu(shared_msrs);
5666 }
5667
5668 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5669 {
5670         ++vcpu->stat.halt_exits;
5671         if (irqchip_in_kernel(vcpu->kvm)) {
5672                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5673                 return 1;
5674         } else {
5675                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5676                 return 0;
5677         }
5678 }
5679 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5680
5681 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5682 {
5683         kvm_x86_ops->skip_emulated_instruction(vcpu);
5684         return kvm_vcpu_halt(vcpu);
5685 }
5686 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5687
5688 /*
5689  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5690  *
5691  * @apicid - apicid of vcpu to be kicked.
5692  */
5693 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5694 {
5695         struct kvm_lapic_irq lapic_irq;
5696
5697         lapic_irq.shorthand = 0;
5698         lapic_irq.dest_mode = 0;
5699         lapic_irq.dest_id = apicid;
5700         lapic_irq.msi_redir_hint = false;
5701
5702         lapic_irq.delivery_mode = APIC_DM_REMRD;
5703         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5704 }
5705
5706 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5707 {
5708         unsigned long nr, a0, a1, a2, a3, ret;
5709         int op_64_bit, r = 1;
5710
5711         kvm_x86_ops->skip_emulated_instruction(vcpu);
5712
5713         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5714                 return kvm_hv_hypercall(vcpu);
5715
5716         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5717         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5718         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5719         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5720         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5721
5722         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5723
5724         op_64_bit = is_64_bit_mode(vcpu);
5725         if (!op_64_bit) {
5726                 nr &= 0xFFFFFFFF;
5727                 a0 &= 0xFFFFFFFF;
5728                 a1 &= 0xFFFFFFFF;
5729                 a2 &= 0xFFFFFFFF;
5730                 a3 &= 0xFFFFFFFF;
5731         }
5732
5733         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5734                 ret = -KVM_EPERM;
5735                 goto out;
5736         }
5737
5738         switch (nr) {
5739         case KVM_HC_VAPIC_POLL_IRQ:
5740                 ret = 0;
5741                 break;
5742         case KVM_HC_KICK_CPU:
5743                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5744                 ret = 0;
5745                 break;
5746         default:
5747                 ret = -KVM_ENOSYS;
5748                 break;
5749         }
5750 out:
5751         if (!op_64_bit)
5752                 ret = (u32)ret;
5753         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5754         ++vcpu->stat.hypercalls;
5755         return r;
5756 }
5757 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5758
5759 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5760 {
5761         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5762         char instruction[3];
5763         unsigned long rip = kvm_rip_read(vcpu);
5764
5765         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5766
5767         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5768 }
5769
5770 /*
5771  * Check if userspace requested an interrupt window, and that the
5772  * interrupt window is open.
5773  *
5774  * No need to exit to userspace if we already have an interrupt queued.
5775  */
5776 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5777 {
5778         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5779                 vcpu->run->request_interrupt_window &&
5780                 kvm_arch_interrupt_allowed(vcpu));
5781 }
5782
5783 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5784 {
5785         struct kvm_run *kvm_run = vcpu->run;
5786
5787         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5788         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5789         kvm_run->cr8 = kvm_get_cr8(vcpu);
5790         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5791         if (irqchip_in_kernel(vcpu->kvm))
5792                 kvm_run->ready_for_interrupt_injection = 1;
5793         else
5794                 kvm_run->ready_for_interrupt_injection =
5795                         kvm_arch_interrupt_allowed(vcpu) &&
5796                         !kvm_cpu_has_interrupt(vcpu) &&
5797                         !kvm_event_needs_reinjection(vcpu);
5798 }
5799
5800 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5801 {
5802         int max_irr, tpr;
5803
5804         if (!kvm_x86_ops->update_cr8_intercept)
5805                 return;
5806
5807         if (!vcpu->arch.apic)
5808                 return;
5809
5810         if (!vcpu->arch.apic->vapic_addr)
5811                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5812         else
5813                 max_irr = -1;
5814
5815         if (max_irr != -1)
5816                 max_irr >>= 4;
5817
5818         tpr = kvm_lapic_get_cr8(vcpu);
5819
5820         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5821 }
5822
5823 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
5824 {
5825         int r;
5826
5827         /* try to reinject previous events if any */
5828         if (vcpu->arch.exception.pending) {
5829                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5830                                         vcpu->arch.exception.has_error_code,
5831                                         vcpu->arch.exception.error_code);
5832
5833                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
5834                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
5835                                              X86_EFLAGS_RF);
5836
5837                 if (vcpu->arch.exception.nr == DB_VECTOR &&
5838                     (vcpu->arch.dr7 & DR7_GD)) {
5839                         vcpu->arch.dr7 &= ~DR7_GD;
5840                         kvm_update_dr7(vcpu);
5841                 }
5842
5843                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5844                                           vcpu->arch.exception.has_error_code,
5845                                           vcpu->arch.exception.error_code,
5846                                           vcpu->arch.exception.reinject);
5847                 return 0;
5848         }
5849
5850         if (vcpu->arch.nmi_injected) {
5851                 kvm_x86_ops->set_nmi(vcpu);
5852                 return 0;
5853         }
5854
5855         if (vcpu->arch.interrupt.pending) {
5856                 kvm_x86_ops->set_irq(vcpu);
5857                 return 0;
5858         }
5859
5860         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5861                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5862                 if (r != 0)
5863                         return r;
5864         }
5865
5866         /* try to inject new event if pending */
5867         if (vcpu->arch.nmi_pending) {
5868                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5869                         --vcpu->arch.nmi_pending;
5870                         vcpu->arch.nmi_injected = true;
5871                         kvm_x86_ops->set_nmi(vcpu);
5872                 }
5873         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5874                 /*
5875                  * Because interrupts can be injected asynchronously, we are
5876                  * calling check_nested_events again here to avoid a race condition.
5877                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
5878                  * proposal and current concerns.  Perhaps we should be setting
5879                  * KVM_REQ_EVENT only on certain events and not unconditionally?
5880                  */
5881                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
5882                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
5883                         if (r != 0)
5884                                 return r;
5885                 }
5886                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5887                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5888                                             false);
5889                         kvm_x86_ops->set_irq(vcpu);
5890                 }
5891         }
5892         return 0;
5893 }
5894
5895 static void process_nmi(struct kvm_vcpu *vcpu)
5896 {
5897         unsigned limit = 2;
5898
5899         /*
5900          * x86 is limited to one NMI running, and one NMI pending after it.
5901          * If an NMI is already in progress, limit further NMIs to just one.
5902          * Otherwise, allow two (and we'll inject the first one immediately).
5903          */
5904         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5905                 limit = 1;
5906
5907         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5908         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5909         kvm_make_request(KVM_REQ_EVENT, vcpu);
5910 }
5911
5912 #define put_smstate(type, buf, offset, val)                       \
5913         *(type *)((buf) + (offset) - 0x7e00) = val
5914
5915 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
5916 {
5917         u32 flags = 0;
5918         flags |= seg->g       << 23;
5919         flags |= seg->db      << 22;
5920         flags |= seg->l       << 21;
5921         flags |= seg->avl     << 20;
5922         flags |= seg->present << 15;
5923         flags |= seg->dpl     << 13;
5924         flags |= seg->s       << 12;
5925         flags |= seg->type    << 8;
5926         return flags;
5927 }
5928
5929 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
5930 {
5931         struct kvm_segment seg;
5932         int offset;
5933
5934         kvm_get_segment(vcpu, &seg, n);
5935         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
5936
5937         if (n < 3)
5938                 offset = 0x7f84 + n * 12;
5939         else
5940                 offset = 0x7f2c + (n - 3) * 12;
5941
5942         put_smstate(u32, buf, offset + 8, seg.base);
5943         put_smstate(u32, buf, offset + 4, seg.limit);
5944         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
5945 }
5946
5947 #ifdef CONFIG_X86_64
5948 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
5949 {
5950         struct kvm_segment seg;
5951         int offset;
5952         u16 flags;
5953
5954         kvm_get_segment(vcpu, &seg, n);
5955         offset = 0x7e00 + n * 16;
5956
5957         flags = process_smi_get_segment_flags(&seg) >> 8;
5958         put_smstate(u16, buf, offset, seg.selector);
5959         put_smstate(u16, buf, offset + 2, flags);
5960         put_smstate(u32, buf, offset + 4, seg.limit);
5961         put_smstate(u64, buf, offset + 8, seg.base);
5962 }
5963 #endif
5964
5965 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
5966 {
5967         struct desc_ptr dt;
5968         struct kvm_segment seg;
5969         unsigned long val;
5970         int i;
5971
5972         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
5973         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
5974         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
5975         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
5976
5977         for (i = 0; i < 8; i++)
5978                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
5979
5980         kvm_get_dr(vcpu, 6, &val);
5981         put_smstate(u32, buf, 0x7fcc, (u32)val);
5982         kvm_get_dr(vcpu, 7, &val);
5983         put_smstate(u32, buf, 0x7fc8, (u32)val);
5984
5985         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
5986         put_smstate(u32, buf, 0x7fc4, seg.selector);
5987         put_smstate(u32, buf, 0x7f64, seg.base);
5988         put_smstate(u32, buf, 0x7f60, seg.limit);
5989         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
5990
5991         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
5992         put_smstate(u32, buf, 0x7fc0, seg.selector);
5993         put_smstate(u32, buf, 0x7f80, seg.base);
5994         put_smstate(u32, buf, 0x7f7c, seg.limit);
5995         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
5996
5997         kvm_x86_ops->get_gdt(vcpu, &dt);
5998         put_smstate(u32, buf, 0x7f74, dt.address);
5999         put_smstate(u32, buf, 0x7f70, dt.size);
6000
6001         kvm_x86_ops->get_idt(vcpu, &dt);
6002         put_smstate(u32, buf, 0x7f58, dt.address);
6003         put_smstate(u32, buf, 0x7f54, dt.size);
6004
6005         for (i = 0; i < 6; i++)
6006                 process_smi_save_seg_32(vcpu, buf, i);
6007
6008         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6009
6010         /* revision id */
6011         put_smstate(u32, buf, 0x7efc, 0x00020000);
6012         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6013 }
6014
6015 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6016 {
6017 #ifdef CONFIG_X86_64
6018         struct desc_ptr dt;
6019         struct kvm_segment seg;
6020         unsigned long val;
6021         int i;
6022
6023         for (i = 0; i < 16; i++)
6024                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6025
6026         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6027         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6028
6029         kvm_get_dr(vcpu, 6, &val);
6030         put_smstate(u64, buf, 0x7f68, val);
6031         kvm_get_dr(vcpu, 7, &val);
6032         put_smstate(u64, buf, 0x7f60, val);
6033
6034         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6035         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6036         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6037
6038         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6039
6040         /* revision id */
6041         put_smstate(u32, buf, 0x7efc, 0x00020064);
6042
6043         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6044
6045         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6046         put_smstate(u16, buf, 0x7e90, seg.selector);
6047         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6048         put_smstate(u32, buf, 0x7e94, seg.limit);
6049         put_smstate(u64, buf, 0x7e98, seg.base);
6050
6051         kvm_x86_ops->get_idt(vcpu, &dt);
6052         put_smstate(u32, buf, 0x7e84, dt.size);
6053         put_smstate(u64, buf, 0x7e88, dt.address);
6054
6055         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6056         put_smstate(u16, buf, 0x7e70, seg.selector);
6057         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6058         put_smstate(u32, buf, 0x7e74, seg.limit);
6059         put_smstate(u64, buf, 0x7e78, seg.base);
6060
6061         kvm_x86_ops->get_gdt(vcpu, &dt);
6062         put_smstate(u32, buf, 0x7e64, dt.size);
6063         put_smstate(u64, buf, 0x7e68, dt.address);
6064
6065         for (i = 0; i < 6; i++)
6066                 process_smi_save_seg_64(vcpu, buf, i);
6067 #else
6068         WARN_ON_ONCE(1);
6069 #endif
6070 }
6071
6072 static void process_smi(struct kvm_vcpu *vcpu)
6073 {
6074         struct kvm_segment cs, ds;
6075         struct desc_ptr dt;
6076         char buf[512];
6077         u32 cr0;
6078
6079         if (is_smm(vcpu)) {
6080                 vcpu->arch.smi_pending = true;
6081                 return;
6082         }
6083
6084         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6085         vcpu->arch.hflags |= HF_SMM_MASK;
6086         memset(buf, 0, 512);
6087         if (guest_cpuid_has_longmode(vcpu))
6088                 process_smi_save_state_64(vcpu, buf);
6089         else
6090                 process_smi_save_state_32(vcpu, buf);
6091
6092         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6093
6094         if (kvm_x86_ops->get_nmi_mask(vcpu))
6095                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6096         else
6097                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6098
6099         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6100         kvm_rip_write(vcpu, 0x8000);
6101
6102         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6103         kvm_x86_ops->set_cr0(vcpu, cr0);
6104         vcpu->arch.cr0 = cr0;
6105
6106         kvm_x86_ops->set_cr4(vcpu, 0);
6107
6108         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6109         dt.address = dt.size = 0;
6110         kvm_x86_ops->set_idt(vcpu, &dt);
6111
6112         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6113
6114         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6115         cs.base = vcpu->arch.smbase;
6116
6117         ds.selector = 0;
6118         ds.base = 0;
6119
6120         cs.limit    = ds.limit = 0xffffffff;
6121         cs.type     = ds.type = 0x3;
6122         cs.dpl      = ds.dpl = 0;
6123         cs.db       = ds.db = 0;
6124         cs.s        = ds.s = 1;
6125         cs.l        = ds.l = 0;
6126         cs.g        = ds.g = 1;
6127         cs.avl      = ds.avl = 0;
6128         cs.present  = ds.present = 1;
6129         cs.unusable = ds.unusable = 0;
6130         cs.padding  = ds.padding = 0;
6131
6132         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6133         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6134         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6135         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6136         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6137         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6138
6139         if (guest_cpuid_has_longmode(vcpu))
6140                 kvm_x86_ops->set_efer(vcpu, 0);
6141
6142         kvm_update_cpuid(vcpu);
6143         kvm_mmu_reset_context(vcpu);
6144 }
6145
6146 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6147 {
6148         u64 eoi_exit_bitmap[4];
6149         u32 tmr[8];
6150
6151         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6152                 return;
6153
6154         memset(eoi_exit_bitmap, 0, 32);
6155         memset(tmr, 0, 32);
6156
6157         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
6158         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6159         kvm_apic_update_tmr(vcpu, tmr);
6160 }
6161
6162 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6163 {
6164         ++vcpu->stat.tlb_flush;
6165         kvm_x86_ops->tlb_flush(vcpu);
6166 }
6167
6168 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6169 {
6170         struct page *page = NULL;
6171
6172         if (!irqchip_in_kernel(vcpu->kvm))
6173                 return;
6174
6175         if (!kvm_x86_ops->set_apic_access_page_addr)
6176                 return;
6177
6178         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6179         if (is_error_page(page))
6180                 return;
6181         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6182
6183         /*
6184          * Do not pin apic access page in memory, the MMU notifier
6185          * will call us again if it is migrated or swapped out.
6186          */
6187         put_page(page);
6188 }
6189 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6190
6191 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6192                                            unsigned long address)
6193 {
6194         /*
6195          * The physical address of apic access page is stored in the VMCS.
6196          * Update it when it becomes invalid.
6197          */
6198         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6199                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6200 }
6201
6202 /*
6203  * Returns 1 to let vcpu_run() continue the guest execution loop without
6204  * exiting to the userspace.  Otherwise, the value will be returned to the
6205  * userspace.
6206  */
6207 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6208 {
6209         int r;
6210         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
6211                 vcpu->run->request_interrupt_window;
6212         bool req_immediate_exit = false;
6213
6214         if (vcpu->requests) {
6215                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6216                         kvm_mmu_unload(vcpu);
6217                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6218                         __kvm_migrate_timers(vcpu);
6219                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6220                         kvm_gen_update_masterclock(vcpu->kvm);
6221                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6222                         kvm_gen_kvmclock_update(vcpu);
6223                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6224                         r = kvm_guest_time_update(vcpu);
6225                         if (unlikely(r))
6226                                 goto out;
6227                 }
6228                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6229                         kvm_mmu_sync_roots(vcpu);
6230                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6231                         kvm_vcpu_flush_tlb(vcpu);
6232                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6233                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6234                         r = 0;
6235                         goto out;
6236                 }
6237                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6238                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6239                         r = 0;
6240                         goto out;
6241                 }
6242                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6243                         vcpu->fpu_active = 0;
6244                         kvm_x86_ops->fpu_deactivate(vcpu);
6245                 }
6246                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6247                         /* Page is swapped out. Do synthetic halt */
6248                         vcpu->arch.apf.halted = true;
6249                         r = 1;
6250                         goto out;
6251                 }
6252                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6253                         record_steal_time(vcpu);
6254                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6255                         process_smi(vcpu);
6256                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6257                         process_nmi(vcpu);
6258                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6259                         kvm_pmu_handle_event(vcpu);
6260                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6261                         kvm_pmu_deliver_pmi(vcpu);
6262                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6263                         vcpu_scan_ioapic(vcpu);
6264                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6265                         kvm_vcpu_reload_apic_access_page(vcpu);
6266                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6267                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6268                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6269                         r = 0;
6270                         goto out;
6271                 }
6272         }
6273
6274         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6275                 kvm_apic_accept_events(vcpu);
6276                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6277                         r = 1;
6278                         goto out;
6279                 }
6280
6281                 if (inject_pending_event(vcpu, req_int_win) != 0)
6282                         req_immediate_exit = true;
6283                 /* enable NMI/IRQ window open exits if needed */
6284                 else if (vcpu->arch.nmi_pending)
6285                         kvm_x86_ops->enable_nmi_window(vcpu);
6286                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6287                         kvm_x86_ops->enable_irq_window(vcpu);
6288
6289                 if (kvm_lapic_enabled(vcpu)) {
6290                         /*
6291                          * Update architecture specific hints for APIC
6292                          * virtual interrupt delivery.
6293                          */
6294                         if (kvm_x86_ops->hwapic_irr_update)
6295                                 kvm_x86_ops->hwapic_irr_update(vcpu,
6296                                         kvm_lapic_find_highest_irr(vcpu));
6297                         update_cr8_intercept(vcpu);
6298                         kvm_lapic_sync_to_vapic(vcpu);
6299                 }
6300         }
6301
6302         r = kvm_mmu_reload(vcpu);
6303         if (unlikely(r)) {
6304                 goto cancel_injection;
6305         }
6306
6307         preempt_disable();
6308
6309         kvm_x86_ops->prepare_guest_switch(vcpu);
6310         if (vcpu->fpu_active)
6311                 kvm_load_guest_fpu(vcpu);
6312         kvm_load_guest_xcr0(vcpu);
6313
6314         vcpu->mode = IN_GUEST_MODE;
6315
6316         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6317
6318         /* We should set ->mode before check ->requests,
6319          * see the comment in make_all_cpus_request.
6320          */
6321         smp_mb__after_srcu_read_unlock();
6322
6323         local_irq_disable();
6324
6325         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6326             || need_resched() || signal_pending(current)) {
6327                 vcpu->mode = OUTSIDE_GUEST_MODE;
6328                 smp_wmb();
6329                 local_irq_enable();
6330                 preempt_enable();
6331                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6332                 r = 1;
6333                 goto cancel_injection;
6334         }
6335
6336         if (req_immediate_exit)
6337                 smp_send_reschedule(vcpu->cpu);
6338
6339         __kvm_guest_enter();
6340
6341         if (unlikely(vcpu->arch.switch_db_regs)) {
6342                 set_debugreg(0, 7);
6343                 set_debugreg(vcpu->arch.eff_db[0], 0);
6344                 set_debugreg(vcpu->arch.eff_db[1], 1);
6345                 set_debugreg(vcpu->arch.eff_db[2], 2);
6346                 set_debugreg(vcpu->arch.eff_db[3], 3);
6347                 set_debugreg(vcpu->arch.dr6, 6);
6348                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6349         }
6350
6351         trace_kvm_entry(vcpu->vcpu_id);
6352         wait_lapic_expire(vcpu);
6353         kvm_x86_ops->run(vcpu);
6354
6355         /*
6356          * Do this here before restoring debug registers on the host.  And
6357          * since we do this before handling the vmexit, a DR access vmexit
6358          * can (a) read the correct value of the debug registers, (b) set
6359          * KVM_DEBUGREG_WONT_EXIT again.
6360          */
6361         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6362                 int i;
6363
6364                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6365                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6366                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6367                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6368         }
6369
6370         /*
6371          * If the guest has used debug registers, at least dr7
6372          * will be disabled while returning to the host.
6373          * If we don't have active breakpoints in the host, we don't
6374          * care about the messed up debug address registers. But if
6375          * we have some of them active, restore the old state.
6376          */
6377         if (hw_breakpoint_active())
6378                 hw_breakpoint_restore();
6379
6380         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
6381                                                            rdtsc());
6382
6383         vcpu->mode = OUTSIDE_GUEST_MODE;
6384         smp_wmb();
6385
6386         /* Interrupt is enabled by handle_external_intr() */
6387         kvm_x86_ops->handle_external_intr(vcpu);
6388
6389         ++vcpu->stat.exits;
6390
6391         /*
6392          * We must have an instruction between local_irq_enable() and
6393          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6394          * the interrupt shadow.  The stat.exits increment will do nicely.
6395          * But we need to prevent reordering, hence this barrier():
6396          */
6397         barrier();
6398
6399         kvm_guest_exit();
6400
6401         preempt_enable();
6402
6403         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6404
6405         /*
6406          * Profile KVM exit RIPs:
6407          */
6408         if (unlikely(prof_on == KVM_PROFILING)) {
6409                 unsigned long rip = kvm_rip_read(vcpu);
6410                 profile_hit(KVM_PROFILING, (void *)rip);
6411         }
6412
6413         if (unlikely(vcpu->arch.tsc_always_catchup))
6414                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6415
6416         if (vcpu->arch.apic_attention)
6417                 kvm_lapic_sync_from_vapic(vcpu);
6418
6419         r = kvm_x86_ops->handle_exit(vcpu);
6420         return r;
6421
6422 cancel_injection:
6423         kvm_x86_ops->cancel_injection(vcpu);
6424         if (unlikely(vcpu->arch.apic_attention))
6425                 kvm_lapic_sync_from_vapic(vcpu);
6426 out:
6427         return r;
6428 }
6429
6430 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6431 {
6432         if (!kvm_arch_vcpu_runnable(vcpu)) {
6433                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6434                 kvm_vcpu_block(vcpu);
6435                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6436                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6437                         return 1;
6438         }
6439
6440         kvm_apic_accept_events(vcpu);
6441         switch(vcpu->arch.mp_state) {
6442         case KVM_MP_STATE_HALTED:
6443                 vcpu->arch.pv.pv_unhalted = false;
6444                 vcpu->arch.mp_state =
6445                         KVM_MP_STATE_RUNNABLE;
6446         case KVM_MP_STATE_RUNNABLE:
6447                 vcpu->arch.apf.halted = false;
6448                 break;
6449         case KVM_MP_STATE_INIT_RECEIVED:
6450                 break;
6451         default:
6452                 return -EINTR;
6453                 break;
6454         }
6455         return 1;
6456 }
6457
6458 static int vcpu_run(struct kvm_vcpu *vcpu)
6459 {
6460         int r;
6461         struct kvm *kvm = vcpu->kvm;
6462
6463         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6464
6465         for (;;) {
6466                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6467                     !vcpu->arch.apf.halted)
6468                         r = vcpu_enter_guest(vcpu);
6469                 else
6470                         r = vcpu_block(kvm, vcpu);
6471                 if (r <= 0)
6472                         break;
6473
6474                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6475                 if (kvm_cpu_has_pending_timer(vcpu))
6476                         kvm_inject_pending_timer_irqs(vcpu);
6477
6478                 if (dm_request_for_irq_injection(vcpu)) {
6479                         r = -EINTR;
6480                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6481                         ++vcpu->stat.request_irq_exits;
6482                         break;
6483                 }
6484
6485                 kvm_check_async_pf_completion(vcpu);
6486
6487                 if (signal_pending(current)) {
6488                         r = -EINTR;
6489                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6490                         ++vcpu->stat.signal_exits;
6491                         break;
6492                 }
6493                 if (need_resched()) {
6494                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6495                         cond_resched();
6496                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6497                 }
6498         }
6499
6500         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6501
6502         return r;
6503 }
6504
6505 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6506 {
6507         int r;
6508         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6509         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6510         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6511         if (r != EMULATE_DONE)
6512                 return 0;
6513         return 1;
6514 }
6515
6516 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6517 {
6518         BUG_ON(!vcpu->arch.pio.count);
6519
6520         return complete_emulated_io(vcpu);
6521 }
6522
6523 /*
6524  * Implements the following, as a state machine:
6525  *
6526  * read:
6527  *   for each fragment
6528  *     for each mmio piece in the fragment
6529  *       write gpa, len
6530  *       exit
6531  *       copy data
6532  *   execute insn
6533  *
6534  * write:
6535  *   for each fragment
6536  *     for each mmio piece in the fragment
6537  *       write gpa, len
6538  *       copy data
6539  *       exit
6540  */
6541 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6542 {
6543         struct kvm_run *run = vcpu->run;
6544         struct kvm_mmio_fragment *frag;
6545         unsigned len;
6546
6547         BUG_ON(!vcpu->mmio_needed);
6548
6549         /* Complete previous fragment */
6550         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6551         len = min(8u, frag->len);
6552         if (!vcpu->mmio_is_write)
6553                 memcpy(frag->data, run->mmio.data, len);
6554
6555         if (frag->len <= 8) {
6556                 /* Switch to the next fragment. */
6557                 frag++;
6558                 vcpu->mmio_cur_fragment++;
6559         } else {
6560                 /* Go forward to the next mmio piece. */
6561                 frag->data += len;
6562                 frag->gpa += len;
6563                 frag->len -= len;
6564         }
6565
6566         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6567                 vcpu->mmio_needed = 0;
6568
6569                 /* FIXME: return into emulator if single-stepping.  */
6570                 if (vcpu->mmio_is_write)
6571                         return 1;
6572                 vcpu->mmio_read_completed = 1;
6573                 return complete_emulated_io(vcpu);
6574         }
6575
6576         run->exit_reason = KVM_EXIT_MMIO;
6577         run->mmio.phys_addr = frag->gpa;
6578         if (vcpu->mmio_is_write)
6579                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6580         run->mmio.len = min(8u, frag->len);
6581         run->mmio.is_write = vcpu->mmio_is_write;
6582         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6583         return 0;
6584 }
6585
6586
6587 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6588 {
6589         struct fpu *fpu = &current->thread.fpu;
6590         int r;
6591         sigset_t sigsaved;
6592
6593         fpu__activate_curr(fpu);
6594
6595         if (vcpu->sigset_active)
6596                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6597
6598         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6599                 kvm_vcpu_block(vcpu);
6600                 kvm_apic_accept_events(vcpu);
6601                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6602                 r = -EAGAIN;
6603                 goto out;
6604         }
6605
6606         /* re-sync apic's tpr */
6607         if (!irqchip_in_kernel(vcpu->kvm)) {
6608                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6609                         r = -EINVAL;
6610                         goto out;
6611                 }
6612         }
6613
6614         if (unlikely(vcpu->arch.complete_userspace_io)) {
6615                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6616                 vcpu->arch.complete_userspace_io = NULL;
6617                 r = cui(vcpu);
6618                 if (r <= 0)
6619                         goto out;
6620         } else
6621                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6622
6623         r = vcpu_run(vcpu);
6624
6625 out:
6626         post_kvm_run_save(vcpu);
6627         if (vcpu->sigset_active)
6628                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6629
6630         return r;
6631 }
6632
6633 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6634 {
6635         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6636                 /*
6637                  * We are here if userspace calls get_regs() in the middle of
6638                  * instruction emulation. Registers state needs to be copied
6639                  * back from emulation context to vcpu. Userspace shouldn't do
6640                  * that usually, but some bad designed PV devices (vmware
6641                  * backdoor interface) need this to work
6642                  */
6643                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6644                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6645         }
6646         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6647         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6648         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6649         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6650         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6651         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6652         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6653         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6654 #ifdef CONFIG_X86_64
6655         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6656         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6657         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6658         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6659         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6660         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6661         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6662         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6663 #endif
6664
6665         regs->rip = kvm_rip_read(vcpu);
6666         regs->rflags = kvm_get_rflags(vcpu);
6667
6668         return 0;
6669 }
6670
6671 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6672 {
6673         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6674         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6675
6676         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6677         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6678         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6679         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6680         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6681         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6682         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6683         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6684 #ifdef CONFIG_X86_64
6685         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6686         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6687         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6688         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6689         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6690         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6691         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6692         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6693 #endif
6694
6695         kvm_rip_write(vcpu, regs->rip);
6696         kvm_set_rflags(vcpu, regs->rflags);
6697
6698         vcpu->arch.exception.pending = false;
6699
6700         kvm_make_request(KVM_REQ_EVENT, vcpu);
6701
6702         return 0;
6703 }
6704
6705 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6706 {
6707         struct kvm_segment cs;
6708
6709         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6710         *db = cs.db;
6711         *l = cs.l;
6712 }
6713 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6714
6715 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6716                                   struct kvm_sregs *sregs)
6717 {
6718         struct desc_ptr dt;
6719
6720         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6721         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6722         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6723         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6724         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6725         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6726
6727         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6728         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6729
6730         kvm_x86_ops->get_idt(vcpu, &dt);
6731         sregs->idt.limit = dt.size;
6732         sregs->idt.base = dt.address;
6733         kvm_x86_ops->get_gdt(vcpu, &dt);
6734         sregs->gdt.limit = dt.size;
6735         sregs->gdt.base = dt.address;
6736
6737         sregs->cr0 = kvm_read_cr0(vcpu);
6738         sregs->cr2 = vcpu->arch.cr2;
6739         sregs->cr3 = kvm_read_cr3(vcpu);
6740         sregs->cr4 = kvm_read_cr4(vcpu);
6741         sregs->cr8 = kvm_get_cr8(vcpu);
6742         sregs->efer = vcpu->arch.efer;
6743         sregs->apic_base = kvm_get_apic_base(vcpu);
6744
6745         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6746
6747         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6748                 set_bit(vcpu->arch.interrupt.nr,
6749                         (unsigned long *)sregs->interrupt_bitmap);
6750
6751         return 0;
6752 }
6753
6754 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6755                                     struct kvm_mp_state *mp_state)
6756 {
6757         kvm_apic_accept_events(vcpu);
6758         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6759                                         vcpu->arch.pv.pv_unhalted)
6760                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6761         else
6762                 mp_state->mp_state = vcpu->arch.mp_state;
6763
6764         return 0;
6765 }
6766
6767 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6768                                     struct kvm_mp_state *mp_state)
6769 {
6770         if (!kvm_vcpu_has_lapic(vcpu) &&
6771             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6772                 return -EINVAL;
6773
6774         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6775                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6776                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6777         } else
6778                 vcpu->arch.mp_state = mp_state->mp_state;
6779         kvm_make_request(KVM_REQ_EVENT, vcpu);
6780         return 0;
6781 }
6782
6783 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6784                     int reason, bool has_error_code, u32 error_code)
6785 {
6786         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6787         int ret;
6788
6789         init_emulate_ctxt(vcpu);
6790
6791         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6792                                    has_error_code, error_code);
6793
6794         if (ret)
6795                 return EMULATE_FAIL;
6796
6797         kvm_rip_write(vcpu, ctxt->eip);
6798         kvm_set_rflags(vcpu, ctxt->eflags);
6799         kvm_make_request(KVM_REQ_EVENT, vcpu);
6800         return EMULATE_DONE;
6801 }
6802 EXPORT_SYMBOL_GPL(kvm_task_switch);
6803
6804 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6805                                   struct kvm_sregs *sregs)
6806 {
6807         struct msr_data apic_base_msr;
6808         int mmu_reset_needed = 0;
6809         int pending_vec, max_bits, idx;
6810         struct desc_ptr dt;
6811
6812         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6813                 return -EINVAL;
6814
6815         dt.size = sregs->idt.limit;
6816         dt.address = sregs->idt.base;
6817         kvm_x86_ops->set_idt(vcpu, &dt);
6818         dt.size = sregs->gdt.limit;
6819         dt.address = sregs->gdt.base;
6820         kvm_x86_ops->set_gdt(vcpu, &dt);
6821
6822         vcpu->arch.cr2 = sregs->cr2;
6823         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6824         vcpu->arch.cr3 = sregs->cr3;
6825         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6826
6827         kvm_set_cr8(vcpu, sregs->cr8);
6828
6829         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6830         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6831         apic_base_msr.data = sregs->apic_base;
6832         apic_base_msr.host_initiated = true;
6833         kvm_set_apic_base(vcpu, &apic_base_msr);
6834
6835         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6836         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6837         vcpu->arch.cr0 = sregs->cr0;
6838
6839         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6840         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6841         if (sregs->cr4 & X86_CR4_OSXSAVE)
6842                 kvm_update_cpuid(vcpu);
6843
6844         idx = srcu_read_lock(&vcpu->kvm->srcu);
6845         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6846                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6847                 mmu_reset_needed = 1;
6848         }
6849         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6850
6851         if (mmu_reset_needed)
6852                 kvm_mmu_reset_context(vcpu);
6853
6854         max_bits = KVM_NR_INTERRUPTS;
6855         pending_vec = find_first_bit(
6856                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6857         if (pending_vec < max_bits) {
6858                 kvm_queue_interrupt(vcpu, pending_vec, false);
6859                 pr_debug("Set back pending irq %d\n", pending_vec);
6860         }
6861
6862         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6863         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6864         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6865         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6866         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6867         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6868
6869         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6870         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6871
6872         update_cr8_intercept(vcpu);
6873
6874         /* Older userspace won't unhalt the vcpu on reset. */
6875         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6876             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6877             !is_protmode(vcpu))
6878                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6879
6880         kvm_make_request(KVM_REQ_EVENT, vcpu);
6881
6882         return 0;
6883 }
6884
6885 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6886                                         struct kvm_guest_debug *dbg)
6887 {
6888         unsigned long rflags;
6889         int i, r;
6890
6891         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6892                 r = -EBUSY;
6893                 if (vcpu->arch.exception.pending)
6894                         goto out;
6895                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6896                         kvm_queue_exception(vcpu, DB_VECTOR);
6897                 else
6898                         kvm_queue_exception(vcpu, BP_VECTOR);
6899         }
6900
6901         /*
6902          * Read rflags as long as potentially injected trace flags are still
6903          * filtered out.
6904          */
6905         rflags = kvm_get_rflags(vcpu);
6906
6907         vcpu->guest_debug = dbg->control;
6908         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6909                 vcpu->guest_debug = 0;
6910
6911         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6912                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6913                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6914                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6915         } else {
6916                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6917                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6918         }
6919         kvm_update_dr7(vcpu);
6920
6921         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6922                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6923                         get_segment_base(vcpu, VCPU_SREG_CS);
6924
6925         /*
6926          * Trigger an rflags update that will inject or remove the trace
6927          * flags.
6928          */
6929         kvm_set_rflags(vcpu, rflags);
6930
6931         kvm_x86_ops->update_db_bp_intercept(vcpu);
6932
6933         r = 0;
6934
6935 out:
6936
6937         return r;
6938 }
6939
6940 /*
6941  * Translate a guest virtual address to a guest physical address.
6942  */
6943 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6944                                     struct kvm_translation *tr)
6945 {
6946         unsigned long vaddr = tr->linear_address;
6947         gpa_t gpa;
6948         int idx;
6949
6950         idx = srcu_read_lock(&vcpu->kvm->srcu);
6951         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6952         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6953         tr->physical_address = gpa;
6954         tr->valid = gpa != UNMAPPED_GVA;
6955         tr->writeable = 1;
6956         tr->usermode = 0;
6957
6958         return 0;
6959 }
6960
6961 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6962 {
6963         struct fxregs_state *fxsave =
6964                         &vcpu->arch.guest_fpu.state.fxsave;
6965
6966         memcpy(fpu->fpr, fxsave->st_space, 128);
6967         fpu->fcw = fxsave->cwd;
6968         fpu->fsw = fxsave->swd;
6969         fpu->ftwx = fxsave->twd;
6970         fpu->last_opcode = fxsave->fop;
6971         fpu->last_ip = fxsave->rip;
6972         fpu->last_dp = fxsave->rdp;
6973         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6974
6975         return 0;
6976 }
6977
6978 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6979 {
6980         struct fxregs_state *fxsave =
6981                         &vcpu->arch.guest_fpu.state.fxsave;
6982
6983         memcpy(fxsave->st_space, fpu->fpr, 128);
6984         fxsave->cwd = fpu->fcw;
6985         fxsave->swd = fpu->fsw;
6986         fxsave->twd = fpu->ftwx;
6987         fxsave->fop = fpu->last_opcode;
6988         fxsave->rip = fpu->last_ip;
6989         fxsave->rdp = fpu->last_dp;
6990         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6991
6992         return 0;
6993 }
6994
6995 static void fx_init(struct kvm_vcpu *vcpu)
6996 {
6997         fpstate_init(&vcpu->arch.guest_fpu.state);
6998         if (cpu_has_xsaves)
6999                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7000                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7001
7002         /*
7003          * Ensure guest xcr0 is valid for loading
7004          */
7005         vcpu->arch.xcr0 = XSTATE_FP;
7006
7007         vcpu->arch.cr0 |= X86_CR0_ET;
7008 }
7009
7010 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7011 {
7012         if (vcpu->guest_fpu_loaded)
7013                 return;
7014
7015         /*
7016          * Restore all possible states in the guest,
7017          * and assume host would use all available bits.
7018          * Guest xcr0 would be loaded later.
7019          */
7020         kvm_put_guest_xcr0(vcpu);
7021         vcpu->guest_fpu_loaded = 1;
7022         __kernel_fpu_begin();
7023         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7024         trace_kvm_fpu(1);
7025 }
7026
7027 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7028 {
7029         kvm_put_guest_xcr0(vcpu);
7030
7031         if (!vcpu->guest_fpu_loaded) {
7032                 vcpu->fpu_counter = 0;
7033                 return;
7034         }
7035
7036         vcpu->guest_fpu_loaded = 0;
7037         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7038         __kernel_fpu_end();
7039         ++vcpu->stat.fpu_reload;
7040         /*
7041          * If using eager FPU mode, or if the guest is a frequent user
7042          * of the FPU, just leave the FPU active for next time.
7043          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7044          * the FPU in bursts will revert to loading it on demand.
7045          */
7046         if (!vcpu->arch.eager_fpu) {
7047                 if (++vcpu->fpu_counter < 5)
7048                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7049         }
7050         trace_kvm_fpu(0);
7051 }
7052
7053 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7054 {
7055         kvmclock_reset(vcpu);
7056
7057         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7058         kvm_x86_ops->vcpu_free(vcpu);
7059 }
7060
7061 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7062                                                 unsigned int id)
7063 {
7064         struct kvm_vcpu *vcpu;
7065
7066         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7067                 printk_once(KERN_WARNING
7068                 "kvm: SMP vm created on host with unstable TSC; "
7069                 "guest TSC will not be reliable\n");
7070
7071         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7072
7073         return vcpu;
7074 }
7075
7076 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7077 {
7078         int r;
7079
7080         kvm_vcpu_mtrr_init(vcpu);
7081         r = vcpu_load(vcpu);
7082         if (r)
7083                 return r;
7084         kvm_vcpu_reset(vcpu, false);
7085         kvm_mmu_setup(vcpu);
7086         vcpu_put(vcpu);
7087         return r;
7088 }
7089
7090 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7091 {
7092         struct msr_data msr;
7093         struct kvm *kvm = vcpu->kvm;
7094
7095         if (vcpu_load(vcpu))
7096                 return;
7097         msr.data = 0x0;
7098         msr.index = MSR_IA32_TSC;
7099         msr.host_initiated = true;
7100         kvm_write_tsc(vcpu, &msr);
7101         vcpu_put(vcpu);
7102
7103         if (!kvmclock_periodic_sync)
7104                 return;
7105
7106         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7107                                         KVMCLOCK_SYNC_PERIOD);
7108 }
7109
7110 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7111 {
7112         int r;
7113         vcpu->arch.apf.msr_val = 0;
7114
7115         r = vcpu_load(vcpu);
7116         BUG_ON(r);
7117         kvm_mmu_unload(vcpu);
7118         vcpu_put(vcpu);
7119
7120         kvm_x86_ops->vcpu_free(vcpu);
7121 }
7122
7123 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7124 {
7125         vcpu->arch.hflags = 0;
7126
7127         atomic_set(&vcpu->arch.nmi_queued, 0);
7128         vcpu->arch.nmi_pending = 0;
7129         vcpu->arch.nmi_injected = false;
7130         kvm_clear_interrupt_queue(vcpu);
7131         kvm_clear_exception_queue(vcpu);
7132
7133         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7134         kvm_update_dr0123(vcpu);
7135         vcpu->arch.dr6 = DR6_INIT;
7136         kvm_update_dr6(vcpu);
7137         vcpu->arch.dr7 = DR7_FIXED_1;
7138         kvm_update_dr7(vcpu);
7139
7140         vcpu->arch.cr2 = 0;
7141
7142         kvm_make_request(KVM_REQ_EVENT, vcpu);
7143         vcpu->arch.apf.msr_val = 0;
7144         vcpu->arch.st.msr_val = 0;
7145
7146         kvmclock_reset(vcpu);
7147
7148         kvm_clear_async_pf_completion_queue(vcpu);
7149         kvm_async_pf_hash_reset(vcpu);
7150         vcpu->arch.apf.halted = false;
7151
7152         if (!init_event) {
7153                 kvm_pmu_reset(vcpu);
7154                 vcpu->arch.smbase = 0x30000;
7155         }
7156
7157         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7158         vcpu->arch.regs_avail = ~0;
7159         vcpu->arch.regs_dirty = ~0;
7160
7161         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7162 }
7163
7164 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7165 {
7166         struct kvm_segment cs;
7167
7168         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7169         cs.selector = vector << 8;
7170         cs.base = vector << 12;
7171         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7172         kvm_rip_write(vcpu, 0);
7173 }
7174
7175 int kvm_arch_hardware_enable(void)
7176 {
7177         struct kvm *kvm;
7178         struct kvm_vcpu *vcpu;
7179         int i;
7180         int ret;
7181         u64 local_tsc;
7182         u64 max_tsc = 0;
7183         bool stable, backwards_tsc = false;
7184
7185         kvm_shared_msr_cpu_online();
7186         ret = kvm_x86_ops->hardware_enable();
7187         if (ret != 0)
7188                 return ret;
7189
7190         local_tsc = rdtsc();
7191         stable = !check_tsc_unstable();
7192         list_for_each_entry(kvm, &vm_list, vm_list) {
7193                 kvm_for_each_vcpu(i, vcpu, kvm) {
7194                         if (!stable && vcpu->cpu == smp_processor_id())
7195                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7196                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7197                                 backwards_tsc = true;
7198                                 if (vcpu->arch.last_host_tsc > max_tsc)
7199                                         max_tsc = vcpu->arch.last_host_tsc;
7200                         }
7201                 }
7202         }
7203
7204         /*
7205          * Sometimes, even reliable TSCs go backwards.  This happens on
7206          * platforms that reset TSC during suspend or hibernate actions, but
7207          * maintain synchronization.  We must compensate.  Fortunately, we can
7208          * detect that condition here, which happens early in CPU bringup,
7209          * before any KVM threads can be running.  Unfortunately, we can't
7210          * bring the TSCs fully up to date with real time, as we aren't yet far
7211          * enough into CPU bringup that we know how much real time has actually
7212          * elapsed; our helper function, get_kernel_ns() will be using boot
7213          * variables that haven't been updated yet.
7214          *
7215          * So we simply find the maximum observed TSC above, then record the
7216          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7217          * the adjustment will be applied.  Note that we accumulate
7218          * adjustments, in case multiple suspend cycles happen before some VCPU
7219          * gets a chance to run again.  In the event that no KVM threads get a
7220          * chance to run, we will miss the entire elapsed period, as we'll have
7221          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7222          * loose cycle time.  This isn't too big a deal, since the loss will be
7223          * uniform across all VCPUs (not to mention the scenario is extremely
7224          * unlikely). It is possible that a second hibernate recovery happens
7225          * much faster than a first, causing the observed TSC here to be
7226          * smaller; this would require additional padding adjustment, which is
7227          * why we set last_host_tsc to the local tsc observed here.
7228          *
7229          * N.B. - this code below runs only on platforms with reliable TSC,
7230          * as that is the only way backwards_tsc is set above.  Also note
7231          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7232          * have the same delta_cyc adjustment applied if backwards_tsc
7233          * is detected.  Note further, this adjustment is only done once,
7234          * as we reset last_host_tsc on all VCPUs to stop this from being
7235          * called multiple times (one for each physical CPU bringup).
7236          *
7237          * Platforms with unreliable TSCs don't have to deal with this, they
7238          * will be compensated by the logic in vcpu_load, which sets the TSC to
7239          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7240          * guarantee that they stay in perfect synchronization.
7241          */
7242         if (backwards_tsc) {
7243                 u64 delta_cyc = max_tsc - local_tsc;
7244                 backwards_tsc_observed = true;
7245                 list_for_each_entry(kvm, &vm_list, vm_list) {
7246                         kvm_for_each_vcpu(i, vcpu, kvm) {
7247                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7248                                 vcpu->arch.last_host_tsc = local_tsc;
7249                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7250                         }
7251
7252                         /*
7253                          * We have to disable TSC offset matching.. if you were
7254                          * booting a VM while issuing an S4 host suspend....
7255                          * you may have some problem.  Solving this issue is
7256                          * left as an exercise to the reader.
7257                          */
7258                         kvm->arch.last_tsc_nsec = 0;
7259                         kvm->arch.last_tsc_write = 0;
7260                 }
7261
7262         }
7263         return 0;
7264 }
7265
7266 void kvm_arch_hardware_disable(void)
7267 {
7268         kvm_x86_ops->hardware_disable();
7269         drop_user_return_notifiers();
7270 }
7271
7272 int kvm_arch_hardware_setup(void)
7273 {
7274         int r;
7275
7276         r = kvm_x86_ops->hardware_setup();
7277         if (r != 0)
7278                 return r;
7279
7280         kvm_init_msr_list();
7281         return 0;
7282 }
7283
7284 void kvm_arch_hardware_unsetup(void)
7285 {
7286         kvm_x86_ops->hardware_unsetup();
7287 }
7288
7289 void kvm_arch_check_processor_compat(void *rtn)
7290 {
7291         kvm_x86_ops->check_processor_compatibility(rtn);
7292 }
7293
7294 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7295 {
7296         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7297 }
7298 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7299
7300 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7301 {
7302         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7303 }
7304
7305 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7306 {
7307         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
7308 }
7309
7310 struct static_key kvm_no_apic_vcpu __read_mostly;
7311
7312 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7313 {
7314         struct page *page;
7315         struct kvm *kvm;
7316         int r;
7317
7318         BUG_ON(vcpu->kvm == NULL);
7319         kvm = vcpu->kvm;
7320
7321         vcpu->arch.pv.pv_unhalted = false;
7322         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7323         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7324                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7325         else
7326                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7327
7328         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7329         if (!page) {
7330                 r = -ENOMEM;
7331                 goto fail;
7332         }
7333         vcpu->arch.pio_data = page_address(page);
7334
7335         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7336
7337         r = kvm_mmu_create(vcpu);
7338         if (r < 0)
7339                 goto fail_free_pio_data;
7340
7341         if (irqchip_in_kernel(kvm)) {
7342                 r = kvm_create_lapic(vcpu);
7343                 if (r < 0)
7344                         goto fail_mmu_destroy;
7345         } else
7346                 static_key_slow_inc(&kvm_no_apic_vcpu);
7347
7348         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7349                                        GFP_KERNEL);
7350         if (!vcpu->arch.mce_banks) {
7351                 r = -ENOMEM;
7352                 goto fail_free_lapic;
7353         }
7354         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7355
7356         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7357                 r = -ENOMEM;
7358                 goto fail_free_mce_banks;
7359         }
7360
7361         fx_init(vcpu);
7362
7363         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7364         vcpu->arch.pv_time_enabled = false;
7365
7366         vcpu->arch.guest_supported_xcr0 = 0;
7367         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7368
7369         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7370
7371         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7372
7373         kvm_async_pf_hash_reset(vcpu);
7374         kvm_pmu_init(vcpu);
7375
7376         return 0;
7377
7378 fail_free_mce_banks:
7379         kfree(vcpu->arch.mce_banks);
7380 fail_free_lapic:
7381         kvm_free_lapic(vcpu);
7382 fail_mmu_destroy:
7383         kvm_mmu_destroy(vcpu);
7384 fail_free_pio_data:
7385         free_page((unsigned long)vcpu->arch.pio_data);
7386 fail:
7387         return r;
7388 }
7389
7390 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7391 {
7392         int idx;
7393
7394         kvm_pmu_destroy(vcpu);
7395         kfree(vcpu->arch.mce_banks);
7396         kvm_free_lapic(vcpu);
7397         idx = srcu_read_lock(&vcpu->kvm->srcu);
7398         kvm_mmu_destroy(vcpu);
7399         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7400         free_page((unsigned long)vcpu->arch.pio_data);
7401         if (!irqchip_in_kernel(vcpu->kvm))
7402                 static_key_slow_dec(&kvm_no_apic_vcpu);
7403 }
7404
7405 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7406 {
7407         kvm_x86_ops->sched_in(vcpu, cpu);
7408 }
7409
7410 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7411 {
7412         if (type)
7413                 return -EINVAL;
7414
7415         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7416         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7417         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7418         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7419         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7420
7421         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7422         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7423         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7424         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7425                 &kvm->arch.irq_sources_bitmap);
7426
7427         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7428         mutex_init(&kvm->arch.apic_map_lock);
7429         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7430
7431         pvclock_update_vm_gtod_copy(kvm);
7432
7433         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7434         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7435
7436         return 0;
7437 }
7438
7439 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7440 {
7441         int r;
7442         r = vcpu_load(vcpu);
7443         BUG_ON(r);
7444         kvm_mmu_unload(vcpu);
7445         vcpu_put(vcpu);
7446 }
7447
7448 static void kvm_free_vcpus(struct kvm *kvm)
7449 {
7450         unsigned int i;
7451         struct kvm_vcpu *vcpu;
7452
7453         /*
7454          * Unpin any mmu pages first.
7455          */
7456         kvm_for_each_vcpu(i, vcpu, kvm) {
7457                 kvm_clear_async_pf_completion_queue(vcpu);
7458                 kvm_unload_vcpu_mmu(vcpu);
7459         }
7460         kvm_for_each_vcpu(i, vcpu, kvm)
7461                 kvm_arch_vcpu_free(vcpu);
7462
7463         mutex_lock(&kvm->lock);
7464         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7465                 kvm->vcpus[i] = NULL;
7466
7467         atomic_set(&kvm->online_vcpus, 0);
7468         mutex_unlock(&kvm->lock);
7469 }
7470
7471 void kvm_arch_sync_events(struct kvm *kvm)
7472 {
7473         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7474         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7475         kvm_free_all_assigned_devices(kvm);
7476         kvm_free_pit(kvm);
7477 }
7478
7479 int __x86_set_memory_region(struct kvm *kvm,
7480                             const struct kvm_userspace_memory_region *mem)
7481 {
7482         int i, r;
7483
7484         /* Called with kvm->slots_lock held.  */
7485         BUG_ON(mem->slot >= KVM_MEM_SLOTS_NUM);
7486
7487         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7488                 struct kvm_userspace_memory_region m = *mem;
7489
7490                 m.slot |= i << 16;
7491                 r = __kvm_set_memory_region(kvm, &m);
7492                 if (r < 0)
7493                         return r;
7494         }
7495
7496         return 0;
7497 }
7498 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7499
7500 int x86_set_memory_region(struct kvm *kvm,
7501                           const struct kvm_userspace_memory_region *mem)
7502 {
7503         int r;
7504
7505         mutex_lock(&kvm->slots_lock);
7506         r = __x86_set_memory_region(kvm, mem);
7507         mutex_unlock(&kvm->slots_lock);
7508
7509         return r;
7510 }
7511 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7512
7513 void kvm_arch_destroy_vm(struct kvm *kvm)
7514 {
7515         if (current->mm == kvm->mm) {
7516                 /*
7517                  * Free memory regions allocated on behalf of userspace,
7518                  * unless the the memory map has changed due to process exit
7519                  * or fd copying.
7520                  */
7521                 struct kvm_userspace_memory_region mem;
7522                 memset(&mem, 0, sizeof(mem));
7523                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7524                 x86_set_memory_region(kvm, &mem);
7525
7526                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7527                 x86_set_memory_region(kvm, &mem);
7528
7529                 mem.slot = TSS_PRIVATE_MEMSLOT;
7530                 x86_set_memory_region(kvm, &mem);
7531         }
7532         kvm_iommu_unmap_guest(kvm);
7533         kfree(kvm->arch.vpic);
7534         kfree(kvm->arch.vioapic);
7535         kvm_free_vcpus(kvm);
7536         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7537 }
7538
7539 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7540                            struct kvm_memory_slot *dont)
7541 {
7542         int i;
7543
7544         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7545                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7546                         kvfree(free->arch.rmap[i]);
7547                         free->arch.rmap[i] = NULL;
7548                 }
7549                 if (i == 0)
7550                         continue;
7551
7552                 if (!dont || free->arch.lpage_info[i - 1] !=
7553                              dont->arch.lpage_info[i - 1]) {
7554                         kvfree(free->arch.lpage_info[i - 1]);
7555                         free->arch.lpage_info[i - 1] = NULL;
7556                 }
7557         }
7558 }
7559
7560 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7561                             unsigned long npages)
7562 {
7563         int i;
7564
7565         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7566                 unsigned long ugfn;
7567                 int lpages;
7568                 int level = i + 1;
7569
7570                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7571                                       slot->base_gfn, level) + 1;
7572
7573                 slot->arch.rmap[i] =
7574                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7575                 if (!slot->arch.rmap[i])
7576                         goto out_free;
7577                 if (i == 0)
7578                         continue;
7579
7580                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7581                                         sizeof(*slot->arch.lpage_info[i - 1]));
7582                 if (!slot->arch.lpage_info[i - 1])
7583                         goto out_free;
7584
7585                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7586                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7587                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7588                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7589                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7590                 /*
7591                  * If the gfn and userspace address are not aligned wrt each
7592                  * other, or if explicitly asked to, disable large page
7593                  * support for this slot
7594                  */
7595                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7596                     !kvm_largepages_enabled()) {
7597                         unsigned long j;
7598
7599                         for (j = 0; j < lpages; ++j)
7600                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7601                 }
7602         }
7603
7604         return 0;
7605
7606 out_free:
7607         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7608                 kvfree(slot->arch.rmap[i]);
7609                 slot->arch.rmap[i] = NULL;
7610                 if (i == 0)
7611                         continue;
7612
7613                 kvfree(slot->arch.lpage_info[i - 1]);
7614                 slot->arch.lpage_info[i - 1] = NULL;
7615         }
7616         return -ENOMEM;
7617 }
7618
7619 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7620 {
7621         /*
7622          * memslots->generation has been incremented.
7623          * mmio generation may have reached its maximum value.
7624          */
7625         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7626 }
7627
7628 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7629                                 struct kvm_memory_slot *memslot,
7630                                 const struct kvm_userspace_memory_region *mem,
7631                                 enum kvm_mr_change change)
7632 {
7633         /*
7634          * Only private memory slots need to be mapped here since
7635          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7636          */
7637         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7638                 unsigned long userspace_addr;
7639
7640                 /*
7641                  * MAP_SHARED to prevent internal slot pages from being moved
7642                  * by fork()/COW.
7643                  */
7644                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7645                                          PROT_READ | PROT_WRITE,
7646                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7647
7648                 if (IS_ERR((void *)userspace_addr))
7649                         return PTR_ERR((void *)userspace_addr);
7650
7651                 memslot->userspace_addr = userspace_addr;
7652         }
7653
7654         return 0;
7655 }
7656
7657 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7658                                      struct kvm_memory_slot *new)
7659 {
7660         /* Still write protect RO slot */
7661         if (new->flags & KVM_MEM_READONLY) {
7662                 kvm_mmu_slot_remove_write_access(kvm, new);
7663                 return;
7664         }
7665
7666         /*
7667          * Call kvm_x86_ops dirty logging hooks when they are valid.
7668          *
7669          * kvm_x86_ops->slot_disable_log_dirty is called when:
7670          *
7671          *  - KVM_MR_CREATE with dirty logging is disabled
7672          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7673          *
7674          * The reason is, in case of PML, we need to set D-bit for any slots
7675          * with dirty logging disabled in order to eliminate unnecessary GPA
7676          * logging in PML buffer (and potential PML buffer full VMEXT). This
7677          * guarantees leaving PML enabled during guest's lifetime won't have
7678          * any additonal overhead from PML when guest is running with dirty
7679          * logging disabled for memory slots.
7680          *
7681          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7682          * to dirty logging mode.
7683          *
7684          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7685          *
7686          * In case of write protect:
7687          *
7688          * Write protect all pages for dirty logging.
7689          *
7690          * All the sptes including the large sptes which point to this
7691          * slot are set to readonly. We can not create any new large
7692          * spte on this slot until the end of the logging.
7693          *
7694          * See the comments in fast_page_fault().
7695          */
7696         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7697                 if (kvm_x86_ops->slot_enable_log_dirty)
7698                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7699                 else
7700                         kvm_mmu_slot_remove_write_access(kvm, new);
7701         } else {
7702                 if (kvm_x86_ops->slot_disable_log_dirty)
7703                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7704         }
7705 }
7706
7707 void kvm_arch_commit_memory_region(struct kvm *kvm,
7708                                 const struct kvm_userspace_memory_region *mem,
7709                                 const struct kvm_memory_slot *old,
7710                                 const struct kvm_memory_slot *new,
7711                                 enum kvm_mr_change change)
7712 {
7713         int nr_mmu_pages = 0;
7714
7715         if (change == KVM_MR_DELETE && old->id >= KVM_USER_MEM_SLOTS) {
7716                 int ret;
7717
7718                 ret = vm_munmap(old->userspace_addr,
7719                                 old->npages * PAGE_SIZE);
7720                 if (ret < 0)
7721                         printk(KERN_WARNING
7722                                "kvm_vm_ioctl_set_memory_region: "
7723                                "failed to munmap memory\n");
7724         }
7725
7726         if (!kvm->arch.n_requested_mmu_pages)
7727                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7728
7729         if (nr_mmu_pages)
7730                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7731
7732         /*
7733          * Dirty logging tracks sptes in 4k granularity, meaning that large
7734          * sptes have to be split.  If live migration is successful, the guest
7735          * in the source machine will be destroyed and large sptes will be
7736          * created in the destination. However, if the guest continues to run
7737          * in the source machine (for example if live migration fails), small
7738          * sptes will remain around and cause bad performance.
7739          *
7740          * Scan sptes if dirty logging has been stopped, dropping those
7741          * which can be collapsed into a single large-page spte.  Later
7742          * page faults will create the large-page sptes.
7743          */
7744         if ((change != KVM_MR_DELETE) &&
7745                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
7746                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
7747                 kvm_mmu_zap_collapsible_sptes(kvm, new);
7748
7749         /*
7750          * Set up write protection and/or dirty logging for the new slot.
7751          *
7752          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7753          * been zapped so no dirty logging staff is needed for old slot. For
7754          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7755          * new and it's also covered when dealing with the new slot.
7756          *
7757          * FIXME: const-ify all uses of struct kvm_memory_slot.
7758          */
7759         if (change != KVM_MR_DELETE)
7760                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
7761 }
7762
7763 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7764 {
7765         kvm_mmu_invalidate_zap_all_pages(kvm);
7766 }
7767
7768 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7769                                    struct kvm_memory_slot *slot)
7770 {
7771         kvm_mmu_invalidate_zap_all_pages(kvm);
7772 }
7773
7774 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7775 {
7776         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
7777                 kvm_x86_ops->check_nested_events(vcpu, false);
7778
7779         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7780                 !vcpu->arch.apf.halted)
7781                 || !list_empty_careful(&vcpu->async_pf.done)
7782                 || kvm_apic_has_events(vcpu)
7783                 || vcpu->arch.pv.pv_unhalted
7784                 || atomic_read(&vcpu->arch.nmi_queued) ||
7785                 (kvm_arch_interrupt_allowed(vcpu) &&
7786                  kvm_cpu_has_interrupt(vcpu));
7787 }
7788
7789 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7790 {
7791         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7792 }
7793
7794 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7795 {
7796         return kvm_x86_ops->interrupt_allowed(vcpu);
7797 }
7798
7799 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
7800 {
7801         if (is_64_bit_mode(vcpu))
7802                 return kvm_rip_read(vcpu);
7803         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
7804                      kvm_rip_read(vcpu));
7805 }
7806 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
7807
7808 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7809 {
7810         return kvm_get_linear_rip(vcpu) == linear_rip;
7811 }
7812 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7813
7814 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7815 {
7816         unsigned long rflags;
7817
7818         rflags = kvm_x86_ops->get_rflags(vcpu);
7819         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7820                 rflags &= ~X86_EFLAGS_TF;
7821         return rflags;
7822 }
7823 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7824
7825 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7826 {
7827         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7828             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7829                 rflags |= X86_EFLAGS_TF;
7830         kvm_x86_ops->set_rflags(vcpu, rflags);
7831 }
7832
7833 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7834 {
7835         __kvm_set_rflags(vcpu, rflags);
7836         kvm_make_request(KVM_REQ_EVENT, vcpu);
7837 }
7838 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7839
7840 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7841 {
7842         int r;
7843
7844         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7845               work->wakeup_all)
7846                 return;
7847
7848         r = kvm_mmu_reload(vcpu);
7849         if (unlikely(r))
7850                 return;
7851
7852         if (!vcpu->arch.mmu.direct_map &&
7853               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7854                 return;
7855
7856         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7857 }
7858
7859 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7860 {
7861         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7862 }
7863
7864 static inline u32 kvm_async_pf_next_probe(u32 key)
7865 {
7866         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7867 }
7868
7869 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7870 {
7871         u32 key = kvm_async_pf_hash_fn(gfn);
7872
7873         while (vcpu->arch.apf.gfns[key] != ~0)
7874                 key = kvm_async_pf_next_probe(key);
7875
7876         vcpu->arch.apf.gfns[key] = gfn;
7877 }
7878
7879 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7880 {
7881         int i;
7882         u32 key = kvm_async_pf_hash_fn(gfn);
7883
7884         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7885                      (vcpu->arch.apf.gfns[key] != gfn &&
7886                       vcpu->arch.apf.gfns[key] != ~0); i++)
7887                 key = kvm_async_pf_next_probe(key);
7888
7889         return key;
7890 }
7891
7892 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7893 {
7894         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7895 }
7896
7897 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7898 {
7899         u32 i, j, k;
7900
7901         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7902         while (true) {
7903                 vcpu->arch.apf.gfns[i] = ~0;
7904                 do {
7905                         j = kvm_async_pf_next_probe(j);
7906                         if (vcpu->arch.apf.gfns[j] == ~0)
7907                                 return;
7908                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7909                         /*
7910                          * k lies cyclically in ]i,j]
7911                          * |    i.k.j |
7912                          * |....j i.k.| or  |.k..j i...|
7913                          */
7914                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7915                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7916                 i = j;
7917         }
7918 }
7919
7920 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7921 {
7922
7923         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7924                                       sizeof(val));
7925 }
7926
7927 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7928                                      struct kvm_async_pf *work)
7929 {
7930         struct x86_exception fault;
7931
7932         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7933         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7934
7935         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7936             (vcpu->arch.apf.send_user_only &&
7937              kvm_x86_ops->get_cpl(vcpu) == 0))
7938                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7939         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7940                 fault.vector = PF_VECTOR;
7941                 fault.error_code_valid = true;
7942                 fault.error_code = 0;
7943                 fault.nested_page_fault = false;
7944                 fault.address = work->arch.token;
7945                 kvm_inject_page_fault(vcpu, &fault);
7946         }
7947 }
7948
7949 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7950                                  struct kvm_async_pf *work)
7951 {
7952         struct x86_exception fault;
7953
7954         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7955         if (work->wakeup_all)
7956                 work->arch.token = ~0; /* broadcast wakeup */
7957         else
7958                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7959
7960         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7961             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7962                 fault.vector = PF_VECTOR;
7963                 fault.error_code_valid = true;
7964                 fault.error_code = 0;
7965                 fault.nested_page_fault = false;
7966                 fault.address = work->arch.token;
7967                 kvm_inject_page_fault(vcpu, &fault);
7968         }
7969         vcpu->arch.apf.halted = false;
7970         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7971 }
7972
7973 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7974 {
7975         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7976                 return true;
7977         else
7978                 return !kvm_event_needs_reinjection(vcpu) &&
7979                         kvm_x86_ops->interrupt_allowed(vcpu);
7980 }
7981
7982 void kvm_arch_start_assignment(struct kvm *kvm)
7983 {
7984         atomic_inc(&kvm->arch.assigned_device_count);
7985 }
7986 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
7987
7988 void kvm_arch_end_assignment(struct kvm *kvm)
7989 {
7990         atomic_dec(&kvm->arch.assigned_device_count);
7991 }
7992 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
7993
7994 bool kvm_arch_has_assigned_device(struct kvm *kvm)
7995 {
7996         return atomic_read(&kvm->arch.assigned_device_count);
7997 }
7998 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
7999
8000 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8001 {
8002         atomic_inc(&kvm->arch.noncoherent_dma_count);
8003 }
8004 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8005
8006 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8007 {
8008         atomic_dec(&kvm->arch.noncoherent_dma_count);
8009 }
8010 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8011
8012 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8013 {
8014         return atomic_read(&kvm->arch.noncoherent_dma_count);
8015 }
8016 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8017
8018 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8019 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8020 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8021 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8022 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8023 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8024 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8025 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8026 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8027 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8028 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8029 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8030 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8031 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8032 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);