Merge remote-tracking branches 'asoc/fix/adsp', 'asoc/fix/arizona', 'asoc/fix/atmel...
[linux-drm-fsl-dcu.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
66
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
70
71 #define emul_to_vcpu(ctxt) \
72         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
73
74 /* EFER defaults:
75  * - enable syscall per default because its emulated by KVM
76  * - enable LME and LMA per default on 64 bit KVM
77  */
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
84
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
87
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
90
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
93
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
96
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32  kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
101
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
105
106 #define KVM_NR_SHARED_MSRS 16
107
108 struct kvm_shared_msrs_global {
109         int nr;
110         u32 msrs[KVM_NR_SHARED_MSRS];
111 };
112
113 struct kvm_shared_msrs {
114         struct user_return_notifier urn;
115         bool registered;
116         struct kvm_shared_msr_values {
117                 u64 host;
118                 u64 curr;
119         } values[KVM_NR_SHARED_MSRS];
120 };
121
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
124
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126         { "pf_fixed", VCPU_STAT(pf_fixed) },
127         { "pf_guest", VCPU_STAT(pf_guest) },
128         { "tlb_flush", VCPU_STAT(tlb_flush) },
129         { "invlpg", VCPU_STAT(invlpg) },
130         { "exits", VCPU_STAT(exits) },
131         { "io_exits", VCPU_STAT(io_exits) },
132         { "mmio_exits", VCPU_STAT(mmio_exits) },
133         { "signal_exits", VCPU_STAT(signal_exits) },
134         { "irq_window", VCPU_STAT(irq_window_exits) },
135         { "nmi_window", VCPU_STAT(nmi_window_exits) },
136         { "halt_exits", VCPU_STAT(halt_exits) },
137         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138         { "hypercalls", VCPU_STAT(hypercalls) },
139         { "request_irq", VCPU_STAT(request_irq_exits) },
140         { "irq_exits", VCPU_STAT(irq_exits) },
141         { "host_state_reload", VCPU_STAT(host_state_reload) },
142         { "efer_reload", VCPU_STAT(efer_reload) },
143         { "fpu_reload", VCPU_STAT(fpu_reload) },
144         { "insn_emulation", VCPU_STAT(insn_emulation) },
145         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146         { "irq_injections", VCPU_STAT(irq_injections) },
147         { "nmi_injections", VCPU_STAT(nmi_injections) },
148         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152         { "mmu_flooded", VM_STAT(mmu_flooded) },
153         { "mmu_recycled", VM_STAT(mmu_recycled) },
154         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155         { "mmu_unsync", VM_STAT(mmu_unsync) },
156         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157         { "largepages", VM_STAT(lpages) },
158         { NULL }
159 };
160
161 u64 __read_mostly host_xcr0;
162
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
164
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
166 {
167         int i;
168         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169                 vcpu->arch.apf.gfns[i] = ~0;
170 }
171
172 static void kvm_on_user_return(struct user_return_notifier *urn)
173 {
174         unsigned slot;
175         struct kvm_shared_msrs *locals
176                 = container_of(urn, struct kvm_shared_msrs, urn);
177         struct kvm_shared_msr_values *values;
178
179         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180                 values = &locals->values[slot];
181                 if (values->host != values->curr) {
182                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
183                         values->curr = values->host;
184                 }
185         }
186         locals->registered = false;
187         user_return_notifier_unregister(urn);
188 }
189
190 static void shared_msr_update(unsigned slot, u32 msr)
191 {
192         u64 value;
193         unsigned int cpu = smp_processor_id();
194         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
195
196         /* only read, and nobody should modify it at this time,
197          * so don't need lock */
198         if (slot >= shared_msrs_global.nr) {
199                 printk(KERN_ERR "kvm: invalid MSR slot!");
200                 return;
201         }
202         rdmsrl_safe(msr, &value);
203         smsr->values[slot].host = value;
204         smsr->values[slot].curr = value;
205 }
206
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
208 {
209         if (slot >= shared_msrs_global.nr)
210                 shared_msrs_global.nr = slot + 1;
211         shared_msrs_global.msrs[slot] = msr;
212         /* we need ensured the shared_msr_global have been updated */
213         smp_wmb();
214 }
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
216
217 static void kvm_shared_msr_cpu_online(void)
218 {
219         unsigned i;
220
221         for (i = 0; i < shared_msrs_global.nr; ++i)
222                 shared_msr_update(i, shared_msrs_global.msrs[i]);
223 }
224
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
226 {
227         unsigned int cpu = smp_processor_id();
228         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
229
230         if (((value ^ smsr->values[slot].curr) & mask) == 0)
231                 return;
232         smsr->values[slot].curr = value;
233         wrmsrl(shared_msrs_global.msrs[slot], value);
234         if (!smsr->registered) {
235                 smsr->urn.on_user_return = kvm_on_user_return;
236                 user_return_notifier_register(&smsr->urn);
237                 smsr->registered = true;
238         }
239 }
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
241
242 static void drop_user_return_notifiers(void *ignore)
243 {
244         unsigned int cpu = smp_processor_id();
245         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
246
247         if (smsr->registered)
248                 kvm_on_user_return(&smsr->urn);
249 }
250
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
252 {
253         return vcpu->arch.apic_base;
254 }
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
256
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
258 {
259         /* TODO: reserve bits check */
260         kvm_lapic_set_base(vcpu, data);
261 }
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
263
264 asmlinkage void kvm_spurious_fault(void)
265 {
266         /* Fault while not rebooting.  We want the trace. */
267         BUG();
268 }
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
270
271 #define EXCPT_BENIGN            0
272 #define EXCPT_CONTRIBUTORY      1
273 #define EXCPT_PF                2
274
275 static int exception_class(int vector)
276 {
277         switch (vector) {
278         case PF_VECTOR:
279                 return EXCPT_PF;
280         case DE_VECTOR:
281         case TS_VECTOR:
282         case NP_VECTOR:
283         case SS_VECTOR:
284         case GP_VECTOR:
285                 return EXCPT_CONTRIBUTORY;
286         default:
287                 break;
288         }
289         return EXCPT_BENIGN;
290 }
291
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293                 unsigned nr, bool has_error, u32 error_code,
294                 bool reinject)
295 {
296         u32 prev_nr;
297         int class1, class2;
298
299         kvm_make_request(KVM_REQ_EVENT, vcpu);
300
301         if (!vcpu->arch.exception.pending) {
302         queue:
303                 vcpu->arch.exception.pending = true;
304                 vcpu->arch.exception.has_error_code = has_error;
305                 vcpu->arch.exception.nr = nr;
306                 vcpu->arch.exception.error_code = error_code;
307                 vcpu->arch.exception.reinject = reinject;
308                 return;
309         }
310
311         /* to check exception */
312         prev_nr = vcpu->arch.exception.nr;
313         if (prev_nr == DF_VECTOR) {
314                 /* triple fault -> shutdown */
315                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316                 return;
317         }
318         class1 = exception_class(prev_nr);
319         class2 = exception_class(nr);
320         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322                 /* generate double fault per SDM Table 5-5 */
323                 vcpu->arch.exception.pending = true;
324                 vcpu->arch.exception.has_error_code = true;
325                 vcpu->arch.exception.nr = DF_VECTOR;
326                 vcpu->arch.exception.error_code = 0;
327         } else
328                 /* replace previous exception with a new one in a hope
329                    that instruction re-execution will regenerate lost
330                    exception */
331                 goto queue;
332 }
333
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
335 {
336         kvm_multiple_exception(vcpu, nr, false, 0, false);
337 }
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
339
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
341 {
342         kvm_multiple_exception(vcpu, nr, false, 0, true);
343 }
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
345
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
347 {
348         if (err)
349                 kvm_inject_gp(vcpu, 0);
350         else
351                 kvm_x86_ops->skip_emulated_instruction(vcpu);
352 }
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
354
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
356 {
357         ++vcpu->stat.pf_guest;
358         vcpu->arch.cr2 = fault->address;
359         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
360 }
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
362
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
364 {
365         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367         else
368                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
369 }
370
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
372 {
373         atomic_inc(&vcpu->arch.nmi_queued);
374         kvm_make_request(KVM_REQ_NMI, vcpu);
375 }
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
377
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
379 {
380         kvm_multiple_exception(vcpu, nr, true, error_code, false);
381 }
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
383
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
385 {
386         kvm_multiple_exception(vcpu, nr, true, error_code, true);
387 }
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
389
390 /*
391  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
392  * a #GP and return false.
393  */
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
395 {
396         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397                 return true;
398         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399         return false;
400 }
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
402
403 /*
404  * This function will be used to read from the physical memory of the currently
405  * running guest. The difference to kvm_read_guest_page is that this function
406  * can read from guest physical or from the guest's guest physical memory.
407  */
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409                             gfn_t ngfn, void *data, int offset, int len,
410                             u32 access)
411 {
412         gfn_t real_gfn;
413         gpa_t ngpa;
414
415         ngpa     = gfn_to_gpa(ngfn);
416         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417         if (real_gfn == UNMAPPED_GVA)
418                 return -EFAULT;
419
420         real_gfn = gpa_to_gfn(real_gfn);
421
422         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
423 }
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
425
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427                                void *data, int offset, int len, u32 access)
428 {
429         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430                                        data, offset, len, access);
431 }
432
433 /*
434  * Load the pae pdptrs.  Return true is they are all valid.
435  */
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
437 {
438         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440         int i;
441         int ret;
442         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
443
444         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445                                       offset * sizeof(u64), sizeof(pdpte),
446                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
447         if (ret < 0) {
448                 ret = 0;
449                 goto out;
450         }
451         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452                 if (is_present_gpte(pdpte[i]) &&
453                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454                         ret = 0;
455                         goto out;
456                 }
457         }
458         ret = 1;
459
460         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461         __set_bit(VCPU_EXREG_PDPTR,
462                   (unsigned long *)&vcpu->arch.regs_avail);
463         __set_bit(VCPU_EXREG_PDPTR,
464                   (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
466
467         return ret;
468 }
469 EXPORT_SYMBOL_GPL(load_pdptrs);
470
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
472 {
473         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474         bool changed = true;
475         int offset;
476         gfn_t gfn;
477         int r;
478
479         if (is_long_mode(vcpu) || !is_pae(vcpu))
480                 return false;
481
482         if (!test_bit(VCPU_EXREG_PDPTR,
483                       (unsigned long *)&vcpu->arch.regs_avail))
484                 return true;
485
486         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
490         if (r < 0)
491                 goto out;
492         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
494
495         return changed;
496 }
497
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
499 {
500         unsigned long old_cr0 = kvm_read_cr0(vcpu);
501         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502                                     X86_CR0_CD | X86_CR0_NW;
503
504         cr0 |= X86_CR0_ET;
505
506 #ifdef CONFIG_X86_64
507         if (cr0 & 0xffffffff00000000UL)
508                 return 1;
509 #endif
510
511         cr0 &= ~CR0_RESERVED_BITS;
512
513         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514                 return 1;
515
516         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517                 return 1;
518
519         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521                 if ((vcpu->arch.efer & EFER_LME)) {
522                         int cs_db, cs_l;
523
524                         if (!is_pae(vcpu))
525                                 return 1;
526                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527                         if (cs_l)
528                                 return 1;
529                 } else
530 #endif
531                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532                                                  kvm_read_cr3(vcpu)))
533                         return 1;
534         }
535
536         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537                 return 1;
538
539         kvm_x86_ops->set_cr0(vcpu, cr0);
540
541         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542                 kvm_clear_async_pf_completion_queue(vcpu);
543                 kvm_async_pf_hash_reset(vcpu);
544         }
545
546         if ((cr0 ^ old_cr0) & update_bits)
547                 kvm_mmu_reset_context(vcpu);
548         return 0;
549 }
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
551
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
553 {
554         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
555 }
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
557
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
559 {
560         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561                         !vcpu->guest_xcr0_loaded) {
562                 /* kvm_set_xcr() also depends on this */
563                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564                 vcpu->guest_xcr0_loaded = 1;
565         }
566 }
567
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
569 {
570         if (vcpu->guest_xcr0_loaded) {
571                 if (vcpu->arch.xcr0 != host_xcr0)
572                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573                 vcpu->guest_xcr0_loaded = 0;
574         }
575 }
576
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
578 {
579         u64 xcr0;
580         u64 valid_bits;
581
582         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
583         if (index != XCR_XFEATURE_ENABLED_MASK)
584                 return 1;
585         xcr0 = xcr;
586         if (!(xcr0 & XSTATE_FP))
587                 return 1;
588         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
589                 return 1;
590
591         /*
592          * Do not allow the guest to set bits that we do not support
593          * saving.  However, xcr0 bit 0 is always set, even if the
594          * emulated CPU does not support XSAVE (see fx_init).
595          */
596         valid_bits = vcpu->arch.guest_supported_xcr0 | XSTATE_FP;
597         if (xcr0 & ~valid_bits)
598                 return 1;
599
600         kvm_put_guest_xcr0(vcpu);
601         vcpu->arch.xcr0 = xcr0;
602         return 0;
603 }
604
605 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
606 {
607         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
608             __kvm_set_xcr(vcpu, index, xcr)) {
609                 kvm_inject_gp(vcpu, 0);
610                 return 1;
611         }
612         return 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_set_xcr);
615
616 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
617 {
618         unsigned long old_cr4 = kvm_read_cr4(vcpu);
619         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
620                                    X86_CR4_PAE | X86_CR4_SMEP;
621         if (cr4 & CR4_RESERVED_BITS)
622                 return 1;
623
624         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
625                 return 1;
626
627         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
628                 return 1;
629
630         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
631                 return 1;
632
633         if (is_long_mode(vcpu)) {
634                 if (!(cr4 & X86_CR4_PAE))
635                         return 1;
636         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
637                    && ((cr4 ^ old_cr4) & pdptr_bits)
638                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
639                                    kvm_read_cr3(vcpu)))
640                 return 1;
641
642         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
643                 if (!guest_cpuid_has_pcid(vcpu))
644                         return 1;
645
646                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
647                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
648                         return 1;
649         }
650
651         if (kvm_x86_ops->set_cr4(vcpu, cr4))
652                 return 1;
653
654         if (((cr4 ^ old_cr4) & pdptr_bits) ||
655             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
656                 kvm_mmu_reset_context(vcpu);
657
658         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
659                 kvm_update_cpuid(vcpu);
660
661         return 0;
662 }
663 EXPORT_SYMBOL_GPL(kvm_set_cr4);
664
665 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
666 {
667         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
668                 kvm_mmu_sync_roots(vcpu);
669                 kvm_mmu_flush_tlb(vcpu);
670                 return 0;
671         }
672
673         if (is_long_mode(vcpu)) {
674                 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
675                         if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
676                                 return 1;
677                 } else
678                         if (cr3 & CR3_L_MODE_RESERVED_BITS)
679                                 return 1;
680         } else {
681                 if (is_pae(vcpu)) {
682                         if (cr3 & CR3_PAE_RESERVED_BITS)
683                                 return 1;
684                         if (is_paging(vcpu) &&
685                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
686                                 return 1;
687                 }
688                 /*
689                  * We don't check reserved bits in nonpae mode, because
690                  * this isn't enforced, and VMware depends on this.
691                  */
692         }
693
694         vcpu->arch.cr3 = cr3;
695         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
696         kvm_mmu_new_cr3(vcpu);
697         return 0;
698 }
699 EXPORT_SYMBOL_GPL(kvm_set_cr3);
700
701 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
702 {
703         if (cr8 & CR8_RESERVED_BITS)
704                 return 1;
705         if (irqchip_in_kernel(vcpu->kvm))
706                 kvm_lapic_set_tpr(vcpu, cr8);
707         else
708                 vcpu->arch.cr8 = cr8;
709         return 0;
710 }
711 EXPORT_SYMBOL_GPL(kvm_set_cr8);
712
713 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
714 {
715         if (irqchip_in_kernel(vcpu->kvm))
716                 return kvm_lapic_get_cr8(vcpu);
717         else
718                 return vcpu->arch.cr8;
719 }
720 EXPORT_SYMBOL_GPL(kvm_get_cr8);
721
722 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
723 {
724         unsigned long dr7;
725
726         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
727                 dr7 = vcpu->arch.guest_debug_dr7;
728         else
729                 dr7 = vcpu->arch.dr7;
730         kvm_x86_ops->set_dr7(vcpu, dr7);
731         vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
732 }
733
734 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
735 {
736         switch (dr) {
737         case 0 ... 3:
738                 vcpu->arch.db[dr] = val;
739                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
740                         vcpu->arch.eff_db[dr] = val;
741                 break;
742         case 4:
743                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744                         return 1; /* #UD */
745                 /* fall through */
746         case 6:
747                 if (val & 0xffffffff00000000ULL)
748                         return -1; /* #GP */
749                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
750                 break;
751         case 5:
752                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
753                         return 1; /* #UD */
754                 /* fall through */
755         default: /* 7 */
756                 if (val & 0xffffffff00000000ULL)
757                         return -1; /* #GP */
758                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
759                 kvm_update_dr7(vcpu);
760                 break;
761         }
762
763         return 0;
764 }
765
766 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
767 {
768         int res;
769
770         res = __kvm_set_dr(vcpu, dr, val);
771         if (res > 0)
772                 kvm_queue_exception(vcpu, UD_VECTOR);
773         else if (res < 0)
774                 kvm_inject_gp(vcpu, 0);
775
776         return res;
777 }
778 EXPORT_SYMBOL_GPL(kvm_set_dr);
779
780 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
781 {
782         switch (dr) {
783         case 0 ... 3:
784                 *val = vcpu->arch.db[dr];
785                 break;
786         case 4:
787                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
788                         return 1;
789                 /* fall through */
790         case 6:
791                 *val = vcpu->arch.dr6;
792                 break;
793         case 5:
794                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
795                         return 1;
796                 /* fall through */
797         default: /* 7 */
798                 *val = vcpu->arch.dr7;
799                 break;
800         }
801
802         return 0;
803 }
804
805 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
806 {
807         if (_kvm_get_dr(vcpu, dr, val)) {
808                 kvm_queue_exception(vcpu, UD_VECTOR);
809                 return 1;
810         }
811         return 0;
812 }
813 EXPORT_SYMBOL_GPL(kvm_get_dr);
814
815 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
816 {
817         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
818         u64 data;
819         int err;
820
821         err = kvm_pmu_read_pmc(vcpu, ecx, &data);
822         if (err)
823                 return err;
824         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
825         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
826         return err;
827 }
828 EXPORT_SYMBOL_GPL(kvm_rdpmc);
829
830 /*
831  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
832  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
833  *
834  * This list is modified at module load time to reflect the
835  * capabilities of the host cpu. This capabilities test skips MSRs that are
836  * kvm-specific. Those are put in the beginning of the list.
837  */
838
839 #define KVM_SAVE_MSRS_BEGIN     10
840 static u32 msrs_to_save[] = {
841         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
842         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
843         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
844         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
845         MSR_KVM_PV_EOI_EN,
846         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
847         MSR_STAR,
848 #ifdef CONFIG_X86_64
849         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
850 #endif
851         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
852         MSR_IA32_FEATURE_CONTROL
853 };
854
855 static unsigned num_msrs_to_save;
856
857 static const u32 emulated_msrs[] = {
858         MSR_IA32_TSC_ADJUST,
859         MSR_IA32_TSCDEADLINE,
860         MSR_IA32_MISC_ENABLE,
861         MSR_IA32_MCG_STATUS,
862         MSR_IA32_MCG_CTL,
863 };
864
865 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
866 {
867         if (efer & efer_reserved_bits)
868                 return false;
869
870         if (efer & EFER_FFXSR) {
871                 struct kvm_cpuid_entry2 *feat;
872
873                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
874                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
875                         return false;
876         }
877
878         if (efer & EFER_SVME) {
879                 struct kvm_cpuid_entry2 *feat;
880
881                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
882                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
883                         return false;
884         }
885
886         return true;
887 }
888 EXPORT_SYMBOL_GPL(kvm_valid_efer);
889
890 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
891 {
892         u64 old_efer = vcpu->arch.efer;
893
894         if (!kvm_valid_efer(vcpu, efer))
895                 return 1;
896
897         if (is_paging(vcpu)
898             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
899                 return 1;
900
901         efer &= ~EFER_LMA;
902         efer |= vcpu->arch.efer & EFER_LMA;
903
904         kvm_x86_ops->set_efer(vcpu, efer);
905
906         /* Update reserved bits */
907         if ((efer ^ old_efer) & EFER_NX)
908                 kvm_mmu_reset_context(vcpu);
909
910         return 0;
911 }
912
913 void kvm_enable_efer_bits(u64 mask)
914 {
915        efer_reserved_bits &= ~mask;
916 }
917 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
918
919
920 /*
921  * Writes msr value into into the appropriate "register".
922  * Returns 0 on success, non-0 otherwise.
923  * Assumes vcpu_load() was already called.
924  */
925 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
926 {
927         return kvm_x86_ops->set_msr(vcpu, msr);
928 }
929
930 /*
931  * Adapt set_msr() to msr_io()'s calling convention
932  */
933 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
934 {
935         struct msr_data msr;
936
937         msr.data = *data;
938         msr.index = index;
939         msr.host_initiated = true;
940         return kvm_set_msr(vcpu, &msr);
941 }
942
943 #ifdef CONFIG_X86_64
944 struct pvclock_gtod_data {
945         seqcount_t      seq;
946
947         struct { /* extract of a clocksource struct */
948                 int vclock_mode;
949                 cycle_t cycle_last;
950                 cycle_t mask;
951                 u32     mult;
952                 u32     shift;
953         } clock;
954
955         /* open coded 'struct timespec' */
956         u64             monotonic_time_snsec;
957         time_t          monotonic_time_sec;
958 };
959
960 static struct pvclock_gtod_data pvclock_gtod_data;
961
962 static void update_pvclock_gtod(struct timekeeper *tk)
963 {
964         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
965
966         write_seqcount_begin(&vdata->seq);
967
968         /* copy pvclock gtod data */
969         vdata->clock.vclock_mode        = tk->clock->archdata.vclock_mode;
970         vdata->clock.cycle_last         = tk->clock->cycle_last;
971         vdata->clock.mask               = tk->clock->mask;
972         vdata->clock.mult               = tk->mult;
973         vdata->clock.shift              = tk->shift;
974
975         vdata->monotonic_time_sec       = tk->xtime_sec
976                                         + tk->wall_to_monotonic.tv_sec;
977         vdata->monotonic_time_snsec     = tk->xtime_nsec
978                                         + (tk->wall_to_monotonic.tv_nsec
979                                                 << tk->shift);
980         while (vdata->monotonic_time_snsec >=
981                                         (((u64)NSEC_PER_SEC) << tk->shift)) {
982                 vdata->monotonic_time_snsec -=
983                                         ((u64)NSEC_PER_SEC) << tk->shift;
984                 vdata->monotonic_time_sec++;
985         }
986
987         write_seqcount_end(&vdata->seq);
988 }
989 #endif
990
991
992 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
993 {
994         int version;
995         int r;
996         struct pvclock_wall_clock wc;
997         struct timespec boot;
998
999         if (!wall_clock)
1000                 return;
1001
1002         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1003         if (r)
1004                 return;
1005
1006         if (version & 1)
1007                 ++version;  /* first time write, random junk */
1008
1009         ++version;
1010
1011         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1012
1013         /*
1014          * The guest calculates current wall clock time by adding
1015          * system time (updated by kvm_guest_time_update below) to the
1016          * wall clock specified here.  guest system time equals host
1017          * system time for us, thus we must fill in host boot time here.
1018          */
1019         getboottime(&boot);
1020
1021         if (kvm->arch.kvmclock_offset) {
1022                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1023                 boot = timespec_sub(boot, ts);
1024         }
1025         wc.sec = boot.tv_sec;
1026         wc.nsec = boot.tv_nsec;
1027         wc.version = version;
1028
1029         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1030
1031         version++;
1032         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1033 }
1034
1035 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1036 {
1037         uint32_t quotient, remainder;
1038
1039         /* Don't try to replace with do_div(), this one calculates
1040          * "(dividend << 32) / divisor" */
1041         __asm__ ( "divl %4"
1042                   : "=a" (quotient), "=d" (remainder)
1043                   : "0" (0), "1" (dividend), "r" (divisor) );
1044         return quotient;
1045 }
1046
1047 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1048                                s8 *pshift, u32 *pmultiplier)
1049 {
1050         uint64_t scaled64;
1051         int32_t  shift = 0;
1052         uint64_t tps64;
1053         uint32_t tps32;
1054
1055         tps64 = base_khz * 1000LL;
1056         scaled64 = scaled_khz * 1000LL;
1057         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1058                 tps64 >>= 1;
1059                 shift--;
1060         }
1061
1062         tps32 = (uint32_t)tps64;
1063         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1064                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1065                         scaled64 >>= 1;
1066                 else
1067                         tps32 <<= 1;
1068                 shift++;
1069         }
1070
1071         *pshift = shift;
1072         *pmultiplier = div_frac(scaled64, tps32);
1073
1074         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1075                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1076 }
1077
1078 static inline u64 get_kernel_ns(void)
1079 {
1080         struct timespec ts;
1081
1082         WARN_ON(preemptible());
1083         ktime_get_ts(&ts);
1084         monotonic_to_bootbased(&ts);
1085         return timespec_to_ns(&ts);
1086 }
1087
1088 #ifdef CONFIG_X86_64
1089 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1090 #endif
1091
1092 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1093 unsigned long max_tsc_khz;
1094
1095 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1096 {
1097         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1098                                    vcpu->arch.virtual_tsc_shift);
1099 }
1100
1101 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1102 {
1103         u64 v = (u64)khz * (1000000 + ppm);
1104         do_div(v, 1000000);
1105         return v;
1106 }
1107
1108 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1109 {
1110         u32 thresh_lo, thresh_hi;
1111         int use_scaling = 0;
1112
1113         /* tsc_khz can be zero if TSC calibration fails */
1114         if (this_tsc_khz == 0)
1115                 return;
1116
1117         /* Compute a scale to convert nanoseconds in TSC cycles */
1118         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1119                            &vcpu->arch.virtual_tsc_shift,
1120                            &vcpu->arch.virtual_tsc_mult);
1121         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1122
1123         /*
1124          * Compute the variation in TSC rate which is acceptable
1125          * within the range of tolerance and decide if the
1126          * rate being applied is within that bounds of the hardware
1127          * rate.  If so, no scaling or compensation need be done.
1128          */
1129         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1130         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1131         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1132                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1133                 use_scaling = 1;
1134         }
1135         kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1136 }
1137
1138 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1139 {
1140         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1141                                       vcpu->arch.virtual_tsc_mult,
1142                                       vcpu->arch.virtual_tsc_shift);
1143         tsc += vcpu->arch.this_tsc_write;
1144         return tsc;
1145 }
1146
1147 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1148 {
1149 #ifdef CONFIG_X86_64
1150         bool vcpus_matched;
1151         bool do_request = false;
1152         struct kvm_arch *ka = &vcpu->kvm->arch;
1153         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1154
1155         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1156                          atomic_read(&vcpu->kvm->online_vcpus));
1157
1158         if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1159                 if (!ka->use_master_clock)
1160                         do_request = 1;
1161
1162         if (!vcpus_matched && ka->use_master_clock)
1163                         do_request = 1;
1164
1165         if (do_request)
1166                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1167
1168         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1169                             atomic_read(&vcpu->kvm->online_vcpus),
1170                             ka->use_master_clock, gtod->clock.vclock_mode);
1171 #endif
1172 }
1173
1174 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1175 {
1176         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1177         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1178 }
1179
1180 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1181 {
1182         struct kvm *kvm = vcpu->kvm;
1183         u64 offset, ns, elapsed;
1184         unsigned long flags;
1185         s64 usdiff;
1186         bool matched;
1187         u64 data = msr->data;
1188
1189         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1190         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1191         ns = get_kernel_ns();
1192         elapsed = ns - kvm->arch.last_tsc_nsec;
1193
1194         if (vcpu->arch.virtual_tsc_khz) {
1195                 int faulted = 0;
1196
1197                 /* n.b - signed multiplication and division required */
1198                 usdiff = data - kvm->arch.last_tsc_write;
1199 #ifdef CONFIG_X86_64
1200                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1201 #else
1202                 /* do_div() only does unsigned */
1203                 asm("1: idivl %[divisor]\n"
1204                     "2: xor %%edx, %%edx\n"
1205                     "   movl $0, %[faulted]\n"
1206                     "3:\n"
1207                     ".section .fixup,\"ax\"\n"
1208                     "4: movl $1, %[faulted]\n"
1209                     "   jmp  3b\n"
1210                     ".previous\n"
1211
1212                 _ASM_EXTABLE(1b, 4b)
1213
1214                 : "=A"(usdiff), [faulted] "=r" (faulted)
1215                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1216
1217 #endif
1218                 do_div(elapsed, 1000);
1219                 usdiff -= elapsed;
1220                 if (usdiff < 0)
1221                         usdiff = -usdiff;
1222
1223                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1224                 if (faulted)
1225                         usdiff = USEC_PER_SEC;
1226         } else
1227                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1228
1229         /*
1230          * Special case: TSC write with a small delta (1 second) of virtual
1231          * cycle time against real time is interpreted as an attempt to
1232          * synchronize the CPU.
1233          *
1234          * For a reliable TSC, we can match TSC offsets, and for an unstable
1235          * TSC, we add elapsed time in this computation.  We could let the
1236          * compensation code attempt to catch up if we fall behind, but
1237          * it's better to try to match offsets from the beginning.
1238          */
1239         if (usdiff < USEC_PER_SEC &&
1240             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1241                 if (!check_tsc_unstable()) {
1242                         offset = kvm->arch.cur_tsc_offset;
1243                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1244                 } else {
1245                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1246                         data += delta;
1247                         offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1248                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1249                 }
1250                 matched = true;
1251         } else {
1252                 /*
1253                  * We split periods of matched TSC writes into generations.
1254                  * For each generation, we track the original measured
1255                  * nanosecond time, offset, and write, so if TSCs are in
1256                  * sync, we can match exact offset, and if not, we can match
1257                  * exact software computation in compute_guest_tsc()
1258                  *
1259                  * These values are tracked in kvm->arch.cur_xxx variables.
1260                  */
1261                 kvm->arch.cur_tsc_generation++;
1262                 kvm->arch.cur_tsc_nsec = ns;
1263                 kvm->arch.cur_tsc_write = data;
1264                 kvm->arch.cur_tsc_offset = offset;
1265                 matched = false;
1266                 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1267                          kvm->arch.cur_tsc_generation, data);
1268         }
1269
1270         /*
1271          * We also track th most recent recorded KHZ, write and time to
1272          * allow the matching interval to be extended at each write.
1273          */
1274         kvm->arch.last_tsc_nsec = ns;
1275         kvm->arch.last_tsc_write = data;
1276         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1277
1278         /* Reset of TSC must disable overshoot protection below */
1279         vcpu->arch.hv_clock.tsc_timestamp = 0;
1280         vcpu->arch.last_guest_tsc = data;
1281
1282         /* Keep track of which generation this VCPU has synchronized to */
1283         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1284         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1285         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1286
1287         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1288                 update_ia32_tsc_adjust_msr(vcpu, offset);
1289         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1290         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1291
1292         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1293         if (matched)
1294                 kvm->arch.nr_vcpus_matched_tsc++;
1295         else
1296                 kvm->arch.nr_vcpus_matched_tsc = 0;
1297
1298         kvm_track_tsc_matching(vcpu);
1299         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1300 }
1301
1302 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1303
1304 #ifdef CONFIG_X86_64
1305
1306 static cycle_t read_tsc(void)
1307 {
1308         cycle_t ret;
1309         u64 last;
1310
1311         /*
1312          * Empirically, a fence (of type that depends on the CPU)
1313          * before rdtsc is enough to ensure that rdtsc is ordered
1314          * with respect to loads.  The various CPU manuals are unclear
1315          * as to whether rdtsc can be reordered with later loads,
1316          * but no one has ever seen it happen.
1317          */
1318         rdtsc_barrier();
1319         ret = (cycle_t)vget_cycles();
1320
1321         last = pvclock_gtod_data.clock.cycle_last;
1322
1323         if (likely(ret >= last))
1324                 return ret;
1325
1326         /*
1327          * GCC likes to generate cmov here, but this branch is extremely
1328          * predictable (it's just a funciton of time and the likely is
1329          * very likely) and there's a data dependence, so force GCC
1330          * to generate a branch instead.  I don't barrier() because
1331          * we don't actually need a barrier, and if this function
1332          * ever gets inlined it will generate worse code.
1333          */
1334         asm volatile ("");
1335         return last;
1336 }
1337
1338 static inline u64 vgettsc(cycle_t *cycle_now)
1339 {
1340         long v;
1341         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1342
1343         *cycle_now = read_tsc();
1344
1345         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1346         return v * gtod->clock.mult;
1347 }
1348
1349 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1350 {
1351         unsigned long seq;
1352         u64 ns;
1353         int mode;
1354         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1355
1356         ts->tv_nsec = 0;
1357         do {
1358                 seq = read_seqcount_begin(&gtod->seq);
1359                 mode = gtod->clock.vclock_mode;
1360                 ts->tv_sec = gtod->monotonic_time_sec;
1361                 ns = gtod->monotonic_time_snsec;
1362                 ns += vgettsc(cycle_now);
1363                 ns >>= gtod->clock.shift;
1364         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1365         timespec_add_ns(ts, ns);
1366
1367         return mode;
1368 }
1369
1370 /* returns true if host is using tsc clocksource */
1371 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1372 {
1373         struct timespec ts;
1374
1375         /* checked again under seqlock below */
1376         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1377                 return false;
1378
1379         if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1380                 return false;
1381
1382         monotonic_to_bootbased(&ts);
1383         *kernel_ns = timespec_to_ns(&ts);
1384
1385         return true;
1386 }
1387 #endif
1388
1389 /*
1390  *
1391  * Assuming a stable TSC across physical CPUS, and a stable TSC
1392  * across virtual CPUs, the following condition is possible.
1393  * Each numbered line represents an event visible to both
1394  * CPUs at the next numbered event.
1395  *
1396  * "timespecX" represents host monotonic time. "tscX" represents
1397  * RDTSC value.
1398  *
1399  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1400  *
1401  * 1.  read timespec0,tsc0
1402  * 2.                                   | timespec1 = timespec0 + N
1403  *                                      | tsc1 = tsc0 + M
1404  * 3. transition to guest               | transition to guest
1405  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1406  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1407  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1408  *
1409  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1410  *
1411  *      - ret0 < ret1
1412  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1413  *              ...
1414  *      - 0 < N - M => M < N
1415  *
1416  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1417  * always the case (the difference between two distinct xtime instances
1418  * might be smaller then the difference between corresponding TSC reads,
1419  * when updating guest vcpus pvclock areas).
1420  *
1421  * To avoid that problem, do not allow visibility of distinct
1422  * system_timestamp/tsc_timestamp values simultaneously: use a master
1423  * copy of host monotonic time values. Update that master copy
1424  * in lockstep.
1425  *
1426  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1427  *
1428  */
1429
1430 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1431 {
1432 #ifdef CONFIG_X86_64
1433         struct kvm_arch *ka = &kvm->arch;
1434         int vclock_mode;
1435         bool host_tsc_clocksource, vcpus_matched;
1436
1437         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1438                         atomic_read(&kvm->online_vcpus));
1439
1440         /*
1441          * If the host uses TSC clock, then passthrough TSC as stable
1442          * to the guest.
1443          */
1444         host_tsc_clocksource = kvm_get_time_and_clockread(
1445                                         &ka->master_kernel_ns,
1446                                         &ka->master_cycle_now);
1447
1448         ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1449
1450         if (ka->use_master_clock)
1451                 atomic_set(&kvm_guest_has_master_clock, 1);
1452
1453         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1454         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1455                                         vcpus_matched);
1456 #endif
1457 }
1458
1459 static void kvm_gen_update_masterclock(struct kvm *kvm)
1460 {
1461 #ifdef CONFIG_X86_64
1462         int i;
1463         struct kvm_vcpu *vcpu;
1464         struct kvm_arch *ka = &kvm->arch;
1465
1466         spin_lock(&ka->pvclock_gtod_sync_lock);
1467         kvm_make_mclock_inprogress_request(kvm);
1468         /* no guest entries from this point */
1469         pvclock_update_vm_gtod_copy(kvm);
1470
1471         kvm_for_each_vcpu(i, vcpu, kvm)
1472                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1473
1474         /* guest entries allowed */
1475         kvm_for_each_vcpu(i, vcpu, kvm)
1476                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1477
1478         spin_unlock(&ka->pvclock_gtod_sync_lock);
1479 #endif
1480 }
1481
1482 static int kvm_guest_time_update(struct kvm_vcpu *v)
1483 {
1484         unsigned long flags, this_tsc_khz;
1485         struct kvm_vcpu_arch *vcpu = &v->arch;
1486         struct kvm_arch *ka = &v->kvm->arch;
1487         s64 kernel_ns, max_kernel_ns;
1488         u64 tsc_timestamp, host_tsc;
1489         struct pvclock_vcpu_time_info guest_hv_clock;
1490         u8 pvclock_flags;
1491         bool use_master_clock;
1492
1493         kernel_ns = 0;
1494         host_tsc = 0;
1495
1496         /*
1497          * If the host uses TSC clock, then passthrough TSC as stable
1498          * to the guest.
1499          */
1500         spin_lock(&ka->pvclock_gtod_sync_lock);
1501         use_master_clock = ka->use_master_clock;
1502         if (use_master_clock) {
1503                 host_tsc = ka->master_cycle_now;
1504                 kernel_ns = ka->master_kernel_ns;
1505         }
1506         spin_unlock(&ka->pvclock_gtod_sync_lock);
1507
1508         /* Keep irq disabled to prevent changes to the clock */
1509         local_irq_save(flags);
1510         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1511         if (unlikely(this_tsc_khz == 0)) {
1512                 local_irq_restore(flags);
1513                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1514                 return 1;
1515         }
1516         if (!use_master_clock) {
1517                 host_tsc = native_read_tsc();
1518                 kernel_ns = get_kernel_ns();
1519         }
1520
1521         tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1522
1523         /*
1524          * We may have to catch up the TSC to match elapsed wall clock
1525          * time for two reasons, even if kvmclock is used.
1526          *   1) CPU could have been running below the maximum TSC rate
1527          *   2) Broken TSC compensation resets the base at each VCPU
1528          *      entry to avoid unknown leaps of TSC even when running
1529          *      again on the same CPU.  This may cause apparent elapsed
1530          *      time to disappear, and the guest to stand still or run
1531          *      very slowly.
1532          */
1533         if (vcpu->tsc_catchup) {
1534                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1535                 if (tsc > tsc_timestamp) {
1536                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1537                         tsc_timestamp = tsc;
1538                 }
1539         }
1540
1541         local_irq_restore(flags);
1542
1543         if (!vcpu->pv_time_enabled)
1544                 return 0;
1545
1546         /*
1547          * Time as measured by the TSC may go backwards when resetting the base
1548          * tsc_timestamp.  The reason for this is that the TSC resolution is
1549          * higher than the resolution of the other clock scales.  Thus, many
1550          * possible measurments of the TSC correspond to one measurement of any
1551          * other clock, and so a spread of values is possible.  This is not a
1552          * problem for the computation of the nanosecond clock; with TSC rates
1553          * around 1GHZ, there can only be a few cycles which correspond to one
1554          * nanosecond value, and any path through this code will inevitably
1555          * take longer than that.  However, with the kernel_ns value itself,
1556          * the precision may be much lower, down to HZ granularity.  If the
1557          * first sampling of TSC against kernel_ns ends in the low part of the
1558          * range, and the second in the high end of the range, we can get:
1559          *
1560          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1561          *
1562          * As the sampling errors potentially range in the thousands of cycles,
1563          * it is possible such a time value has already been observed by the
1564          * guest.  To protect against this, we must compute the system time as
1565          * observed by the guest and ensure the new system time is greater.
1566          */
1567         max_kernel_ns = 0;
1568         if (vcpu->hv_clock.tsc_timestamp) {
1569                 max_kernel_ns = vcpu->last_guest_tsc -
1570                                 vcpu->hv_clock.tsc_timestamp;
1571                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1572                                     vcpu->hv_clock.tsc_to_system_mul,
1573                                     vcpu->hv_clock.tsc_shift);
1574                 max_kernel_ns += vcpu->last_kernel_ns;
1575         }
1576
1577         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1578                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1579                                    &vcpu->hv_clock.tsc_shift,
1580                                    &vcpu->hv_clock.tsc_to_system_mul);
1581                 vcpu->hw_tsc_khz = this_tsc_khz;
1582         }
1583
1584         /* with a master <monotonic time, tsc value> tuple,
1585          * pvclock clock reads always increase at the (scaled) rate
1586          * of guest TSC - no need to deal with sampling errors.
1587          */
1588         if (!use_master_clock) {
1589                 if (max_kernel_ns > kernel_ns)
1590                         kernel_ns = max_kernel_ns;
1591         }
1592         /* With all the info we got, fill in the values */
1593         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1594         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1595         vcpu->last_kernel_ns = kernel_ns;
1596         vcpu->last_guest_tsc = tsc_timestamp;
1597
1598         /*
1599          * The interface expects us to write an even number signaling that the
1600          * update is finished. Since the guest won't see the intermediate
1601          * state, we just increase by 2 at the end.
1602          */
1603         vcpu->hv_clock.version += 2;
1604
1605         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1606                 &guest_hv_clock, sizeof(guest_hv_clock))))
1607                 return 0;
1608
1609         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1610         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1611
1612         if (vcpu->pvclock_set_guest_stopped_request) {
1613                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1614                 vcpu->pvclock_set_guest_stopped_request = false;
1615         }
1616
1617         /* If the host uses TSC clocksource, then it is stable */
1618         if (use_master_clock)
1619                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1620
1621         vcpu->hv_clock.flags = pvclock_flags;
1622
1623         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1624                                 &vcpu->hv_clock,
1625                                 sizeof(vcpu->hv_clock));
1626         return 0;
1627 }
1628
1629 /*
1630  * kvmclock updates which are isolated to a given vcpu, such as
1631  * vcpu->cpu migration, should not allow system_timestamp from
1632  * the rest of the vcpus to remain static. Otherwise ntp frequency
1633  * correction applies to one vcpu's system_timestamp but not
1634  * the others.
1635  *
1636  * So in those cases, request a kvmclock update for all vcpus.
1637  * The worst case for a remote vcpu to update its kvmclock
1638  * is then bounded by maximum nohz sleep latency.
1639  */
1640
1641 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1642 {
1643         int i;
1644         struct kvm *kvm = v->kvm;
1645         struct kvm_vcpu *vcpu;
1646
1647         kvm_for_each_vcpu(i, vcpu, kvm) {
1648                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1649                 kvm_vcpu_kick(vcpu);
1650         }
1651 }
1652
1653 static bool msr_mtrr_valid(unsigned msr)
1654 {
1655         switch (msr) {
1656         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1657         case MSR_MTRRfix64K_00000:
1658         case MSR_MTRRfix16K_80000:
1659         case MSR_MTRRfix16K_A0000:
1660         case MSR_MTRRfix4K_C0000:
1661         case MSR_MTRRfix4K_C8000:
1662         case MSR_MTRRfix4K_D0000:
1663         case MSR_MTRRfix4K_D8000:
1664         case MSR_MTRRfix4K_E0000:
1665         case MSR_MTRRfix4K_E8000:
1666         case MSR_MTRRfix4K_F0000:
1667         case MSR_MTRRfix4K_F8000:
1668         case MSR_MTRRdefType:
1669         case MSR_IA32_CR_PAT:
1670                 return true;
1671         case 0x2f8:
1672                 return true;
1673         }
1674         return false;
1675 }
1676
1677 static bool valid_pat_type(unsigned t)
1678 {
1679         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1680 }
1681
1682 static bool valid_mtrr_type(unsigned t)
1683 {
1684         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1685 }
1686
1687 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1688 {
1689         int i;
1690
1691         if (!msr_mtrr_valid(msr))
1692                 return false;
1693
1694         if (msr == MSR_IA32_CR_PAT) {
1695                 for (i = 0; i < 8; i++)
1696                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1697                                 return false;
1698                 return true;
1699         } else if (msr == MSR_MTRRdefType) {
1700                 if (data & ~0xcff)
1701                         return false;
1702                 return valid_mtrr_type(data & 0xff);
1703         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1704                 for (i = 0; i < 8 ; i++)
1705                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1706                                 return false;
1707                 return true;
1708         }
1709
1710         /* variable MTRRs */
1711         return valid_mtrr_type(data & 0xff);
1712 }
1713
1714 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1715 {
1716         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1717
1718         if (!mtrr_valid(vcpu, msr, data))
1719                 return 1;
1720
1721         if (msr == MSR_MTRRdefType) {
1722                 vcpu->arch.mtrr_state.def_type = data;
1723                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1724         } else if (msr == MSR_MTRRfix64K_00000)
1725                 p[0] = data;
1726         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1727                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1728         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1729                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1730         else if (msr == MSR_IA32_CR_PAT)
1731                 vcpu->arch.pat = data;
1732         else {  /* Variable MTRRs */
1733                 int idx, is_mtrr_mask;
1734                 u64 *pt;
1735
1736                 idx = (msr - 0x200) / 2;
1737                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1738                 if (!is_mtrr_mask)
1739                         pt =
1740                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1741                 else
1742                         pt =
1743                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1744                 *pt = data;
1745         }
1746
1747         kvm_mmu_reset_context(vcpu);
1748         return 0;
1749 }
1750
1751 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1752 {
1753         u64 mcg_cap = vcpu->arch.mcg_cap;
1754         unsigned bank_num = mcg_cap & 0xff;
1755
1756         switch (msr) {
1757         case MSR_IA32_MCG_STATUS:
1758                 vcpu->arch.mcg_status = data;
1759                 break;
1760         case MSR_IA32_MCG_CTL:
1761                 if (!(mcg_cap & MCG_CTL_P))
1762                         return 1;
1763                 if (data != 0 && data != ~(u64)0)
1764                         return -1;
1765                 vcpu->arch.mcg_ctl = data;
1766                 break;
1767         default:
1768                 if (msr >= MSR_IA32_MC0_CTL &&
1769                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1770                         u32 offset = msr - MSR_IA32_MC0_CTL;
1771                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1772                          * some Linux kernels though clear bit 10 in bank 4 to
1773                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1774                          * this to avoid an uncatched #GP in the guest
1775                          */
1776                         if ((offset & 0x3) == 0 &&
1777                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1778                                 return -1;
1779                         vcpu->arch.mce_banks[offset] = data;
1780                         break;
1781                 }
1782                 return 1;
1783         }
1784         return 0;
1785 }
1786
1787 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1788 {
1789         struct kvm *kvm = vcpu->kvm;
1790         int lm = is_long_mode(vcpu);
1791         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1792                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1793         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1794                 : kvm->arch.xen_hvm_config.blob_size_32;
1795         u32 page_num = data & ~PAGE_MASK;
1796         u64 page_addr = data & PAGE_MASK;
1797         u8 *page;
1798         int r;
1799
1800         r = -E2BIG;
1801         if (page_num >= blob_size)
1802                 goto out;
1803         r = -ENOMEM;
1804         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1805         if (IS_ERR(page)) {
1806                 r = PTR_ERR(page);
1807                 goto out;
1808         }
1809         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1810                 goto out_free;
1811         r = 0;
1812 out_free:
1813         kfree(page);
1814 out:
1815         return r;
1816 }
1817
1818 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1819 {
1820         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1821 }
1822
1823 static bool kvm_hv_msr_partition_wide(u32 msr)
1824 {
1825         bool r = false;
1826         switch (msr) {
1827         case HV_X64_MSR_GUEST_OS_ID:
1828         case HV_X64_MSR_HYPERCALL:
1829                 r = true;
1830                 break;
1831         }
1832
1833         return r;
1834 }
1835
1836 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1837 {
1838         struct kvm *kvm = vcpu->kvm;
1839
1840         switch (msr) {
1841         case HV_X64_MSR_GUEST_OS_ID:
1842                 kvm->arch.hv_guest_os_id = data;
1843                 /* setting guest os id to zero disables hypercall page */
1844                 if (!kvm->arch.hv_guest_os_id)
1845                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1846                 break;
1847         case HV_X64_MSR_HYPERCALL: {
1848                 u64 gfn;
1849                 unsigned long addr;
1850                 u8 instructions[4];
1851
1852                 /* if guest os id is not set hypercall should remain disabled */
1853                 if (!kvm->arch.hv_guest_os_id)
1854                         break;
1855                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1856                         kvm->arch.hv_hypercall = data;
1857                         break;
1858                 }
1859                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1860                 addr = gfn_to_hva(kvm, gfn);
1861                 if (kvm_is_error_hva(addr))
1862                         return 1;
1863                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1864                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1865                 if (__copy_to_user((void __user *)addr, instructions, 4))
1866                         return 1;
1867                 kvm->arch.hv_hypercall = data;
1868                 break;
1869         }
1870         default:
1871                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1872                             "data 0x%llx\n", msr, data);
1873                 return 1;
1874         }
1875         return 0;
1876 }
1877
1878 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1879 {
1880         switch (msr) {
1881         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1882                 unsigned long addr;
1883
1884                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1885                         vcpu->arch.hv_vapic = data;
1886                         break;
1887                 }
1888                 addr = gfn_to_hva(vcpu->kvm, data >>
1889                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1890                 if (kvm_is_error_hva(addr))
1891                         return 1;
1892                 if (__clear_user((void __user *)addr, PAGE_SIZE))
1893                         return 1;
1894                 vcpu->arch.hv_vapic = data;
1895                 break;
1896         }
1897         case HV_X64_MSR_EOI:
1898                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1899         case HV_X64_MSR_ICR:
1900                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1901         case HV_X64_MSR_TPR:
1902                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1903         default:
1904                 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1905                             "data 0x%llx\n", msr, data);
1906                 return 1;
1907         }
1908
1909         return 0;
1910 }
1911
1912 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1913 {
1914         gpa_t gpa = data & ~0x3f;
1915
1916         /* Bits 2:5 are reserved, Should be zero */
1917         if (data & 0x3c)
1918                 return 1;
1919
1920         vcpu->arch.apf.msr_val = data;
1921
1922         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1923                 kvm_clear_async_pf_completion_queue(vcpu);
1924                 kvm_async_pf_hash_reset(vcpu);
1925                 return 0;
1926         }
1927
1928         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1929                                         sizeof(u32)))
1930                 return 1;
1931
1932         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1933         kvm_async_pf_wakeup_all(vcpu);
1934         return 0;
1935 }
1936
1937 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1938 {
1939         vcpu->arch.pv_time_enabled = false;
1940 }
1941
1942 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1943 {
1944         u64 delta;
1945
1946         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1947                 return;
1948
1949         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1950         vcpu->arch.st.last_steal = current->sched_info.run_delay;
1951         vcpu->arch.st.accum_steal = delta;
1952 }
1953
1954 static void record_steal_time(struct kvm_vcpu *vcpu)
1955 {
1956         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1957                 return;
1958
1959         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1960                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1961                 return;
1962
1963         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1964         vcpu->arch.st.steal.version += 2;
1965         vcpu->arch.st.accum_steal = 0;
1966
1967         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1968                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1969 }
1970
1971 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1972 {
1973         bool pr = false;
1974         u32 msr = msr_info->index;
1975         u64 data = msr_info->data;
1976
1977         switch (msr) {
1978         case MSR_AMD64_NB_CFG:
1979         case MSR_IA32_UCODE_REV:
1980         case MSR_IA32_UCODE_WRITE:
1981         case MSR_VM_HSAVE_PA:
1982         case MSR_AMD64_PATCH_LOADER:
1983         case MSR_AMD64_BU_CFG2:
1984                 break;
1985
1986         case MSR_EFER:
1987                 return set_efer(vcpu, data);
1988         case MSR_K7_HWCR:
1989                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1990                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1991                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
1992                 if (data != 0) {
1993                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1994                                     data);
1995                         return 1;
1996                 }
1997                 break;
1998         case MSR_FAM10H_MMIO_CONF_BASE:
1999                 if (data != 0) {
2000                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2001                                     "0x%llx\n", data);
2002                         return 1;
2003                 }
2004                 break;
2005         case MSR_IA32_DEBUGCTLMSR:
2006                 if (!data) {
2007                         /* We support the non-activated case already */
2008                         break;
2009                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2010                         /* Values other than LBR and BTF are vendor-specific,
2011                            thus reserved and should throw a #GP */
2012                         return 1;
2013                 }
2014                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2015                             __func__, data);
2016                 break;
2017         case 0x200 ... 0x2ff:
2018                 return set_msr_mtrr(vcpu, msr, data);
2019         case MSR_IA32_APICBASE:
2020                 kvm_set_apic_base(vcpu, data);
2021                 break;
2022         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2023                 return kvm_x2apic_msr_write(vcpu, msr, data);
2024         case MSR_IA32_TSCDEADLINE:
2025                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2026                 break;
2027         case MSR_IA32_TSC_ADJUST:
2028                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2029                         if (!msr_info->host_initiated) {
2030                                 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2031                                 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2032                         }
2033                         vcpu->arch.ia32_tsc_adjust_msr = data;
2034                 }
2035                 break;
2036         case MSR_IA32_MISC_ENABLE:
2037                 vcpu->arch.ia32_misc_enable_msr = data;
2038                 break;
2039         case MSR_KVM_WALL_CLOCK_NEW:
2040         case MSR_KVM_WALL_CLOCK:
2041                 vcpu->kvm->arch.wall_clock = data;
2042                 kvm_write_wall_clock(vcpu->kvm, data);
2043                 break;
2044         case MSR_KVM_SYSTEM_TIME_NEW:
2045         case MSR_KVM_SYSTEM_TIME: {
2046                 u64 gpa_offset;
2047                 kvmclock_reset(vcpu);
2048
2049                 vcpu->arch.time = data;
2050                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2051
2052                 /* we verify if the enable bit is set... */
2053                 if (!(data & 1))
2054                         break;
2055
2056                 gpa_offset = data & ~(PAGE_MASK | 1);
2057
2058                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2059                      &vcpu->arch.pv_time, data & ~1ULL,
2060                      sizeof(struct pvclock_vcpu_time_info)))
2061                         vcpu->arch.pv_time_enabled = false;
2062                 else
2063                         vcpu->arch.pv_time_enabled = true;
2064
2065                 break;
2066         }
2067         case MSR_KVM_ASYNC_PF_EN:
2068                 if (kvm_pv_enable_async_pf(vcpu, data))
2069                         return 1;
2070                 break;
2071         case MSR_KVM_STEAL_TIME:
2072
2073                 if (unlikely(!sched_info_on()))
2074                         return 1;
2075
2076                 if (data & KVM_STEAL_RESERVED_MASK)
2077                         return 1;
2078
2079                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2080                                                 data & KVM_STEAL_VALID_BITS,
2081                                                 sizeof(struct kvm_steal_time)))
2082                         return 1;
2083
2084                 vcpu->arch.st.msr_val = data;
2085
2086                 if (!(data & KVM_MSR_ENABLED))
2087                         break;
2088
2089                 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2090
2091                 preempt_disable();
2092                 accumulate_steal_time(vcpu);
2093                 preempt_enable();
2094
2095                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2096
2097                 break;
2098         case MSR_KVM_PV_EOI_EN:
2099                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2100                         return 1;
2101                 break;
2102
2103         case MSR_IA32_MCG_CTL:
2104         case MSR_IA32_MCG_STATUS:
2105         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2106                 return set_msr_mce(vcpu, msr, data);
2107
2108         /* Performance counters are not protected by a CPUID bit,
2109          * so we should check all of them in the generic path for the sake of
2110          * cross vendor migration.
2111          * Writing a zero into the event select MSRs disables them,
2112          * which we perfectly emulate ;-). Any other value should be at least
2113          * reported, some guests depend on them.
2114          */
2115         case MSR_K7_EVNTSEL0:
2116         case MSR_K7_EVNTSEL1:
2117         case MSR_K7_EVNTSEL2:
2118         case MSR_K7_EVNTSEL3:
2119                 if (data != 0)
2120                         vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2121                                     "0x%x data 0x%llx\n", msr, data);
2122                 break;
2123         /* at least RHEL 4 unconditionally writes to the perfctr registers,
2124          * so we ignore writes to make it happy.
2125          */
2126         case MSR_K7_PERFCTR0:
2127         case MSR_K7_PERFCTR1:
2128         case MSR_K7_PERFCTR2:
2129         case MSR_K7_PERFCTR3:
2130                 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2131                             "0x%x data 0x%llx\n", msr, data);
2132                 break;
2133         case MSR_P6_PERFCTR0:
2134         case MSR_P6_PERFCTR1:
2135                 pr = true;
2136         case MSR_P6_EVNTSEL0:
2137         case MSR_P6_EVNTSEL1:
2138                 if (kvm_pmu_msr(vcpu, msr))
2139                         return kvm_pmu_set_msr(vcpu, msr_info);
2140
2141                 if (pr || data != 0)
2142                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2143                                     "0x%x data 0x%llx\n", msr, data);
2144                 break;
2145         case MSR_K7_CLK_CTL:
2146                 /*
2147                  * Ignore all writes to this no longer documented MSR.
2148                  * Writes are only relevant for old K7 processors,
2149                  * all pre-dating SVM, but a recommended workaround from
2150                  * AMD for these chips. It is possible to specify the
2151                  * affected processor models on the command line, hence
2152                  * the need to ignore the workaround.
2153                  */
2154                 break;
2155         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2156                 if (kvm_hv_msr_partition_wide(msr)) {
2157                         int r;
2158                         mutex_lock(&vcpu->kvm->lock);
2159                         r = set_msr_hyperv_pw(vcpu, msr, data);
2160                         mutex_unlock(&vcpu->kvm->lock);
2161                         return r;
2162                 } else
2163                         return set_msr_hyperv(vcpu, msr, data);
2164                 break;
2165         case MSR_IA32_BBL_CR_CTL3:
2166                 /* Drop writes to this legacy MSR -- see rdmsr
2167                  * counterpart for further detail.
2168                  */
2169                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2170                 break;
2171         case MSR_AMD64_OSVW_ID_LENGTH:
2172                 if (!guest_cpuid_has_osvw(vcpu))
2173                         return 1;
2174                 vcpu->arch.osvw.length = data;
2175                 break;
2176         case MSR_AMD64_OSVW_STATUS:
2177                 if (!guest_cpuid_has_osvw(vcpu))
2178                         return 1;
2179                 vcpu->arch.osvw.status = data;
2180                 break;
2181         default:
2182                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2183                         return xen_hvm_config(vcpu, data);
2184                 if (kvm_pmu_msr(vcpu, msr))
2185                         return kvm_pmu_set_msr(vcpu, msr_info);
2186                 if (!ignore_msrs) {
2187                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2188                                     msr, data);
2189                         return 1;
2190                 } else {
2191                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2192                                     msr, data);
2193                         break;
2194                 }
2195         }
2196         return 0;
2197 }
2198 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2199
2200
2201 /*
2202  * Reads an msr value (of 'msr_index') into 'pdata'.
2203  * Returns 0 on success, non-0 otherwise.
2204  * Assumes vcpu_load() was already called.
2205  */
2206 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2207 {
2208         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2209 }
2210
2211 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2212 {
2213         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2214
2215         if (!msr_mtrr_valid(msr))
2216                 return 1;
2217
2218         if (msr == MSR_MTRRdefType)
2219                 *pdata = vcpu->arch.mtrr_state.def_type +
2220                          (vcpu->arch.mtrr_state.enabled << 10);
2221         else if (msr == MSR_MTRRfix64K_00000)
2222                 *pdata = p[0];
2223         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2224                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2225         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2226                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2227         else if (msr == MSR_IA32_CR_PAT)
2228                 *pdata = vcpu->arch.pat;
2229         else {  /* Variable MTRRs */
2230                 int idx, is_mtrr_mask;
2231                 u64 *pt;
2232
2233                 idx = (msr - 0x200) / 2;
2234                 is_mtrr_mask = msr - 0x200 - 2 * idx;
2235                 if (!is_mtrr_mask)
2236                         pt =
2237                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2238                 else
2239                         pt =
2240                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2241                 *pdata = *pt;
2242         }
2243
2244         return 0;
2245 }
2246
2247 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2248 {
2249         u64 data;
2250         u64 mcg_cap = vcpu->arch.mcg_cap;
2251         unsigned bank_num = mcg_cap & 0xff;
2252
2253         switch (msr) {
2254         case MSR_IA32_P5_MC_ADDR:
2255         case MSR_IA32_P5_MC_TYPE:
2256                 data = 0;
2257                 break;
2258         case MSR_IA32_MCG_CAP:
2259                 data = vcpu->arch.mcg_cap;
2260                 break;
2261         case MSR_IA32_MCG_CTL:
2262                 if (!(mcg_cap & MCG_CTL_P))
2263                         return 1;
2264                 data = vcpu->arch.mcg_ctl;
2265                 break;
2266         case MSR_IA32_MCG_STATUS:
2267                 data = vcpu->arch.mcg_status;
2268                 break;
2269         default:
2270                 if (msr >= MSR_IA32_MC0_CTL &&
2271                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2272                         u32 offset = msr - MSR_IA32_MC0_CTL;
2273                         data = vcpu->arch.mce_banks[offset];
2274                         break;
2275                 }
2276                 return 1;
2277         }
2278         *pdata = data;
2279         return 0;
2280 }
2281
2282 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2283 {
2284         u64 data = 0;
2285         struct kvm *kvm = vcpu->kvm;
2286
2287         switch (msr) {
2288         case HV_X64_MSR_GUEST_OS_ID:
2289                 data = kvm->arch.hv_guest_os_id;
2290                 break;
2291         case HV_X64_MSR_HYPERCALL:
2292                 data = kvm->arch.hv_hypercall;
2293                 break;
2294         default:
2295                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2296                 return 1;
2297         }
2298
2299         *pdata = data;
2300         return 0;
2301 }
2302
2303 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2304 {
2305         u64 data = 0;
2306
2307         switch (msr) {
2308         case HV_X64_MSR_VP_INDEX: {
2309                 int r;
2310                 struct kvm_vcpu *v;
2311                 kvm_for_each_vcpu(r, v, vcpu->kvm)
2312                         if (v == vcpu)
2313                                 data = r;
2314                 break;
2315         }
2316         case HV_X64_MSR_EOI:
2317                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2318         case HV_X64_MSR_ICR:
2319                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2320         case HV_X64_MSR_TPR:
2321                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2322         case HV_X64_MSR_APIC_ASSIST_PAGE:
2323                 data = vcpu->arch.hv_vapic;
2324                 break;
2325         default:
2326                 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2327                 return 1;
2328         }
2329         *pdata = data;
2330         return 0;
2331 }
2332
2333 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2334 {
2335         u64 data;
2336
2337         switch (msr) {
2338         case MSR_IA32_PLATFORM_ID:
2339         case MSR_IA32_EBL_CR_POWERON:
2340         case MSR_IA32_DEBUGCTLMSR:
2341         case MSR_IA32_LASTBRANCHFROMIP:
2342         case MSR_IA32_LASTBRANCHTOIP:
2343         case MSR_IA32_LASTINTFROMIP:
2344         case MSR_IA32_LASTINTTOIP:
2345         case MSR_K8_SYSCFG:
2346         case MSR_K7_HWCR:
2347         case MSR_VM_HSAVE_PA:
2348         case MSR_K7_EVNTSEL0:
2349         case MSR_K7_PERFCTR0:
2350         case MSR_K8_INT_PENDING_MSG:
2351         case MSR_AMD64_NB_CFG:
2352         case MSR_FAM10H_MMIO_CONF_BASE:
2353         case MSR_AMD64_BU_CFG2:
2354                 data = 0;
2355                 break;
2356         case MSR_P6_PERFCTR0:
2357         case MSR_P6_PERFCTR1:
2358         case MSR_P6_EVNTSEL0:
2359         case MSR_P6_EVNTSEL1:
2360                 if (kvm_pmu_msr(vcpu, msr))
2361                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2362                 data = 0;
2363                 break;
2364         case MSR_IA32_UCODE_REV:
2365                 data = 0x100000000ULL;
2366                 break;
2367         case MSR_MTRRcap:
2368                 data = 0x500 | KVM_NR_VAR_MTRR;
2369                 break;
2370         case 0x200 ... 0x2ff:
2371                 return get_msr_mtrr(vcpu, msr, pdata);
2372         case 0xcd: /* fsb frequency */
2373                 data = 3;
2374                 break;
2375                 /*
2376                  * MSR_EBC_FREQUENCY_ID
2377                  * Conservative value valid for even the basic CPU models.
2378                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2379                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2380                  * and 266MHz for model 3, or 4. Set Core Clock
2381                  * Frequency to System Bus Frequency Ratio to 1 (bits
2382                  * 31:24) even though these are only valid for CPU
2383                  * models > 2, however guests may end up dividing or
2384                  * multiplying by zero otherwise.
2385                  */
2386         case MSR_EBC_FREQUENCY_ID:
2387                 data = 1 << 24;
2388                 break;
2389         case MSR_IA32_APICBASE:
2390                 data = kvm_get_apic_base(vcpu);
2391                 break;
2392         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2393                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2394                 break;
2395         case MSR_IA32_TSCDEADLINE:
2396                 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2397                 break;
2398         case MSR_IA32_TSC_ADJUST:
2399                 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2400                 break;
2401         case MSR_IA32_MISC_ENABLE:
2402                 data = vcpu->arch.ia32_misc_enable_msr;
2403                 break;
2404         case MSR_IA32_PERF_STATUS:
2405                 /* TSC increment by tick */
2406                 data = 1000ULL;
2407                 /* CPU multiplier */
2408                 data |= (((uint64_t)4ULL) << 40);
2409                 break;
2410         case MSR_EFER:
2411                 data = vcpu->arch.efer;
2412                 break;
2413         case MSR_KVM_WALL_CLOCK:
2414         case MSR_KVM_WALL_CLOCK_NEW:
2415                 data = vcpu->kvm->arch.wall_clock;
2416                 break;
2417         case MSR_KVM_SYSTEM_TIME:
2418         case MSR_KVM_SYSTEM_TIME_NEW:
2419                 data = vcpu->arch.time;
2420                 break;
2421         case MSR_KVM_ASYNC_PF_EN:
2422                 data = vcpu->arch.apf.msr_val;
2423                 break;
2424         case MSR_KVM_STEAL_TIME:
2425                 data = vcpu->arch.st.msr_val;
2426                 break;
2427         case MSR_KVM_PV_EOI_EN:
2428                 data = vcpu->arch.pv_eoi.msr_val;
2429                 break;
2430         case MSR_IA32_P5_MC_ADDR:
2431         case MSR_IA32_P5_MC_TYPE:
2432         case MSR_IA32_MCG_CAP:
2433         case MSR_IA32_MCG_CTL:
2434         case MSR_IA32_MCG_STATUS:
2435         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2436                 return get_msr_mce(vcpu, msr, pdata);
2437         case MSR_K7_CLK_CTL:
2438                 /*
2439                  * Provide expected ramp-up count for K7. All other
2440                  * are set to zero, indicating minimum divisors for
2441                  * every field.
2442                  *
2443                  * This prevents guest kernels on AMD host with CPU
2444                  * type 6, model 8 and higher from exploding due to
2445                  * the rdmsr failing.
2446                  */
2447                 data = 0x20000000;
2448                 break;
2449         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2450                 if (kvm_hv_msr_partition_wide(msr)) {
2451                         int r;
2452                         mutex_lock(&vcpu->kvm->lock);
2453                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
2454                         mutex_unlock(&vcpu->kvm->lock);
2455                         return r;
2456                 } else
2457                         return get_msr_hyperv(vcpu, msr, pdata);
2458                 break;
2459         case MSR_IA32_BBL_CR_CTL3:
2460                 /* This legacy MSR exists but isn't fully documented in current
2461                  * silicon.  It is however accessed by winxp in very narrow
2462                  * scenarios where it sets bit #19, itself documented as
2463                  * a "reserved" bit.  Best effort attempt to source coherent
2464                  * read data here should the balance of the register be
2465                  * interpreted by the guest:
2466                  *
2467                  * L2 cache control register 3: 64GB range, 256KB size,
2468                  * enabled, latency 0x1, configured
2469                  */
2470                 data = 0xbe702111;
2471                 break;
2472         case MSR_AMD64_OSVW_ID_LENGTH:
2473                 if (!guest_cpuid_has_osvw(vcpu))
2474                         return 1;
2475                 data = vcpu->arch.osvw.length;
2476                 break;
2477         case MSR_AMD64_OSVW_STATUS:
2478                 if (!guest_cpuid_has_osvw(vcpu))
2479                         return 1;
2480                 data = vcpu->arch.osvw.status;
2481                 break;
2482         default:
2483                 if (kvm_pmu_msr(vcpu, msr))
2484                         return kvm_pmu_get_msr(vcpu, msr, pdata);
2485                 if (!ignore_msrs) {
2486                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2487                         return 1;
2488                 } else {
2489                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2490                         data = 0;
2491                 }
2492                 break;
2493         }
2494         *pdata = data;
2495         return 0;
2496 }
2497 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2498
2499 /*
2500  * Read or write a bunch of msrs. All parameters are kernel addresses.
2501  *
2502  * @return number of msrs set successfully.
2503  */
2504 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2505                     struct kvm_msr_entry *entries,
2506                     int (*do_msr)(struct kvm_vcpu *vcpu,
2507                                   unsigned index, u64 *data))
2508 {
2509         int i, idx;
2510
2511         idx = srcu_read_lock(&vcpu->kvm->srcu);
2512         for (i = 0; i < msrs->nmsrs; ++i)
2513                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2514                         break;
2515         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2516
2517         return i;
2518 }
2519
2520 /*
2521  * Read or write a bunch of msrs. Parameters are user addresses.
2522  *
2523  * @return number of msrs set successfully.
2524  */
2525 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2526                   int (*do_msr)(struct kvm_vcpu *vcpu,
2527                                 unsigned index, u64 *data),
2528                   int writeback)
2529 {
2530         struct kvm_msrs msrs;
2531         struct kvm_msr_entry *entries;
2532         int r, n;
2533         unsigned size;
2534
2535         r = -EFAULT;
2536         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2537                 goto out;
2538
2539         r = -E2BIG;
2540         if (msrs.nmsrs >= MAX_IO_MSRS)
2541                 goto out;
2542
2543         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2544         entries = memdup_user(user_msrs->entries, size);
2545         if (IS_ERR(entries)) {
2546                 r = PTR_ERR(entries);
2547                 goto out;
2548         }
2549
2550         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2551         if (r < 0)
2552                 goto out_free;
2553
2554         r = -EFAULT;
2555         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2556                 goto out_free;
2557
2558         r = n;
2559
2560 out_free:
2561         kfree(entries);
2562 out:
2563         return r;
2564 }
2565
2566 int kvm_dev_ioctl_check_extension(long ext)
2567 {
2568         int r;
2569
2570         switch (ext) {
2571         case KVM_CAP_IRQCHIP:
2572         case KVM_CAP_HLT:
2573         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2574         case KVM_CAP_SET_TSS_ADDR:
2575         case KVM_CAP_EXT_CPUID:
2576         case KVM_CAP_EXT_EMUL_CPUID:
2577         case KVM_CAP_CLOCKSOURCE:
2578         case KVM_CAP_PIT:
2579         case KVM_CAP_NOP_IO_DELAY:
2580         case KVM_CAP_MP_STATE:
2581         case KVM_CAP_SYNC_MMU:
2582         case KVM_CAP_USER_NMI:
2583         case KVM_CAP_REINJECT_CONTROL:
2584         case KVM_CAP_IRQ_INJECT_STATUS:
2585         case KVM_CAP_IRQFD:
2586         case KVM_CAP_IOEVENTFD:
2587         case KVM_CAP_PIT2:
2588         case KVM_CAP_PIT_STATE2:
2589         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2590         case KVM_CAP_XEN_HVM:
2591         case KVM_CAP_ADJUST_CLOCK:
2592         case KVM_CAP_VCPU_EVENTS:
2593         case KVM_CAP_HYPERV:
2594         case KVM_CAP_HYPERV_VAPIC:
2595         case KVM_CAP_HYPERV_SPIN:
2596         case KVM_CAP_PCI_SEGMENT:
2597         case KVM_CAP_DEBUGREGS:
2598         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2599         case KVM_CAP_XSAVE:
2600         case KVM_CAP_ASYNC_PF:
2601         case KVM_CAP_GET_TSC_KHZ:
2602         case KVM_CAP_KVMCLOCK_CTRL:
2603         case KVM_CAP_READONLY_MEM:
2604 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2605         case KVM_CAP_ASSIGN_DEV_IRQ:
2606         case KVM_CAP_PCI_2_3:
2607 #endif
2608                 r = 1;
2609                 break;
2610         case KVM_CAP_COALESCED_MMIO:
2611                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2612                 break;
2613         case KVM_CAP_VAPIC:
2614                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2615                 break;
2616         case KVM_CAP_NR_VCPUS:
2617                 r = KVM_SOFT_MAX_VCPUS;
2618                 break;
2619         case KVM_CAP_MAX_VCPUS:
2620                 r = KVM_MAX_VCPUS;
2621                 break;
2622         case KVM_CAP_NR_MEMSLOTS:
2623                 r = KVM_USER_MEM_SLOTS;
2624                 break;
2625         case KVM_CAP_PV_MMU:    /* obsolete */
2626                 r = 0;
2627                 break;
2628 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2629         case KVM_CAP_IOMMU:
2630                 r = iommu_present(&pci_bus_type);
2631                 break;
2632 #endif
2633         case KVM_CAP_MCE:
2634                 r = KVM_MAX_MCE_BANKS;
2635                 break;
2636         case KVM_CAP_XCRS:
2637                 r = cpu_has_xsave;
2638                 break;
2639         case KVM_CAP_TSC_CONTROL:
2640                 r = kvm_has_tsc_control;
2641                 break;
2642         case KVM_CAP_TSC_DEADLINE_TIMER:
2643                 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2644                 break;
2645         default:
2646                 r = 0;
2647                 break;
2648         }
2649         return r;
2650
2651 }
2652
2653 long kvm_arch_dev_ioctl(struct file *filp,
2654                         unsigned int ioctl, unsigned long arg)
2655 {
2656         void __user *argp = (void __user *)arg;
2657         long r;
2658
2659         switch (ioctl) {
2660         case KVM_GET_MSR_INDEX_LIST: {
2661                 struct kvm_msr_list __user *user_msr_list = argp;
2662                 struct kvm_msr_list msr_list;
2663                 unsigned n;
2664
2665                 r = -EFAULT;
2666                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2667                         goto out;
2668                 n = msr_list.nmsrs;
2669                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2670                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2671                         goto out;
2672                 r = -E2BIG;
2673                 if (n < msr_list.nmsrs)
2674                         goto out;
2675                 r = -EFAULT;
2676                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2677                                  num_msrs_to_save * sizeof(u32)))
2678                         goto out;
2679                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2680                                  &emulated_msrs,
2681                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2682                         goto out;
2683                 r = 0;
2684                 break;
2685         }
2686         case KVM_GET_SUPPORTED_CPUID:
2687         case KVM_GET_EMULATED_CPUID: {
2688                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2689                 struct kvm_cpuid2 cpuid;
2690
2691                 r = -EFAULT;
2692                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2693                         goto out;
2694
2695                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2696                                             ioctl);
2697                 if (r)
2698                         goto out;
2699
2700                 r = -EFAULT;
2701                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2702                         goto out;
2703                 r = 0;
2704                 break;
2705         }
2706         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2707                 u64 mce_cap;
2708
2709                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2710                 r = -EFAULT;
2711                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2712                         goto out;
2713                 r = 0;
2714                 break;
2715         }
2716         default:
2717                 r = -EINVAL;
2718         }
2719 out:
2720         return r;
2721 }
2722
2723 static void wbinvd_ipi(void *garbage)
2724 {
2725         wbinvd();
2726 }
2727
2728 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2729 {
2730         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2731 }
2732
2733 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2734 {
2735         /* Address WBINVD may be executed by guest */
2736         if (need_emulate_wbinvd(vcpu)) {
2737                 if (kvm_x86_ops->has_wbinvd_exit())
2738                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2739                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2740                         smp_call_function_single(vcpu->cpu,
2741                                         wbinvd_ipi, NULL, 1);
2742         }
2743
2744         kvm_x86_ops->vcpu_load(vcpu, cpu);
2745
2746         /* Apply any externally detected TSC adjustments (due to suspend) */
2747         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2748                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2749                 vcpu->arch.tsc_offset_adjustment = 0;
2750                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2751         }
2752
2753         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2754                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2755                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2756                 if (tsc_delta < 0)
2757                         mark_tsc_unstable("KVM discovered backwards TSC");
2758                 if (check_tsc_unstable()) {
2759                         u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2760                                                 vcpu->arch.last_guest_tsc);
2761                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2762                         vcpu->arch.tsc_catchup = 1;
2763                 }
2764                 /*
2765                  * On a host with synchronized TSC, there is no need to update
2766                  * kvmclock on vcpu->cpu migration
2767                  */
2768                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2769                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2770                 if (vcpu->cpu != cpu)
2771                         kvm_migrate_timers(vcpu);
2772                 vcpu->cpu = cpu;
2773         }
2774
2775         accumulate_steal_time(vcpu);
2776         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2777 }
2778
2779 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2780 {
2781         kvm_x86_ops->vcpu_put(vcpu);
2782         kvm_put_guest_fpu(vcpu);
2783         vcpu->arch.last_host_tsc = native_read_tsc();
2784 }
2785
2786 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2787                                     struct kvm_lapic_state *s)
2788 {
2789         kvm_x86_ops->sync_pir_to_irr(vcpu);
2790         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2791
2792         return 0;
2793 }
2794
2795 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2796                                     struct kvm_lapic_state *s)
2797 {
2798         kvm_apic_post_state_restore(vcpu, s);
2799         update_cr8_intercept(vcpu);
2800
2801         return 0;
2802 }
2803
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2805                                     struct kvm_interrupt *irq)
2806 {
2807         if (irq->irq >= KVM_NR_INTERRUPTS)
2808                 return -EINVAL;
2809         if (irqchip_in_kernel(vcpu->kvm))
2810                 return -ENXIO;
2811
2812         kvm_queue_interrupt(vcpu, irq->irq, false);
2813         kvm_make_request(KVM_REQ_EVENT, vcpu);
2814
2815         return 0;
2816 }
2817
2818 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2819 {
2820         kvm_inject_nmi(vcpu);
2821
2822         return 0;
2823 }
2824
2825 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2826                                            struct kvm_tpr_access_ctl *tac)
2827 {
2828         if (tac->flags)
2829                 return -EINVAL;
2830         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2831         return 0;
2832 }
2833
2834 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2835                                         u64 mcg_cap)
2836 {
2837         int r;
2838         unsigned bank_num = mcg_cap & 0xff, bank;
2839
2840         r = -EINVAL;
2841         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2842                 goto out;
2843         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2844                 goto out;
2845         r = 0;
2846         vcpu->arch.mcg_cap = mcg_cap;
2847         /* Init IA32_MCG_CTL to all 1s */
2848         if (mcg_cap & MCG_CTL_P)
2849                 vcpu->arch.mcg_ctl = ~(u64)0;
2850         /* Init IA32_MCi_CTL to all 1s */
2851         for (bank = 0; bank < bank_num; bank++)
2852                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2853 out:
2854         return r;
2855 }
2856
2857 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2858                                       struct kvm_x86_mce *mce)
2859 {
2860         u64 mcg_cap = vcpu->arch.mcg_cap;
2861         unsigned bank_num = mcg_cap & 0xff;
2862         u64 *banks = vcpu->arch.mce_banks;
2863
2864         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2865                 return -EINVAL;
2866         /*
2867          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2868          * reporting is disabled
2869          */
2870         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2871             vcpu->arch.mcg_ctl != ~(u64)0)
2872                 return 0;
2873         banks += 4 * mce->bank;
2874         /*
2875          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2876          * reporting is disabled for the bank
2877          */
2878         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2879                 return 0;
2880         if (mce->status & MCI_STATUS_UC) {
2881                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2882                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2883                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2884                         return 0;
2885                 }
2886                 if (banks[1] & MCI_STATUS_VAL)
2887                         mce->status |= MCI_STATUS_OVER;
2888                 banks[2] = mce->addr;
2889                 banks[3] = mce->misc;
2890                 vcpu->arch.mcg_status = mce->mcg_status;
2891                 banks[1] = mce->status;
2892                 kvm_queue_exception(vcpu, MC_VECTOR);
2893         } else if (!(banks[1] & MCI_STATUS_VAL)
2894                    || !(banks[1] & MCI_STATUS_UC)) {
2895                 if (banks[1] & MCI_STATUS_VAL)
2896                         mce->status |= MCI_STATUS_OVER;
2897                 banks[2] = mce->addr;
2898                 banks[3] = mce->misc;
2899                 banks[1] = mce->status;
2900         } else
2901                 banks[1] |= MCI_STATUS_OVER;
2902         return 0;
2903 }
2904
2905 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2906                                                struct kvm_vcpu_events *events)
2907 {
2908         process_nmi(vcpu);
2909         events->exception.injected =
2910                 vcpu->arch.exception.pending &&
2911                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2912         events->exception.nr = vcpu->arch.exception.nr;
2913         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2914         events->exception.pad = 0;
2915         events->exception.error_code = vcpu->arch.exception.error_code;
2916
2917         events->interrupt.injected =
2918                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2919         events->interrupt.nr = vcpu->arch.interrupt.nr;
2920         events->interrupt.soft = 0;
2921         events->interrupt.shadow =
2922                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2923                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2924
2925         events->nmi.injected = vcpu->arch.nmi_injected;
2926         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2927         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2928         events->nmi.pad = 0;
2929
2930         events->sipi_vector = 0; /* never valid when reporting to user space */
2931
2932         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2933                          | KVM_VCPUEVENT_VALID_SHADOW);
2934         memset(&events->reserved, 0, sizeof(events->reserved));
2935 }
2936
2937 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2938                                               struct kvm_vcpu_events *events)
2939 {
2940         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2941                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2942                               | KVM_VCPUEVENT_VALID_SHADOW))
2943                 return -EINVAL;
2944
2945         process_nmi(vcpu);
2946         vcpu->arch.exception.pending = events->exception.injected;
2947         vcpu->arch.exception.nr = events->exception.nr;
2948         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2949         vcpu->arch.exception.error_code = events->exception.error_code;
2950
2951         vcpu->arch.interrupt.pending = events->interrupt.injected;
2952         vcpu->arch.interrupt.nr = events->interrupt.nr;
2953         vcpu->arch.interrupt.soft = events->interrupt.soft;
2954         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2955                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2956                                                   events->interrupt.shadow);
2957
2958         vcpu->arch.nmi_injected = events->nmi.injected;
2959         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2960                 vcpu->arch.nmi_pending = events->nmi.pending;
2961         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2962
2963         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2964             kvm_vcpu_has_lapic(vcpu))
2965                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2966
2967         kvm_make_request(KVM_REQ_EVENT, vcpu);
2968
2969         return 0;
2970 }
2971
2972 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2973                                              struct kvm_debugregs *dbgregs)
2974 {
2975         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2976         dbgregs->dr6 = vcpu->arch.dr6;
2977         dbgregs->dr7 = vcpu->arch.dr7;
2978         dbgregs->flags = 0;
2979         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2980 }
2981
2982 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2983                                             struct kvm_debugregs *dbgregs)
2984 {
2985         if (dbgregs->flags)
2986                 return -EINVAL;
2987
2988         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2989         vcpu->arch.dr6 = dbgregs->dr6;
2990         vcpu->arch.dr7 = dbgregs->dr7;
2991
2992         return 0;
2993 }
2994
2995 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2996                                          struct kvm_xsave *guest_xsave)
2997 {
2998         if (cpu_has_xsave) {
2999                 memcpy(guest_xsave->region,
3000                         &vcpu->arch.guest_fpu.state->xsave,
3001                         vcpu->arch.guest_xstate_size);
3002                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] &=
3003                         vcpu->arch.guest_supported_xcr0 | XSTATE_FPSSE;
3004         } else {
3005                 memcpy(guest_xsave->region,
3006                         &vcpu->arch.guest_fpu.state->fxsave,
3007                         sizeof(struct i387_fxsave_struct));
3008                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3009                         XSTATE_FPSSE;
3010         }
3011 }
3012
3013 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3014                                         struct kvm_xsave *guest_xsave)
3015 {
3016         u64 xstate_bv =
3017                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3018
3019         if (cpu_has_xsave) {
3020                 /*
3021                  * Here we allow setting states that are not present in
3022                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3023                  * with old userspace.
3024                  */
3025                 if (xstate_bv & ~KVM_SUPPORTED_XCR0)
3026                         return -EINVAL;
3027                 if (xstate_bv & ~host_xcr0)
3028                         return -EINVAL;
3029                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3030                         guest_xsave->region, vcpu->arch.guest_xstate_size);
3031         } else {
3032                 if (xstate_bv & ~XSTATE_FPSSE)
3033                         return -EINVAL;
3034                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3035                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
3036         }
3037         return 0;
3038 }
3039
3040 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3041                                         struct kvm_xcrs *guest_xcrs)
3042 {
3043         if (!cpu_has_xsave) {
3044                 guest_xcrs->nr_xcrs = 0;
3045                 return;
3046         }
3047
3048         guest_xcrs->nr_xcrs = 1;
3049         guest_xcrs->flags = 0;
3050         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3051         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3052 }
3053
3054 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3055                                        struct kvm_xcrs *guest_xcrs)
3056 {
3057         int i, r = 0;
3058
3059         if (!cpu_has_xsave)
3060                 return -EINVAL;
3061
3062         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3063                 return -EINVAL;
3064
3065         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3066                 /* Only support XCR0 currently */
3067                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3068                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3069                                 guest_xcrs->xcrs[i].value);
3070                         break;
3071                 }
3072         if (r)
3073                 r = -EINVAL;
3074         return r;
3075 }
3076
3077 /*
3078  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3079  * stopped by the hypervisor.  This function will be called from the host only.
3080  * EINVAL is returned when the host attempts to set the flag for a guest that
3081  * does not support pv clocks.
3082  */
3083 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3084 {
3085         if (!vcpu->arch.pv_time_enabled)
3086                 return -EINVAL;
3087         vcpu->arch.pvclock_set_guest_stopped_request = true;
3088         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3089         return 0;
3090 }
3091
3092 long kvm_arch_vcpu_ioctl(struct file *filp,
3093                          unsigned int ioctl, unsigned long arg)
3094 {
3095         struct kvm_vcpu *vcpu = filp->private_data;
3096         void __user *argp = (void __user *)arg;
3097         int r;
3098         union {
3099                 struct kvm_lapic_state *lapic;
3100                 struct kvm_xsave *xsave;
3101                 struct kvm_xcrs *xcrs;
3102                 void *buffer;
3103         } u;
3104
3105         u.buffer = NULL;
3106         switch (ioctl) {
3107         case KVM_GET_LAPIC: {
3108                 r = -EINVAL;
3109                 if (!vcpu->arch.apic)
3110                         goto out;
3111                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3112
3113                 r = -ENOMEM;
3114                 if (!u.lapic)
3115                         goto out;
3116                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3117                 if (r)
3118                         goto out;
3119                 r = -EFAULT;
3120                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3121                         goto out;
3122                 r = 0;
3123                 break;
3124         }
3125         case KVM_SET_LAPIC: {
3126                 r = -EINVAL;
3127                 if (!vcpu->arch.apic)
3128                         goto out;
3129                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3130                 if (IS_ERR(u.lapic))
3131                         return PTR_ERR(u.lapic);
3132
3133                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3134                 break;
3135         }
3136         case KVM_INTERRUPT: {
3137                 struct kvm_interrupt irq;
3138
3139                 r = -EFAULT;
3140                 if (copy_from_user(&irq, argp, sizeof irq))
3141                         goto out;
3142                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3143                 break;
3144         }
3145         case KVM_NMI: {
3146                 r = kvm_vcpu_ioctl_nmi(vcpu);
3147                 break;
3148         }
3149         case KVM_SET_CPUID: {
3150                 struct kvm_cpuid __user *cpuid_arg = argp;
3151                 struct kvm_cpuid cpuid;
3152
3153                 r = -EFAULT;
3154                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3155                         goto out;
3156                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3157                 break;
3158         }
3159         case KVM_SET_CPUID2: {
3160                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3161                 struct kvm_cpuid2 cpuid;
3162
3163                 r = -EFAULT;
3164                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3165                         goto out;
3166                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3167                                               cpuid_arg->entries);
3168                 break;
3169         }
3170         case KVM_GET_CPUID2: {
3171                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3172                 struct kvm_cpuid2 cpuid;
3173
3174                 r = -EFAULT;
3175                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3176                         goto out;
3177                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3178                                               cpuid_arg->entries);
3179                 if (r)
3180                         goto out;
3181                 r = -EFAULT;
3182                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3183                         goto out;
3184                 r = 0;
3185                 break;
3186         }
3187         case KVM_GET_MSRS:
3188                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3189                 break;
3190         case KVM_SET_MSRS:
3191                 r = msr_io(vcpu, argp, do_set_msr, 0);
3192                 break;
3193         case KVM_TPR_ACCESS_REPORTING: {
3194                 struct kvm_tpr_access_ctl tac;
3195
3196                 r = -EFAULT;
3197                 if (copy_from_user(&tac, argp, sizeof tac))
3198                         goto out;
3199                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3200                 if (r)
3201                         goto out;
3202                 r = -EFAULT;
3203                 if (copy_to_user(argp, &tac, sizeof tac))
3204                         goto out;
3205                 r = 0;
3206                 break;
3207         };
3208         case KVM_SET_VAPIC_ADDR: {
3209                 struct kvm_vapic_addr va;
3210
3211                 r = -EINVAL;
3212                 if (!irqchip_in_kernel(vcpu->kvm))
3213                         goto out;
3214                 r = -EFAULT;
3215                 if (copy_from_user(&va, argp, sizeof va))
3216                         goto out;
3217                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3218                 break;
3219         }
3220         case KVM_X86_SETUP_MCE: {
3221                 u64 mcg_cap;
3222
3223                 r = -EFAULT;
3224                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3225                         goto out;
3226                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3227                 break;
3228         }
3229         case KVM_X86_SET_MCE: {
3230                 struct kvm_x86_mce mce;
3231
3232                 r = -EFAULT;
3233                 if (copy_from_user(&mce, argp, sizeof mce))
3234                         goto out;
3235                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3236                 break;
3237         }
3238         case KVM_GET_VCPU_EVENTS: {
3239                 struct kvm_vcpu_events events;
3240
3241                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3242
3243                 r = -EFAULT;
3244                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3245                         break;
3246                 r = 0;
3247                 break;
3248         }
3249         case KVM_SET_VCPU_EVENTS: {
3250                 struct kvm_vcpu_events events;
3251
3252                 r = -EFAULT;
3253                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3254                         break;
3255
3256                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3257                 break;
3258         }
3259         case KVM_GET_DEBUGREGS: {
3260                 struct kvm_debugregs dbgregs;
3261
3262                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3263
3264                 r = -EFAULT;
3265                 if (copy_to_user(argp, &dbgregs,
3266                                  sizeof(struct kvm_debugregs)))
3267                         break;
3268                 r = 0;
3269                 break;
3270         }
3271         case KVM_SET_DEBUGREGS: {
3272                 struct kvm_debugregs dbgregs;
3273
3274                 r = -EFAULT;
3275                 if (copy_from_user(&dbgregs, argp,
3276                                    sizeof(struct kvm_debugregs)))
3277                         break;
3278
3279                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3280                 break;
3281         }
3282         case KVM_GET_XSAVE: {
3283                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3284                 r = -ENOMEM;
3285                 if (!u.xsave)
3286                         break;
3287
3288                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3289
3290                 r = -EFAULT;
3291                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3292                         break;
3293                 r = 0;
3294                 break;
3295         }
3296         case KVM_SET_XSAVE: {
3297                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3298                 if (IS_ERR(u.xsave))
3299                         return PTR_ERR(u.xsave);
3300
3301                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3302                 break;
3303         }
3304         case KVM_GET_XCRS: {
3305                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3306                 r = -ENOMEM;
3307                 if (!u.xcrs)
3308                         break;
3309
3310                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3311
3312                 r = -EFAULT;
3313                 if (copy_to_user(argp, u.xcrs,
3314                                  sizeof(struct kvm_xcrs)))
3315                         break;
3316                 r = 0;
3317                 break;
3318         }
3319         case KVM_SET_XCRS: {
3320                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3321                 if (IS_ERR(u.xcrs))
3322                         return PTR_ERR(u.xcrs);
3323
3324                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3325                 break;
3326         }
3327         case KVM_SET_TSC_KHZ: {
3328                 u32 user_tsc_khz;
3329
3330                 r = -EINVAL;
3331                 user_tsc_khz = (u32)arg;
3332
3333                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3334                         goto out;
3335
3336                 if (user_tsc_khz == 0)
3337                         user_tsc_khz = tsc_khz;
3338
3339                 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3340
3341                 r = 0;
3342                 goto out;
3343         }
3344         case KVM_GET_TSC_KHZ: {
3345                 r = vcpu->arch.virtual_tsc_khz;
3346                 goto out;
3347         }
3348         case KVM_KVMCLOCK_CTRL: {
3349                 r = kvm_set_guest_paused(vcpu);
3350                 goto out;
3351         }
3352         default:
3353                 r = -EINVAL;
3354         }
3355 out:
3356         kfree(u.buffer);
3357         return r;
3358 }
3359
3360 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3361 {
3362         return VM_FAULT_SIGBUS;
3363 }
3364
3365 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3366 {
3367         int ret;
3368
3369         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3370                 return -EINVAL;
3371         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3372         return ret;
3373 }
3374
3375 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3376                                               u64 ident_addr)
3377 {
3378         kvm->arch.ept_identity_map_addr = ident_addr;
3379         return 0;
3380 }
3381
3382 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3383                                           u32 kvm_nr_mmu_pages)
3384 {
3385         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3386                 return -EINVAL;
3387
3388         mutex_lock(&kvm->slots_lock);
3389
3390         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3391         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3392
3393         mutex_unlock(&kvm->slots_lock);
3394         return 0;
3395 }
3396
3397 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3398 {
3399         return kvm->arch.n_max_mmu_pages;
3400 }
3401
3402 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3403 {
3404         int r;
3405
3406         r = 0;
3407         switch (chip->chip_id) {
3408         case KVM_IRQCHIP_PIC_MASTER:
3409                 memcpy(&chip->chip.pic,
3410                         &pic_irqchip(kvm)->pics[0],
3411                         sizeof(struct kvm_pic_state));
3412                 break;
3413         case KVM_IRQCHIP_PIC_SLAVE:
3414                 memcpy(&chip->chip.pic,
3415                         &pic_irqchip(kvm)->pics[1],
3416                         sizeof(struct kvm_pic_state));
3417                 break;
3418         case KVM_IRQCHIP_IOAPIC:
3419                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3420                 break;
3421         default:
3422                 r = -EINVAL;
3423                 break;
3424         }
3425         return r;
3426 }
3427
3428 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3429 {
3430         int r;
3431
3432         r = 0;
3433         switch (chip->chip_id) {
3434         case KVM_IRQCHIP_PIC_MASTER:
3435                 spin_lock(&pic_irqchip(kvm)->lock);
3436                 memcpy(&pic_irqchip(kvm)->pics[0],
3437                         &chip->chip.pic,
3438                         sizeof(struct kvm_pic_state));
3439                 spin_unlock(&pic_irqchip(kvm)->lock);
3440                 break;
3441         case KVM_IRQCHIP_PIC_SLAVE:
3442                 spin_lock(&pic_irqchip(kvm)->lock);
3443                 memcpy(&pic_irqchip(kvm)->pics[1],
3444                         &chip->chip.pic,
3445                         sizeof(struct kvm_pic_state));
3446                 spin_unlock(&pic_irqchip(kvm)->lock);
3447                 break;
3448         case KVM_IRQCHIP_IOAPIC:
3449                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3450                 break;
3451         default:
3452                 r = -EINVAL;
3453                 break;
3454         }
3455         kvm_pic_update_irq(pic_irqchip(kvm));
3456         return r;
3457 }
3458
3459 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3460 {
3461         int r = 0;
3462
3463         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3465         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3466         return r;
3467 }
3468
3469 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3470 {
3471         int r = 0;
3472
3473         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3474         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3475         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3476         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3477         return r;
3478 }
3479
3480 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3481 {
3482         int r = 0;
3483
3484         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3485         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3486                 sizeof(ps->channels));
3487         ps->flags = kvm->arch.vpit->pit_state.flags;
3488         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3489         memset(&ps->reserved, 0, sizeof(ps->reserved));
3490         return r;
3491 }
3492
3493 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3494 {
3495         int r = 0, start = 0;
3496         u32 prev_legacy, cur_legacy;
3497         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3498         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3499         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3500         if (!prev_legacy && cur_legacy)
3501                 start = 1;
3502         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3503                sizeof(kvm->arch.vpit->pit_state.channels));
3504         kvm->arch.vpit->pit_state.flags = ps->flags;
3505         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3506         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3507         return r;
3508 }
3509
3510 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3511                                  struct kvm_reinject_control *control)
3512 {
3513         if (!kvm->arch.vpit)
3514                 return -ENXIO;
3515         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3516         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3517         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3518         return 0;
3519 }
3520
3521 /**
3522  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3523  * @kvm: kvm instance
3524  * @log: slot id and address to which we copy the log
3525  *
3526  * We need to keep it in mind that VCPU threads can write to the bitmap
3527  * concurrently.  So, to avoid losing data, we keep the following order for
3528  * each bit:
3529  *
3530  *   1. Take a snapshot of the bit and clear it if needed.
3531  *   2. Write protect the corresponding page.
3532  *   3. Flush TLB's if needed.
3533  *   4. Copy the snapshot to the userspace.
3534  *
3535  * Between 2 and 3, the guest may write to the page using the remaining TLB
3536  * entry.  This is not a problem because the page will be reported dirty at
3537  * step 4 using the snapshot taken before and step 3 ensures that successive
3538  * writes will be logged for the next call.
3539  */
3540 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3541 {
3542         int r;
3543         struct kvm_memory_slot *memslot;
3544         unsigned long n, i;
3545         unsigned long *dirty_bitmap;
3546         unsigned long *dirty_bitmap_buffer;
3547         bool is_dirty = false;
3548
3549         mutex_lock(&kvm->slots_lock);
3550
3551         r = -EINVAL;
3552         if (log->slot >= KVM_USER_MEM_SLOTS)
3553                 goto out;
3554
3555         memslot = id_to_memslot(kvm->memslots, log->slot);
3556
3557         dirty_bitmap = memslot->dirty_bitmap;
3558         r = -ENOENT;
3559         if (!dirty_bitmap)
3560                 goto out;
3561
3562         n = kvm_dirty_bitmap_bytes(memslot);
3563
3564         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3565         memset(dirty_bitmap_buffer, 0, n);
3566
3567         spin_lock(&kvm->mmu_lock);
3568
3569         for (i = 0; i < n / sizeof(long); i++) {
3570                 unsigned long mask;
3571                 gfn_t offset;
3572
3573                 if (!dirty_bitmap[i])
3574                         continue;
3575
3576                 is_dirty = true;
3577
3578                 mask = xchg(&dirty_bitmap[i], 0);
3579                 dirty_bitmap_buffer[i] = mask;
3580
3581                 offset = i * BITS_PER_LONG;
3582                 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3583         }
3584         if (is_dirty)
3585                 kvm_flush_remote_tlbs(kvm);
3586
3587         spin_unlock(&kvm->mmu_lock);
3588
3589         r = -EFAULT;
3590         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3591                 goto out;
3592
3593         r = 0;
3594 out:
3595         mutex_unlock(&kvm->slots_lock);
3596         return r;
3597 }
3598
3599 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3600                         bool line_status)
3601 {
3602         if (!irqchip_in_kernel(kvm))
3603                 return -ENXIO;
3604
3605         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3606                                         irq_event->irq, irq_event->level,
3607                                         line_status);
3608         return 0;
3609 }
3610
3611 long kvm_arch_vm_ioctl(struct file *filp,
3612                        unsigned int ioctl, unsigned long arg)
3613 {
3614         struct kvm *kvm = filp->private_data;
3615         void __user *argp = (void __user *)arg;
3616         int r = -ENOTTY;
3617         /*
3618          * This union makes it completely explicit to gcc-3.x
3619          * that these two variables' stack usage should be
3620          * combined, not added together.
3621          */
3622         union {
3623                 struct kvm_pit_state ps;
3624                 struct kvm_pit_state2 ps2;
3625                 struct kvm_pit_config pit_config;
3626         } u;
3627
3628         switch (ioctl) {
3629         case KVM_SET_TSS_ADDR:
3630                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3631                 break;
3632         case KVM_SET_IDENTITY_MAP_ADDR: {
3633                 u64 ident_addr;
3634
3635                 r = -EFAULT;
3636                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3637                         goto out;
3638                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3639                 break;
3640         }
3641         case KVM_SET_NR_MMU_PAGES:
3642                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3643                 break;
3644         case KVM_GET_NR_MMU_PAGES:
3645                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3646                 break;
3647         case KVM_CREATE_IRQCHIP: {
3648                 struct kvm_pic *vpic;
3649
3650                 mutex_lock(&kvm->lock);
3651                 r = -EEXIST;
3652                 if (kvm->arch.vpic)
3653                         goto create_irqchip_unlock;
3654                 r = -EINVAL;
3655                 if (atomic_read(&kvm->online_vcpus))
3656                         goto create_irqchip_unlock;
3657                 r = -ENOMEM;
3658                 vpic = kvm_create_pic(kvm);
3659                 if (vpic) {
3660                         r = kvm_ioapic_init(kvm);
3661                         if (r) {
3662                                 mutex_lock(&kvm->slots_lock);
3663                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3664                                                           &vpic->dev_master);
3665                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3666                                                           &vpic->dev_slave);
3667                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3668                                                           &vpic->dev_eclr);
3669                                 mutex_unlock(&kvm->slots_lock);
3670                                 kfree(vpic);
3671                                 goto create_irqchip_unlock;
3672                         }
3673                 } else
3674                         goto create_irqchip_unlock;
3675                 smp_wmb();
3676                 kvm->arch.vpic = vpic;
3677                 smp_wmb();
3678                 r = kvm_setup_default_irq_routing(kvm);
3679                 if (r) {
3680                         mutex_lock(&kvm->slots_lock);
3681                         mutex_lock(&kvm->irq_lock);
3682                         kvm_ioapic_destroy(kvm);
3683                         kvm_destroy_pic(kvm);
3684                         mutex_unlock(&kvm->irq_lock);
3685                         mutex_unlock(&kvm->slots_lock);
3686                 }
3687         create_irqchip_unlock:
3688                 mutex_unlock(&kvm->lock);
3689                 break;
3690         }
3691         case KVM_CREATE_PIT:
3692                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3693                 goto create_pit;
3694         case KVM_CREATE_PIT2:
3695                 r = -EFAULT;
3696                 if (copy_from_user(&u.pit_config, argp,
3697                                    sizeof(struct kvm_pit_config)))
3698                         goto out;
3699         create_pit:
3700                 mutex_lock(&kvm->slots_lock);
3701                 r = -EEXIST;
3702                 if (kvm->arch.vpit)
3703                         goto create_pit_unlock;
3704                 r = -ENOMEM;
3705                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3706                 if (kvm->arch.vpit)
3707                         r = 0;
3708         create_pit_unlock:
3709                 mutex_unlock(&kvm->slots_lock);
3710                 break;
3711         case KVM_GET_IRQCHIP: {
3712                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3713                 struct kvm_irqchip *chip;
3714
3715                 chip = memdup_user(argp, sizeof(*chip));
3716                 if (IS_ERR(chip)) {
3717                         r = PTR_ERR(chip);
3718                         goto out;
3719                 }
3720
3721                 r = -ENXIO;
3722                 if (!irqchip_in_kernel(kvm))
3723                         goto get_irqchip_out;
3724                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3725                 if (r)
3726                         goto get_irqchip_out;
3727                 r = -EFAULT;
3728                 if (copy_to_user(argp, chip, sizeof *chip))
3729                         goto get_irqchip_out;
3730                 r = 0;
3731         get_irqchip_out:
3732                 kfree(chip);
3733                 break;
3734         }
3735         case KVM_SET_IRQCHIP: {
3736                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3737                 struct kvm_irqchip *chip;
3738
3739                 chip = memdup_user(argp, sizeof(*chip));
3740                 if (IS_ERR(chip)) {
3741                         r = PTR_ERR(chip);
3742                         goto out;
3743                 }
3744
3745                 r = -ENXIO;
3746                 if (!irqchip_in_kernel(kvm))
3747                         goto set_irqchip_out;
3748                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3749                 if (r)
3750                         goto set_irqchip_out;
3751                 r = 0;
3752         set_irqchip_out:
3753                 kfree(chip);
3754                 break;
3755         }
3756         case KVM_GET_PIT: {
3757                 r = -EFAULT;
3758                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3759                         goto out;
3760                 r = -ENXIO;
3761                 if (!kvm->arch.vpit)
3762                         goto out;
3763                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3764                 if (r)
3765                         goto out;
3766                 r = -EFAULT;
3767                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3768                         goto out;
3769                 r = 0;
3770                 break;
3771         }
3772         case KVM_SET_PIT: {
3773                 r = -EFAULT;
3774                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3775                         goto out;
3776                 r = -ENXIO;
3777                 if (!kvm->arch.vpit)
3778                         goto out;
3779                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3780                 break;
3781         }
3782         case KVM_GET_PIT2: {
3783                 r = -ENXIO;
3784                 if (!kvm->arch.vpit)
3785                         goto out;
3786                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3787                 if (r)
3788                         goto out;
3789                 r = -EFAULT;
3790                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3791                         goto out;
3792                 r = 0;
3793                 break;
3794         }
3795         case KVM_SET_PIT2: {
3796                 r = -EFAULT;
3797                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3798                         goto out;
3799                 r = -ENXIO;
3800                 if (!kvm->arch.vpit)
3801                         goto out;
3802                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3803                 break;
3804         }
3805         case KVM_REINJECT_CONTROL: {
3806                 struct kvm_reinject_control control;
3807                 r =  -EFAULT;
3808                 if (copy_from_user(&control, argp, sizeof(control)))
3809                         goto out;
3810                 r = kvm_vm_ioctl_reinject(kvm, &control);
3811                 break;
3812         }
3813         case KVM_XEN_HVM_CONFIG: {
3814                 r = -EFAULT;
3815                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3816                                    sizeof(struct kvm_xen_hvm_config)))
3817                         goto out;
3818                 r = -EINVAL;
3819                 if (kvm->arch.xen_hvm_config.flags)
3820                         goto out;
3821                 r = 0;
3822                 break;
3823         }
3824         case KVM_SET_CLOCK: {
3825                 struct kvm_clock_data user_ns;
3826                 u64 now_ns;
3827                 s64 delta;
3828
3829                 r = -EFAULT;
3830                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3831                         goto out;
3832
3833                 r = -EINVAL;
3834                 if (user_ns.flags)
3835                         goto out;
3836
3837                 r = 0;
3838                 local_irq_disable();
3839                 now_ns = get_kernel_ns();
3840                 delta = user_ns.clock - now_ns;
3841                 local_irq_enable();
3842                 kvm->arch.kvmclock_offset = delta;
3843                 kvm_gen_update_masterclock(kvm);
3844                 break;
3845         }
3846         case KVM_GET_CLOCK: {
3847                 struct kvm_clock_data user_ns;
3848                 u64 now_ns;
3849
3850                 local_irq_disable();
3851                 now_ns = get_kernel_ns();
3852                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3853                 local_irq_enable();
3854                 user_ns.flags = 0;
3855                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3856
3857                 r = -EFAULT;
3858                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3859                         goto out;
3860                 r = 0;
3861                 break;
3862         }
3863
3864         default:
3865                 ;
3866         }
3867 out:
3868         return r;
3869 }
3870
3871 static void kvm_init_msr_list(void)
3872 {
3873         u32 dummy[2];
3874         unsigned i, j;
3875
3876         /* skip the first msrs in the list. KVM-specific */
3877         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3878                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3879                         continue;
3880                 if (j < i)
3881                         msrs_to_save[j] = msrs_to_save[i];
3882                 j++;
3883         }
3884         num_msrs_to_save = j;
3885 }
3886
3887 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3888                            const void *v)
3889 {
3890         int handled = 0;
3891         int n;
3892
3893         do {
3894                 n = min(len, 8);
3895                 if (!(vcpu->arch.apic &&
3896                       !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3897                     && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3898                         break;
3899                 handled += n;
3900                 addr += n;
3901                 len -= n;
3902                 v += n;
3903         } while (len);
3904
3905         return handled;
3906 }
3907
3908 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3909 {
3910         int handled = 0;
3911         int n;
3912
3913         do {
3914                 n = min(len, 8);
3915                 if (!(vcpu->arch.apic &&
3916                       !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3917                     && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3918                         break;
3919                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3920                 handled += n;
3921                 addr += n;
3922                 len -= n;
3923                 v += n;
3924         } while (len);
3925
3926         return handled;
3927 }
3928
3929 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3930                         struct kvm_segment *var, int seg)
3931 {
3932         kvm_x86_ops->set_segment(vcpu, var, seg);
3933 }
3934
3935 void kvm_get_segment(struct kvm_vcpu *vcpu,
3936                      struct kvm_segment *var, int seg)
3937 {
3938         kvm_x86_ops->get_segment(vcpu, var, seg);
3939 }
3940
3941 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3942 {
3943         gpa_t t_gpa;
3944         struct x86_exception exception;
3945
3946         BUG_ON(!mmu_is_nested(vcpu));
3947
3948         /* NPT walks are always user-walks */
3949         access |= PFERR_USER_MASK;
3950         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3951
3952         return t_gpa;
3953 }
3954
3955 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3956                               struct x86_exception *exception)
3957 {
3958         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3959         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3960 }
3961
3962  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3963                                 struct x86_exception *exception)
3964 {
3965         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3966         access |= PFERR_FETCH_MASK;
3967         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3968 }
3969
3970 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3971                                struct x86_exception *exception)
3972 {
3973         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3974         access |= PFERR_WRITE_MASK;
3975         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3976 }
3977
3978 /* uses this to access any guest's mapped memory without checking CPL */
3979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3980                                 struct x86_exception *exception)
3981 {
3982         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3983 }
3984
3985 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3986                                       struct kvm_vcpu *vcpu, u32 access,
3987                                       struct x86_exception *exception)
3988 {
3989         void *data = val;
3990         int r = X86EMUL_CONTINUE;
3991
3992         while (bytes) {
3993                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3994                                                             exception);
3995                 unsigned offset = addr & (PAGE_SIZE-1);
3996                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3997                 int ret;
3998
3999                 if (gpa == UNMAPPED_GVA)
4000                         return X86EMUL_PROPAGATE_FAULT;
4001                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
4002                 if (ret < 0) {
4003                         r = X86EMUL_IO_NEEDED;
4004                         goto out;
4005                 }
4006
4007                 bytes -= toread;
4008                 data += toread;
4009                 addr += toread;
4010         }
4011 out:
4012         return r;
4013 }
4014
4015 /* used for instruction fetching */
4016 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4017                                 gva_t addr, void *val, unsigned int bytes,
4018                                 struct x86_exception *exception)
4019 {
4020         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4021         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4022
4023         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4024                                           access | PFERR_FETCH_MASK,
4025                                           exception);
4026 }
4027
4028 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4029                                gva_t addr, void *val, unsigned int bytes,
4030                                struct x86_exception *exception)
4031 {
4032         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4034
4035         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4036                                           exception);
4037 }
4038 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4039
4040 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4041                                       gva_t addr, void *val, unsigned int bytes,
4042                                       struct x86_exception *exception)
4043 {
4044         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4045         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4046 }
4047
4048 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4049                                        gva_t addr, void *val,
4050                                        unsigned int bytes,
4051                                        struct x86_exception *exception)
4052 {
4053         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4054         void *data = val;
4055         int r = X86EMUL_CONTINUE;
4056
4057         while (bytes) {
4058                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4059                                                              PFERR_WRITE_MASK,
4060                                                              exception);
4061                 unsigned offset = addr & (PAGE_SIZE-1);
4062                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4063                 int ret;
4064
4065                 if (gpa == UNMAPPED_GVA)
4066                         return X86EMUL_PROPAGATE_FAULT;
4067                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4068                 if (ret < 0) {
4069                         r = X86EMUL_IO_NEEDED;
4070                         goto out;
4071                 }
4072
4073                 bytes -= towrite;
4074                 data += towrite;
4075                 addr += towrite;
4076         }
4077 out:
4078         return r;
4079 }
4080 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4081
4082 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4083                                 gpa_t *gpa, struct x86_exception *exception,
4084                                 bool write)
4085 {
4086         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4087                 | (write ? PFERR_WRITE_MASK : 0);
4088
4089         if (vcpu_match_mmio_gva(vcpu, gva)
4090             && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4091                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4092                                         (gva & (PAGE_SIZE - 1));
4093                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4094                 return 1;
4095         }
4096
4097         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4098
4099         if (*gpa == UNMAPPED_GVA)
4100                 return -1;
4101
4102         /* For APIC access vmexit */
4103         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4104                 return 1;
4105
4106         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4107                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4108                 return 1;
4109         }
4110
4111         return 0;
4112 }
4113
4114 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4115                         const void *val, int bytes)
4116 {
4117         int ret;
4118
4119         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4120         if (ret < 0)
4121                 return 0;
4122         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4123         return 1;
4124 }
4125
4126 struct read_write_emulator_ops {
4127         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4128                                   int bytes);
4129         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4130                                   void *val, int bytes);
4131         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4132                                int bytes, void *val);
4133         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4134                                     void *val, int bytes);
4135         bool write;
4136 };
4137
4138 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4139 {
4140         if (vcpu->mmio_read_completed) {
4141                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4142                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4143                 vcpu->mmio_read_completed = 0;
4144                 return 1;
4145         }
4146
4147         return 0;
4148 }
4149
4150 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4151                         void *val, int bytes)
4152 {
4153         return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4154 }
4155
4156 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4157                          void *val, int bytes)
4158 {
4159         return emulator_write_phys(vcpu, gpa, val, bytes);
4160 }
4161
4162 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4163 {
4164         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4165         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4166 }
4167
4168 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4169                           void *val, int bytes)
4170 {
4171         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4172         return X86EMUL_IO_NEEDED;
4173 }
4174
4175 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4176                            void *val, int bytes)
4177 {
4178         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4179
4180         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4181         return X86EMUL_CONTINUE;
4182 }
4183
4184 static const struct read_write_emulator_ops read_emultor = {
4185         .read_write_prepare = read_prepare,
4186         .read_write_emulate = read_emulate,
4187         .read_write_mmio = vcpu_mmio_read,
4188         .read_write_exit_mmio = read_exit_mmio,
4189 };
4190
4191 static const struct read_write_emulator_ops write_emultor = {
4192         .read_write_emulate = write_emulate,
4193         .read_write_mmio = write_mmio,
4194         .read_write_exit_mmio = write_exit_mmio,
4195         .write = true,
4196 };
4197
4198 static int emulator_read_write_onepage(unsigned long addr, void *val,
4199                                        unsigned int bytes,
4200                                        struct x86_exception *exception,
4201                                        struct kvm_vcpu *vcpu,
4202                                        const struct read_write_emulator_ops *ops)
4203 {
4204         gpa_t gpa;
4205         int handled, ret;
4206         bool write = ops->write;
4207         struct kvm_mmio_fragment *frag;
4208
4209         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4210
4211         if (ret < 0)
4212                 return X86EMUL_PROPAGATE_FAULT;
4213
4214         /* For APIC access vmexit */
4215         if (ret)
4216                 goto mmio;
4217
4218         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4219                 return X86EMUL_CONTINUE;
4220
4221 mmio:
4222         /*
4223          * Is this MMIO handled locally?
4224          */
4225         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4226         if (handled == bytes)
4227                 return X86EMUL_CONTINUE;
4228
4229         gpa += handled;
4230         bytes -= handled;
4231         val += handled;
4232
4233         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4234         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4235         frag->gpa = gpa;
4236         frag->data = val;
4237         frag->len = bytes;
4238         return X86EMUL_CONTINUE;
4239 }
4240
4241 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4242                         void *val, unsigned int bytes,
4243                         struct x86_exception *exception,
4244                         const struct read_write_emulator_ops *ops)
4245 {
4246         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4247         gpa_t gpa;
4248         int rc;
4249
4250         if (ops->read_write_prepare &&
4251                   ops->read_write_prepare(vcpu, val, bytes))
4252                 return X86EMUL_CONTINUE;
4253
4254         vcpu->mmio_nr_fragments = 0;
4255
4256         /* Crossing a page boundary? */
4257         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4258                 int now;
4259
4260                 now = -addr & ~PAGE_MASK;
4261                 rc = emulator_read_write_onepage(addr, val, now, exception,
4262                                                  vcpu, ops);
4263
4264                 if (rc != X86EMUL_CONTINUE)
4265                         return rc;
4266                 addr += now;
4267                 val += now;
4268                 bytes -= now;
4269         }
4270
4271         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4272                                          vcpu, ops);
4273         if (rc != X86EMUL_CONTINUE)
4274                 return rc;
4275
4276         if (!vcpu->mmio_nr_fragments)
4277                 return rc;
4278
4279         gpa = vcpu->mmio_fragments[0].gpa;
4280
4281         vcpu->mmio_needed = 1;
4282         vcpu->mmio_cur_fragment = 0;
4283
4284         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4285         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4286         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4287         vcpu->run->mmio.phys_addr = gpa;
4288
4289         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4290 }
4291
4292 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4293                                   unsigned long addr,
4294                                   void *val,
4295                                   unsigned int bytes,
4296                                   struct x86_exception *exception)
4297 {
4298         return emulator_read_write(ctxt, addr, val, bytes,
4299                                    exception, &read_emultor);
4300 }
4301
4302 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4303                             unsigned long addr,
4304                             const void *val,
4305                             unsigned int bytes,
4306                             struct x86_exception *exception)
4307 {
4308         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4309                                    exception, &write_emultor);
4310 }
4311
4312 #define CMPXCHG_TYPE(t, ptr, old, new) \
4313         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4314
4315 #ifdef CONFIG_X86_64
4316 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4317 #else
4318 #  define CMPXCHG64(ptr, old, new) \
4319         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4320 #endif
4321
4322 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4323                                      unsigned long addr,
4324                                      const void *old,
4325                                      const void *new,
4326                                      unsigned int bytes,
4327                                      struct x86_exception *exception)
4328 {
4329         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4330         gpa_t gpa;
4331         struct page *page;
4332         char *kaddr;
4333         bool exchanged;
4334
4335         /* guests cmpxchg8b have to be emulated atomically */
4336         if (bytes > 8 || (bytes & (bytes - 1)))
4337                 goto emul_write;
4338
4339         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4340
4341         if (gpa == UNMAPPED_GVA ||
4342             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4343                 goto emul_write;
4344
4345         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4346                 goto emul_write;
4347
4348         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4349         if (is_error_page(page))
4350                 goto emul_write;
4351
4352         kaddr = kmap_atomic(page);
4353         kaddr += offset_in_page(gpa);
4354         switch (bytes) {
4355         case 1:
4356                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4357                 break;
4358         case 2:
4359                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4360                 break;
4361         case 4:
4362                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4363                 break;
4364         case 8:
4365                 exchanged = CMPXCHG64(kaddr, old, new);
4366                 break;
4367         default:
4368                 BUG();
4369         }
4370         kunmap_atomic(kaddr);
4371         kvm_release_page_dirty(page);
4372
4373         if (!exchanged)
4374                 return X86EMUL_CMPXCHG_FAILED;
4375
4376         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4377
4378         return X86EMUL_CONTINUE;
4379
4380 emul_write:
4381         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4382
4383         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4384 }
4385
4386 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4387 {
4388         /* TODO: String I/O for in kernel device */
4389         int r;
4390
4391         if (vcpu->arch.pio.in)
4392                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4393                                     vcpu->arch.pio.size, pd);
4394         else
4395                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4396                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4397                                      pd);
4398         return r;
4399 }
4400
4401 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4402                                unsigned short port, void *val,
4403                                unsigned int count, bool in)
4404 {
4405         trace_kvm_pio(!in, port, size, count);
4406
4407         vcpu->arch.pio.port = port;
4408         vcpu->arch.pio.in = in;
4409         vcpu->arch.pio.count  = count;
4410         vcpu->arch.pio.size = size;
4411
4412         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4413                 vcpu->arch.pio.count = 0;
4414                 return 1;
4415         }
4416
4417         vcpu->run->exit_reason = KVM_EXIT_IO;
4418         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4419         vcpu->run->io.size = size;
4420         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4421         vcpu->run->io.count = count;
4422         vcpu->run->io.port = port;
4423
4424         return 0;
4425 }
4426
4427 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4428                                     int size, unsigned short port, void *val,
4429                                     unsigned int count)
4430 {
4431         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4432         int ret;
4433
4434         if (vcpu->arch.pio.count)
4435                 goto data_avail;
4436
4437         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4438         if (ret) {
4439 data_avail:
4440                 memcpy(val, vcpu->arch.pio_data, size * count);
4441                 vcpu->arch.pio.count = 0;
4442                 return 1;
4443         }
4444
4445         return 0;
4446 }
4447
4448 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4449                                      int size, unsigned short port,
4450                                      const void *val, unsigned int count)
4451 {
4452         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4453
4454         memcpy(vcpu->arch.pio_data, val, size * count);
4455         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4456 }
4457
4458 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4459 {
4460         return kvm_x86_ops->get_segment_base(vcpu, seg);
4461 }
4462
4463 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4464 {
4465         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4466 }
4467
4468 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4469 {
4470         if (!need_emulate_wbinvd(vcpu))
4471                 return X86EMUL_CONTINUE;
4472
4473         if (kvm_x86_ops->has_wbinvd_exit()) {
4474                 int cpu = get_cpu();
4475
4476                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4477                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4478                                 wbinvd_ipi, NULL, 1);
4479                 put_cpu();
4480                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4481         } else
4482                 wbinvd();
4483         return X86EMUL_CONTINUE;
4484 }
4485 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4486
4487 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4488 {
4489         kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4490 }
4491
4492 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4493 {
4494         return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4495 }
4496
4497 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4498 {
4499
4500         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4501 }
4502
4503 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4504 {
4505         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4506 }
4507
4508 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4509 {
4510         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4511         unsigned long value;
4512
4513         switch (cr) {
4514         case 0:
4515                 value = kvm_read_cr0(vcpu);
4516                 break;
4517         case 2:
4518                 value = vcpu->arch.cr2;
4519                 break;
4520         case 3:
4521                 value = kvm_read_cr3(vcpu);
4522                 break;
4523         case 4:
4524                 value = kvm_read_cr4(vcpu);
4525                 break;
4526         case 8:
4527                 value = kvm_get_cr8(vcpu);
4528                 break;
4529         default:
4530                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4531                 return 0;
4532         }
4533
4534         return value;
4535 }
4536
4537 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4538 {
4539         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4540         int res = 0;
4541
4542         switch (cr) {
4543         case 0:
4544                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4545                 break;
4546         case 2:
4547                 vcpu->arch.cr2 = val;
4548                 break;
4549         case 3:
4550                 res = kvm_set_cr3(vcpu, val);
4551                 break;
4552         case 4:
4553                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4554                 break;
4555         case 8:
4556                 res = kvm_set_cr8(vcpu, val);
4557                 break;
4558         default:
4559                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4560                 res = -1;
4561         }
4562
4563         return res;
4564 }
4565
4566 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4567 {
4568         kvm_set_rflags(emul_to_vcpu(ctxt), val);
4569 }
4570
4571 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4572 {
4573         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4574 }
4575
4576 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4577 {
4578         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4579 }
4580
4581 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4582 {
4583         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4584 }
4585
4586 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4587 {
4588         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4589 }
4590
4591 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4592 {
4593         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4594 }
4595
4596 static unsigned long emulator_get_cached_segment_base(
4597         struct x86_emulate_ctxt *ctxt, int seg)
4598 {
4599         return get_segment_base(emul_to_vcpu(ctxt), seg);
4600 }
4601
4602 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4603                                  struct desc_struct *desc, u32 *base3,
4604                                  int seg)
4605 {
4606         struct kvm_segment var;
4607
4608         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4609         *selector = var.selector;
4610
4611         if (var.unusable) {
4612                 memset(desc, 0, sizeof(*desc));
4613                 return false;
4614         }
4615
4616         if (var.g)
4617                 var.limit >>= 12;
4618         set_desc_limit(desc, var.limit);
4619         set_desc_base(desc, (unsigned long)var.base);
4620 #ifdef CONFIG_X86_64
4621         if (base3)
4622                 *base3 = var.base >> 32;
4623 #endif
4624         desc->type = var.type;
4625         desc->s = var.s;
4626         desc->dpl = var.dpl;
4627         desc->p = var.present;
4628         desc->avl = var.avl;
4629         desc->l = var.l;
4630         desc->d = var.db;
4631         desc->g = var.g;
4632
4633         return true;
4634 }
4635
4636 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4637                                  struct desc_struct *desc, u32 base3,
4638                                  int seg)
4639 {
4640         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4641         struct kvm_segment var;
4642
4643         var.selector = selector;
4644         var.base = get_desc_base(desc);
4645 #ifdef CONFIG_X86_64
4646         var.base |= ((u64)base3) << 32;
4647 #endif
4648         var.limit = get_desc_limit(desc);
4649         if (desc->g)
4650                 var.limit = (var.limit << 12) | 0xfff;
4651         var.type = desc->type;
4652         var.present = desc->p;
4653         var.dpl = desc->dpl;
4654         var.db = desc->d;
4655         var.s = desc->s;
4656         var.l = desc->l;
4657         var.g = desc->g;
4658         var.avl = desc->avl;
4659         var.present = desc->p;
4660         var.unusable = !var.present;
4661         var.padding = 0;
4662
4663         kvm_set_segment(vcpu, &var, seg);
4664         return;
4665 }
4666
4667 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4668                             u32 msr_index, u64 *pdata)
4669 {
4670         return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4671 }
4672
4673 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4674                             u32 msr_index, u64 data)
4675 {
4676         struct msr_data msr;
4677
4678         msr.data = data;
4679         msr.index = msr_index;
4680         msr.host_initiated = false;
4681         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4682 }
4683
4684 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4685                              u32 pmc, u64 *pdata)
4686 {
4687         return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4688 }
4689
4690 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4691 {
4692         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4693 }
4694
4695 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4696 {
4697         preempt_disable();
4698         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4699         /*
4700          * CR0.TS may reference the host fpu state, not the guest fpu state,
4701          * so it may be clear at this point.
4702          */
4703         clts();
4704 }
4705
4706 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4707 {
4708         preempt_enable();
4709 }
4710
4711 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4712                               struct x86_instruction_info *info,
4713                               enum x86_intercept_stage stage)
4714 {
4715         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4716 }
4717
4718 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4719                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4720 {
4721         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4722 }
4723
4724 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4725 {
4726         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4727 }
4728
4729 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4730 {
4731         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4732 }
4733
4734 static const struct x86_emulate_ops emulate_ops = {
4735         .read_gpr            = emulator_read_gpr,
4736         .write_gpr           = emulator_write_gpr,
4737         .read_std            = kvm_read_guest_virt_system,
4738         .write_std           = kvm_write_guest_virt_system,
4739         .fetch               = kvm_fetch_guest_virt,
4740         .read_emulated       = emulator_read_emulated,
4741         .write_emulated      = emulator_write_emulated,
4742         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4743         .invlpg              = emulator_invlpg,
4744         .pio_in_emulated     = emulator_pio_in_emulated,
4745         .pio_out_emulated    = emulator_pio_out_emulated,
4746         .get_segment         = emulator_get_segment,
4747         .set_segment         = emulator_set_segment,
4748         .get_cached_segment_base = emulator_get_cached_segment_base,
4749         .get_gdt             = emulator_get_gdt,
4750         .get_idt             = emulator_get_idt,
4751         .set_gdt             = emulator_set_gdt,
4752         .set_idt             = emulator_set_idt,
4753         .get_cr              = emulator_get_cr,
4754         .set_cr              = emulator_set_cr,
4755         .set_rflags          = emulator_set_rflags,
4756         .cpl                 = emulator_get_cpl,
4757         .get_dr              = emulator_get_dr,
4758         .set_dr              = emulator_set_dr,
4759         .set_msr             = emulator_set_msr,
4760         .get_msr             = emulator_get_msr,
4761         .read_pmc            = emulator_read_pmc,
4762         .halt                = emulator_halt,
4763         .wbinvd              = emulator_wbinvd,
4764         .fix_hypercall       = emulator_fix_hypercall,
4765         .get_fpu             = emulator_get_fpu,
4766         .put_fpu             = emulator_put_fpu,
4767         .intercept           = emulator_intercept,
4768         .get_cpuid           = emulator_get_cpuid,
4769 };
4770
4771 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4772 {
4773         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4774         /*
4775          * an sti; sti; sequence only disable interrupts for the first
4776          * instruction. So, if the last instruction, be it emulated or
4777          * not, left the system with the INT_STI flag enabled, it
4778          * means that the last instruction is an sti. We should not
4779          * leave the flag on in this case. The same goes for mov ss
4780          */
4781         if (!(int_shadow & mask))
4782                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4783 }
4784
4785 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4786 {
4787         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4788         if (ctxt->exception.vector == PF_VECTOR)
4789                 kvm_propagate_fault(vcpu, &ctxt->exception);
4790         else if (ctxt->exception.error_code_valid)
4791                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4792                                       ctxt->exception.error_code);
4793         else
4794                 kvm_queue_exception(vcpu, ctxt->exception.vector);
4795 }
4796
4797 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4798 {
4799         memset(&ctxt->opcode_len, 0,
4800                (void *)&ctxt->_regs - (void *)&ctxt->opcode_len);
4801
4802         ctxt->fetch.start = 0;
4803         ctxt->fetch.end = 0;
4804         ctxt->io_read.pos = 0;
4805         ctxt->io_read.end = 0;
4806         ctxt->mem_read.pos = 0;
4807         ctxt->mem_read.end = 0;
4808 }
4809
4810 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4811 {
4812         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4813         int cs_db, cs_l;
4814
4815         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4816
4817         ctxt->eflags = kvm_get_rflags(vcpu);
4818         ctxt->eip = kvm_rip_read(vcpu);
4819         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
4820                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
4821                      cs_l                               ? X86EMUL_MODE_PROT64 :
4822                      cs_db                              ? X86EMUL_MODE_PROT32 :
4823                                                           X86EMUL_MODE_PROT16;
4824         ctxt->guest_mode = is_guest_mode(vcpu);
4825
4826         init_decode_cache(ctxt);
4827         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4828 }
4829
4830 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4831 {
4832         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4833         int ret;
4834
4835         init_emulate_ctxt(vcpu);
4836
4837         ctxt->op_bytes = 2;
4838         ctxt->ad_bytes = 2;
4839         ctxt->_eip = ctxt->eip + inc_eip;
4840         ret = emulate_int_real(ctxt, irq);
4841
4842         if (ret != X86EMUL_CONTINUE)
4843                 return EMULATE_FAIL;
4844
4845         ctxt->eip = ctxt->_eip;
4846         kvm_rip_write(vcpu, ctxt->eip);
4847         kvm_set_rflags(vcpu, ctxt->eflags);
4848
4849         if (irq == NMI_VECTOR)
4850                 vcpu->arch.nmi_pending = 0;
4851         else
4852                 vcpu->arch.interrupt.pending = false;
4853
4854         return EMULATE_DONE;
4855 }
4856 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4857
4858 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4859 {
4860         int r = EMULATE_DONE;
4861
4862         ++vcpu->stat.insn_emulation_fail;
4863         trace_kvm_emulate_insn_failed(vcpu);
4864         if (!is_guest_mode(vcpu)) {
4865                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4866                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4867                 vcpu->run->internal.ndata = 0;
4868                 r = EMULATE_FAIL;
4869         }
4870         kvm_queue_exception(vcpu, UD_VECTOR);
4871
4872         return r;
4873 }
4874
4875 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4876                                   bool write_fault_to_shadow_pgtable,
4877                                   int emulation_type)
4878 {
4879         gpa_t gpa = cr2;
4880         pfn_t pfn;
4881
4882         if (emulation_type & EMULTYPE_NO_REEXECUTE)
4883                 return false;
4884
4885         if (!vcpu->arch.mmu.direct_map) {
4886                 /*
4887                  * Write permission should be allowed since only
4888                  * write access need to be emulated.
4889                  */
4890                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4891
4892                 /*
4893                  * If the mapping is invalid in guest, let cpu retry
4894                  * it to generate fault.
4895                  */
4896                 if (gpa == UNMAPPED_GVA)
4897                         return true;
4898         }
4899
4900         /*
4901          * Do not retry the unhandleable instruction if it faults on the
4902          * readonly host memory, otherwise it will goto a infinite loop:
4903          * retry instruction -> write #PF -> emulation fail -> retry
4904          * instruction -> ...
4905          */
4906         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4907
4908         /*
4909          * If the instruction failed on the error pfn, it can not be fixed,
4910          * report the error to userspace.
4911          */
4912         if (is_error_noslot_pfn(pfn))
4913                 return false;
4914
4915         kvm_release_pfn_clean(pfn);
4916
4917         /* The instructions are well-emulated on direct mmu. */
4918         if (vcpu->arch.mmu.direct_map) {
4919                 unsigned int indirect_shadow_pages;
4920
4921                 spin_lock(&vcpu->kvm->mmu_lock);
4922                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4923                 spin_unlock(&vcpu->kvm->mmu_lock);
4924
4925                 if (indirect_shadow_pages)
4926                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4927
4928                 return true;
4929         }
4930
4931         /*
4932          * if emulation was due to access to shadowed page table
4933          * and it failed try to unshadow page and re-enter the
4934          * guest to let CPU execute the instruction.
4935          */
4936         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4937
4938         /*
4939          * If the access faults on its page table, it can not
4940          * be fixed by unprotecting shadow page and it should
4941          * be reported to userspace.
4942          */
4943         return !write_fault_to_shadow_pgtable;
4944 }
4945
4946 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4947                               unsigned long cr2,  int emulation_type)
4948 {
4949         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4950         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4951
4952         last_retry_eip = vcpu->arch.last_retry_eip;
4953         last_retry_addr = vcpu->arch.last_retry_addr;
4954
4955         /*
4956          * If the emulation is caused by #PF and it is non-page_table
4957          * writing instruction, it means the VM-EXIT is caused by shadow
4958          * page protected, we can zap the shadow page and retry this
4959          * instruction directly.
4960          *
4961          * Note: if the guest uses a non-page-table modifying instruction
4962          * on the PDE that points to the instruction, then we will unmap
4963          * the instruction and go to an infinite loop. So, we cache the
4964          * last retried eip and the last fault address, if we meet the eip
4965          * and the address again, we can break out of the potential infinite
4966          * loop.
4967          */
4968         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4969
4970         if (!(emulation_type & EMULTYPE_RETRY))
4971                 return false;
4972
4973         if (x86_page_table_writing_insn(ctxt))
4974                 return false;
4975
4976         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4977                 return false;
4978
4979         vcpu->arch.last_retry_eip = ctxt->eip;
4980         vcpu->arch.last_retry_addr = cr2;
4981
4982         if (!vcpu->arch.mmu.direct_map)
4983                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4984
4985         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4986
4987         return true;
4988 }
4989
4990 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4991 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4992
4993 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4994                                 unsigned long *db)
4995 {
4996         u32 dr6 = 0;
4997         int i;
4998         u32 enable, rwlen;
4999
5000         enable = dr7;
5001         rwlen = dr7 >> 16;
5002         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5003                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5004                         dr6 |= (1 << i);
5005         return dr6;
5006 }
5007
5008 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
5009 {
5010         struct kvm_run *kvm_run = vcpu->run;
5011
5012         /*
5013          * Use the "raw" value to see if TF was passed to the processor.
5014          * Note that the new value of the flags has not been saved yet.
5015          *
5016          * This is correct even for TF set by the guest, because "the
5017          * processor will not generate this exception after the instruction
5018          * that sets the TF flag".
5019          */
5020         unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5021
5022         if (unlikely(rflags & X86_EFLAGS_TF)) {
5023                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5024                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5025                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5026                         kvm_run->debug.arch.exception = DB_VECTOR;
5027                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5028                         *r = EMULATE_USER_EXIT;
5029                 } else {
5030                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5031                         /*
5032                          * "Certain debug exceptions may clear bit 0-3.  The
5033                          * remaining contents of the DR6 register are never
5034                          * cleared by the processor".
5035                          */
5036                         vcpu->arch.dr6 &= ~15;
5037                         vcpu->arch.dr6 |= DR6_BS;
5038                         kvm_queue_exception(vcpu, DB_VECTOR);
5039                 }
5040         }
5041 }
5042
5043 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5044 {
5045         struct kvm_run *kvm_run = vcpu->run;
5046         unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5047         u32 dr6 = 0;
5048
5049         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5050             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5051                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5052                                            vcpu->arch.guest_debug_dr7,
5053                                            vcpu->arch.eff_db);
5054
5055                 if (dr6 != 0) {
5056                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5057                         kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5058                                 get_segment_base(vcpu, VCPU_SREG_CS);
5059
5060                         kvm_run->debug.arch.exception = DB_VECTOR;
5061                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5062                         *r = EMULATE_USER_EXIT;
5063                         return true;
5064                 }
5065         }
5066
5067         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5068                 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5069                                            vcpu->arch.dr7,
5070                                            vcpu->arch.db);
5071
5072                 if (dr6 != 0) {
5073                         vcpu->arch.dr6 &= ~15;
5074                         vcpu->arch.dr6 |= dr6;
5075                         kvm_queue_exception(vcpu, DB_VECTOR);
5076                         *r = EMULATE_DONE;
5077                         return true;
5078                 }
5079         }
5080
5081         return false;
5082 }
5083
5084 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5085                             unsigned long cr2,
5086                             int emulation_type,
5087                             void *insn,
5088                             int insn_len)
5089 {
5090         int r;
5091         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5092         bool writeback = true;
5093         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5094
5095         /*
5096          * Clear write_fault_to_shadow_pgtable here to ensure it is
5097          * never reused.
5098          */
5099         vcpu->arch.write_fault_to_shadow_pgtable = false;
5100         kvm_clear_exception_queue(vcpu);
5101
5102         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5103                 init_emulate_ctxt(vcpu);
5104
5105                 /*
5106                  * We will reenter on the same instruction since
5107                  * we do not set complete_userspace_io.  This does not
5108                  * handle watchpoints yet, those would be handled in
5109                  * the emulate_ops.
5110                  */
5111                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5112                         return r;
5113
5114                 ctxt->interruptibility = 0;
5115                 ctxt->have_exception = false;
5116                 ctxt->perm_ok = false;
5117
5118                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5119
5120                 r = x86_decode_insn(ctxt, insn, insn_len);
5121
5122                 trace_kvm_emulate_insn_start(vcpu);
5123                 ++vcpu->stat.insn_emulation;
5124                 if (r != EMULATION_OK)  {
5125                         if (emulation_type & EMULTYPE_TRAP_UD)
5126                                 return EMULATE_FAIL;
5127                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5128                                                 emulation_type))
5129                                 return EMULATE_DONE;
5130                         if (emulation_type & EMULTYPE_SKIP)
5131                                 return EMULATE_FAIL;
5132                         return handle_emulation_failure(vcpu);
5133                 }
5134         }
5135
5136         if (emulation_type & EMULTYPE_SKIP) {
5137                 kvm_rip_write(vcpu, ctxt->_eip);
5138                 return EMULATE_DONE;
5139         }
5140
5141         if (retry_instruction(ctxt, cr2, emulation_type))
5142                 return EMULATE_DONE;
5143
5144         /* this is needed for vmware backdoor interface to work since it
5145            changes registers values  during IO operation */
5146         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5147                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5148                 emulator_invalidate_register_cache(ctxt);
5149         }
5150
5151 restart:
5152         r = x86_emulate_insn(ctxt);
5153
5154         if (r == EMULATION_INTERCEPTED)
5155                 return EMULATE_DONE;
5156
5157         if (r == EMULATION_FAILED) {
5158                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5159                                         emulation_type))
5160                         return EMULATE_DONE;
5161
5162                 return handle_emulation_failure(vcpu);
5163         }
5164
5165         if (ctxt->have_exception) {
5166                 inject_emulated_exception(vcpu);
5167                 r = EMULATE_DONE;
5168         } else if (vcpu->arch.pio.count) {
5169                 if (!vcpu->arch.pio.in) {
5170                         /* FIXME: return into emulator if single-stepping.  */
5171                         vcpu->arch.pio.count = 0;
5172                 } else {
5173                         writeback = false;
5174                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5175                 }
5176                 r = EMULATE_USER_EXIT;
5177         } else if (vcpu->mmio_needed) {
5178                 if (!vcpu->mmio_is_write)
5179                         writeback = false;
5180                 r = EMULATE_USER_EXIT;
5181                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5182         } else if (r == EMULATION_RESTART)
5183                 goto restart;
5184         else
5185                 r = EMULATE_DONE;
5186
5187         if (writeback) {
5188                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5189                 kvm_make_request(KVM_REQ_EVENT, vcpu);
5190                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5191                 kvm_rip_write(vcpu, ctxt->eip);
5192                 if (r == EMULATE_DONE)
5193                         kvm_vcpu_check_singlestep(vcpu, &r);
5194                 kvm_set_rflags(vcpu, ctxt->eflags);
5195         } else
5196                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5197
5198         return r;
5199 }
5200 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5201
5202 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5203 {
5204         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5205         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5206                                             size, port, &val, 1);
5207         /* do not return to emulator after return from userspace */
5208         vcpu->arch.pio.count = 0;
5209         return ret;
5210 }
5211 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5212
5213 static void tsc_bad(void *info)
5214 {
5215         __this_cpu_write(cpu_tsc_khz, 0);
5216 }
5217
5218 static void tsc_khz_changed(void *data)
5219 {
5220         struct cpufreq_freqs *freq = data;
5221         unsigned long khz = 0;
5222
5223         if (data)
5224                 khz = freq->new;
5225         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5226                 khz = cpufreq_quick_get(raw_smp_processor_id());
5227         if (!khz)
5228                 khz = tsc_khz;
5229         __this_cpu_write(cpu_tsc_khz, khz);
5230 }
5231
5232 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5233                                      void *data)
5234 {
5235         struct cpufreq_freqs *freq = data;
5236         struct kvm *kvm;
5237         struct kvm_vcpu *vcpu;
5238         int i, send_ipi = 0;
5239
5240         /*
5241          * We allow guests to temporarily run on slowing clocks,
5242          * provided we notify them after, or to run on accelerating
5243          * clocks, provided we notify them before.  Thus time never
5244          * goes backwards.
5245          *
5246          * However, we have a problem.  We can't atomically update
5247          * the frequency of a given CPU from this function; it is
5248          * merely a notifier, which can be called from any CPU.
5249          * Changing the TSC frequency at arbitrary points in time
5250          * requires a recomputation of local variables related to
5251          * the TSC for each VCPU.  We must flag these local variables
5252          * to be updated and be sure the update takes place with the
5253          * new frequency before any guests proceed.
5254          *
5255          * Unfortunately, the combination of hotplug CPU and frequency
5256          * change creates an intractable locking scenario; the order
5257          * of when these callouts happen is undefined with respect to
5258          * CPU hotplug, and they can race with each other.  As such,
5259          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5260          * undefined; you can actually have a CPU frequency change take
5261          * place in between the computation of X and the setting of the
5262          * variable.  To protect against this problem, all updates of
5263          * the per_cpu tsc_khz variable are done in an interrupt
5264          * protected IPI, and all callers wishing to update the value
5265          * must wait for a synchronous IPI to complete (which is trivial
5266          * if the caller is on the CPU already).  This establishes the
5267          * necessary total order on variable updates.
5268          *
5269          * Note that because a guest time update may take place
5270          * anytime after the setting of the VCPU's request bit, the
5271          * correct TSC value must be set before the request.  However,
5272          * to ensure the update actually makes it to any guest which
5273          * starts running in hardware virtualization between the set
5274          * and the acquisition of the spinlock, we must also ping the
5275          * CPU after setting the request bit.
5276          *
5277          */
5278
5279         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5280                 return 0;
5281         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5282                 return 0;
5283
5284         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5285
5286         spin_lock(&kvm_lock);
5287         list_for_each_entry(kvm, &vm_list, vm_list) {
5288                 kvm_for_each_vcpu(i, vcpu, kvm) {
5289                         if (vcpu->cpu != freq->cpu)
5290                                 continue;
5291                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5292                         if (vcpu->cpu != smp_processor_id())
5293                                 send_ipi = 1;
5294                 }
5295         }
5296         spin_unlock(&kvm_lock);
5297
5298         if (freq->old < freq->new && send_ipi) {
5299                 /*
5300                  * We upscale the frequency.  Must make the guest
5301                  * doesn't see old kvmclock values while running with
5302                  * the new frequency, otherwise we risk the guest sees
5303                  * time go backwards.
5304                  *
5305                  * In case we update the frequency for another cpu
5306                  * (which might be in guest context) send an interrupt
5307                  * to kick the cpu out of guest context.  Next time
5308                  * guest context is entered kvmclock will be updated,
5309                  * so the guest will not see stale values.
5310                  */
5311                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5312         }
5313         return 0;
5314 }
5315
5316 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5317         .notifier_call  = kvmclock_cpufreq_notifier
5318 };
5319
5320 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5321                                         unsigned long action, void *hcpu)
5322 {
5323         unsigned int cpu = (unsigned long)hcpu;
5324
5325         switch (action) {
5326                 case CPU_ONLINE:
5327                 case CPU_DOWN_FAILED:
5328                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5329                         break;
5330                 case CPU_DOWN_PREPARE:
5331                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5332                         break;
5333         }
5334         return NOTIFY_OK;
5335 }
5336
5337 static struct notifier_block kvmclock_cpu_notifier_block = {
5338         .notifier_call  = kvmclock_cpu_notifier,
5339         .priority = -INT_MAX
5340 };
5341
5342 static void kvm_timer_init(void)
5343 {
5344         int cpu;
5345
5346         max_tsc_khz = tsc_khz;
5347         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5348         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5349 #ifdef CONFIG_CPU_FREQ
5350                 struct cpufreq_policy policy;
5351                 memset(&policy, 0, sizeof(policy));
5352                 cpu = get_cpu();
5353                 cpufreq_get_policy(&policy, cpu);
5354                 if (policy.cpuinfo.max_freq)
5355                         max_tsc_khz = policy.cpuinfo.max_freq;
5356                 put_cpu();
5357 #endif
5358                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5359                                           CPUFREQ_TRANSITION_NOTIFIER);
5360         }
5361         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5362         for_each_online_cpu(cpu)
5363                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5364 }
5365
5366 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5367
5368 int kvm_is_in_guest(void)
5369 {
5370         return __this_cpu_read(current_vcpu) != NULL;
5371 }
5372
5373 static int kvm_is_user_mode(void)
5374 {
5375         int user_mode = 3;
5376
5377         if (__this_cpu_read(current_vcpu))
5378                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5379
5380         return user_mode != 0;
5381 }
5382
5383 static unsigned long kvm_get_guest_ip(void)
5384 {
5385         unsigned long ip = 0;
5386
5387         if (__this_cpu_read(current_vcpu))
5388                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5389
5390         return ip;
5391 }
5392
5393 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5394         .is_in_guest            = kvm_is_in_guest,
5395         .is_user_mode           = kvm_is_user_mode,
5396         .get_guest_ip           = kvm_get_guest_ip,
5397 };
5398
5399 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5400 {
5401         __this_cpu_write(current_vcpu, vcpu);
5402 }
5403 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5404
5405 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5406 {
5407         __this_cpu_write(current_vcpu, NULL);
5408 }
5409 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5410
5411 static void kvm_set_mmio_spte_mask(void)
5412 {
5413         u64 mask;
5414         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5415
5416         /*
5417          * Set the reserved bits and the present bit of an paging-structure
5418          * entry to generate page fault with PFER.RSV = 1.
5419          */
5420          /* Mask the reserved physical address bits. */
5421         mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5422
5423         /* Bit 62 is always reserved for 32bit host. */
5424         mask |= 0x3ull << 62;
5425
5426         /* Set the present bit. */
5427         mask |= 1ull;
5428
5429 #ifdef CONFIG_X86_64
5430         /*
5431          * If reserved bit is not supported, clear the present bit to disable
5432          * mmio page fault.
5433          */
5434         if (maxphyaddr == 52)
5435                 mask &= ~1ull;
5436 #endif
5437
5438         kvm_mmu_set_mmio_spte_mask(mask);
5439 }
5440
5441 #ifdef CONFIG_X86_64
5442 static void pvclock_gtod_update_fn(struct work_struct *work)
5443 {
5444         struct kvm *kvm;
5445
5446         struct kvm_vcpu *vcpu;
5447         int i;
5448
5449         spin_lock(&kvm_lock);
5450         list_for_each_entry(kvm, &vm_list, vm_list)
5451                 kvm_for_each_vcpu(i, vcpu, kvm)
5452                         set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5453         atomic_set(&kvm_guest_has_master_clock, 0);
5454         spin_unlock(&kvm_lock);
5455 }
5456
5457 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5458
5459 /*
5460  * Notification about pvclock gtod data update.
5461  */
5462 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5463                                void *priv)
5464 {
5465         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5466         struct timekeeper *tk = priv;
5467
5468         update_pvclock_gtod(tk);
5469
5470         /* disable master clock if host does not trust, or does not
5471          * use, TSC clocksource
5472          */
5473         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5474             atomic_read(&kvm_guest_has_master_clock) != 0)
5475                 queue_work(system_long_wq, &pvclock_gtod_work);
5476
5477         return 0;
5478 }
5479
5480 static struct notifier_block pvclock_gtod_notifier = {
5481         .notifier_call = pvclock_gtod_notify,
5482 };
5483 #endif
5484
5485 int kvm_arch_init(void *opaque)
5486 {
5487         int r;
5488         struct kvm_x86_ops *ops = opaque;
5489
5490         if (kvm_x86_ops) {
5491                 printk(KERN_ERR "kvm: already loaded the other module\n");
5492                 r = -EEXIST;
5493                 goto out;
5494         }
5495
5496         if (!ops->cpu_has_kvm_support()) {
5497                 printk(KERN_ERR "kvm: no hardware support\n");
5498                 r = -EOPNOTSUPP;
5499                 goto out;
5500         }
5501         if (ops->disabled_by_bios()) {
5502                 printk(KERN_ERR "kvm: disabled by bios\n");
5503                 r = -EOPNOTSUPP;
5504                 goto out;
5505         }
5506
5507         r = -ENOMEM;
5508         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5509         if (!shared_msrs) {
5510                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5511                 goto out;
5512         }
5513
5514         r = kvm_mmu_module_init();
5515         if (r)
5516                 goto out_free_percpu;
5517
5518         kvm_set_mmio_spte_mask();
5519         kvm_init_msr_list();
5520
5521         kvm_x86_ops = ops;
5522         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5523                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5524
5525         kvm_timer_init();
5526
5527         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5528
5529         if (cpu_has_xsave)
5530                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5531
5532         kvm_lapic_init();
5533 #ifdef CONFIG_X86_64
5534         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5535 #endif
5536
5537         return 0;
5538
5539 out_free_percpu:
5540         free_percpu(shared_msrs);
5541 out:
5542         return r;
5543 }
5544
5545 void kvm_arch_exit(void)
5546 {
5547         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5548
5549         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5550                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5551                                             CPUFREQ_TRANSITION_NOTIFIER);
5552         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5553 #ifdef CONFIG_X86_64
5554         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5555 #endif
5556         kvm_x86_ops = NULL;
5557         kvm_mmu_module_exit();
5558         free_percpu(shared_msrs);
5559 }
5560
5561 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5562 {
5563         ++vcpu->stat.halt_exits;
5564         if (irqchip_in_kernel(vcpu->kvm)) {
5565                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5566                 return 1;
5567         } else {
5568                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5569                 return 0;
5570         }
5571 }
5572 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5573
5574 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5575 {
5576         u64 param, ingpa, outgpa, ret;
5577         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5578         bool fast, longmode;
5579         int cs_db, cs_l;
5580
5581         /*
5582          * hypercall generates UD from non zero cpl and real mode
5583          * per HYPER-V spec
5584          */
5585         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5586                 kvm_queue_exception(vcpu, UD_VECTOR);
5587                 return 0;
5588         }
5589
5590         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5591         longmode = is_long_mode(vcpu) && cs_l == 1;
5592
5593         if (!longmode) {
5594                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5595                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5596                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5597                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5598                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5599                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5600         }
5601 #ifdef CONFIG_X86_64
5602         else {
5603                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5604                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5605                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5606         }
5607 #endif
5608
5609         code = param & 0xffff;
5610         fast = (param >> 16) & 0x1;
5611         rep_cnt = (param >> 32) & 0xfff;
5612         rep_idx = (param >> 48) & 0xfff;
5613
5614         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5615
5616         switch (code) {
5617         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5618                 kvm_vcpu_on_spin(vcpu);
5619                 break;
5620         default:
5621                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5622                 break;
5623         }
5624
5625         ret = res | (((u64)rep_done & 0xfff) << 32);
5626         if (longmode) {
5627                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5628         } else {
5629                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5630                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5631         }
5632
5633         return 1;
5634 }
5635
5636 /*
5637  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5638  *
5639  * @apicid - apicid of vcpu to be kicked.
5640  */
5641 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5642 {
5643         struct kvm_lapic_irq lapic_irq;
5644
5645         lapic_irq.shorthand = 0;
5646         lapic_irq.dest_mode = 0;
5647         lapic_irq.dest_id = apicid;
5648
5649         lapic_irq.delivery_mode = APIC_DM_REMRD;
5650         kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5651 }
5652
5653 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5654 {
5655         unsigned long nr, a0, a1, a2, a3, ret;
5656         int r = 1;
5657
5658         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5659                 return kvm_hv_hypercall(vcpu);
5660
5661         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5662         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5663         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5664         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5665         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5666
5667         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5668
5669         if (!is_long_mode(vcpu)) {
5670                 nr &= 0xFFFFFFFF;
5671                 a0 &= 0xFFFFFFFF;
5672                 a1 &= 0xFFFFFFFF;
5673                 a2 &= 0xFFFFFFFF;
5674                 a3 &= 0xFFFFFFFF;
5675         }
5676
5677         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5678                 ret = -KVM_EPERM;
5679                 goto out;
5680         }
5681
5682         switch (nr) {
5683         case KVM_HC_VAPIC_POLL_IRQ:
5684                 ret = 0;
5685                 break;
5686         case KVM_HC_KICK_CPU:
5687                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5688                 ret = 0;
5689                 break;
5690         default:
5691                 ret = -KVM_ENOSYS;
5692                 break;
5693         }
5694 out:
5695         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5696         ++vcpu->stat.hypercalls;
5697         return r;
5698 }
5699 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5700
5701 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5702 {
5703         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5704         char instruction[3];
5705         unsigned long rip = kvm_rip_read(vcpu);
5706
5707         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5708
5709         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5710 }
5711
5712 /*
5713  * Check if userspace requested an interrupt window, and that the
5714  * interrupt window is open.
5715  *
5716  * No need to exit to userspace if we already have an interrupt queued.
5717  */
5718 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5719 {
5720         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5721                 vcpu->run->request_interrupt_window &&
5722                 kvm_arch_interrupt_allowed(vcpu));
5723 }
5724
5725 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5726 {
5727         struct kvm_run *kvm_run = vcpu->run;
5728
5729         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5730         kvm_run->cr8 = kvm_get_cr8(vcpu);
5731         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5732         if (irqchip_in_kernel(vcpu->kvm))
5733                 kvm_run->ready_for_interrupt_injection = 1;
5734         else
5735                 kvm_run->ready_for_interrupt_injection =
5736                         kvm_arch_interrupt_allowed(vcpu) &&
5737                         !kvm_cpu_has_interrupt(vcpu) &&
5738                         !kvm_event_needs_reinjection(vcpu);
5739 }
5740
5741 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5742 {
5743         int max_irr, tpr;
5744
5745         if (!kvm_x86_ops->update_cr8_intercept)
5746                 return;
5747
5748         if (!vcpu->arch.apic)
5749                 return;
5750
5751         if (!vcpu->arch.apic->vapic_addr)
5752                 max_irr = kvm_lapic_find_highest_irr(vcpu);
5753         else
5754                 max_irr = -1;
5755
5756         if (max_irr != -1)
5757                 max_irr >>= 4;
5758
5759         tpr = kvm_lapic_get_cr8(vcpu);
5760
5761         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5762 }
5763
5764 static void inject_pending_event(struct kvm_vcpu *vcpu)
5765 {
5766         /* try to reinject previous events if any */
5767         if (vcpu->arch.exception.pending) {
5768                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5769                                         vcpu->arch.exception.has_error_code,
5770                                         vcpu->arch.exception.error_code);
5771                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5772                                           vcpu->arch.exception.has_error_code,
5773                                           vcpu->arch.exception.error_code,
5774                                           vcpu->arch.exception.reinject);
5775                 return;
5776         }
5777
5778         if (vcpu->arch.nmi_injected) {
5779                 kvm_x86_ops->set_nmi(vcpu);
5780                 return;
5781         }
5782
5783         if (vcpu->arch.interrupt.pending) {
5784                 kvm_x86_ops->set_irq(vcpu);
5785                 return;
5786         }
5787
5788         /* try to inject new event if pending */
5789         if (vcpu->arch.nmi_pending) {
5790                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5791                         --vcpu->arch.nmi_pending;
5792                         vcpu->arch.nmi_injected = true;
5793                         kvm_x86_ops->set_nmi(vcpu);
5794                 }
5795         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5796                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5797                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5798                                             false);
5799                         kvm_x86_ops->set_irq(vcpu);
5800                 }
5801         }
5802 }
5803
5804 static void process_nmi(struct kvm_vcpu *vcpu)
5805 {
5806         unsigned limit = 2;
5807
5808         /*
5809          * x86 is limited to one NMI running, and one NMI pending after it.
5810          * If an NMI is already in progress, limit further NMIs to just one.
5811          * Otherwise, allow two (and we'll inject the first one immediately).
5812          */
5813         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5814                 limit = 1;
5815
5816         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5817         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5818         kvm_make_request(KVM_REQ_EVENT, vcpu);
5819 }
5820
5821 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5822 {
5823         u64 eoi_exit_bitmap[4];
5824         u32 tmr[8];
5825
5826         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5827                 return;
5828
5829         memset(eoi_exit_bitmap, 0, 32);
5830         memset(tmr, 0, 32);
5831
5832         kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5833         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5834         kvm_apic_update_tmr(vcpu, tmr);
5835 }
5836
5837 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5838 {
5839         int r;
5840         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5841                 vcpu->run->request_interrupt_window;
5842         bool req_immediate_exit = false;
5843
5844         if (vcpu->requests) {
5845                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5846                         kvm_mmu_unload(vcpu);
5847                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5848                         __kvm_migrate_timers(vcpu);
5849                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5850                         kvm_gen_update_masterclock(vcpu->kvm);
5851                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5852                         kvm_gen_kvmclock_update(vcpu);
5853                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5854                         r = kvm_guest_time_update(vcpu);
5855                         if (unlikely(r))
5856                                 goto out;
5857                 }
5858                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5859                         kvm_mmu_sync_roots(vcpu);
5860                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5861                         kvm_x86_ops->tlb_flush(vcpu);
5862                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5863                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5864                         r = 0;
5865                         goto out;
5866                 }
5867                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5868                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5869                         r = 0;
5870                         goto out;
5871                 }
5872                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5873                         vcpu->fpu_active = 0;
5874                         kvm_x86_ops->fpu_deactivate(vcpu);
5875                 }
5876                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5877                         /* Page is swapped out. Do synthetic halt */
5878                         vcpu->arch.apf.halted = true;
5879                         r = 1;
5880                         goto out;
5881                 }
5882                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5883                         record_steal_time(vcpu);
5884                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5885                         process_nmi(vcpu);
5886                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5887                         kvm_handle_pmu_event(vcpu);
5888                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5889                         kvm_deliver_pmi(vcpu);
5890                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5891                         vcpu_scan_ioapic(vcpu);
5892         }
5893
5894         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5895                 kvm_apic_accept_events(vcpu);
5896                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5897                         r = 1;
5898                         goto out;
5899                 }
5900
5901                 inject_pending_event(vcpu);
5902
5903                 /* enable NMI/IRQ window open exits if needed */
5904                 if (vcpu->arch.nmi_pending)
5905                         req_immediate_exit =
5906                                 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5907                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5908                         req_immediate_exit =
5909                                 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5910
5911                 if (kvm_lapic_enabled(vcpu)) {
5912                         /*
5913                          * Update architecture specific hints for APIC
5914                          * virtual interrupt delivery.
5915                          */
5916                         if (kvm_x86_ops->hwapic_irr_update)
5917                                 kvm_x86_ops->hwapic_irr_update(vcpu,
5918                                         kvm_lapic_find_highest_irr(vcpu));
5919                         update_cr8_intercept(vcpu);
5920                         kvm_lapic_sync_to_vapic(vcpu);
5921                 }
5922         }
5923
5924         r = kvm_mmu_reload(vcpu);
5925         if (unlikely(r)) {
5926                 goto cancel_injection;
5927         }
5928
5929         preempt_disable();
5930
5931         kvm_x86_ops->prepare_guest_switch(vcpu);
5932         if (vcpu->fpu_active)
5933                 kvm_load_guest_fpu(vcpu);
5934         kvm_load_guest_xcr0(vcpu);
5935
5936         vcpu->mode = IN_GUEST_MODE;
5937
5938         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5939
5940         /* We should set ->mode before check ->requests,
5941          * see the comment in make_all_cpus_request.
5942          */
5943         smp_mb__after_srcu_read_unlock();
5944
5945         local_irq_disable();
5946
5947         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5948             || need_resched() || signal_pending(current)) {
5949                 vcpu->mode = OUTSIDE_GUEST_MODE;
5950                 smp_wmb();
5951                 local_irq_enable();
5952                 preempt_enable();
5953                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5954                 r = 1;
5955                 goto cancel_injection;
5956         }
5957
5958         if (req_immediate_exit)
5959                 smp_send_reschedule(vcpu->cpu);
5960
5961         kvm_guest_enter();
5962
5963         if (unlikely(vcpu->arch.switch_db_regs)) {
5964                 set_debugreg(0, 7);
5965                 set_debugreg(vcpu->arch.eff_db[0], 0);
5966                 set_debugreg(vcpu->arch.eff_db[1], 1);
5967                 set_debugreg(vcpu->arch.eff_db[2], 2);
5968                 set_debugreg(vcpu->arch.eff_db[3], 3);
5969         }
5970
5971         trace_kvm_entry(vcpu->vcpu_id);
5972         kvm_x86_ops->run(vcpu);
5973
5974         /*
5975          * If the guest has used debug registers, at least dr7
5976          * will be disabled while returning to the host.
5977          * If we don't have active breakpoints in the host, we don't
5978          * care about the messed up debug address registers. But if
5979          * we have some of them active, restore the old state.
5980          */
5981         if (hw_breakpoint_active())
5982                 hw_breakpoint_restore();
5983
5984         vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5985                                                            native_read_tsc());
5986
5987         vcpu->mode = OUTSIDE_GUEST_MODE;
5988         smp_wmb();
5989
5990         /* Interrupt is enabled by handle_external_intr() */
5991         kvm_x86_ops->handle_external_intr(vcpu);
5992
5993         ++vcpu->stat.exits;
5994
5995         /*
5996          * We must have an instruction between local_irq_enable() and
5997          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5998          * the interrupt shadow.  The stat.exits increment will do nicely.
5999          * But we need to prevent reordering, hence this barrier():
6000          */
6001         barrier();
6002
6003         kvm_guest_exit();
6004
6005         preempt_enable();
6006
6007         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6008
6009         /*
6010          * Profile KVM exit RIPs:
6011          */
6012         if (unlikely(prof_on == KVM_PROFILING)) {
6013                 unsigned long rip = kvm_rip_read(vcpu);
6014                 profile_hit(KVM_PROFILING, (void *)rip);
6015         }
6016
6017         if (unlikely(vcpu->arch.tsc_always_catchup))
6018                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6019
6020         if (vcpu->arch.apic_attention)
6021                 kvm_lapic_sync_from_vapic(vcpu);
6022
6023         r = kvm_x86_ops->handle_exit(vcpu);
6024         return r;
6025
6026 cancel_injection:
6027         kvm_x86_ops->cancel_injection(vcpu);
6028         if (unlikely(vcpu->arch.apic_attention))
6029                 kvm_lapic_sync_from_vapic(vcpu);
6030 out:
6031         return r;
6032 }
6033
6034
6035 static int __vcpu_run(struct kvm_vcpu *vcpu)
6036 {
6037         int r;
6038         struct kvm *kvm = vcpu->kvm;
6039
6040         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6041
6042         r = 1;
6043         while (r > 0) {
6044                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6045                     !vcpu->arch.apf.halted)
6046                         r = vcpu_enter_guest(vcpu);
6047                 else {
6048                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6049                         kvm_vcpu_block(vcpu);
6050                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6051                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6052                                 kvm_apic_accept_events(vcpu);
6053                                 switch(vcpu->arch.mp_state) {
6054                                 case KVM_MP_STATE_HALTED:
6055                                         vcpu->arch.pv.pv_unhalted = false;
6056                                         vcpu->arch.mp_state =
6057                                                 KVM_MP_STATE_RUNNABLE;
6058                                 case KVM_MP_STATE_RUNNABLE:
6059                                         vcpu->arch.apf.halted = false;
6060                                         break;
6061                                 case KVM_MP_STATE_INIT_RECEIVED:
6062                                         break;
6063                                 default:
6064                                         r = -EINTR;
6065                                         break;
6066                                 }
6067                         }
6068                 }
6069
6070                 if (r <= 0)
6071                         break;
6072
6073                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6074                 if (kvm_cpu_has_pending_timer(vcpu))
6075                         kvm_inject_pending_timer_irqs(vcpu);
6076
6077                 if (dm_request_for_irq_injection(vcpu)) {
6078                         r = -EINTR;
6079                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6080                         ++vcpu->stat.request_irq_exits;
6081                 }
6082
6083                 kvm_check_async_pf_completion(vcpu);
6084
6085                 if (signal_pending(current)) {
6086                         r = -EINTR;
6087                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6088                         ++vcpu->stat.signal_exits;
6089                 }
6090                 if (need_resched()) {
6091                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6092                         kvm_resched(vcpu);
6093                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6094                 }
6095         }
6096
6097         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6098
6099         return r;
6100 }
6101
6102 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6103 {
6104         int r;
6105         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6106         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6107         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6108         if (r != EMULATE_DONE)
6109                 return 0;
6110         return 1;
6111 }
6112
6113 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6114 {
6115         BUG_ON(!vcpu->arch.pio.count);
6116
6117         return complete_emulated_io(vcpu);
6118 }
6119
6120 /*
6121  * Implements the following, as a state machine:
6122  *
6123  * read:
6124  *   for each fragment
6125  *     for each mmio piece in the fragment
6126  *       write gpa, len
6127  *       exit
6128  *       copy data
6129  *   execute insn
6130  *
6131  * write:
6132  *   for each fragment
6133  *     for each mmio piece in the fragment
6134  *       write gpa, len
6135  *       copy data
6136  *       exit
6137  */
6138 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6139 {
6140         struct kvm_run *run = vcpu->run;
6141         struct kvm_mmio_fragment *frag;
6142         unsigned len;
6143
6144         BUG_ON(!vcpu->mmio_needed);
6145
6146         /* Complete previous fragment */
6147         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6148         len = min(8u, frag->len);
6149         if (!vcpu->mmio_is_write)
6150                 memcpy(frag->data, run->mmio.data, len);
6151
6152         if (frag->len <= 8) {
6153                 /* Switch to the next fragment. */
6154                 frag++;
6155                 vcpu->mmio_cur_fragment++;
6156         } else {
6157                 /* Go forward to the next mmio piece. */
6158                 frag->data += len;
6159                 frag->gpa += len;
6160                 frag->len -= len;
6161         }
6162
6163         if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6164                 vcpu->mmio_needed = 0;
6165
6166                 /* FIXME: return into emulator if single-stepping.  */
6167                 if (vcpu->mmio_is_write)
6168                         return 1;
6169                 vcpu->mmio_read_completed = 1;
6170                 return complete_emulated_io(vcpu);
6171         }
6172
6173         run->exit_reason = KVM_EXIT_MMIO;
6174         run->mmio.phys_addr = frag->gpa;
6175         if (vcpu->mmio_is_write)
6176                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6177         run->mmio.len = min(8u, frag->len);
6178         run->mmio.is_write = vcpu->mmio_is_write;
6179         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6180         return 0;
6181 }
6182
6183
6184 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6185 {
6186         int r;
6187         sigset_t sigsaved;
6188
6189         if (!tsk_used_math(current) && init_fpu(current))
6190                 return -ENOMEM;
6191
6192         if (vcpu->sigset_active)
6193                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6194
6195         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6196                 kvm_vcpu_block(vcpu);
6197                 kvm_apic_accept_events(vcpu);
6198                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6199                 r = -EAGAIN;
6200                 goto out;
6201         }
6202
6203         /* re-sync apic's tpr */
6204         if (!irqchip_in_kernel(vcpu->kvm)) {
6205                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6206                         r = -EINVAL;
6207                         goto out;
6208                 }
6209         }
6210
6211         if (unlikely(vcpu->arch.complete_userspace_io)) {
6212                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6213                 vcpu->arch.complete_userspace_io = NULL;
6214                 r = cui(vcpu);
6215                 if (r <= 0)
6216                         goto out;
6217         } else
6218                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6219
6220         r = __vcpu_run(vcpu);
6221
6222 out:
6223         post_kvm_run_save(vcpu);
6224         if (vcpu->sigset_active)
6225                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6226
6227         return r;
6228 }
6229
6230 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6231 {
6232         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6233                 /*
6234                  * We are here if userspace calls get_regs() in the middle of
6235                  * instruction emulation. Registers state needs to be copied
6236                  * back from emulation context to vcpu. Userspace shouldn't do
6237                  * that usually, but some bad designed PV devices (vmware
6238                  * backdoor interface) need this to work
6239                  */
6240                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6241                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6242         }
6243         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6244         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6245         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6246         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6247         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6248         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6249         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6250         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6251 #ifdef CONFIG_X86_64
6252         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6253         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6254         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6255         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6256         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6257         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6258         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6259         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6260 #endif
6261
6262         regs->rip = kvm_rip_read(vcpu);
6263         regs->rflags = kvm_get_rflags(vcpu);
6264
6265         return 0;
6266 }
6267
6268 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6269 {
6270         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6271         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6272
6273         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6274         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6275         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6276         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6277         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6278         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6279         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6280         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6281 #ifdef CONFIG_X86_64
6282         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6283         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6284         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6285         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6286         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6287         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6288         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6289         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6290 #endif
6291
6292         kvm_rip_write(vcpu, regs->rip);
6293         kvm_set_rflags(vcpu, regs->rflags);
6294
6295         vcpu->arch.exception.pending = false;
6296
6297         kvm_make_request(KVM_REQ_EVENT, vcpu);
6298
6299         return 0;
6300 }
6301
6302 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6303 {
6304         struct kvm_segment cs;
6305
6306         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6307         *db = cs.db;
6308         *l = cs.l;
6309 }
6310 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6311
6312 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6313                                   struct kvm_sregs *sregs)
6314 {
6315         struct desc_ptr dt;
6316
6317         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6318         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6319         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6320         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6321         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6322         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6323
6324         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6325         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6326
6327         kvm_x86_ops->get_idt(vcpu, &dt);
6328         sregs->idt.limit = dt.size;
6329         sregs->idt.base = dt.address;
6330         kvm_x86_ops->get_gdt(vcpu, &dt);
6331         sregs->gdt.limit = dt.size;
6332         sregs->gdt.base = dt.address;
6333
6334         sregs->cr0 = kvm_read_cr0(vcpu);
6335         sregs->cr2 = vcpu->arch.cr2;
6336         sregs->cr3 = kvm_read_cr3(vcpu);
6337         sregs->cr4 = kvm_read_cr4(vcpu);
6338         sregs->cr8 = kvm_get_cr8(vcpu);
6339         sregs->efer = vcpu->arch.efer;
6340         sregs->apic_base = kvm_get_apic_base(vcpu);
6341
6342         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6343
6344         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6345                 set_bit(vcpu->arch.interrupt.nr,
6346                         (unsigned long *)sregs->interrupt_bitmap);
6347
6348         return 0;
6349 }
6350
6351 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6352                                     struct kvm_mp_state *mp_state)
6353 {
6354         kvm_apic_accept_events(vcpu);
6355         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6356                                         vcpu->arch.pv.pv_unhalted)
6357                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6358         else
6359                 mp_state->mp_state = vcpu->arch.mp_state;
6360
6361         return 0;
6362 }
6363
6364 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6365                                     struct kvm_mp_state *mp_state)
6366 {
6367         if (!kvm_vcpu_has_lapic(vcpu) &&
6368             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6369                 return -EINVAL;
6370
6371         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6372                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6373                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6374         } else
6375                 vcpu->arch.mp_state = mp_state->mp_state;
6376         kvm_make_request(KVM_REQ_EVENT, vcpu);
6377         return 0;
6378 }
6379
6380 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6381                     int reason, bool has_error_code, u32 error_code)
6382 {
6383         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6384         int ret;
6385
6386         init_emulate_ctxt(vcpu);
6387
6388         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6389                                    has_error_code, error_code);
6390
6391         if (ret)
6392                 return EMULATE_FAIL;
6393
6394         kvm_rip_write(vcpu, ctxt->eip);
6395         kvm_set_rflags(vcpu, ctxt->eflags);
6396         kvm_make_request(KVM_REQ_EVENT, vcpu);
6397         return EMULATE_DONE;
6398 }
6399 EXPORT_SYMBOL_GPL(kvm_task_switch);
6400
6401 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6402                                   struct kvm_sregs *sregs)
6403 {
6404         int mmu_reset_needed = 0;
6405         int pending_vec, max_bits, idx;
6406         struct desc_ptr dt;
6407
6408         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6409                 return -EINVAL;
6410
6411         dt.size = sregs->idt.limit;
6412         dt.address = sregs->idt.base;
6413         kvm_x86_ops->set_idt(vcpu, &dt);
6414         dt.size = sregs->gdt.limit;
6415         dt.address = sregs->gdt.base;
6416         kvm_x86_ops->set_gdt(vcpu, &dt);
6417
6418         vcpu->arch.cr2 = sregs->cr2;
6419         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6420         vcpu->arch.cr3 = sregs->cr3;
6421         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6422
6423         kvm_set_cr8(vcpu, sregs->cr8);
6424
6425         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6426         kvm_x86_ops->set_efer(vcpu, sregs->efer);
6427         kvm_set_apic_base(vcpu, sregs->apic_base);
6428
6429         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6430         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6431         vcpu->arch.cr0 = sregs->cr0;
6432
6433         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6434         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6435         if (sregs->cr4 & X86_CR4_OSXSAVE)
6436                 kvm_update_cpuid(vcpu);
6437
6438         idx = srcu_read_lock(&vcpu->kvm->srcu);
6439         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6440                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6441                 mmu_reset_needed = 1;
6442         }
6443         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6444
6445         if (mmu_reset_needed)
6446                 kvm_mmu_reset_context(vcpu);
6447
6448         max_bits = KVM_NR_INTERRUPTS;
6449         pending_vec = find_first_bit(
6450                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6451         if (pending_vec < max_bits) {
6452                 kvm_queue_interrupt(vcpu, pending_vec, false);
6453                 pr_debug("Set back pending irq %d\n", pending_vec);
6454         }
6455
6456         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6457         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6458         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6459         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6460         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6461         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6462
6463         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6464         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6465
6466         update_cr8_intercept(vcpu);
6467
6468         /* Older userspace won't unhalt the vcpu on reset. */
6469         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6470             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6471             !is_protmode(vcpu))
6472                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6473
6474         kvm_make_request(KVM_REQ_EVENT, vcpu);
6475
6476         return 0;
6477 }
6478
6479 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6480                                         struct kvm_guest_debug *dbg)
6481 {
6482         unsigned long rflags;
6483         int i, r;
6484
6485         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6486                 r = -EBUSY;
6487                 if (vcpu->arch.exception.pending)
6488                         goto out;
6489                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6490                         kvm_queue_exception(vcpu, DB_VECTOR);
6491                 else
6492                         kvm_queue_exception(vcpu, BP_VECTOR);
6493         }
6494
6495         /*
6496          * Read rflags as long as potentially injected trace flags are still
6497          * filtered out.
6498          */
6499         rflags = kvm_get_rflags(vcpu);
6500
6501         vcpu->guest_debug = dbg->control;
6502         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6503                 vcpu->guest_debug = 0;
6504
6505         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6506                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6507                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6508                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6509         } else {
6510                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6511                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6512         }
6513         kvm_update_dr7(vcpu);
6514
6515         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6516                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6517                         get_segment_base(vcpu, VCPU_SREG_CS);
6518
6519         /*
6520          * Trigger an rflags update that will inject or remove the trace
6521          * flags.
6522          */
6523         kvm_set_rflags(vcpu, rflags);
6524
6525         kvm_x86_ops->update_db_bp_intercept(vcpu);
6526
6527         r = 0;
6528
6529 out:
6530
6531         return r;
6532 }
6533
6534 /*
6535  * Translate a guest virtual address to a guest physical address.
6536  */
6537 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6538                                     struct kvm_translation *tr)
6539 {
6540         unsigned long vaddr = tr->linear_address;
6541         gpa_t gpa;
6542         int idx;
6543
6544         idx = srcu_read_lock(&vcpu->kvm->srcu);
6545         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6546         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6547         tr->physical_address = gpa;
6548         tr->valid = gpa != UNMAPPED_GVA;
6549         tr->writeable = 1;
6550         tr->usermode = 0;
6551
6552         return 0;
6553 }
6554
6555 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6556 {
6557         struct i387_fxsave_struct *fxsave =
6558                         &vcpu->arch.guest_fpu.state->fxsave;
6559
6560         memcpy(fpu->fpr, fxsave->st_space, 128);
6561         fpu->fcw = fxsave->cwd;
6562         fpu->fsw = fxsave->swd;
6563         fpu->ftwx = fxsave->twd;
6564         fpu->last_opcode = fxsave->fop;
6565         fpu->last_ip = fxsave->rip;
6566         fpu->last_dp = fxsave->rdp;
6567         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6568
6569         return 0;
6570 }
6571
6572 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6573 {
6574         struct i387_fxsave_struct *fxsave =
6575                         &vcpu->arch.guest_fpu.state->fxsave;
6576
6577         memcpy(fxsave->st_space, fpu->fpr, 128);
6578         fxsave->cwd = fpu->fcw;
6579         fxsave->swd = fpu->fsw;
6580         fxsave->twd = fpu->ftwx;
6581         fxsave->fop = fpu->last_opcode;
6582         fxsave->rip = fpu->last_ip;
6583         fxsave->rdp = fpu->last_dp;
6584         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6585
6586         return 0;
6587 }
6588
6589 int fx_init(struct kvm_vcpu *vcpu)
6590 {
6591         int err;
6592
6593         err = fpu_alloc(&vcpu->arch.guest_fpu);
6594         if (err)
6595                 return err;
6596
6597         fpu_finit(&vcpu->arch.guest_fpu);
6598
6599         /*
6600          * Ensure guest xcr0 is valid for loading
6601          */
6602         vcpu->arch.xcr0 = XSTATE_FP;
6603
6604         vcpu->arch.cr0 |= X86_CR0_ET;
6605
6606         return 0;
6607 }
6608 EXPORT_SYMBOL_GPL(fx_init);
6609
6610 static void fx_free(struct kvm_vcpu *vcpu)
6611 {
6612         fpu_free(&vcpu->arch.guest_fpu);
6613 }
6614
6615 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6616 {
6617         if (vcpu->guest_fpu_loaded)
6618                 return;
6619
6620         /*
6621          * Restore all possible states in the guest,
6622          * and assume host would use all available bits.
6623          * Guest xcr0 would be loaded later.
6624          */
6625         kvm_put_guest_xcr0(vcpu);
6626         vcpu->guest_fpu_loaded = 1;
6627         __kernel_fpu_begin();
6628         fpu_restore_checking(&vcpu->arch.guest_fpu);
6629         trace_kvm_fpu(1);
6630 }
6631
6632 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6633 {
6634         kvm_put_guest_xcr0(vcpu);
6635
6636         if (!vcpu->guest_fpu_loaded)
6637                 return;
6638
6639         vcpu->guest_fpu_loaded = 0;
6640         fpu_save_init(&vcpu->arch.guest_fpu);
6641         __kernel_fpu_end();
6642         ++vcpu->stat.fpu_reload;
6643         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6644         trace_kvm_fpu(0);
6645 }
6646
6647 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6648 {
6649         kvmclock_reset(vcpu);
6650
6651         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6652         fx_free(vcpu);
6653         kvm_x86_ops->vcpu_free(vcpu);
6654 }
6655
6656 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6657                                                 unsigned int id)
6658 {
6659         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6660                 printk_once(KERN_WARNING
6661                 "kvm: SMP vm created on host with unstable TSC; "
6662                 "guest TSC will not be reliable\n");
6663         return kvm_x86_ops->vcpu_create(kvm, id);
6664 }
6665
6666 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6667 {
6668         int r;
6669
6670         vcpu->arch.mtrr_state.have_fixed = 1;
6671         r = vcpu_load(vcpu);
6672         if (r)
6673                 return r;
6674         kvm_vcpu_reset(vcpu);
6675         kvm_mmu_setup(vcpu);
6676         vcpu_put(vcpu);
6677
6678         return r;
6679 }
6680
6681 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6682 {
6683         int r;
6684         struct msr_data msr;
6685
6686         r = vcpu_load(vcpu);
6687         if (r)
6688                 return r;
6689         msr.data = 0x0;
6690         msr.index = MSR_IA32_TSC;
6691         msr.host_initiated = true;
6692         kvm_write_tsc(vcpu, &msr);
6693         vcpu_put(vcpu);
6694
6695         return r;
6696 }
6697
6698 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6699 {
6700         int r;
6701         vcpu->arch.apf.msr_val = 0;
6702
6703         r = vcpu_load(vcpu);
6704         BUG_ON(r);
6705         kvm_mmu_unload(vcpu);
6706         vcpu_put(vcpu);
6707
6708         fx_free(vcpu);
6709         kvm_x86_ops->vcpu_free(vcpu);
6710 }
6711
6712 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6713 {
6714         atomic_set(&vcpu->arch.nmi_queued, 0);
6715         vcpu->arch.nmi_pending = 0;
6716         vcpu->arch.nmi_injected = false;
6717
6718         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6719         vcpu->arch.dr6 = DR6_FIXED_1;
6720         vcpu->arch.dr7 = DR7_FIXED_1;
6721         kvm_update_dr7(vcpu);
6722
6723         kvm_make_request(KVM_REQ_EVENT, vcpu);
6724         vcpu->arch.apf.msr_val = 0;
6725         vcpu->arch.st.msr_val = 0;
6726
6727         kvmclock_reset(vcpu);
6728
6729         kvm_clear_async_pf_completion_queue(vcpu);
6730         kvm_async_pf_hash_reset(vcpu);
6731         vcpu->arch.apf.halted = false;
6732
6733         kvm_pmu_reset(vcpu);
6734
6735         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6736         vcpu->arch.regs_avail = ~0;
6737         vcpu->arch.regs_dirty = ~0;
6738
6739         kvm_x86_ops->vcpu_reset(vcpu);
6740 }
6741
6742 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6743 {
6744         struct kvm_segment cs;
6745
6746         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6747         cs.selector = vector << 8;
6748         cs.base = vector << 12;
6749         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6750         kvm_rip_write(vcpu, 0);
6751 }
6752
6753 int kvm_arch_hardware_enable(void *garbage)
6754 {
6755         struct kvm *kvm;
6756         struct kvm_vcpu *vcpu;
6757         int i;
6758         int ret;
6759         u64 local_tsc;
6760         u64 max_tsc = 0;
6761         bool stable, backwards_tsc = false;
6762
6763         kvm_shared_msr_cpu_online();
6764         ret = kvm_x86_ops->hardware_enable(garbage);
6765         if (ret != 0)
6766                 return ret;
6767
6768         local_tsc = native_read_tsc();
6769         stable = !check_tsc_unstable();
6770         list_for_each_entry(kvm, &vm_list, vm_list) {
6771                 kvm_for_each_vcpu(i, vcpu, kvm) {
6772                         if (!stable && vcpu->cpu == smp_processor_id())
6773                                 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6774                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6775                                 backwards_tsc = true;
6776                                 if (vcpu->arch.last_host_tsc > max_tsc)
6777                                         max_tsc = vcpu->arch.last_host_tsc;
6778                         }
6779                 }
6780         }
6781
6782         /*
6783          * Sometimes, even reliable TSCs go backwards.  This happens on
6784          * platforms that reset TSC during suspend or hibernate actions, but
6785          * maintain synchronization.  We must compensate.  Fortunately, we can
6786          * detect that condition here, which happens early in CPU bringup,
6787          * before any KVM threads can be running.  Unfortunately, we can't
6788          * bring the TSCs fully up to date with real time, as we aren't yet far
6789          * enough into CPU bringup that we know how much real time has actually
6790          * elapsed; our helper function, get_kernel_ns() will be using boot
6791          * variables that haven't been updated yet.
6792          *
6793          * So we simply find the maximum observed TSC above, then record the
6794          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
6795          * the adjustment will be applied.  Note that we accumulate
6796          * adjustments, in case multiple suspend cycles happen before some VCPU
6797          * gets a chance to run again.  In the event that no KVM threads get a
6798          * chance to run, we will miss the entire elapsed period, as we'll have
6799          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6800          * loose cycle time.  This isn't too big a deal, since the loss will be
6801          * uniform across all VCPUs (not to mention the scenario is extremely
6802          * unlikely). It is possible that a second hibernate recovery happens
6803          * much faster than a first, causing the observed TSC here to be
6804          * smaller; this would require additional padding adjustment, which is
6805          * why we set last_host_tsc to the local tsc observed here.
6806          *
6807          * N.B. - this code below runs only on platforms with reliable TSC,
6808          * as that is the only way backwards_tsc is set above.  Also note
6809          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6810          * have the same delta_cyc adjustment applied if backwards_tsc
6811          * is detected.  Note further, this adjustment is only done once,
6812          * as we reset last_host_tsc on all VCPUs to stop this from being
6813          * called multiple times (one for each physical CPU bringup).
6814          *
6815          * Platforms with unreliable TSCs don't have to deal with this, they
6816          * will be compensated by the logic in vcpu_load, which sets the TSC to
6817          * catchup mode.  This will catchup all VCPUs to real time, but cannot
6818          * guarantee that they stay in perfect synchronization.
6819          */
6820         if (backwards_tsc) {
6821                 u64 delta_cyc = max_tsc - local_tsc;
6822                 list_for_each_entry(kvm, &vm_list, vm_list) {
6823                         kvm_for_each_vcpu(i, vcpu, kvm) {
6824                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6825                                 vcpu->arch.last_host_tsc = local_tsc;
6826                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6827                                         &vcpu->requests);
6828                         }
6829
6830                         /*
6831                          * We have to disable TSC offset matching.. if you were
6832                          * booting a VM while issuing an S4 host suspend....
6833                          * you may have some problem.  Solving this issue is
6834                          * left as an exercise to the reader.
6835                          */
6836                         kvm->arch.last_tsc_nsec = 0;
6837                         kvm->arch.last_tsc_write = 0;
6838                 }
6839
6840         }
6841         return 0;
6842 }
6843
6844 void kvm_arch_hardware_disable(void *garbage)
6845 {
6846         kvm_x86_ops->hardware_disable(garbage);
6847         drop_user_return_notifiers(garbage);
6848 }
6849
6850 int kvm_arch_hardware_setup(void)
6851 {
6852         return kvm_x86_ops->hardware_setup();
6853 }
6854
6855 void kvm_arch_hardware_unsetup(void)
6856 {
6857         kvm_x86_ops->hardware_unsetup();
6858 }
6859
6860 void kvm_arch_check_processor_compat(void *rtn)
6861 {
6862         kvm_x86_ops->check_processor_compatibility(rtn);
6863 }
6864
6865 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6866 {
6867         return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6868 }
6869
6870 struct static_key kvm_no_apic_vcpu __read_mostly;
6871
6872 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6873 {
6874         struct page *page;
6875         struct kvm *kvm;
6876         int r;
6877
6878         BUG_ON(vcpu->kvm == NULL);
6879         kvm = vcpu->kvm;
6880
6881         vcpu->arch.pv.pv_unhalted = false;
6882         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6883         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6884                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6885         else
6886                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6887
6888         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6889         if (!page) {
6890                 r = -ENOMEM;
6891                 goto fail;
6892         }
6893         vcpu->arch.pio_data = page_address(page);
6894
6895         kvm_set_tsc_khz(vcpu, max_tsc_khz);
6896
6897         r = kvm_mmu_create(vcpu);
6898         if (r < 0)
6899                 goto fail_free_pio_data;
6900
6901         if (irqchip_in_kernel(kvm)) {
6902                 r = kvm_create_lapic(vcpu);
6903                 if (r < 0)
6904                         goto fail_mmu_destroy;
6905         } else
6906                 static_key_slow_inc(&kvm_no_apic_vcpu);
6907
6908         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6909                                        GFP_KERNEL);
6910         if (!vcpu->arch.mce_banks) {
6911                 r = -ENOMEM;
6912                 goto fail_free_lapic;
6913         }
6914         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6915
6916         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6917                 r = -ENOMEM;
6918                 goto fail_free_mce_banks;
6919         }
6920
6921         r = fx_init(vcpu);
6922         if (r)
6923                 goto fail_free_wbinvd_dirty_mask;
6924
6925         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6926         vcpu->arch.pv_time_enabled = false;
6927
6928         vcpu->arch.guest_supported_xcr0 = 0;
6929         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
6930
6931         kvm_async_pf_hash_reset(vcpu);
6932         kvm_pmu_init(vcpu);
6933
6934         return 0;
6935 fail_free_wbinvd_dirty_mask:
6936         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6937 fail_free_mce_banks:
6938         kfree(vcpu->arch.mce_banks);
6939 fail_free_lapic:
6940         kvm_free_lapic(vcpu);
6941 fail_mmu_destroy:
6942         kvm_mmu_destroy(vcpu);
6943 fail_free_pio_data:
6944         free_page((unsigned long)vcpu->arch.pio_data);
6945 fail:
6946         return r;
6947 }
6948
6949 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6950 {
6951         int idx;
6952
6953         kvm_pmu_destroy(vcpu);
6954         kfree(vcpu->arch.mce_banks);
6955         kvm_free_lapic(vcpu);
6956         idx = srcu_read_lock(&vcpu->kvm->srcu);
6957         kvm_mmu_destroy(vcpu);
6958         srcu_read_unlock(&vcpu->kvm->srcu, idx);
6959         free_page((unsigned long)vcpu->arch.pio_data);
6960         if (!irqchip_in_kernel(vcpu->kvm))
6961                 static_key_slow_dec(&kvm_no_apic_vcpu);
6962 }
6963
6964 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6965 {
6966         if (type)
6967                 return -EINVAL;
6968
6969         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6970         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6971         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6972         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
6973
6974         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6975         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6976         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6977         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6978                 &kvm->arch.irq_sources_bitmap);
6979
6980         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6981         mutex_init(&kvm->arch.apic_map_lock);
6982         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6983
6984         pvclock_update_vm_gtod_copy(kvm);
6985
6986         return 0;
6987 }
6988
6989 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6990 {
6991         int r;
6992         r = vcpu_load(vcpu);
6993         BUG_ON(r);
6994         kvm_mmu_unload(vcpu);
6995         vcpu_put(vcpu);
6996 }
6997
6998 static void kvm_free_vcpus(struct kvm *kvm)
6999 {
7000         unsigned int i;
7001         struct kvm_vcpu *vcpu;
7002
7003         /*
7004          * Unpin any mmu pages first.
7005          */
7006         kvm_for_each_vcpu(i, vcpu, kvm) {
7007                 kvm_clear_async_pf_completion_queue(vcpu);
7008                 kvm_unload_vcpu_mmu(vcpu);
7009         }
7010         kvm_for_each_vcpu(i, vcpu, kvm)
7011                 kvm_arch_vcpu_free(vcpu);
7012
7013         mutex_lock(&kvm->lock);
7014         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7015                 kvm->vcpus[i] = NULL;
7016
7017         atomic_set(&kvm->online_vcpus, 0);
7018         mutex_unlock(&kvm->lock);
7019 }
7020
7021 void kvm_arch_sync_events(struct kvm *kvm)
7022 {
7023         kvm_free_all_assigned_devices(kvm);
7024         kvm_free_pit(kvm);
7025 }
7026
7027 void kvm_arch_destroy_vm(struct kvm *kvm)
7028 {
7029         if (current->mm == kvm->mm) {
7030                 /*
7031                  * Free memory regions allocated on behalf of userspace,
7032                  * unless the the memory map has changed due to process exit
7033                  * or fd copying.
7034                  */
7035                 struct kvm_userspace_memory_region mem;
7036                 memset(&mem, 0, sizeof(mem));
7037                 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7038                 kvm_set_memory_region(kvm, &mem);
7039
7040                 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7041                 kvm_set_memory_region(kvm, &mem);
7042
7043                 mem.slot = TSS_PRIVATE_MEMSLOT;
7044                 kvm_set_memory_region(kvm, &mem);
7045         }
7046         kvm_iommu_unmap_guest(kvm);
7047         kfree(kvm->arch.vpic);
7048         kfree(kvm->arch.vioapic);
7049         kvm_free_vcpus(kvm);
7050         if (kvm->arch.apic_access_page)
7051                 put_page(kvm->arch.apic_access_page);
7052         if (kvm->arch.ept_identity_pagetable)
7053                 put_page(kvm->arch.ept_identity_pagetable);
7054         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7055 }
7056
7057 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7058                            struct kvm_memory_slot *dont)
7059 {
7060         int i;
7061
7062         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7063                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7064                         kvm_kvfree(free->arch.rmap[i]);
7065                         free->arch.rmap[i] = NULL;
7066                 }
7067                 if (i == 0)
7068                         continue;
7069
7070                 if (!dont || free->arch.lpage_info[i - 1] !=
7071                              dont->arch.lpage_info[i - 1]) {
7072                         kvm_kvfree(free->arch.lpage_info[i - 1]);
7073                         free->arch.lpage_info[i - 1] = NULL;
7074                 }
7075         }
7076 }
7077
7078 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7079                             unsigned long npages)
7080 {
7081         int i;
7082
7083         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7084                 unsigned long ugfn;
7085                 int lpages;
7086                 int level = i + 1;
7087
7088                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7089                                       slot->base_gfn, level) + 1;
7090
7091                 slot->arch.rmap[i] =
7092                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7093                 if (!slot->arch.rmap[i])
7094                         goto out_free;
7095                 if (i == 0)
7096                         continue;
7097
7098                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7099                                         sizeof(*slot->arch.lpage_info[i - 1]));
7100                 if (!slot->arch.lpage_info[i - 1])
7101                         goto out_free;
7102
7103                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7104                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7105                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7106                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7107                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7108                 /*
7109                  * If the gfn and userspace address are not aligned wrt each
7110                  * other, or if explicitly asked to, disable large page
7111                  * support for this slot
7112                  */
7113                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7114                     !kvm_largepages_enabled()) {
7115                         unsigned long j;
7116
7117                         for (j = 0; j < lpages; ++j)
7118                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7119                 }
7120         }
7121
7122         return 0;
7123
7124 out_free:
7125         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7126                 kvm_kvfree(slot->arch.rmap[i]);
7127                 slot->arch.rmap[i] = NULL;
7128                 if (i == 0)
7129                         continue;
7130
7131                 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7132                 slot->arch.lpage_info[i - 1] = NULL;
7133         }
7134         return -ENOMEM;
7135 }
7136
7137 void kvm_arch_memslots_updated(struct kvm *kvm)
7138 {
7139         /*
7140          * memslots->generation has been incremented.
7141          * mmio generation may have reached its maximum value.
7142          */
7143         kvm_mmu_invalidate_mmio_sptes(kvm);
7144 }
7145
7146 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7147                                 struct kvm_memory_slot *memslot,
7148                                 struct kvm_userspace_memory_region *mem,
7149                                 enum kvm_mr_change change)
7150 {
7151         /*
7152          * Only private memory slots need to be mapped here since
7153          * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7154          */
7155         if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7156                 unsigned long userspace_addr;
7157
7158                 /*
7159                  * MAP_SHARED to prevent internal slot pages from being moved
7160                  * by fork()/COW.
7161                  */
7162                 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7163                                          PROT_READ | PROT_WRITE,
7164                                          MAP_SHARED | MAP_ANONYMOUS, 0);
7165
7166                 if (IS_ERR((void *)userspace_addr))
7167                         return PTR_ERR((void *)userspace_addr);
7168
7169                 memslot->userspace_addr = userspace_addr;
7170         }
7171
7172         return 0;
7173 }
7174
7175 void kvm_arch_commit_memory_region(struct kvm *kvm,
7176                                 struct kvm_userspace_memory_region *mem,
7177                                 const struct kvm_memory_slot *old,
7178                                 enum kvm_mr_change change)
7179 {
7180
7181         int nr_mmu_pages = 0;
7182
7183         if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7184                 int ret;
7185
7186                 ret = vm_munmap(old->userspace_addr,
7187                                 old->npages * PAGE_SIZE);
7188                 if (ret < 0)
7189                         printk(KERN_WARNING
7190                                "kvm_vm_ioctl_set_memory_region: "
7191                                "failed to munmap memory\n");
7192         }
7193
7194         if (!kvm->arch.n_requested_mmu_pages)
7195                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7196
7197         if (nr_mmu_pages)
7198                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7199         /*
7200          * Write protect all pages for dirty logging.
7201          * Existing largepage mappings are destroyed here and new ones will
7202          * not be created until the end of the logging.
7203          */
7204         if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7205                 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7206 }
7207
7208 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7209 {
7210         kvm_mmu_invalidate_zap_all_pages(kvm);
7211 }
7212
7213 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7214                                    struct kvm_memory_slot *slot)
7215 {
7216         kvm_mmu_invalidate_zap_all_pages(kvm);
7217 }
7218
7219 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7220 {
7221         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7222                 !vcpu->arch.apf.halted)
7223                 || !list_empty_careful(&vcpu->async_pf.done)
7224                 || kvm_apic_has_events(vcpu)
7225                 || vcpu->arch.pv.pv_unhalted
7226                 || atomic_read(&vcpu->arch.nmi_queued) ||
7227                 (kvm_arch_interrupt_allowed(vcpu) &&
7228                  kvm_cpu_has_interrupt(vcpu));
7229 }
7230
7231 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7232 {
7233         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7234 }
7235
7236 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7237 {
7238         return kvm_x86_ops->interrupt_allowed(vcpu);
7239 }
7240
7241 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7242 {
7243         unsigned long current_rip = kvm_rip_read(vcpu) +
7244                 get_segment_base(vcpu, VCPU_SREG_CS);
7245
7246         return current_rip == linear_rip;
7247 }
7248 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7249
7250 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7251 {
7252         unsigned long rflags;
7253
7254         rflags = kvm_x86_ops->get_rflags(vcpu);
7255         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7256                 rflags &= ~X86_EFLAGS_TF;
7257         return rflags;
7258 }
7259 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7260
7261 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7262 {
7263         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7264             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7265                 rflags |= X86_EFLAGS_TF;
7266         kvm_x86_ops->set_rflags(vcpu, rflags);
7267         kvm_make_request(KVM_REQ_EVENT, vcpu);
7268 }
7269 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7270
7271 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7272 {
7273         int r;
7274
7275         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7276               work->wakeup_all)
7277                 return;
7278
7279         r = kvm_mmu_reload(vcpu);
7280         if (unlikely(r))
7281                 return;
7282
7283         if (!vcpu->arch.mmu.direct_map &&
7284               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7285                 return;
7286
7287         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7288 }
7289
7290 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7291 {
7292         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7293 }
7294
7295 static inline u32 kvm_async_pf_next_probe(u32 key)
7296 {
7297         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7298 }
7299
7300 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7301 {
7302         u32 key = kvm_async_pf_hash_fn(gfn);
7303
7304         while (vcpu->arch.apf.gfns[key] != ~0)
7305                 key = kvm_async_pf_next_probe(key);
7306
7307         vcpu->arch.apf.gfns[key] = gfn;
7308 }
7309
7310 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7311 {
7312         int i;
7313         u32 key = kvm_async_pf_hash_fn(gfn);
7314
7315         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7316                      (vcpu->arch.apf.gfns[key] != gfn &&
7317                       vcpu->arch.apf.gfns[key] != ~0); i++)
7318                 key = kvm_async_pf_next_probe(key);
7319
7320         return key;
7321 }
7322
7323 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7324 {
7325         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7326 }
7327
7328 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7329 {
7330         u32 i, j, k;
7331
7332         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7333         while (true) {
7334                 vcpu->arch.apf.gfns[i] = ~0;
7335                 do {
7336                         j = kvm_async_pf_next_probe(j);
7337                         if (vcpu->arch.apf.gfns[j] == ~0)
7338                                 return;
7339                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7340                         /*
7341                          * k lies cyclically in ]i,j]
7342                          * |    i.k.j |
7343                          * |....j i.k.| or  |.k..j i...|
7344                          */
7345                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7346                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7347                 i = j;
7348         }
7349 }
7350
7351 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7352 {
7353
7354         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7355                                       sizeof(val));
7356 }
7357
7358 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7359                                      struct kvm_async_pf *work)
7360 {
7361         struct x86_exception fault;
7362
7363         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7364         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7365
7366         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7367             (vcpu->arch.apf.send_user_only &&
7368              kvm_x86_ops->get_cpl(vcpu) == 0))
7369                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7370         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7371                 fault.vector = PF_VECTOR;
7372                 fault.error_code_valid = true;
7373                 fault.error_code = 0;
7374                 fault.nested_page_fault = false;
7375                 fault.address = work->arch.token;
7376                 kvm_inject_page_fault(vcpu, &fault);
7377         }
7378 }
7379
7380 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7381                                  struct kvm_async_pf *work)
7382 {
7383         struct x86_exception fault;
7384
7385         trace_kvm_async_pf_ready(work->arch.token, work->gva);
7386         if (work->wakeup_all)
7387                 work->arch.token = ~0; /* broadcast wakeup */
7388         else
7389                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7390
7391         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7392             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7393                 fault.vector = PF_VECTOR;
7394                 fault.error_code_valid = true;
7395                 fault.error_code = 0;
7396                 fault.nested_page_fault = false;
7397                 fault.address = work->arch.token;
7398                 kvm_inject_page_fault(vcpu, &fault);
7399         }
7400         vcpu->arch.apf.halted = false;
7401         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7402 }
7403
7404 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7405 {
7406         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7407                 return true;
7408         else
7409                 return !kvm_event_needs_reinjection(vcpu) &&
7410                         kvm_x86_ops->interrupt_allowed(vcpu);
7411 }
7412
7413 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
7414 {
7415         atomic_inc(&kvm->arch.noncoherent_dma_count);
7416 }
7417 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
7418
7419 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
7420 {
7421         atomic_dec(&kvm->arch.noncoherent_dma_count);
7422 }
7423 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
7424
7425 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
7426 {
7427         return atomic_read(&kvm->arch.noncoherent_dma_count);
7428 }
7429 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
7430
7431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7436 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7437 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7438 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7439 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7440 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7441 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7442 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7443 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);