Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[linux-drm-fsl-dcu.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23 #include "cpuid.h"
24 #include "pmu.h"
25
26 #include <linux/module.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/kernel.h>
29 #include <linux/vmalloc.h>
30 #include <linux/highmem.h>
31 #include <linux/sched.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34
35 #include <asm/perf_event.h>
36 #include <asm/tlbflush.h>
37 #include <asm/desc.h>
38 #include <asm/debugreg.h>
39 #include <asm/kvm_para.h>
40
41 #include <asm/virtext.h>
42 #include "trace.h"
43
44 #define __ex(x) __kvm_handle_fault_on_reboot(x)
45
46 MODULE_AUTHOR("Qumranet");
47 MODULE_LICENSE("GPL");
48
49 static const struct x86_cpu_id svm_cpu_id[] = {
50         X86_FEATURE_MATCH(X86_FEATURE_SVM),
51         {}
52 };
53 MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
54
55 #define IOPM_ALLOC_ORDER 2
56 #define MSRPM_ALLOC_ORDER 1
57
58 #define SEG_TYPE_LDT 2
59 #define SEG_TYPE_BUSY_TSS16 3
60
61 #define SVM_FEATURE_NPT            (1 <<  0)
62 #define SVM_FEATURE_LBRV           (1 <<  1)
63 #define SVM_FEATURE_SVML           (1 <<  2)
64 #define SVM_FEATURE_NRIP           (1 <<  3)
65 #define SVM_FEATURE_TSC_RATE       (1 <<  4)
66 #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
67 #define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
68 #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
69 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
70
71 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
72 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
73 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
74
75 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
76
77 #define TSC_RATIO_RSVD          0xffffff0000000000ULL
78 #define TSC_RATIO_MIN           0x0000000000000001ULL
79 #define TSC_RATIO_MAX           0x000000ffffffffffULL
80
81 static bool erratum_383_found __read_mostly;
82
83 static const u32 host_save_user_msrs[] = {
84 #ifdef CONFIG_X86_64
85         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
86         MSR_FS_BASE,
87 #endif
88         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
89 };
90
91 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
92
93 struct kvm_vcpu;
94
95 struct nested_state {
96         struct vmcb *hsave;
97         u64 hsave_msr;
98         u64 vm_cr_msr;
99         u64 vmcb;
100
101         /* These are the merged vectors */
102         u32 *msrpm;
103
104         /* gpa pointers to the real vectors */
105         u64 vmcb_msrpm;
106         u64 vmcb_iopm;
107
108         /* A VMEXIT is required but not yet emulated */
109         bool exit_required;
110
111         /* cache for intercepts of the guest */
112         u32 intercept_cr;
113         u32 intercept_dr;
114         u32 intercept_exceptions;
115         u64 intercept;
116
117         /* Nested Paging related state */
118         u64 nested_cr3;
119 };
120
121 #define MSRPM_OFFSETS   16
122 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
123
124 /*
125  * Set osvw_len to higher value when updated Revision Guides
126  * are published and we know what the new status bits are
127  */
128 static uint64_t osvw_len = 4, osvw_status;
129
130 struct vcpu_svm {
131         struct kvm_vcpu vcpu;
132         struct vmcb *vmcb;
133         unsigned long vmcb_pa;
134         struct svm_cpu_data *svm_data;
135         uint64_t asid_generation;
136         uint64_t sysenter_esp;
137         uint64_t sysenter_eip;
138
139         u64 next_rip;
140
141         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
142         struct {
143                 u16 fs;
144                 u16 gs;
145                 u16 ldt;
146                 u64 gs_base;
147         } host;
148
149         u32 *msrpm;
150
151         ulong nmi_iret_rip;
152
153         struct nested_state nested;
154
155         bool nmi_singlestep;
156
157         unsigned int3_injected;
158         unsigned long int3_rip;
159         u32 apf_reason;
160
161         u64  tsc_ratio;
162 };
163
164 static DEFINE_PER_CPU(u64, current_tsc_ratio);
165 #define TSC_RATIO_DEFAULT       0x0100000000ULL
166
167 #define MSR_INVALID                     0xffffffffU
168
169 static const struct svm_direct_access_msrs {
170         u32 index;   /* Index of the MSR */
171         bool always; /* True if intercept is always on */
172 } direct_access_msrs[] = {
173         { .index = MSR_STAR,                            .always = true  },
174         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
175 #ifdef CONFIG_X86_64
176         { .index = MSR_GS_BASE,                         .always = true  },
177         { .index = MSR_FS_BASE,                         .always = true  },
178         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
179         { .index = MSR_LSTAR,                           .always = true  },
180         { .index = MSR_CSTAR,                           .always = true  },
181         { .index = MSR_SYSCALL_MASK,                    .always = true  },
182 #endif
183         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
184         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
185         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
186         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
187         { .index = MSR_INVALID,                         .always = false },
188 };
189
190 /* enable NPT for AMD64 and X86 with PAE */
191 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
192 static bool npt_enabled = true;
193 #else
194 static bool npt_enabled;
195 #endif
196
197 /* allow nested paging (virtualized MMU) for all guests */
198 static int npt = true;
199 module_param(npt, int, S_IRUGO);
200
201 /* allow nested virtualization in KVM/SVM */
202 static int nested = true;
203 module_param(nested, int, S_IRUGO);
204
205 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
206 static void svm_complete_interrupts(struct vcpu_svm *svm);
207
208 static int nested_svm_exit_handled(struct vcpu_svm *svm);
209 static int nested_svm_intercept(struct vcpu_svm *svm);
210 static int nested_svm_vmexit(struct vcpu_svm *svm);
211 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
212                                       bool has_error_code, u32 error_code);
213 static u64 __scale_tsc(u64 ratio, u64 tsc);
214
215 enum {
216         VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
217                             pause filter count */
218         VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
219         VMCB_ASID,       /* ASID */
220         VMCB_INTR,       /* int_ctl, int_vector */
221         VMCB_NPT,        /* npt_en, nCR3, gPAT */
222         VMCB_CR,         /* CR0, CR3, CR4, EFER */
223         VMCB_DR,         /* DR6, DR7 */
224         VMCB_DT,         /* GDT, IDT */
225         VMCB_SEG,        /* CS, DS, SS, ES, CPL */
226         VMCB_CR2,        /* CR2 only */
227         VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
228         VMCB_DIRTY_MAX,
229 };
230
231 /* TPR and CR2 are always written before VMRUN */
232 #define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
233
234 static inline void mark_all_dirty(struct vmcb *vmcb)
235 {
236         vmcb->control.clean = 0;
237 }
238
239 static inline void mark_all_clean(struct vmcb *vmcb)
240 {
241         vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
242                                & ~VMCB_ALWAYS_DIRTY_MASK;
243 }
244
245 static inline void mark_dirty(struct vmcb *vmcb, int bit)
246 {
247         vmcb->control.clean &= ~(1 << bit);
248 }
249
250 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
251 {
252         return container_of(vcpu, struct vcpu_svm, vcpu);
253 }
254
255 static void recalc_intercepts(struct vcpu_svm *svm)
256 {
257         struct vmcb_control_area *c, *h;
258         struct nested_state *g;
259
260         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
261
262         if (!is_guest_mode(&svm->vcpu))
263                 return;
264
265         c = &svm->vmcb->control;
266         h = &svm->nested.hsave->control;
267         g = &svm->nested;
268
269         c->intercept_cr = h->intercept_cr | g->intercept_cr;
270         c->intercept_dr = h->intercept_dr | g->intercept_dr;
271         c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
272         c->intercept = h->intercept | g->intercept;
273 }
274
275 static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
276 {
277         if (is_guest_mode(&svm->vcpu))
278                 return svm->nested.hsave;
279         else
280                 return svm->vmcb;
281 }
282
283 static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
284 {
285         struct vmcb *vmcb = get_host_vmcb(svm);
286
287         vmcb->control.intercept_cr |= (1U << bit);
288
289         recalc_intercepts(svm);
290 }
291
292 static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
293 {
294         struct vmcb *vmcb = get_host_vmcb(svm);
295
296         vmcb->control.intercept_cr &= ~(1U << bit);
297
298         recalc_intercepts(svm);
299 }
300
301 static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
302 {
303         struct vmcb *vmcb = get_host_vmcb(svm);
304
305         return vmcb->control.intercept_cr & (1U << bit);
306 }
307
308 static inline void set_dr_intercepts(struct vcpu_svm *svm)
309 {
310         struct vmcb *vmcb = get_host_vmcb(svm);
311
312         vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
313                 | (1 << INTERCEPT_DR1_READ)
314                 | (1 << INTERCEPT_DR2_READ)
315                 | (1 << INTERCEPT_DR3_READ)
316                 | (1 << INTERCEPT_DR4_READ)
317                 | (1 << INTERCEPT_DR5_READ)
318                 | (1 << INTERCEPT_DR6_READ)
319                 | (1 << INTERCEPT_DR7_READ)
320                 | (1 << INTERCEPT_DR0_WRITE)
321                 | (1 << INTERCEPT_DR1_WRITE)
322                 | (1 << INTERCEPT_DR2_WRITE)
323                 | (1 << INTERCEPT_DR3_WRITE)
324                 | (1 << INTERCEPT_DR4_WRITE)
325                 | (1 << INTERCEPT_DR5_WRITE)
326                 | (1 << INTERCEPT_DR6_WRITE)
327                 | (1 << INTERCEPT_DR7_WRITE);
328
329         recalc_intercepts(svm);
330 }
331
332 static inline void clr_dr_intercepts(struct vcpu_svm *svm)
333 {
334         struct vmcb *vmcb = get_host_vmcb(svm);
335
336         vmcb->control.intercept_dr = 0;
337
338         recalc_intercepts(svm);
339 }
340
341 static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
342 {
343         struct vmcb *vmcb = get_host_vmcb(svm);
344
345         vmcb->control.intercept_exceptions |= (1U << bit);
346
347         recalc_intercepts(svm);
348 }
349
350 static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
351 {
352         struct vmcb *vmcb = get_host_vmcb(svm);
353
354         vmcb->control.intercept_exceptions &= ~(1U << bit);
355
356         recalc_intercepts(svm);
357 }
358
359 static inline void set_intercept(struct vcpu_svm *svm, int bit)
360 {
361         struct vmcb *vmcb = get_host_vmcb(svm);
362
363         vmcb->control.intercept |= (1ULL << bit);
364
365         recalc_intercepts(svm);
366 }
367
368 static inline void clr_intercept(struct vcpu_svm *svm, int bit)
369 {
370         struct vmcb *vmcb = get_host_vmcb(svm);
371
372         vmcb->control.intercept &= ~(1ULL << bit);
373
374         recalc_intercepts(svm);
375 }
376
377 static inline void enable_gif(struct vcpu_svm *svm)
378 {
379         svm->vcpu.arch.hflags |= HF_GIF_MASK;
380 }
381
382 static inline void disable_gif(struct vcpu_svm *svm)
383 {
384         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
385 }
386
387 static inline bool gif_set(struct vcpu_svm *svm)
388 {
389         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
390 }
391
392 static unsigned long iopm_base;
393
394 struct kvm_ldttss_desc {
395         u16 limit0;
396         u16 base0;
397         unsigned base1:8, type:5, dpl:2, p:1;
398         unsigned limit1:4, zero0:3, g:1, base2:8;
399         u32 base3;
400         u32 zero1;
401 } __attribute__((packed));
402
403 struct svm_cpu_data {
404         int cpu;
405
406         u64 asid_generation;
407         u32 max_asid;
408         u32 next_asid;
409         struct kvm_ldttss_desc *tss_desc;
410
411         struct page *save_area;
412 };
413
414 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
415
416 struct svm_init_data {
417         int cpu;
418         int r;
419 };
420
421 static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
422
423 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
424 #define MSRS_RANGE_SIZE 2048
425 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
426
427 static u32 svm_msrpm_offset(u32 msr)
428 {
429         u32 offset;
430         int i;
431
432         for (i = 0; i < NUM_MSR_MAPS; i++) {
433                 if (msr < msrpm_ranges[i] ||
434                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
435                         continue;
436
437                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
438                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
439
440                 /* Now we have the u8 offset - but need the u32 offset */
441                 return offset / 4;
442         }
443
444         /* MSR not in any range */
445         return MSR_INVALID;
446 }
447
448 #define MAX_INST_SIZE 15
449
450 static inline void clgi(void)
451 {
452         asm volatile (__ex(SVM_CLGI));
453 }
454
455 static inline void stgi(void)
456 {
457         asm volatile (__ex(SVM_STGI));
458 }
459
460 static inline void invlpga(unsigned long addr, u32 asid)
461 {
462         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
463 }
464
465 static int get_npt_level(void)
466 {
467 #ifdef CONFIG_X86_64
468         return PT64_ROOT_LEVEL;
469 #else
470         return PT32E_ROOT_LEVEL;
471 #endif
472 }
473
474 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
475 {
476         vcpu->arch.efer = efer;
477         if (!npt_enabled && !(efer & EFER_LMA))
478                 efer &= ~EFER_LME;
479
480         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
481         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
482 }
483
484 static int is_external_interrupt(u32 info)
485 {
486         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
487         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
488 }
489
490 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
491 {
492         struct vcpu_svm *svm = to_svm(vcpu);
493         u32 ret = 0;
494
495         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
496                 ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
497         return ret;
498 }
499
500 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
501 {
502         struct vcpu_svm *svm = to_svm(vcpu);
503
504         if (mask == 0)
505                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
506         else
507                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
508
509 }
510
511 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
512 {
513         struct vcpu_svm *svm = to_svm(vcpu);
514
515         if (svm->vmcb->control.next_rip != 0) {
516                 WARN_ON(!static_cpu_has(X86_FEATURE_NRIPS));
517                 svm->next_rip = svm->vmcb->control.next_rip;
518         }
519
520         if (!svm->next_rip) {
521                 if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
522                                 EMULATE_DONE)
523                         printk(KERN_DEBUG "%s: NOP\n", __func__);
524                 return;
525         }
526         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
527                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
528                        __func__, kvm_rip_read(vcpu), svm->next_rip);
529
530         kvm_rip_write(vcpu, svm->next_rip);
531         svm_set_interrupt_shadow(vcpu, 0);
532 }
533
534 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
535                                 bool has_error_code, u32 error_code,
536                                 bool reinject)
537 {
538         struct vcpu_svm *svm = to_svm(vcpu);
539
540         /*
541          * If we are within a nested VM we'd better #VMEXIT and let the guest
542          * handle the exception
543          */
544         if (!reinject &&
545             nested_svm_check_exception(svm, nr, has_error_code, error_code))
546                 return;
547
548         if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
549                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
550
551                 /*
552                  * For guest debugging where we have to reinject #BP if some
553                  * INT3 is guest-owned:
554                  * Emulate nRIP by moving RIP forward. Will fail if injection
555                  * raises a fault that is not intercepted. Still better than
556                  * failing in all cases.
557                  */
558                 skip_emulated_instruction(&svm->vcpu);
559                 rip = kvm_rip_read(&svm->vcpu);
560                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
561                 svm->int3_injected = rip - old_rip;
562         }
563
564         svm->vmcb->control.event_inj = nr
565                 | SVM_EVTINJ_VALID
566                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
567                 | SVM_EVTINJ_TYPE_EXEPT;
568         svm->vmcb->control.event_inj_err = error_code;
569 }
570
571 static void svm_init_erratum_383(void)
572 {
573         u32 low, high;
574         int err;
575         u64 val;
576
577         if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
578                 return;
579
580         /* Use _safe variants to not break nested virtualization */
581         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
582         if (err)
583                 return;
584
585         val |= (1ULL << 47);
586
587         low  = lower_32_bits(val);
588         high = upper_32_bits(val);
589
590         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
591
592         erratum_383_found = true;
593 }
594
595 static void svm_init_osvw(struct kvm_vcpu *vcpu)
596 {
597         /*
598          * Guests should see errata 400 and 415 as fixed (assuming that
599          * HLT and IO instructions are intercepted).
600          */
601         vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
602         vcpu->arch.osvw.status = osvw_status & ~(6ULL);
603
604         /*
605          * By increasing VCPU's osvw.length to 3 we are telling the guest that
606          * all osvw.status bits inside that length, including bit 0 (which is
607          * reserved for erratum 298), are valid. However, if host processor's
608          * osvw_len is 0 then osvw_status[0] carries no information. We need to
609          * be conservative here and therefore we tell the guest that erratum 298
610          * is present (because we really don't know).
611          */
612         if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
613                 vcpu->arch.osvw.status |= 1;
614 }
615
616 static int has_svm(void)
617 {
618         const char *msg;
619
620         if (!cpu_has_svm(&msg)) {
621                 printk(KERN_INFO "has_svm: %s\n", msg);
622                 return 0;
623         }
624
625         return 1;
626 }
627
628 static void svm_hardware_disable(void)
629 {
630         /* Make sure we clean up behind us */
631         if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
632                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
633
634         cpu_svm_disable();
635
636         amd_pmu_disable_virt();
637 }
638
639 static int svm_hardware_enable(void)
640 {
641
642         struct svm_cpu_data *sd;
643         uint64_t efer;
644         struct desc_ptr gdt_descr;
645         struct desc_struct *gdt;
646         int me = raw_smp_processor_id();
647
648         rdmsrl(MSR_EFER, efer);
649         if (efer & EFER_SVME)
650                 return -EBUSY;
651
652         if (!has_svm()) {
653                 pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
654                 return -EINVAL;
655         }
656         sd = per_cpu(svm_data, me);
657         if (!sd) {
658                 pr_err("%s: svm_data is NULL on %d\n", __func__, me);
659                 return -EINVAL;
660         }
661
662         sd->asid_generation = 1;
663         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
664         sd->next_asid = sd->max_asid + 1;
665
666         native_store_gdt(&gdt_descr);
667         gdt = (struct desc_struct *)gdt_descr.address;
668         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
669
670         wrmsrl(MSR_EFER, efer | EFER_SVME);
671
672         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
673
674         if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
675                 wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
676                 __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
677         }
678
679
680         /*
681          * Get OSVW bits.
682          *
683          * Note that it is possible to have a system with mixed processor
684          * revisions and therefore different OSVW bits. If bits are not the same
685          * on different processors then choose the worst case (i.e. if erratum
686          * is present on one processor and not on another then assume that the
687          * erratum is present everywhere).
688          */
689         if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
690                 uint64_t len, status = 0;
691                 int err;
692
693                 len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
694                 if (!err)
695                         status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
696                                                       &err);
697
698                 if (err)
699                         osvw_status = osvw_len = 0;
700                 else {
701                         if (len < osvw_len)
702                                 osvw_len = len;
703                         osvw_status |= status;
704                         osvw_status &= (1ULL << osvw_len) - 1;
705                 }
706         } else
707                 osvw_status = osvw_len = 0;
708
709         svm_init_erratum_383();
710
711         amd_pmu_enable_virt();
712
713         return 0;
714 }
715
716 static void svm_cpu_uninit(int cpu)
717 {
718         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
719
720         if (!sd)
721                 return;
722
723         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
724         __free_page(sd->save_area);
725         kfree(sd);
726 }
727
728 static int svm_cpu_init(int cpu)
729 {
730         struct svm_cpu_data *sd;
731         int r;
732
733         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
734         if (!sd)
735                 return -ENOMEM;
736         sd->cpu = cpu;
737         sd->save_area = alloc_page(GFP_KERNEL);
738         r = -ENOMEM;
739         if (!sd->save_area)
740                 goto err_1;
741
742         per_cpu(svm_data, cpu) = sd;
743
744         return 0;
745
746 err_1:
747         kfree(sd);
748         return r;
749
750 }
751
752 static bool valid_msr_intercept(u32 index)
753 {
754         int i;
755
756         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
757                 if (direct_access_msrs[i].index == index)
758                         return true;
759
760         return false;
761 }
762
763 static void set_msr_interception(u32 *msrpm, unsigned msr,
764                                  int read, int write)
765 {
766         u8 bit_read, bit_write;
767         unsigned long tmp;
768         u32 offset;
769
770         /*
771          * If this warning triggers extend the direct_access_msrs list at the
772          * beginning of the file
773          */
774         WARN_ON(!valid_msr_intercept(msr));
775
776         offset    = svm_msrpm_offset(msr);
777         bit_read  = 2 * (msr & 0x0f);
778         bit_write = 2 * (msr & 0x0f) + 1;
779         tmp       = msrpm[offset];
780
781         BUG_ON(offset == MSR_INVALID);
782
783         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
784         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
785
786         msrpm[offset] = tmp;
787 }
788
789 static void svm_vcpu_init_msrpm(u32 *msrpm)
790 {
791         int i;
792
793         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
794
795         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
796                 if (!direct_access_msrs[i].always)
797                         continue;
798
799                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
800         }
801 }
802
803 static void add_msr_offset(u32 offset)
804 {
805         int i;
806
807         for (i = 0; i < MSRPM_OFFSETS; ++i) {
808
809                 /* Offset already in list? */
810                 if (msrpm_offsets[i] == offset)
811                         return;
812
813                 /* Slot used by another offset? */
814                 if (msrpm_offsets[i] != MSR_INVALID)
815                         continue;
816
817                 /* Add offset to list */
818                 msrpm_offsets[i] = offset;
819
820                 return;
821         }
822
823         /*
824          * If this BUG triggers the msrpm_offsets table has an overflow. Just
825          * increase MSRPM_OFFSETS in this case.
826          */
827         BUG();
828 }
829
830 static void init_msrpm_offsets(void)
831 {
832         int i;
833
834         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
835
836         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
837                 u32 offset;
838
839                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
840                 BUG_ON(offset == MSR_INVALID);
841
842                 add_msr_offset(offset);
843         }
844 }
845
846 static void svm_enable_lbrv(struct vcpu_svm *svm)
847 {
848         u32 *msrpm = svm->msrpm;
849
850         svm->vmcb->control.lbr_ctl = 1;
851         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
852         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
853         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
854         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
855 }
856
857 static void svm_disable_lbrv(struct vcpu_svm *svm)
858 {
859         u32 *msrpm = svm->msrpm;
860
861         svm->vmcb->control.lbr_ctl = 0;
862         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
863         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
864         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
865         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
866 }
867
868 static __init int svm_hardware_setup(void)
869 {
870         int cpu;
871         struct page *iopm_pages;
872         void *iopm_va;
873         int r;
874
875         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
876
877         if (!iopm_pages)
878                 return -ENOMEM;
879
880         iopm_va = page_address(iopm_pages);
881         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
882         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
883
884         init_msrpm_offsets();
885
886         if (boot_cpu_has(X86_FEATURE_NX))
887                 kvm_enable_efer_bits(EFER_NX);
888
889         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
890                 kvm_enable_efer_bits(EFER_FFXSR);
891
892         if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
893                 u64 max;
894
895                 kvm_has_tsc_control = true;
896
897                 /*
898                  * Make sure the user can only configure tsc_khz values that
899                  * fit into a signed integer.
900                  * A min value is not calculated needed because it will always
901                  * be 1 on all machines and a value of 0 is used to disable
902                  * tsc-scaling for the vcpu.
903                  */
904                 max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
905
906                 kvm_max_guest_tsc_khz = max;
907         }
908
909         if (nested) {
910                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
911                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
912         }
913
914         for_each_possible_cpu(cpu) {
915                 r = svm_cpu_init(cpu);
916                 if (r)
917                         goto err;
918         }
919
920         if (!boot_cpu_has(X86_FEATURE_NPT))
921                 npt_enabled = false;
922
923         if (npt_enabled && !npt) {
924                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
925                 npt_enabled = false;
926         }
927
928         if (npt_enabled) {
929                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
930                 kvm_enable_tdp();
931         } else
932                 kvm_disable_tdp();
933
934         return 0;
935
936 err:
937         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
938         iopm_base = 0;
939         return r;
940 }
941
942 static __exit void svm_hardware_unsetup(void)
943 {
944         int cpu;
945
946         for_each_possible_cpu(cpu)
947                 svm_cpu_uninit(cpu);
948
949         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
950         iopm_base = 0;
951 }
952
953 static void init_seg(struct vmcb_seg *seg)
954 {
955         seg->selector = 0;
956         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
957                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
958         seg->limit = 0xffff;
959         seg->base = 0;
960 }
961
962 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
963 {
964         seg->selector = 0;
965         seg->attrib = SVM_SELECTOR_P_MASK | type;
966         seg->limit = 0xffff;
967         seg->base = 0;
968 }
969
970 static u64 __scale_tsc(u64 ratio, u64 tsc)
971 {
972         u64 mult, frac, _tsc;
973
974         mult  = ratio >> 32;
975         frac  = ratio & ((1ULL << 32) - 1);
976
977         _tsc  = tsc;
978         _tsc *= mult;
979         _tsc += (tsc >> 32) * frac;
980         _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
981
982         return _tsc;
983 }
984
985 static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
986 {
987         struct vcpu_svm *svm = to_svm(vcpu);
988         u64 _tsc = tsc;
989
990         if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
991                 _tsc = __scale_tsc(svm->tsc_ratio, tsc);
992
993         return _tsc;
994 }
995
996 static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
997 {
998         struct vcpu_svm *svm = to_svm(vcpu);
999         u64 ratio;
1000         u64 khz;
1001
1002         /* Guest TSC same frequency as host TSC? */
1003         if (!scale) {
1004                 svm->tsc_ratio = TSC_RATIO_DEFAULT;
1005                 return;
1006         }
1007
1008         /* TSC scaling supported? */
1009         if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
1010                 if (user_tsc_khz > tsc_khz) {
1011                         vcpu->arch.tsc_catchup = 1;
1012                         vcpu->arch.tsc_always_catchup = 1;
1013                 } else
1014                         WARN(1, "user requested TSC rate below hardware speed\n");
1015                 return;
1016         }
1017
1018         khz = user_tsc_khz;
1019
1020         /* TSC scaling required  - calculate ratio */
1021         ratio = khz << 32;
1022         do_div(ratio, tsc_khz);
1023
1024         if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1025                 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1026                                 user_tsc_khz);
1027                 return;
1028         }
1029         svm->tsc_ratio             = ratio;
1030 }
1031
1032 static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1033 {
1034         struct vcpu_svm *svm = to_svm(vcpu);
1035
1036         return svm->vmcb->control.tsc_offset;
1037 }
1038
1039 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1040 {
1041         struct vcpu_svm *svm = to_svm(vcpu);
1042         u64 g_tsc_offset = 0;
1043
1044         if (is_guest_mode(vcpu)) {
1045                 g_tsc_offset = svm->vmcb->control.tsc_offset -
1046                                svm->nested.hsave->control.tsc_offset;
1047                 svm->nested.hsave->control.tsc_offset = offset;
1048         } else
1049                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1050                                            svm->vmcb->control.tsc_offset,
1051                                            offset);
1052
1053         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1054
1055         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1056 }
1057
1058 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1059 {
1060         struct vcpu_svm *svm = to_svm(vcpu);
1061
1062         if (host) {
1063                 if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
1064                         WARN_ON(adjustment < 0);
1065                 adjustment = svm_scale_tsc(vcpu, (u64)adjustment);
1066         }
1067
1068         svm->vmcb->control.tsc_offset += adjustment;
1069         if (is_guest_mode(vcpu))
1070                 svm->nested.hsave->control.tsc_offset += adjustment;
1071         else
1072                 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1073                                      svm->vmcb->control.tsc_offset - adjustment,
1074                                      svm->vmcb->control.tsc_offset);
1075
1076         mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1077 }
1078
1079 static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1080 {
1081         u64 tsc;
1082
1083         tsc = svm_scale_tsc(vcpu, native_read_tsc());
1084
1085         return target_tsc - tsc;
1086 }
1087
1088 static void init_vmcb(struct vcpu_svm *svm, bool init_event)
1089 {
1090         struct vmcb_control_area *control = &svm->vmcb->control;
1091         struct vmcb_save_area *save = &svm->vmcb->save;
1092
1093         svm->vcpu.fpu_active = 1;
1094         svm->vcpu.arch.hflags = 0;
1095
1096         set_cr_intercept(svm, INTERCEPT_CR0_READ);
1097         set_cr_intercept(svm, INTERCEPT_CR3_READ);
1098         set_cr_intercept(svm, INTERCEPT_CR4_READ);
1099         set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1100         set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1101         set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1102         set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1103
1104         set_dr_intercepts(svm);
1105
1106         set_exception_intercept(svm, PF_VECTOR);
1107         set_exception_intercept(svm, UD_VECTOR);
1108         set_exception_intercept(svm, MC_VECTOR);
1109
1110         set_intercept(svm, INTERCEPT_INTR);
1111         set_intercept(svm, INTERCEPT_NMI);
1112         set_intercept(svm, INTERCEPT_SMI);
1113         set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1114         set_intercept(svm, INTERCEPT_RDPMC);
1115         set_intercept(svm, INTERCEPT_CPUID);
1116         set_intercept(svm, INTERCEPT_INVD);
1117         set_intercept(svm, INTERCEPT_HLT);
1118         set_intercept(svm, INTERCEPT_INVLPG);
1119         set_intercept(svm, INTERCEPT_INVLPGA);
1120         set_intercept(svm, INTERCEPT_IOIO_PROT);
1121         set_intercept(svm, INTERCEPT_MSR_PROT);
1122         set_intercept(svm, INTERCEPT_TASK_SWITCH);
1123         set_intercept(svm, INTERCEPT_SHUTDOWN);
1124         set_intercept(svm, INTERCEPT_VMRUN);
1125         set_intercept(svm, INTERCEPT_VMMCALL);
1126         set_intercept(svm, INTERCEPT_VMLOAD);
1127         set_intercept(svm, INTERCEPT_VMSAVE);
1128         set_intercept(svm, INTERCEPT_STGI);
1129         set_intercept(svm, INTERCEPT_CLGI);
1130         set_intercept(svm, INTERCEPT_SKINIT);
1131         set_intercept(svm, INTERCEPT_WBINVD);
1132         set_intercept(svm, INTERCEPT_MONITOR);
1133         set_intercept(svm, INTERCEPT_MWAIT);
1134         set_intercept(svm, INTERCEPT_XSETBV);
1135
1136         control->iopm_base_pa = iopm_base;
1137         control->msrpm_base_pa = __pa(svm->msrpm);
1138         control->int_ctl = V_INTR_MASKING_MASK;
1139
1140         init_seg(&save->es);
1141         init_seg(&save->ss);
1142         init_seg(&save->ds);
1143         init_seg(&save->fs);
1144         init_seg(&save->gs);
1145
1146         save->cs.selector = 0xf000;
1147         save->cs.base = 0xffff0000;
1148         /* Executable/Readable Code Segment */
1149         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1150                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1151         save->cs.limit = 0xffff;
1152
1153         save->gdtr.limit = 0xffff;
1154         save->idtr.limit = 0xffff;
1155
1156         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1157         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1158
1159         if (!init_event)
1160                 svm_set_efer(&svm->vcpu, 0);
1161         save->dr6 = 0xffff0ff0;
1162         kvm_set_rflags(&svm->vcpu, 2);
1163         save->rip = 0x0000fff0;
1164         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1165
1166         /*
1167          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1168          * It also updates the guest-visible cr0 value.
1169          */
1170         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1171
1172         save->cr4 = X86_CR4_PAE;
1173         /* rdx = ?? */
1174
1175         if (npt_enabled) {
1176                 /* Setup VMCB for Nested Paging */
1177                 control->nested_ctl = 1;
1178                 clr_intercept(svm, INTERCEPT_INVLPG);
1179                 clr_exception_intercept(svm, PF_VECTOR);
1180                 clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1181                 clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1182                 save->g_pat = svm->vcpu.arch.pat;
1183                 save->cr3 = 0;
1184                 save->cr4 = 0;
1185         }
1186         svm->asid_generation = 0;
1187
1188         svm->nested.vmcb = 0;
1189         svm->vcpu.arch.hflags = 0;
1190
1191         if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1192                 control->pause_filter_count = 3000;
1193                 set_intercept(svm, INTERCEPT_PAUSE);
1194         }
1195
1196         mark_all_dirty(svm->vmcb);
1197
1198         enable_gif(svm);
1199 }
1200
1201 static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1202 {
1203         struct vcpu_svm *svm = to_svm(vcpu);
1204         u32 dummy;
1205         u32 eax = 1;
1206
1207         if (!init_event) {
1208                 svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
1209                                            MSR_IA32_APICBASE_ENABLE;
1210                 if (kvm_vcpu_is_reset_bsp(&svm->vcpu))
1211                         svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1212         }
1213         init_vmcb(svm, init_event);
1214
1215         kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1216         kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1217 }
1218
1219 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1220 {
1221         struct vcpu_svm *svm;
1222         struct page *page;
1223         struct page *msrpm_pages;
1224         struct page *hsave_page;
1225         struct page *nested_msrpm_pages;
1226         int err;
1227
1228         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1229         if (!svm) {
1230                 err = -ENOMEM;
1231                 goto out;
1232         }
1233
1234         svm->tsc_ratio = TSC_RATIO_DEFAULT;
1235
1236         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1237         if (err)
1238                 goto free_svm;
1239
1240         err = -ENOMEM;
1241         page = alloc_page(GFP_KERNEL);
1242         if (!page)
1243                 goto uninit;
1244
1245         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1246         if (!msrpm_pages)
1247                 goto free_page1;
1248
1249         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1250         if (!nested_msrpm_pages)
1251                 goto free_page2;
1252
1253         hsave_page = alloc_page(GFP_KERNEL);
1254         if (!hsave_page)
1255                 goto free_page3;
1256
1257         svm->nested.hsave = page_address(hsave_page);
1258
1259         svm->msrpm = page_address(msrpm_pages);
1260         svm_vcpu_init_msrpm(svm->msrpm);
1261
1262         svm->nested.msrpm = page_address(nested_msrpm_pages);
1263         svm_vcpu_init_msrpm(svm->nested.msrpm);
1264
1265         svm->vmcb = page_address(page);
1266         clear_page(svm->vmcb);
1267         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1268         svm->asid_generation = 0;
1269         init_vmcb(svm, false);
1270
1271         svm_init_osvw(&svm->vcpu);
1272
1273         return &svm->vcpu;
1274
1275 free_page3:
1276         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1277 free_page2:
1278         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1279 free_page1:
1280         __free_page(page);
1281 uninit:
1282         kvm_vcpu_uninit(&svm->vcpu);
1283 free_svm:
1284         kmem_cache_free(kvm_vcpu_cache, svm);
1285 out:
1286         return ERR_PTR(err);
1287 }
1288
1289 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1290 {
1291         struct vcpu_svm *svm = to_svm(vcpu);
1292
1293         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1294         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1295         __free_page(virt_to_page(svm->nested.hsave));
1296         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1297         kvm_vcpu_uninit(vcpu);
1298         kmem_cache_free(kvm_vcpu_cache, svm);
1299 }
1300
1301 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303         struct vcpu_svm *svm = to_svm(vcpu);
1304         int i;
1305
1306         if (unlikely(cpu != vcpu->cpu)) {
1307                 svm->asid_generation = 0;
1308                 mark_all_dirty(svm->vmcb);
1309         }
1310
1311 #ifdef CONFIG_X86_64
1312         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1313 #endif
1314         savesegment(fs, svm->host.fs);
1315         savesegment(gs, svm->host.gs);
1316         svm->host.ldt = kvm_read_ldt();
1317
1318         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1319                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1320
1321         if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1322             svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
1323                 __this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
1324                 wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1325         }
1326 }
1327
1328 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1329 {
1330         struct vcpu_svm *svm = to_svm(vcpu);
1331         int i;
1332
1333         ++vcpu->stat.host_state_reload;
1334         kvm_load_ldt(svm->host.ldt);
1335 #ifdef CONFIG_X86_64
1336         loadsegment(fs, svm->host.fs);
1337         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1338         load_gs_index(svm->host.gs);
1339 #else
1340 #ifdef CONFIG_X86_32_LAZY_GS
1341         loadsegment(gs, svm->host.gs);
1342 #endif
1343 #endif
1344         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1345                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1346 }
1347
1348 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1349 {
1350         return to_svm(vcpu)->vmcb->save.rflags;
1351 }
1352
1353 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1354 {
1355        /*
1356         * Any change of EFLAGS.VM is accompained by a reload of SS
1357         * (caused by either a task switch or an inter-privilege IRET),
1358         * so we do not need to update the CPL here.
1359         */
1360         to_svm(vcpu)->vmcb->save.rflags = rflags;
1361 }
1362
1363 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1364 {
1365         switch (reg) {
1366         case VCPU_EXREG_PDPTR:
1367                 BUG_ON(!npt_enabled);
1368                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1369                 break;
1370         default:
1371                 BUG();
1372         }
1373 }
1374
1375 static void svm_set_vintr(struct vcpu_svm *svm)
1376 {
1377         set_intercept(svm, INTERCEPT_VINTR);
1378 }
1379
1380 static void svm_clear_vintr(struct vcpu_svm *svm)
1381 {
1382         clr_intercept(svm, INTERCEPT_VINTR);
1383 }
1384
1385 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1386 {
1387         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1388
1389         switch (seg) {
1390         case VCPU_SREG_CS: return &save->cs;
1391         case VCPU_SREG_DS: return &save->ds;
1392         case VCPU_SREG_ES: return &save->es;
1393         case VCPU_SREG_FS: return &save->fs;
1394         case VCPU_SREG_GS: return &save->gs;
1395         case VCPU_SREG_SS: return &save->ss;
1396         case VCPU_SREG_TR: return &save->tr;
1397         case VCPU_SREG_LDTR: return &save->ldtr;
1398         }
1399         BUG();
1400         return NULL;
1401 }
1402
1403 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1404 {
1405         struct vmcb_seg *s = svm_seg(vcpu, seg);
1406
1407         return s->base;
1408 }
1409
1410 static void svm_get_segment(struct kvm_vcpu *vcpu,
1411                             struct kvm_segment *var, int seg)
1412 {
1413         struct vmcb_seg *s = svm_seg(vcpu, seg);
1414
1415         var->base = s->base;
1416         var->limit = s->limit;
1417         var->selector = s->selector;
1418         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1419         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1420         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1421         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1422         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1423         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1424         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1425
1426         /*
1427          * AMD CPUs circa 2014 track the G bit for all segments except CS.
1428          * However, the SVM spec states that the G bit is not observed by the
1429          * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1430          * So let's synthesize a legal G bit for all segments, this helps
1431          * running KVM nested. It also helps cross-vendor migration, because
1432          * Intel's vmentry has a check on the 'G' bit.
1433          */
1434         var->g = s->limit > 0xfffff;
1435
1436         /*
1437          * AMD's VMCB does not have an explicit unusable field, so emulate it
1438          * for cross vendor migration purposes by "not present"
1439          */
1440         var->unusable = !var->present || (var->type == 0);
1441
1442         switch (seg) {
1443         case VCPU_SREG_TR:
1444                 /*
1445                  * Work around a bug where the busy flag in the tr selector
1446                  * isn't exposed
1447                  */
1448                 var->type |= 0x2;
1449                 break;
1450         case VCPU_SREG_DS:
1451         case VCPU_SREG_ES:
1452         case VCPU_SREG_FS:
1453         case VCPU_SREG_GS:
1454                 /*
1455                  * The accessed bit must always be set in the segment
1456                  * descriptor cache, although it can be cleared in the
1457                  * descriptor, the cached bit always remains at 1. Since
1458                  * Intel has a check on this, set it here to support
1459                  * cross-vendor migration.
1460                  */
1461                 if (!var->unusable)
1462                         var->type |= 0x1;
1463                 break;
1464         case VCPU_SREG_SS:
1465                 /*
1466                  * On AMD CPUs sometimes the DB bit in the segment
1467                  * descriptor is left as 1, although the whole segment has
1468                  * been made unusable. Clear it here to pass an Intel VMX
1469                  * entry check when cross vendor migrating.
1470                  */
1471                 if (var->unusable)
1472                         var->db = 0;
1473                 var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1474                 break;
1475         }
1476 }
1477
1478 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1479 {
1480         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1481
1482         return save->cpl;
1483 }
1484
1485 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1486 {
1487         struct vcpu_svm *svm = to_svm(vcpu);
1488
1489         dt->size = svm->vmcb->save.idtr.limit;
1490         dt->address = svm->vmcb->save.idtr.base;
1491 }
1492
1493 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1494 {
1495         struct vcpu_svm *svm = to_svm(vcpu);
1496
1497         svm->vmcb->save.idtr.limit = dt->size;
1498         svm->vmcb->save.idtr.base = dt->address ;
1499         mark_dirty(svm->vmcb, VMCB_DT);
1500 }
1501
1502 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1503 {
1504         struct vcpu_svm *svm = to_svm(vcpu);
1505
1506         dt->size = svm->vmcb->save.gdtr.limit;
1507         dt->address = svm->vmcb->save.gdtr.base;
1508 }
1509
1510 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1511 {
1512         struct vcpu_svm *svm = to_svm(vcpu);
1513
1514         svm->vmcb->save.gdtr.limit = dt->size;
1515         svm->vmcb->save.gdtr.base = dt->address ;
1516         mark_dirty(svm->vmcb, VMCB_DT);
1517 }
1518
1519 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1520 {
1521 }
1522
1523 static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1524 {
1525 }
1526
1527 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1528 {
1529 }
1530
1531 static void update_cr0_intercept(struct vcpu_svm *svm)
1532 {
1533         ulong gcr0 = svm->vcpu.arch.cr0;
1534         u64 *hcr0 = &svm->vmcb->save.cr0;
1535
1536         if (!svm->vcpu.fpu_active)
1537                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1538         else
1539                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1540                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1541
1542         mark_dirty(svm->vmcb, VMCB_CR);
1543
1544         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1545                 clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1546                 clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1547         } else {
1548                 set_cr_intercept(svm, INTERCEPT_CR0_READ);
1549                 set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1550         }
1551 }
1552
1553 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1554 {
1555         struct vcpu_svm *svm = to_svm(vcpu);
1556
1557 #ifdef CONFIG_X86_64
1558         if (vcpu->arch.efer & EFER_LME) {
1559                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1560                         vcpu->arch.efer |= EFER_LMA;
1561                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1562                 }
1563
1564                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1565                         vcpu->arch.efer &= ~EFER_LMA;
1566                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1567                 }
1568         }
1569 #endif
1570         vcpu->arch.cr0 = cr0;
1571
1572         if (!npt_enabled)
1573                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1574
1575         if (!vcpu->fpu_active)
1576                 cr0 |= X86_CR0_TS;
1577         /*
1578          * re-enable caching here because the QEMU bios
1579          * does not do it - this results in some delay at
1580          * reboot
1581          */
1582         if (!(vcpu->kvm->arch.disabled_quirks & KVM_QUIRK_CD_NW_CLEARED))
1583                 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1584         svm->vmcb->save.cr0 = cr0;
1585         mark_dirty(svm->vmcb, VMCB_CR);
1586         update_cr0_intercept(svm);
1587 }
1588
1589 static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1590 {
1591         unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1592         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1593
1594         if (cr4 & X86_CR4_VMXE)
1595                 return 1;
1596
1597         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1598                 svm_flush_tlb(vcpu);
1599
1600         vcpu->arch.cr4 = cr4;
1601         if (!npt_enabled)
1602                 cr4 |= X86_CR4_PAE;
1603         cr4 |= host_cr4_mce;
1604         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1605         mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1606         return 0;
1607 }
1608
1609 static void svm_set_segment(struct kvm_vcpu *vcpu,
1610                             struct kvm_segment *var, int seg)
1611 {
1612         struct vcpu_svm *svm = to_svm(vcpu);
1613         struct vmcb_seg *s = svm_seg(vcpu, seg);
1614
1615         s->base = var->base;
1616         s->limit = var->limit;
1617         s->selector = var->selector;
1618         if (var->unusable)
1619                 s->attrib = 0;
1620         else {
1621                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1622                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1623                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1624                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1625                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1626                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1627                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1628                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1629         }
1630
1631         /*
1632          * This is always accurate, except if SYSRET returned to a segment
1633          * with SS.DPL != 3.  Intel does not have this quirk, and always
1634          * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1635          * would entail passing the CPL to userspace and back.
1636          */
1637         if (seg == VCPU_SREG_SS)
1638                 svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1639
1640         mark_dirty(svm->vmcb, VMCB_SEG);
1641 }
1642
1643 static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1644 {
1645         struct vcpu_svm *svm = to_svm(vcpu);
1646
1647         clr_exception_intercept(svm, DB_VECTOR);
1648         clr_exception_intercept(svm, BP_VECTOR);
1649
1650         if (svm->nmi_singlestep)
1651                 set_exception_intercept(svm, DB_VECTOR);
1652
1653         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1654                 if (vcpu->guest_debug &
1655                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1656                         set_exception_intercept(svm, DB_VECTOR);
1657                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1658                         set_exception_intercept(svm, BP_VECTOR);
1659         } else
1660                 vcpu->guest_debug = 0;
1661 }
1662
1663 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1664 {
1665         if (sd->next_asid > sd->max_asid) {
1666                 ++sd->asid_generation;
1667                 sd->next_asid = 1;
1668                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1669         }
1670
1671         svm->asid_generation = sd->asid_generation;
1672         svm->vmcb->control.asid = sd->next_asid++;
1673
1674         mark_dirty(svm->vmcb, VMCB_ASID);
1675 }
1676
1677 static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
1678 {
1679         return to_svm(vcpu)->vmcb->save.dr6;
1680 }
1681
1682 static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
1683 {
1684         struct vcpu_svm *svm = to_svm(vcpu);
1685
1686         svm->vmcb->save.dr6 = value;
1687         mark_dirty(svm->vmcb, VMCB_DR);
1688 }
1689
1690 static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
1691 {
1692         struct vcpu_svm *svm = to_svm(vcpu);
1693
1694         get_debugreg(vcpu->arch.db[0], 0);
1695         get_debugreg(vcpu->arch.db[1], 1);
1696         get_debugreg(vcpu->arch.db[2], 2);
1697         get_debugreg(vcpu->arch.db[3], 3);
1698         vcpu->arch.dr6 = svm_get_dr6(vcpu);
1699         vcpu->arch.dr7 = svm->vmcb->save.dr7;
1700
1701         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
1702         set_dr_intercepts(svm);
1703 }
1704
1705 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1706 {
1707         struct vcpu_svm *svm = to_svm(vcpu);
1708
1709         svm->vmcb->save.dr7 = value;
1710         mark_dirty(svm->vmcb, VMCB_DR);
1711 }
1712
1713 static int pf_interception(struct vcpu_svm *svm)
1714 {
1715         u64 fault_address = svm->vmcb->control.exit_info_2;
1716         u32 error_code;
1717         int r = 1;
1718
1719         switch (svm->apf_reason) {
1720         default:
1721                 error_code = svm->vmcb->control.exit_info_1;
1722
1723                 trace_kvm_page_fault(fault_address, error_code);
1724                 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1725                         kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1726                 r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1727                         svm->vmcb->control.insn_bytes,
1728                         svm->vmcb->control.insn_len);
1729                 break;
1730         case KVM_PV_REASON_PAGE_NOT_PRESENT:
1731                 svm->apf_reason = 0;
1732                 local_irq_disable();
1733                 kvm_async_pf_task_wait(fault_address);
1734                 local_irq_enable();
1735                 break;
1736         case KVM_PV_REASON_PAGE_READY:
1737                 svm->apf_reason = 0;
1738                 local_irq_disable();
1739                 kvm_async_pf_task_wake(fault_address);
1740                 local_irq_enable();
1741                 break;
1742         }
1743         return r;
1744 }
1745
1746 static int db_interception(struct vcpu_svm *svm)
1747 {
1748         struct kvm_run *kvm_run = svm->vcpu.run;
1749
1750         if (!(svm->vcpu.guest_debug &
1751               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1752                 !svm->nmi_singlestep) {
1753                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1754                 return 1;
1755         }
1756
1757         if (svm->nmi_singlestep) {
1758                 svm->nmi_singlestep = false;
1759                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1760                         svm->vmcb->save.rflags &=
1761                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1762                 update_db_bp_intercept(&svm->vcpu);
1763         }
1764
1765         if (svm->vcpu.guest_debug &
1766             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1767                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1768                 kvm_run->debug.arch.pc =
1769                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1770                 kvm_run->debug.arch.exception = DB_VECTOR;
1771                 return 0;
1772         }
1773
1774         return 1;
1775 }
1776
1777 static int bp_interception(struct vcpu_svm *svm)
1778 {
1779         struct kvm_run *kvm_run = svm->vcpu.run;
1780
1781         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1782         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1783         kvm_run->debug.arch.exception = BP_VECTOR;
1784         return 0;
1785 }
1786
1787 static int ud_interception(struct vcpu_svm *svm)
1788 {
1789         int er;
1790
1791         er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1792         if (er != EMULATE_DONE)
1793                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1794         return 1;
1795 }
1796
1797 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1798 {
1799         struct vcpu_svm *svm = to_svm(vcpu);
1800
1801         clr_exception_intercept(svm, NM_VECTOR);
1802
1803         svm->vcpu.fpu_active = 1;
1804         update_cr0_intercept(svm);
1805 }
1806
1807 static int nm_interception(struct vcpu_svm *svm)
1808 {
1809         svm_fpu_activate(&svm->vcpu);
1810         return 1;
1811 }
1812
1813 static bool is_erratum_383(void)
1814 {
1815         int err, i;
1816         u64 value;
1817
1818         if (!erratum_383_found)
1819                 return false;
1820
1821         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1822         if (err)
1823                 return false;
1824
1825         /* Bit 62 may or may not be set for this mce */
1826         value &= ~(1ULL << 62);
1827
1828         if (value != 0xb600000000010015ULL)
1829                 return false;
1830
1831         /* Clear MCi_STATUS registers */
1832         for (i = 0; i < 6; ++i)
1833                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1834
1835         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1836         if (!err) {
1837                 u32 low, high;
1838
1839                 value &= ~(1ULL << 2);
1840                 low    = lower_32_bits(value);
1841                 high   = upper_32_bits(value);
1842
1843                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1844         }
1845
1846         /* Flush tlb to evict multi-match entries */
1847         __flush_tlb_all();
1848
1849         return true;
1850 }
1851
1852 static void svm_handle_mce(struct vcpu_svm *svm)
1853 {
1854         if (is_erratum_383()) {
1855                 /*
1856                  * Erratum 383 triggered. Guest state is corrupt so kill the
1857                  * guest.
1858                  */
1859                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1860
1861                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1862
1863                 return;
1864         }
1865
1866         /*
1867          * On an #MC intercept the MCE handler is not called automatically in
1868          * the host. So do it by hand here.
1869          */
1870         asm volatile (
1871                 "int $0x12\n");
1872         /* not sure if we ever come back to this point */
1873
1874         return;
1875 }
1876
1877 static int mc_interception(struct vcpu_svm *svm)
1878 {
1879         return 1;
1880 }
1881
1882 static int shutdown_interception(struct vcpu_svm *svm)
1883 {
1884         struct kvm_run *kvm_run = svm->vcpu.run;
1885
1886         /*
1887          * VMCB is undefined after a SHUTDOWN intercept
1888          * so reinitialize it.
1889          */
1890         clear_page(svm->vmcb);
1891         init_vmcb(svm, false);
1892
1893         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1894         return 0;
1895 }
1896
1897 static int io_interception(struct vcpu_svm *svm)
1898 {
1899         struct kvm_vcpu *vcpu = &svm->vcpu;
1900         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1901         int size, in, string;
1902         unsigned port;
1903
1904         ++svm->vcpu.stat.io_exits;
1905         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1906         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1907         if (string || in)
1908                 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1909
1910         port = io_info >> 16;
1911         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1912         svm->next_rip = svm->vmcb->control.exit_info_2;
1913         skip_emulated_instruction(&svm->vcpu);
1914
1915         return kvm_fast_pio_out(vcpu, size, port);
1916 }
1917
1918 static int nmi_interception(struct vcpu_svm *svm)
1919 {
1920         return 1;
1921 }
1922
1923 static int intr_interception(struct vcpu_svm *svm)
1924 {
1925         ++svm->vcpu.stat.irq_exits;
1926         return 1;
1927 }
1928
1929 static int nop_on_interception(struct vcpu_svm *svm)
1930 {
1931         return 1;
1932 }
1933
1934 static int halt_interception(struct vcpu_svm *svm)
1935 {
1936         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1937         return kvm_emulate_halt(&svm->vcpu);
1938 }
1939
1940 static int vmmcall_interception(struct vcpu_svm *svm)
1941 {
1942         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1943         kvm_emulate_hypercall(&svm->vcpu);
1944         return 1;
1945 }
1946
1947 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1948 {
1949         struct vcpu_svm *svm = to_svm(vcpu);
1950
1951         return svm->nested.nested_cr3;
1952 }
1953
1954 static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1955 {
1956         struct vcpu_svm *svm = to_svm(vcpu);
1957         u64 cr3 = svm->nested.nested_cr3;
1958         u64 pdpte;
1959         int ret;
1960
1961         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(cr3), &pdpte,
1962                                        offset_in_page(cr3) + index * 8, 8);
1963         if (ret)
1964                 return 0;
1965         return pdpte;
1966 }
1967
1968 static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1969                                    unsigned long root)
1970 {
1971         struct vcpu_svm *svm = to_svm(vcpu);
1972
1973         svm->vmcb->control.nested_cr3 = root;
1974         mark_dirty(svm->vmcb, VMCB_NPT);
1975         svm_flush_tlb(vcpu);
1976 }
1977
1978 static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1979                                        struct x86_exception *fault)
1980 {
1981         struct vcpu_svm *svm = to_svm(vcpu);
1982
1983         if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
1984                 /*
1985                  * TODO: track the cause of the nested page fault, and
1986                  * correctly fill in the high bits of exit_info_1.
1987                  */
1988                 svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1989                 svm->vmcb->control.exit_code_hi = 0;
1990                 svm->vmcb->control.exit_info_1 = (1ULL << 32);
1991                 svm->vmcb->control.exit_info_2 = fault->address;
1992         }
1993
1994         svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
1995         svm->vmcb->control.exit_info_1 |= fault->error_code;
1996
1997         /*
1998          * The present bit is always zero for page structure faults on real
1999          * hardware.
2000          */
2001         if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
2002                 svm->vmcb->control.exit_info_1 &= ~1;
2003
2004         nested_svm_vmexit(svm);
2005 }
2006
2007 static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
2008 {
2009         WARN_ON(mmu_is_nested(vcpu));
2010         kvm_init_shadow_mmu(vcpu);
2011         vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
2012         vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
2013         vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
2014         vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
2015         vcpu->arch.mmu.shadow_root_level = get_npt_level();
2016         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
2017 }
2018
2019 static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
2020 {
2021         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
2022 }
2023
2024 static int nested_svm_check_permissions(struct vcpu_svm *svm)
2025 {
2026         if (!(svm->vcpu.arch.efer & EFER_SVME)
2027             || !is_paging(&svm->vcpu)) {
2028                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2029                 return 1;
2030         }
2031
2032         if (svm->vmcb->save.cpl) {
2033                 kvm_inject_gp(&svm->vcpu, 0);
2034                 return 1;
2035         }
2036
2037        return 0;
2038 }
2039
2040 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
2041                                       bool has_error_code, u32 error_code)
2042 {
2043         int vmexit;
2044
2045         if (!is_guest_mode(&svm->vcpu))
2046                 return 0;
2047
2048         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2049         svm->vmcb->control.exit_code_hi = 0;
2050         svm->vmcb->control.exit_info_1 = error_code;
2051         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2052
2053         vmexit = nested_svm_intercept(svm);
2054         if (vmexit == NESTED_EXIT_DONE)
2055                 svm->nested.exit_required = true;
2056
2057         return vmexit;
2058 }
2059
2060 /* This function returns true if it is save to enable the irq window */
2061 static inline bool nested_svm_intr(struct vcpu_svm *svm)
2062 {
2063         if (!is_guest_mode(&svm->vcpu))
2064                 return true;
2065
2066         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2067                 return true;
2068
2069         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2070                 return false;
2071
2072         /*
2073          * if vmexit was already requested (by intercepted exception
2074          * for instance) do not overwrite it with "external interrupt"
2075          * vmexit.
2076          */
2077         if (svm->nested.exit_required)
2078                 return false;
2079
2080         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2081         svm->vmcb->control.exit_info_1 = 0;
2082         svm->vmcb->control.exit_info_2 = 0;
2083
2084         if (svm->nested.intercept & 1ULL) {
2085                 /*
2086                  * The #vmexit can't be emulated here directly because this
2087                  * code path runs with irqs and preemption disabled. A
2088                  * #vmexit emulation might sleep. Only signal request for
2089                  * the #vmexit here.
2090                  */
2091                 svm->nested.exit_required = true;
2092                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2093                 return false;
2094         }
2095
2096         return true;
2097 }
2098
2099 /* This function returns true if it is save to enable the nmi window */
2100 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2101 {
2102         if (!is_guest_mode(&svm->vcpu))
2103                 return true;
2104
2105         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2106                 return true;
2107
2108         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2109         svm->nested.exit_required = true;
2110
2111         return false;
2112 }
2113
2114 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2115 {
2116         struct page *page;
2117
2118         might_sleep();
2119
2120         page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT);
2121         if (is_error_page(page))
2122                 goto error;
2123
2124         *_page = page;
2125
2126         return kmap(page);
2127
2128 error:
2129         kvm_inject_gp(&svm->vcpu, 0);
2130
2131         return NULL;
2132 }
2133
2134 static void nested_svm_unmap(struct page *page)
2135 {
2136         kunmap(page);
2137         kvm_release_page_dirty(page);
2138 }
2139
2140 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2141 {
2142         unsigned port, size, iopm_len;
2143         u16 val, mask;
2144         u8 start_bit;
2145         u64 gpa;
2146
2147         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2148                 return NESTED_EXIT_HOST;
2149
2150         port = svm->vmcb->control.exit_info_1 >> 16;
2151         size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
2152                 SVM_IOIO_SIZE_SHIFT;
2153         gpa  = svm->nested.vmcb_iopm + (port / 8);
2154         start_bit = port % 8;
2155         iopm_len = (start_bit + size > 8) ? 2 : 1;
2156         mask = (0xf >> (4 - size)) << start_bit;
2157         val = 0;
2158
2159         if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len))
2160                 return NESTED_EXIT_DONE;
2161
2162         return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2163 }
2164
2165 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2166 {
2167         u32 offset, msr, value;
2168         int write, mask;
2169
2170         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2171                 return NESTED_EXIT_HOST;
2172
2173         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2174         offset = svm_msrpm_offset(msr);
2175         write  = svm->vmcb->control.exit_info_1 & 1;
2176         mask   = 1 << ((2 * (msr & 0xf)) + write);
2177
2178         if (offset == MSR_INVALID)
2179                 return NESTED_EXIT_DONE;
2180
2181         /* Offset is in 32 bit units but need in 8 bit units */
2182         offset *= 4;
2183
2184         if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4))
2185                 return NESTED_EXIT_DONE;
2186
2187         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2188 }
2189
2190 static int nested_svm_exit_special(struct vcpu_svm *svm)
2191 {
2192         u32 exit_code = svm->vmcb->control.exit_code;
2193
2194         switch (exit_code) {
2195         case SVM_EXIT_INTR:
2196         case SVM_EXIT_NMI:
2197         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2198                 return NESTED_EXIT_HOST;
2199         case SVM_EXIT_NPF:
2200                 /* For now we are always handling NPFs when using them */
2201                 if (npt_enabled)
2202                         return NESTED_EXIT_HOST;
2203                 break;
2204         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2205                 /* When we're shadowing, trap PFs, but not async PF */
2206                 if (!npt_enabled && svm->apf_reason == 0)
2207                         return NESTED_EXIT_HOST;
2208                 break;
2209         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2210                 nm_interception(svm);
2211                 break;
2212         default:
2213                 break;
2214         }
2215
2216         return NESTED_EXIT_CONTINUE;
2217 }
2218
2219 /*
2220  * If this function returns true, this #vmexit was already handled
2221  */
2222 static int nested_svm_intercept(struct vcpu_svm *svm)
2223 {
2224         u32 exit_code = svm->vmcb->control.exit_code;
2225         int vmexit = NESTED_EXIT_HOST;
2226
2227         switch (exit_code) {
2228         case SVM_EXIT_MSR:
2229                 vmexit = nested_svm_exit_handled_msr(svm);
2230                 break;
2231         case SVM_EXIT_IOIO:
2232                 vmexit = nested_svm_intercept_ioio(svm);
2233                 break;
2234         case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2235                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2236                 if (svm->nested.intercept_cr & bit)
2237                         vmexit = NESTED_EXIT_DONE;
2238                 break;
2239         }
2240         case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2241                 u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2242                 if (svm->nested.intercept_dr & bit)
2243                         vmexit = NESTED_EXIT_DONE;
2244                 break;
2245         }
2246         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2247                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2248                 if (svm->nested.intercept_exceptions & excp_bits)
2249                         vmexit = NESTED_EXIT_DONE;
2250                 /* async page fault always cause vmexit */
2251                 else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2252                          svm->apf_reason != 0)
2253                         vmexit = NESTED_EXIT_DONE;
2254                 break;
2255         }
2256         case SVM_EXIT_ERR: {
2257                 vmexit = NESTED_EXIT_DONE;
2258                 break;
2259         }
2260         default: {
2261                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2262                 if (svm->nested.intercept & exit_bits)
2263                         vmexit = NESTED_EXIT_DONE;
2264         }
2265         }
2266
2267         return vmexit;
2268 }
2269
2270 static int nested_svm_exit_handled(struct vcpu_svm *svm)
2271 {
2272         int vmexit;
2273
2274         vmexit = nested_svm_intercept(svm);
2275
2276         if (vmexit == NESTED_EXIT_DONE)
2277                 nested_svm_vmexit(svm);
2278
2279         return vmexit;
2280 }
2281
2282 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2283 {
2284         struct vmcb_control_area *dst  = &dst_vmcb->control;
2285         struct vmcb_control_area *from = &from_vmcb->control;
2286
2287         dst->intercept_cr         = from->intercept_cr;
2288         dst->intercept_dr         = from->intercept_dr;
2289         dst->intercept_exceptions = from->intercept_exceptions;
2290         dst->intercept            = from->intercept;
2291         dst->iopm_base_pa         = from->iopm_base_pa;
2292         dst->msrpm_base_pa        = from->msrpm_base_pa;
2293         dst->tsc_offset           = from->tsc_offset;
2294         dst->asid                 = from->asid;
2295         dst->tlb_ctl              = from->tlb_ctl;
2296         dst->int_ctl              = from->int_ctl;
2297         dst->int_vector           = from->int_vector;
2298         dst->int_state            = from->int_state;
2299         dst->exit_code            = from->exit_code;
2300         dst->exit_code_hi         = from->exit_code_hi;
2301         dst->exit_info_1          = from->exit_info_1;
2302         dst->exit_info_2          = from->exit_info_2;
2303         dst->exit_int_info        = from->exit_int_info;
2304         dst->exit_int_info_err    = from->exit_int_info_err;
2305         dst->nested_ctl           = from->nested_ctl;
2306         dst->event_inj            = from->event_inj;
2307         dst->event_inj_err        = from->event_inj_err;
2308         dst->nested_cr3           = from->nested_cr3;
2309         dst->lbr_ctl              = from->lbr_ctl;
2310 }
2311
2312 static int nested_svm_vmexit(struct vcpu_svm *svm)
2313 {
2314         struct vmcb *nested_vmcb;
2315         struct vmcb *hsave = svm->nested.hsave;
2316         struct vmcb *vmcb = svm->vmcb;
2317         struct page *page;
2318
2319         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2320                                        vmcb->control.exit_info_1,
2321                                        vmcb->control.exit_info_2,
2322                                        vmcb->control.exit_int_info,
2323                                        vmcb->control.exit_int_info_err,
2324                                        KVM_ISA_SVM);
2325
2326         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2327         if (!nested_vmcb)
2328                 return 1;
2329
2330         /* Exit Guest-Mode */
2331         leave_guest_mode(&svm->vcpu);
2332         svm->nested.vmcb = 0;
2333
2334         /* Give the current vmcb to the guest */
2335         disable_gif(svm);
2336
2337         nested_vmcb->save.es     = vmcb->save.es;
2338         nested_vmcb->save.cs     = vmcb->save.cs;
2339         nested_vmcb->save.ss     = vmcb->save.ss;
2340         nested_vmcb->save.ds     = vmcb->save.ds;
2341         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2342         nested_vmcb->save.idtr   = vmcb->save.idtr;
2343         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2344         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2345         nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2346         nested_vmcb->save.cr2    = vmcb->save.cr2;
2347         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2348         nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2349         nested_vmcb->save.rip    = vmcb->save.rip;
2350         nested_vmcb->save.rsp    = vmcb->save.rsp;
2351         nested_vmcb->save.rax    = vmcb->save.rax;
2352         nested_vmcb->save.dr7    = vmcb->save.dr7;
2353         nested_vmcb->save.dr6    = vmcb->save.dr6;
2354         nested_vmcb->save.cpl    = vmcb->save.cpl;
2355
2356         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2357         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2358         nested_vmcb->control.int_state         = vmcb->control.int_state;
2359         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2360         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2361         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2362         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2363         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2364         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2365         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2366
2367         /*
2368          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2369          * to make sure that we do not lose injected events. So check event_inj
2370          * here and copy it to exit_int_info if it is valid.
2371          * Exit_int_info and event_inj can't be both valid because the case
2372          * below only happens on a VMRUN instruction intercept which has
2373          * no valid exit_int_info set.
2374          */
2375         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2376                 struct vmcb_control_area *nc = &nested_vmcb->control;
2377
2378                 nc->exit_int_info     = vmcb->control.event_inj;
2379                 nc->exit_int_info_err = vmcb->control.event_inj_err;
2380         }
2381
2382         nested_vmcb->control.tlb_ctl           = 0;
2383         nested_vmcb->control.event_inj         = 0;
2384         nested_vmcb->control.event_inj_err     = 0;
2385
2386         /* We always set V_INTR_MASKING and remember the old value in hflags */
2387         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2388                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2389
2390         /* Restore the original control entries */
2391         copy_vmcb_control_area(vmcb, hsave);
2392
2393         kvm_clear_exception_queue(&svm->vcpu);
2394         kvm_clear_interrupt_queue(&svm->vcpu);
2395
2396         svm->nested.nested_cr3 = 0;
2397
2398         /* Restore selected save entries */
2399         svm->vmcb->save.es = hsave->save.es;
2400         svm->vmcb->save.cs = hsave->save.cs;
2401         svm->vmcb->save.ss = hsave->save.ss;
2402         svm->vmcb->save.ds = hsave->save.ds;
2403         svm->vmcb->save.gdtr = hsave->save.gdtr;
2404         svm->vmcb->save.idtr = hsave->save.idtr;
2405         kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2406         svm_set_efer(&svm->vcpu, hsave->save.efer);
2407         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2408         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2409         if (npt_enabled) {
2410                 svm->vmcb->save.cr3 = hsave->save.cr3;
2411                 svm->vcpu.arch.cr3 = hsave->save.cr3;
2412         } else {
2413                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2414         }
2415         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2416         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2417         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2418         svm->vmcb->save.dr7 = 0;
2419         svm->vmcb->save.cpl = 0;
2420         svm->vmcb->control.exit_int_info = 0;
2421
2422         mark_all_dirty(svm->vmcb);
2423
2424         nested_svm_unmap(page);
2425
2426         nested_svm_uninit_mmu_context(&svm->vcpu);
2427         kvm_mmu_reset_context(&svm->vcpu);
2428         kvm_mmu_load(&svm->vcpu);
2429
2430         return 0;
2431 }
2432
2433 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2434 {
2435         /*
2436          * This function merges the msr permission bitmaps of kvm and the
2437          * nested vmcb. It is optimized in that it only merges the parts where
2438          * the kvm msr permission bitmap may contain zero bits
2439          */
2440         int i;
2441
2442         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2443                 return true;
2444
2445         for (i = 0; i < MSRPM_OFFSETS; i++) {
2446                 u32 value, p;
2447                 u64 offset;
2448
2449                 if (msrpm_offsets[i] == 0xffffffff)
2450                         break;
2451
2452                 p      = msrpm_offsets[i];
2453                 offset = svm->nested.vmcb_msrpm + (p * 4);
2454
2455                 if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4))
2456                         return false;
2457
2458                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2459         }
2460
2461         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2462
2463         return true;
2464 }
2465
2466 static bool nested_vmcb_checks(struct vmcb *vmcb)
2467 {
2468         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2469                 return false;
2470
2471         if (vmcb->control.asid == 0)
2472                 return false;
2473
2474         if (vmcb->control.nested_ctl && !npt_enabled)
2475                 return false;
2476
2477         return true;
2478 }
2479
2480 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2481 {
2482         struct vmcb *nested_vmcb;
2483         struct vmcb *hsave = svm->nested.hsave;
2484         struct vmcb *vmcb = svm->vmcb;
2485         struct page *page;
2486         u64 vmcb_gpa;
2487
2488         vmcb_gpa = svm->vmcb->save.rax;
2489
2490         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2491         if (!nested_vmcb)
2492                 return false;
2493
2494         if (!nested_vmcb_checks(nested_vmcb)) {
2495                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2496                 nested_vmcb->control.exit_code_hi = 0;
2497                 nested_vmcb->control.exit_info_1  = 0;
2498                 nested_vmcb->control.exit_info_2  = 0;
2499
2500                 nested_svm_unmap(page);
2501
2502                 return false;
2503         }
2504
2505         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2506                                nested_vmcb->save.rip,
2507                                nested_vmcb->control.int_ctl,
2508                                nested_vmcb->control.event_inj,
2509                                nested_vmcb->control.nested_ctl);
2510
2511         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2512                                     nested_vmcb->control.intercept_cr >> 16,
2513                                     nested_vmcb->control.intercept_exceptions,
2514                                     nested_vmcb->control.intercept);
2515
2516         /* Clear internal status */
2517         kvm_clear_exception_queue(&svm->vcpu);
2518         kvm_clear_interrupt_queue(&svm->vcpu);
2519
2520         /*
2521          * Save the old vmcb, so we don't need to pick what we save, but can
2522          * restore everything when a VMEXIT occurs
2523          */
2524         hsave->save.es     = vmcb->save.es;
2525         hsave->save.cs     = vmcb->save.cs;
2526         hsave->save.ss     = vmcb->save.ss;
2527         hsave->save.ds     = vmcb->save.ds;
2528         hsave->save.gdtr   = vmcb->save.gdtr;
2529         hsave->save.idtr   = vmcb->save.idtr;
2530         hsave->save.efer   = svm->vcpu.arch.efer;
2531         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2532         hsave->save.cr4    = svm->vcpu.arch.cr4;
2533         hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2534         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2535         hsave->save.rsp    = vmcb->save.rsp;
2536         hsave->save.rax    = vmcb->save.rax;
2537         if (npt_enabled)
2538                 hsave->save.cr3    = vmcb->save.cr3;
2539         else
2540                 hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2541
2542         copy_vmcb_control_area(hsave, vmcb);
2543
2544         if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2545                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2546         else
2547                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2548
2549         if (nested_vmcb->control.nested_ctl) {
2550                 kvm_mmu_unload(&svm->vcpu);
2551                 svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2552                 nested_svm_init_mmu_context(&svm->vcpu);
2553         }
2554
2555         /* Load the nested guest state */
2556         svm->vmcb->save.es = nested_vmcb->save.es;
2557         svm->vmcb->save.cs = nested_vmcb->save.cs;
2558         svm->vmcb->save.ss = nested_vmcb->save.ss;
2559         svm->vmcb->save.ds = nested_vmcb->save.ds;
2560         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2561         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2562         kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2563         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2564         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2565         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2566         if (npt_enabled) {
2567                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2568                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2569         } else
2570                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2571
2572         /* Guest paging mode is active - reset mmu */
2573         kvm_mmu_reset_context(&svm->vcpu);
2574
2575         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2576         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2577         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2578         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2579
2580         /* In case we don't even reach vcpu_run, the fields are not updated */
2581         svm->vmcb->save.rax = nested_vmcb->save.rax;
2582         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2583         svm->vmcb->save.rip = nested_vmcb->save.rip;
2584         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2585         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2586         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2587
2588         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2589         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2590
2591         /* cache intercepts */
2592         svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2593         svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2594         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2595         svm->nested.intercept            = nested_vmcb->control.intercept;
2596
2597         svm_flush_tlb(&svm->vcpu);
2598         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2599         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2600                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2601         else
2602                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2603
2604         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2605                 /* We only want the cr8 intercept bits of the guest */
2606                 clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2607                 clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2608         }
2609
2610         /* We don't want to see VMMCALLs from a nested guest */
2611         clr_intercept(svm, INTERCEPT_VMMCALL);
2612
2613         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2614         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2615         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2616         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2617         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2618         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2619
2620         nested_svm_unmap(page);
2621
2622         /* Enter Guest-Mode */
2623         enter_guest_mode(&svm->vcpu);
2624
2625         /*
2626          * Merge guest and host intercepts - must be called  with vcpu in
2627          * guest-mode to take affect here
2628          */
2629         recalc_intercepts(svm);
2630
2631         svm->nested.vmcb = vmcb_gpa;
2632
2633         enable_gif(svm);
2634
2635         mark_all_dirty(svm->vmcb);
2636
2637         return true;
2638 }
2639
2640 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2641 {
2642         to_vmcb->save.fs = from_vmcb->save.fs;
2643         to_vmcb->save.gs = from_vmcb->save.gs;
2644         to_vmcb->save.tr = from_vmcb->save.tr;
2645         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2646         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2647         to_vmcb->save.star = from_vmcb->save.star;
2648         to_vmcb->save.lstar = from_vmcb->save.lstar;
2649         to_vmcb->save.cstar = from_vmcb->save.cstar;
2650         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2651         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2652         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2653         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2654 }
2655
2656 static int vmload_interception(struct vcpu_svm *svm)
2657 {
2658         struct vmcb *nested_vmcb;
2659         struct page *page;
2660
2661         if (nested_svm_check_permissions(svm))
2662                 return 1;
2663
2664         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2665         if (!nested_vmcb)
2666                 return 1;
2667
2668         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2669         skip_emulated_instruction(&svm->vcpu);
2670
2671         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2672         nested_svm_unmap(page);
2673
2674         return 1;
2675 }
2676
2677 static int vmsave_interception(struct vcpu_svm *svm)
2678 {
2679         struct vmcb *nested_vmcb;
2680         struct page *page;
2681
2682         if (nested_svm_check_permissions(svm))
2683                 return 1;
2684
2685         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2686         if (!nested_vmcb)
2687                 return 1;
2688
2689         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2690         skip_emulated_instruction(&svm->vcpu);
2691
2692         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2693         nested_svm_unmap(page);
2694
2695         return 1;
2696 }
2697
2698 static int vmrun_interception(struct vcpu_svm *svm)
2699 {
2700         if (nested_svm_check_permissions(svm))
2701                 return 1;
2702
2703         /* Save rip after vmrun instruction */
2704         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2705
2706         if (!nested_svm_vmrun(svm))
2707                 return 1;
2708
2709         if (!nested_svm_vmrun_msrpm(svm))
2710                 goto failed;
2711
2712         return 1;
2713
2714 failed:
2715
2716         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2717         svm->vmcb->control.exit_code_hi = 0;
2718         svm->vmcb->control.exit_info_1  = 0;
2719         svm->vmcb->control.exit_info_2  = 0;
2720
2721         nested_svm_vmexit(svm);
2722
2723         return 1;
2724 }
2725
2726 static int stgi_interception(struct vcpu_svm *svm)
2727 {
2728         if (nested_svm_check_permissions(svm))
2729                 return 1;
2730
2731         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2732         skip_emulated_instruction(&svm->vcpu);
2733         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2734
2735         enable_gif(svm);
2736
2737         return 1;
2738 }
2739
2740 static int clgi_interception(struct vcpu_svm *svm)
2741 {
2742         if (nested_svm_check_permissions(svm))
2743                 return 1;
2744
2745         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2746         skip_emulated_instruction(&svm->vcpu);
2747
2748         disable_gif(svm);
2749
2750         /* After a CLGI no interrupts should come */
2751         svm_clear_vintr(svm);
2752         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2753
2754         mark_dirty(svm->vmcb, VMCB_INTR);
2755
2756         return 1;
2757 }
2758
2759 static int invlpga_interception(struct vcpu_svm *svm)
2760 {
2761         struct kvm_vcpu *vcpu = &svm->vcpu;
2762
2763         trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX),
2764                           kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2765
2766         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2767         kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2768
2769         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2770         skip_emulated_instruction(&svm->vcpu);
2771         return 1;
2772 }
2773
2774 static int skinit_interception(struct vcpu_svm *svm)
2775 {
2776         trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX));
2777
2778         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2779         return 1;
2780 }
2781
2782 static int wbinvd_interception(struct vcpu_svm *svm)
2783 {
2784         kvm_emulate_wbinvd(&svm->vcpu);
2785         return 1;
2786 }
2787
2788 static int xsetbv_interception(struct vcpu_svm *svm)
2789 {
2790         u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2791         u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2792
2793         if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2794                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2795                 skip_emulated_instruction(&svm->vcpu);
2796         }
2797
2798         return 1;
2799 }
2800
2801 static int task_switch_interception(struct vcpu_svm *svm)
2802 {
2803         u16 tss_selector;
2804         int reason;
2805         int int_type = svm->vmcb->control.exit_int_info &
2806                 SVM_EXITINTINFO_TYPE_MASK;
2807         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2808         uint32_t type =
2809                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2810         uint32_t idt_v =
2811                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2812         bool has_error_code = false;
2813         u32 error_code = 0;
2814
2815         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2816
2817         if (svm->vmcb->control.exit_info_2 &
2818             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2819                 reason = TASK_SWITCH_IRET;
2820         else if (svm->vmcb->control.exit_info_2 &
2821                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2822                 reason = TASK_SWITCH_JMP;
2823         else if (idt_v)
2824                 reason = TASK_SWITCH_GATE;
2825         else
2826                 reason = TASK_SWITCH_CALL;
2827
2828         if (reason == TASK_SWITCH_GATE) {
2829                 switch (type) {
2830                 case SVM_EXITINTINFO_TYPE_NMI:
2831                         svm->vcpu.arch.nmi_injected = false;
2832                         break;
2833                 case SVM_EXITINTINFO_TYPE_EXEPT:
2834                         if (svm->vmcb->control.exit_info_2 &
2835                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2836                                 has_error_code = true;
2837                                 error_code =
2838                                         (u32)svm->vmcb->control.exit_info_2;
2839                         }
2840                         kvm_clear_exception_queue(&svm->vcpu);
2841                         break;
2842                 case SVM_EXITINTINFO_TYPE_INTR:
2843                         kvm_clear_interrupt_queue(&svm->vcpu);
2844                         break;
2845                 default:
2846                         break;
2847                 }
2848         }
2849
2850         if (reason != TASK_SWITCH_GATE ||
2851             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2852             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2853              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2854                 skip_emulated_instruction(&svm->vcpu);
2855
2856         if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2857                 int_vec = -1;
2858
2859         if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2860                                 has_error_code, error_code) == EMULATE_FAIL) {
2861                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2862                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2863                 svm->vcpu.run->internal.ndata = 0;
2864                 return 0;
2865         }
2866         return 1;
2867 }
2868
2869 static int cpuid_interception(struct vcpu_svm *svm)
2870 {
2871         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2872         kvm_emulate_cpuid(&svm->vcpu);
2873         return 1;
2874 }
2875
2876 static int iret_interception(struct vcpu_svm *svm)
2877 {
2878         ++svm->vcpu.stat.nmi_window_exits;
2879         clr_intercept(svm, INTERCEPT_IRET);
2880         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2881         svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2882         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2883         return 1;
2884 }
2885
2886 static int invlpg_interception(struct vcpu_svm *svm)
2887 {
2888         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2889                 return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2890
2891         kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2892         skip_emulated_instruction(&svm->vcpu);
2893         return 1;
2894 }
2895
2896 static int emulate_on_interception(struct vcpu_svm *svm)
2897 {
2898         return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2899 }
2900
2901 static int rdpmc_interception(struct vcpu_svm *svm)
2902 {
2903         int err;
2904
2905         if (!static_cpu_has(X86_FEATURE_NRIPS))
2906                 return emulate_on_interception(svm);
2907
2908         err = kvm_rdpmc(&svm->vcpu);
2909         kvm_complete_insn_gp(&svm->vcpu, err);
2910
2911         return 1;
2912 }
2913
2914 static bool check_selective_cr0_intercepted(struct vcpu_svm *svm,
2915                                             unsigned long val)
2916 {
2917         unsigned long cr0 = svm->vcpu.arch.cr0;
2918         bool ret = false;
2919         u64 intercept;
2920
2921         intercept = svm->nested.intercept;
2922
2923         if (!is_guest_mode(&svm->vcpu) ||
2924             (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2925                 return false;
2926
2927         cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2928         val &= ~SVM_CR0_SELECTIVE_MASK;
2929
2930         if (cr0 ^ val) {
2931                 svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2932                 ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2933         }
2934
2935         return ret;
2936 }
2937
2938 #define CR_VALID (1ULL << 63)
2939
2940 static int cr_interception(struct vcpu_svm *svm)
2941 {
2942         int reg, cr;
2943         unsigned long val;
2944         int err;
2945
2946         if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2947                 return emulate_on_interception(svm);
2948
2949         if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2950                 return emulate_on_interception(svm);
2951
2952         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2953         if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2954                 cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2955         else
2956                 cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2957
2958         err = 0;
2959         if (cr >= 16) { /* mov to cr */
2960                 cr -= 16;
2961                 val = kvm_register_read(&svm->vcpu, reg);
2962                 switch (cr) {
2963                 case 0:
2964                         if (!check_selective_cr0_intercepted(svm, val))
2965                                 err = kvm_set_cr0(&svm->vcpu, val);
2966                         else
2967                                 return 1;
2968
2969                         break;
2970                 case 3:
2971                         err = kvm_set_cr3(&svm->vcpu, val);
2972                         break;
2973                 case 4:
2974                         err = kvm_set_cr4(&svm->vcpu, val);
2975                         break;
2976                 case 8:
2977                         err = kvm_set_cr8(&svm->vcpu, val);
2978                         break;
2979                 default:
2980                         WARN(1, "unhandled write to CR%d", cr);
2981                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2982                         return 1;
2983                 }
2984         } else { /* mov from cr */
2985                 switch (cr) {
2986                 case 0:
2987                         val = kvm_read_cr0(&svm->vcpu);
2988                         break;
2989                 case 2:
2990                         val = svm->vcpu.arch.cr2;
2991                         break;
2992                 case 3:
2993                         val = kvm_read_cr3(&svm->vcpu);
2994                         break;
2995                 case 4:
2996                         val = kvm_read_cr4(&svm->vcpu);
2997                         break;
2998                 case 8:
2999                         val = kvm_get_cr8(&svm->vcpu);
3000                         break;
3001                 default:
3002                         WARN(1, "unhandled read from CR%d", cr);
3003                         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
3004                         return 1;
3005                 }
3006                 kvm_register_write(&svm->vcpu, reg, val);
3007         }
3008         kvm_complete_insn_gp(&svm->vcpu, err);
3009
3010         return 1;
3011 }
3012
3013 static int dr_interception(struct vcpu_svm *svm)
3014 {
3015         int reg, dr;
3016         unsigned long val;
3017
3018         if (svm->vcpu.guest_debug == 0) {
3019                 /*
3020                  * No more DR vmexits; force a reload of the debug registers
3021                  * and reenter on this instruction.  The next vmexit will
3022                  * retrieve the full state of the debug registers.
3023                  */
3024                 clr_dr_intercepts(svm);
3025                 svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
3026                 return 1;
3027         }
3028
3029         if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
3030                 return emulate_on_interception(svm);
3031
3032         reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
3033         dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
3034
3035         if (dr >= 16) { /* mov to DRn */
3036                 if (!kvm_require_dr(&svm->vcpu, dr - 16))
3037                         return 1;
3038                 val = kvm_register_read(&svm->vcpu, reg);
3039                 kvm_set_dr(&svm->vcpu, dr - 16, val);
3040         } else {
3041                 if (!kvm_require_dr(&svm->vcpu, dr))
3042                         return 1;
3043                 kvm_get_dr(&svm->vcpu, dr, &val);
3044                 kvm_register_write(&svm->vcpu, reg, val);
3045         }
3046
3047         skip_emulated_instruction(&svm->vcpu);
3048
3049         return 1;
3050 }
3051
3052 static int cr8_write_interception(struct vcpu_svm *svm)
3053 {
3054         struct kvm_run *kvm_run = svm->vcpu.run;
3055         int r;
3056
3057         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
3058         /* instruction emulation calls kvm_set_cr8() */
3059         r = cr_interception(svm);
3060         if (irqchip_in_kernel(svm->vcpu.kvm))
3061                 return r;
3062         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
3063                 return r;
3064         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
3065         return 0;
3066 }
3067
3068 static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
3069 {
3070         struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3071         return vmcb->control.tsc_offset +
3072                 svm_scale_tsc(vcpu, host_tsc);
3073 }
3074
3075 static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3076 {
3077         struct vcpu_svm *svm = to_svm(vcpu);
3078
3079         switch (msr_info->index) {
3080         case MSR_IA32_TSC: {
3081                 msr_info->data = svm->vmcb->control.tsc_offset +
3082                         svm_scale_tsc(vcpu, native_read_tsc());
3083
3084                 break;
3085         }
3086         case MSR_STAR:
3087                 msr_info->data = svm->vmcb->save.star;
3088                 break;
3089 #ifdef CONFIG_X86_64
3090         case MSR_LSTAR:
3091                 msr_info->data = svm->vmcb->save.lstar;
3092                 break;
3093         case MSR_CSTAR:
3094                 msr_info->data = svm->vmcb->save.cstar;
3095                 break;
3096         case MSR_KERNEL_GS_BASE:
3097                 msr_info->data = svm->vmcb->save.kernel_gs_base;
3098                 break;
3099         case MSR_SYSCALL_MASK:
3100                 msr_info->data = svm->vmcb->save.sfmask;
3101                 break;
3102 #endif
3103         case MSR_IA32_SYSENTER_CS:
3104                 msr_info->data = svm->vmcb->save.sysenter_cs;
3105                 break;
3106         case MSR_IA32_SYSENTER_EIP:
3107                 msr_info->data = svm->sysenter_eip;
3108                 break;
3109         case MSR_IA32_SYSENTER_ESP:
3110                 msr_info->data = svm->sysenter_esp;
3111                 break;
3112         /*
3113          * Nobody will change the following 5 values in the VMCB so we can
3114          * safely return them on rdmsr. They will always be 0 until LBRV is
3115          * implemented.
3116          */
3117         case MSR_IA32_DEBUGCTLMSR:
3118                 msr_info->data = svm->vmcb->save.dbgctl;
3119                 break;
3120         case MSR_IA32_LASTBRANCHFROMIP:
3121                 msr_info->data = svm->vmcb->save.br_from;
3122                 break;
3123         case MSR_IA32_LASTBRANCHTOIP:
3124                 msr_info->data = svm->vmcb->save.br_to;
3125                 break;
3126         case MSR_IA32_LASTINTFROMIP:
3127                 msr_info->data = svm->vmcb->save.last_excp_from;
3128                 break;
3129         case MSR_IA32_LASTINTTOIP:
3130                 msr_info->data = svm->vmcb->save.last_excp_to;
3131                 break;
3132         case MSR_VM_HSAVE_PA:
3133                 msr_info->data = svm->nested.hsave_msr;
3134                 break;
3135         case MSR_VM_CR:
3136                 msr_info->data = svm->nested.vm_cr_msr;
3137                 break;
3138         case MSR_IA32_UCODE_REV:
3139                 msr_info->data = 0x01000065;
3140                 break;
3141         default:
3142                 return kvm_get_msr_common(vcpu, msr_info);
3143         }
3144         return 0;
3145 }
3146
3147 static int rdmsr_interception(struct vcpu_svm *svm)
3148 {
3149         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3150         struct msr_data msr_info;
3151
3152         msr_info.index = ecx;
3153         msr_info.host_initiated = false;
3154         if (svm_get_msr(&svm->vcpu, &msr_info)) {
3155                 trace_kvm_msr_read_ex(ecx);
3156                 kvm_inject_gp(&svm->vcpu, 0);
3157         } else {
3158                 trace_kvm_msr_read(ecx, msr_info.data);
3159
3160                 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX,
3161                                    msr_info.data & 0xffffffff);
3162                 kvm_register_write(&svm->vcpu, VCPU_REGS_RDX,
3163                                    msr_info.data >> 32);
3164                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3165                 skip_emulated_instruction(&svm->vcpu);
3166         }
3167         return 1;
3168 }
3169
3170 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3171 {
3172         struct vcpu_svm *svm = to_svm(vcpu);
3173         int svm_dis, chg_mask;
3174
3175         if (data & ~SVM_VM_CR_VALID_MASK)
3176                 return 1;
3177
3178         chg_mask = SVM_VM_CR_VALID_MASK;
3179
3180         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3181                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3182
3183         svm->nested.vm_cr_msr &= ~chg_mask;
3184         svm->nested.vm_cr_msr |= (data & chg_mask);
3185
3186         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3187
3188         /* check for svm_disable while efer.svme is set */
3189         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3190                 return 1;
3191
3192         return 0;
3193 }
3194
3195 static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3196 {
3197         struct vcpu_svm *svm = to_svm(vcpu);
3198
3199         u32 ecx = msr->index;
3200         u64 data = msr->data;
3201         switch (ecx) {
3202         case MSR_IA32_TSC:
3203                 kvm_write_tsc(vcpu, msr);
3204                 break;
3205         case MSR_STAR:
3206                 svm->vmcb->save.star = data;
3207                 break;
3208 #ifdef CONFIG_X86_64
3209         case MSR_LSTAR:
3210                 svm->vmcb->save.lstar = data;
3211                 break;
3212         case MSR_CSTAR:
3213                 svm->vmcb->save.cstar = data;
3214                 break;
3215         case MSR_KERNEL_GS_BASE:
3216                 svm->vmcb->save.kernel_gs_base = data;
3217                 break;
3218         case MSR_SYSCALL_MASK:
3219                 svm->vmcb->save.sfmask = data;
3220                 break;
3221 #endif
3222         case MSR_IA32_SYSENTER_CS:
3223                 svm->vmcb->save.sysenter_cs = data;
3224                 break;
3225         case MSR_IA32_SYSENTER_EIP:
3226                 svm->sysenter_eip = data;
3227                 svm->vmcb->save.sysenter_eip = data;
3228                 break;
3229         case MSR_IA32_SYSENTER_ESP:
3230                 svm->sysenter_esp = data;
3231                 svm->vmcb->save.sysenter_esp = data;
3232                 break;
3233         case MSR_IA32_DEBUGCTLMSR:
3234                 if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3235                         vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3236                                     __func__, data);
3237                         break;
3238                 }
3239                 if (data & DEBUGCTL_RESERVED_BITS)
3240                         return 1;
3241
3242                 svm->vmcb->save.dbgctl = data;
3243                 mark_dirty(svm->vmcb, VMCB_LBR);
3244                 if (data & (1ULL<<0))
3245                         svm_enable_lbrv(svm);
3246                 else
3247                         svm_disable_lbrv(svm);
3248                 break;
3249         case MSR_VM_HSAVE_PA:
3250                 svm->nested.hsave_msr = data;
3251                 break;
3252         case MSR_VM_CR:
3253                 return svm_set_vm_cr(vcpu, data);
3254         case MSR_VM_IGNNE:
3255                 vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3256                 break;
3257         default:
3258                 return kvm_set_msr_common(vcpu, msr);
3259         }
3260         return 0;
3261 }
3262
3263 static int wrmsr_interception(struct vcpu_svm *svm)
3264 {
3265         struct msr_data msr;
3266         u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
3267         u64 data = kvm_read_edx_eax(&svm->vcpu);
3268
3269         msr.data = data;
3270         msr.index = ecx;
3271         msr.host_initiated = false;
3272
3273         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3274         if (kvm_set_msr(&svm->vcpu, &msr)) {
3275                 trace_kvm_msr_write_ex(ecx, data);
3276                 kvm_inject_gp(&svm->vcpu, 0);
3277         } else {
3278                 trace_kvm_msr_write(ecx, data);
3279                 skip_emulated_instruction(&svm->vcpu);
3280         }
3281         return 1;
3282 }
3283
3284 static int msr_interception(struct vcpu_svm *svm)
3285 {
3286         if (svm->vmcb->control.exit_info_1)
3287                 return wrmsr_interception(svm);
3288         else
3289                 return rdmsr_interception(svm);
3290 }
3291
3292 static int interrupt_window_interception(struct vcpu_svm *svm)
3293 {
3294         struct kvm_run *kvm_run = svm->vcpu.run;
3295
3296         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3297         svm_clear_vintr(svm);
3298         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3299         mark_dirty(svm->vmcb, VMCB_INTR);
3300         ++svm->vcpu.stat.irq_window_exits;
3301         /*
3302          * If the user space waits to inject interrupts, exit as soon as
3303          * possible
3304          */
3305         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3306             kvm_run->request_interrupt_window &&
3307             !kvm_cpu_has_interrupt(&svm->vcpu)) {
3308                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3309                 return 0;
3310         }
3311
3312         return 1;
3313 }
3314
3315 static int pause_interception(struct vcpu_svm *svm)
3316 {
3317         kvm_vcpu_on_spin(&(svm->vcpu));
3318         return 1;
3319 }
3320
3321 static int nop_interception(struct vcpu_svm *svm)
3322 {
3323         skip_emulated_instruction(&(svm->vcpu));
3324         return 1;
3325 }
3326
3327 static int monitor_interception(struct vcpu_svm *svm)
3328 {
3329         printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
3330         return nop_interception(svm);
3331 }
3332
3333 static int mwait_interception(struct vcpu_svm *svm)
3334 {
3335         printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
3336         return nop_interception(svm);
3337 }
3338
3339 static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3340         [SVM_EXIT_READ_CR0]                     = cr_interception,
3341         [SVM_EXIT_READ_CR3]                     = cr_interception,
3342         [SVM_EXIT_READ_CR4]                     = cr_interception,
3343         [SVM_EXIT_READ_CR8]                     = cr_interception,
3344         [SVM_EXIT_CR0_SEL_WRITE]                = cr_interception,
3345         [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3346         [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3347         [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3348         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3349         [SVM_EXIT_READ_DR0]                     = dr_interception,
3350         [SVM_EXIT_READ_DR1]                     = dr_interception,
3351         [SVM_EXIT_READ_DR2]                     = dr_interception,
3352         [SVM_EXIT_READ_DR3]                     = dr_interception,
3353         [SVM_EXIT_READ_DR4]                     = dr_interception,
3354         [SVM_EXIT_READ_DR5]                     = dr_interception,
3355         [SVM_EXIT_READ_DR6]                     = dr_interception,
3356         [SVM_EXIT_READ_DR7]                     = dr_interception,
3357         [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3358         [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3359         [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3360         [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3361         [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3362         [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3363         [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3364         [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3365         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3366         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3367         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3368         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3369         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3370         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3371         [SVM_EXIT_INTR]                         = intr_interception,
3372         [SVM_EXIT_NMI]                          = nmi_interception,
3373         [SVM_EXIT_SMI]                          = nop_on_interception,
3374         [SVM_EXIT_INIT]                         = nop_on_interception,
3375         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3376         [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3377         [SVM_EXIT_CPUID]                        = cpuid_interception,
3378         [SVM_EXIT_IRET]                         = iret_interception,
3379         [SVM_EXIT_INVD]                         = emulate_on_interception,
3380         [SVM_EXIT_PAUSE]                        = pause_interception,
3381         [SVM_EXIT_HLT]                          = halt_interception,
3382         [SVM_EXIT_INVLPG]                       = invlpg_interception,
3383         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3384         [SVM_EXIT_IOIO]                         = io_interception,
3385         [SVM_EXIT_MSR]                          = msr_interception,
3386         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3387         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3388         [SVM_EXIT_VMRUN]                        = vmrun_interception,
3389         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3390         [SVM_EXIT_VMLOAD]                       = vmload_interception,
3391         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3392         [SVM_EXIT_STGI]                         = stgi_interception,
3393         [SVM_EXIT_CLGI]                         = clgi_interception,
3394         [SVM_EXIT_SKINIT]                       = skinit_interception,
3395         [SVM_EXIT_WBINVD]                       = wbinvd_interception,
3396         [SVM_EXIT_MONITOR]                      = monitor_interception,
3397         [SVM_EXIT_MWAIT]                        = mwait_interception,
3398         [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3399         [SVM_EXIT_NPF]                          = pf_interception,
3400         [SVM_EXIT_RSM]                          = emulate_on_interception,
3401 };
3402
3403 static void dump_vmcb(struct kvm_vcpu *vcpu)
3404 {
3405         struct vcpu_svm *svm = to_svm(vcpu);
3406         struct vmcb_control_area *control = &svm->vmcb->control;
3407         struct vmcb_save_area *save = &svm->vmcb->save;
3408
3409         pr_err("VMCB Control Area:\n");
3410         pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3411         pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3412         pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3413         pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3414         pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3415         pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3416         pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3417         pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3418         pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3419         pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3420         pr_err("%-20s%d\n", "asid:", control->asid);
3421         pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3422         pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3423         pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3424         pr_err("%-20s%08x\n", "int_state:", control->int_state);
3425         pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3426         pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3427         pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3428         pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3429         pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3430         pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3431         pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3432         pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3433         pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3434         pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3435         pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3436         pr_err("VMCB State Save Area:\n");
3437         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3438                "es:",
3439                save->es.selector, save->es.attrib,
3440                save->es.limit, save->es.base);
3441         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3442                "cs:",
3443                save->cs.selector, save->cs.attrib,
3444                save->cs.limit, save->cs.base);
3445         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3446                "ss:",
3447                save->ss.selector, save->ss.attrib,
3448                save->ss.limit, save->ss.base);
3449         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3450                "ds:",
3451                save->ds.selector, save->ds.attrib,
3452                save->ds.limit, save->ds.base);
3453         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3454                "fs:",
3455                save->fs.selector, save->fs.attrib,
3456                save->fs.limit, save->fs.base);
3457         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3458                "gs:",
3459                save->gs.selector, save->gs.attrib,
3460                save->gs.limit, save->gs.base);
3461         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3462                "gdtr:",
3463                save->gdtr.selector, save->gdtr.attrib,
3464                save->gdtr.limit, save->gdtr.base);
3465         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3466                "ldtr:",
3467                save->ldtr.selector, save->ldtr.attrib,
3468                save->ldtr.limit, save->ldtr.base);
3469         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3470                "idtr:",
3471                save->idtr.selector, save->idtr.attrib,
3472                save->idtr.limit, save->idtr.base);
3473         pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3474                "tr:",
3475                save->tr.selector, save->tr.attrib,
3476                save->tr.limit, save->tr.base);
3477         pr_err("cpl:            %d                efer:         %016llx\n",
3478                 save->cpl, save->efer);
3479         pr_err("%-15s %016llx %-13s %016llx\n",
3480                "cr0:", save->cr0, "cr2:", save->cr2);
3481         pr_err("%-15s %016llx %-13s %016llx\n",
3482                "cr3:", save->cr3, "cr4:", save->cr4);
3483         pr_err("%-15s %016llx %-13s %016llx\n",
3484                "dr6:", save->dr6, "dr7:", save->dr7);
3485         pr_err("%-15s %016llx %-13s %016llx\n",
3486                "rip:", save->rip, "rflags:", save->rflags);
3487         pr_err("%-15s %016llx %-13s %016llx\n",
3488                "rsp:", save->rsp, "rax:", save->rax);
3489         pr_err("%-15s %016llx %-13s %016llx\n",
3490                "star:", save->star, "lstar:", save->lstar);
3491         pr_err("%-15s %016llx %-13s %016llx\n",
3492                "cstar:", save->cstar, "sfmask:", save->sfmask);
3493         pr_err("%-15s %016llx %-13s %016llx\n",
3494                "kernel_gs_base:", save->kernel_gs_base,
3495                "sysenter_cs:", save->sysenter_cs);
3496         pr_err("%-15s %016llx %-13s %016llx\n",
3497                "sysenter_esp:", save->sysenter_esp,
3498                "sysenter_eip:", save->sysenter_eip);
3499         pr_err("%-15s %016llx %-13s %016llx\n",
3500                "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3501         pr_err("%-15s %016llx %-13s %016llx\n",
3502                "br_from:", save->br_from, "br_to:", save->br_to);
3503         pr_err("%-15s %016llx %-13s %016llx\n",
3504                "excp_from:", save->last_excp_from,
3505                "excp_to:", save->last_excp_to);
3506 }
3507
3508 static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3509 {
3510         struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3511
3512         *info1 = control->exit_info_1;
3513         *info2 = control->exit_info_2;
3514 }
3515
3516 static int handle_exit(struct kvm_vcpu *vcpu)
3517 {
3518         struct vcpu_svm *svm = to_svm(vcpu);
3519         struct kvm_run *kvm_run = vcpu->run;
3520         u32 exit_code = svm->vmcb->control.exit_code;
3521
3522         if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3523                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
3524         if (npt_enabled)
3525                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
3526
3527         if (unlikely(svm->nested.exit_required)) {
3528                 nested_svm_vmexit(svm);
3529                 svm->nested.exit_required = false;
3530
3531                 return 1;
3532         }
3533
3534         if (is_guest_mode(vcpu)) {
3535                 int vmexit;
3536
3537                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3538                                         svm->vmcb->control.exit_info_1,
3539                                         svm->vmcb->control.exit_info_2,
3540                                         svm->vmcb->control.exit_int_info,
3541                                         svm->vmcb->control.exit_int_info_err,
3542                                         KVM_ISA_SVM);
3543
3544                 vmexit = nested_svm_exit_special(svm);
3545
3546                 if (vmexit == NESTED_EXIT_CONTINUE)
3547                         vmexit = nested_svm_exit_handled(svm);
3548
3549                 if (vmexit == NESTED_EXIT_DONE)
3550                         return 1;
3551         }
3552
3553         svm_complete_interrupts(svm);
3554
3555         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3556                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3557                 kvm_run->fail_entry.hardware_entry_failure_reason
3558                         = svm->vmcb->control.exit_code;
3559                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3560                 dump_vmcb(vcpu);
3561                 return 0;
3562         }
3563
3564         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3565             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3566             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3567             exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3568                 printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3569                        "exit_code 0x%x\n",
3570                        __func__, svm->vmcb->control.exit_int_info,
3571                        exit_code);
3572
3573         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3574             || !svm_exit_handlers[exit_code]) {
3575                 WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code);
3576                 kvm_queue_exception(vcpu, UD_VECTOR);
3577                 return 1;
3578         }
3579
3580         return svm_exit_handlers[exit_code](svm);
3581 }
3582
3583 static void reload_tss(struct kvm_vcpu *vcpu)
3584 {
3585         int cpu = raw_smp_processor_id();
3586
3587         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3588         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3589         load_TR_desc();
3590 }
3591
3592 static void pre_svm_run(struct vcpu_svm *svm)
3593 {
3594         int cpu = raw_smp_processor_id();
3595
3596         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3597
3598         /* FIXME: handle wraparound of asid_generation */
3599         if (svm->asid_generation != sd->asid_generation)
3600                 new_asid(svm, sd);
3601 }
3602
3603 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3604 {
3605         struct vcpu_svm *svm = to_svm(vcpu);
3606
3607         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3608         vcpu->arch.hflags |= HF_NMI_MASK;
3609         set_intercept(svm, INTERCEPT_IRET);
3610         ++vcpu->stat.nmi_injections;
3611 }
3612
3613 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3614 {
3615         struct vmcb_control_area *control;
3616
3617         control = &svm->vmcb->control;
3618         control->int_vector = irq;
3619         control->int_ctl &= ~V_INTR_PRIO_MASK;
3620         control->int_ctl |= V_IRQ_MASK |
3621                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3622         mark_dirty(svm->vmcb, VMCB_INTR);
3623 }
3624
3625 static void svm_set_irq(struct kvm_vcpu *vcpu)
3626 {
3627         struct vcpu_svm *svm = to_svm(vcpu);
3628
3629         BUG_ON(!(gif_set(svm)));
3630
3631         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3632         ++vcpu->stat.irq_injections;
3633
3634         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3635                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3636 }
3637
3638 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3639 {
3640         struct vcpu_svm *svm = to_svm(vcpu);
3641
3642         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3643                 return;
3644
3645         clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3646
3647         if (irr == -1)
3648                 return;
3649
3650         if (tpr >= irr)
3651                 set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3652 }
3653
3654 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3655 {
3656         return;
3657 }
3658
3659 static int svm_vm_has_apicv(struct kvm *kvm)
3660 {
3661         return 0;
3662 }
3663
3664 static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3665 {
3666         return;
3667 }
3668
3669 static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3670 {
3671         return;
3672 }
3673
3674 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3675 {
3676         struct vcpu_svm *svm = to_svm(vcpu);
3677         struct vmcb *vmcb = svm->vmcb;
3678         int ret;
3679         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3680               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3681         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3682
3683         return ret;
3684 }
3685
3686 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3687 {
3688         struct vcpu_svm *svm = to_svm(vcpu);
3689
3690         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3691 }
3692
3693 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3694 {
3695         struct vcpu_svm *svm = to_svm(vcpu);
3696
3697         if (masked) {
3698                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3699                 set_intercept(svm, INTERCEPT_IRET);
3700         } else {
3701                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3702                 clr_intercept(svm, INTERCEPT_IRET);
3703         }
3704 }
3705
3706 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3707 {
3708         struct vcpu_svm *svm = to_svm(vcpu);
3709         struct vmcb *vmcb = svm->vmcb;
3710         int ret;
3711
3712         if (!gif_set(svm) ||
3713              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3714                 return 0;
3715
3716         ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3717
3718         if (is_guest_mode(vcpu))
3719                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3720
3721         return ret;
3722 }
3723
3724 static void enable_irq_window(struct kvm_vcpu *vcpu)
3725 {
3726         struct vcpu_svm *svm = to_svm(vcpu);
3727
3728         /*
3729          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3730          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3731          * get that intercept, this function will be called again though and
3732          * we'll get the vintr intercept.
3733          */
3734         if (gif_set(svm) && nested_svm_intr(svm)) {
3735                 svm_set_vintr(svm);
3736                 svm_inject_irq(svm, 0x0);
3737         }
3738 }
3739
3740 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3741 {
3742         struct vcpu_svm *svm = to_svm(vcpu);
3743
3744         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3745             == HF_NMI_MASK)
3746                 return; /* IRET will cause a vm exit */
3747
3748         /*
3749          * Something prevents NMI from been injected. Single step over possible
3750          * problem (IRET or exception injection or interrupt shadow)
3751          */
3752         svm->nmi_singlestep = true;
3753         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3754         update_db_bp_intercept(vcpu);
3755 }
3756
3757 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3758 {
3759         return 0;
3760 }
3761
3762 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3763 {
3764         struct vcpu_svm *svm = to_svm(vcpu);
3765
3766         if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3767                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3768         else
3769                 svm->asid_generation--;
3770 }
3771
3772 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3773 {
3774 }
3775
3776 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3777 {
3778         struct vcpu_svm *svm = to_svm(vcpu);
3779
3780         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3781                 return;
3782
3783         if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3784                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3785                 kvm_set_cr8(vcpu, cr8);
3786         }
3787 }
3788
3789 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3790 {
3791         struct vcpu_svm *svm = to_svm(vcpu);
3792         u64 cr8;
3793
3794         if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3795                 return;
3796
3797         cr8 = kvm_get_cr8(vcpu);
3798         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3799         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3800 }
3801
3802 static void svm_complete_interrupts(struct vcpu_svm *svm)
3803 {
3804         u8 vector;
3805         int type;
3806         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3807         unsigned int3_injected = svm->int3_injected;
3808
3809         svm->int3_injected = 0;
3810
3811         /*
3812          * If we've made progress since setting HF_IRET_MASK, we've
3813          * executed an IRET and can allow NMI injection.
3814          */
3815         if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3816             && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3817                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3818                 kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3819         }
3820
3821         svm->vcpu.arch.nmi_injected = false;
3822         kvm_clear_exception_queue(&svm->vcpu);
3823         kvm_clear_interrupt_queue(&svm->vcpu);
3824
3825         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3826                 return;
3827
3828         kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3829
3830         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3831         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3832
3833         switch (type) {
3834         case SVM_EXITINTINFO_TYPE_NMI:
3835                 svm->vcpu.arch.nmi_injected = true;
3836                 break;
3837         case SVM_EXITINTINFO_TYPE_EXEPT:
3838                 /*
3839                  * In case of software exceptions, do not reinject the vector,
3840                  * but re-execute the instruction instead. Rewind RIP first
3841                  * if we emulated INT3 before.
3842                  */
3843                 if (kvm_exception_is_soft(vector)) {
3844                         if (vector == BP_VECTOR && int3_injected &&
3845                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3846                                 kvm_rip_write(&svm->vcpu,
3847                                               kvm_rip_read(&svm->vcpu) -
3848                                               int3_injected);
3849                         break;
3850                 }
3851                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3852                         u32 err = svm->vmcb->control.exit_int_info_err;
3853                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3854
3855                 } else
3856                         kvm_requeue_exception(&svm->vcpu, vector);
3857                 break;
3858         case SVM_EXITINTINFO_TYPE_INTR:
3859                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3860                 break;
3861         default:
3862                 break;
3863         }
3864 }
3865
3866 static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3867 {
3868         struct vcpu_svm *svm = to_svm(vcpu);
3869         struct vmcb_control_area *control = &svm->vmcb->control;
3870
3871         control->exit_int_info = control->event_inj;
3872         control->exit_int_info_err = control->event_inj_err;
3873         control->event_inj = 0;
3874         svm_complete_interrupts(svm);
3875 }
3876
3877 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3878 {
3879         struct vcpu_svm *svm = to_svm(vcpu);
3880
3881         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3882         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3883         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3884
3885         /*
3886          * A vmexit emulation is required before the vcpu can be executed
3887          * again.
3888          */
3889         if (unlikely(svm->nested.exit_required))
3890                 return;
3891
3892         pre_svm_run(svm);
3893
3894         sync_lapic_to_cr8(vcpu);
3895
3896         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3897
3898         clgi();
3899
3900         local_irq_enable();
3901
3902         asm volatile (
3903                 "push %%" _ASM_BP "; \n\t"
3904                 "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3905                 "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3906                 "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3907                 "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3908                 "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3909                 "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3910 #ifdef CONFIG_X86_64
3911                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3912                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3913                 "mov %c[r10](%[svm]), %%r10 \n\t"
3914                 "mov %c[r11](%[svm]), %%r11 \n\t"
3915                 "mov %c[r12](%[svm]), %%r12 \n\t"
3916                 "mov %c[r13](%[svm]), %%r13 \n\t"
3917                 "mov %c[r14](%[svm]), %%r14 \n\t"
3918                 "mov %c[r15](%[svm]), %%r15 \n\t"
3919 #endif
3920
3921                 /* Enter guest mode */
3922                 "push %%" _ASM_AX " \n\t"
3923                 "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3924                 __ex(SVM_VMLOAD) "\n\t"
3925                 __ex(SVM_VMRUN) "\n\t"
3926                 __ex(SVM_VMSAVE) "\n\t"
3927                 "pop %%" _ASM_AX " \n\t"
3928
3929                 /* Save guest registers, load host registers */
3930                 "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3931                 "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3932                 "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3933                 "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3934                 "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3935                 "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3936 #ifdef CONFIG_X86_64
3937                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3938                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3939                 "mov %%r10, %c[r10](%[svm]) \n\t"
3940                 "mov %%r11, %c[r11](%[svm]) \n\t"
3941                 "mov %%r12, %c[r12](%[svm]) \n\t"
3942                 "mov %%r13, %c[r13](%[svm]) \n\t"
3943                 "mov %%r14, %c[r14](%[svm]) \n\t"
3944                 "mov %%r15, %c[r15](%[svm]) \n\t"
3945 #endif
3946                 "pop %%" _ASM_BP
3947                 :
3948                 : [svm]"a"(svm),
3949                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3950                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3951                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3952                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3953                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3954                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3955                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3956 #ifdef CONFIG_X86_64
3957                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3958                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3959                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3960                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3961                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3962                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3963                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3964                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3965 #endif
3966                 : "cc", "memory"
3967 #ifdef CONFIG_X86_64
3968                 , "rbx", "rcx", "rdx", "rsi", "rdi"
3969                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3970 #else
3971                 , "ebx", "ecx", "edx", "esi", "edi"
3972 #endif
3973                 );
3974
3975 #ifdef CONFIG_X86_64
3976         wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3977 #else
3978         loadsegment(fs, svm->host.fs);
3979 #ifndef CONFIG_X86_32_LAZY_GS
3980         loadsegment(gs, svm->host.gs);
3981 #endif
3982 #endif
3983
3984         reload_tss(vcpu);
3985
3986         local_irq_disable();
3987
3988         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3989         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3990         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3991         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3992
3993         trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3994
3995         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3996                 kvm_before_handle_nmi(&svm->vcpu);
3997
3998         stgi();
3999
4000         /* Any pending NMI will happen here */
4001
4002         if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4003                 kvm_after_handle_nmi(&svm->vcpu);
4004
4005         sync_cr8_to_lapic(vcpu);
4006
4007         svm->next_rip = 0;
4008
4009         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4010
4011         /* if exit due to PF check for async PF */
4012         if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4013                 svm->apf_reason = kvm_read_and_reset_pf_reason();
4014
4015         if (npt_enabled) {
4016                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
4017                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
4018         }
4019
4020         /*
4021          * We need to handle MC intercepts here before the vcpu has a chance to
4022          * change the physical cpu
4023          */
4024         if (unlikely(svm->vmcb->control.exit_code ==
4025                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
4026                 svm_handle_mce(svm);
4027
4028         mark_all_clean(svm->vmcb);
4029 }
4030
4031 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4032 {
4033         struct vcpu_svm *svm = to_svm(vcpu);
4034
4035         svm->vmcb->save.cr3 = root;
4036         mark_dirty(svm->vmcb, VMCB_CR);
4037         svm_flush_tlb(vcpu);
4038 }
4039
4040 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
4041 {
4042         struct vcpu_svm *svm = to_svm(vcpu);
4043
4044         svm->vmcb->control.nested_cr3 = root;
4045         mark_dirty(svm->vmcb, VMCB_NPT);
4046
4047         /* Also sync guest cr3 here in case we live migrate */
4048         svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
4049         mark_dirty(svm->vmcb, VMCB_CR);
4050
4051         svm_flush_tlb(vcpu);
4052 }
4053
4054 static int is_disabled(void)
4055 {
4056         u64 vm_cr;
4057
4058         rdmsrl(MSR_VM_CR, vm_cr);
4059         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
4060                 return 1;
4061
4062         return 0;
4063 }
4064
4065 static void
4066 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4067 {
4068         /*
4069          * Patch in the VMMCALL instruction:
4070          */
4071         hypercall[0] = 0x0f;
4072         hypercall[1] = 0x01;
4073         hypercall[2] = 0xd9;
4074 }
4075
4076 static void svm_check_processor_compat(void *rtn)
4077 {
4078         *(int *)rtn = 0;
4079 }
4080
4081 static bool svm_cpu_has_accelerated_tpr(void)
4082 {
4083         return false;
4084 }
4085
4086 static bool svm_has_high_real_mode_segbase(void)
4087 {
4088         return true;
4089 }
4090
4091 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4092 {
4093         return 0;
4094 }
4095
4096 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4097 {
4098 }
4099
4100 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4101 {
4102         switch (func) {
4103         case 0x80000001:
4104                 if (nested)
4105                         entry->ecx |= (1 << 2); /* Set SVM bit */
4106                 break;
4107         case 0x8000000A:
4108                 entry->eax = 1; /* SVM revision 1 */
4109                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4110                                    ASID emulation to nested SVM */
4111                 entry->ecx = 0; /* Reserved */
4112                 entry->edx = 0; /* Per default do not support any
4113                                    additional features */
4114
4115                 /* Support next_rip if host supports it */
4116                 if (boot_cpu_has(X86_FEATURE_NRIPS))
4117                         entry->edx |= SVM_FEATURE_NRIP;
4118
4119                 /* Support NPT for the guest if enabled */
4120                 if (npt_enabled)
4121                         entry->edx |= SVM_FEATURE_NPT;
4122
4123                 break;
4124         }
4125 }
4126
4127 static int svm_get_lpage_level(void)
4128 {
4129         return PT_PDPE_LEVEL;
4130 }
4131
4132 static bool svm_rdtscp_supported(void)
4133 {
4134         return false;
4135 }
4136
4137 static bool svm_invpcid_supported(void)
4138 {
4139         return false;
4140 }
4141
4142 static bool svm_mpx_supported(void)
4143 {
4144         return false;
4145 }
4146
4147 static bool svm_xsaves_supported(void)
4148 {
4149         return false;
4150 }
4151
4152 static bool svm_has_wbinvd_exit(void)
4153 {
4154         return true;
4155 }
4156
4157 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4158 {
4159         struct vcpu_svm *svm = to_svm(vcpu);
4160
4161         set_exception_intercept(svm, NM_VECTOR);
4162         update_cr0_intercept(svm);
4163 }
4164
4165 #define PRE_EX(exit)  { .exit_code = (exit), \
4166                         .stage = X86_ICPT_PRE_EXCEPT, }
4167 #define POST_EX(exit) { .exit_code = (exit), \
4168                         .stage = X86_ICPT_POST_EXCEPT, }
4169 #define POST_MEM(exit) { .exit_code = (exit), \
4170                         .stage = X86_ICPT_POST_MEMACCESS, }
4171
4172 static const struct __x86_intercept {
4173         u32 exit_code;
4174         enum x86_intercept_stage stage;
4175 } x86_intercept_map[] = {
4176         [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4177         [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4178         [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4179         [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4180         [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4181         [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4182         [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4183         [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4184         [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4185         [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4186         [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4187         [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4188         [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4189         [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4190         [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4191         [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4192         [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4193         [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4194         [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4195         [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4196         [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4197         [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4198         [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4199         [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4200         [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4201         [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4202         [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4203         [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4204         [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4205         [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4206         [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4207         [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4208         [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4209         [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4210         [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4211         [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4212         [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4213         [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4214         [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4215         [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4216         [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4217         [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4218         [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4219         [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4220         [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4221         [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4222 };
4223
4224 #undef PRE_EX
4225 #undef POST_EX
4226 #undef POST_MEM
4227
4228 static int svm_check_intercept(struct kvm_vcpu *vcpu,
4229                                struct x86_instruction_info *info,
4230                                enum x86_intercept_stage stage)
4231 {
4232         struct vcpu_svm *svm = to_svm(vcpu);
4233         int vmexit, ret = X86EMUL_CONTINUE;
4234         struct __x86_intercept icpt_info;
4235         struct vmcb *vmcb = svm->vmcb;
4236
4237         if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4238                 goto out;
4239
4240         icpt_info = x86_intercept_map[info->intercept];
4241
4242         if (stage != icpt_info.stage)
4243                 goto out;
4244
4245         switch (icpt_info.exit_code) {
4246         case SVM_EXIT_READ_CR0:
4247                 if (info->intercept == x86_intercept_cr_read)
4248                         icpt_info.exit_code += info->modrm_reg;
4249                 break;
4250         case SVM_EXIT_WRITE_CR0: {
4251                 unsigned long cr0, val;
4252                 u64 intercept;
4253
4254                 if (info->intercept == x86_intercept_cr_write)
4255                         icpt_info.exit_code += info->modrm_reg;
4256
4257                 if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4258                     info->intercept == x86_intercept_clts)
4259                         break;
4260
4261                 intercept = svm->nested.intercept;
4262
4263                 if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4264                         break;
4265
4266                 cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4267                 val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4268
4269                 if (info->intercept == x86_intercept_lmsw) {
4270                         cr0 &= 0xfUL;
4271                         val &= 0xfUL;
4272                         /* lmsw can't clear PE - catch this here */
4273                         if (cr0 & X86_CR0_PE)
4274                                 val |= X86_CR0_PE;
4275                 }
4276
4277                 if (cr0 ^ val)
4278                         icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4279
4280                 break;
4281         }
4282         case SVM_EXIT_READ_DR0:
4283         case SVM_EXIT_WRITE_DR0:
4284                 icpt_info.exit_code += info->modrm_reg;
4285                 break;
4286         case SVM_EXIT_MSR:
4287                 if (info->intercept == x86_intercept_wrmsr)
4288                         vmcb->control.exit_info_1 = 1;
4289                 else
4290                         vmcb->control.exit_info_1 = 0;
4291                 break;
4292         case SVM_EXIT_PAUSE:
4293                 /*
4294                  * We get this for NOP only, but pause
4295                  * is rep not, check this here
4296                  */
4297                 if (info->rep_prefix != REPE_PREFIX)
4298                         goto out;
4299         case SVM_EXIT_IOIO: {
4300                 u64 exit_info;
4301                 u32 bytes;
4302
4303                 if (info->intercept == x86_intercept_in ||
4304                     info->intercept == x86_intercept_ins) {
4305                         exit_info = ((info->src_val & 0xffff) << 16) |
4306                                 SVM_IOIO_TYPE_MASK;
4307                         bytes = info->dst_bytes;
4308                 } else {
4309                         exit_info = (info->dst_val & 0xffff) << 16;
4310                         bytes = info->src_bytes;
4311                 }
4312
4313                 if (info->intercept == x86_intercept_outs ||
4314                     info->intercept == x86_intercept_ins)
4315                         exit_info |= SVM_IOIO_STR_MASK;
4316
4317                 if (info->rep_prefix)
4318                         exit_info |= SVM_IOIO_REP_MASK;
4319
4320                 bytes = min(bytes, 4u);
4321
4322                 exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4323
4324                 exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4325
4326                 vmcb->control.exit_info_1 = exit_info;
4327                 vmcb->control.exit_info_2 = info->next_rip;
4328
4329                 break;
4330         }
4331         default:
4332                 break;
4333         }
4334
4335         /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4336         if (static_cpu_has(X86_FEATURE_NRIPS))
4337                 vmcb->control.next_rip  = info->next_rip;
4338         vmcb->control.exit_code = icpt_info.exit_code;
4339         vmexit = nested_svm_exit_handled(svm);
4340
4341         ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4342                                            : X86EMUL_CONTINUE;
4343
4344 out:
4345         return ret;
4346 }
4347
4348 static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4349 {
4350         local_irq_enable();
4351 }
4352
4353 static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4354 {
4355 }
4356
4357 static struct kvm_x86_ops svm_x86_ops = {
4358         .cpu_has_kvm_support = has_svm,
4359         .disabled_by_bios = is_disabled,
4360         .hardware_setup = svm_hardware_setup,
4361         .hardware_unsetup = svm_hardware_unsetup,
4362         .check_processor_compatibility = svm_check_processor_compat,
4363         .hardware_enable = svm_hardware_enable,
4364         .hardware_disable = svm_hardware_disable,
4365         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4366         .cpu_has_high_real_mode_segbase = svm_has_high_real_mode_segbase,
4367
4368         .vcpu_create = svm_create_vcpu,
4369         .vcpu_free = svm_free_vcpu,
4370         .vcpu_reset = svm_vcpu_reset,
4371
4372         .prepare_guest_switch = svm_prepare_guest_switch,
4373         .vcpu_load = svm_vcpu_load,
4374         .vcpu_put = svm_vcpu_put,
4375
4376         .update_db_bp_intercept = update_db_bp_intercept,
4377         .get_msr = svm_get_msr,
4378         .set_msr = svm_set_msr,
4379         .get_segment_base = svm_get_segment_base,
4380         .get_segment = svm_get_segment,
4381         .set_segment = svm_set_segment,
4382         .get_cpl = svm_get_cpl,
4383         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4384         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4385         .decache_cr3 = svm_decache_cr3,
4386         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4387         .set_cr0 = svm_set_cr0,
4388         .set_cr3 = svm_set_cr3,
4389         .set_cr4 = svm_set_cr4,
4390         .set_efer = svm_set_efer,
4391         .get_idt = svm_get_idt,
4392         .set_idt = svm_set_idt,
4393         .get_gdt = svm_get_gdt,
4394         .set_gdt = svm_set_gdt,
4395         .get_dr6 = svm_get_dr6,
4396         .set_dr6 = svm_set_dr6,
4397         .set_dr7 = svm_set_dr7,
4398         .sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4399         .cache_reg = svm_cache_reg,
4400         .get_rflags = svm_get_rflags,
4401         .set_rflags = svm_set_rflags,
4402         .fpu_activate = svm_fpu_activate,
4403         .fpu_deactivate = svm_fpu_deactivate,
4404
4405         .tlb_flush = svm_flush_tlb,
4406
4407         .run = svm_vcpu_run,
4408         .handle_exit = handle_exit,
4409         .skip_emulated_instruction = skip_emulated_instruction,
4410         .set_interrupt_shadow = svm_set_interrupt_shadow,
4411         .get_interrupt_shadow = svm_get_interrupt_shadow,
4412         .patch_hypercall = svm_patch_hypercall,
4413         .set_irq = svm_set_irq,
4414         .set_nmi = svm_inject_nmi,
4415         .queue_exception = svm_queue_exception,
4416         .cancel_injection = svm_cancel_injection,
4417         .interrupt_allowed = svm_interrupt_allowed,
4418         .nmi_allowed = svm_nmi_allowed,
4419         .get_nmi_mask = svm_get_nmi_mask,
4420         .set_nmi_mask = svm_set_nmi_mask,
4421         .enable_nmi_window = enable_nmi_window,
4422         .enable_irq_window = enable_irq_window,
4423         .update_cr8_intercept = update_cr8_intercept,
4424         .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4425         .vm_has_apicv = svm_vm_has_apicv,
4426         .load_eoi_exitmap = svm_load_eoi_exitmap,
4427         .sync_pir_to_irr = svm_sync_pir_to_irr,
4428
4429         .set_tss_addr = svm_set_tss_addr,
4430         .get_tdp_level = get_npt_level,
4431         .get_mt_mask = svm_get_mt_mask,
4432
4433         .get_exit_info = svm_get_exit_info,
4434
4435         .get_lpage_level = svm_get_lpage_level,
4436
4437         .cpuid_update = svm_cpuid_update,
4438
4439         .rdtscp_supported = svm_rdtscp_supported,
4440         .invpcid_supported = svm_invpcid_supported,
4441         .mpx_supported = svm_mpx_supported,
4442         .xsaves_supported = svm_xsaves_supported,
4443
4444         .set_supported_cpuid = svm_set_supported_cpuid,
4445
4446         .has_wbinvd_exit = svm_has_wbinvd_exit,
4447
4448         .set_tsc_khz = svm_set_tsc_khz,
4449         .read_tsc_offset = svm_read_tsc_offset,
4450         .write_tsc_offset = svm_write_tsc_offset,
4451         .adjust_tsc_offset = svm_adjust_tsc_offset,
4452         .compute_tsc_offset = svm_compute_tsc_offset,
4453         .read_l1_tsc = svm_read_l1_tsc,
4454
4455         .set_tdp_cr3 = set_tdp_cr3,
4456
4457         .check_intercept = svm_check_intercept,
4458         .handle_external_intr = svm_handle_external_intr,
4459
4460         .sched_in = svm_sched_in,
4461
4462         .pmu_ops = &amd_pmu_ops,
4463 };
4464
4465 static int __init svm_init(void)
4466 {
4467         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4468                         __alignof__(struct vcpu_svm), THIS_MODULE);
4469 }
4470
4471 static void __exit svm_exit(void)
4472 {
4473         kvm_exit();
4474 }
4475
4476 module_init(svm_init)
4477 module_exit(svm_exit)