Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-drm-fsl-dcu.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44
45 /*
46  * When setting this variable to true it enables Two-Dimensional-Paging
47  * where the hardware walks 2 page tables:
48  * 1. the guest-virtual to guest-physical
49  * 2. while doing 1. it walks guest-physical to host-physical
50  * If the hardware supports that we don't need to do shadow paging.
51  */
52 bool tdp_enabled = false;
53
54 enum {
55         AUDIT_PRE_PAGE_FAULT,
56         AUDIT_POST_PAGE_FAULT,
57         AUDIT_PRE_PTE_WRITE,
58         AUDIT_POST_PTE_WRITE,
59         AUDIT_PRE_SYNC,
60         AUDIT_POST_SYNC
61 };
62
63 #undef MMU_DEBUG
64
65 #ifdef MMU_DEBUG
66 static bool dbg = 0;
67 module_param(dbg, bool, 0644);
68
69 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define MMU_WARN_ON(x) WARN_ON(x)
72 #else
73 #define pgprintk(x...) do { } while (0)
74 #define rmap_printk(x...) do { } while (0)
75 #define MMU_WARN_ON(x) do { } while (0)
76 #endif
77
78 #define PTE_PREFETCH_NUM                8
79
80 #define PT_FIRST_AVAIL_BITS_SHIFT 10
81 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
83 #define PT64_LEVEL_BITS 9
84
85 #define PT64_LEVEL_SHIFT(level) \
86                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
87
88 #define PT64_INDEX(address, level)\
89         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92 #define PT32_LEVEL_BITS 10
93
94 #define PT32_LEVEL_SHIFT(level) \
95                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
96
97 #define PT32_LVL_OFFSET_MASK(level) \
98         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99                                                 * PT32_LEVEL_BITS))) - 1))
100
101 #define PT32_INDEX(address, level)\
102         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
105 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
106 #define PT64_DIR_BASE_ADDR_MASK \
107         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
108 #define PT64_LVL_ADDR_MASK(level) \
109         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110                                                 * PT64_LEVEL_BITS))) - 1))
111 #define PT64_LVL_OFFSET_MASK(level) \
112         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113                                                 * PT64_LEVEL_BITS))) - 1))
114
115 #define PT32_BASE_ADDR_MASK PAGE_MASK
116 #define PT32_DIR_BASE_ADDR_MASK \
117         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
118 #define PT32_LVL_ADDR_MASK(level) \
119         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120                                             * PT32_LEVEL_BITS))) - 1))
121
122 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123                         | shadow_x_mask | shadow_nx_mask)
124
125 #define ACC_EXEC_MASK    1
126 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
127 #define ACC_USER_MASK    PT_USER_MASK
128 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
130 #include <trace/events/kvm.h>
131
132 #define CREATE_TRACE_POINTS
133 #include "mmutrace.h"
134
135 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
137
138 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
140 /* make pte_list_desc fit well in cache line */
141 #define PTE_LIST_EXT 3
142
143 struct pte_list_desc {
144         u64 *sptes[PTE_LIST_EXT];
145         struct pte_list_desc *more;
146 };
147
148 struct kvm_shadow_walk_iterator {
149         u64 addr;
150         hpa_t shadow_addr;
151         u64 *sptep;
152         int level;
153         unsigned index;
154 };
155
156 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
157         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
158              shadow_walk_okay(&(_walker));                      \
159              shadow_walk_next(&(_walker)))
160
161 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
162         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
163              shadow_walk_okay(&(_walker)) &&                            \
164                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
165              __shadow_walk_next(&(_walker), spte))
166
167 static struct kmem_cache *pte_list_desc_cache;
168 static struct kmem_cache *mmu_page_header_cache;
169 static struct percpu_counter kvm_total_used_mmu_pages;
170
171 static u64 __read_mostly shadow_nx_mask;
172 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173 static u64 __read_mostly shadow_user_mask;
174 static u64 __read_mostly shadow_accessed_mask;
175 static u64 __read_mostly shadow_dirty_mask;
176 static u64 __read_mostly shadow_mmio_mask;
177
178 static void mmu_spte_set(u64 *sptep, u64 spte);
179 static void mmu_free_roots(struct kvm_vcpu *vcpu);
180
181 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182 {
183         shadow_mmio_mask = mmio_mask;
184 }
185 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
187 /*
188  * the low bit of the generation number is always presumed to be zero.
189  * This disables mmio caching during memslot updates.  The concept is
190  * similar to a seqcount but instead of retrying the access we just punt
191  * and ignore the cache.
192  *
193  * spte bits 3-11 are used as bits 1-9 of the generation number,
194  * the bits 52-61 are used as bits 10-19 of the generation number.
195  */
196 #define MMIO_SPTE_GEN_LOW_SHIFT         2
197 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
198
199 #define MMIO_GEN_SHIFT                  20
200 #define MMIO_GEN_LOW_SHIFT              10
201 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
202 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
203
204 static u64 generation_mmio_spte_mask(unsigned int gen)
205 {
206         u64 mask;
207
208         WARN_ON(gen & ~MMIO_GEN_MASK);
209
210         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212         return mask;
213 }
214
215 static unsigned int get_mmio_spte_generation(u64 spte)
216 {
217         unsigned int gen;
218
219         spte &= ~shadow_mmio_mask;
220
221         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223         return gen;
224 }
225
226 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
227 {
228         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
229 }
230
231 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
232                            unsigned access)
233 {
234         unsigned int gen = kvm_current_mmio_generation(vcpu);
235         u64 mask = generation_mmio_spte_mask(gen);
236
237         access &= ACC_WRITE_MASK | ACC_USER_MASK;
238         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
239
240         trace_mark_mmio_spte(sptep, gfn, access, gen);
241         mmu_spte_set(sptep, mask);
242 }
243
244 static bool is_mmio_spte(u64 spte)
245 {
246         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247 }
248
249 static gfn_t get_mmio_spte_gfn(u64 spte)
250 {
251         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
252         return (spte & ~mask) >> PAGE_SHIFT;
253 }
254
255 static unsigned get_mmio_spte_access(u64 spte)
256 {
257         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
258         return (spte & ~mask) & ~PAGE_MASK;
259 }
260
261 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
262                           pfn_t pfn, unsigned access)
263 {
264         if (unlikely(is_noslot_pfn(pfn))) {
265                 mark_mmio_spte(vcpu, sptep, gfn, access);
266                 return true;
267         }
268
269         return false;
270 }
271
272 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
273 {
274         unsigned int kvm_gen, spte_gen;
275
276         kvm_gen = kvm_current_mmio_generation(vcpu);
277         spte_gen = get_mmio_spte_generation(spte);
278
279         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280         return likely(kvm_gen == spte_gen);
281 }
282
283 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
284                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
285 {
286         shadow_user_mask = user_mask;
287         shadow_accessed_mask = accessed_mask;
288         shadow_dirty_mask = dirty_mask;
289         shadow_nx_mask = nx_mask;
290         shadow_x_mask = x_mask;
291 }
292 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
294 static int is_cpuid_PSE36(void)
295 {
296         return 1;
297 }
298
299 static int is_nx(struct kvm_vcpu *vcpu)
300 {
301         return vcpu->arch.efer & EFER_NX;
302 }
303
304 static int is_shadow_present_pte(u64 pte)
305 {
306         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
307 }
308
309 static int is_large_pte(u64 pte)
310 {
311         return pte & PT_PAGE_SIZE_MASK;
312 }
313
314 static int is_rmap_spte(u64 pte)
315 {
316         return is_shadow_present_pte(pte);
317 }
318
319 static int is_last_spte(u64 pte, int level)
320 {
321         if (level == PT_PAGE_TABLE_LEVEL)
322                 return 1;
323         if (is_large_pte(pte))
324                 return 1;
325         return 0;
326 }
327
328 static pfn_t spte_to_pfn(u64 pte)
329 {
330         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
331 }
332
333 static gfn_t pse36_gfn_delta(u32 gpte)
334 {
335         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337         return (gpte & PT32_DIR_PSE36_MASK) << shift;
338 }
339
340 #ifdef CONFIG_X86_64
341 static void __set_spte(u64 *sptep, u64 spte)
342 {
343         *sptep = spte;
344 }
345
346 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
347 {
348         *sptep = spte;
349 }
350
351 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352 {
353         return xchg(sptep, spte);
354 }
355
356 static u64 __get_spte_lockless(u64 *sptep)
357 {
358         return ACCESS_ONCE(*sptep);
359 }
360
361 static bool __check_direct_spte_mmio_pf(u64 spte)
362 {
363         /* It is valid if the spte is zapped. */
364         return spte == 0ull;
365 }
366 #else
367 union split_spte {
368         struct {
369                 u32 spte_low;
370                 u32 spte_high;
371         };
372         u64 spte;
373 };
374
375 static void count_spte_clear(u64 *sptep, u64 spte)
376 {
377         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
378
379         if (is_shadow_present_pte(spte))
380                 return;
381
382         /* Ensure the spte is completely set before we increase the count */
383         smp_wmb();
384         sp->clear_spte_count++;
385 }
386
387 static void __set_spte(u64 *sptep, u64 spte)
388 {
389         union split_spte *ssptep, sspte;
390
391         ssptep = (union split_spte *)sptep;
392         sspte = (union split_spte)spte;
393
394         ssptep->spte_high = sspte.spte_high;
395
396         /*
397          * If we map the spte from nonpresent to present, We should store
398          * the high bits firstly, then set present bit, so cpu can not
399          * fetch this spte while we are setting the spte.
400          */
401         smp_wmb();
402
403         ssptep->spte_low = sspte.spte_low;
404 }
405
406 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407 {
408         union split_spte *ssptep, sspte;
409
410         ssptep = (union split_spte *)sptep;
411         sspte = (union split_spte)spte;
412
413         ssptep->spte_low = sspte.spte_low;
414
415         /*
416          * If we map the spte from present to nonpresent, we should clear
417          * present bit firstly to avoid vcpu fetch the old high bits.
418          */
419         smp_wmb();
420
421         ssptep->spte_high = sspte.spte_high;
422         count_spte_clear(sptep, spte);
423 }
424
425 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426 {
427         union split_spte *ssptep, sspte, orig;
428
429         ssptep = (union split_spte *)sptep;
430         sspte = (union split_spte)spte;
431
432         /* xchg acts as a barrier before the setting of the high bits */
433         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
434         orig.spte_high = ssptep->spte_high;
435         ssptep->spte_high = sspte.spte_high;
436         count_spte_clear(sptep, spte);
437
438         return orig.spte;
439 }
440
441 /*
442  * The idea using the light way get the spte on x86_32 guest is from
443  * gup_get_pte(arch/x86/mm/gup.c).
444  *
445  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446  * coalesces them and we are running out of the MMU lock.  Therefore
447  * we need to protect against in-progress updates of the spte.
448  *
449  * Reading the spte while an update is in progress may get the old value
450  * for the high part of the spte.  The race is fine for a present->non-present
451  * change (because the high part of the spte is ignored for non-present spte),
452  * but for a present->present change we must reread the spte.
453  *
454  * All such changes are done in two steps (present->non-present and
455  * non-present->present), hence it is enough to count the number of
456  * present->non-present updates: if it changed while reading the spte,
457  * we might have hit the race.  This is done using clear_spte_count.
458  */
459 static u64 __get_spte_lockless(u64 *sptep)
460 {
461         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
462         union split_spte spte, *orig = (union split_spte *)sptep;
463         int count;
464
465 retry:
466         count = sp->clear_spte_count;
467         smp_rmb();
468
469         spte.spte_low = orig->spte_low;
470         smp_rmb();
471
472         spte.spte_high = orig->spte_high;
473         smp_rmb();
474
475         if (unlikely(spte.spte_low != orig->spte_low ||
476               count != sp->clear_spte_count))
477                 goto retry;
478
479         return spte.spte;
480 }
481
482 static bool __check_direct_spte_mmio_pf(u64 spte)
483 {
484         union split_spte sspte = (union split_spte)spte;
485         u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487         /* It is valid if the spte is zapped. */
488         if (spte == 0ull)
489                 return true;
490
491         /* It is valid if the spte is being zapped. */
492         if (sspte.spte_low == 0ull &&
493             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494                 return true;
495
496         return false;
497 }
498 #endif
499
500 static bool spte_is_locklessly_modifiable(u64 spte)
501 {
502         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
504 }
505
506 static bool spte_has_volatile_bits(u64 spte)
507 {
508         /*
509          * Always atomicly update spte if it can be updated
510          * out of mmu-lock, it can ensure dirty bit is not lost,
511          * also, it can help us to get a stable is_writable_pte()
512          * to ensure tlb flush is not missed.
513          */
514         if (spte_is_locklessly_modifiable(spte))
515                 return true;
516
517         if (!shadow_accessed_mask)
518                 return false;
519
520         if (!is_shadow_present_pte(spte))
521                 return false;
522
523         if ((spte & shadow_accessed_mask) &&
524               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
525                 return false;
526
527         return true;
528 }
529
530 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531 {
532         return (old_spte & bit_mask) && !(new_spte & bit_mask);
533 }
534
535 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536 {
537         return (old_spte & bit_mask) != (new_spte & bit_mask);
538 }
539
540 /* Rules for using mmu_spte_set:
541  * Set the sptep from nonpresent to present.
542  * Note: the sptep being assigned *must* be either not present
543  * or in a state where the hardware will not attempt to update
544  * the spte.
545  */
546 static void mmu_spte_set(u64 *sptep, u64 new_spte)
547 {
548         WARN_ON(is_shadow_present_pte(*sptep));
549         __set_spte(sptep, new_spte);
550 }
551
552 /* Rules for using mmu_spte_update:
553  * Update the state bits, it means the mapped pfn is not changged.
554  *
555  * Whenever we overwrite a writable spte with a read-only one we
556  * should flush remote TLBs. Otherwise rmap_write_protect
557  * will find a read-only spte, even though the writable spte
558  * might be cached on a CPU's TLB, the return value indicates this
559  * case.
560  */
561 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
562 {
563         u64 old_spte = *sptep;
564         bool ret = false;
565
566         WARN_ON(!is_rmap_spte(new_spte));
567
568         if (!is_shadow_present_pte(old_spte)) {
569                 mmu_spte_set(sptep, new_spte);
570                 return ret;
571         }
572
573         if (!spte_has_volatile_bits(old_spte))
574                 __update_clear_spte_fast(sptep, new_spte);
575         else
576                 old_spte = __update_clear_spte_slow(sptep, new_spte);
577
578         /*
579          * For the spte updated out of mmu-lock is safe, since
580          * we always atomicly update it, see the comments in
581          * spte_has_volatile_bits().
582          */
583         if (spte_is_locklessly_modifiable(old_spte) &&
584               !is_writable_pte(new_spte))
585                 ret = true;
586
587         if (!shadow_accessed_mask)
588                 return ret;
589
590         /*
591          * Flush TLB when accessed/dirty bits are changed in the page tables,
592          * to guarantee consistency between TLB and page tables.
593          */
594         if (spte_is_bit_changed(old_spte, new_spte,
595                                 shadow_accessed_mask | shadow_dirty_mask))
596                 ret = true;
597
598         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
602
603         return ret;
604 }
605
606 /*
607  * Rules for using mmu_spte_clear_track_bits:
608  * It sets the sptep from present to nonpresent, and track the
609  * state bits, it is used to clear the last level sptep.
610  */
611 static int mmu_spte_clear_track_bits(u64 *sptep)
612 {
613         pfn_t pfn;
614         u64 old_spte = *sptep;
615
616         if (!spte_has_volatile_bits(old_spte))
617                 __update_clear_spte_fast(sptep, 0ull);
618         else
619                 old_spte = __update_clear_spte_slow(sptep, 0ull);
620
621         if (!is_rmap_spte(old_spte))
622                 return 0;
623
624         pfn = spte_to_pfn(old_spte);
625
626         /*
627          * KVM does not hold the refcount of the page used by
628          * kvm mmu, before reclaiming the page, we should
629          * unmap it from mmu first.
630          */
631         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
632
633         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634                 kvm_set_pfn_accessed(pfn);
635         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636                 kvm_set_pfn_dirty(pfn);
637         return 1;
638 }
639
640 /*
641  * Rules for using mmu_spte_clear_no_track:
642  * Directly clear spte without caring the state bits of sptep,
643  * it is used to set the upper level spte.
644  */
645 static void mmu_spte_clear_no_track(u64 *sptep)
646 {
647         __update_clear_spte_fast(sptep, 0ull);
648 }
649
650 static u64 mmu_spte_get_lockless(u64 *sptep)
651 {
652         return __get_spte_lockless(sptep);
653 }
654
655 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656 {
657         /*
658          * Prevent page table teardown by making any free-er wait during
659          * kvm_flush_remote_tlbs() IPI to all active vcpus.
660          */
661         local_irq_disable();
662         vcpu->mode = READING_SHADOW_PAGE_TABLES;
663         /*
664          * Make sure a following spte read is not reordered ahead of the write
665          * to vcpu->mode.
666          */
667         smp_mb();
668 }
669
670 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671 {
672         /*
673          * Make sure the write to vcpu->mode is not reordered in front of
674          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
675          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676          */
677         smp_mb();
678         vcpu->mode = OUTSIDE_GUEST_MODE;
679         local_irq_enable();
680 }
681
682 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
683                                   struct kmem_cache *base_cache, int min)
684 {
685         void *obj;
686
687         if (cache->nobjs >= min)
688                 return 0;
689         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
690                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
691                 if (!obj)
692                         return -ENOMEM;
693                 cache->objects[cache->nobjs++] = obj;
694         }
695         return 0;
696 }
697
698 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699 {
700         return cache->nobjs;
701 }
702
703 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704                                   struct kmem_cache *cache)
705 {
706         while (mc->nobjs)
707                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
708 }
709
710 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
711                                        int min)
712 {
713         void *page;
714
715         if (cache->nobjs >= min)
716                 return 0;
717         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
718                 page = (void *)__get_free_page(GFP_KERNEL);
719                 if (!page)
720                         return -ENOMEM;
721                 cache->objects[cache->nobjs++] = page;
722         }
723         return 0;
724 }
725
726 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727 {
728         while (mc->nobjs)
729                 free_page((unsigned long)mc->objects[--mc->nobjs]);
730 }
731
732 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
733 {
734         int r;
735
736         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
737                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
738         if (r)
739                 goto out;
740         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
741         if (r)
742                 goto out;
743         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
744                                    mmu_page_header_cache, 4);
745 out:
746         return r;
747 }
748
749 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750 {
751         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752                                 pte_list_desc_cache);
753         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
754         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755                                 mmu_page_header_cache);
756 }
757
758 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
759 {
760         void *p;
761
762         BUG_ON(!mc->nobjs);
763         p = mc->objects[--mc->nobjs];
764         return p;
765 }
766
767 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
768 {
769         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
770 }
771
772 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
773 {
774         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
775 }
776
777 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778 {
779         if (!sp->role.direct)
780                 return sp->gfns[index];
781
782         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783 }
784
785 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786 {
787         if (sp->role.direct)
788                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789         else
790                 sp->gfns[index] = gfn;
791 }
792
793 /*
794  * Return the pointer to the large page information for a given gfn,
795  * handling slots that are not large page aligned.
796  */
797 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798                                               struct kvm_memory_slot *slot,
799                                               int level)
800 {
801         unsigned long idx;
802
803         idx = gfn_to_index(gfn, slot->base_gfn, level);
804         return &slot->arch.lpage_info[level - 2][idx];
805 }
806
807 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
808 {
809         struct kvm_memslots *slots;
810         struct kvm_memory_slot *slot;
811         struct kvm_lpage_info *linfo;
812         gfn_t gfn;
813         int i;
814
815         gfn = sp->gfn;
816         slots = kvm_memslots_for_spte_role(kvm, sp->role);
817         slot = __gfn_to_memslot(slots, gfn);
818         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
819                 linfo = lpage_info_slot(gfn, slot, i);
820                 linfo->write_count += 1;
821         }
822         kvm->arch.indirect_shadow_pages++;
823 }
824
825 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
826 {
827         struct kvm_memslots *slots;
828         struct kvm_memory_slot *slot;
829         struct kvm_lpage_info *linfo;
830         gfn_t gfn;
831         int i;
832
833         gfn = sp->gfn;
834         slots = kvm_memslots_for_spte_role(kvm, sp->role);
835         slot = __gfn_to_memslot(slots, gfn);
836         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
837                 linfo = lpage_info_slot(gfn, slot, i);
838                 linfo->write_count -= 1;
839                 WARN_ON(linfo->write_count < 0);
840         }
841         kvm->arch.indirect_shadow_pages--;
842 }
843
844 static int has_wrprotected_page(struct kvm_vcpu *vcpu,
845                                 gfn_t gfn,
846                                 int level)
847 {
848         struct kvm_memory_slot *slot;
849         struct kvm_lpage_info *linfo;
850
851         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
852         if (slot) {
853                 linfo = lpage_info_slot(gfn, slot, level);
854                 return linfo->write_count;
855         }
856
857         return 1;
858 }
859
860 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
861 {
862         unsigned long page_size;
863         int i, ret = 0;
864
865         page_size = kvm_host_page_size(kvm, gfn);
866
867         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
868                 if (page_size >= KVM_HPAGE_SIZE(i))
869                         ret = i;
870                 else
871                         break;
872         }
873
874         return ret;
875 }
876
877 static struct kvm_memory_slot *
878 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
879                             bool no_dirty_log)
880 {
881         struct kvm_memory_slot *slot;
882
883         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
884         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
885               (no_dirty_log && slot->dirty_bitmap))
886                 slot = NULL;
887
888         return slot;
889 }
890
891 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
892 {
893         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
894 }
895
896 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
897 {
898         int host_level, level, max_level;
899
900         host_level = host_mapping_level(vcpu->kvm, large_gfn);
901
902         if (host_level == PT_PAGE_TABLE_LEVEL)
903                 return host_level;
904
905         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
906
907         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
908                 if (has_wrprotected_page(vcpu, large_gfn, level))
909                         break;
910
911         return level - 1;
912 }
913
914 /*
915  * Pte mapping structures:
916  *
917  * If pte_list bit zero is zero, then pte_list point to the spte.
918  *
919  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
920  * pte_list_desc containing more mappings.
921  *
922  * Returns the number of pte entries before the spte was added or zero if
923  * the spte was not added.
924  *
925  */
926 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
927                         unsigned long *pte_list)
928 {
929         struct pte_list_desc *desc;
930         int i, count = 0;
931
932         if (!*pte_list) {
933                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
934                 *pte_list = (unsigned long)spte;
935         } else if (!(*pte_list & 1)) {
936                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
937                 desc = mmu_alloc_pte_list_desc(vcpu);
938                 desc->sptes[0] = (u64 *)*pte_list;
939                 desc->sptes[1] = spte;
940                 *pte_list = (unsigned long)desc | 1;
941                 ++count;
942         } else {
943                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
944                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
945                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
946                         desc = desc->more;
947                         count += PTE_LIST_EXT;
948                 }
949                 if (desc->sptes[PTE_LIST_EXT-1]) {
950                         desc->more = mmu_alloc_pte_list_desc(vcpu);
951                         desc = desc->more;
952                 }
953                 for (i = 0; desc->sptes[i]; ++i)
954                         ++count;
955                 desc->sptes[i] = spte;
956         }
957         return count;
958 }
959
960 static void
961 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
962                            int i, struct pte_list_desc *prev_desc)
963 {
964         int j;
965
966         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
967                 ;
968         desc->sptes[i] = desc->sptes[j];
969         desc->sptes[j] = NULL;
970         if (j != 0)
971                 return;
972         if (!prev_desc && !desc->more)
973                 *pte_list = (unsigned long)desc->sptes[0];
974         else
975                 if (prev_desc)
976                         prev_desc->more = desc->more;
977                 else
978                         *pte_list = (unsigned long)desc->more | 1;
979         mmu_free_pte_list_desc(desc);
980 }
981
982 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
983 {
984         struct pte_list_desc *desc;
985         struct pte_list_desc *prev_desc;
986         int i;
987
988         if (!*pte_list) {
989                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
990                 BUG();
991         } else if (!(*pte_list & 1)) {
992                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
993                 if ((u64 *)*pte_list != spte) {
994                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
995                         BUG();
996                 }
997                 *pte_list = 0;
998         } else {
999                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1000                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1001                 prev_desc = NULL;
1002                 while (desc) {
1003                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1004                                 if (desc->sptes[i] == spte) {
1005                                         pte_list_desc_remove_entry(pte_list,
1006                                                                desc, i,
1007                                                                prev_desc);
1008                                         return;
1009                                 }
1010                         prev_desc = desc;
1011                         desc = desc->more;
1012                 }
1013                 pr_err("pte_list_remove: %p many->many\n", spte);
1014                 BUG();
1015         }
1016 }
1017
1018 typedef void (*pte_list_walk_fn) (u64 *spte);
1019 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1020 {
1021         struct pte_list_desc *desc;
1022         int i;
1023
1024         if (!*pte_list)
1025                 return;
1026
1027         if (!(*pte_list & 1))
1028                 return fn((u64 *)*pte_list);
1029
1030         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1031         while (desc) {
1032                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1033                         fn(desc->sptes[i]);
1034                 desc = desc->more;
1035         }
1036 }
1037
1038 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1039                                     struct kvm_memory_slot *slot)
1040 {
1041         unsigned long idx;
1042
1043         idx = gfn_to_index(gfn, slot->base_gfn, level);
1044         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1045 }
1046
1047 /*
1048  * Take gfn and return the reverse mapping to it.
1049  */
1050 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, struct kvm_mmu_page *sp)
1051 {
1052         struct kvm_memslots *slots;
1053         struct kvm_memory_slot *slot;
1054
1055         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1056         slot = __gfn_to_memslot(slots, gfn);
1057         return __gfn_to_rmap(gfn, sp->role.level, slot);
1058 }
1059
1060 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1061 {
1062         struct kvm_mmu_memory_cache *cache;
1063
1064         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1065         return mmu_memory_cache_free_objects(cache);
1066 }
1067
1068 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1069 {
1070         struct kvm_mmu_page *sp;
1071         unsigned long *rmapp;
1072
1073         sp = page_header(__pa(spte));
1074         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1075         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1076         return pte_list_add(vcpu, spte, rmapp);
1077 }
1078
1079 static void rmap_remove(struct kvm *kvm, u64 *spte)
1080 {
1081         struct kvm_mmu_page *sp;
1082         gfn_t gfn;
1083         unsigned long *rmapp;
1084
1085         sp = page_header(__pa(spte));
1086         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1087         rmapp = gfn_to_rmap(kvm, gfn, sp);
1088         pte_list_remove(spte, rmapp);
1089 }
1090
1091 /*
1092  * Used by the following functions to iterate through the sptes linked by a
1093  * rmap.  All fields are private and not assumed to be used outside.
1094  */
1095 struct rmap_iterator {
1096         /* private fields */
1097         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1098         int pos;                        /* index of the sptep */
1099 };
1100
1101 /*
1102  * Iteration must be started by this function.  This should also be used after
1103  * removing/dropping sptes from the rmap link because in such cases the
1104  * information in the itererator may not be valid.
1105  *
1106  * Returns sptep if found, NULL otherwise.
1107  */
1108 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1109 {
1110         if (!rmap)
1111                 return NULL;
1112
1113         if (!(rmap & 1)) {
1114                 iter->desc = NULL;
1115                 return (u64 *)rmap;
1116         }
1117
1118         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1119         iter->pos = 0;
1120         return iter->desc->sptes[iter->pos];
1121 }
1122
1123 /*
1124  * Must be used with a valid iterator: e.g. after rmap_get_first().
1125  *
1126  * Returns sptep if found, NULL otherwise.
1127  */
1128 static u64 *rmap_get_next(struct rmap_iterator *iter)
1129 {
1130         if (iter->desc) {
1131                 if (iter->pos < PTE_LIST_EXT - 1) {
1132                         u64 *sptep;
1133
1134                         ++iter->pos;
1135                         sptep = iter->desc->sptes[iter->pos];
1136                         if (sptep)
1137                                 return sptep;
1138                 }
1139
1140                 iter->desc = iter->desc->more;
1141
1142                 if (iter->desc) {
1143                         iter->pos = 0;
1144                         /* desc->sptes[0] cannot be NULL */
1145                         return iter->desc->sptes[iter->pos];
1146                 }
1147         }
1148
1149         return NULL;
1150 }
1151
1152 #define for_each_rmap_spte(_rmap_, _iter_, _spte_)                          \
1153            for (_spte_ = rmap_get_first(*_rmap_, _iter_);                   \
1154                 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;});  \
1155                         _spte_ = rmap_get_next(_iter_))
1156
1157 static void drop_spte(struct kvm *kvm, u64 *sptep)
1158 {
1159         if (mmu_spte_clear_track_bits(sptep))
1160                 rmap_remove(kvm, sptep);
1161 }
1162
1163
1164 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1165 {
1166         if (is_large_pte(*sptep)) {
1167                 WARN_ON(page_header(__pa(sptep))->role.level ==
1168                         PT_PAGE_TABLE_LEVEL);
1169                 drop_spte(kvm, sptep);
1170                 --kvm->stat.lpages;
1171                 return true;
1172         }
1173
1174         return false;
1175 }
1176
1177 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1178 {
1179         if (__drop_large_spte(vcpu->kvm, sptep))
1180                 kvm_flush_remote_tlbs(vcpu->kvm);
1181 }
1182
1183 /*
1184  * Write-protect on the specified @sptep, @pt_protect indicates whether
1185  * spte write-protection is caused by protecting shadow page table.
1186  *
1187  * Note: write protection is difference between dirty logging and spte
1188  * protection:
1189  * - for dirty logging, the spte can be set to writable at anytime if
1190  *   its dirty bitmap is properly set.
1191  * - for spte protection, the spte can be writable only after unsync-ing
1192  *   shadow page.
1193  *
1194  * Return true if tlb need be flushed.
1195  */
1196 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1197 {
1198         u64 spte = *sptep;
1199
1200         if (!is_writable_pte(spte) &&
1201               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1202                 return false;
1203
1204         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1205
1206         if (pt_protect)
1207                 spte &= ~SPTE_MMU_WRITEABLE;
1208         spte = spte & ~PT_WRITABLE_MASK;
1209
1210         return mmu_spte_update(sptep, spte);
1211 }
1212
1213 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1214                                  bool pt_protect)
1215 {
1216         u64 *sptep;
1217         struct rmap_iterator iter;
1218         bool flush = false;
1219
1220         for_each_rmap_spte(rmapp, &iter, sptep)
1221                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1222
1223         return flush;
1224 }
1225
1226 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1227 {
1228         u64 spte = *sptep;
1229
1230         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1231
1232         spte &= ~shadow_dirty_mask;
1233
1234         return mmu_spte_update(sptep, spte);
1235 }
1236
1237 static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1238 {
1239         u64 *sptep;
1240         struct rmap_iterator iter;
1241         bool flush = false;
1242
1243         for_each_rmap_spte(rmapp, &iter, sptep)
1244                 flush |= spte_clear_dirty(kvm, sptep);
1245
1246         return flush;
1247 }
1248
1249 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1250 {
1251         u64 spte = *sptep;
1252
1253         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1254
1255         spte |= shadow_dirty_mask;
1256
1257         return mmu_spte_update(sptep, spte);
1258 }
1259
1260 static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1261 {
1262         u64 *sptep;
1263         struct rmap_iterator iter;
1264         bool flush = false;
1265
1266         for_each_rmap_spte(rmapp, &iter, sptep)
1267                 flush |= spte_set_dirty(kvm, sptep);
1268
1269         return flush;
1270 }
1271
1272 /**
1273  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1274  * @kvm: kvm instance
1275  * @slot: slot to protect
1276  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1277  * @mask: indicates which pages we should protect
1278  *
1279  * Used when we do not need to care about huge page mappings: e.g. during dirty
1280  * logging we do not have any such mappings.
1281  */
1282 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1283                                      struct kvm_memory_slot *slot,
1284                                      gfn_t gfn_offset, unsigned long mask)
1285 {
1286         unsigned long *rmapp;
1287
1288         while (mask) {
1289                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1290                                       PT_PAGE_TABLE_LEVEL, slot);
1291                 __rmap_write_protect(kvm, rmapp, false);
1292
1293                 /* clear the first set bit */
1294                 mask &= mask - 1;
1295         }
1296 }
1297
1298 /**
1299  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1300  * @kvm: kvm instance
1301  * @slot: slot to clear D-bit
1302  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303  * @mask: indicates which pages we should clear D-bit
1304  *
1305  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1306  */
1307 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1308                                      struct kvm_memory_slot *slot,
1309                                      gfn_t gfn_offset, unsigned long mask)
1310 {
1311         unsigned long *rmapp;
1312
1313         while (mask) {
1314                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1315                                       PT_PAGE_TABLE_LEVEL, slot);
1316                 __rmap_clear_dirty(kvm, rmapp);
1317
1318                 /* clear the first set bit */
1319                 mask &= mask - 1;
1320         }
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1323
1324 /**
1325  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1326  * PT level pages.
1327  *
1328  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1329  * enable dirty logging for them.
1330  *
1331  * Used when we do not need to care about huge page mappings: e.g. during dirty
1332  * logging we do not have any such mappings.
1333  */
1334 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1335                                 struct kvm_memory_slot *slot,
1336                                 gfn_t gfn_offset, unsigned long mask)
1337 {
1338         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1339                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1340                                 mask);
1341         else
1342                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1343 }
1344
1345 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1346 {
1347         struct kvm_memory_slot *slot;
1348         unsigned long *rmapp;
1349         int i;
1350         bool write_protected = false;
1351
1352         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1353
1354         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1355                 rmapp = __gfn_to_rmap(gfn, i, slot);
1356                 write_protected |= __rmap_write_protect(vcpu->kvm, rmapp, true);
1357         }
1358
1359         return write_protected;
1360 }
1361
1362 static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
1363 {
1364         u64 *sptep;
1365         struct rmap_iterator iter;
1366         bool flush = false;
1367
1368         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1369                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1370                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1371
1372                 drop_spte(kvm, sptep);
1373                 flush = true;
1374         }
1375
1376         return flush;
1377 }
1378
1379 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1380                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1381                            unsigned long data)
1382 {
1383         return kvm_zap_rmapp(kvm, rmapp);
1384 }
1385
1386 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1387                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1388                              unsigned long data)
1389 {
1390         u64 *sptep;
1391         struct rmap_iterator iter;
1392         int need_flush = 0;
1393         u64 new_spte;
1394         pte_t *ptep = (pte_t *)data;
1395         pfn_t new_pfn;
1396
1397         WARN_ON(pte_huge(*ptep));
1398         new_pfn = pte_pfn(*ptep);
1399
1400 restart:
1401         for_each_rmap_spte(rmapp, &iter, sptep) {
1402                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1403                              sptep, *sptep, gfn, level);
1404
1405                 need_flush = 1;
1406
1407                 if (pte_write(*ptep)) {
1408                         drop_spte(kvm, sptep);
1409                         goto restart;
1410                 } else {
1411                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1412                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1413
1414                         new_spte &= ~PT_WRITABLE_MASK;
1415                         new_spte &= ~SPTE_HOST_WRITEABLE;
1416                         new_spte &= ~shadow_accessed_mask;
1417
1418                         mmu_spte_clear_track_bits(sptep);
1419                         mmu_spte_set(sptep, new_spte);
1420                 }
1421         }
1422
1423         if (need_flush)
1424                 kvm_flush_remote_tlbs(kvm);
1425
1426         return 0;
1427 }
1428
1429 struct slot_rmap_walk_iterator {
1430         /* input fields. */
1431         struct kvm_memory_slot *slot;
1432         gfn_t start_gfn;
1433         gfn_t end_gfn;
1434         int start_level;
1435         int end_level;
1436
1437         /* output fields. */
1438         gfn_t gfn;
1439         unsigned long *rmap;
1440         int level;
1441
1442         /* private field. */
1443         unsigned long *end_rmap;
1444 };
1445
1446 static void
1447 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1448 {
1449         iterator->level = level;
1450         iterator->gfn = iterator->start_gfn;
1451         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1452         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1453                                            iterator->slot);
1454 }
1455
1456 static void
1457 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1458                     struct kvm_memory_slot *slot, int start_level,
1459                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1460 {
1461         iterator->slot = slot;
1462         iterator->start_level = start_level;
1463         iterator->end_level = end_level;
1464         iterator->start_gfn = start_gfn;
1465         iterator->end_gfn = end_gfn;
1466
1467         rmap_walk_init_level(iterator, iterator->start_level);
1468 }
1469
1470 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1471 {
1472         return !!iterator->rmap;
1473 }
1474
1475 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1476 {
1477         if (++iterator->rmap <= iterator->end_rmap) {
1478                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1479                 return;
1480         }
1481
1482         if (++iterator->level > iterator->end_level) {
1483                 iterator->rmap = NULL;
1484                 return;
1485         }
1486
1487         rmap_walk_init_level(iterator, iterator->level);
1488 }
1489
1490 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1491            _start_gfn, _end_gfn, _iter_)                                \
1492         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1493                                  _end_level_, _start_gfn, _end_gfn);    \
1494              slot_rmap_walk_okay(_iter_);                               \
1495              slot_rmap_walk_next(_iter_))
1496
1497 static int kvm_handle_hva_range(struct kvm *kvm,
1498                                 unsigned long start,
1499                                 unsigned long end,
1500                                 unsigned long data,
1501                                 int (*handler)(struct kvm *kvm,
1502                                                unsigned long *rmapp,
1503                                                struct kvm_memory_slot *slot,
1504                                                gfn_t gfn,
1505                                                int level,
1506                                                unsigned long data))
1507 {
1508         struct kvm_memslots *slots;
1509         struct kvm_memory_slot *memslot;
1510         struct slot_rmap_walk_iterator iterator;
1511         int ret = 0;
1512         int i;
1513
1514         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1515                 slots = __kvm_memslots(kvm, i);
1516                 kvm_for_each_memslot(memslot, slots) {
1517                         unsigned long hva_start, hva_end;
1518                         gfn_t gfn_start, gfn_end;
1519
1520                         hva_start = max(start, memslot->userspace_addr);
1521                         hva_end = min(end, memslot->userspace_addr +
1522                                       (memslot->npages << PAGE_SHIFT));
1523                         if (hva_start >= hva_end)
1524                                 continue;
1525                         /*
1526                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1527                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1528                          */
1529                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1530                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1531
1532                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1533                                                  PT_MAX_HUGEPAGE_LEVEL,
1534                                                  gfn_start, gfn_end - 1,
1535                                                  &iterator)
1536                                 ret |= handler(kvm, iterator.rmap, memslot,
1537                                                iterator.gfn, iterator.level, data);
1538                 }
1539         }
1540
1541         return ret;
1542 }
1543
1544 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1545                           unsigned long data,
1546                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1547                                          struct kvm_memory_slot *slot,
1548                                          gfn_t gfn, int level,
1549                                          unsigned long data))
1550 {
1551         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1552 }
1553
1554 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1555 {
1556         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1557 }
1558
1559 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1560 {
1561         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1562 }
1563
1564 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1565 {
1566         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1567 }
1568
1569 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1570                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1571                          unsigned long data)
1572 {
1573         u64 *sptep;
1574         struct rmap_iterator uninitialized_var(iter);
1575         int young = 0;
1576
1577         BUG_ON(!shadow_accessed_mask);
1578
1579         for_each_rmap_spte(rmapp, &iter, sptep)
1580                 if (*sptep & shadow_accessed_mask) {
1581                         young = 1;
1582                         clear_bit((ffs(shadow_accessed_mask) - 1),
1583                                  (unsigned long *)sptep);
1584                 }
1585
1586         trace_kvm_age_page(gfn, level, slot, young);
1587         return young;
1588 }
1589
1590 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1591                               struct kvm_memory_slot *slot, gfn_t gfn,
1592                               int level, unsigned long data)
1593 {
1594         u64 *sptep;
1595         struct rmap_iterator iter;
1596         int young = 0;
1597
1598         /*
1599          * If there's no access bit in the secondary pte set by the
1600          * hardware it's up to gup-fast/gup to set the access bit in
1601          * the primary pte or in the page structure.
1602          */
1603         if (!shadow_accessed_mask)
1604                 goto out;
1605
1606         for_each_rmap_spte(rmapp, &iter, sptep)
1607                 if (*sptep & shadow_accessed_mask) {
1608                         young = 1;
1609                         break;
1610                 }
1611 out:
1612         return young;
1613 }
1614
1615 #define RMAP_RECYCLE_THRESHOLD 1000
1616
1617 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1618 {
1619         unsigned long *rmapp;
1620         struct kvm_mmu_page *sp;
1621
1622         sp = page_header(__pa(spte));
1623
1624         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp);
1625
1626         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
1627         kvm_flush_remote_tlbs(vcpu->kvm);
1628 }
1629
1630 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1631 {
1632         /*
1633          * In case of absence of EPT Access and Dirty Bits supports,
1634          * emulate the accessed bit for EPT, by checking if this page has
1635          * an EPT mapping, and clearing it if it does. On the next access,
1636          * a new EPT mapping will be established.
1637          * This has some overhead, but not as much as the cost of swapping
1638          * out actively used pages or breaking up actively used hugepages.
1639          */
1640         if (!shadow_accessed_mask) {
1641                 /*
1642                  * We are holding the kvm->mmu_lock, and we are blowing up
1643                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1644                  * This is correct as long as we don't decouple the mmu_lock
1645                  * protected regions (like invalidate_range_start|end does).
1646                  */
1647                 kvm->mmu_notifier_seq++;
1648                 return kvm_handle_hva_range(kvm, start, end, 0,
1649                                             kvm_unmap_rmapp);
1650         }
1651
1652         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1653 }
1654
1655 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1656 {
1657         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1658 }
1659
1660 #ifdef MMU_DEBUG
1661 static int is_empty_shadow_page(u64 *spt)
1662 {
1663         u64 *pos;
1664         u64 *end;
1665
1666         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1667                 if (is_shadow_present_pte(*pos)) {
1668                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1669                                pos, *pos);
1670                         return 0;
1671                 }
1672         return 1;
1673 }
1674 #endif
1675
1676 /*
1677  * This value is the sum of all of the kvm instances's
1678  * kvm->arch.n_used_mmu_pages values.  We need a global,
1679  * aggregate version in order to make the slab shrinker
1680  * faster
1681  */
1682 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1683 {
1684         kvm->arch.n_used_mmu_pages += nr;
1685         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1686 }
1687
1688 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1689 {
1690         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1691         hlist_del(&sp->hash_link);
1692         list_del(&sp->link);
1693         free_page((unsigned long)sp->spt);
1694         if (!sp->role.direct)
1695                 free_page((unsigned long)sp->gfns);
1696         kmem_cache_free(mmu_page_header_cache, sp);
1697 }
1698
1699 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1700 {
1701         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1702 }
1703
1704 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1705                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1706 {
1707         if (!parent_pte)
1708                 return;
1709
1710         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1711 }
1712
1713 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1714                                        u64 *parent_pte)
1715 {
1716         pte_list_remove(parent_pte, &sp->parent_ptes);
1717 }
1718
1719 static void drop_parent_pte(struct kvm_mmu_page *sp,
1720                             u64 *parent_pte)
1721 {
1722         mmu_page_remove_parent_pte(sp, parent_pte);
1723         mmu_spte_clear_no_track(parent_pte);
1724 }
1725
1726 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1727                                                u64 *parent_pte, int direct)
1728 {
1729         struct kvm_mmu_page *sp;
1730
1731         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1732         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1733         if (!direct)
1734                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1735         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1736
1737         /*
1738          * The active_mmu_pages list is the FIFO list, do not move the
1739          * page until it is zapped. kvm_zap_obsolete_pages depends on
1740          * this feature. See the comments in kvm_zap_obsolete_pages().
1741          */
1742         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1743         sp->parent_ptes = 0;
1744         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1745         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1746         return sp;
1747 }
1748
1749 static void mark_unsync(u64 *spte);
1750 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1751 {
1752         pte_list_walk(&sp->parent_ptes, mark_unsync);
1753 }
1754
1755 static void mark_unsync(u64 *spte)
1756 {
1757         struct kvm_mmu_page *sp;
1758         unsigned int index;
1759
1760         sp = page_header(__pa(spte));
1761         index = spte - sp->spt;
1762         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1763                 return;
1764         if (sp->unsync_children++)
1765                 return;
1766         kvm_mmu_mark_parents_unsync(sp);
1767 }
1768
1769 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1770                                struct kvm_mmu_page *sp)
1771 {
1772         return 1;
1773 }
1774
1775 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1776 {
1777 }
1778
1779 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1780                                  struct kvm_mmu_page *sp, u64 *spte,
1781                                  const void *pte)
1782 {
1783         WARN_ON(1);
1784 }
1785
1786 #define KVM_PAGE_ARRAY_NR 16
1787
1788 struct kvm_mmu_pages {
1789         struct mmu_page_and_offset {
1790                 struct kvm_mmu_page *sp;
1791                 unsigned int idx;
1792         } page[KVM_PAGE_ARRAY_NR];
1793         unsigned int nr;
1794 };
1795
1796 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1797                          int idx)
1798 {
1799         int i;
1800
1801         if (sp->unsync)
1802                 for (i=0; i < pvec->nr; i++)
1803                         if (pvec->page[i].sp == sp)
1804                                 return 0;
1805
1806         pvec->page[pvec->nr].sp = sp;
1807         pvec->page[pvec->nr].idx = idx;
1808         pvec->nr++;
1809         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1810 }
1811
1812 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1813                            struct kvm_mmu_pages *pvec)
1814 {
1815         int i, ret, nr_unsync_leaf = 0;
1816
1817         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1818                 struct kvm_mmu_page *child;
1819                 u64 ent = sp->spt[i];
1820
1821                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1822                         goto clear_child_bitmap;
1823
1824                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1825
1826                 if (child->unsync_children) {
1827                         if (mmu_pages_add(pvec, child, i))
1828                                 return -ENOSPC;
1829
1830                         ret = __mmu_unsync_walk(child, pvec);
1831                         if (!ret)
1832                                 goto clear_child_bitmap;
1833                         else if (ret > 0)
1834                                 nr_unsync_leaf += ret;
1835                         else
1836                                 return ret;
1837                 } else if (child->unsync) {
1838                         nr_unsync_leaf++;
1839                         if (mmu_pages_add(pvec, child, i))
1840                                 return -ENOSPC;
1841                 } else
1842                          goto clear_child_bitmap;
1843
1844                 continue;
1845
1846 clear_child_bitmap:
1847                 __clear_bit(i, sp->unsync_child_bitmap);
1848                 sp->unsync_children--;
1849                 WARN_ON((int)sp->unsync_children < 0);
1850         }
1851
1852
1853         return nr_unsync_leaf;
1854 }
1855
1856 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1857                            struct kvm_mmu_pages *pvec)
1858 {
1859         if (!sp->unsync_children)
1860                 return 0;
1861
1862         mmu_pages_add(pvec, sp, 0);
1863         return __mmu_unsync_walk(sp, pvec);
1864 }
1865
1866 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1867 {
1868         WARN_ON(!sp->unsync);
1869         trace_kvm_mmu_sync_page(sp);
1870         sp->unsync = 0;
1871         --kvm->stat.mmu_unsync;
1872 }
1873
1874 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1875                                     struct list_head *invalid_list);
1876 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1877                                     struct list_head *invalid_list);
1878
1879 /*
1880  * NOTE: we should pay more attention on the zapped-obsolete page
1881  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1882  * since it has been deleted from active_mmu_pages but still can be found
1883  * at hast list.
1884  *
1885  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1886  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1887  * all the obsolete pages.
1888  */
1889 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1890         hlist_for_each_entry(_sp,                                       \
1891           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1892                 if ((_sp)->gfn != (_gfn)) {} else
1893
1894 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1895         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1896                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1897
1898 /* @sp->gfn should be write-protected at the call site */
1899 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1900                            struct list_head *invalid_list, bool clear_unsync)
1901 {
1902         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1903                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1904                 return 1;
1905         }
1906
1907         if (clear_unsync)
1908                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1909
1910         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1911                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1912                 return 1;
1913         }
1914
1915         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1916         return 0;
1917 }
1918
1919 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1920                                    struct kvm_mmu_page *sp)
1921 {
1922         LIST_HEAD(invalid_list);
1923         int ret;
1924
1925         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1926         if (ret)
1927                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1928
1929         return ret;
1930 }
1931
1932 #ifdef CONFIG_KVM_MMU_AUDIT
1933 #include "mmu_audit.c"
1934 #else
1935 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1936 static void mmu_audit_disable(void) { }
1937 #endif
1938
1939 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1940                          struct list_head *invalid_list)
1941 {
1942         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1943 }
1944
1945 /* @gfn should be write-protected at the call site */
1946 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1947 {
1948         struct kvm_mmu_page *s;
1949         LIST_HEAD(invalid_list);
1950         bool flush = false;
1951
1952         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1953                 if (!s->unsync)
1954                         continue;
1955
1956                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1957                 kvm_unlink_unsync_page(vcpu->kvm, s);
1958                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1959                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1960                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1961                         continue;
1962                 }
1963                 flush = true;
1964         }
1965
1966         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1967         if (flush)
1968                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1969 }
1970
1971 struct mmu_page_path {
1972         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1973         unsigned int idx[PT64_ROOT_LEVEL-1];
1974 };
1975
1976 #define for_each_sp(pvec, sp, parents, i)                       \
1977                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1978                         sp = pvec.page[i].sp;                   \
1979                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1980                         i = mmu_pages_next(&pvec, &parents, i))
1981
1982 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1983                           struct mmu_page_path *parents,
1984                           int i)
1985 {
1986         int n;
1987
1988         for (n = i+1; n < pvec->nr; n++) {
1989                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1990
1991                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1992                         parents->idx[0] = pvec->page[n].idx;
1993                         return n;
1994                 }
1995
1996                 parents->parent[sp->role.level-2] = sp;
1997                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1998         }
1999
2000         return n;
2001 }
2002
2003 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2004 {
2005         struct kvm_mmu_page *sp;
2006         unsigned int level = 0;
2007
2008         do {
2009                 unsigned int idx = parents->idx[level];
2010
2011                 sp = parents->parent[level];
2012                 if (!sp)
2013                         return;
2014
2015                 --sp->unsync_children;
2016                 WARN_ON((int)sp->unsync_children < 0);
2017                 __clear_bit(idx, sp->unsync_child_bitmap);
2018                 level++;
2019         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
2020 }
2021
2022 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2023                                struct mmu_page_path *parents,
2024                                struct kvm_mmu_pages *pvec)
2025 {
2026         parents->parent[parent->role.level-1] = NULL;
2027         pvec->nr = 0;
2028 }
2029
2030 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2031                               struct kvm_mmu_page *parent)
2032 {
2033         int i;
2034         struct kvm_mmu_page *sp;
2035         struct mmu_page_path parents;
2036         struct kvm_mmu_pages pages;
2037         LIST_HEAD(invalid_list);
2038
2039         kvm_mmu_pages_init(parent, &parents, &pages);
2040         while (mmu_unsync_walk(parent, &pages)) {
2041                 bool protected = false;
2042
2043                 for_each_sp(pages, sp, parents, i)
2044                         protected |= rmap_write_protect(vcpu, sp->gfn);
2045
2046                 if (protected)
2047                         kvm_flush_remote_tlbs(vcpu->kvm);
2048
2049                 for_each_sp(pages, sp, parents, i) {
2050                         kvm_sync_page(vcpu, sp, &invalid_list);
2051                         mmu_pages_clear_parents(&parents);
2052                 }
2053                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2054                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2055                 kvm_mmu_pages_init(parent, &parents, &pages);
2056         }
2057 }
2058
2059 static void init_shadow_page_table(struct kvm_mmu_page *sp)
2060 {
2061         int i;
2062
2063         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2064                 sp->spt[i] = 0ull;
2065 }
2066
2067 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2068 {
2069         sp->write_flooding_count = 0;
2070 }
2071
2072 static void clear_sp_write_flooding_count(u64 *spte)
2073 {
2074         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2075
2076         __clear_sp_write_flooding_count(sp);
2077 }
2078
2079 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2080 {
2081         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2082 }
2083
2084 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2085                                              gfn_t gfn,
2086                                              gva_t gaddr,
2087                                              unsigned level,
2088                                              int direct,
2089                                              unsigned access,
2090                                              u64 *parent_pte)
2091 {
2092         union kvm_mmu_page_role role;
2093         unsigned quadrant;
2094         struct kvm_mmu_page *sp;
2095         bool need_sync = false;
2096
2097         role = vcpu->arch.mmu.base_role;
2098         role.level = level;
2099         role.direct = direct;
2100         if (role.direct)
2101                 role.cr4_pae = 0;
2102         role.access = access;
2103         if (!vcpu->arch.mmu.direct_map
2104             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2105                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2106                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2107                 role.quadrant = quadrant;
2108         }
2109         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2110                 if (is_obsolete_sp(vcpu->kvm, sp))
2111                         continue;
2112
2113                 if (!need_sync && sp->unsync)
2114                         need_sync = true;
2115
2116                 if (sp->role.word != role.word)
2117                         continue;
2118
2119                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2120                         break;
2121
2122                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2123                 if (sp->unsync_children) {
2124                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2125                         kvm_mmu_mark_parents_unsync(sp);
2126                 } else if (sp->unsync)
2127                         kvm_mmu_mark_parents_unsync(sp);
2128
2129                 __clear_sp_write_flooding_count(sp);
2130                 trace_kvm_mmu_get_page(sp, false);
2131                 return sp;
2132         }
2133         ++vcpu->kvm->stat.mmu_cache_miss;
2134         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
2135         if (!sp)
2136                 return sp;
2137         sp->gfn = gfn;
2138         sp->role = role;
2139         hlist_add_head(&sp->hash_link,
2140                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2141         if (!direct) {
2142                 if (rmap_write_protect(vcpu, gfn))
2143                         kvm_flush_remote_tlbs(vcpu->kvm);
2144                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2145                         kvm_sync_pages(vcpu, gfn);
2146
2147                 account_shadowed(vcpu->kvm, sp);
2148         }
2149         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2150         init_shadow_page_table(sp);
2151         trace_kvm_mmu_get_page(sp, true);
2152         return sp;
2153 }
2154
2155 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156                              struct kvm_vcpu *vcpu, u64 addr)
2157 {
2158         iterator->addr = addr;
2159         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2160         iterator->level = vcpu->arch.mmu.shadow_root_level;
2161
2162         if (iterator->level == PT64_ROOT_LEVEL &&
2163             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2164             !vcpu->arch.mmu.direct_map)
2165                 --iterator->level;
2166
2167         if (iterator->level == PT32E_ROOT_LEVEL) {
2168                 iterator->shadow_addr
2169                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2170                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2171                 --iterator->level;
2172                 if (!iterator->shadow_addr)
2173                         iterator->level = 0;
2174         }
2175 }
2176
2177 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2178 {
2179         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2180                 return false;
2181
2182         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2183         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2184         return true;
2185 }
2186
2187 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2188                                u64 spte)
2189 {
2190         if (is_last_spte(spte, iterator->level)) {
2191                 iterator->level = 0;
2192                 return;
2193         }
2194
2195         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2196         --iterator->level;
2197 }
2198
2199 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2200 {
2201         return __shadow_walk_next(iterator, *iterator->sptep);
2202 }
2203
2204 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2205 {
2206         u64 spte;
2207
2208         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2209                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2210
2211         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2212                shadow_user_mask | shadow_x_mask;
2213
2214         if (accessed)
2215                 spte |= shadow_accessed_mask;
2216
2217         mmu_spte_set(sptep, spte);
2218 }
2219
2220 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2221                                    unsigned direct_access)
2222 {
2223         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2224                 struct kvm_mmu_page *child;
2225
2226                 /*
2227                  * For the direct sp, if the guest pte's dirty bit
2228                  * changed form clean to dirty, it will corrupt the
2229                  * sp's access: allow writable in the read-only sp,
2230                  * so we should update the spte at this point to get
2231                  * a new sp with the correct access.
2232                  */
2233                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2234                 if (child->role.access == direct_access)
2235                         return;
2236
2237                 drop_parent_pte(child, sptep);
2238                 kvm_flush_remote_tlbs(vcpu->kvm);
2239         }
2240 }
2241
2242 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2243                              u64 *spte)
2244 {
2245         u64 pte;
2246         struct kvm_mmu_page *child;
2247
2248         pte = *spte;
2249         if (is_shadow_present_pte(pte)) {
2250                 if (is_last_spte(pte, sp->role.level)) {
2251                         drop_spte(kvm, spte);
2252                         if (is_large_pte(pte))
2253                                 --kvm->stat.lpages;
2254                 } else {
2255                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2256                         drop_parent_pte(child, spte);
2257                 }
2258                 return true;
2259         }
2260
2261         if (is_mmio_spte(pte))
2262                 mmu_spte_clear_no_track(spte);
2263
2264         return false;
2265 }
2266
2267 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2268                                          struct kvm_mmu_page *sp)
2269 {
2270         unsigned i;
2271
2272         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2273                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2274 }
2275
2276 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2277 {
2278         mmu_page_remove_parent_pte(sp, parent_pte);
2279 }
2280
2281 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2282 {
2283         u64 *sptep;
2284         struct rmap_iterator iter;
2285
2286         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2287                 drop_parent_pte(sp, sptep);
2288 }
2289
2290 static int mmu_zap_unsync_children(struct kvm *kvm,
2291                                    struct kvm_mmu_page *parent,
2292                                    struct list_head *invalid_list)
2293 {
2294         int i, zapped = 0;
2295         struct mmu_page_path parents;
2296         struct kvm_mmu_pages pages;
2297
2298         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2299                 return 0;
2300
2301         kvm_mmu_pages_init(parent, &parents, &pages);
2302         while (mmu_unsync_walk(parent, &pages)) {
2303                 struct kvm_mmu_page *sp;
2304
2305                 for_each_sp(pages, sp, parents, i) {
2306                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2307                         mmu_pages_clear_parents(&parents);
2308                         zapped++;
2309                 }
2310                 kvm_mmu_pages_init(parent, &parents, &pages);
2311         }
2312
2313         return zapped;
2314 }
2315
2316 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2317                                     struct list_head *invalid_list)
2318 {
2319         int ret;
2320
2321         trace_kvm_mmu_prepare_zap_page(sp);
2322         ++kvm->stat.mmu_shadow_zapped;
2323         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2324         kvm_mmu_page_unlink_children(kvm, sp);
2325         kvm_mmu_unlink_parents(kvm, sp);
2326
2327         if (!sp->role.invalid && !sp->role.direct)
2328                 unaccount_shadowed(kvm, sp);
2329
2330         if (sp->unsync)
2331                 kvm_unlink_unsync_page(kvm, sp);
2332         if (!sp->root_count) {
2333                 /* Count self */
2334                 ret++;
2335                 list_move(&sp->link, invalid_list);
2336                 kvm_mod_used_mmu_pages(kvm, -1);
2337         } else {
2338                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2339
2340                 /*
2341                  * The obsolete pages can not be used on any vcpus.
2342                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2343                  */
2344                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2345                         kvm_reload_remote_mmus(kvm);
2346         }
2347
2348         sp->role.invalid = 1;
2349         return ret;
2350 }
2351
2352 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2353                                     struct list_head *invalid_list)
2354 {
2355         struct kvm_mmu_page *sp, *nsp;
2356
2357         if (list_empty(invalid_list))
2358                 return;
2359
2360         /*
2361          * wmb: make sure everyone sees our modifications to the page tables
2362          * rmb: make sure we see changes to vcpu->mode
2363          */
2364         smp_mb();
2365
2366         /*
2367          * Wait for all vcpus to exit guest mode and/or lockless shadow
2368          * page table walks.
2369          */
2370         kvm_flush_remote_tlbs(kvm);
2371
2372         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2373                 WARN_ON(!sp->role.invalid || sp->root_count);
2374                 kvm_mmu_free_page(sp);
2375         }
2376 }
2377
2378 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2379                                         struct list_head *invalid_list)
2380 {
2381         struct kvm_mmu_page *sp;
2382
2383         if (list_empty(&kvm->arch.active_mmu_pages))
2384                 return false;
2385
2386         sp = list_entry(kvm->arch.active_mmu_pages.prev,
2387                         struct kvm_mmu_page, link);
2388         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2389
2390         return true;
2391 }
2392
2393 /*
2394  * Changing the number of mmu pages allocated to the vm
2395  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2396  */
2397 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2398 {
2399         LIST_HEAD(invalid_list);
2400
2401         spin_lock(&kvm->mmu_lock);
2402
2403         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2404                 /* Need to free some mmu pages to achieve the goal. */
2405                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2406                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2407                                 break;
2408
2409                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2410                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2411         }
2412
2413         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2414
2415         spin_unlock(&kvm->mmu_lock);
2416 }
2417
2418 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2419 {
2420         struct kvm_mmu_page *sp;
2421         LIST_HEAD(invalid_list);
2422         int r;
2423
2424         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2425         r = 0;
2426         spin_lock(&kvm->mmu_lock);
2427         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2428                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2429                          sp->role.word);
2430                 r = 1;
2431                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2432         }
2433         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2434         spin_unlock(&kvm->mmu_lock);
2435
2436         return r;
2437 }
2438 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2439
2440 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2441 {
2442         trace_kvm_mmu_unsync_page(sp);
2443         ++vcpu->kvm->stat.mmu_unsync;
2444         sp->unsync = 1;
2445
2446         kvm_mmu_mark_parents_unsync(sp);
2447 }
2448
2449 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2450 {
2451         struct kvm_mmu_page *s;
2452
2453         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2454                 if (s->unsync)
2455                         continue;
2456                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2457                 __kvm_unsync_page(vcpu, s);
2458         }
2459 }
2460
2461 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2462                                   bool can_unsync)
2463 {
2464         struct kvm_mmu_page *s;
2465         bool need_unsync = false;
2466
2467         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2468                 if (!can_unsync)
2469                         return 1;
2470
2471                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2472                         return 1;
2473
2474                 if (!s->unsync)
2475                         need_unsync = true;
2476         }
2477         if (need_unsync)
2478                 kvm_unsync_pages(vcpu, gfn);
2479         return 0;
2480 }
2481
2482 static bool kvm_is_mmio_pfn(pfn_t pfn)
2483 {
2484         if (pfn_valid(pfn))
2485                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2486
2487         return true;
2488 }
2489
2490 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2491                     unsigned pte_access, int level,
2492                     gfn_t gfn, pfn_t pfn, bool speculative,
2493                     bool can_unsync, bool host_writable)
2494 {
2495         u64 spte;
2496         int ret = 0;
2497
2498         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2499                 return 0;
2500
2501         spte = PT_PRESENT_MASK;
2502         if (!speculative)
2503                 spte |= shadow_accessed_mask;
2504
2505         if (pte_access & ACC_EXEC_MASK)
2506                 spte |= shadow_x_mask;
2507         else
2508                 spte |= shadow_nx_mask;
2509
2510         if (pte_access & ACC_USER_MASK)
2511                 spte |= shadow_user_mask;
2512
2513         if (level > PT_PAGE_TABLE_LEVEL)
2514                 spte |= PT_PAGE_SIZE_MASK;
2515         if (tdp_enabled)
2516                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2517                         kvm_is_mmio_pfn(pfn));
2518
2519         if (host_writable)
2520                 spte |= SPTE_HOST_WRITEABLE;
2521         else
2522                 pte_access &= ~ACC_WRITE_MASK;
2523
2524         spte |= (u64)pfn << PAGE_SHIFT;
2525
2526         if (pte_access & ACC_WRITE_MASK) {
2527
2528                 /*
2529                  * Other vcpu creates new sp in the window between
2530                  * mapping_level() and acquiring mmu-lock. We can
2531                  * allow guest to retry the access, the mapping can
2532                  * be fixed if guest refault.
2533                  */
2534                 if (level > PT_PAGE_TABLE_LEVEL &&
2535                     has_wrprotected_page(vcpu, gfn, level))
2536                         goto done;
2537
2538                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2539
2540                 /*
2541                  * Optimization: for pte sync, if spte was writable the hash
2542                  * lookup is unnecessary (and expensive). Write protection
2543                  * is responsibility of mmu_get_page / kvm_sync_page.
2544                  * Same reasoning can be applied to dirty page accounting.
2545                  */
2546                 if (!can_unsync && is_writable_pte(*sptep))
2547                         goto set_pte;
2548
2549                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2550                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2551                                  __func__, gfn);
2552                         ret = 1;
2553                         pte_access &= ~ACC_WRITE_MASK;
2554                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2555                 }
2556         }
2557
2558         if (pte_access & ACC_WRITE_MASK) {
2559                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2560                 spte |= shadow_dirty_mask;
2561         }
2562
2563 set_pte:
2564         if (mmu_spte_update(sptep, spte))
2565                 kvm_flush_remote_tlbs(vcpu->kvm);
2566 done:
2567         return ret;
2568 }
2569
2570 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2571                          unsigned pte_access, int write_fault, int *emulate,
2572                          int level, gfn_t gfn, pfn_t pfn, bool speculative,
2573                          bool host_writable)
2574 {
2575         int was_rmapped = 0;
2576         int rmap_count;
2577
2578         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2579                  *sptep, write_fault, gfn);
2580
2581         if (is_rmap_spte(*sptep)) {
2582                 /*
2583                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2584                  * the parent of the now unreachable PTE.
2585                  */
2586                 if (level > PT_PAGE_TABLE_LEVEL &&
2587                     !is_large_pte(*sptep)) {
2588                         struct kvm_mmu_page *child;
2589                         u64 pte = *sptep;
2590
2591                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2592                         drop_parent_pte(child, sptep);
2593                         kvm_flush_remote_tlbs(vcpu->kvm);
2594                 } else if (pfn != spte_to_pfn(*sptep)) {
2595                         pgprintk("hfn old %llx new %llx\n",
2596                                  spte_to_pfn(*sptep), pfn);
2597                         drop_spte(vcpu->kvm, sptep);
2598                         kvm_flush_remote_tlbs(vcpu->kvm);
2599                 } else
2600                         was_rmapped = 1;
2601         }
2602
2603         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2604               true, host_writable)) {
2605                 if (write_fault)
2606                         *emulate = 1;
2607                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2608         }
2609
2610         if (unlikely(is_mmio_spte(*sptep) && emulate))
2611                 *emulate = 1;
2612
2613         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2614         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2615                  is_large_pte(*sptep)? "2MB" : "4kB",
2616                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2617                  *sptep, sptep);
2618         if (!was_rmapped && is_large_pte(*sptep))
2619                 ++vcpu->kvm->stat.lpages;
2620
2621         if (is_shadow_present_pte(*sptep)) {
2622                 if (!was_rmapped) {
2623                         rmap_count = rmap_add(vcpu, sptep, gfn);
2624                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2625                                 rmap_recycle(vcpu, sptep, gfn);
2626                 }
2627         }
2628
2629         kvm_release_pfn_clean(pfn);
2630 }
2631
2632 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2633                                      bool no_dirty_log)
2634 {
2635         struct kvm_memory_slot *slot;
2636
2637         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2638         if (!slot)
2639                 return KVM_PFN_ERR_FAULT;
2640
2641         return gfn_to_pfn_memslot_atomic(slot, gfn);
2642 }
2643
2644 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2645                                     struct kvm_mmu_page *sp,
2646                                     u64 *start, u64 *end)
2647 {
2648         struct page *pages[PTE_PREFETCH_NUM];
2649         struct kvm_memory_slot *slot;
2650         unsigned access = sp->role.access;
2651         int i, ret;
2652         gfn_t gfn;
2653
2654         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2655         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2656         if (!slot)
2657                 return -1;
2658
2659         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2660         if (ret <= 0)
2661                 return -1;
2662
2663         for (i = 0; i < ret; i++, gfn++, start++)
2664                 mmu_set_spte(vcpu, start, access, 0, NULL,
2665                              sp->role.level, gfn, page_to_pfn(pages[i]),
2666                              true, true);
2667
2668         return 0;
2669 }
2670
2671 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2672                                   struct kvm_mmu_page *sp, u64 *sptep)
2673 {
2674         u64 *spte, *start = NULL;
2675         int i;
2676
2677         WARN_ON(!sp->role.direct);
2678
2679         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2680         spte = sp->spt + i;
2681
2682         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2683                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2684                         if (!start)
2685                                 continue;
2686                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2687                                 break;
2688                         start = NULL;
2689                 } else if (!start)
2690                         start = spte;
2691         }
2692 }
2693
2694 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2695 {
2696         struct kvm_mmu_page *sp;
2697
2698         /*
2699          * Since it's no accessed bit on EPT, it's no way to
2700          * distinguish between actually accessed translations
2701          * and prefetched, so disable pte prefetch if EPT is
2702          * enabled.
2703          */
2704         if (!shadow_accessed_mask)
2705                 return;
2706
2707         sp = page_header(__pa(sptep));
2708         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2709                 return;
2710
2711         __direct_pte_prefetch(vcpu, sp, sptep);
2712 }
2713
2714 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2715                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2716                         bool prefault)
2717 {
2718         struct kvm_shadow_walk_iterator iterator;
2719         struct kvm_mmu_page *sp;
2720         int emulate = 0;
2721         gfn_t pseudo_gfn;
2722
2723         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2724                 return 0;
2725
2726         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2727                 if (iterator.level == level) {
2728                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2729                                      write, &emulate, level, gfn, pfn,
2730                                      prefault, map_writable);
2731                         direct_pte_prefetch(vcpu, iterator.sptep);
2732                         ++vcpu->stat.pf_fixed;
2733                         break;
2734                 }
2735
2736                 drop_large_spte(vcpu, iterator.sptep);
2737                 if (!is_shadow_present_pte(*iterator.sptep)) {
2738                         u64 base_addr = iterator.addr;
2739
2740                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2741                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2742                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2743                                               iterator.level - 1,
2744                                               1, ACC_ALL, iterator.sptep);
2745
2746                         link_shadow_page(iterator.sptep, sp, true);
2747                 }
2748         }
2749         return emulate;
2750 }
2751
2752 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2753 {
2754         siginfo_t info;
2755
2756         info.si_signo   = SIGBUS;
2757         info.si_errno   = 0;
2758         info.si_code    = BUS_MCEERR_AR;
2759         info.si_addr    = (void __user *)address;
2760         info.si_addr_lsb = PAGE_SHIFT;
2761
2762         send_sig_info(SIGBUS, &info, tsk);
2763 }
2764
2765 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2766 {
2767         /*
2768          * Do not cache the mmio info caused by writing the readonly gfn
2769          * into the spte otherwise read access on readonly gfn also can
2770          * caused mmio page fault and treat it as mmio access.
2771          * Return 1 to tell kvm to emulate it.
2772          */
2773         if (pfn == KVM_PFN_ERR_RO_FAULT)
2774                 return 1;
2775
2776         if (pfn == KVM_PFN_ERR_HWPOISON) {
2777                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2778                 return 0;
2779         }
2780
2781         return -EFAULT;
2782 }
2783
2784 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2785                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2786 {
2787         pfn_t pfn = *pfnp;
2788         gfn_t gfn = *gfnp;
2789         int level = *levelp;
2790
2791         /*
2792          * Check if it's a transparent hugepage. If this would be an
2793          * hugetlbfs page, level wouldn't be set to
2794          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2795          * here.
2796          */
2797         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2798             level == PT_PAGE_TABLE_LEVEL &&
2799             PageTransCompound(pfn_to_page(pfn)) &&
2800             !has_wrprotected_page(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2801                 unsigned long mask;
2802                 /*
2803                  * mmu_notifier_retry was successful and we hold the
2804                  * mmu_lock here, so the pmd can't become splitting
2805                  * from under us, and in turn
2806                  * __split_huge_page_refcount() can't run from under
2807                  * us and we can safely transfer the refcount from
2808                  * PG_tail to PG_head as we switch the pfn to tail to
2809                  * head.
2810                  */
2811                 *levelp = level = PT_DIRECTORY_LEVEL;
2812                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2813                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2814                 if (pfn & mask) {
2815                         gfn &= ~mask;
2816                         *gfnp = gfn;
2817                         kvm_release_pfn_clean(pfn);
2818                         pfn &= ~mask;
2819                         kvm_get_pfn(pfn);
2820                         *pfnp = pfn;
2821                 }
2822         }
2823 }
2824
2825 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2826                                 pfn_t pfn, unsigned access, int *ret_val)
2827 {
2828         bool ret = true;
2829
2830         /* The pfn is invalid, report the error! */
2831         if (unlikely(is_error_pfn(pfn))) {
2832                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2833                 goto exit;
2834         }
2835
2836         if (unlikely(is_noslot_pfn(pfn)))
2837                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2838
2839         ret = false;
2840 exit:
2841         return ret;
2842 }
2843
2844 static bool page_fault_can_be_fast(u32 error_code)
2845 {
2846         /*
2847          * Do not fix the mmio spte with invalid generation number which
2848          * need to be updated by slow page fault path.
2849          */
2850         if (unlikely(error_code & PFERR_RSVD_MASK))
2851                 return false;
2852
2853         /*
2854          * #PF can be fast only if the shadow page table is present and it
2855          * is caused by write-protect, that means we just need change the
2856          * W bit of the spte which can be done out of mmu-lock.
2857          */
2858         if (!(error_code & PFERR_PRESENT_MASK) ||
2859               !(error_code & PFERR_WRITE_MASK))
2860                 return false;
2861
2862         return true;
2863 }
2864
2865 static bool
2866 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2867                         u64 *sptep, u64 spte)
2868 {
2869         gfn_t gfn;
2870
2871         WARN_ON(!sp->role.direct);
2872
2873         /*
2874          * The gfn of direct spte is stable since it is calculated
2875          * by sp->gfn.
2876          */
2877         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2878
2879         /*
2880          * Theoretically we could also set dirty bit (and flush TLB) here in
2881          * order to eliminate unnecessary PML logging. See comments in
2882          * set_spte. But fast_page_fault is very unlikely to happen with PML
2883          * enabled, so we do not do this. This might result in the same GPA
2884          * to be logged in PML buffer again when the write really happens, and
2885          * eventually to be called by mark_page_dirty twice. But it's also no
2886          * harm. This also avoids the TLB flush needed after setting dirty bit
2887          * so non-PML cases won't be impacted.
2888          *
2889          * Compare with set_spte where instead shadow_dirty_mask is set.
2890          */
2891         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2892                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2893
2894         return true;
2895 }
2896
2897 /*
2898  * Return value:
2899  * - true: let the vcpu to access on the same address again.
2900  * - false: let the real page fault path to fix it.
2901  */
2902 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2903                             u32 error_code)
2904 {
2905         struct kvm_shadow_walk_iterator iterator;
2906         struct kvm_mmu_page *sp;
2907         bool ret = false;
2908         u64 spte = 0ull;
2909
2910         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2911                 return false;
2912
2913         if (!page_fault_can_be_fast(error_code))
2914                 return false;
2915
2916         walk_shadow_page_lockless_begin(vcpu);
2917         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2918                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2919                         break;
2920
2921         /*
2922          * If the mapping has been changed, let the vcpu fault on the
2923          * same address again.
2924          */
2925         if (!is_rmap_spte(spte)) {
2926                 ret = true;
2927                 goto exit;
2928         }
2929
2930         sp = page_header(__pa(iterator.sptep));
2931         if (!is_last_spte(spte, sp->role.level))
2932                 goto exit;
2933
2934         /*
2935          * Check if it is a spurious fault caused by TLB lazily flushed.
2936          *
2937          * Need not check the access of upper level table entries since
2938          * they are always ACC_ALL.
2939          */
2940          if (is_writable_pte(spte)) {
2941                 ret = true;
2942                 goto exit;
2943         }
2944
2945         /*
2946          * Currently, to simplify the code, only the spte write-protected
2947          * by dirty-log can be fast fixed.
2948          */
2949         if (!spte_is_locklessly_modifiable(spte))
2950                 goto exit;
2951
2952         /*
2953          * Do not fix write-permission on the large spte since we only dirty
2954          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2955          * that means other pages are missed if its slot is dirty-logged.
2956          *
2957          * Instead, we let the slow page fault path create a normal spte to
2958          * fix the access.
2959          *
2960          * See the comments in kvm_arch_commit_memory_region().
2961          */
2962         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2963                 goto exit;
2964
2965         /*
2966          * Currently, fast page fault only works for direct mapping since
2967          * the gfn is not stable for indirect shadow page.
2968          * See Documentation/virtual/kvm/locking.txt to get more detail.
2969          */
2970         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2971 exit:
2972         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2973                               spte, ret);
2974         walk_shadow_page_lockless_end(vcpu);
2975
2976         return ret;
2977 }
2978
2979 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2980                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2981 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2982
2983 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2984                          gfn_t gfn, bool prefault)
2985 {
2986         int r;
2987         int level;
2988         int force_pt_level;
2989         pfn_t pfn;
2990         unsigned long mmu_seq;
2991         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2992
2993         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2994         if (likely(!force_pt_level)) {
2995                 level = mapping_level(vcpu, gfn);
2996                 /*
2997                  * This path builds a PAE pagetable - so we can map
2998                  * 2mb pages at maximum. Therefore check if the level
2999                  * is larger than that.
3000                  */
3001                 if (level > PT_DIRECTORY_LEVEL)
3002                         level = PT_DIRECTORY_LEVEL;
3003
3004                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3005         } else
3006                 level = PT_PAGE_TABLE_LEVEL;
3007
3008         if (fast_page_fault(vcpu, v, level, error_code))
3009                 return 0;
3010
3011         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3012         smp_rmb();
3013
3014         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3015                 return 0;
3016
3017         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3018                 return r;
3019
3020         spin_lock(&vcpu->kvm->mmu_lock);
3021         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3022                 goto out_unlock;
3023         make_mmu_pages_available(vcpu);
3024         if (likely(!force_pt_level))
3025                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3026         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3027                          prefault);
3028         spin_unlock(&vcpu->kvm->mmu_lock);
3029
3030
3031         return r;
3032
3033 out_unlock:
3034         spin_unlock(&vcpu->kvm->mmu_lock);
3035         kvm_release_pfn_clean(pfn);
3036         return 0;
3037 }
3038
3039
3040 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3041 {
3042         int i;
3043         struct kvm_mmu_page *sp;
3044         LIST_HEAD(invalid_list);
3045
3046         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3047                 return;
3048
3049         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3050             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3051              vcpu->arch.mmu.direct_map)) {
3052                 hpa_t root = vcpu->arch.mmu.root_hpa;
3053
3054                 spin_lock(&vcpu->kvm->mmu_lock);
3055                 sp = page_header(root);
3056                 --sp->root_count;
3057                 if (!sp->root_count && sp->role.invalid) {
3058                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3059                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3060                 }
3061                 spin_unlock(&vcpu->kvm->mmu_lock);
3062                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3063                 return;
3064         }
3065
3066         spin_lock(&vcpu->kvm->mmu_lock);
3067         for (i = 0; i < 4; ++i) {
3068                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3069
3070                 if (root) {
3071                         root &= PT64_BASE_ADDR_MASK;
3072                         sp = page_header(root);
3073                         --sp->root_count;
3074                         if (!sp->root_count && sp->role.invalid)
3075                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3076                                                          &invalid_list);
3077                 }
3078                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3079         }
3080         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3081         spin_unlock(&vcpu->kvm->mmu_lock);
3082         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3083 }
3084
3085 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3086 {
3087         int ret = 0;
3088
3089         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3090                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3091                 ret = 1;
3092         }
3093
3094         return ret;
3095 }
3096
3097 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3098 {
3099         struct kvm_mmu_page *sp;
3100         unsigned i;
3101
3102         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3103                 spin_lock(&vcpu->kvm->mmu_lock);
3104                 make_mmu_pages_available(vcpu);
3105                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3106                                       1, ACC_ALL, NULL);
3107                 ++sp->root_count;
3108                 spin_unlock(&vcpu->kvm->mmu_lock);
3109                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3110         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3111                 for (i = 0; i < 4; ++i) {
3112                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3113
3114                         MMU_WARN_ON(VALID_PAGE(root));
3115                         spin_lock(&vcpu->kvm->mmu_lock);
3116                         make_mmu_pages_available(vcpu);
3117                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3118                                               i << 30,
3119                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
3120                                               NULL);
3121                         root = __pa(sp->spt);
3122                         ++sp->root_count;
3123                         spin_unlock(&vcpu->kvm->mmu_lock);
3124                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3125                 }
3126                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3127         } else
3128                 BUG();
3129
3130         return 0;
3131 }
3132
3133 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3134 {
3135         struct kvm_mmu_page *sp;
3136         u64 pdptr, pm_mask;
3137         gfn_t root_gfn;
3138         int i;
3139
3140         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3141
3142         if (mmu_check_root(vcpu, root_gfn))
3143                 return 1;
3144
3145         /*
3146          * Do we shadow a long mode page table? If so we need to
3147          * write-protect the guests page table root.
3148          */
3149         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3150                 hpa_t root = vcpu->arch.mmu.root_hpa;
3151
3152                 MMU_WARN_ON(VALID_PAGE(root));
3153
3154                 spin_lock(&vcpu->kvm->mmu_lock);
3155                 make_mmu_pages_available(vcpu);
3156                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3157                                       0, ACC_ALL, NULL);
3158                 root = __pa(sp->spt);
3159                 ++sp->root_count;
3160                 spin_unlock(&vcpu->kvm->mmu_lock);
3161                 vcpu->arch.mmu.root_hpa = root;
3162                 return 0;
3163         }
3164
3165         /*
3166          * We shadow a 32 bit page table. This may be a legacy 2-level
3167          * or a PAE 3-level page table. In either case we need to be aware that
3168          * the shadow page table may be a PAE or a long mode page table.
3169          */
3170         pm_mask = PT_PRESENT_MASK;
3171         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3172                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3173
3174         for (i = 0; i < 4; ++i) {
3175                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3176
3177                 MMU_WARN_ON(VALID_PAGE(root));
3178                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3179                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3180                         if (!is_present_gpte(pdptr)) {
3181                                 vcpu->arch.mmu.pae_root[i] = 0;
3182                                 continue;
3183                         }
3184                         root_gfn = pdptr >> PAGE_SHIFT;
3185                         if (mmu_check_root(vcpu, root_gfn))
3186                                 return 1;
3187                 }
3188                 spin_lock(&vcpu->kvm->mmu_lock);
3189                 make_mmu_pages_available(vcpu);
3190                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3191                                       PT32_ROOT_LEVEL, 0,
3192                                       ACC_ALL, NULL);
3193                 root = __pa(sp->spt);
3194                 ++sp->root_count;
3195                 spin_unlock(&vcpu->kvm->mmu_lock);
3196
3197                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3198         }
3199         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3200
3201         /*
3202          * If we shadow a 32 bit page table with a long mode page
3203          * table we enter this path.
3204          */
3205         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3206                 if (vcpu->arch.mmu.lm_root == NULL) {
3207                         /*
3208                          * The additional page necessary for this is only
3209                          * allocated on demand.
3210                          */
3211
3212                         u64 *lm_root;
3213
3214                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3215                         if (lm_root == NULL)
3216                                 return 1;
3217
3218                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3219
3220                         vcpu->arch.mmu.lm_root = lm_root;
3221                 }
3222
3223                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3224         }
3225
3226         return 0;
3227 }
3228
3229 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3230 {
3231         if (vcpu->arch.mmu.direct_map)
3232                 return mmu_alloc_direct_roots(vcpu);
3233         else
3234                 return mmu_alloc_shadow_roots(vcpu);
3235 }
3236
3237 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3238 {
3239         int i;
3240         struct kvm_mmu_page *sp;
3241
3242         if (vcpu->arch.mmu.direct_map)
3243                 return;
3244
3245         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3246                 return;
3247
3248         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3249         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3250         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3251                 hpa_t root = vcpu->arch.mmu.root_hpa;
3252                 sp = page_header(root);
3253                 mmu_sync_children(vcpu, sp);
3254                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3255                 return;
3256         }
3257         for (i = 0; i < 4; ++i) {
3258                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3259
3260                 if (root && VALID_PAGE(root)) {
3261                         root &= PT64_BASE_ADDR_MASK;
3262                         sp = page_header(root);
3263                         mmu_sync_children(vcpu, sp);
3264                 }
3265         }
3266         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3267 }
3268
3269 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3270 {
3271         spin_lock(&vcpu->kvm->mmu_lock);
3272         mmu_sync_roots(vcpu);
3273         spin_unlock(&vcpu->kvm->mmu_lock);
3274 }
3275 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3276
3277 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3278                                   u32 access, struct x86_exception *exception)
3279 {
3280         if (exception)
3281                 exception->error_code = 0;
3282         return vaddr;
3283 }
3284
3285 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3286                                          u32 access,
3287                                          struct x86_exception *exception)
3288 {
3289         if (exception)
3290                 exception->error_code = 0;
3291         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3292 }
3293
3294 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3295 {
3296         if (direct)
3297                 return vcpu_match_mmio_gpa(vcpu, addr);
3298
3299         return vcpu_match_mmio_gva(vcpu, addr);
3300 }
3301
3302
3303 /*
3304  * On direct hosts, the last spte is only allows two states
3305  * for mmio page fault:
3306  *   - It is the mmio spte
3307  *   - It is zapped or it is being zapped.
3308  *
3309  * This function completely checks the spte when the last spte
3310  * is not the mmio spte.
3311  */
3312 static bool check_direct_spte_mmio_pf(u64 spte)
3313 {
3314         return __check_direct_spte_mmio_pf(spte);
3315 }
3316
3317 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3318 {
3319         struct kvm_shadow_walk_iterator iterator;
3320         u64 spte = 0ull;
3321
3322         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3323                 return spte;
3324
3325         walk_shadow_page_lockless_begin(vcpu);
3326         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3327                 if (!is_shadow_present_pte(spte))
3328                         break;
3329         walk_shadow_page_lockless_end(vcpu);
3330
3331         return spte;
3332 }
3333
3334 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3335 {
3336         u64 spte;
3337
3338         if (quickly_check_mmio_pf(vcpu, addr, direct))
3339                 return RET_MMIO_PF_EMULATE;
3340
3341         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3342
3343         if (is_mmio_spte(spte)) {
3344                 gfn_t gfn = get_mmio_spte_gfn(spte);
3345                 unsigned access = get_mmio_spte_access(spte);
3346
3347                 if (!check_mmio_spte(vcpu, spte))
3348                         return RET_MMIO_PF_INVALID;
3349
3350                 if (direct)
3351                         addr = 0;
3352
3353                 trace_handle_mmio_page_fault(addr, gfn, access);
3354                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3355                 return RET_MMIO_PF_EMULATE;
3356         }
3357
3358         /*
3359          * It's ok if the gva is remapped by other cpus on shadow guest,
3360          * it's a BUG if the gfn is not a mmio page.
3361          */
3362         if (direct && !check_direct_spte_mmio_pf(spte))
3363                 return RET_MMIO_PF_BUG;
3364
3365         /*
3366          * If the page table is zapped by other cpus, let CPU fault again on
3367          * the address.
3368          */
3369         return RET_MMIO_PF_RETRY;
3370 }
3371 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3372
3373 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3374                                   u32 error_code, bool direct)
3375 {
3376         int ret;
3377
3378         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3379         WARN_ON(ret == RET_MMIO_PF_BUG);
3380         return ret;
3381 }
3382
3383 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3384                                 u32 error_code, bool prefault)
3385 {
3386         gfn_t gfn;
3387         int r;
3388
3389         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3390
3391         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3392                 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3393
3394                 if (likely(r != RET_MMIO_PF_INVALID))
3395                         return r;
3396         }
3397
3398         r = mmu_topup_memory_caches(vcpu);
3399         if (r)
3400                 return r;
3401
3402         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3403
3404         gfn = gva >> PAGE_SHIFT;
3405
3406         return nonpaging_map(vcpu, gva & PAGE_MASK,
3407                              error_code, gfn, prefault);
3408 }
3409
3410 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3411 {
3412         struct kvm_arch_async_pf arch;
3413
3414         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3415         arch.gfn = gfn;
3416         arch.direct_map = vcpu->arch.mmu.direct_map;
3417         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3418
3419         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3420 }
3421
3422 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3423 {
3424         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3425                      kvm_event_needs_reinjection(vcpu)))
3426                 return false;
3427
3428         return kvm_x86_ops->interrupt_allowed(vcpu);
3429 }
3430
3431 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3432                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3433 {
3434         struct kvm_memory_slot *slot;
3435         bool async;
3436
3437         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3438         async = false;
3439         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3440         if (!async)
3441                 return false; /* *pfn has correct page already */
3442
3443         if (!prefault && can_do_async_pf(vcpu)) {
3444                 trace_kvm_try_async_get_page(gva, gfn);
3445                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3446                         trace_kvm_async_pf_doublefault(gva, gfn);
3447                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3448                         return true;
3449                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3450                         return true;
3451         }
3452
3453         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3454         return false;
3455 }
3456
3457 static bool
3458 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3459 {
3460         int page_num = KVM_PAGES_PER_HPAGE(level);
3461
3462         gfn &= ~(page_num - 1);
3463
3464         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3465 }
3466
3467 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3468                           bool prefault)
3469 {
3470         pfn_t pfn;
3471         int r;
3472         int level;
3473         int force_pt_level;
3474         gfn_t gfn = gpa >> PAGE_SHIFT;
3475         unsigned long mmu_seq;
3476         int write = error_code & PFERR_WRITE_MASK;
3477         bool map_writable;
3478
3479         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3480
3481         if (unlikely(error_code & PFERR_RSVD_MASK)) {
3482                 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3483
3484                 if (likely(r != RET_MMIO_PF_INVALID))
3485                         return r;
3486         }
3487
3488         r = mmu_topup_memory_caches(vcpu);
3489         if (r)
3490                 return r;
3491
3492         if (mapping_level_dirty_bitmap(vcpu, gfn) ||
3493             !check_hugepage_cache_consistency(vcpu, gfn, PT_DIRECTORY_LEVEL))
3494                 force_pt_level = 1;
3495         else
3496                 force_pt_level = 0;
3497
3498         if (likely(!force_pt_level)) {
3499                 level = mapping_level(vcpu, gfn);
3500                 if (level > PT_DIRECTORY_LEVEL &&
3501                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3502                         level = PT_DIRECTORY_LEVEL;
3503                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3504         } else
3505                 level = PT_PAGE_TABLE_LEVEL;
3506
3507         if (fast_page_fault(vcpu, gpa, level, error_code))
3508                 return 0;
3509
3510         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3511         smp_rmb();
3512
3513         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3514                 return 0;
3515
3516         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3517                 return r;
3518
3519         spin_lock(&vcpu->kvm->mmu_lock);
3520         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3521                 goto out_unlock;
3522         make_mmu_pages_available(vcpu);
3523         if (likely(!force_pt_level))
3524                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3525         r = __direct_map(vcpu, gpa, write, map_writable,
3526                          level, gfn, pfn, prefault);
3527         spin_unlock(&vcpu->kvm->mmu_lock);
3528
3529         return r;
3530
3531 out_unlock:
3532         spin_unlock(&vcpu->kvm->mmu_lock);
3533         kvm_release_pfn_clean(pfn);
3534         return 0;
3535 }
3536
3537 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3538                                    struct kvm_mmu *context)
3539 {
3540         context->page_fault = nonpaging_page_fault;
3541         context->gva_to_gpa = nonpaging_gva_to_gpa;
3542         context->sync_page = nonpaging_sync_page;
3543         context->invlpg = nonpaging_invlpg;
3544         context->update_pte = nonpaging_update_pte;
3545         context->root_level = 0;
3546         context->shadow_root_level = PT32E_ROOT_LEVEL;
3547         context->root_hpa = INVALID_PAGE;
3548         context->direct_map = true;
3549         context->nx = false;
3550 }
3551
3552 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3553 {
3554         mmu_free_roots(vcpu);
3555 }
3556
3557 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3558 {
3559         return kvm_read_cr3(vcpu);
3560 }
3561
3562 static void inject_page_fault(struct kvm_vcpu *vcpu,
3563                               struct x86_exception *fault)
3564 {
3565         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3566 }
3567
3568 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3569                            unsigned access, int *nr_present)
3570 {
3571         if (unlikely(is_mmio_spte(*sptep))) {
3572                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3573                         mmu_spte_clear_no_track(sptep);
3574                         return true;
3575                 }
3576
3577                 (*nr_present)++;
3578                 mark_mmio_spte(vcpu, sptep, gfn, access);
3579                 return true;
3580         }
3581
3582         return false;
3583 }
3584
3585 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3586 {
3587         unsigned index;
3588
3589         index = level - 1;
3590         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3591         return mmu->last_pte_bitmap & (1 << index);
3592 }
3593
3594 #define PTTYPE_EPT 18 /* arbitrary */
3595 #define PTTYPE PTTYPE_EPT
3596 #include "paging_tmpl.h"
3597 #undef PTTYPE
3598
3599 #define PTTYPE 64
3600 #include "paging_tmpl.h"
3601 #undef PTTYPE
3602
3603 #define PTTYPE 32
3604 #include "paging_tmpl.h"
3605 #undef PTTYPE
3606
3607 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3608                                   struct kvm_mmu *context)
3609 {
3610         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3611         u64 exb_bit_rsvd = 0;
3612         u64 gbpages_bit_rsvd = 0;
3613         u64 nonleaf_bit8_rsvd = 0;
3614
3615         context->bad_mt_xwr = 0;
3616
3617         if (!context->nx)
3618                 exb_bit_rsvd = rsvd_bits(63, 63);
3619         if (!guest_cpuid_has_gbpages(vcpu))
3620                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3621
3622         /*
3623          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3624          * leaf entries) on AMD CPUs only.
3625          */
3626         if (guest_cpuid_is_amd(vcpu))
3627                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3628
3629         switch (context->root_level) {
3630         case PT32_ROOT_LEVEL:
3631                 /* no rsvd bits for 2 level 4K page table entries */
3632                 context->rsvd_bits_mask[0][1] = 0;
3633                 context->rsvd_bits_mask[0][0] = 0;
3634                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3635
3636                 if (!is_pse(vcpu)) {
3637                         context->rsvd_bits_mask[1][1] = 0;
3638                         break;
3639                 }
3640
3641                 if (is_cpuid_PSE36())
3642                         /* 36bits PSE 4MB page */
3643                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3644                 else
3645                         /* 32 bits PSE 4MB page */
3646                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3647                 break;
3648         case PT32E_ROOT_LEVEL:
3649                 context->rsvd_bits_mask[0][2] =
3650                         rsvd_bits(maxphyaddr, 63) |
3651                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3652                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3653                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3654                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3655                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3656                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3657                         rsvd_bits(maxphyaddr, 62) |
3658                         rsvd_bits(13, 20);              /* large page */
3659                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3660                 break;
3661         case PT64_ROOT_LEVEL:
3662                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3663                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
3664                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3665                         nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
3666                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3667                         rsvd_bits(maxphyaddr, 51);
3668                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3669                         rsvd_bits(maxphyaddr, 51);
3670                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3671                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3672                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3673                         rsvd_bits(13, 29);
3674                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3675                         rsvd_bits(maxphyaddr, 51) |
3676                         rsvd_bits(13, 20);              /* large page */
3677                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3678                 break;
3679         }
3680 }
3681
3682 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3683                 struct kvm_mmu *context, bool execonly)
3684 {
3685         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3686         int pte;
3687
3688         context->rsvd_bits_mask[0][3] =
3689                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3690         context->rsvd_bits_mask[0][2] =
3691                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3692         context->rsvd_bits_mask[0][1] =
3693                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3694         context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3695
3696         /* large page */
3697         context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3698         context->rsvd_bits_mask[1][2] =
3699                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3700         context->rsvd_bits_mask[1][1] =
3701                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3702         context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3703
3704         for (pte = 0; pte < 64; pte++) {
3705                 int rwx_bits = pte & 7;
3706                 int mt = pte >> 3;
3707                 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3708                                 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3709                                 (rwx_bits == 0x4 && !execonly))
3710                         context->bad_mt_xwr |= (1ull << pte);
3711         }
3712 }
3713
3714 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3715                                       struct kvm_mmu *mmu, bool ept)
3716 {
3717         unsigned bit, byte, pfec;
3718         u8 map;
3719         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3720
3721         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3722         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3723         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3724                 pfec = byte << 1;
3725                 map = 0;
3726                 wf = pfec & PFERR_WRITE_MASK;
3727                 uf = pfec & PFERR_USER_MASK;
3728                 ff = pfec & PFERR_FETCH_MASK;
3729                 /*
3730                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3731                  * subject to SMAP restrictions, and cleared otherwise. The
3732                  * bit is only meaningful if the SMAP bit is set in CR4.
3733                  */
3734                 smapf = !(pfec & PFERR_RSVD_MASK);
3735                 for (bit = 0; bit < 8; ++bit) {
3736                         x = bit & ACC_EXEC_MASK;
3737                         w = bit & ACC_WRITE_MASK;
3738                         u = bit & ACC_USER_MASK;
3739
3740                         if (!ept) {
3741                                 /* Not really needed: !nx will cause pte.nx to fault */
3742                                 x |= !mmu->nx;
3743                                 /* Allow supervisor writes if !cr0.wp */
3744                                 w |= !is_write_protection(vcpu) && !uf;
3745                                 /* Disallow supervisor fetches of user code if cr4.smep */
3746                                 x &= !(cr4_smep && u && !uf);
3747
3748                                 /*
3749                                  * SMAP:kernel-mode data accesses from user-mode
3750                                  * mappings should fault. A fault is considered
3751                                  * as a SMAP violation if all of the following
3752                                  * conditions are ture:
3753                                  *   - X86_CR4_SMAP is set in CR4
3754                                  *   - An user page is accessed
3755                                  *   - Page fault in kernel mode
3756                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3757                                  *
3758                                  *   Here, we cover the first three conditions.
3759                                  *   The fourth is computed dynamically in
3760                                  *   permission_fault() and is in smapf.
3761                                  *
3762                                  *   Also, SMAP does not affect instruction
3763                                  *   fetches, add the !ff check here to make it
3764                                  *   clearer.
3765                                  */
3766                                 smap = cr4_smap && u && !uf && !ff;
3767                         } else
3768                                 /* Not really needed: no U/S accesses on ept  */
3769                                 u = 1;
3770
3771                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3772                                 (smapf && smap);
3773                         map |= fault << bit;
3774                 }
3775                 mmu->permissions[byte] = map;
3776         }
3777 }
3778
3779 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3780 {
3781         u8 map;
3782         unsigned level, root_level = mmu->root_level;
3783         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3784
3785         if (root_level == PT32E_ROOT_LEVEL)
3786                 --root_level;
3787         /* PT_PAGE_TABLE_LEVEL always terminates */
3788         map = 1 | (1 << ps_set_index);
3789         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3790                 if (level <= PT_PDPE_LEVEL
3791                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3792                         map |= 1 << (ps_set_index | (level - 1));
3793         }
3794         mmu->last_pte_bitmap = map;
3795 }
3796
3797 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3798                                          struct kvm_mmu *context,
3799                                          int level)
3800 {
3801         context->nx = is_nx(vcpu);
3802         context->root_level = level;
3803
3804         reset_rsvds_bits_mask(vcpu, context);
3805         update_permission_bitmask(vcpu, context, false);
3806         update_last_pte_bitmap(vcpu, context);
3807
3808         MMU_WARN_ON(!is_pae(vcpu));
3809         context->page_fault = paging64_page_fault;
3810         context->gva_to_gpa = paging64_gva_to_gpa;
3811         context->sync_page = paging64_sync_page;
3812         context->invlpg = paging64_invlpg;
3813         context->update_pte = paging64_update_pte;
3814         context->shadow_root_level = level;
3815         context->root_hpa = INVALID_PAGE;
3816         context->direct_map = false;
3817 }
3818
3819 static void paging64_init_context(struct kvm_vcpu *vcpu,
3820                                   struct kvm_mmu *context)
3821 {
3822         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3823 }
3824
3825 static void paging32_init_context(struct kvm_vcpu *vcpu,
3826                                   struct kvm_mmu *context)
3827 {
3828         context->nx = false;
3829         context->root_level = PT32_ROOT_LEVEL;
3830
3831         reset_rsvds_bits_mask(vcpu, context);
3832         update_permission_bitmask(vcpu, context, false);
3833         update_last_pte_bitmap(vcpu, context);
3834
3835         context->page_fault = paging32_page_fault;
3836         context->gva_to_gpa = paging32_gva_to_gpa;
3837         context->sync_page = paging32_sync_page;
3838         context->invlpg = paging32_invlpg;
3839         context->update_pte = paging32_update_pte;
3840         context->shadow_root_level = PT32E_ROOT_LEVEL;
3841         context->root_hpa = INVALID_PAGE;
3842         context->direct_map = false;
3843 }
3844
3845 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3846                                    struct kvm_mmu *context)
3847 {
3848         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3849 }
3850
3851 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3852 {
3853         struct kvm_mmu *context = &vcpu->arch.mmu;
3854
3855         context->base_role.word = 0;
3856         context->base_role.smm = is_smm(vcpu);
3857         context->page_fault = tdp_page_fault;
3858         context->sync_page = nonpaging_sync_page;
3859         context->invlpg = nonpaging_invlpg;
3860         context->update_pte = nonpaging_update_pte;
3861         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3862         context->root_hpa = INVALID_PAGE;
3863         context->direct_map = true;
3864         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3865         context->get_cr3 = get_cr3;
3866         context->get_pdptr = kvm_pdptr_read;
3867         context->inject_page_fault = kvm_inject_page_fault;
3868
3869         if (!is_paging(vcpu)) {
3870                 context->nx = false;
3871                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3872                 context->root_level = 0;
3873         } else if (is_long_mode(vcpu)) {
3874                 context->nx = is_nx(vcpu);
3875                 context->root_level = PT64_ROOT_LEVEL;
3876                 reset_rsvds_bits_mask(vcpu, context);
3877                 context->gva_to_gpa = paging64_gva_to_gpa;
3878         } else if (is_pae(vcpu)) {
3879                 context->nx = is_nx(vcpu);
3880                 context->root_level = PT32E_ROOT_LEVEL;
3881                 reset_rsvds_bits_mask(vcpu, context);
3882                 context->gva_to_gpa = paging64_gva_to_gpa;
3883         } else {
3884                 context->nx = false;
3885                 context->root_level = PT32_ROOT_LEVEL;
3886                 reset_rsvds_bits_mask(vcpu, context);
3887                 context->gva_to_gpa = paging32_gva_to_gpa;
3888         }
3889
3890         update_permission_bitmask(vcpu, context, false);
3891         update_last_pte_bitmap(vcpu, context);
3892 }
3893
3894 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
3895 {
3896         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3897         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3898         struct kvm_mmu *context = &vcpu->arch.mmu;
3899
3900         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3901
3902         if (!is_paging(vcpu))
3903                 nonpaging_init_context(vcpu, context);
3904         else if (is_long_mode(vcpu))
3905                 paging64_init_context(vcpu, context);
3906         else if (is_pae(vcpu))
3907                 paging32E_init_context(vcpu, context);
3908         else
3909                 paging32_init_context(vcpu, context);
3910
3911         context->base_role.nxe = is_nx(vcpu);
3912         context->base_role.cr4_pae = !!is_pae(vcpu);
3913         context->base_role.cr0_wp  = is_write_protection(vcpu);
3914         context->base_role.smep_andnot_wp
3915                 = smep && !is_write_protection(vcpu);
3916         context->base_role.smap_andnot_wp
3917                 = smap && !is_write_protection(vcpu);
3918         context->base_role.smm = is_smm(vcpu);
3919 }
3920 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3921
3922 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
3923 {
3924         struct kvm_mmu *context = &vcpu->arch.mmu;
3925
3926         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
3927
3928         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3929
3930         context->nx = true;
3931         context->page_fault = ept_page_fault;
3932         context->gva_to_gpa = ept_gva_to_gpa;
3933         context->sync_page = ept_sync_page;
3934         context->invlpg = ept_invlpg;
3935         context->update_pte = ept_update_pte;
3936         context->root_level = context->shadow_root_level;
3937         context->root_hpa = INVALID_PAGE;
3938         context->direct_map = false;
3939
3940         update_permission_bitmask(vcpu, context, true);
3941         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3942 }
3943 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3944
3945 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
3946 {
3947         struct kvm_mmu *context = &vcpu->arch.mmu;
3948
3949         kvm_init_shadow_mmu(vcpu);
3950         context->set_cr3           = kvm_x86_ops->set_cr3;
3951         context->get_cr3           = get_cr3;
3952         context->get_pdptr         = kvm_pdptr_read;
3953         context->inject_page_fault = kvm_inject_page_fault;
3954 }
3955
3956 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3957 {
3958         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3959
3960         g_context->get_cr3           = get_cr3;
3961         g_context->get_pdptr         = kvm_pdptr_read;
3962         g_context->inject_page_fault = kvm_inject_page_fault;
3963
3964         /*
3965          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3966          * translation of l2_gpa to l1_gpa addresses is done using the
3967          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3968          * functions between mmu and nested_mmu are swapped.
3969          */
3970         if (!is_paging(vcpu)) {
3971                 g_context->nx = false;
3972                 g_context->root_level = 0;
3973                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3974         } else if (is_long_mode(vcpu)) {
3975                 g_context->nx = is_nx(vcpu);
3976                 g_context->root_level = PT64_ROOT_LEVEL;
3977                 reset_rsvds_bits_mask(vcpu, g_context);
3978                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3979         } else if (is_pae(vcpu)) {
3980                 g_context->nx = is_nx(vcpu);
3981                 g_context->root_level = PT32E_ROOT_LEVEL;
3982                 reset_rsvds_bits_mask(vcpu, g_context);
3983                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3984         } else {
3985                 g_context->nx = false;
3986                 g_context->root_level = PT32_ROOT_LEVEL;
3987                 reset_rsvds_bits_mask(vcpu, g_context);
3988                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3989         }
3990
3991         update_permission_bitmask(vcpu, g_context, false);
3992         update_last_pte_bitmap(vcpu, g_context);
3993 }
3994
3995 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
3996 {
3997         if (mmu_is_nested(vcpu))
3998                 init_kvm_nested_mmu(vcpu);
3999         else if (tdp_enabled)
4000                 init_kvm_tdp_mmu(vcpu);
4001         else
4002                 init_kvm_softmmu(vcpu);
4003 }
4004
4005 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4006 {
4007         kvm_mmu_unload(vcpu);
4008         init_kvm_mmu(vcpu);
4009 }
4010 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4011
4012 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4013 {
4014         int r;
4015
4016         r = mmu_topup_memory_caches(vcpu);
4017         if (r)
4018                 goto out;
4019         r = mmu_alloc_roots(vcpu);
4020         kvm_mmu_sync_roots(vcpu);
4021         if (r)
4022                 goto out;
4023         /* set_cr3() should ensure TLB has been flushed */
4024         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4025 out:
4026         return r;
4027 }
4028 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4029
4030 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4031 {
4032         mmu_free_roots(vcpu);
4033         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4034 }
4035 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4036
4037 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4038                                   struct kvm_mmu_page *sp, u64 *spte,
4039                                   const void *new)
4040 {
4041         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4042                 ++vcpu->kvm->stat.mmu_pde_zapped;
4043                 return;
4044         }
4045
4046         ++vcpu->kvm->stat.mmu_pte_updated;
4047         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4048 }
4049
4050 static bool need_remote_flush(u64 old, u64 new)
4051 {
4052         if (!is_shadow_present_pte(old))
4053                 return false;
4054         if (!is_shadow_present_pte(new))
4055                 return true;
4056         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4057                 return true;
4058         old ^= shadow_nx_mask;
4059         new ^= shadow_nx_mask;
4060         return (old & ~new & PT64_PERM_MASK) != 0;
4061 }
4062
4063 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4064                                     bool remote_flush, bool local_flush)
4065 {
4066         if (zap_page)
4067                 return;
4068
4069         if (remote_flush)
4070                 kvm_flush_remote_tlbs(vcpu->kvm);
4071         else if (local_flush)
4072                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4073 }
4074
4075 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4076                                     const u8 *new, int *bytes)
4077 {
4078         u64 gentry;
4079         int r;
4080
4081         /*
4082          * Assume that the pte write on a page table of the same type
4083          * as the current vcpu paging mode since we update the sptes only
4084          * when they have the same mode.
4085          */
4086         if (is_pae(vcpu) && *bytes == 4) {
4087                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4088                 *gpa &= ~(gpa_t)7;
4089                 *bytes = 8;
4090                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4091                 if (r)
4092                         gentry = 0;
4093                 new = (const u8 *)&gentry;
4094         }
4095
4096         switch (*bytes) {
4097         case 4:
4098                 gentry = *(const u32 *)new;
4099                 break;
4100         case 8:
4101                 gentry = *(const u64 *)new;
4102                 break;
4103         default:
4104                 gentry = 0;
4105                 break;
4106         }
4107
4108         return gentry;
4109 }
4110
4111 /*
4112  * If we're seeing too many writes to a page, it may no longer be a page table,
4113  * or we may be forking, in which case it is better to unmap the page.
4114  */
4115 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4116 {
4117         /*
4118          * Skip write-flooding detected for the sp whose level is 1, because
4119          * it can become unsync, then the guest page is not write-protected.
4120          */
4121         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4122                 return false;
4123
4124         return ++sp->write_flooding_count >= 3;
4125 }
4126
4127 /*
4128  * Misaligned accesses are too much trouble to fix up; also, they usually
4129  * indicate a page is not used as a page table.
4130  */
4131 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4132                                     int bytes)
4133 {
4134         unsigned offset, pte_size, misaligned;
4135
4136         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4137                  gpa, bytes, sp->role.word);
4138
4139         offset = offset_in_page(gpa);
4140         pte_size = sp->role.cr4_pae ? 8 : 4;
4141
4142         /*
4143          * Sometimes, the OS only writes the last one bytes to update status
4144          * bits, for example, in linux, andb instruction is used in clear_bit().
4145          */
4146         if (!(offset & (pte_size - 1)) && bytes == 1)
4147                 return false;
4148
4149         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4150         misaligned |= bytes < 4;
4151
4152         return misaligned;
4153 }
4154
4155 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4156 {
4157         unsigned page_offset, quadrant;
4158         u64 *spte;
4159         int level;
4160
4161         page_offset = offset_in_page(gpa);
4162         level = sp->role.level;
4163         *nspte = 1;
4164         if (!sp->role.cr4_pae) {
4165                 page_offset <<= 1;      /* 32->64 */
4166                 /*
4167                  * A 32-bit pde maps 4MB while the shadow pdes map
4168                  * only 2MB.  So we need to double the offset again
4169                  * and zap two pdes instead of one.
4170                  */
4171                 if (level == PT32_ROOT_LEVEL) {
4172                         page_offset &= ~7; /* kill rounding error */
4173                         page_offset <<= 1;
4174                         *nspte = 2;
4175                 }
4176                 quadrant = page_offset >> PAGE_SHIFT;
4177                 page_offset &= ~PAGE_MASK;
4178                 if (quadrant != sp->role.quadrant)
4179                         return NULL;
4180         }
4181
4182         spte = &sp->spt[page_offset / sizeof(*spte)];
4183         return spte;
4184 }
4185
4186 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4187                        const u8 *new, int bytes)
4188 {
4189         gfn_t gfn = gpa >> PAGE_SHIFT;
4190         struct kvm_mmu_page *sp;
4191         LIST_HEAD(invalid_list);
4192         u64 entry, gentry, *spte;
4193         int npte;
4194         bool remote_flush, local_flush, zap_page;
4195         union kvm_mmu_page_role mask = { };
4196
4197         mask.cr0_wp = 1;
4198         mask.cr4_pae = 1;
4199         mask.nxe = 1;
4200         mask.smep_andnot_wp = 1;
4201         mask.smap_andnot_wp = 1;
4202         mask.smm = 1;
4203
4204         /*
4205          * If we don't have indirect shadow pages, it means no page is
4206          * write-protected, so we can exit simply.
4207          */
4208         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4209                 return;
4210
4211         zap_page = remote_flush = local_flush = false;
4212
4213         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4214
4215         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4216
4217         /*
4218          * No need to care whether allocation memory is successful
4219          * or not since pte prefetch is skiped if it does not have
4220          * enough objects in the cache.
4221          */
4222         mmu_topup_memory_caches(vcpu);
4223
4224         spin_lock(&vcpu->kvm->mmu_lock);
4225         ++vcpu->kvm->stat.mmu_pte_write;
4226         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4227
4228         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4229                 if (detect_write_misaligned(sp, gpa, bytes) ||
4230                       detect_write_flooding(sp)) {
4231                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4232                                                      &invalid_list);
4233                         ++vcpu->kvm->stat.mmu_flooded;
4234                         continue;
4235                 }
4236
4237                 spte = get_written_sptes(sp, gpa, &npte);
4238                 if (!spte)
4239                         continue;
4240
4241                 local_flush = true;
4242                 while (npte--) {
4243                         entry = *spte;
4244                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4245                         if (gentry &&
4246                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4247                               & mask.word) && rmap_can_add(vcpu))
4248                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4249                         if (need_remote_flush(entry, *spte))
4250                                 remote_flush = true;
4251                         ++spte;
4252                 }
4253         }
4254         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4255         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4256         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4257         spin_unlock(&vcpu->kvm->mmu_lock);
4258 }
4259
4260 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4261 {
4262         gpa_t gpa;
4263         int r;
4264
4265         if (vcpu->arch.mmu.direct_map)
4266                 return 0;
4267
4268         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4269
4270         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4271
4272         return r;
4273 }
4274 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4275
4276 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4277 {
4278         LIST_HEAD(invalid_list);
4279
4280         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4281                 return;
4282
4283         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4284                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4285                         break;
4286
4287                 ++vcpu->kvm->stat.mmu_recycled;
4288         }
4289         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4290 }
4291
4292 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4293 {
4294         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4295                 return vcpu_match_mmio_gpa(vcpu, addr);
4296
4297         return vcpu_match_mmio_gva(vcpu, addr);
4298 }
4299
4300 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4301                        void *insn, int insn_len)
4302 {
4303         int r, emulation_type = EMULTYPE_RETRY;
4304         enum emulation_result er;
4305
4306         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4307         if (r < 0)
4308                 goto out;
4309
4310         if (!r) {
4311                 r = 1;
4312                 goto out;
4313         }
4314
4315         if (is_mmio_page_fault(vcpu, cr2))
4316                 emulation_type = 0;
4317
4318         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4319
4320         switch (er) {
4321         case EMULATE_DONE:
4322                 return 1;
4323         case EMULATE_USER_EXIT:
4324                 ++vcpu->stat.mmio_exits;
4325                 /* fall through */
4326         case EMULATE_FAIL:
4327                 return 0;
4328         default:
4329                 BUG();
4330         }
4331 out:
4332         return r;
4333 }
4334 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4335
4336 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4337 {
4338         vcpu->arch.mmu.invlpg(vcpu, gva);
4339         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4340         ++vcpu->stat.invlpg;
4341 }
4342 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4343
4344 void kvm_enable_tdp(void)
4345 {
4346         tdp_enabled = true;
4347 }
4348 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4349
4350 void kvm_disable_tdp(void)
4351 {
4352         tdp_enabled = false;
4353 }
4354 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4355
4356 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4357 {
4358         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4359         if (vcpu->arch.mmu.lm_root != NULL)
4360                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4361 }
4362
4363 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4364 {
4365         struct page *page;
4366         int i;
4367
4368         /*
4369          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4370          * Therefore we need to allocate shadow page tables in the first
4371          * 4GB of memory, which happens to fit the DMA32 zone.
4372          */
4373         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4374         if (!page)
4375                 return -ENOMEM;
4376
4377         vcpu->arch.mmu.pae_root = page_address(page);
4378         for (i = 0; i < 4; ++i)
4379                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4380
4381         return 0;
4382 }
4383
4384 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4385 {
4386         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4387         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4388         vcpu->arch.mmu.translate_gpa = translate_gpa;
4389         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4390
4391         return alloc_mmu_pages(vcpu);
4392 }
4393
4394 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4395 {
4396         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4397
4398         init_kvm_mmu(vcpu);
4399 }
4400
4401 /* The return value indicates if tlb flush on all vcpus is needed. */
4402 typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4403
4404 /* The caller should hold mmu-lock before calling this function. */
4405 static bool
4406 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4407                         slot_level_handler fn, int start_level, int end_level,
4408                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4409 {
4410         struct slot_rmap_walk_iterator iterator;
4411         bool flush = false;
4412
4413         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4414                         end_gfn, &iterator) {
4415                 if (iterator.rmap)
4416                         flush |= fn(kvm, iterator.rmap);
4417
4418                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4419                         if (flush && lock_flush_tlb) {
4420                                 kvm_flush_remote_tlbs(kvm);
4421                                 flush = false;
4422                         }
4423                         cond_resched_lock(&kvm->mmu_lock);
4424                 }
4425         }
4426
4427         if (flush && lock_flush_tlb) {
4428                 kvm_flush_remote_tlbs(kvm);
4429                 flush = false;
4430         }
4431
4432         return flush;
4433 }
4434
4435 static bool
4436 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4437                   slot_level_handler fn, int start_level, int end_level,
4438                   bool lock_flush_tlb)
4439 {
4440         return slot_handle_level_range(kvm, memslot, fn, start_level,
4441                         end_level, memslot->base_gfn,
4442                         memslot->base_gfn + memslot->npages - 1,
4443                         lock_flush_tlb);
4444 }
4445
4446 static bool
4447 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4448                       slot_level_handler fn, bool lock_flush_tlb)
4449 {
4450         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4451                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4452 }
4453
4454 static bool
4455 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4456                         slot_level_handler fn, bool lock_flush_tlb)
4457 {
4458         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4459                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4460 }
4461
4462 static bool
4463 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4464                  slot_level_handler fn, bool lock_flush_tlb)
4465 {
4466         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4467                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4468 }
4469
4470 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4471 {
4472         struct kvm_memslots *slots;
4473         struct kvm_memory_slot *memslot;
4474         int i;
4475
4476         spin_lock(&kvm->mmu_lock);
4477         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4478                 slots = __kvm_memslots(kvm, i);
4479                 kvm_for_each_memslot(memslot, slots) {
4480                         gfn_t start, end;
4481
4482                         start = max(gfn_start, memslot->base_gfn);
4483                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4484                         if (start >= end)
4485                                 continue;
4486
4487                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4488                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4489                                                 start, end - 1, true);
4490                 }
4491         }
4492
4493         spin_unlock(&kvm->mmu_lock);
4494 }
4495
4496 static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4497 {
4498         return __rmap_write_protect(kvm, rmapp, false);
4499 }
4500
4501 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4502                                       struct kvm_memory_slot *memslot)
4503 {
4504         bool flush;
4505
4506         spin_lock(&kvm->mmu_lock);
4507         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4508                                       false);
4509         spin_unlock(&kvm->mmu_lock);
4510
4511         /*
4512          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4513          * which do tlb flush out of mmu-lock should be serialized by
4514          * kvm->slots_lock otherwise tlb flush would be missed.
4515          */
4516         lockdep_assert_held(&kvm->slots_lock);
4517
4518         /*
4519          * We can flush all the TLBs out of the mmu lock without TLB
4520          * corruption since we just change the spte from writable to
4521          * readonly so that we only need to care the case of changing
4522          * spte from present to present (changing the spte from present
4523          * to nonpresent will flush all the TLBs immediately), in other
4524          * words, the only case we care is mmu_spte_update() where we
4525          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4526          * instead of PT_WRITABLE_MASK, that means it does not depend
4527          * on PT_WRITABLE_MASK anymore.
4528          */
4529         if (flush)
4530                 kvm_flush_remote_tlbs(kvm);
4531 }
4532
4533 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4534                 unsigned long *rmapp)
4535 {
4536         u64 *sptep;
4537         struct rmap_iterator iter;
4538         int need_tlb_flush = 0;
4539         pfn_t pfn;
4540         struct kvm_mmu_page *sp;
4541
4542 restart:
4543         for_each_rmap_spte(rmapp, &iter, sptep) {
4544                 sp = page_header(__pa(sptep));
4545                 pfn = spte_to_pfn(*sptep);
4546
4547                 /*
4548                  * We cannot do huge page mapping for indirect shadow pages,
4549                  * which are found on the last rmap (level = 1) when not using
4550                  * tdp; such shadow pages are synced with the page table in
4551                  * the guest, and the guest page table is using 4K page size
4552                  * mapping if the indirect sp has level = 1.
4553                  */
4554                 if (sp->role.direct &&
4555                         !kvm_is_reserved_pfn(pfn) &&
4556                         PageTransCompound(pfn_to_page(pfn))) {
4557                         drop_spte(kvm, sptep);
4558                         need_tlb_flush = 1;
4559                         goto restart;
4560                 }
4561         }
4562
4563         return need_tlb_flush;
4564 }
4565
4566 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4567                                    const struct kvm_memory_slot *memslot)
4568 {
4569         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4570         spin_lock(&kvm->mmu_lock);
4571         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4572                          kvm_mmu_zap_collapsible_spte, true);
4573         spin_unlock(&kvm->mmu_lock);
4574 }
4575
4576 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4577                                    struct kvm_memory_slot *memslot)
4578 {
4579         bool flush;
4580
4581         spin_lock(&kvm->mmu_lock);
4582         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4583         spin_unlock(&kvm->mmu_lock);
4584
4585         lockdep_assert_held(&kvm->slots_lock);
4586
4587         /*
4588          * It's also safe to flush TLBs out of mmu lock here as currently this
4589          * function is only used for dirty logging, in which case flushing TLB
4590          * out of mmu lock also guarantees no dirty pages will be lost in
4591          * dirty_bitmap.
4592          */
4593         if (flush)
4594                 kvm_flush_remote_tlbs(kvm);
4595 }
4596 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4597
4598 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4599                                         struct kvm_memory_slot *memslot)
4600 {
4601         bool flush;
4602
4603         spin_lock(&kvm->mmu_lock);
4604         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4605                                         false);
4606         spin_unlock(&kvm->mmu_lock);
4607
4608         /* see kvm_mmu_slot_remove_write_access */
4609         lockdep_assert_held(&kvm->slots_lock);
4610
4611         if (flush)
4612                 kvm_flush_remote_tlbs(kvm);
4613 }
4614 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4615
4616 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4617                             struct kvm_memory_slot *memslot)
4618 {
4619         bool flush;
4620
4621         spin_lock(&kvm->mmu_lock);
4622         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4623         spin_unlock(&kvm->mmu_lock);
4624
4625         lockdep_assert_held(&kvm->slots_lock);
4626
4627         /* see kvm_mmu_slot_leaf_clear_dirty */
4628         if (flush)
4629                 kvm_flush_remote_tlbs(kvm);
4630 }
4631 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4632
4633 #define BATCH_ZAP_PAGES 10
4634 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4635 {
4636         struct kvm_mmu_page *sp, *node;
4637         int batch = 0;
4638
4639 restart:
4640         list_for_each_entry_safe_reverse(sp, node,
4641               &kvm->arch.active_mmu_pages, link) {
4642                 int ret;
4643
4644                 /*
4645                  * No obsolete page exists before new created page since
4646                  * active_mmu_pages is the FIFO list.
4647                  */
4648                 if (!is_obsolete_sp(kvm, sp))
4649                         break;
4650
4651                 /*
4652                  * Since we are reversely walking the list and the invalid
4653                  * list will be moved to the head, skip the invalid page
4654                  * can help us to avoid the infinity list walking.
4655                  */
4656                 if (sp->role.invalid)
4657                         continue;
4658
4659                 /*
4660                  * Need not flush tlb since we only zap the sp with invalid
4661                  * generation number.
4662                  */
4663                 if (batch >= BATCH_ZAP_PAGES &&
4664                       cond_resched_lock(&kvm->mmu_lock)) {
4665                         batch = 0;
4666                         goto restart;
4667                 }
4668
4669                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4670                                 &kvm->arch.zapped_obsolete_pages);
4671                 batch += ret;
4672
4673                 if (ret)
4674                         goto restart;
4675         }
4676
4677         /*
4678          * Should flush tlb before free page tables since lockless-walking
4679          * may use the pages.
4680          */
4681         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4682 }
4683
4684 /*
4685  * Fast invalidate all shadow pages and use lock-break technique
4686  * to zap obsolete pages.
4687  *
4688  * It's required when memslot is being deleted or VM is being
4689  * destroyed, in these cases, we should ensure that KVM MMU does
4690  * not use any resource of the being-deleted slot or all slots
4691  * after calling the function.
4692  */
4693 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4694 {
4695         spin_lock(&kvm->mmu_lock);
4696         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4697         kvm->arch.mmu_valid_gen++;
4698
4699         /*
4700          * Notify all vcpus to reload its shadow page table
4701          * and flush TLB. Then all vcpus will switch to new
4702          * shadow page table with the new mmu_valid_gen.
4703          *
4704          * Note: we should do this under the protection of
4705          * mmu-lock, otherwise, vcpu would purge shadow page
4706          * but miss tlb flush.
4707          */
4708         kvm_reload_remote_mmus(kvm);
4709
4710         kvm_zap_obsolete_pages(kvm);
4711         spin_unlock(&kvm->mmu_lock);
4712 }
4713
4714 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4715 {
4716         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4717 }
4718
4719 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4720 {
4721         /*
4722          * The very rare case: if the generation-number is round,
4723          * zap all shadow pages.
4724          */
4725         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4726                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4727                 kvm_mmu_invalidate_zap_all_pages(kvm);
4728         }
4729 }
4730
4731 static unsigned long
4732 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4733 {
4734         struct kvm *kvm;
4735         int nr_to_scan = sc->nr_to_scan;
4736         unsigned long freed = 0;
4737
4738         spin_lock(&kvm_lock);
4739
4740         list_for_each_entry(kvm, &vm_list, vm_list) {
4741                 int idx;
4742                 LIST_HEAD(invalid_list);
4743
4744                 /*
4745                  * Never scan more than sc->nr_to_scan VM instances.
4746                  * Will not hit this condition practically since we do not try
4747                  * to shrink more than one VM and it is very unlikely to see
4748                  * !n_used_mmu_pages so many times.
4749                  */
4750                 if (!nr_to_scan--)
4751                         break;
4752                 /*
4753                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4754                  * here. We may skip a VM instance errorneosly, but we do not
4755                  * want to shrink a VM that only started to populate its MMU
4756                  * anyway.
4757                  */
4758                 if (!kvm->arch.n_used_mmu_pages &&
4759                       !kvm_has_zapped_obsolete_pages(kvm))
4760                         continue;
4761
4762                 idx = srcu_read_lock(&kvm->srcu);
4763                 spin_lock(&kvm->mmu_lock);
4764
4765                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4766                         kvm_mmu_commit_zap_page(kvm,
4767                               &kvm->arch.zapped_obsolete_pages);
4768                         goto unlock;
4769                 }
4770
4771                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4772                         freed++;
4773                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4774
4775 unlock:
4776                 spin_unlock(&kvm->mmu_lock);
4777                 srcu_read_unlock(&kvm->srcu, idx);
4778
4779                 /*
4780                  * unfair on small ones
4781                  * per-vm shrinkers cry out
4782                  * sadness comes quickly
4783                  */
4784                 list_move_tail(&kvm->vm_list, &vm_list);
4785                 break;
4786         }
4787
4788         spin_unlock(&kvm_lock);
4789         return freed;
4790 }
4791
4792 static unsigned long
4793 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4794 {
4795         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4796 }
4797
4798 static struct shrinker mmu_shrinker = {
4799         .count_objects = mmu_shrink_count,
4800         .scan_objects = mmu_shrink_scan,
4801         .seeks = DEFAULT_SEEKS * 10,
4802 };
4803
4804 static void mmu_destroy_caches(void)
4805 {
4806         if (pte_list_desc_cache)
4807                 kmem_cache_destroy(pte_list_desc_cache);
4808         if (mmu_page_header_cache)
4809                 kmem_cache_destroy(mmu_page_header_cache);
4810 }
4811
4812 int kvm_mmu_module_init(void)
4813 {
4814         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4815                                             sizeof(struct pte_list_desc),
4816                                             0, 0, NULL);
4817         if (!pte_list_desc_cache)
4818                 goto nomem;
4819
4820         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4821                                                   sizeof(struct kvm_mmu_page),
4822                                                   0, 0, NULL);
4823         if (!mmu_page_header_cache)
4824                 goto nomem;
4825
4826         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4827                 goto nomem;
4828
4829         register_shrinker(&mmu_shrinker);
4830
4831         return 0;
4832
4833 nomem:
4834         mmu_destroy_caches();
4835         return -ENOMEM;
4836 }
4837
4838 /*
4839  * Caculate mmu pages needed for kvm.
4840  */
4841 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4842 {
4843         unsigned int nr_mmu_pages;
4844         unsigned int  nr_pages = 0;
4845         struct kvm_memslots *slots;
4846         struct kvm_memory_slot *memslot;
4847         int i;
4848
4849         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4850                 slots = __kvm_memslots(kvm, i);
4851
4852                 kvm_for_each_memslot(memslot, slots)
4853                         nr_pages += memslot->npages;
4854         }
4855
4856         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4857         nr_mmu_pages = max(nr_mmu_pages,
4858                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4859
4860         return nr_mmu_pages;
4861 }
4862
4863 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4864 {
4865         struct kvm_shadow_walk_iterator iterator;
4866         u64 spte;
4867         int nr_sptes = 0;
4868
4869         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4870                 return nr_sptes;
4871
4872         walk_shadow_page_lockless_begin(vcpu);
4873         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4874                 sptes[iterator.level-1] = spte;
4875                 nr_sptes++;
4876                 if (!is_shadow_present_pte(spte))
4877                         break;
4878         }
4879         walk_shadow_page_lockless_end(vcpu);
4880
4881         return nr_sptes;
4882 }
4883 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4884
4885 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4886 {
4887         kvm_mmu_unload(vcpu);
4888         free_mmu_pages(vcpu);
4889         mmu_free_memory_caches(vcpu);
4890 }
4891
4892 void kvm_mmu_module_exit(void)
4893 {
4894         mmu_destroy_caches();
4895         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4896         unregister_shrinker(&mmu_shrinker);
4897         mmu_audit_disable();
4898 }