Merge branch 'for-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/bluetoot...
[linux-drm-fsl-dcu.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34
35 #include <asm/reg.h>
36 #include <asm/cputable.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 #include <asm/uaccess.h>
40 #include <asm/io.h>
41 #include <asm/kvm_ppc.h>
42 #include <asm/kvm_book3s.h>
43 #include <asm/mmu_context.h>
44 #include <asm/lppaca.h>
45 #include <asm/processor.h>
46 #include <asm/cputhreads.h>
47 #include <asm/page.h>
48 #include <asm/hvcall.h>
49 #include <asm/switch_to.h>
50 #include <asm/smp.h>
51 #include <linux/gfp.h>
52 #include <linux/vmalloc.h>
53 #include <linux/highmem.h>
54 #include <linux/hugetlb.h>
55 #include <linux/module.h>
56
57 #include "book3s.h"
58
59 /* #define EXIT_DEBUG */
60 /* #define EXIT_DEBUG_SIMPLE */
61 /* #define EXIT_DEBUG_INT */
62
63 /* Used to indicate that a guest page fault needs to be handled */
64 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
65
66 /* Used as a "null" value for timebase values */
67 #define TB_NIL  (~(u64)0)
68
69 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
70 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
71
72 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
73 {
74         int me;
75         int cpu = vcpu->cpu;
76         wait_queue_head_t *wqp;
77
78         wqp = kvm_arch_vcpu_wq(vcpu);
79         if (waitqueue_active(wqp)) {
80                 wake_up_interruptible(wqp);
81                 ++vcpu->stat.halt_wakeup;
82         }
83
84         me = get_cpu();
85
86         /* CPU points to the first thread of the core */
87         if (cpu != me && cpu >= 0 && cpu < nr_cpu_ids) {
88                 int real_cpu = cpu + vcpu->arch.ptid;
89                 if (paca[real_cpu].kvm_hstate.xics_phys)
90                         xics_wake_cpu(real_cpu);
91                 else if (cpu_online(cpu))
92                         smp_send_reschedule(cpu);
93         }
94         put_cpu();
95 }
96
97 /*
98  * We use the vcpu_load/put functions to measure stolen time.
99  * Stolen time is counted as time when either the vcpu is able to
100  * run as part of a virtual core, but the task running the vcore
101  * is preempted or sleeping, or when the vcpu needs something done
102  * in the kernel by the task running the vcpu, but that task is
103  * preempted or sleeping.  Those two things have to be counted
104  * separately, since one of the vcpu tasks will take on the job
105  * of running the core, and the other vcpu tasks in the vcore will
106  * sleep waiting for it to do that, but that sleep shouldn't count
107  * as stolen time.
108  *
109  * Hence we accumulate stolen time when the vcpu can run as part of
110  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
111  * needs its task to do other things in the kernel (for example,
112  * service a page fault) in busy_stolen.  We don't accumulate
113  * stolen time for a vcore when it is inactive, or for a vcpu
114  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
115  * a misnomer; it means that the vcpu task is not executing in
116  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
117  * the kernel.  We don't have any way of dividing up that time
118  * between time that the vcpu is genuinely stopped, time that
119  * the task is actively working on behalf of the vcpu, and time
120  * that the task is preempted, so we don't count any of it as
121  * stolen.
122  *
123  * Updates to busy_stolen are protected by arch.tbacct_lock;
124  * updates to vc->stolen_tb are protected by the arch.tbacct_lock
125  * of the vcpu that has taken responsibility for running the vcore
126  * (i.e. vc->runner).  The stolen times are measured in units of
127  * timebase ticks.  (Note that the != TB_NIL checks below are
128  * purely defensive; they should never fail.)
129  */
130
131 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
132 {
133         struct kvmppc_vcore *vc = vcpu->arch.vcore;
134
135         spin_lock(&vcpu->arch.tbacct_lock);
136         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE &&
137             vc->preempt_tb != TB_NIL) {
138                 vc->stolen_tb += mftb() - vc->preempt_tb;
139                 vc->preempt_tb = TB_NIL;
140         }
141         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
142             vcpu->arch.busy_preempt != TB_NIL) {
143                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
144                 vcpu->arch.busy_preempt = TB_NIL;
145         }
146         spin_unlock(&vcpu->arch.tbacct_lock);
147 }
148
149 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
150 {
151         struct kvmppc_vcore *vc = vcpu->arch.vcore;
152
153         spin_lock(&vcpu->arch.tbacct_lock);
154         if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
155                 vc->preempt_tb = mftb();
156         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
157                 vcpu->arch.busy_preempt = mftb();
158         spin_unlock(&vcpu->arch.tbacct_lock);
159 }
160
161 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
162 {
163         vcpu->arch.shregs.msr = msr;
164         kvmppc_end_cede(vcpu);
165 }
166
167 void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
168 {
169         vcpu->arch.pvr = pvr;
170 }
171
172 int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
173 {
174         unsigned long pcr = 0;
175         struct kvmppc_vcore *vc = vcpu->arch.vcore;
176
177         if (arch_compat) {
178                 if (!cpu_has_feature(CPU_FTR_ARCH_206))
179                         return -EINVAL; /* 970 has no compat mode support */
180
181                 switch (arch_compat) {
182                 case PVR_ARCH_205:
183                         pcr = PCR_ARCH_205;
184                         break;
185                 case PVR_ARCH_206:
186                 case PVR_ARCH_206p:
187                         break;
188                 default:
189                         return -EINVAL;
190                 }
191         }
192
193         spin_lock(&vc->lock);
194         vc->arch_compat = arch_compat;
195         vc->pcr = pcr;
196         spin_unlock(&vc->lock);
197
198         return 0;
199 }
200
201 void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
202 {
203         int r;
204
205         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
206         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
207                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
208         for (r = 0; r < 16; ++r)
209                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
210                        r, kvmppc_get_gpr(vcpu, r),
211                        r+16, kvmppc_get_gpr(vcpu, r+16));
212         pr_err("ctr = %.16lx  lr  = %.16lx\n",
213                vcpu->arch.ctr, vcpu->arch.lr);
214         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
215                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
216         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
217                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
218         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
219                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
220         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
221                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
222         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
223         pr_err("fault dar = %.16lx dsisr = %.8x\n",
224                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
225         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
226         for (r = 0; r < vcpu->arch.slb_max; ++r)
227                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
228                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
229         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
230                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
231                vcpu->arch.last_inst);
232 }
233
234 struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
235 {
236         int r;
237         struct kvm_vcpu *v, *ret = NULL;
238
239         mutex_lock(&kvm->lock);
240         kvm_for_each_vcpu(r, v, kvm) {
241                 if (v->vcpu_id == id) {
242                         ret = v;
243                         break;
244                 }
245         }
246         mutex_unlock(&kvm->lock);
247         return ret;
248 }
249
250 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
251 {
252         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
253         vpa->yield_count = 1;
254 }
255
256 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
257                    unsigned long addr, unsigned long len)
258 {
259         /* check address is cacheline aligned */
260         if (addr & (L1_CACHE_BYTES - 1))
261                 return -EINVAL;
262         spin_lock(&vcpu->arch.vpa_update_lock);
263         if (v->next_gpa != addr || v->len != len) {
264                 v->next_gpa = addr;
265                 v->len = addr ? len : 0;
266                 v->update_pending = 1;
267         }
268         spin_unlock(&vcpu->arch.vpa_update_lock);
269         return 0;
270 }
271
272 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
273 struct reg_vpa {
274         u32 dummy;
275         union {
276                 u16 hword;
277                 u32 word;
278         } length;
279 };
280
281 static int vpa_is_registered(struct kvmppc_vpa *vpap)
282 {
283         if (vpap->update_pending)
284                 return vpap->next_gpa != 0;
285         return vpap->pinned_addr != NULL;
286 }
287
288 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
289                                        unsigned long flags,
290                                        unsigned long vcpuid, unsigned long vpa)
291 {
292         struct kvm *kvm = vcpu->kvm;
293         unsigned long len, nb;
294         void *va;
295         struct kvm_vcpu *tvcpu;
296         int err;
297         int subfunc;
298         struct kvmppc_vpa *vpap;
299
300         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
301         if (!tvcpu)
302                 return H_PARAMETER;
303
304         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
305         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
306             subfunc == H_VPA_REG_SLB) {
307                 /* Registering new area - address must be cache-line aligned */
308                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
309                         return H_PARAMETER;
310
311                 /* convert logical addr to kernel addr and read length */
312                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
313                 if (va == NULL)
314                         return H_PARAMETER;
315                 if (subfunc == H_VPA_REG_VPA)
316                         len = ((struct reg_vpa *)va)->length.hword;
317                 else
318                         len = ((struct reg_vpa *)va)->length.word;
319                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
320
321                 /* Check length */
322                 if (len > nb || len < sizeof(struct reg_vpa))
323                         return H_PARAMETER;
324         } else {
325                 vpa = 0;
326                 len = 0;
327         }
328
329         err = H_PARAMETER;
330         vpap = NULL;
331         spin_lock(&tvcpu->arch.vpa_update_lock);
332
333         switch (subfunc) {
334         case H_VPA_REG_VPA:             /* register VPA */
335                 if (len < sizeof(struct lppaca))
336                         break;
337                 vpap = &tvcpu->arch.vpa;
338                 err = 0;
339                 break;
340
341         case H_VPA_REG_DTL:             /* register DTL */
342                 if (len < sizeof(struct dtl_entry))
343                         break;
344                 len -= len % sizeof(struct dtl_entry);
345
346                 /* Check that they have previously registered a VPA */
347                 err = H_RESOURCE;
348                 if (!vpa_is_registered(&tvcpu->arch.vpa))
349                         break;
350
351                 vpap = &tvcpu->arch.dtl;
352                 err = 0;
353                 break;
354
355         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
356                 /* Check that they have previously registered a VPA */
357                 err = H_RESOURCE;
358                 if (!vpa_is_registered(&tvcpu->arch.vpa))
359                         break;
360
361                 vpap = &tvcpu->arch.slb_shadow;
362                 err = 0;
363                 break;
364
365         case H_VPA_DEREG_VPA:           /* deregister VPA */
366                 /* Check they don't still have a DTL or SLB buf registered */
367                 err = H_RESOURCE;
368                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
369                     vpa_is_registered(&tvcpu->arch.slb_shadow))
370                         break;
371
372                 vpap = &tvcpu->arch.vpa;
373                 err = 0;
374                 break;
375
376         case H_VPA_DEREG_DTL:           /* deregister DTL */
377                 vpap = &tvcpu->arch.dtl;
378                 err = 0;
379                 break;
380
381         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
382                 vpap = &tvcpu->arch.slb_shadow;
383                 err = 0;
384                 break;
385         }
386
387         if (vpap) {
388                 vpap->next_gpa = vpa;
389                 vpap->len = len;
390                 vpap->update_pending = 1;
391         }
392
393         spin_unlock(&tvcpu->arch.vpa_update_lock);
394
395         return err;
396 }
397
398 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
399 {
400         struct kvm *kvm = vcpu->kvm;
401         void *va;
402         unsigned long nb;
403         unsigned long gpa;
404
405         /*
406          * We need to pin the page pointed to by vpap->next_gpa,
407          * but we can't call kvmppc_pin_guest_page under the lock
408          * as it does get_user_pages() and down_read().  So we
409          * have to drop the lock, pin the page, then get the lock
410          * again and check that a new area didn't get registered
411          * in the meantime.
412          */
413         for (;;) {
414                 gpa = vpap->next_gpa;
415                 spin_unlock(&vcpu->arch.vpa_update_lock);
416                 va = NULL;
417                 nb = 0;
418                 if (gpa)
419                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
420                 spin_lock(&vcpu->arch.vpa_update_lock);
421                 if (gpa == vpap->next_gpa)
422                         break;
423                 /* sigh... unpin that one and try again */
424                 if (va)
425                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
426         }
427
428         vpap->update_pending = 0;
429         if (va && nb < vpap->len) {
430                 /*
431                  * If it's now too short, it must be that userspace
432                  * has changed the mappings underlying guest memory,
433                  * so unregister the region.
434                  */
435                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
436                 va = NULL;
437         }
438         if (vpap->pinned_addr)
439                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
440                                         vpap->dirty);
441         vpap->gpa = gpa;
442         vpap->pinned_addr = va;
443         vpap->dirty = false;
444         if (va)
445                 vpap->pinned_end = va + vpap->len;
446 }
447
448 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
449 {
450         if (!(vcpu->arch.vpa.update_pending ||
451               vcpu->arch.slb_shadow.update_pending ||
452               vcpu->arch.dtl.update_pending))
453                 return;
454
455         spin_lock(&vcpu->arch.vpa_update_lock);
456         if (vcpu->arch.vpa.update_pending) {
457                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
458                 if (vcpu->arch.vpa.pinned_addr)
459                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
460         }
461         if (vcpu->arch.dtl.update_pending) {
462                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
463                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
464                 vcpu->arch.dtl_index = 0;
465         }
466         if (vcpu->arch.slb_shadow.update_pending)
467                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
468         spin_unlock(&vcpu->arch.vpa_update_lock);
469 }
470
471 /*
472  * Return the accumulated stolen time for the vcore up until `now'.
473  * The caller should hold the vcore lock.
474  */
475 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
476 {
477         u64 p;
478
479         /*
480          * If we are the task running the vcore, then since we hold
481          * the vcore lock, we can't be preempted, so stolen_tb/preempt_tb
482          * can't be updated, so we don't need the tbacct_lock.
483          * If the vcore is inactive, it can't become active (since we
484          * hold the vcore lock), so the vcpu load/put functions won't
485          * update stolen_tb/preempt_tb, and we don't need tbacct_lock.
486          */
487         if (vc->vcore_state != VCORE_INACTIVE &&
488             vc->runner->arch.run_task != current) {
489                 spin_lock(&vc->runner->arch.tbacct_lock);
490                 p = vc->stolen_tb;
491                 if (vc->preempt_tb != TB_NIL)
492                         p += now - vc->preempt_tb;
493                 spin_unlock(&vc->runner->arch.tbacct_lock);
494         } else {
495                 p = vc->stolen_tb;
496         }
497         return p;
498 }
499
500 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
501                                     struct kvmppc_vcore *vc)
502 {
503         struct dtl_entry *dt;
504         struct lppaca *vpa;
505         unsigned long stolen;
506         unsigned long core_stolen;
507         u64 now;
508
509         dt = vcpu->arch.dtl_ptr;
510         vpa = vcpu->arch.vpa.pinned_addr;
511         now = mftb();
512         core_stolen = vcore_stolen_time(vc, now);
513         stolen = core_stolen - vcpu->arch.stolen_logged;
514         vcpu->arch.stolen_logged = core_stolen;
515         spin_lock(&vcpu->arch.tbacct_lock);
516         stolen += vcpu->arch.busy_stolen;
517         vcpu->arch.busy_stolen = 0;
518         spin_unlock(&vcpu->arch.tbacct_lock);
519         if (!dt || !vpa)
520                 return;
521         memset(dt, 0, sizeof(struct dtl_entry));
522         dt->dispatch_reason = 7;
523         dt->processor_id = vc->pcpu + vcpu->arch.ptid;
524         dt->timebase = now + vc->tb_offset;
525         dt->enqueue_to_dispatch_time = stolen;
526         dt->srr0 = kvmppc_get_pc(vcpu);
527         dt->srr1 = vcpu->arch.shregs.msr;
528         ++dt;
529         if (dt == vcpu->arch.dtl.pinned_end)
530                 dt = vcpu->arch.dtl.pinned_addr;
531         vcpu->arch.dtl_ptr = dt;
532         /* order writing *dt vs. writing vpa->dtl_idx */
533         smp_wmb();
534         vpa->dtl_idx = ++vcpu->arch.dtl_index;
535         vcpu->arch.dtl.dirty = true;
536 }
537
538 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
539 {
540         unsigned long req = kvmppc_get_gpr(vcpu, 3);
541         unsigned long target, ret = H_SUCCESS;
542         struct kvm_vcpu *tvcpu;
543         int idx, rc;
544
545         switch (req) {
546         case H_ENTER:
547                 idx = srcu_read_lock(&vcpu->kvm->srcu);
548                 ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
549                                               kvmppc_get_gpr(vcpu, 5),
550                                               kvmppc_get_gpr(vcpu, 6),
551                                               kvmppc_get_gpr(vcpu, 7));
552                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
553                 break;
554         case H_CEDE:
555                 break;
556         case H_PROD:
557                 target = kvmppc_get_gpr(vcpu, 4);
558                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
559                 if (!tvcpu) {
560                         ret = H_PARAMETER;
561                         break;
562                 }
563                 tvcpu->arch.prodded = 1;
564                 smp_mb();
565                 if (vcpu->arch.ceded) {
566                         if (waitqueue_active(&vcpu->wq)) {
567                                 wake_up_interruptible(&vcpu->wq);
568                                 vcpu->stat.halt_wakeup++;
569                         }
570                 }
571                 break;
572         case H_CONFER:
573                 target = kvmppc_get_gpr(vcpu, 4);
574                 if (target == -1)
575                         break;
576                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
577                 if (!tvcpu) {
578                         ret = H_PARAMETER;
579                         break;
580                 }
581                 kvm_vcpu_yield_to(tvcpu);
582                 break;
583         case H_REGISTER_VPA:
584                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
585                                         kvmppc_get_gpr(vcpu, 5),
586                                         kvmppc_get_gpr(vcpu, 6));
587                 break;
588         case H_RTAS:
589                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
590                         return RESUME_HOST;
591
592                 rc = kvmppc_rtas_hcall(vcpu);
593
594                 if (rc == -ENOENT)
595                         return RESUME_HOST;
596                 else if (rc == 0)
597                         break;
598
599                 /* Send the error out to userspace via KVM_RUN */
600                 return rc;
601
602         case H_XIRR:
603         case H_CPPR:
604         case H_EOI:
605         case H_IPI:
606         case H_IPOLL:
607         case H_XIRR_X:
608                 if (kvmppc_xics_enabled(vcpu)) {
609                         ret = kvmppc_xics_hcall(vcpu, req);
610                         break;
611                 } /* fallthrough */
612         default:
613                 return RESUME_HOST;
614         }
615         kvmppc_set_gpr(vcpu, 3, ret);
616         vcpu->arch.hcall_needed = 0;
617         return RESUME_GUEST;
618 }
619
620 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
621                                  struct task_struct *tsk)
622 {
623         int r = RESUME_HOST;
624
625         vcpu->stat.sum_exits++;
626
627         run->exit_reason = KVM_EXIT_UNKNOWN;
628         run->ready_for_interrupt_injection = 1;
629         switch (vcpu->arch.trap) {
630         /* We're good on these - the host merely wanted to get our attention */
631         case BOOK3S_INTERRUPT_HV_DECREMENTER:
632                 vcpu->stat.dec_exits++;
633                 r = RESUME_GUEST;
634                 break;
635         case BOOK3S_INTERRUPT_EXTERNAL:
636                 vcpu->stat.ext_intr_exits++;
637                 r = RESUME_GUEST;
638                 break;
639         case BOOK3S_INTERRUPT_PERFMON:
640                 r = RESUME_GUEST;
641                 break;
642         case BOOK3S_INTERRUPT_MACHINE_CHECK:
643                 /*
644                  * Deliver a machine check interrupt to the guest.
645                  * We have to do this, even if the host has handled the
646                  * machine check, because machine checks use SRR0/1 and
647                  * the interrupt might have trashed guest state in them.
648                  */
649                 kvmppc_book3s_queue_irqprio(vcpu,
650                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
651                 r = RESUME_GUEST;
652                 break;
653         case BOOK3S_INTERRUPT_PROGRAM:
654         {
655                 ulong flags;
656                 /*
657                  * Normally program interrupts are delivered directly
658                  * to the guest by the hardware, but we can get here
659                  * as a result of a hypervisor emulation interrupt
660                  * (e40) getting turned into a 700 by BML RTAS.
661                  */
662                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
663                 kvmppc_core_queue_program(vcpu, flags);
664                 r = RESUME_GUEST;
665                 break;
666         }
667         case BOOK3S_INTERRUPT_SYSCALL:
668         {
669                 /* hcall - punt to userspace */
670                 int i;
671
672                 if (vcpu->arch.shregs.msr & MSR_PR) {
673                         /* sc 1 from userspace - reflect to guest syscall */
674                         kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
675                         r = RESUME_GUEST;
676                         break;
677                 }
678                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
679                 for (i = 0; i < 9; ++i)
680                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
681                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
682                 vcpu->arch.hcall_needed = 1;
683                 r = RESUME_HOST;
684                 break;
685         }
686         /*
687          * We get these next two if the guest accesses a page which it thinks
688          * it has mapped but which is not actually present, either because
689          * it is for an emulated I/O device or because the corresonding
690          * host page has been paged out.  Any other HDSI/HISI interrupts
691          * have been handled already.
692          */
693         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
694                 r = RESUME_PAGE_FAULT;
695                 break;
696         case BOOK3S_INTERRUPT_H_INST_STORAGE:
697                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
698                 vcpu->arch.fault_dsisr = 0;
699                 r = RESUME_PAGE_FAULT;
700                 break;
701         /*
702          * This occurs if the guest executes an illegal instruction.
703          * We just generate a program interrupt to the guest, since
704          * we don't emulate any guest instructions at this stage.
705          */
706         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
707                 kvmppc_core_queue_program(vcpu, 0x80000);
708                 r = RESUME_GUEST;
709                 break;
710         default:
711                 kvmppc_dump_regs(vcpu);
712                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
713                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
714                         vcpu->arch.shregs.msr);
715                 run->hw.hardware_exit_reason = vcpu->arch.trap;
716                 r = RESUME_HOST;
717                 break;
718         }
719
720         return r;
721 }
722
723 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
724                                             struct kvm_sregs *sregs)
725 {
726         int i;
727
728         memset(sregs, 0, sizeof(struct kvm_sregs));
729         sregs->pvr = vcpu->arch.pvr;
730         for (i = 0; i < vcpu->arch.slb_max; i++) {
731                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
732                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
733         }
734
735         return 0;
736 }
737
738 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
739                                             struct kvm_sregs *sregs)
740 {
741         int i, j;
742
743         kvmppc_set_pvr_hv(vcpu, sregs->pvr);
744
745         j = 0;
746         for (i = 0; i < vcpu->arch.slb_nr; i++) {
747                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
748                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
749                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
750                         ++j;
751                 }
752         }
753         vcpu->arch.slb_max = j;
754
755         return 0;
756 }
757
758 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr)
759 {
760         struct kvmppc_vcore *vc = vcpu->arch.vcore;
761         u64 mask;
762
763         spin_lock(&vc->lock);
764         /*
765          * Userspace can only modify DPFD (default prefetch depth),
766          * ILE (interrupt little-endian) and TC (translation control).
767          */
768         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
769         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
770         spin_unlock(&vc->lock);
771 }
772
773 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
774                                  union kvmppc_one_reg *val)
775 {
776         int r = 0;
777         long int i;
778
779         switch (id) {
780         case KVM_REG_PPC_HIOR:
781                 *val = get_reg_val(id, 0);
782                 break;
783         case KVM_REG_PPC_DABR:
784                 *val = get_reg_val(id, vcpu->arch.dabr);
785                 break;
786         case KVM_REG_PPC_DSCR:
787                 *val = get_reg_val(id, vcpu->arch.dscr);
788                 break;
789         case KVM_REG_PPC_PURR:
790                 *val = get_reg_val(id, vcpu->arch.purr);
791                 break;
792         case KVM_REG_PPC_SPURR:
793                 *val = get_reg_val(id, vcpu->arch.spurr);
794                 break;
795         case KVM_REG_PPC_AMR:
796                 *val = get_reg_val(id, vcpu->arch.amr);
797                 break;
798         case KVM_REG_PPC_UAMOR:
799                 *val = get_reg_val(id, vcpu->arch.uamor);
800                 break;
801         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
802                 i = id - KVM_REG_PPC_MMCR0;
803                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
804                 break;
805         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
806                 i = id - KVM_REG_PPC_PMC1;
807                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
808                 break;
809         case KVM_REG_PPC_SIAR:
810                 *val = get_reg_val(id, vcpu->arch.siar);
811                 break;
812         case KVM_REG_PPC_SDAR:
813                 *val = get_reg_val(id, vcpu->arch.sdar);
814                 break;
815 #ifdef CONFIG_VSX
816         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
817                 if (cpu_has_feature(CPU_FTR_VSX)) {
818                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
819                         long int i = id - KVM_REG_PPC_FPR0;
820                         *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
821                 } else {
822                         /* let generic code handle it */
823                         r = -EINVAL;
824                 }
825                 break;
826         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
827                 if (cpu_has_feature(CPU_FTR_VSX)) {
828                         long int i = id - KVM_REG_PPC_VSR0;
829                         val->vsxval[0] = vcpu->arch.vsr[2 * i];
830                         val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
831                 } else {
832                         r = -ENXIO;
833                 }
834                 break;
835 #endif /* CONFIG_VSX */
836         case KVM_REG_PPC_VPA_ADDR:
837                 spin_lock(&vcpu->arch.vpa_update_lock);
838                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
839                 spin_unlock(&vcpu->arch.vpa_update_lock);
840                 break;
841         case KVM_REG_PPC_VPA_SLB:
842                 spin_lock(&vcpu->arch.vpa_update_lock);
843                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
844                 val->vpaval.length = vcpu->arch.slb_shadow.len;
845                 spin_unlock(&vcpu->arch.vpa_update_lock);
846                 break;
847         case KVM_REG_PPC_VPA_DTL:
848                 spin_lock(&vcpu->arch.vpa_update_lock);
849                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
850                 val->vpaval.length = vcpu->arch.dtl.len;
851                 spin_unlock(&vcpu->arch.vpa_update_lock);
852                 break;
853         case KVM_REG_PPC_TB_OFFSET:
854                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
855                 break;
856         case KVM_REG_PPC_LPCR:
857                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
858                 break;
859         case KVM_REG_PPC_PPR:
860                 *val = get_reg_val(id, vcpu->arch.ppr);
861                 break;
862         case KVM_REG_PPC_ARCH_COMPAT:
863                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
864                 break;
865         default:
866                 r = -EINVAL;
867                 break;
868         }
869
870         return r;
871 }
872
873 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
874                                  union kvmppc_one_reg *val)
875 {
876         int r = 0;
877         long int i;
878         unsigned long addr, len;
879
880         switch (id) {
881         case KVM_REG_PPC_HIOR:
882                 /* Only allow this to be set to zero */
883                 if (set_reg_val(id, *val))
884                         r = -EINVAL;
885                 break;
886         case KVM_REG_PPC_DABR:
887                 vcpu->arch.dabr = set_reg_val(id, *val);
888                 break;
889         case KVM_REG_PPC_DSCR:
890                 vcpu->arch.dscr = set_reg_val(id, *val);
891                 break;
892         case KVM_REG_PPC_PURR:
893                 vcpu->arch.purr = set_reg_val(id, *val);
894                 break;
895         case KVM_REG_PPC_SPURR:
896                 vcpu->arch.spurr = set_reg_val(id, *val);
897                 break;
898         case KVM_REG_PPC_AMR:
899                 vcpu->arch.amr = set_reg_val(id, *val);
900                 break;
901         case KVM_REG_PPC_UAMOR:
902                 vcpu->arch.uamor = set_reg_val(id, *val);
903                 break;
904         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
905                 i = id - KVM_REG_PPC_MMCR0;
906                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
907                 break;
908         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
909                 i = id - KVM_REG_PPC_PMC1;
910                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
911                 break;
912         case KVM_REG_PPC_SIAR:
913                 vcpu->arch.siar = set_reg_val(id, *val);
914                 break;
915         case KVM_REG_PPC_SDAR:
916                 vcpu->arch.sdar = set_reg_val(id, *val);
917                 break;
918 #ifdef CONFIG_VSX
919         case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
920                 if (cpu_has_feature(CPU_FTR_VSX)) {
921                         /* VSX => FP reg i is stored in arch.vsr[2*i] */
922                         long int i = id - KVM_REG_PPC_FPR0;
923                         vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
924                 } else {
925                         /* let generic code handle it */
926                         r = -EINVAL;
927                 }
928                 break;
929         case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
930                 if (cpu_has_feature(CPU_FTR_VSX)) {
931                         long int i = id - KVM_REG_PPC_VSR0;
932                         vcpu->arch.vsr[2 * i] = val->vsxval[0];
933                         vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
934                 } else {
935                         r = -ENXIO;
936                 }
937                 break;
938 #endif /* CONFIG_VSX */
939         case KVM_REG_PPC_VPA_ADDR:
940                 addr = set_reg_val(id, *val);
941                 r = -EINVAL;
942                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
943                               vcpu->arch.dtl.next_gpa))
944                         break;
945                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
946                 break;
947         case KVM_REG_PPC_VPA_SLB:
948                 addr = val->vpaval.addr;
949                 len = val->vpaval.length;
950                 r = -EINVAL;
951                 if (addr && !vcpu->arch.vpa.next_gpa)
952                         break;
953                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
954                 break;
955         case KVM_REG_PPC_VPA_DTL:
956                 addr = val->vpaval.addr;
957                 len = val->vpaval.length;
958                 r = -EINVAL;
959                 if (addr && (len < sizeof(struct dtl_entry) ||
960                              !vcpu->arch.vpa.next_gpa))
961                         break;
962                 len -= len % sizeof(struct dtl_entry);
963                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
964                 break;
965         case KVM_REG_PPC_TB_OFFSET:
966                 /* round up to multiple of 2^24 */
967                 vcpu->arch.vcore->tb_offset =
968                         ALIGN(set_reg_val(id, *val), 1UL << 24);
969                 break;
970         case KVM_REG_PPC_LPCR:
971                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val));
972                 break;
973         case KVM_REG_PPC_PPR:
974                 vcpu->arch.ppr = set_reg_val(id, *val);
975                 break;
976         case KVM_REG_PPC_ARCH_COMPAT:
977                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
978                 break;
979         default:
980                 r = -EINVAL;
981                 break;
982         }
983
984         return r;
985 }
986
987 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
988                                                    unsigned int id)
989 {
990         struct kvm_vcpu *vcpu;
991         int err = -EINVAL;
992         int core;
993         struct kvmppc_vcore *vcore;
994
995         core = id / threads_per_core;
996         if (core >= KVM_MAX_VCORES)
997                 goto out;
998
999         err = -ENOMEM;
1000         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1001         if (!vcpu)
1002                 goto out;
1003
1004         err = kvm_vcpu_init(vcpu, kvm, id);
1005         if (err)
1006                 goto free_vcpu;
1007
1008         vcpu->arch.shared = &vcpu->arch.shregs;
1009         vcpu->arch.mmcr[0] = MMCR0_FC;
1010         vcpu->arch.ctrl = CTRL_RUNLATCH;
1011         /* default to host PVR, since we can't spoof it */
1012         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1013         spin_lock_init(&vcpu->arch.vpa_update_lock);
1014         spin_lock_init(&vcpu->arch.tbacct_lock);
1015         vcpu->arch.busy_preempt = TB_NIL;
1016
1017         kvmppc_mmu_book3s_hv_init(vcpu);
1018
1019         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1020
1021         init_waitqueue_head(&vcpu->arch.cpu_run);
1022
1023         mutex_lock(&kvm->lock);
1024         vcore = kvm->arch.vcores[core];
1025         if (!vcore) {
1026                 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1027                 if (vcore) {
1028                         INIT_LIST_HEAD(&vcore->runnable_threads);
1029                         spin_lock_init(&vcore->lock);
1030                         init_waitqueue_head(&vcore->wq);
1031                         vcore->preempt_tb = TB_NIL;
1032                         vcore->lpcr = kvm->arch.lpcr;
1033                 }
1034                 kvm->arch.vcores[core] = vcore;
1035                 kvm->arch.online_vcores++;
1036         }
1037         mutex_unlock(&kvm->lock);
1038
1039         if (!vcore)
1040                 goto free_vcpu;
1041
1042         spin_lock(&vcore->lock);
1043         ++vcore->num_threads;
1044         spin_unlock(&vcore->lock);
1045         vcpu->arch.vcore = vcore;
1046
1047         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1048         kvmppc_sanity_check(vcpu);
1049
1050         return vcpu;
1051
1052 free_vcpu:
1053         kmem_cache_free(kvm_vcpu_cache, vcpu);
1054 out:
1055         return ERR_PTR(err);
1056 }
1057
1058 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1059 {
1060         if (vpa->pinned_addr)
1061                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1062                                         vpa->dirty);
1063 }
1064
1065 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1066 {
1067         spin_lock(&vcpu->arch.vpa_update_lock);
1068         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1069         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1070         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1071         spin_unlock(&vcpu->arch.vpa_update_lock);
1072         kvm_vcpu_uninit(vcpu);
1073         kmem_cache_free(kvm_vcpu_cache, vcpu);
1074 }
1075
1076 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1077 {
1078         /* Indicate we want to get back into the guest */
1079         return 1;
1080 }
1081
1082 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1083 {
1084         unsigned long dec_nsec, now;
1085
1086         now = get_tb();
1087         if (now > vcpu->arch.dec_expires) {
1088                 /* decrementer has already gone negative */
1089                 kvmppc_core_queue_dec(vcpu);
1090                 kvmppc_core_prepare_to_enter(vcpu);
1091                 return;
1092         }
1093         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1094                    / tb_ticks_per_sec;
1095         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1096                       HRTIMER_MODE_REL);
1097         vcpu->arch.timer_running = 1;
1098 }
1099
1100 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1101 {
1102         vcpu->arch.ceded = 0;
1103         if (vcpu->arch.timer_running) {
1104                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1105                 vcpu->arch.timer_running = 0;
1106         }
1107 }
1108
1109 extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
1110
1111 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1112                                    struct kvm_vcpu *vcpu)
1113 {
1114         u64 now;
1115
1116         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1117                 return;
1118         spin_lock(&vcpu->arch.tbacct_lock);
1119         now = mftb();
1120         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1121                 vcpu->arch.stolen_logged;
1122         vcpu->arch.busy_preempt = now;
1123         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1124         spin_unlock(&vcpu->arch.tbacct_lock);
1125         --vc->n_runnable;
1126         list_del(&vcpu->arch.run_list);
1127 }
1128
1129 static int kvmppc_grab_hwthread(int cpu)
1130 {
1131         struct paca_struct *tpaca;
1132         long timeout = 1000;
1133
1134         tpaca = &paca[cpu];
1135
1136         /* Ensure the thread won't go into the kernel if it wakes */
1137         tpaca->kvm_hstate.hwthread_req = 1;
1138         tpaca->kvm_hstate.kvm_vcpu = NULL;
1139
1140         /*
1141          * If the thread is already executing in the kernel (e.g. handling
1142          * a stray interrupt), wait for it to get back to nap mode.
1143          * The smp_mb() is to ensure that our setting of hwthread_req
1144          * is visible before we look at hwthread_state, so if this
1145          * races with the code at system_reset_pSeries and the thread
1146          * misses our setting of hwthread_req, we are sure to see its
1147          * setting of hwthread_state, and vice versa.
1148          */
1149         smp_mb();
1150         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1151                 if (--timeout <= 0) {
1152                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1153                         return -EBUSY;
1154                 }
1155                 udelay(1);
1156         }
1157         return 0;
1158 }
1159
1160 static void kvmppc_release_hwthread(int cpu)
1161 {
1162         struct paca_struct *tpaca;
1163
1164         tpaca = &paca[cpu];
1165         tpaca->kvm_hstate.hwthread_req = 0;
1166         tpaca->kvm_hstate.kvm_vcpu = NULL;
1167 }
1168
1169 static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
1170 {
1171         int cpu;
1172         struct paca_struct *tpaca;
1173         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1174
1175         if (vcpu->arch.timer_running) {
1176                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1177                 vcpu->arch.timer_running = 0;
1178         }
1179         cpu = vc->pcpu + vcpu->arch.ptid;
1180         tpaca = &paca[cpu];
1181         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1182         tpaca->kvm_hstate.kvm_vcore = vc;
1183         tpaca->kvm_hstate.napping = 0;
1184         vcpu->cpu = vc->pcpu;
1185         smp_wmb();
1186 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
1187         if (vcpu->arch.ptid) {
1188                 xics_wake_cpu(cpu);
1189                 ++vc->n_woken;
1190         }
1191 #endif
1192 }
1193
1194 static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
1195 {
1196         int i;
1197
1198         HMT_low();
1199         i = 0;
1200         while (vc->nap_count < vc->n_woken) {
1201                 if (++i >= 1000000) {
1202                         pr_err("kvmppc_wait_for_nap timeout %d %d\n",
1203                                vc->nap_count, vc->n_woken);
1204                         break;
1205                 }
1206                 cpu_relax();
1207         }
1208         HMT_medium();
1209 }
1210
1211 /*
1212  * Check that we are on thread 0 and that any other threads in
1213  * this core are off-line.  Then grab the threads so they can't
1214  * enter the kernel.
1215  */
1216 static int on_primary_thread(void)
1217 {
1218         int cpu = smp_processor_id();
1219         int thr = cpu_thread_in_core(cpu);
1220
1221         if (thr)
1222                 return 0;
1223         while (++thr < threads_per_core)
1224                 if (cpu_online(cpu + thr))
1225                         return 0;
1226
1227         /* Grab all hw threads so they can't go into the kernel */
1228         for (thr = 1; thr < threads_per_core; ++thr) {
1229                 if (kvmppc_grab_hwthread(cpu + thr)) {
1230                         /* Couldn't grab one; let the others go */
1231                         do {
1232                                 kvmppc_release_hwthread(cpu + thr);
1233                         } while (--thr > 0);
1234                         return 0;
1235                 }
1236         }
1237         return 1;
1238 }
1239
1240 /*
1241  * Run a set of guest threads on a physical core.
1242  * Called with vc->lock held.
1243  */
1244 static void kvmppc_run_core(struct kvmppc_vcore *vc)
1245 {
1246         struct kvm_vcpu *vcpu, *vcpu0, *vnext;
1247         long ret;
1248         u64 now;
1249         int ptid, i, need_vpa_update;
1250         int srcu_idx;
1251         struct kvm_vcpu *vcpus_to_update[threads_per_core];
1252
1253         /* don't start if any threads have a signal pending */
1254         need_vpa_update = 0;
1255         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1256                 if (signal_pending(vcpu->arch.run_task))
1257                         return;
1258                 if (vcpu->arch.vpa.update_pending ||
1259                     vcpu->arch.slb_shadow.update_pending ||
1260                     vcpu->arch.dtl.update_pending)
1261                         vcpus_to_update[need_vpa_update++] = vcpu;
1262         }
1263
1264         /*
1265          * Initialize *vc, in particular vc->vcore_state, so we can
1266          * drop the vcore lock if necessary.
1267          */
1268         vc->n_woken = 0;
1269         vc->nap_count = 0;
1270         vc->entry_exit_count = 0;
1271         vc->vcore_state = VCORE_STARTING;
1272         vc->in_guest = 0;
1273         vc->napping_threads = 0;
1274
1275         /*
1276          * Updating any of the vpas requires calling kvmppc_pin_guest_page,
1277          * which can't be called with any spinlocks held.
1278          */
1279         if (need_vpa_update) {
1280                 spin_unlock(&vc->lock);
1281                 for (i = 0; i < need_vpa_update; ++i)
1282                         kvmppc_update_vpas(vcpus_to_update[i]);
1283                 spin_lock(&vc->lock);
1284         }
1285
1286         /*
1287          * Assign physical thread IDs, first to non-ceded vcpus
1288          * and then to ceded ones.
1289          */
1290         ptid = 0;
1291         vcpu0 = NULL;
1292         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1293                 if (!vcpu->arch.ceded) {
1294                         if (!ptid)
1295                                 vcpu0 = vcpu;
1296                         vcpu->arch.ptid = ptid++;
1297                 }
1298         }
1299         if (!vcpu0)
1300                 goto out;       /* nothing to run; should never happen */
1301         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1302                 if (vcpu->arch.ceded)
1303                         vcpu->arch.ptid = ptid++;
1304
1305         /*
1306          * Make sure we are running on thread 0, and that
1307          * secondary threads are offline.
1308          */
1309         if (threads_per_core > 1 && !on_primary_thread()) {
1310                 list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1311                         vcpu->arch.ret = -EBUSY;
1312                 goto out;
1313         }
1314
1315         vc->pcpu = smp_processor_id();
1316         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1317                 kvmppc_start_thread(vcpu);
1318                 kvmppc_create_dtl_entry(vcpu, vc);
1319         }
1320
1321         vc->vcore_state = VCORE_RUNNING;
1322         preempt_disable();
1323         spin_unlock(&vc->lock);
1324
1325         kvm_guest_enter();
1326
1327         srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
1328
1329         __kvmppc_vcore_entry(NULL, vcpu0);
1330
1331         spin_lock(&vc->lock);
1332         /* disable sending of IPIs on virtual external irqs */
1333         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
1334                 vcpu->cpu = -1;
1335         /* wait for secondary threads to finish writing their state to memory */
1336         if (vc->nap_count < vc->n_woken)
1337                 kvmppc_wait_for_nap(vc);
1338         for (i = 0; i < threads_per_core; ++i)
1339                 kvmppc_release_hwthread(vc->pcpu + i);
1340         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
1341         vc->vcore_state = VCORE_EXITING;
1342         spin_unlock(&vc->lock);
1343
1344         srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
1345
1346         /* make sure updates to secondary vcpu structs are visible now */
1347         smp_mb();
1348         kvm_guest_exit();
1349
1350         preempt_enable();
1351         kvm_resched(vcpu);
1352
1353         spin_lock(&vc->lock);
1354         now = get_tb();
1355         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
1356                 /* cancel pending dec exception if dec is positive */
1357                 if (now < vcpu->arch.dec_expires &&
1358                     kvmppc_core_pending_dec(vcpu))
1359                         kvmppc_core_dequeue_dec(vcpu);
1360
1361                 ret = RESUME_GUEST;
1362                 if (vcpu->arch.trap)
1363                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
1364                                                     vcpu->arch.run_task);
1365
1366                 vcpu->arch.ret = ret;
1367                 vcpu->arch.trap = 0;
1368
1369                 if (vcpu->arch.ceded) {
1370                         if (ret != RESUME_GUEST)
1371                                 kvmppc_end_cede(vcpu);
1372                         else
1373                                 kvmppc_set_timer(vcpu);
1374                 }
1375         }
1376
1377  out:
1378         vc->vcore_state = VCORE_INACTIVE;
1379         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
1380                                  arch.run_list) {
1381                 if (vcpu->arch.ret != RESUME_GUEST) {
1382                         kvmppc_remove_runnable(vc, vcpu);
1383                         wake_up(&vcpu->arch.cpu_run);
1384                 }
1385         }
1386 }
1387
1388 /*
1389  * Wait for some other vcpu thread to execute us, and
1390  * wake us up when we need to handle something in the host.
1391  */
1392 static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
1393 {
1394         DEFINE_WAIT(wait);
1395
1396         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
1397         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
1398                 schedule();
1399         finish_wait(&vcpu->arch.cpu_run, &wait);
1400 }
1401
1402 /*
1403  * All the vcpus in this vcore are idle, so wait for a decrementer
1404  * or external interrupt to one of the vcpus.  vc->lock is held.
1405  */
1406 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
1407 {
1408         DEFINE_WAIT(wait);
1409
1410         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
1411         vc->vcore_state = VCORE_SLEEPING;
1412         spin_unlock(&vc->lock);
1413         schedule();
1414         finish_wait(&vc->wq, &wait);
1415         spin_lock(&vc->lock);
1416         vc->vcore_state = VCORE_INACTIVE;
1417 }
1418
1419 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1420 {
1421         int n_ceded;
1422         struct kvmppc_vcore *vc;
1423         struct kvm_vcpu *v, *vn;
1424
1425         kvm_run->exit_reason = 0;
1426         vcpu->arch.ret = RESUME_GUEST;
1427         vcpu->arch.trap = 0;
1428         kvmppc_update_vpas(vcpu);
1429
1430         /*
1431          * Synchronize with other threads in this virtual core
1432          */
1433         vc = vcpu->arch.vcore;
1434         spin_lock(&vc->lock);
1435         vcpu->arch.ceded = 0;
1436         vcpu->arch.run_task = current;
1437         vcpu->arch.kvm_run = kvm_run;
1438         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
1439         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
1440         vcpu->arch.busy_preempt = TB_NIL;
1441         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
1442         ++vc->n_runnable;
1443
1444         /*
1445          * This happens the first time this is called for a vcpu.
1446          * If the vcore is already running, we may be able to start
1447          * this thread straight away and have it join in.
1448          */
1449         if (!signal_pending(current)) {
1450                 if (vc->vcore_state == VCORE_RUNNING &&
1451                     VCORE_EXIT_COUNT(vc) == 0) {
1452                         vcpu->arch.ptid = vc->n_runnable - 1;
1453                         kvmppc_create_dtl_entry(vcpu, vc);
1454                         kvmppc_start_thread(vcpu);
1455                 } else if (vc->vcore_state == VCORE_SLEEPING) {
1456                         wake_up(&vc->wq);
1457                 }
1458
1459         }
1460
1461         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1462                !signal_pending(current)) {
1463                 if (vc->vcore_state != VCORE_INACTIVE) {
1464                         spin_unlock(&vc->lock);
1465                         kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
1466                         spin_lock(&vc->lock);
1467                         continue;
1468                 }
1469                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
1470                                          arch.run_list) {
1471                         kvmppc_core_prepare_to_enter(v);
1472                         if (signal_pending(v->arch.run_task)) {
1473                                 kvmppc_remove_runnable(vc, v);
1474                                 v->stat.signal_exits++;
1475                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
1476                                 v->arch.ret = -EINTR;
1477                                 wake_up(&v->arch.cpu_run);
1478                         }
1479                 }
1480                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1481                         break;
1482                 vc->runner = vcpu;
1483                 n_ceded = 0;
1484                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
1485                         if (!v->arch.pending_exceptions)
1486                                 n_ceded += v->arch.ceded;
1487                         else
1488                                 v->arch.ceded = 0;
1489                 }
1490                 if (n_ceded == vc->n_runnable)
1491                         kvmppc_vcore_blocked(vc);
1492                 else
1493                         kvmppc_run_core(vc);
1494                 vc->runner = NULL;
1495         }
1496
1497         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
1498                (vc->vcore_state == VCORE_RUNNING ||
1499                 vc->vcore_state == VCORE_EXITING)) {
1500                 spin_unlock(&vc->lock);
1501                 kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
1502                 spin_lock(&vc->lock);
1503         }
1504
1505         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
1506                 kvmppc_remove_runnable(vc, vcpu);
1507                 vcpu->stat.signal_exits++;
1508                 kvm_run->exit_reason = KVM_EXIT_INTR;
1509                 vcpu->arch.ret = -EINTR;
1510         }
1511
1512         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
1513                 /* Wake up some vcpu to run the core */
1514                 v = list_first_entry(&vc->runnable_threads,
1515                                      struct kvm_vcpu, arch.run_list);
1516                 wake_up(&v->arch.cpu_run);
1517         }
1518
1519         spin_unlock(&vc->lock);
1520         return vcpu->arch.ret;
1521 }
1522
1523 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
1524 {
1525         int r;
1526         int srcu_idx;
1527
1528         if (!vcpu->arch.sane) {
1529                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1530                 return -EINVAL;
1531         }
1532
1533         kvmppc_core_prepare_to_enter(vcpu);
1534
1535         /* No need to go into the guest when all we'll do is come back out */
1536         if (signal_pending(current)) {
1537                 run->exit_reason = KVM_EXIT_INTR;
1538                 return -EINTR;
1539         }
1540
1541         atomic_inc(&vcpu->kvm->arch.vcpus_running);
1542         /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
1543         smp_mb();
1544
1545         /* On the first time here, set up HTAB and VRMA or RMA */
1546         if (!vcpu->kvm->arch.rma_setup_done) {
1547                 r = kvmppc_hv_setup_htab_rma(vcpu);
1548                 if (r)
1549                         goto out;
1550         }
1551
1552         flush_fp_to_thread(current);
1553         flush_altivec_to_thread(current);
1554         flush_vsx_to_thread(current);
1555         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
1556         vcpu->arch.pgdir = current->mm->pgd;
1557         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1558
1559         do {
1560                 r = kvmppc_run_vcpu(run, vcpu);
1561
1562                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
1563                     !(vcpu->arch.shregs.msr & MSR_PR)) {
1564                         r = kvmppc_pseries_do_hcall(vcpu);
1565                         kvmppc_core_prepare_to_enter(vcpu);
1566                 } else if (r == RESUME_PAGE_FAULT) {
1567                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1568                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
1569                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1570                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1571                 }
1572         } while (r == RESUME_GUEST);
1573
1574  out:
1575         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1576         atomic_dec(&vcpu->kvm->arch.vcpus_running);
1577         return r;
1578 }
1579
1580
1581 /* Work out RMLS (real mode limit selector) field value for a given RMA size.
1582    Assumes POWER7 or PPC970. */
1583 static inline int lpcr_rmls(unsigned long rma_size)
1584 {
1585         switch (rma_size) {
1586         case 32ul << 20:        /* 32 MB */
1587                 if (cpu_has_feature(CPU_FTR_ARCH_206))
1588                         return 8;       /* only supported on POWER7 */
1589                 return -1;
1590         case 64ul << 20:        /* 64 MB */
1591                 return 3;
1592         case 128ul << 20:       /* 128 MB */
1593                 return 7;
1594         case 256ul << 20:       /* 256 MB */
1595                 return 4;
1596         case 1ul << 30:         /* 1 GB */
1597                 return 2;
1598         case 16ul << 30:        /* 16 GB */
1599                 return 1;
1600         case 256ul << 30:       /* 256 GB */
1601                 return 0;
1602         default:
1603                 return -1;
1604         }
1605 }
1606
1607 static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1608 {
1609         struct page *page;
1610         struct kvm_rma_info *ri = vma->vm_file->private_data;
1611
1612         if (vmf->pgoff >= kvm_rma_pages)
1613                 return VM_FAULT_SIGBUS;
1614
1615         page = pfn_to_page(ri->base_pfn + vmf->pgoff);
1616         get_page(page);
1617         vmf->page = page;
1618         return 0;
1619 }
1620
1621 static const struct vm_operations_struct kvm_rma_vm_ops = {
1622         .fault = kvm_rma_fault,
1623 };
1624
1625 static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
1626 {
1627         vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
1628         vma->vm_ops = &kvm_rma_vm_ops;
1629         return 0;
1630 }
1631
1632 static int kvm_rma_release(struct inode *inode, struct file *filp)
1633 {
1634         struct kvm_rma_info *ri = filp->private_data;
1635
1636         kvm_release_rma(ri);
1637         return 0;
1638 }
1639
1640 static const struct file_operations kvm_rma_fops = {
1641         .mmap           = kvm_rma_mmap,
1642         .release        = kvm_rma_release,
1643 };
1644
1645 static long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
1646                                       struct kvm_allocate_rma *ret)
1647 {
1648         long fd;
1649         struct kvm_rma_info *ri;
1650         /*
1651          * Only do this on PPC970 in HV mode
1652          */
1653         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
1654             !cpu_has_feature(CPU_FTR_ARCH_201))
1655                 return -EINVAL;
1656
1657         if (!kvm_rma_pages)
1658                 return -EINVAL;
1659
1660         ri = kvm_alloc_rma();
1661         if (!ri)
1662                 return -ENOMEM;
1663
1664         fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR | O_CLOEXEC);
1665         if (fd < 0)
1666                 kvm_release_rma(ri);
1667
1668         ret->rma_size = kvm_rma_pages << PAGE_SHIFT;
1669         return fd;
1670 }
1671
1672 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
1673                                      int linux_psize)
1674 {
1675         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
1676
1677         if (!def->shift)
1678                 return;
1679         (*sps)->page_shift = def->shift;
1680         (*sps)->slb_enc = def->sllp;
1681         (*sps)->enc[0].page_shift = def->shift;
1682         /*
1683          * Only return base page encoding. We don't want to return
1684          * all the supporting pte_enc, because our H_ENTER doesn't
1685          * support MPSS yet. Once they do, we can start passing all
1686          * support pte_enc here
1687          */
1688         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
1689         (*sps)++;
1690 }
1691
1692 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
1693                                          struct kvm_ppc_smmu_info *info)
1694 {
1695         struct kvm_ppc_one_seg_page_size *sps;
1696
1697         info->flags = KVM_PPC_PAGE_SIZES_REAL;
1698         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1699                 info->flags |= KVM_PPC_1T_SEGMENTS;
1700         info->slb_size = mmu_slb_size;
1701
1702         /* We only support these sizes for now, and no muti-size segments */
1703         sps = &info->sps[0];
1704         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
1705         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
1706         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
1707
1708         return 0;
1709 }
1710
1711 /*
1712  * Get (and clear) the dirty memory log for a memory slot.
1713  */
1714 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
1715                                          struct kvm_dirty_log *log)
1716 {
1717         struct kvm_memory_slot *memslot;
1718         int r;
1719         unsigned long n;
1720
1721         mutex_lock(&kvm->slots_lock);
1722
1723         r = -EINVAL;
1724         if (log->slot >= KVM_USER_MEM_SLOTS)
1725                 goto out;
1726
1727         memslot = id_to_memslot(kvm->memslots, log->slot);
1728         r = -ENOENT;
1729         if (!memslot->dirty_bitmap)
1730                 goto out;
1731
1732         n = kvm_dirty_bitmap_bytes(memslot);
1733         memset(memslot->dirty_bitmap, 0, n);
1734
1735         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
1736         if (r)
1737                 goto out;
1738
1739         r = -EFAULT;
1740         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1741                 goto out;
1742
1743         r = 0;
1744 out:
1745         mutex_unlock(&kvm->slots_lock);
1746         return r;
1747 }
1748
1749 static void unpin_slot(struct kvm_memory_slot *memslot)
1750 {
1751         unsigned long *physp;
1752         unsigned long j, npages, pfn;
1753         struct page *page;
1754
1755         physp = memslot->arch.slot_phys;
1756         npages = memslot->npages;
1757         if (!physp)
1758                 return;
1759         for (j = 0; j < npages; j++) {
1760                 if (!(physp[j] & KVMPPC_GOT_PAGE))
1761                         continue;
1762                 pfn = physp[j] >> PAGE_SHIFT;
1763                 page = pfn_to_page(pfn);
1764                 SetPageDirty(page);
1765                 put_page(page);
1766         }
1767 }
1768
1769 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
1770                                         struct kvm_memory_slot *dont)
1771 {
1772         if (!dont || free->arch.rmap != dont->arch.rmap) {
1773                 vfree(free->arch.rmap);
1774                 free->arch.rmap = NULL;
1775         }
1776         if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
1777                 unpin_slot(free);
1778                 vfree(free->arch.slot_phys);
1779                 free->arch.slot_phys = NULL;
1780         }
1781 }
1782
1783 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
1784                                          unsigned long npages)
1785 {
1786         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
1787         if (!slot->arch.rmap)
1788                 return -ENOMEM;
1789         slot->arch.slot_phys = NULL;
1790
1791         return 0;
1792 }
1793
1794 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
1795                                         struct kvm_memory_slot *memslot,
1796                                         struct kvm_userspace_memory_region *mem)
1797 {
1798         unsigned long *phys;
1799
1800         /* Allocate a slot_phys array if needed */
1801         phys = memslot->arch.slot_phys;
1802         if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
1803                 phys = vzalloc(memslot->npages * sizeof(unsigned long));
1804                 if (!phys)
1805                         return -ENOMEM;
1806                 memslot->arch.slot_phys = phys;
1807         }
1808
1809         return 0;
1810 }
1811
1812 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
1813                                 struct kvm_userspace_memory_region *mem,
1814                                 const struct kvm_memory_slot *old)
1815 {
1816         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
1817         struct kvm_memory_slot *memslot;
1818
1819         if (npages && old->npages) {
1820                 /*
1821                  * If modifying a memslot, reset all the rmap dirty bits.
1822                  * If this is a new memslot, we don't need to do anything
1823                  * since the rmap array starts out as all zeroes,
1824                  * i.e. no pages are dirty.
1825                  */
1826                 memslot = id_to_memslot(kvm->memslots, mem->slot);
1827                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
1828         }
1829 }
1830
1831 /*
1832  * Update LPCR values in kvm->arch and in vcores.
1833  * Caller must hold kvm->lock.
1834  */
1835 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
1836 {
1837         long int i;
1838         u32 cores_done = 0;
1839
1840         if ((kvm->arch.lpcr & mask) == lpcr)
1841                 return;
1842
1843         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
1844
1845         for (i = 0; i < KVM_MAX_VCORES; ++i) {
1846                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
1847                 if (!vc)
1848                         continue;
1849                 spin_lock(&vc->lock);
1850                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
1851                 spin_unlock(&vc->lock);
1852                 if (++cores_done >= kvm->arch.online_vcores)
1853                         break;
1854         }
1855 }
1856
1857 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
1858 {
1859         return;
1860 }
1861
1862 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
1863 {
1864         int err = 0;
1865         struct kvm *kvm = vcpu->kvm;
1866         struct kvm_rma_info *ri = NULL;
1867         unsigned long hva;
1868         struct kvm_memory_slot *memslot;
1869         struct vm_area_struct *vma;
1870         unsigned long lpcr = 0, senc;
1871         unsigned long lpcr_mask = 0;
1872         unsigned long psize, porder;
1873         unsigned long rma_size;
1874         unsigned long rmls;
1875         unsigned long *physp;
1876         unsigned long i, npages;
1877         int srcu_idx;
1878
1879         mutex_lock(&kvm->lock);
1880         if (kvm->arch.rma_setup_done)
1881                 goto out;       /* another vcpu beat us to it */
1882
1883         /* Allocate hashed page table (if not done already) and reset it */
1884         if (!kvm->arch.hpt_virt) {
1885                 err = kvmppc_alloc_hpt(kvm, NULL);
1886                 if (err) {
1887                         pr_err("KVM: Couldn't alloc HPT\n");
1888                         goto out;
1889                 }
1890         }
1891
1892         /* Look up the memslot for guest physical address 0 */
1893         srcu_idx = srcu_read_lock(&kvm->srcu);
1894         memslot = gfn_to_memslot(kvm, 0);
1895
1896         /* We must have some memory at 0 by now */
1897         err = -EINVAL;
1898         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1899                 goto out_srcu;
1900
1901         /* Look up the VMA for the start of this memory slot */
1902         hva = memslot->userspace_addr;
1903         down_read(&current->mm->mmap_sem);
1904         vma = find_vma(current->mm, hva);
1905         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
1906                 goto up_out;
1907
1908         psize = vma_kernel_pagesize(vma);
1909         porder = __ilog2(psize);
1910
1911         /* Is this one of our preallocated RMAs? */
1912         if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
1913             hva == vma->vm_start)
1914                 ri = vma->vm_file->private_data;
1915
1916         up_read(&current->mm->mmap_sem);
1917
1918         if (!ri) {
1919                 /* On POWER7, use VRMA; on PPC970, give up */
1920                 err = -EPERM;
1921                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1922                         pr_err("KVM: CPU requires an RMO\n");
1923                         goto out_srcu;
1924                 }
1925
1926                 /* We can handle 4k, 64k or 16M pages in the VRMA */
1927                 err = -EINVAL;
1928                 if (!(psize == 0x1000 || psize == 0x10000 ||
1929                       psize == 0x1000000))
1930                         goto out_srcu;
1931
1932                 /* Update VRMASD field in the LPCR */
1933                 senc = slb_pgsize_encoding(psize);
1934                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1935                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1936                 lpcr_mask = LPCR_VRMASD;
1937                 /* the -4 is to account for senc values starting at 0x10 */
1938                 lpcr = senc << (LPCR_VRMASD_SH - 4);
1939
1940                 /* Create HPTEs in the hash page table for the VRMA */
1941                 kvmppc_map_vrma(vcpu, memslot, porder);
1942
1943         } else {
1944                 /* Set up to use an RMO region */
1945                 rma_size = kvm_rma_pages;
1946                 if (rma_size > memslot->npages)
1947                         rma_size = memslot->npages;
1948                 rma_size <<= PAGE_SHIFT;
1949                 rmls = lpcr_rmls(rma_size);
1950                 err = -EINVAL;
1951                 if ((long)rmls < 0) {
1952                         pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
1953                         goto out_srcu;
1954                 }
1955                 atomic_inc(&ri->use_count);
1956                 kvm->arch.rma = ri;
1957
1958                 /* Update LPCR and RMOR */
1959                 if (cpu_has_feature(CPU_FTR_ARCH_201)) {
1960                         /* PPC970; insert RMLS value (split field) in HID4 */
1961                         lpcr_mask = (1ul << HID4_RMLS0_SH) |
1962                                 (3ul << HID4_RMLS2_SH) | HID4_RMOR;
1963                         lpcr = ((rmls >> 2) << HID4_RMLS0_SH) |
1964                                 ((rmls & 3) << HID4_RMLS2_SH);
1965                         /* RMOR is also in HID4 */
1966                         lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
1967                                 << HID4_RMOR_SH;
1968                 } else {
1969                         /* POWER7 */
1970                         lpcr_mask = LPCR_VPM0 | LPCR_VRMA_L | LPCR_RMLS;
1971                         lpcr = rmls << LPCR_RMLS_SH;
1972                         kvm->arch.rmor = ri->base_pfn << PAGE_SHIFT;
1973                 }
1974                 pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
1975                         ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
1976
1977                 /* Initialize phys addrs of pages in RMO */
1978                 npages = kvm_rma_pages;
1979                 porder = __ilog2(npages);
1980                 physp = memslot->arch.slot_phys;
1981                 if (physp) {
1982                         if (npages > memslot->npages)
1983                                 npages = memslot->npages;
1984                         spin_lock(&kvm->arch.slot_phys_lock);
1985                         for (i = 0; i < npages; ++i)
1986                                 physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
1987                                         porder;
1988                         spin_unlock(&kvm->arch.slot_phys_lock);
1989                 }
1990         }
1991
1992         kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
1993
1994         /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
1995         smp_wmb();
1996         kvm->arch.rma_setup_done = 1;
1997         err = 0;
1998  out_srcu:
1999         srcu_read_unlock(&kvm->srcu, srcu_idx);
2000  out:
2001         mutex_unlock(&kvm->lock);
2002         return err;
2003
2004  up_out:
2005         up_read(&current->mm->mmap_sem);
2006         goto out_srcu;
2007 }
2008
2009 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2010 {
2011         unsigned long lpcr, lpid;
2012
2013         /* Allocate the guest's logical partition ID */
2014
2015         lpid = kvmppc_alloc_lpid();
2016         if ((long)lpid < 0)
2017                 return -ENOMEM;
2018         kvm->arch.lpid = lpid;
2019
2020         /*
2021          * Since we don't flush the TLB when tearing down a VM,
2022          * and this lpid might have previously been used,
2023          * make sure we flush on each core before running the new VM.
2024          */
2025         cpumask_setall(&kvm->arch.need_tlb_flush);
2026
2027         kvm->arch.rma = NULL;
2028
2029         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
2030
2031         if (cpu_has_feature(CPU_FTR_ARCH_201)) {
2032                 /* PPC970; HID4 is effectively the LPCR */
2033                 kvm->arch.host_lpid = 0;
2034                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
2035                 lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
2036                 lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
2037                         ((lpid & 0xf) << HID4_LPID5_SH);
2038         } else {
2039                 /* POWER7; init LPCR for virtual RMA mode */
2040                 kvm->arch.host_lpid = mfspr(SPRN_LPID);
2041                 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
2042                 lpcr &= LPCR_PECE | LPCR_LPES;
2043                 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
2044                         LPCR_VPM0 | LPCR_VPM1;
2045                 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
2046                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
2047         }
2048         kvm->arch.lpcr = lpcr;
2049
2050         kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
2051         spin_lock_init(&kvm->arch.slot_phys_lock);
2052
2053         /*
2054          * Don't allow secondary CPU threads to come online
2055          * while any KVM VMs exist.
2056          */
2057         inhibit_secondary_onlining();
2058
2059         return 0;
2060 }
2061
2062 static void kvmppc_free_vcores(struct kvm *kvm)
2063 {
2064         long int i;
2065
2066         for (i = 0; i < KVM_MAX_VCORES; ++i)
2067                 kfree(kvm->arch.vcores[i]);
2068         kvm->arch.online_vcores = 0;
2069 }
2070
2071 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
2072 {
2073         uninhibit_secondary_onlining();
2074
2075         kvmppc_free_vcores(kvm);
2076         if (kvm->arch.rma) {
2077                 kvm_release_rma(kvm->arch.rma);
2078                 kvm->arch.rma = NULL;
2079         }
2080
2081         kvmppc_free_hpt(kvm);
2082 }
2083
2084 /* We don't need to emulate any privileged instructions or dcbz */
2085 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
2086                                      unsigned int inst, int *advance)
2087 {
2088         return EMULATE_FAIL;
2089 }
2090
2091 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
2092                                         ulong spr_val)
2093 {
2094         return EMULATE_FAIL;
2095 }
2096
2097 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
2098                                         ulong *spr_val)
2099 {
2100         return EMULATE_FAIL;
2101 }
2102
2103 static int kvmppc_core_check_processor_compat_hv(void)
2104 {
2105         if (!cpu_has_feature(CPU_FTR_HVMODE))
2106                 return -EIO;
2107         return 0;
2108 }
2109
2110 static long kvm_arch_vm_ioctl_hv(struct file *filp,
2111                                  unsigned int ioctl, unsigned long arg)
2112 {
2113         struct kvm *kvm __maybe_unused = filp->private_data;
2114         void __user *argp = (void __user *)arg;
2115         long r;
2116
2117         switch (ioctl) {
2118
2119         case KVM_ALLOCATE_RMA: {
2120                 struct kvm_allocate_rma rma;
2121                 struct kvm *kvm = filp->private_data;
2122
2123                 r = kvm_vm_ioctl_allocate_rma(kvm, &rma);
2124                 if (r >= 0 && copy_to_user(argp, &rma, sizeof(rma)))
2125                         r = -EFAULT;
2126                 break;
2127         }
2128
2129         case KVM_PPC_ALLOCATE_HTAB: {
2130                 u32 htab_order;
2131
2132                 r = -EFAULT;
2133                 if (get_user(htab_order, (u32 __user *)argp))
2134                         break;
2135                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
2136                 if (r)
2137                         break;
2138                 r = -EFAULT;
2139                 if (put_user(htab_order, (u32 __user *)argp))
2140                         break;
2141                 r = 0;
2142                 break;
2143         }
2144
2145         case KVM_PPC_GET_HTAB_FD: {
2146                 struct kvm_get_htab_fd ghf;
2147
2148                 r = -EFAULT;
2149                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
2150                         break;
2151                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
2152                 break;
2153         }
2154
2155         default:
2156                 r = -ENOTTY;
2157         }
2158
2159         return r;
2160 }
2161
2162 static struct kvmppc_ops kvm_ops_hv = {
2163         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
2164         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
2165         .get_one_reg = kvmppc_get_one_reg_hv,
2166         .set_one_reg = kvmppc_set_one_reg_hv,
2167         .vcpu_load   = kvmppc_core_vcpu_load_hv,
2168         .vcpu_put    = kvmppc_core_vcpu_put_hv,
2169         .set_msr     = kvmppc_set_msr_hv,
2170         .vcpu_run    = kvmppc_vcpu_run_hv,
2171         .vcpu_create = kvmppc_core_vcpu_create_hv,
2172         .vcpu_free   = kvmppc_core_vcpu_free_hv,
2173         .check_requests = kvmppc_core_check_requests_hv,
2174         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
2175         .flush_memslot  = kvmppc_core_flush_memslot_hv,
2176         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
2177         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
2178         .unmap_hva = kvm_unmap_hva_hv,
2179         .unmap_hva_range = kvm_unmap_hva_range_hv,
2180         .age_hva  = kvm_age_hva_hv,
2181         .test_age_hva = kvm_test_age_hva_hv,
2182         .set_spte_hva = kvm_set_spte_hva_hv,
2183         .mmu_destroy  = kvmppc_mmu_destroy_hv,
2184         .free_memslot = kvmppc_core_free_memslot_hv,
2185         .create_memslot = kvmppc_core_create_memslot_hv,
2186         .init_vm =  kvmppc_core_init_vm_hv,
2187         .destroy_vm = kvmppc_core_destroy_vm_hv,
2188         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
2189         .emulate_op = kvmppc_core_emulate_op_hv,
2190         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
2191         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
2192         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
2193         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
2194 };
2195
2196 static int kvmppc_book3s_init_hv(void)
2197 {
2198         int r;
2199         /*
2200          * FIXME!! Do we need to check on all cpus ?
2201          */
2202         r = kvmppc_core_check_processor_compat_hv();
2203         if (r < 0)
2204                 return r;
2205
2206         kvm_ops_hv.owner = THIS_MODULE;
2207         kvmppc_hv_ops = &kvm_ops_hv;
2208
2209         r = kvmppc_mmu_hv_init();
2210         return r;
2211 }
2212
2213 static void kvmppc_book3s_exit_hv(void)
2214 {
2215         kvmppc_hv_ops = NULL;
2216 }
2217
2218 module_init(kvmppc_book3s_init_hv);
2219 module_exit(kvmppc_book3s_exit_hv);
2220 MODULE_LICENSE("GPL");