5a24415a2e3c4aadfb2ecdf2b21f9413a01a957e
[linux-drm-fsl-dcu.git] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59
60
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69
70 typedef u32 cell_t;
71
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77
78 static struct device_node *allnodes = NULL;
79
80 /* use when traversing tree through the allnext, child, sibling,
81  * or parent members of struct device_node.
82  */
83 static DEFINE_RWLOCK(devtree_lock);
84
85 /* export that to outside world */
86 struct device_node *of_chosen;
87
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90
91 /*
92  * Wrapper for allocating memory for various data that needs to be
93  * attached to device nodes as they are processed at boot or when
94  * added to the device tree later (e.g. DLPAR).  At boot there is
95  * already a region reserved so we just increment *mem_start by size;
96  * otherwise we call kmalloc.
97  */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100         unsigned long tmp;
101
102         if (!mem_start)
103                 return kmalloc(size, GFP_KERNEL);
104
105         tmp = *mem_start;
106         *mem_start += size;
107         return (void *)tmp;
108 }
109
110 /*
111  * Find the device_node with a given phandle.
112  */
113 static struct device_node * find_phandle(phandle ph)
114 {
115         struct device_node *np;
116
117         for (np = allnodes; np != 0; np = np->allnext)
118                 if (np->linux_phandle == ph)
119                         return np;
120         return NULL;
121 }
122
123 /*
124  * Find the interrupt parent of a node.
125  */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128         phandle *parp;
129
130         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131         if (parp == NULL)
132                 return p->parent;
133         p = find_phandle(*parp);
134         if (p != NULL)
135                 return p;
136         /*
137          * On a powermac booted with BootX, we don't get to know the
138          * phandles for any nodes, so find_phandle will return NULL.
139          * Fortunately these machines only have one interrupt controller
140          * so there isn't in fact any ambiguity.  -- paulus
141          */
142         if (num_interrupt_controllers == 1)
143                 p = dflt_interrupt_controller;
144         return p;
145 }
146
147 /*
148  * Find out the size of each entry of the interrupts property
149  * for a node.
150  */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153         struct device_node *p;
154         unsigned int *icp;
155
156         for (p = np; (p = intr_parent(p)) != NULL; ) {
157                 icp = (unsigned int *)
158                         get_property(p, "#interrupt-cells", NULL);
159                 if (icp != NULL)
160                         return *icp;
161                 if (get_property(p, "interrupt-controller", NULL) != NULL
162                     || get_property(p, "interrupt-map", NULL) != NULL) {
163                         printk("oops, node %s doesn't have #interrupt-cells\n",
164                                p->full_name);
165                         return 1;
166                 }
167         }
168 #ifdef DEBUG_IRQ
169         printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171         return 1;
172 }
173
174 /*
175  * Map an interrupt from a device up to the platform interrupt
176  * descriptor.
177  */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179                                    struct device_node *np, unsigned int *ints,
180                                    int nintrc)
181 {
182         struct device_node *p, *ipar;
183         unsigned int *imap, *imask, *ip;
184         int i, imaplen, match;
185         int newintrc = 0, newaddrc = 0;
186         unsigned int *reg;
187         int naddrc;
188
189         reg = (unsigned int *) get_property(np, "reg", NULL);
190         naddrc = prom_n_addr_cells(np);
191         p = intr_parent(np);
192         while (p != NULL) {
193                 if (get_property(p, "interrupt-controller", NULL) != NULL)
194                         /* this node is an interrupt controller, stop here */
195                         break;
196                 imap = (unsigned int *)
197                         get_property(p, "interrupt-map", &imaplen);
198                 if (imap == NULL) {
199                         p = intr_parent(p);
200                         continue;
201                 }
202                 imask = (unsigned int *)
203                         get_property(p, "interrupt-map-mask", NULL);
204                 if (imask == NULL) {
205                         printk("oops, %s has interrupt-map but no mask\n",
206                                p->full_name);
207                         return 0;
208                 }
209                 imaplen /= sizeof(unsigned int);
210                 match = 0;
211                 ipar = NULL;
212                 while (imaplen > 0 && !match) {
213                         /* check the child-interrupt field */
214                         match = 1;
215                         for (i = 0; i < naddrc && match; ++i)
216                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217                         for (; i < naddrc + nintrc && match; ++i)
218                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219                         imap += naddrc + nintrc;
220                         imaplen -= naddrc + nintrc;
221                         /* grab the interrupt parent */
222                         ipar = find_phandle((phandle) *imap++);
223                         --imaplen;
224                         if (ipar == NULL && num_interrupt_controllers == 1)
225                                 /* cope with BootX not giving us phandles */
226                                 ipar = dflt_interrupt_controller;
227                         if (ipar == NULL) {
228                                 printk("oops, no int parent %x in map of %s\n",
229                                        imap[-1], p->full_name);
230                                 return 0;
231                         }
232                         /* find the parent's # addr and intr cells */
233                         ip = (unsigned int *)
234                                 get_property(ipar, "#interrupt-cells", NULL);
235                         if (ip == NULL) {
236                                 printk("oops, no #interrupt-cells on %s\n",
237                                        ipar->full_name);
238                                 return 0;
239                         }
240                         newintrc = *ip;
241                         ip = (unsigned int *)
242                                 get_property(ipar, "#address-cells", NULL);
243                         newaddrc = (ip == NULL)? 0: *ip;
244                         imap += newaddrc + newintrc;
245                         imaplen -= newaddrc + newintrc;
246                 }
247                 if (imaplen < 0) {
248                         printk("oops, error decoding int-map on %s, len=%d\n",
249                                p->full_name, imaplen);
250                         return 0;
251                 }
252                 if (!match) {
253 #ifdef DEBUG_IRQ
254                         printk("oops, no match in %s int-map for %s\n",
255                                p->full_name, np->full_name);
256 #endif
257                         return 0;
258                 }
259                 p = ipar;
260                 naddrc = newaddrc;
261                 nintrc = newintrc;
262                 ints = imap - nintrc;
263                 reg = ints - naddrc;
264         }
265         if (p == NULL) {
266 #ifdef DEBUG_IRQ
267                 printk("hmmm, int tree for %s doesn't have ctrler\n",
268                        np->full_name);
269 #endif
270                 return 0;
271         }
272         *irq = ints;
273         *ictrler = p;
274         return nintrc;
275 }
276
277 static unsigned char map_isa_senses[4] = {
278         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
281         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
282 };
283
284 static unsigned char map_mpic_senses[4] = {
285         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
286         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287         /* 2 seems to be used for the 8259 cascade... */
288         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
290 };
291
292 static int __devinit finish_node_interrupts(struct device_node *np,
293                                             unsigned long *mem_start,
294                                             int measure_only)
295 {
296         unsigned int *ints;
297         int intlen, intrcells, intrcount;
298         int i, j, n, sense;
299         unsigned int *irq, virq;
300         struct device_node *ic;
301         int trace = 0;
302
303         //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305
306         if (!strcmp(np->name, "smu-doorbell"))
307                 trace = 1;
308
309         TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310               num_interrupt_controllers);
311
312         if (num_interrupt_controllers == 0) {
313                 /*
314                  * Old machines just have a list of interrupt numbers
315                  * and no interrupt-controller nodes.
316                  */
317                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318                                                      &intlen);
319                 /* XXX old interpret_pci_props looked in parent too */
320                 /* XXX old interpret_macio_props looked for interrupts
321                    before AAPL,interrupts */
322                 if (ints == NULL)
323                         ints = (unsigned int *) get_property(np, "interrupts",
324                                                              &intlen);
325                 if (ints == NULL)
326                         return 0;
327
328                 np->n_intrs = intlen / sizeof(unsigned int);
329                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330                                        mem_start);
331                 if (!np->intrs)
332                         return -ENOMEM;
333                 if (measure_only)
334                         return 0;
335
336                 for (i = 0; i < np->n_intrs; ++i) {
337                         np->intrs[i].line = *ints++;
338                         np->intrs[i].sense = IRQ_SENSE_LEVEL
339                                 | IRQ_POLARITY_NEGATIVE;
340                 }
341                 return 0;
342         }
343
344         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345         TRACE("ints=%p, intlen=%d\n", ints, intlen);
346         if (ints == NULL)
347                 return 0;
348         intrcells = prom_n_intr_cells(np);
349         intlen /= intrcells * sizeof(unsigned int);
350         TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352         if (!np->intrs)
353                 return -ENOMEM;
354
355         if (measure_only)
356                 return 0;
357
358         intrcount = 0;
359         for (i = 0; i < intlen; ++i, ints += intrcells) {
360                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
361                 TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362                 if (n <= 0)
363                         continue;
364
365                 /* don't map IRQ numbers under a cascaded 8259 controller */
366                 if (ic && device_is_compatible(ic, "chrp,iic")) {
367                         np->intrs[intrcount].line = irq[0];
368                         sense = (n > 1)? (irq[1] & 3): 3;
369                         np->intrs[intrcount].sense = map_isa_senses[sense];
370                 } else {
371                         virq = virt_irq_create_mapping(irq[0]);
372                         TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374                         if (virq == NO_IRQ) {
375                                 printk(KERN_CRIT "Could not allocate interrupt"
376                                        " number for %s\n", np->full_name);
377                                 continue;
378                         }
379 #endif
380                         np->intrs[intrcount].line = irq_offset_up(virq);
381                         sense = (n > 1)? (irq[1] & 3): 1;
382
383                         /* Apple uses bits in there in a different way, let's
384                          * only keep the real sense bit on macs
385                          */
386                         if (_machine == PLATFORM_POWERMAC)
387                                 sense &= 0x1;
388                         np->intrs[intrcount].sense = map_mpic_senses[sense];
389                 }
390
391 #ifdef CONFIG_PPC64
392                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393                 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
394                         char *name = get_property(ic->parent, "name", NULL);
395                         if (name && !strcmp(name, "u3"))
396                                 np->intrs[intrcount].line += 128;
397                         else if (!(name && (!strcmp(name, "mac-io") ||
398                                             !strcmp(name, "u4"))))
399                                 /* ignore other cascaded controllers, such as
400                                    the k2-sata-root */
401                                 break;
402                 }
403 #endif /* CONFIG_PPC64 */
404                 if (n > 2) {
405                         printk("hmmm, got %d intr cells for %s:", n,
406                                np->full_name);
407                         for (j = 0; j < n; ++j)
408                                 printk(" %d", irq[j]);
409                         printk("\n");
410                 }
411                 ++intrcount;
412         }
413         np->n_intrs = intrcount;
414
415         return 0;
416 }
417
418 static int __devinit finish_node(struct device_node *np,
419                                  unsigned long *mem_start,
420                                  int measure_only)
421 {
422         struct device_node *child;
423         int rc = 0;
424
425         rc = finish_node_interrupts(np, mem_start, measure_only);
426         if (rc)
427                 goto out;
428
429         for (child = np->child; child != NULL; child = child->sibling) {
430                 rc = finish_node(child, mem_start, measure_only);
431                 if (rc)
432                         goto out;
433         }
434 out:
435         return rc;
436 }
437
438 static void __init scan_interrupt_controllers(void)
439 {
440         struct device_node *np;
441         int n = 0;
442         char *name, *ic;
443         int iclen;
444
445         for (np = allnodes; np != NULL; np = np->allnext) {
446                 ic = get_property(np, "interrupt-controller", &iclen);
447                 name = get_property(np, "name", NULL);
448                 /* checking iclen makes sure we don't get a false
449                    match on /chosen.interrupt_controller */
450                 if ((name != NULL
451                      && strcmp(name, "interrupt-controller") == 0)
452                     || (ic != NULL && iclen == 0
453                         && strcmp(name, "AppleKiwi"))) {
454                         if (n == 0)
455                                 dflt_interrupt_controller = np;
456                         ++n;
457                 }
458         }
459         num_interrupt_controllers = n;
460 }
461
462 /**
463  * finish_device_tree is called once things are running normally
464  * (i.e. with text and data mapped to the address they were linked at).
465  * It traverses the device tree and fills in some of the additional,
466  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467  * mapping is also initialized at this point.
468  */
469 void __init finish_device_tree(void)
470 {
471         unsigned long start, end, size = 0;
472
473         DBG(" -> finish_device_tree\n");
474
475 #ifdef CONFIG_PPC64
476         /* Initialize virtual IRQ map */
477         virt_irq_init();
478 #endif
479         scan_interrupt_controllers();
480
481         /*
482          * Finish device-tree (pre-parsing some properties etc...)
483          * We do this in 2 passes. One with "measure_only" set, which
484          * will only measure the amount of memory needed, then we can
485          * allocate that memory, and call finish_node again. However,
486          * we must be careful as most routines will fail nowadays when
487          * prom_alloc() returns 0, so we must make sure our first pass
488          * doesn't start at 0. We pre-initialize size to 16 for that
489          * reason and then remove those additional 16 bytes
490          */
491         size = 16;
492         finish_node(allnodes, &size, 1);
493         size -= 16;
494
495         if (0 == size)
496                 end = start = 0;
497         else
498                 end = start = (unsigned long)__va(lmb_alloc(size, 128));
499
500         finish_node(allnodes, &end, 0);
501         BUG_ON(end != start + size);
502
503         DBG(" <- finish_device_tree\n");
504 }
505
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508         return ((char *)initial_boot_params) +
509                 initial_boot_params->off_dt_strings + offset;
510 }
511
512 /**
513  * This function is used to scan the flattened device-tree, it is
514  * used to extract the memory informations at boot before we can
515  * unflatten the tree
516  */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518                                      const char *uname, int depth,
519                                      void *data),
520                            void *data)
521 {
522         unsigned long p = ((unsigned long)initial_boot_params) +
523                 initial_boot_params->off_dt_struct;
524         int rc = 0;
525         int depth = -1;
526
527         do {
528                 u32 tag = *((u32 *)p);
529                 char *pathp;
530                 
531                 p += 4;
532                 if (tag == OF_DT_END_NODE) {
533                         depth --;
534                         continue;
535                 }
536                 if (tag == OF_DT_NOP)
537                         continue;
538                 if (tag == OF_DT_END)
539                         break;
540                 if (tag == OF_DT_PROP) {
541                         u32 sz = *((u32 *)p);
542                         p += 8;
543                         if (initial_boot_params->version < 0x10)
544                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
545                         p += sz;
546                         p = _ALIGN(p, 4);
547                         continue;
548                 }
549                 if (tag != OF_DT_BEGIN_NODE) {
550                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
551                                " device tree !\n", tag);
552                         return -EINVAL;
553                 }
554                 depth++;
555                 pathp = (char *)p;
556                 p = _ALIGN(p + strlen(pathp) + 1, 4);
557                 if ((*pathp) == '/') {
558                         char *lp, *np;
559                         for (lp = NULL, np = pathp; *np; np++)
560                                 if ((*np) == '/')
561                                         lp = np+1;
562                         if (lp != NULL)
563                                 pathp = lp;
564                 }
565                 rc = it(p, pathp, depth, data);
566                 if (rc != 0)
567                         break;          
568         } while(1);
569
570         return rc;
571 }
572
573 /**
574  * This  function can be used within scan_flattened_dt callback to get
575  * access to properties
576  */
577 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
578                                  unsigned long *size)
579 {
580         unsigned long p = node;
581
582         do {
583                 u32 tag = *((u32 *)p);
584                 u32 sz, noff;
585                 const char *nstr;
586
587                 p += 4;
588                 if (tag == OF_DT_NOP)
589                         continue;
590                 if (tag != OF_DT_PROP)
591                         return NULL;
592
593                 sz = *((u32 *)p);
594                 noff = *((u32 *)(p + 4));
595                 p += 8;
596                 if (initial_boot_params->version < 0x10)
597                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
598
599                 nstr = find_flat_dt_string(noff);
600                 if (nstr == NULL) {
601                         printk(KERN_WARNING "Can't find property index"
602                                " name !\n");
603                         return NULL;
604                 }
605                 if (strcmp(name, nstr) == 0) {
606                         if (size)
607                                 *size = sz;
608                         return (void *)p;
609                 }
610                 p += sz;
611                 p = _ALIGN(p, 4);
612         } while(1);
613 }
614
615 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
616                                        unsigned long align)
617 {
618         void *res;
619
620         *mem = _ALIGN(*mem, align);
621         res = (void *)*mem;
622         *mem += size;
623
624         return res;
625 }
626
627 static unsigned long __init unflatten_dt_node(unsigned long mem,
628                                               unsigned long *p,
629                                               struct device_node *dad,
630                                               struct device_node ***allnextpp,
631                                               unsigned long fpsize)
632 {
633         struct device_node *np;
634         struct property *pp, **prev_pp = NULL;
635         char *pathp;
636         u32 tag;
637         unsigned int l, allocl;
638         int has_name = 0;
639         int new_format = 0;
640
641         tag = *((u32 *)(*p));
642         if (tag != OF_DT_BEGIN_NODE) {
643                 printk("Weird tag at start of node: %x\n", tag);
644                 return mem;
645         }
646         *p += 4;
647         pathp = (char *)*p;
648         l = allocl = strlen(pathp) + 1;
649         *p = _ALIGN(*p + l, 4);
650
651         /* version 0x10 has a more compact unit name here instead of the full
652          * path. we accumulate the full path size using "fpsize", we'll rebuild
653          * it later. We detect this because the first character of the name is
654          * not '/'.
655          */
656         if ((*pathp) != '/') {
657                 new_format = 1;
658                 if (fpsize == 0) {
659                         /* root node: special case. fpsize accounts for path
660                          * plus terminating zero. root node only has '/', so
661                          * fpsize should be 2, but we want to avoid the first
662                          * level nodes to have two '/' so we use fpsize 1 here
663                          */
664                         fpsize = 1;
665                         allocl = 2;
666                 } else {
667                         /* account for '/' and path size minus terminal 0
668                          * already in 'l'
669                          */
670                         fpsize += l;
671                         allocl = fpsize;
672                 }
673         }
674
675
676         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
677                                 __alignof__(struct device_node));
678         if (allnextpp) {
679                 memset(np, 0, sizeof(*np));
680                 np->full_name = ((char*)np) + sizeof(struct device_node);
681                 if (new_format) {
682                         char *p = np->full_name;
683                         /* rebuild full path for new format */
684                         if (dad && dad->parent) {
685                                 strcpy(p, dad->full_name);
686 #ifdef DEBUG
687                                 if ((strlen(p) + l + 1) != allocl) {
688                                         DBG("%s: p: %d, l: %d, a: %d\n",
689                                             pathp, strlen(p), l, allocl);
690                                 }
691 #endif
692                                 p += strlen(p);
693                         }
694                         *(p++) = '/';
695                         memcpy(p, pathp, l);
696                 } else
697                         memcpy(np->full_name, pathp, l);
698                 prev_pp = &np->properties;
699                 **allnextpp = np;
700                 *allnextpp = &np->allnext;
701                 if (dad != NULL) {
702                         np->parent = dad;
703                         /* we temporarily use the next field as `last_child'*/
704                         if (dad->next == 0)
705                                 dad->child = np;
706                         else
707                                 dad->next->sibling = np;
708                         dad->next = np;
709                 }
710                 kref_init(&np->kref);
711         }
712         while(1) {
713                 u32 sz, noff;
714                 char *pname;
715
716                 tag = *((u32 *)(*p));
717                 if (tag == OF_DT_NOP) {
718                         *p += 4;
719                         continue;
720                 }
721                 if (tag != OF_DT_PROP)
722                         break;
723                 *p += 4;
724                 sz = *((u32 *)(*p));
725                 noff = *((u32 *)((*p) + 4));
726                 *p += 8;
727                 if (initial_boot_params->version < 0x10)
728                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
729
730                 pname = find_flat_dt_string(noff);
731                 if (pname == NULL) {
732                         printk("Can't find property name in list !\n");
733                         break;
734                 }
735                 if (strcmp(pname, "name") == 0)
736                         has_name = 1;
737                 l = strlen(pname) + 1;
738                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
739                                         __alignof__(struct property));
740                 if (allnextpp) {
741                         if (strcmp(pname, "linux,phandle") == 0) {
742                                 np->node = *((u32 *)*p);
743                                 if (np->linux_phandle == 0)
744                                         np->linux_phandle = np->node;
745                         }
746                         if (strcmp(pname, "ibm,phandle") == 0)
747                                 np->linux_phandle = *((u32 *)*p);
748                         pp->name = pname;
749                         pp->length = sz;
750                         pp->value = (void *)*p;
751                         *prev_pp = pp;
752                         prev_pp = &pp->next;
753                 }
754                 *p = _ALIGN((*p) + sz, 4);
755         }
756         /* with version 0x10 we may not have the name property, recreate
757          * it here from the unit name if absent
758          */
759         if (!has_name) {
760                 char *p = pathp, *ps = pathp, *pa = NULL;
761                 int sz;
762
763                 while (*p) {
764                         if ((*p) == '@')
765                                 pa = p;
766                         if ((*p) == '/')
767                                 ps = p + 1;
768                         p++;
769                 }
770                 if (pa < ps)
771                         pa = p;
772                 sz = (pa - ps) + 1;
773                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
774                                         __alignof__(struct property));
775                 if (allnextpp) {
776                         pp->name = "name";
777                         pp->length = sz;
778                         pp->value = (unsigned char *)(pp + 1);
779                         *prev_pp = pp;
780                         prev_pp = &pp->next;
781                         memcpy(pp->value, ps, sz - 1);
782                         ((char *)pp->value)[sz - 1] = 0;
783                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
784                 }
785         }
786         if (allnextpp) {
787                 *prev_pp = NULL;
788                 np->name = get_property(np, "name", NULL);
789                 np->type = get_property(np, "device_type", NULL);
790
791                 if (!np->name)
792                         np->name = "<NULL>";
793                 if (!np->type)
794                         np->type = "<NULL>";
795         }
796         while (tag == OF_DT_BEGIN_NODE) {
797                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
798                 tag = *((u32 *)(*p));
799         }
800         if (tag != OF_DT_END_NODE) {
801                 printk("Weird tag at end of node: %x\n", tag);
802                 return mem;
803         }
804         *p += 4;
805         return mem;
806 }
807
808
809 /**
810  * unflattens the device-tree passed by the firmware, creating the
811  * tree of struct device_node. It also fills the "name" and "type"
812  * pointers of the nodes so the normal device-tree walking functions
813  * can be used (this used to be done by finish_device_tree)
814  */
815 void __init unflatten_device_tree(void)
816 {
817         unsigned long start, mem, size;
818         struct device_node **allnextp = &allnodes;
819
820         DBG(" -> unflatten_device_tree()\n");
821
822         /* First pass, scan for size */
823         start = ((unsigned long)initial_boot_params) +
824                 initial_boot_params->off_dt_struct;
825         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
826         size = (size | 3) + 1;
827
828         DBG("  size is %lx, allocating...\n", size);
829
830         /* Allocate memory for the expanded device tree */
831         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
832         mem = (unsigned long) __va(mem);
833
834         ((u32 *)mem)[size / 4] = 0xdeadbeef;
835
836         DBG("  unflattening %lx...\n", mem);
837
838         /* Second pass, do actual unflattening */
839         start = ((unsigned long)initial_boot_params) +
840                 initial_boot_params->off_dt_struct;
841         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
842         if (*((u32 *)start) != OF_DT_END)
843                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
844         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
845                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
846                        ((u32 *)mem)[size / 4] );
847         *allnextp = NULL;
848
849         /* Get pointer to OF "/chosen" node for use everywhere */
850         of_chosen = of_find_node_by_path("/chosen");
851         if (of_chosen == NULL)
852                 of_chosen = of_find_node_by_path("/chosen@0");
853
854         DBG(" <- unflatten_device_tree()\n");
855 }
856
857 static int __init early_init_dt_scan_cpus(unsigned long node,
858                                           const char *uname, int depth,
859                                           void *data)
860 {
861         static int logical_cpuid = 0;
862         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
863         u32 *prop, *intserv;
864         int i, nthreads;
865         unsigned long len;
866         int found = 0;
867
868         /* We are scanning "cpu" nodes only */
869         if (type == NULL || strcmp(type, "cpu") != 0)
870                 return 0;
871
872         /* Get physical cpuid */
873         intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
874         if (intserv) {
875                 nthreads = len / sizeof(int);
876         } else {
877                 intserv = of_get_flat_dt_prop(node, "reg", NULL);
878                 nthreads = 1;
879         }
880
881         /*
882          * Now see if any of these threads match our boot cpu.
883          * NOTE: This must match the parsing done in smp_setup_cpu_maps.
884          */
885         for (i = 0; i < nthreads; i++) {
886                 /*
887                  * version 2 of the kexec param format adds the phys cpuid of
888                  * booted proc.
889                  */
890                 if (initial_boot_params && initial_boot_params->version >= 2) {
891                         if (intserv[i] ==
892                                         initial_boot_params->boot_cpuid_phys) {
893                                 found = 1;
894                                 break;
895                         }
896                 } else {
897                         /*
898                          * Check if it's the boot-cpu, set it's hw index now,
899                          * unfortunately this format did not support booting
900                          * off secondary threads.
901                          */
902                         if (of_get_flat_dt_prop(node,
903                                         "linux,boot-cpu", NULL) != NULL) {
904                                 found = 1;
905                                 break;
906                         }
907                 }
908
909 #ifdef CONFIG_SMP
910                 /* logical cpu id is always 0 on UP kernels */
911                 logical_cpuid++;
912 #endif
913         }
914
915         if (found) {
916                 DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
917                         intserv[i]);
918                 boot_cpuid = logical_cpuid;
919                 set_hard_smp_processor_id(boot_cpuid, intserv[i]);
920         }
921
922 #ifdef CONFIG_ALTIVEC
923         /* Check if we have a VMX and eventually update CPU features */
924         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
925         if (prop && (*prop) > 0) {
926                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
927                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
928         }
929
930         /* Same goes for Apple's "altivec" property */
931         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
932         if (prop) {
933                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
934                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
935         }
936 #endif /* CONFIG_ALTIVEC */
937
938 #ifdef CONFIG_PPC_PSERIES
939         if (nthreads > 1)
940                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
941         else
942                 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
943 #endif
944
945         return 0;
946 }
947
948 static int __init early_init_dt_scan_chosen(unsigned long node,
949                                             const char *uname, int depth, void *data)
950 {
951         u32 *prop;
952         unsigned long *lprop;
953         unsigned long l;
954         char *p;
955
956         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
957
958         if (depth != 1 ||
959             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
960                 return 0;
961
962         /* get platform type */
963         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
964         if (prop == NULL)
965                 return 0;
966 #ifdef CONFIG_PPC_MULTIPLATFORM
967         _machine = *prop;
968 #endif
969
970 #ifdef CONFIG_PPC64
971         /* check if iommu is forced on or off */
972         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
973                 iommu_is_off = 1;
974         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
975                 iommu_force_on = 1;
976 #endif
977
978         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
979         if (lprop)
980                 memory_limit = *lprop;
981
982 #ifdef CONFIG_PPC64
983         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
984         if (lprop)
985                 tce_alloc_start = *lprop;
986         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
987         if (lprop)
988                 tce_alloc_end = *lprop;
989 #endif
990
991 #ifdef CONFIG_PPC_RTAS
992         /* To help early debugging via the front panel, we retrieve a minimal
993          * set of RTAS infos now if available
994          */
995         {
996                 u64 *basep, *entryp;
997
998                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
999                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1000                 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1001                 if (basep && entryp && prop) {
1002                         rtas.base = *basep;
1003                         rtas.entry = *entryp;
1004                         rtas.size = *prop;
1005                 }
1006         }
1007 #endif /* CONFIG_PPC_RTAS */
1008
1009 #ifdef CONFIG_KEXEC
1010        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1011        if (lprop)
1012                crashk_res.start = *lprop;
1013
1014        lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1015        if (lprop)
1016                crashk_res.end = crashk_res.start + *lprop - 1;
1017 #endif
1018
1019         /* Retreive command line */
1020         p = of_get_flat_dt_prop(node, "bootargs", &l);
1021         if (p != NULL && l > 0)
1022                 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1023
1024 #ifdef CONFIG_CMDLINE
1025         if (l == 0 || (l == 1 && (*p) == 0))
1026                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1027 #endif /* CONFIG_CMDLINE */
1028
1029         DBG("Command line is: %s\n", cmd_line);
1030
1031         if (strstr(cmd_line, "mem=")) {
1032                 char *p, *q;
1033                 unsigned long maxmem = 0;
1034
1035                 for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1036                         q = p + 4;
1037                         if (p > cmd_line && p[-1] != ' ')
1038                                 continue;
1039                         maxmem = simple_strtoul(q, &q, 0);
1040                         if (*q == 'k' || *q == 'K') {
1041                                 maxmem <<= 10;
1042                                 ++q;
1043                         } else if (*q == 'm' || *q == 'M') {
1044                                 maxmem <<= 20;
1045                                 ++q;
1046                         } else if (*q == 'g' || *q == 'G') {
1047                                 maxmem <<= 30;
1048                                 ++q;
1049                         }
1050                 }
1051                 memory_limit = maxmem;
1052         }
1053
1054         /* break now */
1055         return 1;
1056 }
1057
1058 static int __init early_init_dt_scan_root(unsigned long node,
1059                                           const char *uname, int depth, void *data)
1060 {
1061         u32 *prop;
1062
1063         if (depth != 0)
1064                 return 0;
1065
1066         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1067         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1068         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1069
1070         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1071         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1072         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1073         
1074         /* break now */
1075         return 1;
1076 }
1077
1078 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1079 {
1080         cell_t *p = *cellp;
1081         unsigned long r;
1082
1083         /* Ignore more than 2 cells */
1084         while (s > sizeof(unsigned long) / 4) {
1085                 p++;
1086                 s--;
1087         }
1088         r = *p++;
1089 #ifdef CONFIG_PPC64
1090         if (s > 1) {
1091                 r <<= 32;
1092                 r |= *(p++);
1093                 s--;
1094         }
1095 #endif
1096
1097         *cellp = p;
1098         return r;
1099 }
1100
1101
1102 static int __init early_init_dt_scan_memory(unsigned long node,
1103                                             const char *uname, int depth, void *data)
1104 {
1105         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1106         cell_t *reg, *endp;
1107         unsigned long l;
1108
1109         /* We are scanning "memory" nodes only */
1110         if (type == NULL) {
1111                 /*
1112                  * The longtrail doesn't have a device_type on the
1113                  * /memory node, so look for the node called /memory@0.
1114                  */
1115                 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1116                         return 0;
1117         } else if (strcmp(type, "memory") != 0)
1118                 return 0;
1119
1120         reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1121         if (reg == NULL)
1122                 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1123         if (reg == NULL)
1124                 return 0;
1125
1126         endp = reg + (l / sizeof(cell_t));
1127
1128         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1129             uname, l, reg[0], reg[1], reg[2], reg[3]);
1130
1131         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1132                 unsigned long base, size;
1133
1134                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1135                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1136
1137                 if (size == 0)
1138                         continue;
1139                 DBG(" - %lx ,  %lx\n", base, size);
1140 #ifdef CONFIG_PPC64
1141                 if (iommu_is_off) {
1142                         if (base >= 0x80000000ul)
1143                                 continue;
1144                         if ((base + size) > 0x80000000ul)
1145                                 size = 0x80000000ul - base;
1146                 }
1147 #endif
1148                 lmb_add(base, size);
1149         }
1150         return 0;
1151 }
1152
1153 static void __init early_reserve_mem(void)
1154 {
1155         u64 base, size;
1156         u64 *reserve_map;
1157
1158         reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1159                                         initial_boot_params->off_mem_rsvmap);
1160 #ifdef CONFIG_PPC32
1161         /* 
1162          * Handle the case where we might be booting from an old kexec
1163          * image that setup the mem_rsvmap as pairs of 32-bit values
1164          */
1165         if (*reserve_map > 0xffffffffull) {
1166                 u32 base_32, size_32;
1167                 u32 *reserve_map_32 = (u32 *)reserve_map;
1168
1169                 while (1) {
1170                         base_32 = *(reserve_map_32++);
1171                         size_32 = *(reserve_map_32++);
1172                         if (size_32 == 0)
1173                                 break;
1174                         DBG("reserving: %x -> %x\n", base_32, size_32);
1175                         lmb_reserve(base_32, size_32);
1176                 }
1177                 return;
1178         }
1179 #endif
1180         while (1) {
1181                 base = *(reserve_map++);
1182                 size = *(reserve_map++);
1183                 if (size == 0)
1184                         break;
1185                 DBG("reserving: %llx -> %llx\n", base, size);
1186                 lmb_reserve(base, size);
1187         }
1188
1189 #if 0
1190         DBG("memory reserved, lmbs :\n");
1191         lmb_dump_all();
1192 #endif
1193 }
1194
1195 void __init early_init_devtree(void *params)
1196 {
1197         DBG(" -> early_init_devtree()\n");
1198
1199         /* Setup flat device-tree pointer */
1200         initial_boot_params = params;
1201
1202         /* Retrieve various informations from the /chosen node of the
1203          * device-tree, including the platform type, initrd location and
1204          * size, TCE reserve, and more ...
1205          */
1206         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1207
1208         /* Scan memory nodes and rebuild LMBs */
1209         lmb_init();
1210         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1211         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1212         lmb_enforce_memory_limit(memory_limit);
1213         lmb_analyze();
1214
1215         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1216
1217         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1218         lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1219 #ifdef CONFIG_CRASH_DUMP
1220         lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1221 #endif
1222         early_reserve_mem();
1223
1224         DBG("Scanning CPUs ...\n");
1225
1226         /* Retreive CPU related informations from the flat tree
1227          * (altivec support, boot CPU ID, ...)
1228          */
1229         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1230
1231         DBG(" <- early_init_devtree()\n");
1232 }
1233
1234 #undef printk
1235
1236 int
1237 prom_n_addr_cells(struct device_node* np)
1238 {
1239         int* ip;
1240         do {
1241                 if (np->parent)
1242                         np = np->parent;
1243                 ip = (int *) get_property(np, "#address-cells", NULL);
1244                 if (ip != NULL)
1245                         return *ip;
1246         } while (np->parent);
1247         /* No #address-cells property for the root node, default to 1 */
1248         return 1;
1249 }
1250 EXPORT_SYMBOL(prom_n_addr_cells);
1251
1252 int
1253 prom_n_size_cells(struct device_node* np)
1254 {
1255         int* ip;
1256         do {
1257                 if (np->parent)
1258                         np = np->parent;
1259                 ip = (int *) get_property(np, "#size-cells", NULL);
1260                 if (ip != NULL)
1261                         return *ip;
1262         } while (np->parent);
1263         /* No #size-cells property for the root node, default to 1 */
1264         return 1;
1265 }
1266 EXPORT_SYMBOL(prom_n_size_cells);
1267
1268 /**
1269  * Work out the sense (active-low level / active-high edge)
1270  * of each interrupt from the device tree.
1271  */
1272 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1273 {
1274         struct device_node *np;
1275         int i, j;
1276
1277         /* default to level-triggered */
1278         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1279
1280         for (np = allnodes; np != 0; np = np->allnext) {
1281                 for (j = 0; j < np->n_intrs; j++) {
1282                         i = np->intrs[j].line;
1283                         if (i >= off && i < max)
1284                                 senses[i-off] = np->intrs[j].sense;
1285                 }
1286         }
1287 }
1288
1289 /**
1290  * Construct and return a list of the device_nodes with a given name.
1291  */
1292 struct device_node *find_devices(const char *name)
1293 {
1294         struct device_node *head, **prevp, *np;
1295
1296         prevp = &head;
1297         for (np = allnodes; np != 0; np = np->allnext) {
1298                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1299                         *prevp = np;
1300                         prevp = &np->next;
1301                 }
1302         }
1303         *prevp = NULL;
1304         return head;
1305 }
1306 EXPORT_SYMBOL(find_devices);
1307
1308 /**
1309  * Construct and return a list of the device_nodes with a given type.
1310  */
1311 struct device_node *find_type_devices(const char *type)
1312 {
1313         struct device_node *head, **prevp, *np;
1314
1315         prevp = &head;
1316         for (np = allnodes; np != 0; np = np->allnext) {
1317                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1318                         *prevp = np;
1319                         prevp = &np->next;
1320                 }
1321         }
1322         *prevp = NULL;
1323         return head;
1324 }
1325 EXPORT_SYMBOL(find_type_devices);
1326
1327 /**
1328  * Returns all nodes linked together
1329  */
1330 struct device_node *find_all_nodes(void)
1331 {
1332         struct device_node *head, **prevp, *np;
1333
1334         prevp = &head;
1335         for (np = allnodes; np != 0; np = np->allnext) {
1336                 *prevp = np;
1337                 prevp = &np->next;
1338         }
1339         *prevp = NULL;
1340         return head;
1341 }
1342 EXPORT_SYMBOL(find_all_nodes);
1343
1344 /** Checks if the given "compat" string matches one of the strings in
1345  * the device's "compatible" property
1346  */
1347 int device_is_compatible(struct device_node *device, const char *compat)
1348 {
1349         const char* cp;
1350         int cplen, l;
1351
1352         cp = (char *) get_property(device, "compatible", &cplen);
1353         if (cp == NULL)
1354                 return 0;
1355         while (cplen > 0) {
1356                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1357                         return 1;
1358                 l = strlen(cp) + 1;
1359                 cp += l;
1360                 cplen -= l;
1361         }
1362
1363         return 0;
1364 }
1365 EXPORT_SYMBOL(device_is_compatible);
1366
1367
1368 /**
1369  * Indicates whether the root node has a given value in its
1370  * compatible property.
1371  */
1372 int machine_is_compatible(const char *compat)
1373 {
1374         struct device_node *root;
1375         int rc = 0;
1376
1377         root = of_find_node_by_path("/");
1378         if (root) {
1379                 rc = device_is_compatible(root, compat);
1380                 of_node_put(root);
1381         }
1382         return rc;
1383 }
1384 EXPORT_SYMBOL(machine_is_compatible);
1385
1386 /**
1387  * Construct and return a list of the device_nodes with a given type
1388  * and compatible property.
1389  */
1390 struct device_node *find_compatible_devices(const char *type,
1391                                             const char *compat)
1392 {
1393         struct device_node *head, **prevp, *np;
1394
1395         prevp = &head;
1396         for (np = allnodes; np != 0; np = np->allnext) {
1397                 if (type != NULL
1398                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1399                         continue;
1400                 if (device_is_compatible(np, compat)) {
1401                         *prevp = np;
1402                         prevp = &np->next;
1403                 }
1404         }
1405         *prevp = NULL;
1406         return head;
1407 }
1408 EXPORT_SYMBOL(find_compatible_devices);
1409
1410 /**
1411  * Find the device_node with a given full_name.
1412  */
1413 struct device_node *find_path_device(const char *path)
1414 {
1415         struct device_node *np;
1416
1417         for (np = allnodes; np != 0; np = np->allnext)
1418                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1419                         return np;
1420         return NULL;
1421 }
1422 EXPORT_SYMBOL(find_path_device);
1423
1424 /*******
1425  *
1426  * New implementation of the OF "find" APIs, return a refcounted
1427  * object, call of_node_put() when done.  The device tree and list
1428  * are protected by a rw_lock.
1429  *
1430  * Note that property management will need some locking as well,
1431  * this isn't dealt with yet.
1432  *
1433  *******/
1434
1435 /**
1436  *      of_find_node_by_name - Find a node by its "name" property
1437  *      @from:  The node to start searching from or NULL, the node
1438  *              you pass will not be searched, only the next one
1439  *              will; typically, you pass what the previous call
1440  *              returned. of_node_put() will be called on it
1441  *      @name:  The name string to match against
1442  *
1443  *      Returns a node pointer with refcount incremented, use
1444  *      of_node_put() on it when done.
1445  */
1446 struct device_node *of_find_node_by_name(struct device_node *from,
1447         const char *name)
1448 {
1449         struct device_node *np;
1450
1451         read_lock(&devtree_lock);
1452         np = from ? from->allnext : allnodes;
1453         for (; np != NULL; np = np->allnext)
1454                 if (np->name != NULL && strcasecmp(np->name, name) == 0
1455                     && of_node_get(np))
1456                         break;
1457         if (from)
1458                 of_node_put(from);
1459         read_unlock(&devtree_lock);
1460         return np;
1461 }
1462 EXPORT_SYMBOL(of_find_node_by_name);
1463
1464 /**
1465  *      of_find_node_by_type - Find a node by its "device_type" property
1466  *      @from:  The node to start searching from or NULL, the node
1467  *              you pass will not be searched, only the next one
1468  *              will; typically, you pass what the previous call
1469  *              returned. of_node_put() will be called on it
1470  *      @name:  The type string to match against
1471  *
1472  *      Returns a node pointer with refcount incremented, use
1473  *      of_node_put() on it when done.
1474  */
1475 struct device_node *of_find_node_by_type(struct device_node *from,
1476         const char *type)
1477 {
1478         struct device_node *np;
1479
1480         read_lock(&devtree_lock);
1481         np = from ? from->allnext : allnodes;
1482         for (; np != 0; np = np->allnext)
1483                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1484                     && of_node_get(np))
1485                         break;
1486         if (from)
1487                 of_node_put(from);
1488         read_unlock(&devtree_lock);
1489         return np;
1490 }
1491 EXPORT_SYMBOL(of_find_node_by_type);
1492
1493 /**
1494  *      of_find_compatible_node - Find a node based on type and one of the
1495  *                                tokens in its "compatible" property
1496  *      @from:          The node to start searching from or NULL, the node
1497  *                      you pass will not be searched, only the next one
1498  *                      will; typically, you pass what the previous call
1499  *                      returned. of_node_put() will be called on it
1500  *      @type:          The type string to match "device_type" or NULL to ignore
1501  *      @compatible:    The string to match to one of the tokens in the device
1502  *                      "compatible" list.
1503  *
1504  *      Returns a node pointer with refcount incremented, use
1505  *      of_node_put() on it when done.
1506  */
1507 struct device_node *of_find_compatible_node(struct device_node *from,
1508         const char *type, const char *compatible)
1509 {
1510         struct device_node *np;
1511
1512         read_lock(&devtree_lock);
1513         np = from ? from->allnext : allnodes;
1514         for (; np != 0; np = np->allnext) {
1515                 if (type != NULL
1516                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1517                         continue;
1518                 if (device_is_compatible(np, compatible) && of_node_get(np))
1519                         break;
1520         }
1521         if (from)
1522                 of_node_put(from);
1523         read_unlock(&devtree_lock);
1524         return np;
1525 }
1526 EXPORT_SYMBOL(of_find_compatible_node);
1527
1528 /**
1529  *      of_find_node_by_path - Find a node matching a full OF path
1530  *      @path:  The full path to match
1531  *
1532  *      Returns a node pointer with refcount incremented, use
1533  *      of_node_put() on it when done.
1534  */
1535 struct device_node *of_find_node_by_path(const char *path)
1536 {
1537         struct device_node *np = allnodes;
1538
1539         read_lock(&devtree_lock);
1540         for (; np != 0; np = np->allnext) {
1541                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1542                     && of_node_get(np))
1543                         break;
1544         }
1545         read_unlock(&devtree_lock);
1546         return np;
1547 }
1548 EXPORT_SYMBOL(of_find_node_by_path);
1549
1550 /**
1551  *      of_find_node_by_phandle - Find a node given a phandle
1552  *      @handle:        phandle of the node to find
1553  *
1554  *      Returns a node pointer with refcount incremented, use
1555  *      of_node_put() on it when done.
1556  */
1557 struct device_node *of_find_node_by_phandle(phandle handle)
1558 {
1559         struct device_node *np;
1560
1561         read_lock(&devtree_lock);
1562         for (np = allnodes; np != 0; np = np->allnext)
1563                 if (np->linux_phandle == handle)
1564                         break;
1565         if (np)
1566                 of_node_get(np);
1567         read_unlock(&devtree_lock);
1568         return np;
1569 }
1570 EXPORT_SYMBOL(of_find_node_by_phandle);
1571
1572 /**
1573  *      of_find_all_nodes - Get next node in global list
1574  *      @prev:  Previous node or NULL to start iteration
1575  *              of_node_put() will be called on it
1576  *
1577  *      Returns a node pointer with refcount incremented, use
1578  *      of_node_put() on it when done.
1579  */
1580 struct device_node *of_find_all_nodes(struct device_node *prev)
1581 {
1582         struct device_node *np;
1583
1584         read_lock(&devtree_lock);
1585         np = prev ? prev->allnext : allnodes;
1586         for (; np != 0; np = np->allnext)
1587                 if (of_node_get(np))
1588                         break;
1589         if (prev)
1590                 of_node_put(prev);
1591         read_unlock(&devtree_lock);
1592         return np;
1593 }
1594 EXPORT_SYMBOL(of_find_all_nodes);
1595
1596 /**
1597  *      of_get_parent - Get a node's parent if any
1598  *      @node:  Node to get parent
1599  *
1600  *      Returns a node pointer with refcount incremented, use
1601  *      of_node_put() on it when done.
1602  */
1603 struct device_node *of_get_parent(const struct device_node *node)
1604 {
1605         struct device_node *np;
1606
1607         if (!node)
1608                 return NULL;
1609
1610         read_lock(&devtree_lock);
1611         np = of_node_get(node->parent);
1612         read_unlock(&devtree_lock);
1613         return np;
1614 }
1615 EXPORT_SYMBOL(of_get_parent);
1616
1617 /**
1618  *      of_get_next_child - Iterate a node childs
1619  *      @node:  parent node
1620  *      @prev:  previous child of the parent node, or NULL to get first
1621  *
1622  *      Returns a node pointer with refcount incremented, use
1623  *      of_node_put() on it when done.
1624  */
1625 struct device_node *of_get_next_child(const struct device_node *node,
1626         struct device_node *prev)
1627 {
1628         struct device_node *next;
1629
1630         read_lock(&devtree_lock);
1631         next = prev ? prev->sibling : node->child;
1632         for (; next != 0; next = next->sibling)
1633                 if (of_node_get(next))
1634                         break;
1635         if (prev)
1636                 of_node_put(prev);
1637         read_unlock(&devtree_lock);
1638         return next;
1639 }
1640 EXPORT_SYMBOL(of_get_next_child);
1641
1642 /**
1643  *      of_node_get - Increment refcount of a node
1644  *      @node:  Node to inc refcount, NULL is supported to
1645  *              simplify writing of callers
1646  *
1647  *      Returns node.
1648  */
1649 struct device_node *of_node_get(struct device_node *node)
1650 {
1651         if (node)
1652                 kref_get(&node->kref);
1653         return node;
1654 }
1655 EXPORT_SYMBOL(of_node_get);
1656
1657 static inline struct device_node * kref_to_device_node(struct kref *kref)
1658 {
1659         return container_of(kref, struct device_node, kref);
1660 }
1661
1662 /**
1663  *      of_node_release - release a dynamically allocated node
1664  *      @kref:  kref element of the node to be released
1665  *
1666  *      In of_node_put() this function is passed to kref_put()
1667  *      as the destructor.
1668  */
1669 static void of_node_release(struct kref *kref)
1670 {
1671         struct device_node *node = kref_to_device_node(kref);
1672         struct property *prop = node->properties;
1673
1674         if (!OF_IS_DYNAMIC(node))
1675                 return;
1676         while (prop) {
1677                 struct property *next = prop->next;
1678                 kfree(prop->name);
1679                 kfree(prop->value);
1680                 kfree(prop);
1681                 prop = next;
1682
1683                 if (!prop) {
1684                         prop = node->deadprops;
1685                         node->deadprops = NULL;
1686                 }
1687         }
1688         kfree(node->intrs);
1689         kfree(node->full_name);
1690         kfree(node->data);
1691         kfree(node);
1692 }
1693
1694 /**
1695  *      of_node_put - Decrement refcount of a node
1696  *      @node:  Node to dec refcount, NULL is supported to
1697  *              simplify writing of callers
1698  *
1699  */
1700 void of_node_put(struct device_node *node)
1701 {
1702         if (node)
1703                 kref_put(&node->kref, of_node_release);
1704 }
1705 EXPORT_SYMBOL(of_node_put);
1706
1707 /*
1708  * Plug a device node into the tree and global list.
1709  */
1710 void of_attach_node(struct device_node *np)
1711 {
1712         write_lock(&devtree_lock);
1713         np->sibling = np->parent->child;
1714         np->allnext = allnodes;
1715         np->parent->child = np;
1716         allnodes = np;
1717         write_unlock(&devtree_lock);
1718 }
1719
1720 /*
1721  * "Unplug" a node from the device tree.  The caller must hold
1722  * a reference to the node.  The memory associated with the node
1723  * is not freed until its refcount goes to zero.
1724  */
1725 void of_detach_node(const struct device_node *np)
1726 {
1727         struct device_node *parent;
1728
1729         write_lock(&devtree_lock);
1730
1731         parent = np->parent;
1732
1733         if (allnodes == np)
1734                 allnodes = np->allnext;
1735         else {
1736                 struct device_node *prev;
1737                 for (prev = allnodes;
1738                      prev->allnext != np;
1739                      prev = prev->allnext)
1740                         ;
1741                 prev->allnext = np->allnext;
1742         }
1743
1744         if (parent->child == np)
1745                 parent->child = np->sibling;
1746         else {
1747                 struct device_node *prevsib;
1748                 for (prevsib = np->parent->child;
1749                      prevsib->sibling != np;
1750                      prevsib = prevsib->sibling)
1751                         ;
1752                 prevsib->sibling = np->sibling;
1753         }
1754
1755         write_unlock(&devtree_lock);
1756 }
1757
1758 #ifdef CONFIG_PPC_PSERIES
1759 /*
1760  * Fix up the uninitialized fields in a new device node:
1761  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1762  *
1763  * A lot of boot-time code is duplicated here, because functions such
1764  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1765  * slab allocator.
1766  *
1767  * This should probably be split up into smaller chunks.
1768  */
1769
1770 static int of_finish_dynamic_node(struct device_node *node)
1771 {
1772         struct device_node *parent = of_get_parent(node);
1773         int err = 0;
1774         phandle *ibm_phandle;
1775
1776         node->name = get_property(node, "name", NULL);
1777         node->type = get_property(node, "device_type", NULL);
1778
1779         if (!parent) {
1780                 err = -ENODEV;
1781                 goto out;
1782         }
1783
1784         /* We don't support that function on PowerMac, at least
1785          * not yet
1786          */
1787         if (_machine == PLATFORM_POWERMAC)
1788                 return -ENODEV;
1789
1790         /* fix up new node's linux_phandle field */
1791         if ((ibm_phandle = (unsigned int *)get_property(node,
1792                                                         "ibm,phandle", NULL)))
1793                 node->linux_phandle = *ibm_phandle;
1794
1795 out:
1796         of_node_put(parent);
1797         return err;
1798 }
1799
1800 static int prom_reconfig_notifier(struct notifier_block *nb,
1801                                   unsigned long action, void *node)
1802 {
1803         int err;
1804
1805         switch (action) {
1806         case PSERIES_RECONFIG_ADD:
1807                 err = of_finish_dynamic_node(node);
1808                 if (!err)
1809                         finish_node(node, NULL, 0);
1810                 if (err < 0) {
1811                         printk(KERN_ERR "finish_node returned %d\n", err);
1812                         err = NOTIFY_BAD;
1813                 }
1814                 break;
1815         default:
1816                 err = NOTIFY_DONE;
1817                 break;
1818         }
1819         return err;
1820 }
1821
1822 static struct notifier_block prom_reconfig_nb = {
1823         .notifier_call = prom_reconfig_notifier,
1824         .priority = 10, /* This one needs to run first */
1825 };
1826
1827 static int __init prom_reconfig_setup(void)
1828 {
1829         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1830 }
1831 __initcall(prom_reconfig_setup);
1832 #endif
1833
1834 struct property *of_find_property(struct device_node *np, const char *name,
1835                                   int *lenp)
1836 {
1837         struct property *pp;
1838
1839         read_lock(&devtree_lock);
1840         for (pp = np->properties; pp != 0; pp = pp->next)
1841                 if (strcmp(pp->name, name) == 0) {
1842                         if (lenp != 0)
1843                                 *lenp = pp->length;
1844                         break;
1845                 }
1846         read_unlock(&devtree_lock);
1847
1848         return pp;
1849 }
1850
1851 /*
1852  * Find a property with a given name for a given node
1853  * and return the value.
1854  */
1855 unsigned char *get_property(struct device_node *np, const char *name,
1856                             int *lenp)
1857 {
1858         struct property *pp = of_find_property(np,name,lenp);
1859         return pp ? pp->value : NULL;
1860 }
1861 EXPORT_SYMBOL(get_property);
1862
1863 /*
1864  * Add a property to a node
1865  */
1866 int prom_add_property(struct device_node* np, struct property* prop)
1867 {
1868         struct property **next;
1869
1870         prop->next = NULL;      
1871         write_lock(&devtree_lock);
1872         next = &np->properties;
1873         while (*next) {
1874                 if (strcmp(prop->name, (*next)->name) == 0) {
1875                         /* duplicate ! don't insert it */
1876                         write_unlock(&devtree_lock);
1877                         return -1;
1878                 }
1879                 next = &(*next)->next;
1880         }
1881         *next = prop;
1882         write_unlock(&devtree_lock);
1883
1884 #ifdef CONFIG_PROC_DEVICETREE
1885         /* try to add to proc as well if it was initialized */
1886         if (np->pde)
1887                 proc_device_tree_add_prop(np->pde, prop);
1888 #endif /* CONFIG_PROC_DEVICETREE */
1889
1890         return 0;
1891 }
1892
1893 /*
1894  * Remove a property from a node.  Note that we don't actually
1895  * remove it, since we have given out who-knows-how-many pointers
1896  * to the data using get-property.  Instead we just move the property
1897  * to the "dead properties" list, so it won't be found any more.
1898  */
1899 int prom_remove_property(struct device_node *np, struct property *prop)
1900 {
1901         struct property **next;
1902         int found = 0;
1903
1904         write_lock(&devtree_lock);
1905         next = &np->properties;
1906         while (*next) {
1907                 if (*next == prop) {
1908                         /* found the node */
1909                         *next = prop->next;
1910                         prop->next = np->deadprops;
1911                         np->deadprops = prop;
1912                         found = 1;
1913                         break;
1914                 }
1915                 next = &(*next)->next;
1916         }
1917         write_unlock(&devtree_lock);
1918
1919         if (!found)
1920                 return -ENODEV;
1921
1922 #ifdef CONFIG_PROC_DEVICETREE
1923         /* try to remove the proc node as well */
1924         if (np->pde)
1925                 proc_device_tree_remove_prop(np->pde, prop);
1926 #endif /* CONFIG_PROC_DEVICETREE */
1927
1928         return 0;
1929 }
1930
1931 /*
1932  * Update a property in a node.  Note that we don't actually
1933  * remove it, since we have given out who-knows-how-many pointers
1934  * to the data using get-property.  Instead we just move the property
1935  * to the "dead properties" list, and add the new property to the
1936  * property list
1937  */
1938 int prom_update_property(struct device_node *np,
1939                          struct property *newprop,
1940                          struct property *oldprop)
1941 {
1942         struct property **next;
1943         int found = 0;
1944
1945         write_lock(&devtree_lock);
1946         next = &np->properties;
1947         while (*next) {
1948                 if (*next == oldprop) {
1949                         /* found the node */
1950                         newprop->next = oldprop->next;
1951                         *next = newprop;
1952                         oldprop->next = np->deadprops;
1953                         np->deadprops = oldprop;
1954                         found = 1;
1955                         break;
1956                 }
1957                 next = &(*next)->next;
1958         }
1959         write_unlock(&devtree_lock);
1960
1961         if (!found)
1962                 return -ENODEV;
1963
1964 #ifdef CONFIG_PROC_DEVICETREE
1965         /* try to add to proc as well if it was initialized */
1966         if (np->pde)
1967                 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1968 #endif /* CONFIG_PROC_DEVICETREE */
1969
1970         return 0;
1971 }
1972
1973 #ifdef CONFIG_KEXEC
1974 /* We may have allocated the flat device tree inside the crash kernel region
1975  * in prom_init. If so we need to move it out into regular memory. */
1976 void kdump_move_device_tree(void)
1977 {
1978         unsigned long start, end;
1979         struct boot_param_header *new;
1980
1981         start = __pa((unsigned long)initial_boot_params);
1982         end = start + initial_boot_params->totalsize;
1983
1984         if (end < crashk_res.start || start > crashk_res.end)
1985                 return;
1986
1987         new = (struct boot_param_header*)
1988                 __va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
1989
1990         memcpy(new, initial_boot_params, initial_boot_params->totalsize);
1991
1992         initial_boot_params = new;
1993
1994         DBG("Flat device tree blob moved to %p\n", initial_boot_params);
1995
1996         /* XXX should we unreserve the old DT? */
1997 }
1998 #endif /* CONFIG_KEXEC */