Merge remote-tracking branches 'regulator/fix/88pm800', 'regulator/fix/max8973',...
[linux-drm-fsl-dcu.git] / arch / parisc / kernel / traps.c
1 /*
2  *  linux/arch/parisc/traps.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 1999, 2000  Philipp Rumpf <prumpf@tux.org>
6  */
7
8 /*
9  * 'Traps.c' handles hardware traps and faults after we have saved some
10  * state in 'asm.s'.
11  */
12
13 #include <linux/sched.h>
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/timer.h>
19 #include <linux/delay.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/smp.h>
23 #include <linux/spinlock.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/console.h>
27 #include <linux/bug.h>
28 #include <linux/ratelimit.h>
29 #include <linux/uaccess.h>
30
31 #include <asm/assembly.h>
32 #include <asm/io.h>
33 #include <asm/irq.h>
34 #include <asm/traps.h>
35 #include <asm/unaligned.h>
36 #include <linux/atomic.h>
37 #include <asm/smp.h>
38 #include <asm/pdc.h>
39 #include <asm/pdc_chassis.h>
40 #include <asm/unwind.h>
41 #include <asm/tlbflush.h>
42 #include <asm/cacheflush.h>
43
44 #include "../math-emu/math-emu.h"       /* for handle_fpe() */
45
46 static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
47         struct pt_regs *regs);
48
49 static int printbinary(char *buf, unsigned long x, int nbits)
50 {
51         unsigned long mask = 1UL << (nbits - 1);
52         while (mask != 0) {
53                 *buf++ = (mask & x ? '1' : '0');
54                 mask >>= 1;
55         }
56         *buf = '\0';
57
58         return nbits;
59 }
60
61 #ifdef CONFIG_64BIT
62 #define RFMT "%016lx"
63 #else
64 #define RFMT "%08lx"
65 #endif
66 #define FFMT "%016llx"  /* fpregs are 64-bit always */
67
68 #define PRINTREGS(lvl,r,f,fmt,x)        \
69         printk("%s%s%02d-%02d  " fmt " " fmt " " fmt " " fmt "\n",      \
70                 lvl, f, (x), (x+3), (r)[(x)+0], (r)[(x)+1],             \
71                 (r)[(x)+2], (r)[(x)+3])
72
73 static void print_gr(char *level, struct pt_regs *regs)
74 {
75         int i;
76         char buf[64];
77
78         printk("%s\n", level);
79         printk("%s     YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI\n", level);
80         printbinary(buf, regs->gr[0], 32);
81         printk("%sPSW: %s %s\n", level, buf, print_tainted());
82
83         for (i = 0; i < 32; i += 4)
84                 PRINTREGS(level, regs->gr, "r", RFMT, i);
85 }
86
87 static void print_fr(char *level, struct pt_regs *regs)
88 {
89         int i;
90         char buf[64];
91         struct { u32 sw[2]; } s;
92
93         /* FR are 64bit everywhere. Need to use asm to get the content
94          * of fpsr/fper1, and we assume that we won't have a FP Identify
95          * in our way, otherwise we're screwed.
96          * The fldd is used to restore the T-bit if there was one, as the
97          * store clears it anyway.
98          * PA2.0 book says "thou shall not use fstw on FPSR/FPERs" - T-Bone */
99         asm volatile ("fstd %%fr0,0(%1) \n\t"
100                       "fldd 0(%1),%%fr0 \n\t"
101                       : "=m" (s) : "r" (&s) : "r0");
102
103         printk("%s\n", level);
104         printk("%s      VZOUICununcqcqcqcqcqcrmunTDVZOUI\n", level);
105         printbinary(buf, s.sw[0], 32);
106         printk("%sFPSR: %s\n", level, buf);
107         printk("%sFPER1: %08x\n", level, s.sw[1]);
108
109         /* here we'll print fr0 again, tho it'll be meaningless */
110         for (i = 0; i < 32; i += 4)
111                 PRINTREGS(level, regs->fr, "fr", FFMT, i);
112 }
113
114 void show_regs(struct pt_regs *regs)
115 {
116         int i, user;
117         char *level;
118         unsigned long cr30, cr31;
119
120         user = user_mode(regs);
121         level = user ? KERN_DEBUG : KERN_CRIT;
122
123         show_regs_print_info(level);
124
125         print_gr(level, regs);
126
127         for (i = 0; i < 8; i += 4)
128                 PRINTREGS(level, regs->sr, "sr", RFMT, i);
129
130         if (user)
131                 print_fr(level, regs);
132
133         cr30 = mfctl(30);
134         cr31 = mfctl(31);
135         printk("%s\n", level);
136         printk("%sIASQ: " RFMT " " RFMT " IAOQ: " RFMT " " RFMT "\n",
137                level, regs->iasq[0], regs->iasq[1], regs->iaoq[0], regs->iaoq[1]);
138         printk("%s IIR: %08lx    ISR: " RFMT "  IOR: " RFMT "\n",
139                level, regs->iir, regs->isr, regs->ior);
140         printk("%s CPU: %8d   CR30: " RFMT " CR31: " RFMT "\n",
141                level, current_thread_info()->cpu, cr30, cr31);
142         printk("%s ORIG_R28: " RFMT "\n", level, regs->orig_r28);
143
144         if (user) {
145                 printk("%s IAOQ[0]: " RFMT "\n", level, regs->iaoq[0]);
146                 printk("%s IAOQ[1]: " RFMT "\n", level, regs->iaoq[1]);
147                 printk("%s RP(r2): " RFMT "\n", level, regs->gr[2]);
148         } else {
149                 printk("%s IAOQ[0]: %pS\n", level, (void *) regs->iaoq[0]);
150                 printk("%s IAOQ[1]: %pS\n", level, (void *) regs->iaoq[1]);
151                 printk("%s RP(r2): %pS\n", level, (void *) regs->gr[2]);
152
153                 parisc_show_stack(current, NULL, regs);
154         }
155 }
156
157 static DEFINE_RATELIMIT_STATE(_hppa_rs,
158         DEFAULT_RATELIMIT_INTERVAL, DEFAULT_RATELIMIT_BURST);
159
160 #define parisc_printk_ratelimited(critical, regs, fmt, ...)     {             \
161         if ((critical || show_unhandled_signals) && __ratelimit(&_hppa_rs)) { \
162                 printk(fmt, ##__VA_ARGS__);                                   \
163                 show_regs(regs);                                              \
164         }                                                                     \
165 }
166
167
168 static void do_show_stack(struct unwind_frame_info *info)
169 {
170         int i = 1;
171
172         printk(KERN_CRIT "Backtrace:\n");
173         while (i <= 16) {
174                 if (unwind_once(info) < 0 || info->ip == 0)
175                         break;
176
177                 if (__kernel_text_address(info->ip)) {
178                         printk(KERN_CRIT " [<" RFMT ">] %pS\n",
179                                 info->ip, (void *) info->ip);
180                         i++;
181                 }
182         }
183         printk(KERN_CRIT "\n");
184 }
185
186 static void parisc_show_stack(struct task_struct *task, unsigned long *sp,
187         struct pt_regs *regs)
188 {
189         struct unwind_frame_info info;
190         struct task_struct *t;
191
192         t = task ? task : current;
193         if (regs) {
194                 unwind_frame_init(&info, t, regs);
195                 goto show_stack;
196         }
197
198         if (t == current) {
199                 unsigned long sp;
200
201 HERE:
202                 asm volatile ("copy %%r30, %0" : "=r"(sp));
203                 {
204                         struct pt_regs r;
205
206                         memset(&r, 0, sizeof(struct pt_regs));
207                         r.iaoq[0] = (unsigned long)&&HERE;
208                         r.gr[2] = (unsigned long)__builtin_return_address(0);
209                         r.gr[30] = sp;
210
211                         unwind_frame_init(&info, current, &r);
212                 }
213         } else {
214                 unwind_frame_init_from_blocked_task(&info, t);
215         }
216
217 show_stack:
218         do_show_stack(&info);
219 }
220
221 void show_stack(struct task_struct *t, unsigned long *sp)
222 {
223         return parisc_show_stack(t, sp, NULL);
224 }
225
226 int is_valid_bugaddr(unsigned long iaoq)
227 {
228         return 1;
229 }
230
231 void die_if_kernel(char *str, struct pt_regs *regs, long err)
232 {
233         if (user_mode(regs)) {
234                 if (err == 0)
235                         return; /* STFU */
236
237                 parisc_printk_ratelimited(1, regs,
238                         KERN_CRIT "%s (pid %d): %s (code %ld) at " RFMT "\n",
239                         current->comm, task_pid_nr(current), str, err, regs->iaoq[0]);
240
241                 return;
242         }
243
244         oops_in_progress = 1;
245
246         oops_enter();
247
248         /* Amuse the user in a SPARC fashion */
249         if (err) printk(KERN_CRIT
250                         "      _______________________________ \n"
251                         "     < Your System ate a SPARC! Gah! >\n"
252                         "      ------------------------------- \n"
253                         "             \\   ^__^\n"
254                         "                 (__)\\       )\\/\\\n"
255                         "                  U  ||----w |\n"
256                         "                     ||     ||\n");
257         
258         /* unlock the pdc lock if necessary */
259         pdc_emergency_unlock();
260
261         /* maybe the kernel hasn't booted very far yet and hasn't been able 
262          * to initialize the serial or STI console. In that case we should 
263          * re-enable the pdc console, so that the user will be able to 
264          * identify the problem. */
265         if (!console_drivers)
266                 pdc_console_restart();
267         
268         if (err)
269                 printk(KERN_CRIT "%s (pid %d): %s (code %ld)\n",
270                         current->comm, task_pid_nr(current), str, err);
271
272         /* Wot's wrong wif bein' racy? */
273         if (current->thread.flags & PARISC_KERNEL_DEATH) {
274                 printk(KERN_CRIT "%s() recursion detected.\n", __func__);
275                 local_irq_enable();
276                 while (1);
277         }
278         current->thread.flags |= PARISC_KERNEL_DEATH;
279
280         show_regs(regs);
281         dump_stack();
282         add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
283
284         if (in_interrupt())
285                 panic("Fatal exception in interrupt");
286
287         if (panic_on_oops) {
288                 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
289                 ssleep(5);
290                 panic("Fatal exception");
291         }
292
293         oops_exit();
294         do_exit(SIGSEGV);
295 }
296
297 /* gdb uses break 4,8 */
298 #define GDB_BREAK_INSN 0x10004
299 static void handle_gdb_break(struct pt_regs *regs, int wot)
300 {
301         struct siginfo si;
302
303         si.si_signo = SIGTRAP;
304         si.si_errno = 0;
305         si.si_code = wot;
306         si.si_addr = (void __user *) (regs->iaoq[0] & ~3);
307         force_sig_info(SIGTRAP, &si, current);
308 }
309
310 static void handle_break(struct pt_regs *regs)
311 {
312         unsigned iir = regs->iir;
313
314         if (unlikely(iir == PARISC_BUG_BREAK_INSN && !user_mode(regs))) {
315                 /* check if a BUG() or WARN() trapped here.  */
316                 enum bug_trap_type tt;
317                 tt = report_bug(regs->iaoq[0] & ~3, regs);
318                 if (tt == BUG_TRAP_TYPE_WARN) {
319                         regs->iaoq[0] += 4;
320                         regs->iaoq[1] += 4;
321                         return; /* return to next instruction when WARN_ON().  */
322                 }
323                 die_if_kernel("Unknown kernel breakpoint", regs,
324                         (tt == BUG_TRAP_TYPE_NONE) ? 9 : 0);
325         }
326
327         if (unlikely(iir != GDB_BREAK_INSN))
328                 parisc_printk_ratelimited(0, regs,
329                         KERN_DEBUG "break %d,%d: pid=%d command='%s'\n",
330                         iir & 31, (iir>>13) & ((1<<13)-1),
331                         task_pid_nr(current), current->comm);
332
333         /* send standard GDB signal */
334         handle_gdb_break(regs, TRAP_BRKPT);
335 }
336
337 static void default_trap(int code, struct pt_regs *regs)
338 {
339         printk(KERN_ERR "Trap %d on CPU %d\n", code, smp_processor_id());
340         show_regs(regs);
341 }
342
343 void (*cpu_lpmc) (int code, struct pt_regs *regs) __read_mostly = default_trap;
344
345
346 void transfer_pim_to_trap_frame(struct pt_regs *regs)
347 {
348     register int i;
349     extern unsigned int hpmc_pim_data[];
350     struct pdc_hpmc_pim_11 *pim_narrow;
351     struct pdc_hpmc_pim_20 *pim_wide;
352
353     if (boot_cpu_data.cpu_type >= pcxu) {
354
355         pim_wide = (struct pdc_hpmc_pim_20 *)hpmc_pim_data;
356
357         /*
358          * Note: The following code will probably generate a
359          * bunch of truncation error warnings from the compiler.
360          * Could be handled with an ifdef, but perhaps there
361          * is a better way.
362          */
363
364         regs->gr[0] = pim_wide->cr[22];
365
366         for (i = 1; i < 32; i++)
367             regs->gr[i] = pim_wide->gr[i];
368
369         for (i = 0; i < 32; i++)
370             regs->fr[i] = pim_wide->fr[i];
371
372         for (i = 0; i < 8; i++)
373             regs->sr[i] = pim_wide->sr[i];
374
375         regs->iasq[0] = pim_wide->cr[17];
376         regs->iasq[1] = pim_wide->iasq_back;
377         regs->iaoq[0] = pim_wide->cr[18];
378         regs->iaoq[1] = pim_wide->iaoq_back;
379
380         regs->sar  = pim_wide->cr[11];
381         regs->iir  = pim_wide->cr[19];
382         regs->isr  = pim_wide->cr[20];
383         regs->ior  = pim_wide->cr[21];
384     }
385     else {
386         pim_narrow = (struct pdc_hpmc_pim_11 *)hpmc_pim_data;
387
388         regs->gr[0] = pim_narrow->cr[22];
389
390         for (i = 1; i < 32; i++)
391             regs->gr[i] = pim_narrow->gr[i];
392
393         for (i = 0; i < 32; i++)
394             regs->fr[i] = pim_narrow->fr[i];
395
396         for (i = 0; i < 8; i++)
397             regs->sr[i] = pim_narrow->sr[i];
398
399         regs->iasq[0] = pim_narrow->cr[17];
400         regs->iasq[1] = pim_narrow->iasq_back;
401         regs->iaoq[0] = pim_narrow->cr[18];
402         regs->iaoq[1] = pim_narrow->iaoq_back;
403
404         regs->sar  = pim_narrow->cr[11];
405         regs->iir  = pim_narrow->cr[19];
406         regs->isr  = pim_narrow->cr[20];
407         regs->ior  = pim_narrow->cr[21];
408     }
409
410     /*
411      * The following fields only have meaning if we came through
412      * another path. So just zero them here.
413      */
414
415     regs->ksp = 0;
416     regs->kpc = 0;
417     regs->orig_r28 = 0;
418 }
419
420
421 /*
422  * This routine is called as a last resort when everything else
423  * has gone clearly wrong. We get called for faults in kernel space,
424  * and HPMC's.
425  */
426 void parisc_terminate(char *msg, struct pt_regs *regs, int code, unsigned long offset)
427 {
428         static DEFINE_SPINLOCK(terminate_lock);
429
430         oops_in_progress = 1;
431
432         set_eiem(0);
433         local_irq_disable();
434         spin_lock(&terminate_lock);
435
436         /* unlock the pdc lock if necessary */
437         pdc_emergency_unlock();
438
439         /* restart pdc console if necessary */
440         if (!console_drivers)
441                 pdc_console_restart();
442
443         /* Not all paths will gutter the processor... */
444         switch(code){
445
446         case 1:
447                 transfer_pim_to_trap_frame(regs);
448                 break;
449
450         default:
451                 /* Fall through */
452                 break;
453
454         }
455             
456         {
457                 /* show_stack(NULL, (unsigned long *)regs->gr[30]); */
458                 struct unwind_frame_info info;
459                 unwind_frame_init(&info, current, regs);
460                 do_show_stack(&info);
461         }
462
463         printk("\n");
464         printk(KERN_CRIT "%s: Code=%d regs=%p (Addr=" RFMT ")\n",
465                         msg, code, regs, offset);
466         show_regs(regs);
467
468         spin_unlock(&terminate_lock);
469
470         /* put soft power button back under hardware control;
471          * if the user had pressed it once at any time, the 
472          * system will shut down immediately right here. */
473         pdc_soft_power_button(0);
474         
475         /* Call kernel panic() so reboot timeouts work properly 
476          * FIXME: This function should be on the list of
477          * panic notifiers, and we should call panic
478          * directly from the location that we wish. 
479          * e.g. We should not call panic from
480          * parisc_terminate, but rather the oter way around.
481          * This hack works, prints the panic message twice,
482          * and it enables reboot timers!
483          */
484         panic(msg);
485 }
486
487 void notrace handle_interruption(int code, struct pt_regs *regs)
488 {
489         unsigned long fault_address = 0;
490         unsigned long fault_space = 0;
491         struct siginfo si;
492
493         if (code == 1)
494             pdc_console_restart();  /* switch back to pdc if HPMC */
495         else
496             local_irq_enable();
497
498         /* Security check:
499          * If the priority level is still user, and the
500          * faulting space is not equal to the active space
501          * then the user is attempting something in a space
502          * that does not belong to them. Kill the process.
503          *
504          * This is normally the situation when the user
505          * attempts to jump into the kernel space at the
506          * wrong offset, be it at the gateway page or a
507          * random location.
508          *
509          * We cannot normally signal the process because it
510          * could *be* on the gateway page, and processes
511          * executing on the gateway page can't have signals
512          * delivered.
513          * 
514          * We merely readjust the address into the users
515          * space, at a destination address of zero, and
516          * allow processing to continue.
517          */
518         if (((unsigned long)regs->iaoq[0] & 3) &&
519             ((unsigned long)regs->iasq[0] != (unsigned long)regs->sr[7])) { 
520                 /* Kill the user process later */
521                 regs->iaoq[0] = 0 | 3;
522                 regs->iaoq[1] = regs->iaoq[0] + 4;
523                 regs->iasq[0] = regs->iasq[1] = regs->sr[7];
524                 regs->gr[0] &= ~PSW_B;
525                 return;
526         }
527         
528 #if 0
529         printk(KERN_CRIT "Interruption # %d\n", code);
530 #endif
531
532         switch(code) {
533
534         case  1:
535                 /* High-priority machine check (HPMC) */
536                 
537                 /* set up a new led state on systems shipped with a LED State panel */
538                 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_HPMC);
539
540                 parisc_terminate("High Priority Machine Check (HPMC)",
541                                 regs, code, 0);
542                 /* NOT REACHED */
543                 
544         case  2:
545                 /* Power failure interrupt */
546                 printk(KERN_CRIT "Power failure interrupt !\n");
547                 return;
548
549         case  3:
550                 /* Recovery counter trap */
551                 regs->gr[0] &= ~PSW_R;
552                 if (user_space(regs))
553                         handle_gdb_break(regs, TRAP_TRACE);
554                 /* else this must be the start of a syscall - just let it run */
555                 return;
556
557         case  5:
558                 /* Low-priority machine check */
559                 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_LPMC);
560                 
561                 flush_cache_all();
562                 flush_tlb_all();
563                 cpu_lpmc(5, regs);
564                 return;
565
566         case  6:
567                 /* Instruction TLB miss fault/Instruction page fault */
568                 fault_address = regs->iaoq[0];
569                 fault_space   = regs->iasq[0];
570                 break;
571
572         case  8:
573                 /* Illegal instruction trap */
574                 die_if_kernel("Illegal instruction", regs, code);
575                 si.si_code = ILL_ILLOPC;
576                 goto give_sigill;
577
578         case  9:
579                 /* Break instruction trap */
580                 handle_break(regs);
581                 return;
582
583         case 10:
584                 /* Privileged operation trap */
585                 die_if_kernel("Privileged operation", regs, code);
586                 si.si_code = ILL_PRVOPC;
587                 goto give_sigill;
588
589         case 11:
590                 /* Privileged register trap */
591                 if ((regs->iir & 0xffdfffe0) == 0x034008a0) {
592
593                         /* This is a MFCTL cr26/cr27 to gr instruction.
594                          * PCXS traps on this, so we need to emulate it.
595                          */
596
597                         if (regs->iir & 0x00200000)
598                                 regs->gr[regs->iir & 0x1f] = mfctl(27);
599                         else
600                                 regs->gr[regs->iir & 0x1f] = mfctl(26);
601
602                         regs->iaoq[0] = regs->iaoq[1];
603                         regs->iaoq[1] += 4;
604                         regs->iasq[0] = regs->iasq[1];
605                         return;
606                 }
607
608                 die_if_kernel("Privileged register usage", regs, code);
609                 si.si_code = ILL_PRVREG;
610         give_sigill:
611                 si.si_signo = SIGILL;
612                 si.si_errno = 0;
613                 si.si_addr = (void __user *) regs->iaoq[0];
614                 force_sig_info(SIGILL, &si, current);
615                 return;
616
617         case 12:
618                 /* Overflow Trap, let the userland signal handler do the cleanup */
619                 si.si_signo = SIGFPE;
620                 si.si_code = FPE_INTOVF;
621                 si.si_addr = (void __user *) regs->iaoq[0];
622                 force_sig_info(SIGFPE, &si, current);
623                 return;
624                 
625         case 13:
626                 /* Conditional Trap
627                    The condition succeeds in an instruction which traps
628                    on condition  */
629                 if(user_mode(regs)){
630                         si.si_signo = SIGFPE;
631                         /* Set to zero, and let the userspace app figure it out from
632                            the insn pointed to by si_addr */
633                         si.si_code = 0;
634                         si.si_addr = (void __user *) regs->iaoq[0];
635                         force_sig_info(SIGFPE, &si, current);
636                         return;
637                 } 
638                 /* The kernel doesn't want to handle condition codes */
639                 break;
640                 
641         case 14:
642                 /* Assist Exception Trap, i.e. floating point exception. */
643                 die_if_kernel("Floating point exception", regs, 0); /* quiet */
644                 __inc_irq_stat(irq_fpassist_count);
645                 handle_fpe(regs);
646                 return;
647
648         case 15:
649                 /* Data TLB miss fault/Data page fault */
650                 /* Fall through */
651         case 16:
652                 /* Non-access instruction TLB miss fault */
653                 /* The instruction TLB entry needed for the target address of the FIC
654                    is absent, and hardware can't find it, so we get to cleanup */
655                 /* Fall through */
656         case 17:
657                 /* Non-access data TLB miss fault/Non-access data page fault */
658                 /* FIXME: 
659                          Still need to add slow path emulation code here!
660                          If the insn used a non-shadow register, then the tlb
661                          handlers could not have their side-effect (e.g. probe
662                          writing to a target register) emulated since rfir would
663                          erase the changes to said register. Instead we have to
664                          setup everything, call this function we are in, and emulate
665                          by hand. Technically we need to emulate:
666                          fdc,fdce,pdc,"fic,4f",prober,probeir,probew, probeiw
667                 */
668                 fault_address = regs->ior;
669                 fault_space = regs->isr;
670                 break;
671
672         case 18:
673                 /* PCXS only -- later cpu's split this into types 26,27 & 28 */
674                 /* Check for unaligned access */
675                 if (check_unaligned(regs)) {
676                         handle_unaligned(regs);
677                         return;
678                 }
679                 /* Fall Through */
680         case 26: 
681                 /* PCXL: Data memory access rights trap */
682                 fault_address = regs->ior;
683                 fault_space   = regs->isr;
684                 break;
685
686         case 19:
687                 /* Data memory break trap */
688                 regs->gr[0] |= PSW_X; /* So we can single-step over the trap */
689                 /* fall thru */
690         case 21:
691                 /* Page reference trap */
692                 handle_gdb_break(regs, TRAP_HWBKPT);
693                 return;
694
695         case 25:
696                 /* Taken branch trap */
697                 regs->gr[0] &= ~PSW_T;
698                 if (user_space(regs))
699                         handle_gdb_break(regs, TRAP_BRANCH);
700                 /* else this must be the start of a syscall - just let it
701                  * run.
702                  */
703                 return;
704
705         case  7:  
706                 /* Instruction access rights */
707                 /* PCXL: Instruction memory protection trap */
708
709                 /*
710                  * This could be caused by either: 1) a process attempting
711                  * to execute within a vma that does not have execute
712                  * permission, or 2) an access rights violation caused by a
713                  * flush only translation set up by ptep_get_and_clear().
714                  * So we check the vma permissions to differentiate the two.
715                  * If the vma indicates we have execute permission, then
716                  * the cause is the latter one. In this case, we need to
717                  * call do_page_fault() to fix the problem.
718                  */
719
720                 if (user_mode(regs)) {
721                         struct vm_area_struct *vma;
722
723                         down_read(&current->mm->mmap_sem);
724                         vma = find_vma(current->mm,regs->iaoq[0]);
725                         if (vma && (regs->iaoq[0] >= vma->vm_start)
726                                 && (vma->vm_flags & VM_EXEC)) {
727
728                                 fault_address = regs->iaoq[0];
729                                 fault_space = regs->iasq[0];
730
731                                 up_read(&current->mm->mmap_sem);
732                                 break; /* call do_page_fault() */
733                         }
734                         up_read(&current->mm->mmap_sem);
735                 }
736                 /* Fall Through */
737         case 27: 
738                 /* Data memory protection ID trap */
739                 if (code == 27 && !user_mode(regs) &&
740                         fixup_exception(regs))
741                         return;
742
743                 die_if_kernel("Protection id trap", regs, code);
744                 si.si_code = SEGV_MAPERR;
745                 si.si_signo = SIGSEGV;
746                 si.si_errno = 0;
747                 if (code == 7)
748                     si.si_addr = (void __user *) regs->iaoq[0];
749                 else
750                     si.si_addr = (void __user *) regs->ior;
751                 force_sig_info(SIGSEGV, &si, current);
752                 return;
753
754         case 28: 
755                 /* Unaligned data reference trap */
756                 handle_unaligned(regs);
757                 return;
758
759         default:
760                 if (user_mode(regs)) {
761                         parisc_printk_ratelimited(0, regs, KERN_DEBUG
762                                 "handle_interruption() pid=%d command='%s'\n",
763                                 task_pid_nr(current), current->comm);
764                         /* SIGBUS, for lack of a better one. */
765                         si.si_signo = SIGBUS;
766                         si.si_code = BUS_OBJERR;
767                         si.si_errno = 0;
768                         si.si_addr = (void __user *) regs->ior;
769                         force_sig_info(SIGBUS, &si, current);
770                         return;
771                 }
772                 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
773                 
774                 parisc_terminate("Unexpected interruption", regs, code, 0);
775                 /* NOT REACHED */
776         }
777
778         if (user_mode(regs)) {
779             if ((fault_space >> SPACEID_SHIFT) != (regs->sr[7] >> SPACEID_SHIFT)) {
780                 parisc_printk_ratelimited(0, regs, KERN_DEBUG
781                                 "User fault %d on space 0x%08lx, pid=%d command='%s'\n",
782                                 code, fault_space,
783                                 task_pid_nr(current), current->comm);
784                 si.si_signo = SIGSEGV;
785                 si.si_errno = 0;
786                 si.si_code = SEGV_MAPERR;
787                 si.si_addr = (void __user *) regs->ior;
788                 force_sig_info(SIGSEGV, &si, current);
789                 return;
790             }
791         }
792         else {
793
794             /*
795              * The kernel should never fault on its own address space,
796              * unless pagefault_disable() was called before.
797              */
798
799             if (fault_space == 0 && !faulthandler_disabled())
800             {
801                 pdc_chassis_send_status(PDC_CHASSIS_DIRECT_PANIC);
802                 parisc_terminate("Kernel Fault", regs, code, fault_address);
803             }
804         }
805
806         do_page_fault(regs, code, fault_address);
807 }
808
809
810 int __init check_ivt(void *iva)
811 {
812         extern u32 os_hpmc_size;
813         extern const u32 os_hpmc[];
814
815         int i;
816         u32 check = 0;
817         u32 *ivap;
818         u32 *hpmcp;
819         u32 length;
820
821         if (strcmp((char *)iva, "cows can fly"))
822                 return -1;
823
824         ivap = (u32 *)iva;
825
826         for (i = 0; i < 8; i++)
827             *ivap++ = 0;
828
829         /* Compute Checksum for HPMC handler */
830         length = os_hpmc_size;
831         ivap[7] = length;
832
833         hpmcp = (u32 *)os_hpmc;
834
835         for (i=0; i<length/4; i++)
836             check += *hpmcp++;
837
838         for (i=0; i<8; i++)
839             check += ivap[i];
840
841         ivap[5] = -check;
842
843         return 0;
844 }
845         
846 #ifndef CONFIG_64BIT
847 extern const void fault_vector_11;
848 #endif
849 extern const void fault_vector_20;
850
851 void __init trap_init(void)
852 {
853         void *iva;
854
855         if (boot_cpu_data.cpu_type >= pcxu)
856                 iva = (void *) &fault_vector_20;
857         else
858 #ifdef CONFIG_64BIT
859                 panic("Can't boot 64-bit OS on PA1.1 processor!");
860 #else
861                 iva = (void *) &fault_vector_11;
862 #endif
863
864         if (check_ivt(iva))
865                 panic("IVT invalid");
866 }