Merge remote-tracking branch 'regmap/topic/table' into regmap-next
[linux-drm-fsl-dcu.git] / arch / mips / kernel / setup.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1995 Linus Torvalds
7  * Copyright (C) 1995 Waldorf Electronics
8  * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03  Ralf Baechle
9  * Copyright (C) 1996 Stoned Elipot
10  * Copyright (C) 1999 Silicon Graphics, Inc.
11  * Copyright (C) 2000, 2001, 2002, 2007  Maciej W. Rozycki
12  */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/export.h>
16 #include <linux/screen_info.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/initrd.h>
20 #include <linux/root_dev.h>
21 #include <linux/highmem.h>
22 #include <linux/console.h>
23 #include <linux/pfn.h>
24 #include <linux/debugfs.h>
25
26 #include <asm/addrspace.h>
27 #include <asm/bootinfo.h>
28 #include <asm/bugs.h>
29 #include <asm/cache.h>
30 #include <asm/cpu.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/smp-ops.h>
34 #include <asm/prom.h>
35
36 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
37
38 EXPORT_SYMBOL(cpu_data);
39
40 #ifdef CONFIG_VT
41 struct screen_info screen_info;
42 #endif
43
44 /*
45  * Despite it's name this variable is even if we don't have PCI
46  */
47 unsigned int PCI_DMA_BUS_IS_PHYS;
48
49 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
50
51 /*
52  * Setup information
53  *
54  * These are initialized so they are in the .data section
55  */
56 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
57
58 EXPORT_SYMBOL(mips_machtype);
59
60 struct boot_mem_map boot_mem_map;
61
62 static char __initdata command_line[COMMAND_LINE_SIZE];
63 char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
64
65 #ifdef CONFIG_CMDLINE_BOOL
66 static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
67 #endif
68
69 /*
70  * mips_io_port_base is the begin of the address space to which x86 style
71  * I/O ports are mapped.
72  */
73 const unsigned long mips_io_port_base = -1;
74 EXPORT_SYMBOL(mips_io_port_base);
75
76 static struct resource code_resource = { .name = "Kernel code", };
77 static struct resource data_resource = { .name = "Kernel data", };
78
79 void __init add_memory_region(phys_t start, phys_t size, long type)
80 {
81         int x = boot_mem_map.nr_map;
82         int i;
83
84         /* Sanity check */
85         if (start + size < start) {
86                 pr_warning("Trying to add an invalid memory region, skipped\n");
87                 return;
88         }
89
90         /*
91          * Try to merge with existing entry, if any.
92          */
93         for (i = 0; i < boot_mem_map.nr_map; i++) {
94                 struct boot_mem_map_entry *entry = boot_mem_map.map + i;
95                 unsigned long top;
96
97                 if (entry->type != type)
98                         continue;
99
100                 if (start + size < entry->addr)
101                         continue;                       /* no overlap */
102
103                 if (entry->addr + entry->size < start)
104                         continue;                       /* no overlap */
105
106                 top = max(entry->addr + entry->size, start + size);
107                 entry->addr = min(entry->addr, start);
108                 entry->size = top - entry->addr;
109
110                 return;
111         }
112
113         if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
114                 pr_err("Ooops! Too many entries in the memory map!\n");
115                 return;
116         }
117
118         boot_mem_map.map[x].addr = start;
119         boot_mem_map.map[x].size = size;
120         boot_mem_map.map[x].type = type;
121         boot_mem_map.nr_map++;
122 }
123
124 static void __init print_memory_map(void)
125 {
126         int i;
127         const int field = 2 * sizeof(unsigned long);
128
129         for (i = 0; i < boot_mem_map.nr_map; i++) {
130                 printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
131                        field, (unsigned long long) boot_mem_map.map[i].size,
132                        field, (unsigned long long) boot_mem_map.map[i].addr);
133
134                 switch (boot_mem_map.map[i].type) {
135                 case BOOT_MEM_RAM:
136                         printk(KERN_CONT "(usable)\n");
137                         break;
138                 case BOOT_MEM_INIT_RAM:
139                         printk(KERN_CONT "(usable after init)\n");
140                         break;
141                 case BOOT_MEM_ROM_DATA:
142                         printk(KERN_CONT "(ROM data)\n");
143                         break;
144                 case BOOT_MEM_RESERVED:
145                         printk(KERN_CONT "(reserved)\n");
146                         break;
147                 default:
148                         printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
149                         break;
150                 }
151         }
152 }
153
154 /*
155  * Manage initrd
156  */
157 #ifdef CONFIG_BLK_DEV_INITRD
158
159 static int __init rd_start_early(char *p)
160 {
161         unsigned long start = memparse(p, &p);
162
163 #ifdef CONFIG_64BIT
164         /* Guess if the sign extension was forgotten by bootloader */
165         if (start < XKPHYS)
166                 start = (int)start;
167 #endif
168         initrd_start = start;
169         initrd_end += start;
170         return 0;
171 }
172 early_param("rd_start", rd_start_early);
173
174 static int __init rd_size_early(char *p)
175 {
176         initrd_end += memparse(p, &p);
177         return 0;
178 }
179 early_param("rd_size", rd_size_early);
180
181 /* it returns the next free pfn after initrd */
182 static unsigned long __init init_initrd(void)
183 {
184         unsigned long end;
185
186         /*
187          * Board specific code or command line parser should have
188          * already set up initrd_start and initrd_end. In these cases
189          * perfom sanity checks and use them if all looks good.
190          */
191         if (!initrd_start || initrd_end <= initrd_start)
192                 goto disable;
193
194         if (initrd_start & ~PAGE_MASK) {
195                 pr_err("initrd start must be page aligned\n");
196                 goto disable;
197         }
198         if (initrd_start < PAGE_OFFSET) {
199                 pr_err("initrd start < PAGE_OFFSET\n");
200                 goto disable;
201         }
202
203         /*
204          * Sanitize initrd addresses. For example firmware
205          * can't guess if they need to pass them through
206          * 64-bits values if the kernel has been built in pure
207          * 32-bit. We need also to switch from KSEG0 to XKPHYS
208          * addresses now, so the code can now safely use __pa().
209          */
210         end = __pa(initrd_end);
211         initrd_end = (unsigned long)__va(end);
212         initrd_start = (unsigned long)__va(__pa(initrd_start));
213
214         ROOT_DEV = Root_RAM0;
215         return PFN_UP(end);
216 disable:
217         initrd_start = 0;
218         initrd_end = 0;
219         return 0;
220 }
221
222 static void __init finalize_initrd(void)
223 {
224         unsigned long size = initrd_end - initrd_start;
225
226         if (size == 0) {
227                 printk(KERN_INFO "Initrd not found or empty");
228                 goto disable;
229         }
230         if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
231                 printk(KERN_ERR "Initrd extends beyond end of memory");
232                 goto disable;
233         }
234
235         reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
236         initrd_below_start_ok = 1;
237
238         pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
239                 initrd_start, size);
240         return;
241 disable:
242         printk(KERN_CONT " - disabling initrd\n");
243         initrd_start = 0;
244         initrd_end = 0;
245 }
246
247 #else  /* !CONFIG_BLK_DEV_INITRD */
248
249 static unsigned long __init init_initrd(void)
250 {
251         return 0;
252 }
253
254 #define finalize_initrd()       do {} while (0)
255
256 #endif
257
258 /*
259  * Initialize the bootmem allocator. It also setup initrd related data
260  * if needed.
261  */
262 #ifdef CONFIG_SGI_IP27
263
264 static void __init bootmem_init(void)
265 {
266         init_initrd();
267         finalize_initrd();
268 }
269
270 #else  /* !CONFIG_SGI_IP27 */
271
272 static void __init bootmem_init(void)
273 {
274         unsigned long reserved_end;
275         unsigned long mapstart = ~0UL;
276         unsigned long bootmap_size;
277         int i;
278
279         /*
280          * Init any data related to initrd. It's a nop if INITRD is
281          * not selected. Once that done we can determine the low bound
282          * of usable memory.
283          */
284         reserved_end = max(init_initrd(),
285                            (unsigned long) PFN_UP(__pa_symbol(&_end)));
286
287         /*
288          * max_low_pfn is not a number of pages. The number of pages
289          * of the system is given by 'max_low_pfn - min_low_pfn'.
290          */
291         min_low_pfn = ~0UL;
292         max_low_pfn = 0;
293
294         /*
295          * Find the highest page frame number we have available.
296          */
297         for (i = 0; i < boot_mem_map.nr_map; i++) {
298                 unsigned long start, end;
299
300                 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
301                         continue;
302
303                 start = PFN_UP(boot_mem_map.map[i].addr);
304                 end = PFN_DOWN(boot_mem_map.map[i].addr
305                                 + boot_mem_map.map[i].size);
306
307                 if (end > max_low_pfn)
308                         max_low_pfn = end;
309                 if (start < min_low_pfn)
310                         min_low_pfn = start;
311                 if (end <= reserved_end)
312                         continue;
313                 if (start >= mapstart)
314                         continue;
315                 mapstart = max(reserved_end, start);
316         }
317
318         if (min_low_pfn >= max_low_pfn)
319                 panic("Incorrect memory mapping !!!");
320         if (min_low_pfn > ARCH_PFN_OFFSET) {
321                 pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
322                         (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
323                         min_low_pfn - ARCH_PFN_OFFSET);
324         } else if (min_low_pfn < ARCH_PFN_OFFSET) {
325                 pr_info("%lu free pages won't be used\n",
326                         ARCH_PFN_OFFSET - min_low_pfn);
327         }
328         min_low_pfn = ARCH_PFN_OFFSET;
329
330         /*
331          * Determine low and high memory ranges
332          */
333         max_pfn = max_low_pfn;
334         if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
335 #ifdef CONFIG_HIGHMEM
336                 highstart_pfn = PFN_DOWN(HIGHMEM_START);
337                 highend_pfn = max_low_pfn;
338 #endif
339                 max_low_pfn = PFN_DOWN(HIGHMEM_START);
340         }
341
342         /*
343          * Initialize the boot-time allocator with low memory only.
344          */
345         bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
346                                          min_low_pfn, max_low_pfn);
347
348
349         for (i = 0; i < boot_mem_map.nr_map; i++) {
350                 unsigned long start, end;
351
352                 start = PFN_UP(boot_mem_map.map[i].addr);
353                 end = PFN_DOWN(boot_mem_map.map[i].addr
354                                 + boot_mem_map.map[i].size);
355
356                 if (start <= min_low_pfn)
357                         start = min_low_pfn;
358                 if (start >= end)
359                         continue;
360
361 #ifndef CONFIG_HIGHMEM
362                 if (end > max_low_pfn)
363                         end = max_low_pfn;
364
365                 /*
366                  * ... finally, is the area going away?
367                  */
368                 if (end <= start)
369                         continue;
370 #endif
371
372                 memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
373         }
374
375         /*
376          * Register fully available low RAM pages with the bootmem allocator.
377          */
378         for (i = 0; i < boot_mem_map.nr_map; i++) {
379                 unsigned long start, end, size;
380
381                 start = PFN_UP(boot_mem_map.map[i].addr);
382                 end   = PFN_DOWN(boot_mem_map.map[i].addr
383                                     + boot_mem_map.map[i].size);
384
385                 /*
386                  * Reserve usable memory.
387                  */
388                 switch (boot_mem_map.map[i].type) {
389                 case BOOT_MEM_RAM:
390                         break;
391                 case BOOT_MEM_INIT_RAM:
392                         memory_present(0, start, end);
393                         continue;
394                 default:
395                         /* Not usable memory */
396                         continue;
397                 }
398
399                 /*
400                  * We are rounding up the start address of usable memory
401                  * and at the end of the usable range downwards.
402                  */
403                 if (start >= max_low_pfn)
404                         continue;
405                 if (start < reserved_end)
406                         start = reserved_end;
407                 if (end > max_low_pfn)
408                         end = max_low_pfn;
409
410                 /*
411                  * ... finally, is the area going away?
412                  */
413                 if (end <= start)
414                         continue;
415                 size = end - start;
416
417                 /* Register lowmem ranges */
418                 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
419                 memory_present(0, start, end);
420         }
421
422         /*
423          * Reserve the bootmap memory.
424          */
425         reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
426
427         /*
428          * Reserve initrd memory if needed.
429          */
430         finalize_initrd();
431 }
432
433 #endif  /* CONFIG_SGI_IP27 */
434
435 /*
436  * arch_mem_init - initialize memory management subsystem
437  *
438  *  o plat_mem_setup() detects the memory configuration and will record detected
439  *    memory areas using add_memory_region.
440  *
441  * At this stage the memory configuration of the system is known to the
442  * kernel but generic memory management system is still entirely uninitialized.
443  *
444  *  o bootmem_init()
445  *  o sparse_init()
446  *  o paging_init()
447  *
448  * At this stage the bootmem allocator is ready to use.
449  *
450  * NOTE: historically plat_mem_setup did the entire platform initialization.
451  *       This was rather impractical because it meant plat_mem_setup had to
452  * get away without any kind of memory allocator.  To keep old code from
453  * breaking plat_setup was just renamed to plat_setup and a second platform
454  * initialization hook for anything else was introduced.
455  */
456
457 static int usermem __initdata;
458
459 static int __init early_parse_mem(char *p)
460 {
461         unsigned long start, size;
462
463         /*
464          * If a user specifies memory size, we
465          * blow away any automatically generated
466          * size.
467          */
468         if (usermem == 0) {
469                 boot_mem_map.nr_map = 0;
470                 usermem = 1;
471         }
472         start = 0;
473         size = memparse(p, &p);
474         if (*p == '@')
475                 start = memparse(p + 1, &p);
476
477         add_memory_region(start, size, BOOT_MEM_RAM);
478         return 0;
479 }
480 early_param("mem", early_parse_mem);
481
482 static void __init arch_mem_init(char **cmdline_p)
483 {
484         phys_t init_mem, init_end, init_size;
485
486         extern void plat_mem_setup(void);
487
488         /* call board setup routine */
489         plat_mem_setup();
490
491         init_mem = PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT;
492         init_end = PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT;
493         init_size = init_end - init_mem;
494         if (init_size) {
495                 /* Make sure it is in the boot_mem_map */
496                 int i, found;
497                 found = 0;
498                 for (i = 0; i < boot_mem_map.nr_map; i++) {
499                         if (init_mem >= boot_mem_map.map[i].addr &&
500                             init_mem < (boot_mem_map.map[i].addr +
501                                         boot_mem_map.map[i].size)) {
502                                 found = 1;
503                                 break;
504                         }
505                 }
506                 if (!found)
507                         add_memory_region(init_mem, init_size,
508                                           BOOT_MEM_INIT_RAM);
509         }
510
511         pr_info("Determined physical RAM map:\n");
512         print_memory_map();
513
514 #ifdef CONFIG_CMDLINE_BOOL
515 #ifdef CONFIG_CMDLINE_OVERRIDE
516         strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
517 #else
518         if (builtin_cmdline[0]) {
519                 strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
520                 strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
521         }
522         strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
523 #endif
524 #else
525         strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
526 #endif
527         strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
528
529         *cmdline_p = command_line;
530
531         parse_early_param();
532
533         if (usermem) {
534                 pr_info("User-defined physical RAM map:\n");
535                 print_memory_map();
536         }
537
538         bootmem_init();
539         device_tree_init();
540         sparse_init();
541         plat_swiotlb_setup();
542         paging_init();
543 }
544
545 static void __init resource_init(void)
546 {
547         int i;
548
549         if (UNCAC_BASE != IO_BASE)
550                 return;
551
552         code_resource.start = __pa_symbol(&_text);
553         code_resource.end = __pa_symbol(&_etext) - 1;
554         data_resource.start = __pa_symbol(&_etext);
555         data_resource.end = __pa_symbol(&_edata) - 1;
556
557         /*
558          * Request address space for all standard RAM.
559          */
560         for (i = 0; i < boot_mem_map.nr_map; i++) {
561                 struct resource *res;
562                 unsigned long start, end;
563
564                 start = boot_mem_map.map[i].addr;
565                 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
566                 if (start >= HIGHMEM_START)
567                         continue;
568                 if (end >= HIGHMEM_START)
569                         end = HIGHMEM_START - 1;
570
571                 res = alloc_bootmem(sizeof(struct resource));
572                 switch (boot_mem_map.map[i].type) {
573                 case BOOT_MEM_RAM:
574                 case BOOT_MEM_INIT_RAM:
575                 case BOOT_MEM_ROM_DATA:
576                         res->name = "System RAM";
577                         break;
578                 case BOOT_MEM_RESERVED:
579                 default:
580                         res->name = "reserved";
581                 }
582
583                 res->start = start;
584                 res->end = end;
585
586                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
587                 request_resource(&iomem_resource, res);
588
589                 /*
590                  *  We don't know which RAM region contains kernel data,
591                  *  so we try it repeatedly and let the resource manager
592                  *  test it.
593                  */
594                 request_resource(res, &code_resource);
595                 request_resource(res, &data_resource);
596         }
597 }
598
599 void __init setup_arch(char **cmdline_p)
600 {
601         cpu_probe();
602         prom_init();
603
604 #ifdef CONFIG_EARLY_PRINTK
605         setup_early_printk();
606 #endif
607         cpu_report();
608         check_bugs_early();
609
610 #if defined(CONFIG_VT)
611 #if defined(CONFIG_VGA_CONSOLE)
612         conswitchp = &vga_con;
613 #elif defined(CONFIG_DUMMY_CONSOLE)
614         conswitchp = &dummy_con;
615 #endif
616 #endif
617
618         arch_mem_init(cmdline_p);
619
620         resource_init();
621         plat_smp_setup();
622
623         cpu_cache_init();
624 }
625
626 unsigned long kernelsp[NR_CPUS];
627 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
628
629 #ifdef CONFIG_DEBUG_FS
630 struct dentry *mips_debugfs_dir;
631 static int __init debugfs_mips(void)
632 {
633         struct dentry *d;
634
635         d = debugfs_create_dir("mips", NULL);
636         if (!d)
637                 return -ENOMEM;
638         mips_debugfs_dir = d;
639         return 0;
640 }
641 arch_initcall(debugfs_mips);
642 #endif