merge linus into release branch
[linux-drm-fsl-dcu.git] / arch / i386 / kernel / cpu / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver ($Revision: 1.3 $)
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *
8  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License as published by
12  *  the Free Software Foundation; either version 2 of the License, or (at
13  *  your option) any later version.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  *  You should have received a copy of the GNU General Public License along
21  *  with this program; if not, write to the Free Software Foundation, Inc.,
22  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26
27 #include <linux/config.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/cpufreq.h>
32 #include <linux/proc_fs.h>
33 #include <linux/seq_file.h>
34 #include <linux/compiler.h>
35 #include <linux/sched.h>        /* current */
36 #include <asm/io.h>
37 #include <asm/delay.h>
38 #include <asm/uaccess.h>
39
40 #include <linux/acpi.h>
41 #include <acpi/processor.h>
42
43 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, "acpi-cpufreq", msg)
44
45 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
46 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
47 MODULE_LICENSE("GPL");
48
49
50 struct cpufreq_acpi_io {
51         struct acpi_processor_performance       *acpi_data;
52         struct cpufreq_frequency_table          *freq_table;
53         unsigned int                            resume;
54 };
55
56 static struct cpufreq_acpi_io   *acpi_io_data[NR_CPUS];
57 static struct acpi_processor_performance        *acpi_perf_data[NR_CPUS];
58
59 static struct cpufreq_driver acpi_cpufreq_driver;
60
61 static unsigned int acpi_pstate_strict;
62
63 static int
64 acpi_processor_write_port(
65         u16     port,
66         u8      bit_width,
67         u32     value)
68 {
69         if (bit_width <= 8) {
70                 outb(value, port);
71         } else if (bit_width <= 16) {
72                 outw(value, port);
73         } else if (bit_width <= 32) {
74                 outl(value, port);
75         } else {
76                 return -ENODEV;
77         }
78         return 0;
79 }
80
81 static int
82 acpi_processor_read_port(
83         u16     port,
84         u8      bit_width,
85         u32     *ret)
86 {
87         *ret = 0;
88         if (bit_width <= 8) {
89                 *ret = inb(port);
90         } else if (bit_width <= 16) {
91                 *ret = inw(port);
92         } else if (bit_width <= 32) {
93                 *ret = inl(port);
94         } else {
95                 return -ENODEV;
96         }
97         return 0;
98 }
99
100 static int
101 acpi_processor_set_performance (
102         struct cpufreq_acpi_io  *data,
103         unsigned int            cpu,
104         int                     state)
105 {
106         u16                     port = 0;
107         u8                      bit_width = 0;
108         int                     i = 0;
109         int                     ret = 0;
110         u32                     value = 0;
111         int                     retval;
112         struct acpi_processor_performance       *perf;
113
114         dprintk("acpi_processor_set_performance\n");
115
116         retval = 0;
117         perf = data->acpi_data; 
118         if (state == perf->state) {
119                 if (unlikely(data->resume)) {
120                         dprintk("Called after resume, resetting to P%d\n", state);
121                         data->resume = 0;
122                 } else {
123                         dprintk("Already at target state (P%d)\n", state);
124                         return (retval);
125                 }
126         }
127
128         dprintk("Transitioning from P%d to P%d\n", perf->state, state);
129
130         /*
131          * First we write the target state's 'control' value to the
132          * control_register.
133          */
134
135         port = perf->control_register.address;
136         bit_width = perf->control_register.bit_width;
137         value = (u32) perf->states[state].control;
138
139         dprintk("Writing 0x%08x to port 0x%04x\n", value, port);
140
141         ret = acpi_processor_write_port(port, bit_width, value);
142         if (ret) {
143                 dprintk("Invalid port width 0x%04x\n", bit_width);
144                 return (ret);
145         }
146
147         /*
148          * Assume the write went through when acpi_pstate_strict is not used.
149          * As read status_register is an expensive operation and there 
150          * are no specific error cases where an IO port write will fail.
151          */
152         if (acpi_pstate_strict) {
153                 /* Then we read the 'status_register' and compare the value 
154                  * with the target state's 'status' to make sure the 
155                  * transition was successful.
156                  * Note that we'll poll for up to 1ms (100 cycles of 10us) 
157                  * before giving up.
158                  */
159
160                 port = perf->status_register.address;
161                 bit_width = perf->status_register.bit_width;
162
163                 dprintk("Looking for 0x%08x from port 0x%04x\n",
164                         (u32) perf->states[state].status, port);
165
166                 for (i = 0; i < 100; i++) {
167                         ret = acpi_processor_read_port(port, bit_width, &value);
168                         if (ret) {      
169                                 dprintk("Invalid port width 0x%04x\n", bit_width);
170                                 return (ret);
171                         }
172                         if (value == (u32) perf->states[state].status)
173                                 break;
174                         udelay(10);
175                 }
176         } else {
177                 i = 0;
178                 value = (u32) perf->states[state].status;
179         }
180
181         if (unlikely(value != (u32) perf->states[state].status)) {
182                 printk(KERN_WARNING "acpi-cpufreq: Transition failed\n");
183                 retval = -ENODEV;
184                 return (retval);
185         }
186
187         dprintk("Transition successful after %d microseconds\n", i * 10);
188
189         perf->state = state;
190         return (retval);
191 }
192
193
194 static int
195 acpi_cpufreq_target (
196         struct cpufreq_policy   *policy,
197         unsigned int target_freq,
198         unsigned int relation)
199 {
200         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
201         struct acpi_processor_performance *perf;
202         struct cpufreq_freqs freqs;
203         cpumask_t online_policy_cpus;
204         cpumask_t saved_mask;
205         cpumask_t set_mask;
206         cpumask_t covered_cpus;
207         unsigned int cur_state = 0;
208         unsigned int next_state = 0;
209         unsigned int result = 0;
210         unsigned int j;
211         unsigned int tmp;
212
213         dprintk("acpi_cpufreq_setpolicy\n");
214
215         result = cpufreq_frequency_table_target(policy,
216                         data->freq_table,
217                         target_freq,
218                         relation,
219                         &next_state);
220         if (unlikely(result))
221                 return (result);
222
223         perf = data->acpi_data;
224         cur_state = perf->state;
225         freqs.old = data->freq_table[cur_state].frequency;
226         freqs.new = data->freq_table[next_state].frequency;
227
228 #ifdef CONFIG_HOTPLUG_CPU
229         /* cpufreq holds the hotplug lock, so we are safe from here on */
230         cpus_and(online_policy_cpus, cpu_online_map, policy->cpus);
231 #else
232         online_policy_cpus = policy->cpus;
233 #endif
234
235         for_each_cpu_mask(j, online_policy_cpus) {
236                 freqs.cpu = j;
237                 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
238         }
239
240         /*
241          * We need to call driver->target() on all or any CPU in
242          * policy->cpus, depending on policy->shared_type.
243          */
244         saved_mask = current->cpus_allowed;
245         cpus_clear(covered_cpus);
246         for_each_cpu_mask(j, online_policy_cpus) {
247                 /*
248                  * Support for SMP systems.
249                  * Make sure we are running on CPU that wants to change freq
250                  */
251                 cpus_clear(set_mask);
252                 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
253                         cpus_or(set_mask, set_mask, online_policy_cpus);
254                 else
255                         cpu_set(j, set_mask);
256
257                 set_cpus_allowed(current, set_mask);
258                 if (unlikely(!cpu_isset(smp_processor_id(), set_mask))) {
259                         dprintk("couldn't limit to CPUs in this domain\n");
260                         result = -EAGAIN;
261                         break;
262                 }
263
264                 result = acpi_processor_set_performance (data, j, next_state);
265                 if (result) {
266                         result = -EAGAIN;
267                         break;
268                 }
269
270                 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY)
271                         break;
272  
273                 cpu_set(j, covered_cpus);
274         }
275
276         for_each_cpu_mask(j, online_policy_cpus) {
277                 freqs.cpu = j;
278                 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
279         }
280
281         if (unlikely(result)) {
282                 /*
283                  * We have failed halfway through the frequency change.
284                  * We have sent callbacks to online_policy_cpus and
285                  * acpi_processor_set_performance() has been called on 
286                  * coverd_cpus. Best effort undo..
287                  */
288
289                 if (!cpus_empty(covered_cpus)) {
290                         for_each_cpu_mask(j, covered_cpus) {
291                                 policy->cpu = j;
292                                 acpi_processor_set_performance (data, 
293                                                 j, 
294                                                 cur_state);
295                         }
296                 }
297
298                 tmp = freqs.new;
299                 freqs.new = freqs.old;
300                 freqs.old = tmp;
301                 for_each_cpu_mask(j, online_policy_cpus) {
302                         freqs.cpu = j;
303                         cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
304                         cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
305                 }
306         }
307
308         set_cpus_allowed(current, saved_mask);
309         return (result);
310 }
311
312
313 static int
314 acpi_cpufreq_verify (
315         struct cpufreq_policy   *policy)
316 {
317         unsigned int result = 0;
318         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
319
320         dprintk("acpi_cpufreq_verify\n");
321
322         result = cpufreq_frequency_table_verify(policy, 
323                         data->freq_table);
324
325         return (result);
326 }
327
328
329 static unsigned long
330 acpi_cpufreq_guess_freq (
331         struct cpufreq_acpi_io  *data,
332         unsigned int            cpu)
333 {
334         struct acpi_processor_performance       *perf = data->acpi_data;
335
336         if (cpu_khz) {
337                 /* search the closest match to cpu_khz */
338                 unsigned int i;
339                 unsigned long freq;
340                 unsigned long freqn = perf->states[0].core_frequency * 1000;
341
342                 for (i = 0; i < (perf->state_count - 1); i++) {
343                         freq = freqn;
344                         freqn = perf->states[i+1].core_frequency * 1000;
345                         if ((2 * cpu_khz) > (freqn + freq)) {
346                                 perf->state = i;
347                                 return (freq);
348                         }
349                 }
350                 perf->state = perf->state_count - 1;
351                 return (freqn);
352         } else {
353                 /* assume CPU is at P0... */
354                 perf->state = 0;
355                 return perf->states[0].core_frequency * 1000;
356         }
357 }
358
359
360 /*
361  * acpi_cpufreq_early_init - initialize ACPI P-States library
362  *
363  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
364  * in order to determine correct frequency and voltage pairings. We can
365  * do _PDC and _PSD and find out the processor dependency for the
366  * actual init that will happen later...
367  */
368 static int acpi_cpufreq_early_init_acpi(void)
369 {
370         struct acpi_processor_performance       *data;
371         unsigned int                            i, j;
372
373         dprintk("acpi_cpufreq_early_init\n");
374
375         for_each_cpu(i) {
376                 data = kzalloc(sizeof(struct acpi_processor_performance), 
377                         GFP_KERNEL);
378                 if (!data) {
379                         for_each_cpu(j) {
380                                 kfree(acpi_perf_data[j]);
381                                 acpi_perf_data[j] = NULL;
382                         }
383                         return (-ENOMEM);
384                 }
385                 acpi_perf_data[i] = data;
386         }
387
388         /* Do initialization in ACPI core */
389         acpi_processor_preregister_performance(acpi_perf_data);
390         return 0;
391 }
392
393 static int
394 acpi_cpufreq_cpu_init (
395         struct cpufreq_policy   *policy)
396 {
397         unsigned int            i;
398         unsigned int            cpu = policy->cpu;
399         struct cpufreq_acpi_io  *data;
400         unsigned int            result = 0;
401         struct cpuinfo_x86 *c = &cpu_data[policy->cpu];
402         struct acpi_processor_performance       *perf;
403
404         dprintk("acpi_cpufreq_cpu_init\n");
405
406         if (!acpi_perf_data[cpu])
407                 return (-ENODEV);
408
409         data = kzalloc(sizeof(struct cpufreq_acpi_io), GFP_KERNEL);
410         if (!data)
411                 return (-ENOMEM);
412
413         data->acpi_data = acpi_perf_data[cpu];
414         acpi_io_data[cpu] = data;
415
416         result = acpi_processor_register_performance(data->acpi_data, cpu);
417
418         if (result)
419                 goto err_free;
420
421         perf = data->acpi_data;
422         policy->cpus = perf->shared_cpu_map;
423         policy->shared_type = perf->shared_type;
424
425         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC)) {
426                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
427         }
428
429         /* capability check */
430         if (perf->state_count <= 1) {
431                 dprintk("No P-States\n");
432                 result = -ENODEV;
433                 goto err_unreg;
434         }
435
436         if ((perf->control_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO) ||
437             (perf->status_register.space_id != ACPI_ADR_SPACE_SYSTEM_IO)) {
438                 dprintk("Unsupported address space [%d, %d]\n",
439                         (u32) (perf->control_register.space_id),
440                         (u32) (perf->status_register.space_id));
441                 result = -ENODEV;
442                 goto err_unreg;
443         }
444
445         /* alloc freq_table */
446         data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) * (perf->state_count + 1), GFP_KERNEL);
447         if (!data->freq_table) {
448                 result = -ENOMEM;
449                 goto err_unreg;
450         }
451
452         /* detect transition latency */
453         policy->cpuinfo.transition_latency = 0;
454         for (i=0; i<perf->state_count; i++) {
455                 if ((perf->states[i].transition_latency * 1000) > policy->cpuinfo.transition_latency)
456                         policy->cpuinfo.transition_latency = perf->states[i].transition_latency * 1000;
457         }
458         policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
459
460         /* The current speed is unknown and not detectable by ACPI...  */
461         policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
462
463         /* table init */
464         for (i=0; i<=perf->state_count; i++)
465         {
466                 data->freq_table[i].index = i;
467                 if (i<perf->state_count)
468                         data->freq_table[i].frequency = perf->states[i].core_frequency * 1000;
469                 else
470                         data->freq_table[i].frequency = CPUFREQ_TABLE_END;
471         }
472
473         result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
474         if (result) {
475                 goto err_freqfree;
476         }
477
478         /* notify BIOS that we exist */
479         acpi_processor_notify_smm(THIS_MODULE);
480
481         printk(KERN_INFO "acpi-cpufreq: CPU%u - ACPI performance management activated.\n",
482                cpu);
483         for (i = 0; i < perf->state_count; i++)
484                 dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
485                         (i == perf->state?'*':' '), i,
486                         (u32) perf->states[i].core_frequency,
487                         (u32) perf->states[i].power,
488                         (u32) perf->states[i].transition_latency);
489
490         cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
491         
492         /*
493          * the first call to ->target() should result in us actually
494          * writing something to the appropriate registers.
495          */
496         data->resume = 1;
497         
498         return (result);
499
500  err_freqfree:
501         kfree(data->freq_table);
502  err_unreg:
503         acpi_processor_unregister_performance(perf, cpu);
504  err_free:
505         kfree(data);
506         acpi_io_data[cpu] = NULL;
507
508         return (result);
509 }
510
511
512 static int
513 acpi_cpufreq_cpu_exit (
514         struct cpufreq_policy   *policy)
515 {
516         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
517
518
519         dprintk("acpi_cpufreq_cpu_exit\n");
520
521         if (data) {
522                 cpufreq_frequency_table_put_attr(policy->cpu);
523                 acpi_io_data[policy->cpu] = NULL;
524                 acpi_processor_unregister_performance(data->acpi_data, policy->cpu);
525                 kfree(data);
526         }
527
528         return (0);
529 }
530
531 static int
532 acpi_cpufreq_resume (
533         struct cpufreq_policy   *policy)
534 {
535         struct cpufreq_acpi_io *data = acpi_io_data[policy->cpu];
536
537
538         dprintk("acpi_cpufreq_resume\n");
539
540         data->resume = 1;
541
542         return (0);
543 }
544
545
546 static struct freq_attr* acpi_cpufreq_attr[] = {
547         &cpufreq_freq_attr_scaling_available_freqs,
548         NULL,
549 };
550
551 static struct cpufreq_driver acpi_cpufreq_driver = {
552         .verify         = acpi_cpufreq_verify,
553         .target         = acpi_cpufreq_target,
554         .init           = acpi_cpufreq_cpu_init,
555         .exit           = acpi_cpufreq_cpu_exit,
556         .resume         = acpi_cpufreq_resume,
557         .name           = "acpi-cpufreq",
558         .owner          = THIS_MODULE,
559         .attr           = acpi_cpufreq_attr,
560 };
561
562
563 static int __init
564 acpi_cpufreq_init (void)
565 {
566         int                     result = 0;
567
568         dprintk("acpi_cpufreq_init\n");
569
570         result = acpi_cpufreq_early_init_acpi();
571
572         if (!result)
573                 result = cpufreq_register_driver(&acpi_cpufreq_driver);
574         
575         return (result);
576 }
577
578
579 static void __exit
580 acpi_cpufreq_exit (void)
581 {
582         unsigned int    i;
583         dprintk("acpi_cpufreq_exit\n");
584
585         cpufreq_unregister_driver(&acpi_cpufreq_driver);
586
587         for_each_cpu(i) {
588                 kfree(acpi_perf_data[i]);
589                 acpi_perf_data[i] = NULL;
590         }
591         return;
592 }
593
594 module_param(acpi_pstate_strict, uint, 0644);
595 MODULE_PARM_DESC(acpi_pstate_strict, "value 0 or non-zero. non-zero -> strict ACPI checks are performed during frequency changes.");
596
597 late_initcall(acpi_cpufreq_init);
598 module_exit(acpi_cpufreq_exit);
599
600 MODULE_ALIAS("acpi");