bf60x: Add double fault, hardware error and NMI SEC handler
[linux-drm-fsl-dcu.git] / arch / blackfin / mach-common / ints-priority.c
1 /*
2  * Set up the interrupt priorities
3  *
4  * Copyright  2004-2009 Analog Devices Inc.
5  *                 2003 Bas Vermeulen <bas@buyways.nl>
6  *                 2002 Arcturus Networks Inc. MaTed <mated@sympatico.ca>
7  *            2000-2001 Lineo, Inc. D. Jefff Dionne <jeff@lineo.ca>
8  *                 1999 D. Jeff Dionne <jeff@uclinux.org>
9  *                 1996 Roman Zippel
10  *
11  * Licensed under the GPL-2
12  */
13
14 #include <linux/module.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/seq_file.h>
17 #include <linux/irq.h>
18 #include <linux/sched.h>
19 #include <linux/syscore_ops.h>
20 #include <asm/delay.h>
21 #ifdef CONFIG_IPIPE
22 #include <linux/ipipe.h>
23 #endif
24 #include <asm/traps.h>
25 #include <asm/blackfin.h>
26 #include <asm/gpio.h>
27 #include <asm/irq_handler.h>
28 #include <asm/dpmc.h>
29 #include <asm/traps.h>
30
31 #ifndef SEC_GCTL
32 # define SIC_SYSIRQ(irq)        (irq - (IRQ_CORETMR + 1))
33 #else
34 # define SIC_SYSIRQ(irq)        ((irq) - IVG15)
35 #endif
36
37 /*
38  * NOTES:
39  * - we have separated the physical Hardware interrupt from the
40  * levels that the LINUX kernel sees (see the description in irq.h)
41  * -
42  */
43
44 #ifndef CONFIG_SMP
45 /* Initialize this to an actual value to force it into the .data
46  * section so that we know it is properly initialized at entry into
47  * the kernel but before bss is initialized to zero (which is where
48  * it would live otherwise).  The 0x1f magic represents the IRQs we
49  * cannot actually mask out in hardware.
50  */
51 unsigned long bfin_irq_flags = 0x1f;
52 EXPORT_SYMBOL(bfin_irq_flags);
53 #endif
54
55 #ifdef CONFIG_PM
56 unsigned long bfin_sic_iwr[3];  /* Up to 3 SIC_IWRx registers */
57 unsigned vr_wakeup;
58 #endif
59
60 #ifndef SEC_GCTL
61 static struct ivgx {
62         /* irq number for request_irq, available in mach-bf5xx/irq.h */
63         unsigned int irqno;
64         /* corresponding bit in the SIC_ISR register */
65         unsigned int isrflag;
66 } ivg_table[NR_PERI_INTS];
67
68 static struct ivg_slice {
69         /* position of first irq in ivg_table for given ivg */
70         struct ivgx *ifirst;
71         struct ivgx *istop;
72 } ivg7_13[IVG13 - IVG7 + 1];
73
74
75 /*
76  * Search SIC_IAR and fill tables with the irqvalues
77  * and their positions in the SIC_ISR register.
78  */
79 static void __init search_IAR(void)
80 {
81         unsigned ivg, irq_pos = 0;
82         for (ivg = 0; ivg <= IVG13 - IVG7; ivg++) {
83                 int irqN;
84
85                 ivg7_13[ivg].istop = ivg7_13[ivg].ifirst = &ivg_table[irq_pos];
86
87                 for (irqN = 0; irqN < NR_PERI_INTS; irqN += 4) {
88                         int irqn;
89                         u32 iar =
90                                 bfin_read32((unsigned long *)SIC_IAR0 +
91 #if defined(CONFIG_BF51x) || defined(CONFIG_BF52x) || \
92         defined(CONFIG_BF538) || defined(CONFIG_BF539)
93                                 ((irqN % 32) >> 3) + ((irqN / 32) * ((SIC_IAR4 - SIC_IAR0) / 4))
94 #else
95                                 (irqN >> 3)
96 #endif
97                                 );
98                         for (irqn = irqN; irqn < irqN + 4; ++irqn) {
99                                 int iar_shift = (irqn & 7) * 4;
100                                 if (ivg == (0xf & (iar >> iar_shift))) {
101                                         ivg_table[irq_pos].irqno = IVG7 + irqn;
102                                         ivg_table[irq_pos].isrflag = 1 << (irqn % 32);
103                                         ivg7_13[ivg].istop++;
104                                         irq_pos++;
105                                 }
106                         }
107                 }
108         }
109 }
110 #endif
111
112 /*
113  * This is for core internal IRQs
114  */
115 void bfin_ack_noop(struct irq_data *d)
116 {
117         /* Dummy function.  */
118 }
119
120 static void bfin_core_mask_irq(struct irq_data *d)
121 {
122         bfin_irq_flags &= ~(1 << d->irq);
123         if (!hard_irqs_disabled())
124                 hard_local_irq_enable();
125 }
126
127 static void bfin_core_unmask_irq(struct irq_data *d)
128 {
129         bfin_irq_flags |= 1 << d->irq;
130         /*
131          * If interrupts are enabled, IMASK must contain the same value
132          * as bfin_irq_flags.  Make sure that invariant holds.  If interrupts
133          * are currently disabled we need not do anything; one of the
134          * callers will take care of setting IMASK to the proper value
135          * when reenabling interrupts.
136          * local_irq_enable just does "STI bfin_irq_flags", so it's exactly
137          * what we need.
138          */
139         if (!hard_irqs_disabled())
140                 hard_local_irq_enable();
141         return;
142 }
143
144 void bfin_internal_mask_irq(unsigned int irq)
145 {
146         unsigned long flags = hard_local_irq_save();
147 #ifndef SEC_GCTL
148 #ifdef SIC_IMASK0
149         unsigned mask_bank = SIC_SYSIRQ(irq) / 32;
150         unsigned mask_bit = SIC_SYSIRQ(irq) % 32;
151         bfin_write_SIC_IMASK(mask_bank, bfin_read_SIC_IMASK(mask_bank) &
152                         ~(1 << mask_bit));
153 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
154         bfin_write_SICB_IMASK(mask_bank, bfin_read_SICB_IMASK(mask_bank) &
155                         ~(1 << mask_bit));
156 # endif
157 #else
158         bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() &
159                         ~(1 << SIC_SYSIRQ(irq)));
160 #endif /* end of SIC_IMASK0 */
161 #endif
162         hard_local_irq_restore(flags);
163 }
164
165 static void bfin_internal_mask_irq_chip(struct irq_data *d)
166 {
167         bfin_internal_mask_irq(d->irq);
168 }
169
170 #ifdef CONFIG_SMP
171 void bfin_internal_unmask_irq_affinity(unsigned int irq,
172                 const struct cpumask *affinity)
173 #else
174 void bfin_internal_unmask_irq(unsigned int irq)
175 #endif
176 {
177         unsigned long flags = hard_local_irq_save();
178
179 #ifndef SEC_GCTL
180 #ifdef SIC_IMASK0
181         unsigned mask_bank = SIC_SYSIRQ(irq) / 32;
182         unsigned mask_bit = SIC_SYSIRQ(irq) % 32;
183 # ifdef CONFIG_SMP
184         if (cpumask_test_cpu(0, affinity))
185 # endif
186                 bfin_write_SIC_IMASK(mask_bank,
187                                 bfin_read_SIC_IMASK(mask_bank) |
188                                 (1 << mask_bit));
189 # ifdef CONFIG_SMP
190         if (cpumask_test_cpu(1, affinity))
191                 bfin_write_SICB_IMASK(mask_bank,
192                                 bfin_read_SICB_IMASK(mask_bank) |
193                                 (1 << mask_bit));
194 # endif
195 #else
196         bfin_write_SIC_IMASK(bfin_read_SIC_IMASK() |
197                         (1 << SIC_SYSIRQ(irq)));
198 #endif
199 #endif
200         hard_local_irq_restore(flags);
201 }
202
203 #ifdef SEC_GCTL
204 static void bfin_sec_preflow_handler(struct irq_data *d)
205 {
206         unsigned long flags = hard_local_irq_save();
207         unsigned int sid = SIC_SYSIRQ(d->irq);
208
209         bfin_write_SEC_SCI(0, SEC_CSID, sid);
210
211         hard_local_irq_restore(flags);
212 }
213
214 static void bfin_sec_mask_ack_irq(struct irq_data *d)
215 {
216         unsigned long flags = hard_local_irq_save();
217         unsigned int sid = SIC_SYSIRQ(d->irq);
218
219         bfin_write_SEC_SCI(0, SEC_CSID, sid);
220
221         hard_local_irq_restore(flags);
222 }
223
224 static void bfin_sec_unmask_irq(struct irq_data *d)
225 {
226         unsigned long flags = hard_local_irq_save();
227         unsigned int sid = SIC_SYSIRQ(d->irq);
228
229         bfin_write32(SEC_END, sid);
230
231         hard_local_irq_restore(flags);
232 }
233
234 static void bfin_sec_enable_ssi(unsigned int sid)
235 {
236         unsigned long flags = hard_local_irq_save();
237         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
238
239         reg_sctl |= SEC_SCTL_SRC_EN;
240         bfin_write_SEC_SCTL(sid, reg_sctl);
241
242         hard_local_irq_restore(flags);
243 }
244
245 static void bfin_sec_disable_ssi(unsigned int sid)
246 {
247         unsigned long flags = hard_local_irq_save();
248         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
249
250         reg_sctl &= ((uint32_t)~SEC_SCTL_SRC_EN);
251         bfin_write_SEC_SCTL(sid, reg_sctl);
252
253         hard_local_irq_restore(flags);
254 }
255
256 static void bfin_sec_set_ssi_coreid(unsigned int sid, unsigned int coreid)
257 {
258         unsigned long flags = hard_local_irq_save();
259         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
260
261         reg_sctl &= ((uint32_t)~SEC_SCTL_CTG);
262         bfin_write_SEC_SCTL(sid, reg_sctl | ((coreid << 20) & SEC_SCTL_CTG));
263
264         hard_local_irq_restore(flags);
265 }
266
267 static void bfin_sec_enable_sci(unsigned int sid)
268 {
269         unsigned long flags = hard_local_irq_save();
270         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
271
272         if (sid == SIC_SYSIRQ(IRQ_WATCH0))
273                 reg_sctl |= SEC_SCTL_FAULT_EN;
274         else
275                 reg_sctl |= SEC_SCTL_INT_EN;
276         bfin_write_SEC_SCTL(sid, reg_sctl);
277
278         hard_local_irq_restore(flags);
279 }
280
281 static void bfin_sec_disable_sci(unsigned int sid)
282 {
283         unsigned long flags = hard_local_irq_save();
284         uint32_t reg_sctl = bfin_read_SEC_SCTL(sid);
285
286         reg_sctl &= ((uint32_t)~SEC_SCTL_INT_EN);
287         bfin_write_SEC_SCTL(sid, reg_sctl);
288
289         hard_local_irq_restore(flags);
290 }
291
292 static void bfin_sec_enable(struct irq_data *d)
293 {
294         unsigned long flags = hard_local_irq_save();
295         unsigned int sid = SIC_SYSIRQ(d->irq);
296
297         bfin_sec_enable_sci(sid);
298         bfin_sec_enable_ssi(sid);
299
300         hard_local_irq_restore(flags);
301 }
302
303 static void bfin_sec_disable(struct irq_data *d)
304 {
305         unsigned long flags = hard_local_irq_save();
306         unsigned int sid = SIC_SYSIRQ(d->irq);
307
308         bfin_sec_disable_sci(sid);
309         bfin_sec_disable_ssi(sid);
310
311         hard_local_irq_restore(flags);
312 }
313
314 static void bfin_sec_set_priority(unsigned int sec_int_levels, u8 *sec_int_priority)
315 {
316         unsigned long flags = hard_local_irq_save();
317         uint32_t reg_sctl;
318         int i;
319
320         bfin_write_SEC_SCI(0, SEC_CPLVL, sec_int_levels);
321
322         for (i = 0; i < SYS_IRQS - BFIN_IRQ(0); i++) {
323                 reg_sctl = bfin_read_SEC_SCTL(i) & ~SEC_SCTL_PRIO;
324                 reg_sctl |= sec_int_priority[i] << SEC_SCTL_PRIO_OFFSET;
325                 bfin_write_SEC_SCTL(i, reg_sctl);
326         }
327
328         hard_local_irq_restore(flags);
329 }
330
331 static void bfin_sec_raise_irq(unsigned int sid)
332 {
333         unsigned long flags = hard_local_irq_save();
334
335         bfin_write32(SEC_RAISE, sid);
336
337         hard_local_irq_restore(flags);
338 }
339
340 static void init_software_driven_irq(void)
341 {
342         bfin_sec_set_ssi_coreid(34, 0);
343         bfin_sec_set_ssi_coreid(35, 1);
344         bfin_sec_set_ssi_coreid(36, 0);
345         bfin_sec_set_ssi_coreid(37, 1);
346 }
347
348 void bfin_sec_resume(void)
349 {
350         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
351         udelay(100);
352         bfin_write_SEC_GCTL(SEC_GCTL_EN);
353         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
354 }
355
356 void handle_sec_sfi_fault(uint32_t gstat)
357 {
358
359 }
360
361 void handle_sec_sci_fault(uint32_t gstat)
362 {
363         uint32_t core_id;
364         uint32_t cstat;
365
366         core_id = gstat & SEC_GSTAT_SCI;
367         cstat = bfin_read_SEC_SCI(core_id, SEC_CSTAT);
368         if (cstat & SEC_CSTAT_ERR) {
369                 switch (cstat & SEC_CSTAT_ERRC) {
370                 case SEC_CSTAT_ACKERR:
371                         printk(KERN_DEBUG "sec ack err\n");
372                         break;
373                 default:
374                         printk(KERN_DEBUG "sec sci unknow err\n");
375                 }
376         }
377
378 }
379
380 void handle_sec_ssi_fault(uint32_t gstat)
381 {
382         uint32_t sid;
383         uint32_t sstat;
384
385         sid = gstat & SEC_GSTAT_SID;
386         sstat = bfin_read_SEC_SSTAT(sid);
387
388 }
389
390 void handle_sec_fault(unsigned int irq, struct irq_desc *desc)
391 {
392         uint32_t sec_gstat;
393
394         raw_spin_lock(&desc->lock);
395
396         sec_gstat = bfin_read32(SEC_GSTAT);
397         if (sec_gstat & SEC_GSTAT_ERR) {
398
399                 switch (sec_gstat & SEC_GSTAT_ERRC) {
400                 case 0:
401                         handle_sec_sfi_fault(sec_gstat);
402                         break;
403                 case SEC_GSTAT_SCIERR:
404                         handle_sec_sci_fault(sec_gstat);
405                         break;
406                 case SEC_GSTAT_SSIERR:
407                         handle_sec_ssi_fault(sec_gstat);
408                         break;
409                 }
410
411
412         }
413
414         raw_spin_unlock(&desc->lock);
415 }
416
417 void handle_core_fault(unsigned int irq, struct irq_desc *desc)
418 {
419         struct pt_regs *fp = get_irq_regs();
420
421         raw_spin_lock(&desc->lock);
422
423         switch (irq) {
424         case IRQ_C0_DBL_FAULT:
425                 double_fault_c(fp);
426                 break;
427         case IRQ_C0_HW_ERR:
428                 dump_bfin_process(fp);
429                 dump_bfin_mem(fp);
430                 show_regs(fp);
431                 printk(KERN_NOTICE "Kernel Stack\n");
432                 show_stack(current, NULL);
433                 print_modules();
434                 panic("Kernel core hardware error");
435                 break;
436         case IRQ_C0_NMI_L1_PARITY_ERR:
437                 panic("NMI %d occurs unexpectedly");
438                 break;
439         default:
440                 panic("Core 1 fault %d occurs unexpectedly");
441         }
442
443         raw_spin_unlock(&desc->lock);
444 }
445 #endif
446
447 #ifdef CONFIG_SMP
448 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
449 {
450         bfin_internal_unmask_irq_affinity(d->irq, d->affinity);
451 }
452
453 static int bfin_internal_set_affinity(struct irq_data *d,
454                                       const struct cpumask *mask, bool force)
455 {
456         bfin_internal_mask_irq(d->irq);
457         bfin_internal_unmask_irq_affinity(d->irq, mask);
458
459         return 0;
460 }
461 #else
462 static void bfin_internal_unmask_irq_chip(struct irq_data *d)
463 {
464         bfin_internal_unmask_irq(d->irq);
465 }
466 #endif
467
468 #if defined(CONFIG_PM) && !defined(SEC_GCTL)
469 int bfin_internal_set_wake(unsigned int irq, unsigned int state)
470 {
471         u32 bank, bit, wakeup = 0;
472         unsigned long flags;
473         bank = SIC_SYSIRQ(irq) / 32;
474         bit = SIC_SYSIRQ(irq) % 32;
475
476         switch (irq) {
477 #ifdef IRQ_RTC
478         case IRQ_RTC:
479         wakeup |= WAKE;
480         break;
481 #endif
482 #ifdef IRQ_CAN0_RX
483         case IRQ_CAN0_RX:
484         wakeup |= CANWE;
485         break;
486 #endif
487 #ifdef IRQ_CAN1_RX
488         case IRQ_CAN1_RX:
489         wakeup |= CANWE;
490         break;
491 #endif
492 #ifdef IRQ_USB_INT0
493         case IRQ_USB_INT0:
494         wakeup |= USBWE;
495         break;
496 #endif
497 #ifdef CONFIG_BF54x
498         case IRQ_CNT:
499         wakeup |= ROTWE;
500         break;
501 #endif
502         default:
503         break;
504         }
505
506         flags = hard_local_irq_save();
507
508         if (state) {
509                 bfin_sic_iwr[bank] |= (1 << bit);
510                 vr_wakeup  |= wakeup;
511
512         } else {
513                 bfin_sic_iwr[bank] &= ~(1 << bit);
514                 vr_wakeup  &= ~wakeup;
515         }
516
517         hard_local_irq_restore(flags);
518
519         return 0;
520 }
521
522 static int bfin_internal_set_wake_chip(struct irq_data *d, unsigned int state)
523 {
524         return bfin_internal_set_wake(d->irq, state);
525 }
526 #else
527 inline int bfin_internal_set_wake(unsigned int irq, unsigned int state)
528 {
529         return 0;
530 }
531 # define bfin_internal_set_wake_chip NULL
532 #endif
533
534 static struct irq_chip bfin_core_irqchip = {
535         .name = "CORE",
536         .irq_mask = bfin_core_mask_irq,
537         .irq_unmask = bfin_core_unmask_irq,
538 };
539
540 static struct irq_chip bfin_internal_irqchip = {
541         .name = "INTN",
542         .irq_mask = bfin_internal_mask_irq_chip,
543         .irq_unmask = bfin_internal_unmask_irq_chip,
544         .irq_disable = bfin_internal_mask_irq_chip,
545         .irq_enable = bfin_internal_unmask_irq_chip,
546 #ifdef CONFIG_SMP
547         .irq_set_affinity = bfin_internal_set_affinity,
548 #endif
549         .irq_set_wake = bfin_internal_set_wake_chip,
550 };
551
552 #ifdef SEC_GCTL
553 static struct irq_chip bfin_sec_irqchip = {
554         .name = "SEC",
555         .irq_mask_ack = bfin_sec_mask_ack_irq,
556         .irq_mask = bfin_sec_mask_ack_irq,
557         .irq_unmask = bfin_sec_unmask_irq,
558         .irq_eoi = bfin_sec_unmask_irq,
559         .irq_disable = bfin_sec_disable,
560         .irq_enable = bfin_sec_enable,
561 };
562 #endif
563
564 void bfin_handle_irq(unsigned irq)
565 {
566 #ifdef CONFIG_IPIPE
567         struct pt_regs regs;    /* Contents not used. */
568         ipipe_trace_irq_entry(irq);
569         __ipipe_handle_irq(irq, &regs);
570         ipipe_trace_irq_exit(irq);
571 #else /* !CONFIG_IPIPE */
572         generic_handle_irq(irq);
573 #endif  /* !CONFIG_IPIPE */
574 }
575
576 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
577 static int mac_stat_int_mask;
578
579 static void bfin_mac_status_ack_irq(unsigned int irq)
580 {
581         switch (irq) {
582         case IRQ_MAC_MMCINT:
583                 bfin_write_EMAC_MMC_TIRQS(
584                         bfin_read_EMAC_MMC_TIRQE() &
585                         bfin_read_EMAC_MMC_TIRQS());
586                 bfin_write_EMAC_MMC_RIRQS(
587                         bfin_read_EMAC_MMC_RIRQE() &
588                         bfin_read_EMAC_MMC_RIRQS());
589                 break;
590         case IRQ_MAC_RXFSINT:
591                 bfin_write_EMAC_RX_STKY(
592                         bfin_read_EMAC_RX_IRQE() &
593                         bfin_read_EMAC_RX_STKY());
594                 break;
595         case IRQ_MAC_TXFSINT:
596                 bfin_write_EMAC_TX_STKY(
597                         bfin_read_EMAC_TX_IRQE() &
598                         bfin_read_EMAC_TX_STKY());
599                 break;
600         case IRQ_MAC_WAKEDET:
601                  bfin_write_EMAC_WKUP_CTL(
602                         bfin_read_EMAC_WKUP_CTL() | MPKS | RWKS);
603                 break;
604         default:
605                 /* These bits are W1C */
606                 bfin_write_EMAC_SYSTAT(1L << (irq - IRQ_MAC_PHYINT));
607                 break;
608         }
609 }
610
611 static void bfin_mac_status_mask_irq(struct irq_data *d)
612 {
613         unsigned int irq = d->irq;
614
615         mac_stat_int_mask &= ~(1L << (irq - IRQ_MAC_PHYINT));
616 #ifdef BF537_FAMILY
617         switch (irq) {
618         case IRQ_MAC_PHYINT:
619                 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() & ~PHYIE);
620                 break;
621         default:
622                 break;
623         }
624 #else
625         if (!mac_stat_int_mask)
626                 bfin_internal_mask_irq(IRQ_MAC_ERROR);
627 #endif
628         bfin_mac_status_ack_irq(irq);
629 }
630
631 static void bfin_mac_status_unmask_irq(struct irq_data *d)
632 {
633         unsigned int irq = d->irq;
634
635 #ifdef BF537_FAMILY
636         switch (irq) {
637         case IRQ_MAC_PHYINT:
638                 bfin_write_EMAC_SYSCTL(bfin_read_EMAC_SYSCTL() | PHYIE);
639                 break;
640         default:
641                 break;
642         }
643 #else
644         if (!mac_stat_int_mask)
645                 bfin_internal_unmask_irq(IRQ_MAC_ERROR);
646 #endif
647         mac_stat_int_mask |= 1L << (irq - IRQ_MAC_PHYINT);
648 }
649
650 #ifdef CONFIG_PM
651 int bfin_mac_status_set_wake(struct irq_data *d, unsigned int state)
652 {
653 #ifdef BF537_FAMILY
654         return bfin_internal_set_wake(IRQ_GENERIC_ERROR, state);
655 #else
656         return bfin_internal_set_wake(IRQ_MAC_ERROR, state);
657 #endif
658 }
659 #else
660 # define bfin_mac_status_set_wake NULL
661 #endif
662
663 static struct irq_chip bfin_mac_status_irqchip = {
664         .name = "MACST",
665         .irq_mask = bfin_mac_status_mask_irq,
666         .irq_unmask = bfin_mac_status_unmask_irq,
667         .irq_set_wake = bfin_mac_status_set_wake,
668 };
669
670 void bfin_demux_mac_status_irq(unsigned int int_err_irq,
671                                struct irq_desc *inta_desc)
672 {
673         int i, irq = 0;
674         u32 status = bfin_read_EMAC_SYSTAT();
675
676         for (i = 0; i <= (IRQ_MAC_STMDONE - IRQ_MAC_PHYINT); i++)
677                 if (status & (1L << i)) {
678                         irq = IRQ_MAC_PHYINT + i;
679                         break;
680                 }
681
682         if (irq) {
683                 if (mac_stat_int_mask & (1L << (irq - IRQ_MAC_PHYINT))) {
684                         bfin_handle_irq(irq);
685                 } else {
686                         bfin_mac_status_ack_irq(irq);
687                         pr_debug("IRQ %d:"
688                                         " MASKED MAC ERROR INTERRUPT ASSERTED\n",
689                                         irq);
690                 }
691         } else
692                 printk(KERN_ERR
693                                 "%s : %s : LINE %d :\nIRQ ?: MAC ERROR"
694                                 " INTERRUPT ASSERTED BUT NO SOURCE FOUND"
695                                 "(EMAC_SYSTAT=0x%X)\n",
696                                 __func__, __FILE__, __LINE__, status);
697 }
698 #endif
699
700 static inline void bfin_set_irq_handler(unsigned irq, irq_flow_handler_t handle)
701 {
702 #ifdef CONFIG_IPIPE
703         handle = handle_level_irq;
704 #endif
705         __irq_set_handler_locked(irq, handle);
706 }
707
708 static DECLARE_BITMAP(gpio_enabled, MAX_BLACKFIN_GPIOS);
709 extern void bfin_gpio_irq_prepare(unsigned gpio);
710
711 #if !BFIN_GPIO_PINT
712
713 static void bfin_gpio_ack_irq(struct irq_data *d)
714 {
715         /* AFAIK ack_irq in case mask_ack is provided
716          * get's only called for edge sense irqs
717          */
718         set_gpio_data(irq_to_gpio(d->irq), 0);
719 }
720
721 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
722 {
723         unsigned int irq = d->irq;
724         u32 gpionr = irq_to_gpio(irq);
725
726         if (!irqd_is_level_type(d))
727                 set_gpio_data(gpionr, 0);
728
729         set_gpio_maska(gpionr, 0);
730 }
731
732 static void bfin_gpio_mask_irq(struct irq_data *d)
733 {
734         set_gpio_maska(irq_to_gpio(d->irq), 0);
735 }
736
737 static void bfin_gpio_unmask_irq(struct irq_data *d)
738 {
739         set_gpio_maska(irq_to_gpio(d->irq), 1);
740 }
741
742 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
743 {
744         u32 gpionr = irq_to_gpio(d->irq);
745
746         if (__test_and_set_bit(gpionr, gpio_enabled))
747                 bfin_gpio_irq_prepare(gpionr);
748
749         bfin_gpio_unmask_irq(d);
750
751         return 0;
752 }
753
754 static void bfin_gpio_irq_shutdown(struct irq_data *d)
755 {
756         u32 gpionr = irq_to_gpio(d->irq);
757
758         bfin_gpio_mask_irq(d);
759         __clear_bit(gpionr, gpio_enabled);
760         bfin_gpio_irq_free(gpionr);
761 }
762
763 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
764 {
765         unsigned int irq = d->irq;
766         int ret;
767         char buf[16];
768         u32 gpionr = irq_to_gpio(irq);
769
770         if (type == IRQ_TYPE_PROBE) {
771                 /* only probe unenabled GPIO interrupt lines */
772                 if (test_bit(gpionr, gpio_enabled))
773                         return 0;
774                 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
775         }
776
777         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
778                     IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
779
780                 snprintf(buf, 16, "gpio-irq%d", irq);
781                 ret = bfin_gpio_irq_request(gpionr, buf);
782                 if (ret)
783                         return ret;
784
785                 if (__test_and_set_bit(gpionr, gpio_enabled))
786                         bfin_gpio_irq_prepare(gpionr);
787
788         } else {
789                 __clear_bit(gpionr, gpio_enabled);
790                 return 0;
791         }
792
793         set_gpio_inen(gpionr, 0);
794         set_gpio_dir(gpionr, 0);
795
796         if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
797             == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
798                 set_gpio_both(gpionr, 1);
799         else
800                 set_gpio_both(gpionr, 0);
801
802         if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
803                 set_gpio_polar(gpionr, 1);      /* low or falling edge denoted by one */
804         else
805                 set_gpio_polar(gpionr, 0);      /* high or rising edge denoted by zero */
806
807         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
808                 set_gpio_edge(gpionr, 1);
809                 set_gpio_inen(gpionr, 1);
810                 set_gpio_data(gpionr, 0);
811
812         } else {
813                 set_gpio_edge(gpionr, 0);
814                 set_gpio_inen(gpionr, 1);
815         }
816
817         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
818                 bfin_set_irq_handler(irq, handle_edge_irq);
819         else
820                 bfin_set_irq_handler(irq, handle_level_irq);
821
822         return 0;
823 }
824
825 #ifdef CONFIG_PM
826 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
827 {
828         return gpio_pm_wakeup_ctrl(irq_to_gpio(d->irq), state);
829 }
830 #else
831 # define bfin_gpio_set_wake NULL
832 #endif
833
834 static void bfin_demux_gpio_block(unsigned int irq)
835 {
836         unsigned int gpio, mask;
837
838         gpio = irq_to_gpio(irq);
839         mask = get_gpiop_data(gpio) & get_gpiop_maska(gpio);
840
841         while (mask) {
842                 if (mask & 1)
843                         bfin_handle_irq(irq);
844                 irq++;
845                 mask >>= 1;
846         }
847 }
848
849 void bfin_demux_gpio_irq(unsigned int inta_irq,
850                         struct irq_desc *desc)
851 {
852         unsigned int irq;
853
854         switch (inta_irq) {
855 #if defined(BF537_FAMILY)
856         case IRQ_PF_INTA_PG_INTA:
857                 bfin_demux_gpio_block(IRQ_PF0);
858                 irq = IRQ_PG0;
859                 break;
860         case IRQ_PH_INTA_MAC_RX:
861                 irq = IRQ_PH0;
862                 break;
863 #elif defined(BF533_FAMILY)
864         case IRQ_PROG_INTA:
865                 irq = IRQ_PF0;
866                 break;
867 #elif defined(BF538_FAMILY)
868         case IRQ_PORTF_INTA:
869                 irq = IRQ_PF0;
870                 break;
871 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
872         case IRQ_PORTF_INTA:
873                 irq = IRQ_PF0;
874                 break;
875         case IRQ_PORTG_INTA:
876                 irq = IRQ_PG0;
877                 break;
878         case IRQ_PORTH_INTA:
879                 irq = IRQ_PH0;
880                 break;
881 #elif defined(CONFIG_BF561)
882         case IRQ_PROG0_INTA:
883                 irq = IRQ_PF0;
884                 break;
885         case IRQ_PROG1_INTA:
886                 irq = IRQ_PF16;
887                 break;
888         case IRQ_PROG2_INTA:
889                 irq = IRQ_PF32;
890                 break;
891 #endif
892         default:
893                 BUG();
894                 return;
895         }
896
897         bfin_demux_gpio_block(irq);
898 }
899
900 #else
901
902 #define NR_PINT_BITS            32
903 #define IRQ_NOT_AVAIL           0xFF
904
905 #define PINT_2_BANK(x)          ((x) >> 5)
906 #define PINT_2_BIT(x)           ((x) & 0x1F)
907 #define PINT_BIT(x)             (1 << (PINT_2_BIT(x)))
908
909 static unsigned char irq2pint_lut[NR_PINTS];
910 static unsigned char pint2irq_lut[NR_PINT_SYS_IRQS * NR_PINT_BITS];
911
912 static struct bfin_pint_regs * const pint[NR_PINT_SYS_IRQS] = {
913         (struct bfin_pint_regs *)PINT0_MASK_SET,
914         (struct bfin_pint_regs *)PINT1_MASK_SET,
915         (struct bfin_pint_regs *)PINT2_MASK_SET,
916         (struct bfin_pint_regs *)PINT3_MASK_SET,
917 #ifdef CONFIG_BF60x
918         (struct bfin_pint_regs *)PINT4_MASK_SET,
919         (struct bfin_pint_regs *)PINT5_MASK_SET,
920 #endif
921 };
922
923 inline unsigned int get_irq_base(u32 bank, u8 bmap)
924 {
925         unsigned int irq_base;
926
927 #ifndef CONFIG_BF60x
928         if (bank < 2) {         /*PA-PB */
929                 irq_base = IRQ_PA0 + bmap * 16;
930         } else {                /*PC-PJ */
931                 irq_base = IRQ_PC0 + bmap * 16;
932         }
933 #else
934         irq_base = IRQ_PA0 + bank * 16 + bmap * 16;
935 #endif
936         return irq_base;
937 }
938
939         /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
940 void init_pint_lut(void)
941 {
942         u16 bank, bit, irq_base, bit_pos;
943         u32 pint_assign;
944         u8 bmap;
945
946         memset(irq2pint_lut, IRQ_NOT_AVAIL, sizeof(irq2pint_lut));
947
948         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
949
950                 pint_assign = pint[bank]->assign;
951
952                 for (bit = 0; bit < NR_PINT_BITS; bit++) {
953
954                         bmap = (pint_assign >> ((bit / 8) * 8)) & 0xFF;
955
956                         irq_base = get_irq_base(bank, bmap);
957
958                         irq_base += (bit % 8) + ((bit / 8) & 1 ? 8 : 0);
959                         bit_pos = bit + bank * NR_PINT_BITS;
960
961                         pint2irq_lut[bit_pos] = irq_base - SYS_IRQS;
962                         irq2pint_lut[irq_base - SYS_IRQS] = bit_pos;
963                 }
964         }
965 }
966
967 static void bfin_gpio_ack_irq(struct irq_data *d)
968 {
969         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
970         u32 pintbit = PINT_BIT(pint_val);
971         u32 bank = PINT_2_BANK(pint_val);
972
973         if (irqd_get_trigger_type(d) == IRQ_TYPE_EDGE_BOTH) {
974                 if (pint[bank]->invert_set & pintbit)
975                         pint[bank]->invert_clear = pintbit;
976                 else
977                         pint[bank]->invert_set = pintbit;
978         }
979         pint[bank]->request = pintbit;
980
981 }
982
983 static void bfin_gpio_mask_ack_irq(struct irq_data *d)
984 {
985         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
986         u32 pintbit = PINT_BIT(pint_val);
987         u32 bank = PINT_2_BANK(pint_val);
988
989         if (irqd_get_trigger_type(d) == IRQ_TYPE_EDGE_BOTH) {
990                 if (pint[bank]->invert_set & pintbit)
991                         pint[bank]->invert_clear = pintbit;
992                 else
993                         pint[bank]->invert_set = pintbit;
994         }
995
996         pint[bank]->request = pintbit;
997         pint[bank]->mask_clear = pintbit;
998 }
999
1000 static void bfin_gpio_mask_irq(struct irq_data *d)
1001 {
1002         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
1003
1004         pint[PINT_2_BANK(pint_val)]->mask_clear = PINT_BIT(pint_val);
1005 }
1006
1007 static void bfin_gpio_unmask_irq(struct irq_data *d)
1008 {
1009         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
1010         u32 pintbit = PINT_BIT(pint_val);
1011         u32 bank = PINT_2_BANK(pint_val);
1012
1013         pint[bank]->mask_set = pintbit;
1014 }
1015
1016 static unsigned int bfin_gpio_irq_startup(struct irq_data *d)
1017 {
1018         unsigned int irq = d->irq;
1019         u32 gpionr = irq_to_gpio(irq);
1020         u32 pint_val = irq2pint_lut[irq - SYS_IRQS];
1021
1022         if (pint_val == IRQ_NOT_AVAIL) {
1023                 printk(KERN_ERR
1024                 "GPIO IRQ %d :Not in PINT Assign table "
1025                 "Reconfigure Interrupt to Port Assignemt\n", irq);
1026                 return -ENODEV;
1027         }
1028
1029         if (__test_and_set_bit(gpionr, gpio_enabled))
1030                 bfin_gpio_irq_prepare(gpionr);
1031
1032         bfin_gpio_unmask_irq(d);
1033
1034         return 0;
1035 }
1036
1037 static void bfin_gpio_irq_shutdown(struct irq_data *d)
1038 {
1039         u32 gpionr = irq_to_gpio(d->irq);
1040
1041         bfin_gpio_mask_irq(d);
1042         __clear_bit(gpionr, gpio_enabled);
1043         bfin_gpio_irq_free(gpionr);
1044 }
1045
1046 static int bfin_gpio_irq_type(struct irq_data *d, unsigned int type)
1047 {
1048         unsigned int irq = d->irq;
1049         int ret;
1050         char buf[16];
1051         u32 gpionr = irq_to_gpio(irq);
1052         u32 pint_val = irq2pint_lut[irq - SYS_IRQS];
1053         u32 pintbit = PINT_BIT(pint_val);
1054         u32 bank = PINT_2_BANK(pint_val);
1055
1056         if (pint_val == IRQ_NOT_AVAIL)
1057                 return -ENODEV;
1058
1059         if (type == IRQ_TYPE_PROBE) {
1060                 /* only probe unenabled GPIO interrupt lines */
1061                 if (test_bit(gpionr, gpio_enabled))
1062                         return 0;
1063                 type = IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING;
1064         }
1065
1066         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING |
1067                     IRQ_TYPE_LEVEL_HIGH | IRQ_TYPE_LEVEL_LOW)) {
1068
1069                 snprintf(buf, 16, "gpio-irq%d", irq);
1070                 ret = bfin_gpio_irq_request(gpionr, buf);
1071                 if (ret)
1072                         return ret;
1073
1074                 if (__test_and_set_bit(gpionr, gpio_enabled))
1075                         bfin_gpio_irq_prepare(gpionr);
1076
1077         } else {
1078                 __clear_bit(gpionr, gpio_enabled);
1079                 return 0;
1080         }
1081
1082         if ((type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_LEVEL_LOW)))
1083                 pint[bank]->invert_set = pintbit;       /* low or falling edge denoted by one */
1084         else
1085                 pint[bank]->invert_clear = pintbit;     /* high or rising edge denoted by zero */
1086
1087         if ((type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING))
1088             == (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
1089                 if (gpio_get_value(gpionr))
1090                         pint[bank]->invert_set = pintbit;
1091                 else
1092                         pint[bank]->invert_clear = pintbit;
1093         }
1094
1095         if (type & (IRQ_TYPE_EDGE_RISING | IRQ_TYPE_EDGE_FALLING)) {
1096                 pint[bank]->edge_set = pintbit;
1097                 bfin_set_irq_handler(irq, handle_edge_irq);
1098         } else {
1099                 pint[bank]->edge_clear = pintbit;
1100                 bfin_set_irq_handler(irq, handle_level_irq);
1101         }
1102
1103         return 0;
1104 }
1105
1106 #ifdef CONFIG_PM
1107 static struct bfin_pm_pint_save save_pint_reg[NR_PINT_SYS_IRQS];
1108 static u32 save_pint_sec_ctl[NR_PINT_SYS_IRQS];
1109
1110 static int bfin_gpio_set_wake(struct irq_data *d, unsigned int state)
1111 {
1112         u32 pint_irq;
1113         u32 pint_val = irq2pint_lut[d->irq - SYS_IRQS];
1114         u32 bank = PINT_2_BANK(pint_val);
1115
1116         switch (bank) {
1117         case 0:
1118                 pint_irq = IRQ_PINT0;
1119                 break;
1120         case 2:
1121                 pint_irq = IRQ_PINT2;
1122                 break;
1123         case 3:
1124                 pint_irq = IRQ_PINT3;
1125                 break;
1126         case 1:
1127                 pint_irq = IRQ_PINT1;
1128                 break;
1129 #ifdef CONFIG_BF60x
1130         case 4:
1131                 pint_irq = IRQ_PINT4;
1132                 break;
1133         case 5:
1134                 pint_irq = IRQ_PINT5;
1135                 break;
1136 #endif
1137         default:
1138                 return -EINVAL;
1139         }
1140
1141         bfin_internal_set_wake(pint_irq, state);
1142
1143         return 0;
1144 }
1145
1146 void bfin_pint_suspend(void)
1147 {
1148         u32 bank;
1149
1150         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
1151                 save_pint_reg[bank].mask_set = pint[bank]->mask_set;
1152                 save_pint_reg[bank].assign = pint[bank]->assign;
1153                 save_pint_reg[bank].edge_set = pint[bank]->edge_set;
1154                 save_pint_reg[bank].invert_set = pint[bank]->invert_set;
1155         }
1156 }
1157
1158 void bfin_pint_resume(void)
1159 {
1160         u32 bank;
1161
1162         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++) {
1163                 pint[bank]->mask_set = save_pint_reg[bank].mask_set;
1164                 pint[bank]->assign = save_pint_reg[bank].assign;
1165                 pint[bank]->edge_set = save_pint_reg[bank].edge_set;
1166                 pint[bank]->invert_set = save_pint_reg[bank].invert_set;
1167         }
1168 }
1169
1170 #ifdef SEC_GCTL
1171 static int sec_suspend(void)
1172 {
1173         u32 bank;
1174
1175         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
1176                 save_pint_sec_ctl[bank] = bfin_read_SEC_SCTL(bank + SIC_SYSIRQ(IRQ_PINT0));
1177         return 0;
1178 }
1179
1180 static void sec_resume(void)
1181 {
1182         u32 bank;
1183
1184         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1185         udelay(100);
1186         bfin_write_SEC_GCTL(SEC_GCTL_EN);
1187         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1188
1189         for (bank = 0; bank < NR_PINT_SYS_IRQS; bank++)
1190                 bfin_write_SEC_SCTL(bank + SIC_SYSIRQ(IRQ_PINT0), save_pint_sec_ctl[bank]);
1191 }
1192
1193 static struct syscore_ops sec_pm_syscore_ops = {
1194         .suspend = sec_suspend,
1195         .resume = sec_resume,
1196 };
1197 #endif
1198 #else
1199 # define bfin_gpio_set_wake NULL
1200 #endif
1201
1202 void bfin_demux_gpio_irq(unsigned int inta_irq,
1203                         struct irq_desc *desc)
1204 {
1205         u32 bank, pint_val;
1206         u32 request, irq;
1207         u32 level_mask;
1208         int umask = 0;
1209         struct irq_chip *chip = irq_desc_get_chip(desc);
1210
1211         if (chip->irq_mask_ack) {
1212                 chip->irq_mask_ack(&desc->irq_data);
1213         } else {
1214                 chip->irq_mask(&desc->irq_data);
1215                 if (chip->irq_ack)
1216                         chip->irq_ack(&desc->irq_data);
1217         }
1218
1219         switch (inta_irq) {
1220         case IRQ_PINT0:
1221                 bank = 0;
1222                 break;
1223         case IRQ_PINT2:
1224                 bank = 2;
1225                 break;
1226         case IRQ_PINT3:
1227                 bank = 3;
1228                 break;
1229         case IRQ_PINT1:
1230                 bank = 1;
1231                 break;
1232 #ifdef CONFIG_BF60x
1233         case IRQ_PINT4:
1234                 bank = 4;
1235                 break;
1236         case IRQ_PINT5:
1237                 bank = 5;
1238                 break;
1239 #endif
1240         default:
1241                 return;
1242         }
1243
1244         pint_val = bank * NR_PINT_BITS;
1245
1246         request = pint[bank]->request;
1247
1248         level_mask = pint[bank]->edge_set & request;
1249
1250         while (request) {
1251                 if (request & 1) {
1252                         irq = pint2irq_lut[pint_val] + SYS_IRQS;
1253                         if (level_mask & PINT_BIT(pint_val)) {
1254                                 umask = 1;
1255                                 chip->irq_unmask(&desc->irq_data);
1256                         }
1257                         bfin_handle_irq(irq);
1258                 }
1259                 pint_val++;
1260                 request >>= 1;
1261         }
1262
1263         if (!umask)
1264                 chip->irq_unmask(&desc->irq_data);
1265 }
1266 #endif
1267
1268 static struct irq_chip bfin_gpio_irqchip = {
1269         .name = "GPIO",
1270         .irq_ack = bfin_gpio_ack_irq,
1271         .irq_mask = bfin_gpio_mask_irq,
1272         .irq_mask_ack = bfin_gpio_mask_ack_irq,
1273         .irq_unmask = bfin_gpio_unmask_irq,
1274         .irq_disable = bfin_gpio_mask_irq,
1275         .irq_enable = bfin_gpio_unmask_irq,
1276         .irq_set_type = bfin_gpio_irq_type,
1277         .irq_startup = bfin_gpio_irq_startup,
1278         .irq_shutdown = bfin_gpio_irq_shutdown,
1279         .irq_set_wake = bfin_gpio_set_wake,
1280 };
1281
1282 void __cpuinit init_exception_vectors(void)
1283 {
1284         /* cannot program in software:
1285          * evt0 - emulation (jtag)
1286          * evt1 - reset
1287          */
1288         bfin_write_EVT2(evt_nmi);
1289         bfin_write_EVT3(trap);
1290         bfin_write_EVT5(evt_ivhw);
1291         bfin_write_EVT6(evt_timer);
1292         bfin_write_EVT7(evt_evt7);
1293         bfin_write_EVT8(evt_evt8);
1294         bfin_write_EVT9(evt_evt9);
1295         bfin_write_EVT10(evt_evt10);
1296         bfin_write_EVT11(evt_evt11);
1297         bfin_write_EVT12(evt_evt12);
1298         bfin_write_EVT13(evt_evt13);
1299         bfin_write_EVT14(evt_evt14);
1300         bfin_write_EVT15(evt_system_call);
1301         CSYNC();
1302 }
1303
1304 #ifndef SEC_GCTL
1305 /*
1306  * This function should be called during kernel startup to initialize
1307  * the BFin IRQ handling routines.
1308  */
1309
1310 int __init init_arch_irq(void)
1311 {
1312         int irq;
1313         unsigned long ilat = 0;
1314
1315         /*  Disable all the peripheral intrs  - page 4-29 HW Ref manual */
1316 #ifdef SIC_IMASK0
1317         bfin_write_SIC_IMASK0(SIC_UNMASK_ALL);
1318         bfin_write_SIC_IMASK1(SIC_UNMASK_ALL);
1319 # ifdef SIC_IMASK2
1320         bfin_write_SIC_IMASK2(SIC_UNMASK_ALL);
1321 # endif
1322 # if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1323         bfin_write_SICB_IMASK0(SIC_UNMASK_ALL);
1324         bfin_write_SICB_IMASK1(SIC_UNMASK_ALL);
1325 # endif
1326 #else
1327         bfin_write_SIC_IMASK(SIC_UNMASK_ALL);
1328 #endif
1329
1330         local_irq_disable();
1331
1332 #if BFIN_GPIO_PINT
1333 # ifdef CONFIG_PINTx_REASSIGN
1334         pint[0]->assign = CONFIG_PINT0_ASSIGN;
1335         pint[1]->assign = CONFIG_PINT1_ASSIGN;
1336         pint[2]->assign = CONFIG_PINT2_ASSIGN;
1337         pint[3]->assign = CONFIG_PINT3_ASSIGN;
1338 # endif
1339         /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
1340         init_pint_lut();
1341 #endif
1342
1343         for (irq = 0; irq <= SYS_IRQS; irq++) {
1344                 if (irq <= IRQ_CORETMR)
1345                         irq_set_chip(irq, &bfin_core_irqchip);
1346                 else
1347                         irq_set_chip(irq, &bfin_internal_irqchip);
1348
1349                 switch (irq) {
1350 #if BFIN_GPIO_PINT
1351                 case IRQ_PINT0:
1352                 case IRQ_PINT1:
1353                 case IRQ_PINT2:
1354                 case IRQ_PINT3:
1355 #elif defined(BF537_FAMILY)
1356                 case IRQ_PH_INTA_MAC_RX:
1357                 case IRQ_PF_INTA_PG_INTA:
1358 #elif defined(BF533_FAMILY)
1359                 case IRQ_PROG_INTA:
1360 #elif defined(CONFIG_BF52x) || defined(CONFIG_BF51x)
1361                 case IRQ_PORTF_INTA:
1362                 case IRQ_PORTG_INTA:
1363                 case IRQ_PORTH_INTA:
1364 #elif defined(CONFIG_BF561)
1365                 case IRQ_PROG0_INTA:
1366                 case IRQ_PROG1_INTA:
1367                 case IRQ_PROG2_INTA:
1368 #elif defined(BF538_FAMILY)
1369                 case IRQ_PORTF_INTA:
1370 #endif
1371                         irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1372                         break;
1373 #if defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE)
1374                 case IRQ_MAC_ERROR:
1375                         irq_set_chained_handler(irq,
1376                                                 bfin_demux_mac_status_irq);
1377                         break;
1378 #endif
1379 #if defined(CONFIG_SMP) || defined(CONFIG_ICC)
1380                 case IRQ_SUPPLE_0:
1381                 case IRQ_SUPPLE_1:
1382                         irq_set_handler(irq, handle_percpu_irq);
1383                         break;
1384 #endif
1385
1386 #ifdef CONFIG_TICKSOURCE_CORETMR
1387                 case IRQ_CORETMR:
1388 # ifdef CONFIG_SMP
1389                         irq_set_handler(irq, handle_percpu_irq);
1390 # else
1391                         irq_set_handler(irq, handle_simple_irq);
1392 # endif
1393                         break;
1394 #endif
1395
1396 #ifdef CONFIG_TICKSOURCE_GPTMR0
1397                 case IRQ_TIMER0:
1398                         irq_set_handler(irq, handle_simple_irq);
1399                         break;
1400 #endif
1401
1402                 default:
1403 #ifdef CONFIG_IPIPE
1404                         irq_set_handler(irq, handle_level_irq);
1405 #else
1406                         irq_set_handler(irq, handle_simple_irq);
1407 #endif
1408                         break;
1409                 }
1410         }
1411
1412         init_mach_irq();
1413
1414 #if (defined(CONFIG_BFIN_MAC) || defined(CONFIG_BFIN_MAC_MODULE))
1415         for (irq = IRQ_MAC_PHYINT; irq <= IRQ_MAC_STMDONE; irq++)
1416                 irq_set_chip_and_handler(irq, &bfin_mac_status_irqchip,
1417                                          handle_level_irq);
1418 #endif
1419         /* if configured as edge, then will be changed to do_edge_IRQ */
1420         for (irq = GPIO_IRQ_BASE;
1421                 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1422                 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1423                                          handle_level_irq);
1424         bfin_write_IMASK(0);
1425         CSYNC();
1426         ilat = bfin_read_ILAT();
1427         CSYNC();
1428         bfin_write_ILAT(ilat);
1429         CSYNC();
1430
1431         printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1432         /* IMASK=xxx is equivalent to STI xx or bfin_irq_flags=xx,
1433          * local_irq_enable()
1434          */
1435         program_IAR();
1436         /* Therefore it's better to setup IARs before interrupts enabled */
1437         search_IAR();
1438
1439         /* Enable interrupts IVG7-15 */
1440         bfin_irq_flags |= IMASK_IVG15 |
1441                 IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1442                 IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1443
1444         bfin_sti(bfin_irq_flags);
1445
1446         /* This implicitly covers ANOMALY_05000171
1447          * Boot-ROM code modifies SICA_IWRx wakeup registers
1448          */
1449 #ifdef SIC_IWR0
1450         bfin_write_SIC_IWR0(IWR_DISABLE_ALL);
1451 # ifdef SIC_IWR1
1452         /* BF52x/BF51x system reset does not properly reset SIC_IWR1 which
1453          * will screw up the bootrom as it relies on MDMA0/1 waking it
1454          * up from IDLE instructions.  See this report for more info:
1455          * http://blackfin.uclinux.org/gf/tracker/4323
1456          */
1457         if (ANOMALY_05000435)
1458                 bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
1459         else
1460                 bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
1461 # endif
1462 # ifdef SIC_IWR2
1463         bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
1464 # endif
1465 #else
1466         bfin_write_SIC_IWR(IWR_DISABLE_ALL);
1467 #endif
1468         return 0;
1469 }
1470
1471 #ifdef CONFIG_DO_IRQ_L1
1472 __attribute__((l1_text))
1473 #endif
1474 static int vec_to_irq(int vec)
1475 {
1476         struct ivgx *ivg = ivg7_13[vec - IVG7].ifirst;
1477         struct ivgx *ivg_stop = ivg7_13[vec - IVG7].istop;
1478         unsigned long sic_status[3];
1479         if (likely(vec == EVT_IVTMR_P))
1480                 return IRQ_CORETMR;
1481 #ifdef SIC_ISR
1482         sic_status[0] = bfin_read_SIC_IMASK() & bfin_read_SIC_ISR();
1483 #else
1484         if (smp_processor_id()) {
1485 # ifdef SICB_ISR0
1486                 /* This will be optimized out in UP mode. */
1487                 sic_status[0] = bfin_read_SICB_ISR0() & bfin_read_SICB_IMASK0();
1488                 sic_status[1] = bfin_read_SICB_ISR1() & bfin_read_SICB_IMASK1();
1489 # endif
1490         } else {
1491                 sic_status[0] = bfin_read_SIC_ISR0() & bfin_read_SIC_IMASK0();
1492                 sic_status[1] = bfin_read_SIC_ISR1() & bfin_read_SIC_IMASK1();
1493         }
1494 #endif
1495 #ifdef SIC_ISR2
1496         sic_status[2] = bfin_read_SIC_ISR2() & bfin_read_SIC_IMASK2();
1497 #endif
1498
1499         for (;; ivg++) {
1500                 if (ivg >= ivg_stop)
1501                         return -1;
1502 #ifdef SIC_ISR
1503                 if (sic_status[0] & ivg->isrflag)
1504 #else
1505                 if (sic_status[(ivg->irqno - IVG7) / 32] & ivg->isrflag)
1506 #endif
1507                         return ivg->irqno;
1508         }
1509 }
1510
1511 #else /* SEC_GCTL */
1512
1513 /*
1514  * This function should be called during kernel startup to initialize
1515  * the BFin IRQ handling routines.
1516  */
1517
1518 int __init init_arch_irq(void)
1519 {
1520         int irq;
1521         unsigned long ilat = 0;
1522
1523         bfin_write_SEC_GCTL(SEC_GCTL_RESET);
1524
1525         local_irq_disable();
1526
1527 #if BFIN_GPIO_PINT
1528 # ifdef CONFIG_PINTx_REASSIGN
1529         pint[0]->assign = CONFIG_PINT0_ASSIGN;
1530         pint[1]->assign = CONFIG_PINT1_ASSIGN;
1531         pint[2]->assign = CONFIG_PINT2_ASSIGN;
1532         pint[3]->assign = CONFIG_PINT3_ASSIGN;
1533         pint[4]->assign = CONFIG_PINT4_ASSIGN;
1534         pint[5]->assign = CONFIG_PINT5_ASSIGN;
1535 # endif
1536         /* Whenever PINTx_ASSIGN is altered init_pint_lut() must be executed! */
1537         init_pint_lut();
1538 #endif
1539
1540         for (irq = 0; irq <= SYS_IRQS; irq++) {
1541                 if (irq <= IRQ_CORETMR) {
1542                         irq_set_chip(irq, &bfin_core_irqchip);
1543 #ifdef CONFIG_TICKSOURCE_CORETMR
1544                         if (irq == IRQ_CORETMR)
1545 # ifdef CONFIG_SMP
1546                                 irq_set_handler(irq, handle_percpu_irq);
1547 # else
1548                                 irq_set_handler(irq, handle_simple_irq);
1549 # endif
1550 #endif
1551                 } else if (irq < BFIN_IRQ(0)) {
1552                         irq_set_chip_and_handler(irq, &bfin_internal_irqchip,
1553                                         handle_simple_irq);
1554                 } else if (irq == IRQ_SEC_ERR) {
1555                         irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1556                                         handle_sec_fault);
1557                 } else if (irq < CORE_IRQS && irq >= IRQ_C0_DBL_FAULT) {
1558                         irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1559                                         handle_core_fault);
1560                 } else if (irq >= BFIN_IRQ(21) && irq <= BFIN_IRQ(26)) {
1561                         irq_set_chip(irq, &bfin_sec_irqchip);
1562                         irq_set_chained_handler(irq, bfin_demux_gpio_irq);
1563                 } else if (irq >= BFIN_IRQ(34) && irq <= BFIN_IRQ(37)) {
1564                         irq_set_chip(irq, &bfin_sec_irqchip);
1565                         irq_set_handler(irq, handle_percpu_irq);
1566                 } else {
1567                         irq_set_chip_and_handler(irq, &bfin_sec_irqchip,
1568                                         handle_fasteoi_irq);
1569                         __irq_set_preflow_handler(irq, bfin_sec_preflow_handler);
1570                 }
1571         }
1572         for (irq = GPIO_IRQ_BASE;
1573                 irq < (GPIO_IRQ_BASE + MAX_BLACKFIN_GPIOS); irq++)
1574                 irq_set_chip_and_handler(irq, &bfin_gpio_irqchip,
1575                                         handle_level_irq);
1576
1577         bfin_write_IMASK(0);
1578         CSYNC();
1579         ilat = bfin_read_ILAT();
1580         CSYNC();
1581         bfin_write_ILAT(ilat);
1582         CSYNC();
1583
1584         printk(KERN_INFO "Configuring Blackfin Priority Driven Interrupts\n");
1585
1586         bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1587
1588         bfin_sec_set_priority(CONFIG_SEC_IRQ_PRIORITY_LEVELS, sec_int_priority);
1589
1590         /* Enable interrupts IVG7-15 */
1591         bfin_irq_flags |= IMASK_IVG15 |
1592             IMASK_IVG14 | IMASK_IVG13 | IMASK_IVG12 | IMASK_IVG11 |
1593             IMASK_IVG10 | IMASK_IVG9 | IMASK_IVG8 | IMASK_IVG7 | IMASK_IVGHW;
1594
1595
1596         bfin_write_SEC_FCTL(SEC_FCTL_EN | SEC_FCTL_SYSRST_EN | SEC_FCTL_FLTIN_EN);
1597         bfin_sec_enable_sci(SIC_SYSIRQ(IRQ_WATCH0));
1598         bfin_sec_enable_ssi(SIC_SYSIRQ(IRQ_WATCH0));
1599         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_RESET);
1600         udelay(100);
1601         bfin_write_SEC_GCTL(SEC_GCTL_EN);
1602         bfin_write_SEC_SCI(0, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1603         bfin_write_SEC_SCI(1, SEC_CCTL, SEC_CCTL_EN | SEC_CCTL_NMI_EN);
1604
1605         init_software_driven_irq();
1606         register_syscore_ops(&sec_pm_syscore_ops);
1607
1608         return 0;
1609 }
1610
1611 #ifdef CONFIG_DO_IRQ_L1
1612 __attribute__((l1_text))
1613 #endif
1614 static int vec_to_irq(int vec)
1615 {
1616         if (likely(vec == EVT_IVTMR_P))
1617                 return IRQ_CORETMR;
1618
1619         return BFIN_IRQ(bfin_read_SEC_SCI(0, SEC_CSID));
1620 }
1621 #endif  /* SEC_GCTL */
1622
1623 #ifdef CONFIG_DO_IRQ_L1
1624 __attribute__((l1_text))
1625 #endif
1626 void do_irq(int vec, struct pt_regs *fp)
1627 {
1628         int irq = vec_to_irq(vec);
1629         if (irq == -1)
1630                 return;
1631         asm_do_IRQ(irq, fp);
1632 }
1633
1634 #ifdef CONFIG_IPIPE
1635
1636 int __ipipe_get_irq_priority(unsigned irq)
1637 {
1638         int ient, prio;
1639
1640         if (irq <= IRQ_CORETMR)
1641                 return irq;
1642
1643 #ifdef SEC_GCTL
1644         if (irq >= BFIN_IRQ(0))
1645                 return IVG11;
1646 #else
1647         for (ient = 0; ient < NR_PERI_INTS; ient++) {
1648                 struct ivgx *ivg = ivg_table + ient;
1649                 if (ivg->irqno == irq) {
1650                         for (prio = 0; prio <= IVG13-IVG7; prio++) {
1651                                 if (ivg7_13[prio].ifirst <= ivg &&
1652                                     ivg7_13[prio].istop > ivg)
1653                                         return IVG7 + prio;
1654                         }
1655                 }
1656         }
1657 #endif
1658
1659         return IVG15;
1660 }
1661
1662 /* Hw interrupts are disabled on entry (check SAVE_CONTEXT). */
1663 #ifdef CONFIG_DO_IRQ_L1
1664 __attribute__((l1_text))
1665 #endif
1666 asmlinkage int __ipipe_grab_irq(int vec, struct pt_regs *regs)
1667 {
1668         struct ipipe_percpu_domain_data *p = ipipe_root_cpudom_ptr();
1669         struct ipipe_domain *this_domain = __ipipe_current_domain;
1670         int irq, s = 0;
1671
1672         irq = vec_to_irq(vec);
1673         if (irq == -1)
1674                 return 0;
1675
1676         if (irq == IRQ_SYSTMR) {
1677 #if !defined(CONFIG_GENERIC_CLOCKEVENTS) || defined(CONFIG_TICKSOURCE_GPTMR0)
1678                 bfin_write_TIMER_STATUS(1); /* Latch TIMIL0 */
1679 #endif
1680                 /* This is basically what we need from the register frame. */
1681                 __raw_get_cpu_var(__ipipe_tick_regs).ipend = regs->ipend;
1682                 __raw_get_cpu_var(__ipipe_tick_regs).pc = regs->pc;
1683                 if (this_domain != ipipe_root_domain)
1684                         __raw_get_cpu_var(__ipipe_tick_regs).ipend &= ~0x10;
1685                 else
1686                         __raw_get_cpu_var(__ipipe_tick_regs).ipend |= 0x10;
1687         }
1688
1689         /*
1690          * We don't want Linux interrupt handlers to run at the
1691          * current core priority level (i.e. < EVT15), since this
1692          * might delay other interrupts handled by a high priority
1693          * domain. Here is what we do instead:
1694          *
1695          * - we raise the SYNCDEFER bit to prevent
1696          * __ipipe_handle_irq() to sync the pipeline for the root
1697          * stage for the incoming interrupt. Upon return, that IRQ is
1698          * pending in the interrupt log.
1699          *
1700          * - we raise the TIF_IRQ_SYNC bit for the current thread, so
1701          * that _schedule_and_signal_from_int will eventually sync the
1702          * pipeline from EVT15.
1703          */
1704         if (this_domain == ipipe_root_domain) {
1705                 s = __test_and_set_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1706                 barrier();
1707         }
1708
1709         ipipe_trace_irq_entry(irq);
1710         __ipipe_handle_irq(irq, regs);
1711         ipipe_trace_irq_exit(irq);
1712
1713         if (user_mode(regs) &&
1714             !ipipe_test_foreign_stack() &&
1715             (current->ipipe_flags & PF_EVTRET) != 0) {
1716                 /*
1717                  * Testing for user_regs() does NOT fully eliminate
1718                  * foreign stack contexts, because of the forged
1719                  * interrupt returns we do through
1720                  * __ipipe_call_irqtail. In that case, we might have
1721                  * preempted a foreign stack context in a high
1722                  * priority domain, with a single interrupt level now
1723                  * pending after the irqtail unwinding is done. In
1724                  * which case user_mode() is now true, and the event
1725                  * gets dispatched spuriously.
1726                  */
1727                 current->ipipe_flags &= ~PF_EVTRET;
1728                 __ipipe_dispatch_event(IPIPE_EVENT_RETURN, regs);
1729         }
1730
1731         if (this_domain == ipipe_root_domain) {
1732                 set_thread_flag(TIF_IRQ_SYNC);
1733                 if (!s) {
1734                         __clear_bit(IPIPE_SYNCDEFER_FLAG, &p->status);
1735                         return !test_bit(IPIPE_STALL_FLAG, &p->status);
1736                 }
1737         }
1738
1739         return 0;
1740 }
1741
1742 #endif /* CONFIG_IPIPE */