Merge branches 'pm-cpufreq', 'pm-cpuidle', 'pm-devfreq', 'pm-opp' and 'pm-tools'
[linux-drm-fsl-dcu.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
35
36 #include "sys_regs.h"
37
38 /*
39  * All of this file is extremly similar to the ARM coproc.c, but the
40  * types are different. My gut feeling is that it should be pretty
41  * easy to merge, but that would be an ABI breakage -- again. VFP
42  * would also need to be abstracted.
43  *
44  * For AArch32, we only take care of what is being trapped. Anything
45  * that has to do with init and userspace access has to go via the
46  * 64bit interface.
47  */
48
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
51
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
54
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
57 {
58         u32 ccsidr;
59
60         /* Make sure noone else changes CSSELR during this! */
61         local_irq_disable();
62         /* Put value into CSSELR */
63         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64         isb();
65         /* Read result out of CCSIDR */
66         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67         local_irq_enable();
68
69         return ccsidr;
70 }
71
72 /*
73  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
74  */
75 static bool access_dcsw(struct kvm_vcpu *vcpu,
76                         const struct sys_reg_params *p,
77                         const struct sys_reg_desc *r)
78 {
79         if (!p->is_write)
80                 return read_from_write_only(vcpu, p);
81
82         kvm_set_way_flush(vcpu);
83         return true;
84 }
85
86 /*
87  * Generic accessor for VM registers. Only called as long as HCR_TVM
88  * is set. If the guest enables the MMU, we stop trapping the VM
89  * sys_regs and leave it in complete control of the caches.
90  */
91 static bool access_vm_reg(struct kvm_vcpu *vcpu,
92                           const struct sys_reg_params *p,
93                           const struct sys_reg_desc *r)
94 {
95         unsigned long val;
96         bool was_enabled = vcpu_has_cache_enabled(vcpu);
97
98         BUG_ON(!p->is_write);
99
100         val = *vcpu_reg(vcpu, p->Rt);
101         if (!p->is_aarch32) {
102                 vcpu_sys_reg(vcpu, r->reg) = val;
103         } else {
104                 if (!p->is_32bit)
105                         vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
106                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
107         }
108
109         kvm_toggle_cache(vcpu, was_enabled);
110         return true;
111 }
112
113 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
114                         const struct sys_reg_params *p,
115                         const struct sys_reg_desc *r)
116 {
117         if (p->is_write)
118                 return ignore_write(vcpu, p);
119         else
120                 return read_zero(vcpu, p);
121 }
122
123 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
124                            const struct sys_reg_params *p,
125                            const struct sys_reg_desc *r)
126 {
127         if (p->is_write) {
128                 return ignore_write(vcpu, p);
129         } else {
130                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
131                 return true;
132         }
133 }
134
135 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
136                                    const struct sys_reg_params *p,
137                                    const struct sys_reg_desc *r)
138 {
139         if (p->is_write) {
140                 return ignore_write(vcpu, p);
141         } else {
142                 u32 val;
143                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
144                 *vcpu_reg(vcpu, p->Rt) = val;
145                 return true;
146         }
147 }
148
149 /*
150  * We want to avoid world-switching all the DBG registers all the
151  * time:
152  * 
153  * - If we've touched any debug register, it is likely that we're
154  *   going to touch more of them. It then makes sense to disable the
155  *   traps and start doing the save/restore dance
156  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
157  *   then mandatory to save/restore the registers, as the guest
158  *   depends on them.
159  * 
160  * For this, we use a DIRTY bit, indicating the guest has modified the
161  * debug registers, used as follow:
162  *
163  * On guest entry:
164  * - If the dirty bit is set (because we're coming back from trapping),
165  *   disable the traps, save host registers, restore guest registers.
166  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
167  *   set the dirty bit, disable the traps, save host registers,
168  *   restore guest registers.
169  * - Otherwise, enable the traps
170  *
171  * On guest exit:
172  * - If the dirty bit is set, save guest registers, restore host
173  *   registers and clear the dirty bit. This ensure that the host can
174  *   now use the debug registers.
175  */
176 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
177                             const struct sys_reg_params *p,
178                             const struct sys_reg_desc *r)
179 {
180         if (p->is_write) {
181                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
182                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
183         } else {
184                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
185         }
186
187         return true;
188 }
189
190 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
191 {
192         u64 amair;
193
194         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
195         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
196 }
197
198 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
199 {
200         /*
201          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
202          */
203         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
204 }
205
206 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
207 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
208         /* DBGBVRn_EL1 */                                               \
209         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
210           trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },         \
211         /* DBGBCRn_EL1 */                                               \
212         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
213           trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },         \
214         /* DBGWVRn_EL1 */                                               \
215         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
216           trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },         \
217         /* DBGWCRn_EL1 */                                               \
218         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
219           trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
220
221 /*
222  * Architected system registers.
223  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
224  *
225  * We could trap ID_DFR0 and tell the guest we don't support performance
226  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
227  * NAKed, so it will read the PMCR anyway.
228  *
229  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
230  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
231  * all PM registers, which doesn't crash the guest kernel at least.
232  *
233  * Debug handling: We do trap most, if not all debug related system
234  * registers. The implementation is good enough to ensure that a guest
235  * can use these with minimal performance degradation. The drawback is
236  * that we don't implement any of the external debug, none of the
237  * OSlock protocol. This should be revisited if we ever encounter a
238  * more demanding guest...
239  */
240 static const struct sys_reg_desc sys_reg_descs[] = {
241         /* DC ISW */
242         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
243           access_dcsw },
244         /* DC CSW */
245         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
246           access_dcsw },
247         /* DC CISW */
248         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
249           access_dcsw },
250
251         DBG_BCR_BVR_WCR_WVR_EL1(0),
252         DBG_BCR_BVR_WCR_WVR_EL1(1),
253         /* MDCCINT_EL1 */
254         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
255           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
256         /* MDSCR_EL1 */
257         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
258           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
259         DBG_BCR_BVR_WCR_WVR_EL1(2),
260         DBG_BCR_BVR_WCR_WVR_EL1(3),
261         DBG_BCR_BVR_WCR_WVR_EL1(4),
262         DBG_BCR_BVR_WCR_WVR_EL1(5),
263         DBG_BCR_BVR_WCR_WVR_EL1(6),
264         DBG_BCR_BVR_WCR_WVR_EL1(7),
265         DBG_BCR_BVR_WCR_WVR_EL1(8),
266         DBG_BCR_BVR_WCR_WVR_EL1(9),
267         DBG_BCR_BVR_WCR_WVR_EL1(10),
268         DBG_BCR_BVR_WCR_WVR_EL1(11),
269         DBG_BCR_BVR_WCR_WVR_EL1(12),
270         DBG_BCR_BVR_WCR_WVR_EL1(13),
271         DBG_BCR_BVR_WCR_WVR_EL1(14),
272         DBG_BCR_BVR_WCR_WVR_EL1(15),
273
274         /* MDRAR_EL1 */
275         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
276           trap_raz_wi },
277         /* OSLAR_EL1 */
278         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
279           trap_raz_wi },
280         /* OSLSR_EL1 */
281         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
282           trap_oslsr_el1 },
283         /* OSDLR_EL1 */
284         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
285           trap_raz_wi },
286         /* DBGPRCR_EL1 */
287         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
288           trap_raz_wi },
289         /* DBGCLAIMSET_EL1 */
290         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
291           trap_raz_wi },
292         /* DBGCLAIMCLR_EL1 */
293         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
294           trap_raz_wi },
295         /* DBGAUTHSTATUS_EL1 */
296         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
297           trap_dbgauthstatus_el1 },
298
299         /* TEECR32_EL1 */
300         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
301           NULL, reset_val, TEECR32_EL1, 0 },
302         /* TEEHBR32_EL1 */
303         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
304           NULL, reset_val, TEEHBR32_EL1, 0 },
305
306         /* MDCCSR_EL1 */
307         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
308           trap_raz_wi },
309         /* DBGDTR_EL0 */
310         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
311           trap_raz_wi },
312         /* DBGDTR[TR]X_EL0 */
313         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
314           trap_raz_wi },
315
316         /* DBGVCR32_EL2 */
317         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
318           NULL, reset_val, DBGVCR32_EL2, 0 },
319
320         /* MPIDR_EL1 */
321         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
322           NULL, reset_mpidr, MPIDR_EL1 },
323         /* SCTLR_EL1 */
324         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
325           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
326         /* CPACR_EL1 */
327         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
328           NULL, reset_val, CPACR_EL1, 0 },
329         /* TTBR0_EL1 */
330         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
331           access_vm_reg, reset_unknown, TTBR0_EL1 },
332         /* TTBR1_EL1 */
333         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
334           access_vm_reg, reset_unknown, TTBR1_EL1 },
335         /* TCR_EL1 */
336         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
337           access_vm_reg, reset_val, TCR_EL1, 0 },
338
339         /* AFSR0_EL1 */
340         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
341           access_vm_reg, reset_unknown, AFSR0_EL1 },
342         /* AFSR1_EL1 */
343         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
344           access_vm_reg, reset_unknown, AFSR1_EL1 },
345         /* ESR_EL1 */
346         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
347           access_vm_reg, reset_unknown, ESR_EL1 },
348         /* FAR_EL1 */
349         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
350           access_vm_reg, reset_unknown, FAR_EL1 },
351         /* PAR_EL1 */
352         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
353           NULL, reset_unknown, PAR_EL1 },
354
355         /* PMINTENSET_EL1 */
356         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
357           trap_raz_wi },
358         /* PMINTENCLR_EL1 */
359         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
360           trap_raz_wi },
361
362         /* MAIR_EL1 */
363         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
364           access_vm_reg, reset_unknown, MAIR_EL1 },
365         /* AMAIR_EL1 */
366         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
367           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
368
369         /* VBAR_EL1 */
370         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
371           NULL, reset_val, VBAR_EL1, 0 },
372
373         /* ICC_SRE_EL1 */
374         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
375           trap_raz_wi },
376
377         /* CONTEXTIDR_EL1 */
378         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
379           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
380         /* TPIDR_EL1 */
381         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
382           NULL, reset_unknown, TPIDR_EL1 },
383
384         /* CNTKCTL_EL1 */
385         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
386           NULL, reset_val, CNTKCTL_EL1, 0},
387
388         /* CSSELR_EL1 */
389         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
390           NULL, reset_unknown, CSSELR_EL1 },
391
392         /* PMCR_EL0 */
393         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
394           trap_raz_wi },
395         /* PMCNTENSET_EL0 */
396         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
397           trap_raz_wi },
398         /* PMCNTENCLR_EL0 */
399         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
400           trap_raz_wi },
401         /* PMOVSCLR_EL0 */
402         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
403           trap_raz_wi },
404         /* PMSWINC_EL0 */
405         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
406           trap_raz_wi },
407         /* PMSELR_EL0 */
408         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
409           trap_raz_wi },
410         /* PMCEID0_EL0 */
411         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
412           trap_raz_wi },
413         /* PMCEID1_EL0 */
414         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
415           trap_raz_wi },
416         /* PMCCNTR_EL0 */
417         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
418           trap_raz_wi },
419         /* PMXEVTYPER_EL0 */
420         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
421           trap_raz_wi },
422         /* PMXEVCNTR_EL0 */
423         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
424           trap_raz_wi },
425         /* PMUSERENR_EL0 */
426         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
427           trap_raz_wi },
428         /* PMOVSSET_EL0 */
429         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
430           trap_raz_wi },
431
432         /* TPIDR_EL0 */
433         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
434           NULL, reset_unknown, TPIDR_EL0 },
435         /* TPIDRRO_EL0 */
436         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
437           NULL, reset_unknown, TPIDRRO_EL0 },
438
439         /* DACR32_EL2 */
440         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
441           NULL, reset_unknown, DACR32_EL2 },
442         /* IFSR32_EL2 */
443         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
444           NULL, reset_unknown, IFSR32_EL2 },
445         /* FPEXC32_EL2 */
446         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
447           NULL, reset_val, FPEXC32_EL2, 0x70 },
448 };
449
450 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
451                         const struct sys_reg_params *p,
452                         const struct sys_reg_desc *r)
453 {
454         if (p->is_write) {
455                 return ignore_write(vcpu, p);
456         } else {
457                 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
458                 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
459                 u32 el3 = !!((pfr >> 12) & 0xf);
460
461                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
462                                           (((dfr >> 12) & 0xf) << 24) |
463                                           (((dfr >> 28) & 0xf) << 20) |
464                                           (6 << 16) | (el3 << 14) | (el3 << 12));
465                 return true;
466         }
467 }
468
469 static bool trap_debug32(struct kvm_vcpu *vcpu,
470                          const struct sys_reg_params *p,
471                          const struct sys_reg_desc *r)
472 {
473         if (p->is_write) {
474                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
475                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
476         } else {
477                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
478         }
479
480         return true;
481 }
482
483 #define DBG_BCR_BVR_WCR_WVR(n)                                  \
484         /* DBGBVRn */                                           \
485         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,    \
486           NULL, (cp14_DBGBVR0 + (n) * 2) },                     \
487         /* DBGBCRn */                                           \
488         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,    \
489           NULL, (cp14_DBGBCR0 + (n) * 2) },                     \
490         /* DBGWVRn */                                           \
491         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,    \
492           NULL, (cp14_DBGWVR0 + (n) * 2) },                     \
493         /* DBGWCRn */                                           \
494         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,    \
495           NULL, (cp14_DBGWCR0 + (n) * 2) }
496
497 #define DBGBXVR(n)                                              \
498         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,    \
499           NULL, cp14_DBGBXVR0 + n * 2 }
500
501 /*
502  * Trapped cp14 registers. We generally ignore most of the external
503  * debug, on the principle that they don't really make sense to a
504  * guest. Revisit this one day, whould this principle change.
505  */
506 static const struct sys_reg_desc cp14_regs[] = {
507         /* DBGIDR */
508         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
509         /* DBGDTRRXext */
510         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
511
512         DBG_BCR_BVR_WCR_WVR(0),
513         /* DBGDSCRint */
514         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
515         DBG_BCR_BVR_WCR_WVR(1),
516         /* DBGDCCINT */
517         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
518         /* DBGDSCRext */
519         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
520         DBG_BCR_BVR_WCR_WVR(2),
521         /* DBGDTR[RT]Xint */
522         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
523         /* DBGDTR[RT]Xext */
524         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
525         DBG_BCR_BVR_WCR_WVR(3),
526         DBG_BCR_BVR_WCR_WVR(4),
527         DBG_BCR_BVR_WCR_WVR(5),
528         /* DBGWFAR */
529         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
530         /* DBGOSECCR */
531         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
532         DBG_BCR_BVR_WCR_WVR(6),
533         /* DBGVCR */
534         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
535         DBG_BCR_BVR_WCR_WVR(7),
536         DBG_BCR_BVR_WCR_WVR(8),
537         DBG_BCR_BVR_WCR_WVR(9),
538         DBG_BCR_BVR_WCR_WVR(10),
539         DBG_BCR_BVR_WCR_WVR(11),
540         DBG_BCR_BVR_WCR_WVR(12),
541         DBG_BCR_BVR_WCR_WVR(13),
542         DBG_BCR_BVR_WCR_WVR(14),
543         DBG_BCR_BVR_WCR_WVR(15),
544
545         /* DBGDRAR (32bit) */
546         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
547
548         DBGBXVR(0),
549         /* DBGOSLAR */
550         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
551         DBGBXVR(1),
552         /* DBGOSLSR */
553         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
554         DBGBXVR(2),
555         DBGBXVR(3),
556         /* DBGOSDLR */
557         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
558         DBGBXVR(4),
559         /* DBGPRCR */
560         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
561         DBGBXVR(5),
562         DBGBXVR(6),
563         DBGBXVR(7),
564         DBGBXVR(8),
565         DBGBXVR(9),
566         DBGBXVR(10),
567         DBGBXVR(11),
568         DBGBXVR(12),
569         DBGBXVR(13),
570         DBGBXVR(14),
571         DBGBXVR(15),
572
573         /* DBGDSAR (32bit) */
574         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
575
576         /* DBGDEVID2 */
577         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
578         /* DBGDEVID1 */
579         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
580         /* DBGDEVID */
581         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
582         /* DBGCLAIMSET */
583         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
584         /* DBGCLAIMCLR */
585         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
586         /* DBGAUTHSTATUS */
587         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
588 };
589
590 /* Trapped cp14 64bit registers */
591 static const struct sys_reg_desc cp14_64_regs[] = {
592         /* DBGDRAR (64bit) */
593         { Op1( 0), CRm( 1), .access = trap_raz_wi },
594
595         /* DBGDSAR (64bit) */
596         { Op1( 0), CRm( 2), .access = trap_raz_wi },
597 };
598
599 /*
600  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
601  * depending on the way they are accessed (as a 32bit or a 64bit
602  * register).
603  */
604 static const struct sys_reg_desc cp15_regs[] = {
605         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
606         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
607         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
608         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
609         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
610         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
611         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
612         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
613         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
614         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
615         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
616
617         /*
618          * DC{C,I,CI}SW operations:
619          */
620         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
621         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
622         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
623
624         /* PMU */
625         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
626         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
627         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
628         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
629         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
630         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
631         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
632         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
633         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
634         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
635         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
636         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
637         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
638
639         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
640         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
641         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
642         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
643
644         /* ICC_SRE */
645         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
646
647         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
648 };
649
650 static const struct sys_reg_desc cp15_64_regs[] = {
651         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
652         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
653 };
654
655 /* Target specific emulation tables */
656 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
657
658 void kvm_register_target_sys_reg_table(unsigned int target,
659                                        struct kvm_sys_reg_target_table *table)
660 {
661         target_tables[target] = table;
662 }
663
664 /* Get specific register table for this target. */
665 static const struct sys_reg_desc *get_target_table(unsigned target,
666                                                    bool mode_is_64,
667                                                    size_t *num)
668 {
669         struct kvm_sys_reg_target_table *table;
670
671         table = target_tables[target];
672         if (mode_is_64) {
673                 *num = table->table64.num;
674                 return table->table64.table;
675         } else {
676                 *num = table->table32.num;
677                 return table->table32.table;
678         }
679 }
680
681 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
682                                          const struct sys_reg_desc table[],
683                                          unsigned int num)
684 {
685         unsigned int i;
686
687         for (i = 0; i < num; i++) {
688                 const struct sys_reg_desc *r = &table[i];
689
690                 if (params->Op0 != r->Op0)
691                         continue;
692                 if (params->Op1 != r->Op1)
693                         continue;
694                 if (params->CRn != r->CRn)
695                         continue;
696                 if (params->CRm != r->CRm)
697                         continue;
698                 if (params->Op2 != r->Op2)
699                         continue;
700
701                 return r;
702         }
703         return NULL;
704 }
705
706 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
707 {
708         kvm_inject_undefined(vcpu);
709         return 1;
710 }
711
712 /*
713  * emulate_cp --  tries to match a sys_reg access in a handling table, and
714  *                call the corresponding trap handler.
715  *
716  * @params: pointer to the descriptor of the access
717  * @table: array of trap descriptors
718  * @num: size of the trap descriptor array
719  *
720  * Return 0 if the access has been handled, and -1 if not.
721  */
722 static int emulate_cp(struct kvm_vcpu *vcpu,
723                       const struct sys_reg_params *params,
724                       const struct sys_reg_desc *table,
725                       size_t num)
726 {
727         const struct sys_reg_desc *r;
728
729         if (!table)
730                 return -1;      /* Not handled */
731
732         r = find_reg(params, table, num);
733
734         if (r) {
735                 /*
736                  * Not having an accessor means that we have
737                  * configured a trap that we don't know how to
738                  * handle. This certainly qualifies as a gross bug
739                  * that should be fixed right away.
740                  */
741                 BUG_ON(!r->access);
742
743                 if (likely(r->access(vcpu, params, r))) {
744                         /* Skip instruction, since it was emulated */
745                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
746                 }
747
748                 /* Handled */
749                 return 0;
750         }
751
752         /* Not handled */
753         return -1;
754 }
755
756 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
757                                 struct sys_reg_params *params)
758 {
759         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
760         int cp;
761
762         switch(hsr_ec) {
763         case ESR_EL2_EC_CP15_32:
764         case ESR_EL2_EC_CP15_64:
765                 cp = 15;
766                 break;
767         case ESR_EL2_EC_CP14_MR:
768         case ESR_EL2_EC_CP14_64:
769                 cp = 14;
770                 break;
771         default:
772                 WARN_ON((cp = -1));
773         }
774
775         kvm_err("Unsupported guest CP%d access at: %08lx\n",
776                 cp, *vcpu_pc(vcpu));
777         print_sys_reg_instr(params);
778         kvm_inject_undefined(vcpu);
779 }
780
781 /**
782  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
783  * @vcpu: The VCPU pointer
784  * @run:  The kvm_run struct
785  */
786 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
787                             const struct sys_reg_desc *global,
788                             size_t nr_global,
789                             const struct sys_reg_desc *target_specific,
790                             size_t nr_specific)
791 {
792         struct sys_reg_params params;
793         u32 hsr = kvm_vcpu_get_hsr(vcpu);
794         int Rt2 = (hsr >> 10) & 0xf;
795
796         params.is_aarch32 = true;
797         params.is_32bit = false;
798         params.CRm = (hsr >> 1) & 0xf;
799         params.Rt = (hsr >> 5) & 0xf;
800         params.is_write = ((hsr & 1) == 0);
801
802         params.Op0 = 0;
803         params.Op1 = (hsr >> 16) & 0xf;
804         params.Op2 = 0;
805         params.CRn = 0;
806
807         /*
808          * Massive hack here. Store Rt2 in the top 32bits so we only
809          * have one register to deal with. As we use the same trap
810          * backends between AArch32 and AArch64, we get away with it.
811          */
812         if (params.is_write) {
813                 u64 val = *vcpu_reg(vcpu, params.Rt);
814                 val &= 0xffffffff;
815                 val |= *vcpu_reg(vcpu, Rt2) << 32;
816                 *vcpu_reg(vcpu, params.Rt) = val;
817         }
818
819         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
820                 goto out;
821         if (!emulate_cp(vcpu, &params, global, nr_global))
822                 goto out;
823
824         unhandled_cp_access(vcpu, &params);
825
826 out:
827         /* Do the opposite hack for the read side */
828         if (!params.is_write) {
829                 u64 val = *vcpu_reg(vcpu, params.Rt);
830                 val >>= 32;
831                 *vcpu_reg(vcpu, Rt2) = val;
832         }
833
834         return 1;
835 }
836
837 /**
838  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
839  * @vcpu: The VCPU pointer
840  * @run:  The kvm_run struct
841  */
842 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
843                             const struct sys_reg_desc *global,
844                             size_t nr_global,
845                             const struct sys_reg_desc *target_specific,
846                             size_t nr_specific)
847 {
848         struct sys_reg_params params;
849         u32 hsr = kvm_vcpu_get_hsr(vcpu);
850
851         params.is_aarch32 = true;
852         params.is_32bit = true;
853         params.CRm = (hsr >> 1) & 0xf;
854         params.Rt  = (hsr >> 5) & 0xf;
855         params.is_write = ((hsr & 1) == 0);
856         params.CRn = (hsr >> 10) & 0xf;
857         params.Op0 = 0;
858         params.Op1 = (hsr >> 14) & 0x7;
859         params.Op2 = (hsr >> 17) & 0x7;
860
861         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
862                 return 1;
863         if (!emulate_cp(vcpu, &params, global, nr_global))
864                 return 1;
865
866         unhandled_cp_access(vcpu, &params);
867         return 1;
868 }
869
870 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
871 {
872         const struct sys_reg_desc *target_specific;
873         size_t num;
874
875         target_specific = get_target_table(vcpu->arch.target, false, &num);
876         return kvm_handle_cp_64(vcpu,
877                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
878                                 target_specific, num);
879 }
880
881 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
882 {
883         const struct sys_reg_desc *target_specific;
884         size_t num;
885
886         target_specific = get_target_table(vcpu->arch.target, false, &num);
887         return kvm_handle_cp_32(vcpu,
888                                 cp15_regs, ARRAY_SIZE(cp15_regs),
889                                 target_specific, num);
890 }
891
892 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
893 {
894         return kvm_handle_cp_64(vcpu,
895                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
896                                 NULL, 0);
897 }
898
899 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
900 {
901         return kvm_handle_cp_32(vcpu,
902                                 cp14_regs, ARRAY_SIZE(cp14_regs),
903                                 NULL, 0);
904 }
905
906 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
907                            const struct sys_reg_params *params)
908 {
909         size_t num;
910         const struct sys_reg_desc *table, *r;
911
912         table = get_target_table(vcpu->arch.target, true, &num);
913
914         /* Search target-specific then generic table. */
915         r = find_reg(params, table, num);
916         if (!r)
917                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
918
919         if (likely(r)) {
920                 /*
921                  * Not having an accessor means that we have
922                  * configured a trap that we don't know how to
923                  * handle. This certainly qualifies as a gross bug
924                  * that should be fixed right away.
925                  */
926                 BUG_ON(!r->access);
927
928                 if (likely(r->access(vcpu, params, r))) {
929                         /* Skip instruction, since it was emulated */
930                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
931                         return 1;
932                 }
933                 /* If access function fails, it should complain. */
934         } else {
935                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
936                         *vcpu_pc(vcpu));
937                 print_sys_reg_instr(params);
938         }
939         kvm_inject_undefined(vcpu);
940         return 1;
941 }
942
943 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
944                               const struct sys_reg_desc *table, size_t num)
945 {
946         unsigned long i;
947
948         for (i = 0; i < num; i++)
949                 if (table[i].reset)
950                         table[i].reset(vcpu, &table[i]);
951 }
952
953 /**
954  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
955  * @vcpu: The VCPU pointer
956  * @run:  The kvm_run struct
957  */
958 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
959 {
960         struct sys_reg_params params;
961         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
962
963         params.is_aarch32 = false;
964         params.is_32bit = false;
965         params.Op0 = (esr >> 20) & 3;
966         params.Op1 = (esr >> 14) & 0x7;
967         params.CRn = (esr >> 10) & 0xf;
968         params.CRm = (esr >> 1) & 0xf;
969         params.Op2 = (esr >> 17) & 0x7;
970         params.Rt = (esr >> 5) & 0x1f;
971         params.is_write = !(esr & 1);
972
973         return emulate_sys_reg(vcpu, &params);
974 }
975
976 /******************************************************************************
977  * Userspace API
978  *****************************************************************************/
979
980 static bool index_to_params(u64 id, struct sys_reg_params *params)
981 {
982         switch (id & KVM_REG_SIZE_MASK) {
983         case KVM_REG_SIZE_U64:
984                 /* Any unused index bits means it's not valid. */
985                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
986                               | KVM_REG_ARM_COPROC_MASK
987                               | KVM_REG_ARM64_SYSREG_OP0_MASK
988                               | KVM_REG_ARM64_SYSREG_OP1_MASK
989                               | KVM_REG_ARM64_SYSREG_CRN_MASK
990                               | KVM_REG_ARM64_SYSREG_CRM_MASK
991                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
992                         return false;
993                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
994                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
995                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
996                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
997                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
998                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
999                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1000                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1001                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1002                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1003                 return true;
1004         default:
1005                 return false;
1006         }
1007 }
1008
1009 /* Decode an index value, and find the sys_reg_desc entry. */
1010 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1011                                                     u64 id)
1012 {
1013         size_t num;
1014         const struct sys_reg_desc *table, *r;
1015         struct sys_reg_params params;
1016
1017         /* We only do sys_reg for now. */
1018         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1019                 return NULL;
1020
1021         if (!index_to_params(id, &params))
1022                 return NULL;
1023
1024         table = get_target_table(vcpu->arch.target, true, &num);
1025         r = find_reg(&params, table, num);
1026         if (!r)
1027                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1028
1029         /* Not saved in the sys_reg array? */
1030         if (r && !r->reg)
1031                 r = NULL;
1032
1033         return r;
1034 }
1035
1036 /*
1037  * These are the invariant sys_reg registers: we let the guest see the
1038  * host versions of these, so they're part of the guest state.
1039  *
1040  * A future CPU may provide a mechanism to present different values to
1041  * the guest, or a future kvm may trap them.
1042  */
1043
1044 #define FUNCTION_INVARIANT(reg)                                         \
1045         static void get_##reg(struct kvm_vcpu *v,                       \
1046                               const struct sys_reg_desc *r)             \
1047         {                                                               \
1048                 u64 val;                                                \
1049                                                                         \
1050                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1051                              : "=r" (val));                             \
1052                 ((struct sys_reg_desc *)r)->val = val;                  \
1053         }
1054
1055 FUNCTION_INVARIANT(midr_el1)
1056 FUNCTION_INVARIANT(ctr_el0)
1057 FUNCTION_INVARIANT(revidr_el1)
1058 FUNCTION_INVARIANT(id_pfr0_el1)
1059 FUNCTION_INVARIANT(id_pfr1_el1)
1060 FUNCTION_INVARIANT(id_dfr0_el1)
1061 FUNCTION_INVARIANT(id_afr0_el1)
1062 FUNCTION_INVARIANT(id_mmfr0_el1)
1063 FUNCTION_INVARIANT(id_mmfr1_el1)
1064 FUNCTION_INVARIANT(id_mmfr2_el1)
1065 FUNCTION_INVARIANT(id_mmfr3_el1)
1066 FUNCTION_INVARIANT(id_isar0_el1)
1067 FUNCTION_INVARIANT(id_isar1_el1)
1068 FUNCTION_INVARIANT(id_isar2_el1)
1069 FUNCTION_INVARIANT(id_isar3_el1)
1070 FUNCTION_INVARIANT(id_isar4_el1)
1071 FUNCTION_INVARIANT(id_isar5_el1)
1072 FUNCTION_INVARIANT(clidr_el1)
1073 FUNCTION_INVARIANT(aidr_el1)
1074
1075 /* ->val is filled in by kvm_sys_reg_table_init() */
1076 static struct sys_reg_desc invariant_sys_regs[] = {
1077         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1078           NULL, get_midr_el1 },
1079         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1080           NULL, get_revidr_el1 },
1081         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1082           NULL, get_id_pfr0_el1 },
1083         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1084           NULL, get_id_pfr1_el1 },
1085         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1086           NULL, get_id_dfr0_el1 },
1087         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1088           NULL, get_id_afr0_el1 },
1089         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1090           NULL, get_id_mmfr0_el1 },
1091         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1092           NULL, get_id_mmfr1_el1 },
1093         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1094           NULL, get_id_mmfr2_el1 },
1095         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1096           NULL, get_id_mmfr3_el1 },
1097         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1098           NULL, get_id_isar0_el1 },
1099         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1100           NULL, get_id_isar1_el1 },
1101         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1102           NULL, get_id_isar2_el1 },
1103         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1104           NULL, get_id_isar3_el1 },
1105         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1106           NULL, get_id_isar4_el1 },
1107         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1108           NULL, get_id_isar5_el1 },
1109         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1110           NULL, get_clidr_el1 },
1111         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1112           NULL, get_aidr_el1 },
1113         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1114           NULL, get_ctr_el0 },
1115 };
1116
1117 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1118 {
1119         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1120                 return -EFAULT;
1121         return 0;
1122 }
1123
1124 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1125 {
1126         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1127                 return -EFAULT;
1128         return 0;
1129 }
1130
1131 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1132 {
1133         struct sys_reg_params params;
1134         const struct sys_reg_desc *r;
1135
1136         if (!index_to_params(id, &params))
1137                 return -ENOENT;
1138
1139         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1140         if (!r)
1141                 return -ENOENT;
1142
1143         return reg_to_user(uaddr, &r->val, id);
1144 }
1145
1146 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1147 {
1148         struct sys_reg_params params;
1149         const struct sys_reg_desc *r;
1150         int err;
1151         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1152
1153         if (!index_to_params(id, &params))
1154                 return -ENOENT;
1155         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1156         if (!r)
1157                 return -ENOENT;
1158
1159         err = reg_from_user(&val, uaddr, id);
1160         if (err)
1161                 return err;
1162
1163         /* This is what we mean by invariant: you can't change it. */
1164         if (r->val != val)
1165                 return -EINVAL;
1166
1167         return 0;
1168 }
1169
1170 static bool is_valid_cache(u32 val)
1171 {
1172         u32 level, ctype;
1173
1174         if (val >= CSSELR_MAX)
1175                 return false;
1176
1177         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1178         level = (val >> 1);
1179         ctype = (cache_levels >> (level * 3)) & 7;
1180
1181         switch (ctype) {
1182         case 0: /* No cache */
1183                 return false;
1184         case 1: /* Instruction cache only */
1185                 return (val & 1);
1186         case 2: /* Data cache only */
1187         case 4: /* Unified cache */
1188                 return !(val & 1);
1189         case 3: /* Separate instruction and data caches */
1190                 return true;
1191         default: /* Reserved: we can't know instruction or data. */
1192                 return false;
1193         }
1194 }
1195
1196 static int demux_c15_get(u64 id, void __user *uaddr)
1197 {
1198         u32 val;
1199         u32 __user *uval = uaddr;
1200
1201         /* Fail if we have unknown bits set. */
1202         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1203                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1204                 return -ENOENT;
1205
1206         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1207         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1208                 if (KVM_REG_SIZE(id) != 4)
1209                         return -ENOENT;
1210                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1211                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1212                 if (!is_valid_cache(val))
1213                         return -ENOENT;
1214
1215                 return put_user(get_ccsidr(val), uval);
1216         default:
1217                 return -ENOENT;
1218         }
1219 }
1220
1221 static int demux_c15_set(u64 id, void __user *uaddr)
1222 {
1223         u32 val, newval;
1224         u32 __user *uval = uaddr;
1225
1226         /* Fail if we have unknown bits set. */
1227         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1228                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1229                 return -ENOENT;
1230
1231         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1232         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1233                 if (KVM_REG_SIZE(id) != 4)
1234                         return -ENOENT;
1235                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1236                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1237                 if (!is_valid_cache(val))
1238                         return -ENOENT;
1239
1240                 if (get_user(newval, uval))
1241                         return -EFAULT;
1242
1243                 /* This is also invariant: you can't change it. */
1244                 if (newval != get_ccsidr(val))
1245                         return -EINVAL;
1246                 return 0;
1247         default:
1248                 return -ENOENT;
1249         }
1250 }
1251
1252 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1253 {
1254         const struct sys_reg_desc *r;
1255         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1256
1257         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1258                 return demux_c15_get(reg->id, uaddr);
1259
1260         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1261                 return -ENOENT;
1262
1263         r = index_to_sys_reg_desc(vcpu, reg->id);
1264         if (!r)
1265                 return get_invariant_sys_reg(reg->id, uaddr);
1266
1267         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1268 }
1269
1270 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1271 {
1272         const struct sys_reg_desc *r;
1273         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1274
1275         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1276                 return demux_c15_set(reg->id, uaddr);
1277
1278         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1279                 return -ENOENT;
1280
1281         r = index_to_sys_reg_desc(vcpu, reg->id);
1282         if (!r)
1283                 return set_invariant_sys_reg(reg->id, uaddr);
1284
1285         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1286 }
1287
1288 static unsigned int num_demux_regs(void)
1289 {
1290         unsigned int i, count = 0;
1291
1292         for (i = 0; i < CSSELR_MAX; i++)
1293                 if (is_valid_cache(i))
1294                         count++;
1295
1296         return count;
1297 }
1298
1299 static int write_demux_regids(u64 __user *uindices)
1300 {
1301         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1302         unsigned int i;
1303
1304         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1305         for (i = 0; i < CSSELR_MAX; i++) {
1306                 if (!is_valid_cache(i))
1307                         continue;
1308                 if (put_user(val | i, uindices))
1309                         return -EFAULT;
1310                 uindices++;
1311         }
1312         return 0;
1313 }
1314
1315 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1316 {
1317         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1318                 KVM_REG_ARM64_SYSREG |
1319                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1320                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1321                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1322                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1323                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1324 }
1325
1326 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1327 {
1328         if (!*uind)
1329                 return true;
1330
1331         if (put_user(sys_reg_to_index(reg), *uind))
1332                 return false;
1333
1334         (*uind)++;
1335         return true;
1336 }
1337
1338 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1339 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1340 {
1341         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1342         unsigned int total = 0;
1343         size_t num;
1344
1345         /* We check for duplicates here, to allow arch-specific overrides. */
1346         i1 = get_target_table(vcpu->arch.target, true, &num);
1347         end1 = i1 + num;
1348         i2 = sys_reg_descs;
1349         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1350
1351         BUG_ON(i1 == end1 || i2 == end2);
1352
1353         /* Walk carefully, as both tables may refer to the same register. */
1354         while (i1 || i2) {
1355                 int cmp = cmp_sys_reg(i1, i2);
1356                 /* target-specific overrides generic entry. */
1357                 if (cmp <= 0) {
1358                         /* Ignore registers we trap but don't save. */
1359                         if (i1->reg) {
1360                                 if (!copy_reg_to_user(i1, &uind))
1361                                         return -EFAULT;
1362                                 total++;
1363                         }
1364                 } else {
1365                         /* Ignore registers we trap but don't save. */
1366                         if (i2->reg) {
1367                                 if (!copy_reg_to_user(i2, &uind))
1368                                         return -EFAULT;
1369                                 total++;
1370                         }
1371                 }
1372
1373                 if (cmp <= 0 && ++i1 == end1)
1374                         i1 = NULL;
1375                 if (cmp >= 0 && ++i2 == end2)
1376                         i2 = NULL;
1377         }
1378         return total;
1379 }
1380
1381 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1382 {
1383         return ARRAY_SIZE(invariant_sys_regs)
1384                 + num_demux_regs()
1385                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1386 }
1387
1388 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1389 {
1390         unsigned int i;
1391         int err;
1392
1393         /* Then give them all the invariant registers' indices. */
1394         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1395                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1396                         return -EFAULT;
1397                 uindices++;
1398         }
1399
1400         err = walk_sys_regs(vcpu, uindices);
1401         if (err < 0)
1402                 return err;
1403         uindices += err;
1404
1405         return write_demux_regids(uindices);
1406 }
1407
1408 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1409 {
1410         unsigned int i;
1411
1412         for (i = 1; i < n; i++) {
1413                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1414                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1415                         return 1;
1416                 }
1417         }
1418
1419         return 0;
1420 }
1421
1422 void kvm_sys_reg_table_init(void)
1423 {
1424         unsigned int i;
1425         struct sys_reg_desc clidr;
1426
1427         /* Make sure tables are unique and in order. */
1428         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1429         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1430         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1431         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1432         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1433         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1434
1435         /* We abuse the reset function to overwrite the table itself. */
1436         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1437                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1438
1439         /*
1440          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1441          *
1442          *   If software reads the Cache Type fields from Ctype1
1443          *   upwards, once it has seen a value of 0b000, no caches
1444          *   exist at further-out levels of the hierarchy. So, for
1445          *   example, if Ctype3 is the first Cache Type field with a
1446          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1447          *   ignored.
1448          */
1449         get_clidr_el1(NULL, &clidr); /* Ugly... */
1450         cache_levels = clidr.val;
1451         for (i = 0; i < 7; i++)
1452                 if (((cache_levels >> (i*3)) & 7) == 0)
1453                         break;
1454         /* Clear all higher bits. */
1455         cache_levels &= (1 << (i*3))-1;
1456 }
1457
1458 /**
1459  * kvm_reset_sys_regs - sets system registers to reset value
1460  * @vcpu: The VCPU pointer
1461  *
1462  * This function finds the right table above and sets the registers on the
1463  * virtual CPU struct to their architecturally defined reset values.
1464  */
1465 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1466 {
1467         size_t num;
1468         const struct sys_reg_desc *table;
1469
1470         /* Catch someone adding a register without putting in reset entry. */
1471         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1472
1473         /* Generic chip reset first (so target could override). */
1474         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1475
1476         table = get_target_table(vcpu->arch.target, true, &num);
1477         reset_sys_reg_descs(vcpu, table, num);
1478
1479         for (num = 1; num < NR_SYS_REGS; num++)
1480                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1481                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1482 }