Merge tag 'scsi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb...
[linux-drm-fsl-dcu.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension        virt");
49 #endif
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 static unsigned long hyp_default_vectors;
54
55 /* Per-CPU variable containing the currently running vcpu. */
56 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u8 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 {
67         BUG_ON(preemptible());
68         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 }
70
71 /**
72  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
73  * Must be called from non-preemptible context
74  */
75 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 {
77         BUG_ON(preemptible());
78         return __this_cpu_read(kvm_arm_running_vcpu);
79 }
80
81 /**
82  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83  */
84 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
85 {
86         return &kvm_arm_running_vcpu;
87 }
88
89 int kvm_arch_hardware_enable(void *garbage)
90 {
91         return 0;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 void kvm_arch_hardware_disable(void *garbage)
100 {
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105         return 0;
106 }
107
108 void kvm_arch_hardware_unsetup(void)
109 {
110 }
111
112 void kvm_arch_check_processor_compat(void *rtn)
113 {
114         *(int *)rtn = 0;
115 }
116
117 void kvm_arch_sync_events(struct kvm *kvm)
118 {
119 }
120
121 /**
122  * kvm_arch_init_vm - initializes a VM data structure
123  * @kvm:        pointer to the KVM struct
124  */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127         int ret = 0;
128
129         if (type)
130                 return -EINVAL;
131
132         ret = kvm_alloc_stage2_pgd(kvm);
133         if (ret)
134                 goto out_fail_alloc;
135
136         ret = create_hyp_mappings(kvm, kvm + 1);
137         if (ret)
138                 goto out_free_stage2_pgd;
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         return ret;
144 out_free_stage2_pgd:
145         kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147         return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152         return VM_FAULT_SIGBUS;
153 }
154
155 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
156                            struct kvm_memory_slot *dont)
157 {
158 }
159
160 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
161 {
162         return 0;
163 }
164
165 /**
166  * kvm_arch_destroy_vm - destroy the VM data structure
167  * @kvm:        pointer to the KVM struct
168  */
169 void kvm_arch_destroy_vm(struct kvm *kvm)
170 {
171         int i;
172
173         kvm_free_stage2_pgd(kvm);
174
175         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
176                 if (kvm->vcpus[i]) {
177                         kvm_arch_vcpu_free(kvm->vcpus[i]);
178                         kvm->vcpus[i] = NULL;
179                 }
180         }
181 }
182
183 int kvm_dev_ioctl_check_extension(long ext)
184 {
185         int r;
186         switch (ext) {
187         case KVM_CAP_IRQCHIP:
188                 r = vgic_present;
189                 break;
190         case KVM_CAP_USER_MEMORY:
191         case KVM_CAP_SYNC_MMU:
192         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
193         case KVM_CAP_ONE_REG:
194         case KVM_CAP_ARM_PSCI:
195                 r = 1;
196                 break;
197         case KVM_CAP_COALESCED_MMIO:
198                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
199                 break;
200         case KVM_CAP_ARM_SET_DEVICE_ADDR:
201                 r = 1;
202                 break;
203         case KVM_CAP_NR_VCPUS:
204                 r = num_online_cpus();
205                 break;
206         case KVM_CAP_MAX_VCPUS:
207                 r = KVM_MAX_VCPUS;
208                 break;
209         default:
210                 r = kvm_arch_dev_ioctl_check_extension(ext);
211                 break;
212         }
213         return r;
214 }
215
216 long kvm_arch_dev_ioctl(struct file *filp,
217                         unsigned int ioctl, unsigned long arg)
218 {
219         return -EINVAL;
220 }
221
222 void kvm_arch_memslots_updated(struct kvm *kvm)
223 {
224 }
225
226 int kvm_arch_prepare_memory_region(struct kvm *kvm,
227                                    struct kvm_memory_slot *memslot,
228                                    struct kvm_userspace_memory_region *mem,
229                                    enum kvm_mr_change change)
230 {
231         return 0;
232 }
233
234 void kvm_arch_commit_memory_region(struct kvm *kvm,
235                                    struct kvm_userspace_memory_region *mem,
236                                    const struct kvm_memory_slot *old,
237                                    enum kvm_mr_change change)
238 {
239 }
240
241 void kvm_arch_flush_shadow_all(struct kvm *kvm)
242 {
243 }
244
245 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
246                                    struct kvm_memory_slot *slot)
247 {
248 }
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254
255         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
256         if (!vcpu) {
257                 err = -ENOMEM;
258                 goto out;
259         }
260
261         err = kvm_vcpu_init(vcpu, kvm, id);
262         if (err)
263                 goto free_vcpu;
264
265         err = create_hyp_mappings(vcpu, vcpu + 1);
266         if (err)
267                 goto vcpu_uninit;
268
269         return vcpu;
270 vcpu_uninit:
271         kvm_vcpu_uninit(vcpu);
272 free_vcpu:
273         kmem_cache_free(kvm_vcpu_cache, vcpu);
274 out:
275         return ERR_PTR(err);
276 }
277
278 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
279 {
280         return 0;
281 }
282
283 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
284 {
285         kvm_mmu_free_memory_caches(vcpu);
286         kvm_timer_vcpu_terminate(vcpu);
287         kmem_cache_free(kvm_vcpu_cache, vcpu);
288 }
289
290 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
291 {
292         kvm_arch_vcpu_free(vcpu);
293 }
294
295 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
296 {
297         return 0;
298 }
299
300 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
301 {
302         int ret;
303
304         /* Force users to call KVM_ARM_VCPU_INIT */
305         vcpu->arch.target = -1;
306
307         /* Set up VGIC */
308         ret = kvm_vgic_vcpu_init(vcpu);
309         if (ret)
310                 return ret;
311
312         /* Set up the timer */
313         kvm_timer_vcpu_init(vcpu);
314
315         return 0;
316 }
317
318 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
319 {
320 }
321
322 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
323 {
324         vcpu->cpu = cpu;
325         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
326
327         /*
328          * Check whether this vcpu requires the cache to be flushed on
329          * this physical CPU. This is a consequence of doing dcache
330          * operations by set/way on this vcpu. We do it here to be in
331          * a non-preemptible section.
332          */
333         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
334                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
335
336         kvm_arm_set_running_vcpu(vcpu);
337 }
338
339 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
340 {
341         kvm_arm_set_running_vcpu(NULL);
342 }
343
344 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
345                                         struct kvm_guest_debug *dbg)
346 {
347         return -EINVAL;
348 }
349
350
351 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
352                                     struct kvm_mp_state *mp_state)
353 {
354         return -EINVAL;
355 }
356
357 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
358                                     struct kvm_mp_state *mp_state)
359 {
360         return -EINVAL;
361 }
362
363 /**
364  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
365  * @v:          The VCPU pointer
366  *
367  * If the guest CPU is not waiting for interrupts or an interrupt line is
368  * asserted, the CPU is by definition runnable.
369  */
370 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
371 {
372         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
373 }
374
375 /* Just ensure a guest exit from a particular CPU */
376 static void exit_vm_noop(void *info)
377 {
378 }
379
380 void force_vm_exit(const cpumask_t *mask)
381 {
382         smp_call_function_many(mask, exit_vm_noop, NULL, true);
383 }
384
385 /**
386  * need_new_vmid_gen - check that the VMID is still valid
387  * @kvm: The VM's VMID to checkt
388  *
389  * return true if there is a new generation of VMIDs being used
390  *
391  * The hardware supports only 256 values with the value zero reserved for the
392  * host, so we check if an assigned value belongs to a previous generation,
393  * which which requires us to assign a new value. If we're the first to use a
394  * VMID for the new generation, we must flush necessary caches and TLBs on all
395  * CPUs.
396  */
397 static bool need_new_vmid_gen(struct kvm *kvm)
398 {
399         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
400 }
401
402 /**
403  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
404  * @kvm The guest that we are about to run
405  *
406  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
407  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
408  * caches and TLBs.
409  */
410 static void update_vttbr(struct kvm *kvm)
411 {
412         phys_addr_t pgd_phys;
413         u64 vmid;
414
415         if (!need_new_vmid_gen(kvm))
416                 return;
417
418         spin_lock(&kvm_vmid_lock);
419
420         /*
421          * We need to re-check the vmid_gen here to ensure that if another vcpu
422          * already allocated a valid vmid for this vm, then this vcpu should
423          * use the same vmid.
424          */
425         if (!need_new_vmid_gen(kvm)) {
426                 spin_unlock(&kvm_vmid_lock);
427                 return;
428         }
429
430         /* First user of a new VMID generation? */
431         if (unlikely(kvm_next_vmid == 0)) {
432                 atomic64_inc(&kvm_vmid_gen);
433                 kvm_next_vmid = 1;
434
435                 /*
436                  * On SMP we know no other CPUs can use this CPU's or each
437                  * other's VMID after force_vm_exit returns since the
438                  * kvm_vmid_lock blocks them from reentry to the guest.
439                  */
440                 force_vm_exit(cpu_all_mask);
441                 /*
442                  * Now broadcast TLB + ICACHE invalidation over the inner
443                  * shareable domain to make sure all data structures are
444                  * clean.
445                  */
446                 kvm_call_hyp(__kvm_flush_vm_context);
447         }
448
449         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
450         kvm->arch.vmid = kvm_next_vmid;
451         kvm_next_vmid++;
452
453         /* update vttbr to be used with the new vmid */
454         pgd_phys = virt_to_phys(kvm->arch.pgd);
455         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
456         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
457         kvm->arch.vttbr |= vmid;
458
459         spin_unlock(&kvm_vmid_lock);
460 }
461
462 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
463 {
464         if (likely(vcpu->arch.has_run_once))
465                 return 0;
466
467         vcpu->arch.has_run_once = true;
468
469         /*
470          * Initialize the VGIC before running a vcpu the first time on
471          * this VM.
472          */
473         if (irqchip_in_kernel(vcpu->kvm) &&
474             unlikely(!vgic_initialized(vcpu->kvm))) {
475                 int ret = kvm_vgic_init(vcpu->kvm);
476                 if (ret)
477                         return ret;
478         }
479
480         /*
481          * Handle the "start in power-off" case by calling into the
482          * PSCI code.
483          */
484         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
485                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
486                 kvm_psci_call(vcpu);
487         }
488
489         return 0;
490 }
491
492 static void vcpu_pause(struct kvm_vcpu *vcpu)
493 {
494         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
495
496         wait_event_interruptible(*wq, !vcpu->arch.pause);
497 }
498
499 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
500 {
501         return vcpu->arch.target >= 0;
502 }
503
504 /**
505  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
506  * @vcpu:       The VCPU pointer
507  * @run:        The kvm_run structure pointer used for userspace state exchange
508  *
509  * This function is called through the VCPU_RUN ioctl called from user space. It
510  * will execute VM code in a loop until the time slice for the process is used
511  * or some emulation is needed from user space in which case the function will
512  * return with return value 0 and with the kvm_run structure filled in with the
513  * required data for the requested emulation.
514  */
515 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
516 {
517         int ret;
518         sigset_t sigsaved;
519
520         if (unlikely(!kvm_vcpu_initialized(vcpu)))
521                 return -ENOEXEC;
522
523         ret = kvm_vcpu_first_run_init(vcpu);
524         if (ret)
525                 return ret;
526
527         if (run->exit_reason == KVM_EXIT_MMIO) {
528                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
529                 if (ret)
530                         return ret;
531         }
532
533         if (vcpu->sigset_active)
534                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
535
536         ret = 1;
537         run->exit_reason = KVM_EXIT_UNKNOWN;
538         while (ret > 0) {
539                 /*
540                  * Check conditions before entering the guest
541                  */
542                 cond_resched();
543
544                 update_vttbr(vcpu->kvm);
545
546                 if (vcpu->arch.pause)
547                         vcpu_pause(vcpu);
548
549                 kvm_vgic_flush_hwstate(vcpu);
550                 kvm_timer_flush_hwstate(vcpu);
551
552                 local_irq_disable();
553
554                 /*
555                  * Re-check atomic conditions
556                  */
557                 if (signal_pending(current)) {
558                         ret = -EINTR;
559                         run->exit_reason = KVM_EXIT_INTR;
560                 }
561
562                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
563                         local_irq_enable();
564                         kvm_timer_sync_hwstate(vcpu);
565                         kvm_vgic_sync_hwstate(vcpu);
566                         continue;
567                 }
568
569                 /**************************************************************
570                  * Enter the guest
571                  */
572                 trace_kvm_entry(*vcpu_pc(vcpu));
573                 kvm_guest_enter();
574                 vcpu->mode = IN_GUEST_MODE;
575
576                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
577
578                 vcpu->mode = OUTSIDE_GUEST_MODE;
579                 vcpu->arch.last_pcpu = smp_processor_id();
580                 kvm_guest_exit();
581                 trace_kvm_exit(*vcpu_pc(vcpu));
582                 /*
583                  * We may have taken a host interrupt in HYP mode (ie
584                  * while executing the guest). This interrupt is still
585                  * pending, as we haven't serviced it yet!
586                  *
587                  * We're now back in SVC mode, with interrupts
588                  * disabled.  Enabling the interrupts now will have
589                  * the effect of taking the interrupt again, in SVC
590                  * mode this time.
591                  */
592                 local_irq_enable();
593
594                 /*
595                  * Back from guest
596                  *************************************************************/
597
598                 kvm_timer_sync_hwstate(vcpu);
599                 kvm_vgic_sync_hwstate(vcpu);
600
601                 ret = handle_exit(vcpu, run, ret);
602         }
603
604         if (vcpu->sigset_active)
605                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
606         return ret;
607 }
608
609 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
610 {
611         int bit_index;
612         bool set;
613         unsigned long *ptr;
614
615         if (number == KVM_ARM_IRQ_CPU_IRQ)
616                 bit_index = __ffs(HCR_VI);
617         else /* KVM_ARM_IRQ_CPU_FIQ */
618                 bit_index = __ffs(HCR_VF);
619
620         ptr = (unsigned long *)&vcpu->arch.irq_lines;
621         if (level)
622                 set = test_and_set_bit(bit_index, ptr);
623         else
624                 set = test_and_clear_bit(bit_index, ptr);
625
626         /*
627          * If we didn't change anything, no need to wake up or kick other CPUs
628          */
629         if (set == level)
630                 return 0;
631
632         /*
633          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
634          * trigger a world-switch round on the running physical CPU to set the
635          * virtual IRQ/FIQ fields in the HCR appropriately.
636          */
637         kvm_vcpu_kick(vcpu);
638
639         return 0;
640 }
641
642 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
643                           bool line_status)
644 {
645         u32 irq = irq_level->irq;
646         unsigned int irq_type, vcpu_idx, irq_num;
647         int nrcpus = atomic_read(&kvm->online_vcpus);
648         struct kvm_vcpu *vcpu = NULL;
649         bool level = irq_level->level;
650
651         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
652         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
653         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
654
655         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
656
657         switch (irq_type) {
658         case KVM_ARM_IRQ_TYPE_CPU:
659                 if (irqchip_in_kernel(kvm))
660                         return -ENXIO;
661
662                 if (vcpu_idx >= nrcpus)
663                         return -EINVAL;
664
665                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
666                 if (!vcpu)
667                         return -EINVAL;
668
669                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
670                         return -EINVAL;
671
672                 return vcpu_interrupt_line(vcpu, irq_num, level);
673         case KVM_ARM_IRQ_TYPE_PPI:
674                 if (!irqchip_in_kernel(kvm))
675                         return -ENXIO;
676
677                 if (vcpu_idx >= nrcpus)
678                         return -EINVAL;
679
680                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
681                 if (!vcpu)
682                         return -EINVAL;
683
684                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
685                         return -EINVAL;
686
687                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
688         case KVM_ARM_IRQ_TYPE_SPI:
689                 if (!irqchip_in_kernel(kvm))
690                         return -ENXIO;
691
692                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
693                     irq_num > KVM_ARM_IRQ_GIC_MAX)
694                         return -EINVAL;
695
696                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
697         }
698
699         return -EINVAL;
700 }
701
702 long kvm_arch_vcpu_ioctl(struct file *filp,
703                          unsigned int ioctl, unsigned long arg)
704 {
705         struct kvm_vcpu *vcpu = filp->private_data;
706         void __user *argp = (void __user *)arg;
707
708         switch (ioctl) {
709         case KVM_ARM_VCPU_INIT: {
710                 struct kvm_vcpu_init init;
711
712                 if (copy_from_user(&init, argp, sizeof(init)))
713                         return -EFAULT;
714
715                 return kvm_vcpu_set_target(vcpu, &init);
716
717         }
718         case KVM_SET_ONE_REG:
719         case KVM_GET_ONE_REG: {
720                 struct kvm_one_reg reg;
721
722                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
723                         return -ENOEXEC;
724
725                 if (copy_from_user(&reg, argp, sizeof(reg)))
726                         return -EFAULT;
727                 if (ioctl == KVM_SET_ONE_REG)
728                         return kvm_arm_set_reg(vcpu, &reg);
729                 else
730                         return kvm_arm_get_reg(vcpu, &reg);
731         }
732         case KVM_GET_REG_LIST: {
733                 struct kvm_reg_list __user *user_list = argp;
734                 struct kvm_reg_list reg_list;
735                 unsigned n;
736
737                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
738                         return -ENOEXEC;
739
740                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
741                         return -EFAULT;
742                 n = reg_list.n;
743                 reg_list.n = kvm_arm_num_regs(vcpu);
744                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
745                         return -EFAULT;
746                 if (n < reg_list.n)
747                         return -E2BIG;
748                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
749         }
750         default:
751                 return -EINVAL;
752         }
753 }
754
755 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
756 {
757         return -EINVAL;
758 }
759
760 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
761                                         struct kvm_arm_device_addr *dev_addr)
762 {
763         unsigned long dev_id, type;
764
765         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
766                 KVM_ARM_DEVICE_ID_SHIFT;
767         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
768                 KVM_ARM_DEVICE_TYPE_SHIFT;
769
770         switch (dev_id) {
771         case KVM_ARM_DEVICE_VGIC_V2:
772                 if (!vgic_present)
773                         return -ENXIO;
774                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
775         default:
776                 return -ENODEV;
777         }
778 }
779
780 long kvm_arch_vm_ioctl(struct file *filp,
781                        unsigned int ioctl, unsigned long arg)
782 {
783         struct kvm *kvm = filp->private_data;
784         void __user *argp = (void __user *)arg;
785
786         switch (ioctl) {
787         case KVM_CREATE_IRQCHIP: {
788                 if (vgic_present)
789                         return kvm_vgic_create(kvm);
790                 else
791                         return -ENXIO;
792         }
793         case KVM_ARM_SET_DEVICE_ADDR: {
794                 struct kvm_arm_device_addr dev_addr;
795
796                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
797                         return -EFAULT;
798                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
799         }
800         default:
801                 return -EINVAL;
802         }
803 }
804
805 static void cpu_init_hyp_mode(void *dummy)
806 {
807         phys_addr_t boot_pgd_ptr;
808         phys_addr_t pgd_ptr;
809         unsigned long hyp_stack_ptr;
810         unsigned long stack_page;
811         unsigned long vector_ptr;
812
813         /* Switch from the HYP stub to our own HYP init vector */
814         __hyp_set_vectors(kvm_get_idmap_vector());
815
816         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
817         pgd_ptr = kvm_mmu_get_httbr();
818         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
819         hyp_stack_ptr = stack_page + PAGE_SIZE;
820         vector_ptr = (unsigned long)__kvm_hyp_vector;
821
822         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
823 }
824
825 static int hyp_init_cpu_notify(struct notifier_block *self,
826                                unsigned long action, void *cpu)
827 {
828         switch (action) {
829         case CPU_STARTING:
830         case CPU_STARTING_FROZEN:
831                 cpu_init_hyp_mode(NULL);
832                 break;
833         }
834
835         return NOTIFY_OK;
836 }
837
838 static struct notifier_block hyp_init_cpu_nb = {
839         .notifier_call = hyp_init_cpu_notify,
840 };
841
842 /**
843  * Inits Hyp-mode on all online CPUs
844  */
845 static int init_hyp_mode(void)
846 {
847         int cpu;
848         int err = 0;
849
850         /*
851          * Allocate Hyp PGD and setup Hyp identity mapping
852          */
853         err = kvm_mmu_init();
854         if (err)
855                 goto out_err;
856
857         /*
858          * It is probably enough to obtain the default on one
859          * CPU. It's unlikely to be different on the others.
860          */
861         hyp_default_vectors = __hyp_get_vectors();
862
863         /*
864          * Allocate stack pages for Hypervisor-mode
865          */
866         for_each_possible_cpu(cpu) {
867                 unsigned long stack_page;
868
869                 stack_page = __get_free_page(GFP_KERNEL);
870                 if (!stack_page) {
871                         err = -ENOMEM;
872                         goto out_free_stack_pages;
873                 }
874
875                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
876         }
877
878         /*
879          * Map the Hyp-code called directly from the host
880          */
881         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
882         if (err) {
883                 kvm_err("Cannot map world-switch code\n");
884                 goto out_free_mappings;
885         }
886
887         /*
888          * Map the Hyp stack pages
889          */
890         for_each_possible_cpu(cpu) {
891                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
892                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
893
894                 if (err) {
895                         kvm_err("Cannot map hyp stack\n");
896                         goto out_free_mappings;
897                 }
898         }
899
900         /*
901          * Map the host CPU structures
902          */
903         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
904         if (!kvm_host_cpu_state) {
905                 err = -ENOMEM;
906                 kvm_err("Cannot allocate host CPU state\n");
907                 goto out_free_mappings;
908         }
909
910         for_each_possible_cpu(cpu) {
911                 kvm_cpu_context_t *cpu_ctxt;
912
913                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
914                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
915
916                 if (err) {
917                         kvm_err("Cannot map host CPU state: %d\n", err);
918                         goto out_free_context;
919                 }
920         }
921
922         /*
923          * Execute the init code on each CPU.
924          */
925         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
926
927         /*
928          * Init HYP view of VGIC
929          */
930         err = kvm_vgic_hyp_init();
931         if (err)
932                 goto out_free_context;
933
934 #ifdef CONFIG_KVM_ARM_VGIC
935                 vgic_present = true;
936 #endif
937
938         /*
939          * Init HYP architected timer support
940          */
941         err = kvm_timer_hyp_init();
942         if (err)
943                 goto out_free_mappings;
944
945 #ifndef CONFIG_HOTPLUG_CPU
946         free_boot_hyp_pgd();
947 #endif
948
949         kvm_perf_init();
950
951         kvm_info("Hyp mode initialized successfully\n");
952
953         return 0;
954 out_free_context:
955         free_percpu(kvm_host_cpu_state);
956 out_free_mappings:
957         free_hyp_pgds();
958 out_free_stack_pages:
959         for_each_possible_cpu(cpu)
960                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
961 out_err:
962         kvm_err("error initializing Hyp mode: %d\n", err);
963         return err;
964 }
965
966 static void check_kvm_target_cpu(void *ret)
967 {
968         *(int *)ret = kvm_target_cpu();
969 }
970
971 /**
972  * Initialize Hyp-mode and memory mappings on all CPUs.
973  */
974 int kvm_arch_init(void *opaque)
975 {
976         int err;
977         int ret, cpu;
978
979         if (!is_hyp_mode_available()) {
980                 kvm_err("HYP mode not available\n");
981                 return -ENODEV;
982         }
983
984         for_each_online_cpu(cpu) {
985                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
986                 if (ret < 0) {
987                         kvm_err("Error, CPU %d not supported!\n", cpu);
988                         return -ENODEV;
989                 }
990         }
991
992         err = init_hyp_mode();
993         if (err)
994                 goto out_err;
995
996         err = register_cpu_notifier(&hyp_init_cpu_nb);
997         if (err) {
998                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
999                 goto out_err;
1000         }
1001
1002         kvm_coproc_table_init();
1003         return 0;
1004 out_err:
1005         return err;
1006 }
1007
1008 /* NOP: Compiling as a module not supported */
1009 void kvm_arch_exit(void)
1010 {
1011         kvm_perf_teardown();
1012 }
1013
1014 static int arm_init(void)
1015 {
1016         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1017         return rc;
1018 }
1019
1020 module_init(arm_init);