Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-drm-fsl-dcu.git] / arch / arm / kernel / smp.c
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29
30 #include <linux/atomic.h>
31 #include <asm/smp.h>
32 #include <asm/cacheflush.h>
33 #include <asm/cpu.h>
34 #include <asm/cputype.h>
35 #include <asm/exception.h>
36 #include <asm/idmap.h>
37 #include <asm/topology.h>
38 #include <asm/mmu_context.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/processor.h>
42 #include <asm/sections.h>
43 #include <asm/tlbflush.h>
44 #include <asm/ptrace.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mpu.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/ipi.h>
52
53 /*
54  * as from 2.5, kernels no longer have an init_tasks structure
55  * so we need some other way of telling a new secondary core
56  * where to place its SVC stack
57  */
58 struct secondary_data secondary_data;
59
60 /*
61  * control for which core is the next to come out of the secondary
62  * boot "holding pen"
63  */
64 volatile int pen_release = -1;
65
66 enum ipi_msg_type {
67         IPI_WAKEUP,
68         IPI_TIMER,
69         IPI_RESCHEDULE,
70         IPI_CALL_FUNC,
71         IPI_CALL_FUNC_SINGLE,
72         IPI_CPU_STOP,
73         IPI_IRQ_WORK,
74         IPI_COMPLETION,
75 };
76
77 static DECLARE_COMPLETION(cpu_running);
78
79 static struct smp_operations smp_ops;
80
81 void __init smp_set_ops(struct smp_operations *ops)
82 {
83         if (ops)
84                 smp_ops = *ops;
85 };
86
87 static unsigned long get_arch_pgd(pgd_t *pgd)
88 {
89         phys_addr_t pgdir = virt_to_idmap(pgd);
90         BUG_ON(pgdir & ARCH_PGD_MASK);
91         return pgdir >> ARCH_PGD_SHIFT;
92 }
93
94 int __cpu_up(unsigned int cpu, struct task_struct *idle)
95 {
96         int ret;
97
98         if (!smp_ops.smp_boot_secondary)
99                 return -ENOSYS;
100
101         /*
102          * We need to tell the secondary core where to find
103          * its stack and the page tables.
104          */
105         secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
106 #ifdef CONFIG_ARM_MPU
107         secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
108 #endif
109
110 #ifdef CONFIG_MMU
111         secondary_data.pgdir = get_arch_pgd(idmap_pgd);
112         secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
113 #endif
114         sync_cache_w(&secondary_data);
115
116         /*
117          * Now bring the CPU into our world.
118          */
119         ret = smp_ops.smp_boot_secondary(cpu, idle);
120         if (ret == 0) {
121                 /*
122                  * CPU was successfully started, wait for it
123                  * to come online or time out.
124                  */
125                 wait_for_completion_timeout(&cpu_running,
126                                                  msecs_to_jiffies(1000));
127
128                 if (!cpu_online(cpu)) {
129                         pr_crit("CPU%u: failed to come online\n", cpu);
130                         ret = -EIO;
131                 }
132         } else {
133                 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
134         }
135
136
137         memset(&secondary_data, 0, sizeof(secondary_data));
138         return ret;
139 }
140
141 /* platform specific SMP operations */
142 void __init smp_init_cpus(void)
143 {
144         if (smp_ops.smp_init_cpus)
145                 smp_ops.smp_init_cpus();
146 }
147
148 int platform_can_secondary_boot(void)
149 {
150         return !!smp_ops.smp_boot_secondary;
151 }
152
153 int platform_can_cpu_hotplug(void)
154 {
155 #ifdef CONFIG_HOTPLUG_CPU
156         if (smp_ops.cpu_kill)
157                 return 1;
158 #endif
159
160         return 0;
161 }
162
163 #ifdef CONFIG_HOTPLUG_CPU
164 static int platform_cpu_kill(unsigned int cpu)
165 {
166         if (smp_ops.cpu_kill)
167                 return smp_ops.cpu_kill(cpu);
168         return 1;
169 }
170
171 static int platform_cpu_disable(unsigned int cpu)
172 {
173         if (smp_ops.cpu_disable)
174                 return smp_ops.cpu_disable(cpu);
175
176         /*
177          * By default, allow disabling all CPUs except the first one,
178          * since this is special on a lot of platforms, e.g. because
179          * of clock tick interrupts.
180          */
181         return cpu == 0 ? -EPERM : 0;
182 }
183 /*
184  * __cpu_disable runs on the processor to be shutdown.
185  */
186 int __cpu_disable(void)
187 {
188         unsigned int cpu = smp_processor_id();
189         int ret;
190
191         ret = platform_cpu_disable(cpu);
192         if (ret)
193                 return ret;
194
195         /*
196          * Take this CPU offline.  Once we clear this, we can't return,
197          * and we must not schedule until we're ready to give up the cpu.
198          */
199         set_cpu_online(cpu, false);
200
201         /*
202          * OK - migrate IRQs away from this CPU
203          */
204         migrate_irqs();
205
206         /*
207          * Flush user cache and TLB mappings, and then remove this CPU
208          * from the vm mask set of all processes.
209          *
210          * Caches are flushed to the Level of Unification Inner Shareable
211          * to write-back dirty lines to unified caches shared by all CPUs.
212          */
213         flush_cache_louis();
214         local_flush_tlb_all();
215
216         clear_tasks_mm_cpumask(cpu);
217
218         return 0;
219 }
220
221 static DECLARE_COMPLETION(cpu_died);
222
223 /*
224  * called on the thread which is asking for a CPU to be shutdown -
225  * waits until shutdown has completed, or it is timed out.
226  */
227 void __cpu_die(unsigned int cpu)
228 {
229         if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
230                 pr_err("CPU%u: cpu didn't die\n", cpu);
231                 return;
232         }
233         pr_notice("CPU%u: shutdown\n", cpu);
234
235         /*
236          * platform_cpu_kill() is generally expected to do the powering off
237          * and/or cutting of clocks to the dying CPU.  Optionally, this may
238          * be done by the CPU which is dying in preference to supporting
239          * this call, but that means there is _no_ synchronisation between
240          * the requesting CPU and the dying CPU actually losing power.
241          */
242         if (!platform_cpu_kill(cpu))
243                 pr_err("CPU%u: unable to kill\n", cpu);
244 }
245
246 /*
247  * Called from the idle thread for the CPU which has been shutdown.
248  *
249  * Note that we disable IRQs here, but do not re-enable them
250  * before returning to the caller. This is also the behaviour
251  * of the other hotplug-cpu capable cores, so presumably coming
252  * out of idle fixes this.
253  */
254 void __ref cpu_die(void)
255 {
256         unsigned int cpu = smp_processor_id();
257
258         idle_task_exit();
259
260         local_irq_disable();
261
262         /*
263          * Flush the data out of the L1 cache for this CPU.  This must be
264          * before the completion to ensure that data is safely written out
265          * before platform_cpu_kill() gets called - which may disable
266          * *this* CPU and power down its cache.
267          */
268         flush_cache_louis();
269
270         /*
271          * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
272          * this returns, power and/or clocks can be removed at any point
273          * from this CPU and its cache by platform_cpu_kill().
274          */
275         complete(&cpu_died);
276
277         /*
278          * Ensure that the cache lines associated with that completion are
279          * written out.  This covers the case where _this_ CPU is doing the
280          * powering down, to ensure that the completion is visible to the
281          * CPU waiting for this one.
282          */
283         flush_cache_louis();
284
285         /*
286          * The actual CPU shutdown procedure is at least platform (if not
287          * CPU) specific.  This may remove power, or it may simply spin.
288          *
289          * Platforms are generally expected *NOT* to return from this call,
290          * although there are some which do because they have no way to
291          * power down the CPU.  These platforms are the _only_ reason we
292          * have a return path which uses the fragment of assembly below.
293          *
294          * The return path should not be used for platforms which can
295          * power off the CPU.
296          */
297         if (smp_ops.cpu_die)
298                 smp_ops.cpu_die(cpu);
299
300         pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
301                 cpu);
302
303         /*
304          * Do not return to the idle loop - jump back to the secondary
305          * cpu initialisation.  There's some initialisation which needs
306          * to be repeated to undo the effects of taking the CPU offline.
307          */
308         __asm__("mov    sp, %0\n"
309         "       mov     fp, #0\n"
310         "       b       secondary_start_kernel"
311                 :
312                 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
313 }
314 #endif /* CONFIG_HOTPLUG_CPU */
315
316 /*
317  * Called by both boot and secondaries to move global data into
318  * per-processor storage.
319  */
320 static void smp_store_cpu_info(unsigned int cpuid)
321 {
322         struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
323
324         cpu_info->loops_per_jiffy = loops_per_jiffy;
325         cpu_info->cpuid = read_cpuid_id();
326
327         store_cpu_topology(cpuid);
328 }
329
330 /*
331  * This is the secondary CPU boot entry.  We're using this CPUs
332  * idle thread stack, but a set of temporary page tables.
333  */
334 asmlinkage void secondary_start_kernel(void)
335 {
336         struct mm_struct *mm = &init_mm;
337         unsigned int cpu;
338
339         /*
340          * The identity mapping is uncached (strongly ordered), so
341          * switch away from it before attempting any exclusive accesses.
342          */
343         cpu_switch_mm(mm->pgd, mm);
344         local_flush_bp_all();
345         enter_lazy_tlb(mm, current);
346         local_flush_tlb_all();
347
348         /*
349          * All kernel threads share the same mm context; grab a
350          * reference and switch to it.
351          */
352         cpu = smp_processor_id();
353         atomic_inc(&mm->mm_count);
354         current->active_mm = mm;
355         cpumask_set_cpu(cpu, mm_cpumask(mm));
356
357         cpu_init();
358
359         pr_debug("CPU%u: Booted secondary processor\n", cpu);
360
361         preempt_disable();
362         trace_hardirqs_off();
363
364         /*
365          * Give the platform a chance to do its own initialisation.
366          */
367         if (smp_ops.smp_secondary_init)
368                 smp_ops.smp_secondary_init(cpu);
369
370         notify_cpu_starting(cpu);
371
372         calibrate_delay();
373
374         smp_store_cpu_info(cpu);
375
376         /*
377          * OK, now it's safe to let the boot CPU continue.  Wait for
378          * the CPU migration code to notice that the CPU is online
379          * before we continue - which happens after __cpu_up returns.
380          */
381         set_cpu_online(cpu, true);
382         complete(&cpu_running);
383
384         local_irq_enable();
385         local_fiq_enable();
386
387         /*
388          * OK, it's off to the idle thread for us
389          */
390         cpu_startup_entry(CPUHP_ONLINE);
391 }
392
393 void __init smp_cpus_done(unsigned int max_cpus)
394 {
395         int cpu;
396         unsigned long bogosum = 0;
397
398         for_each_online_cpu(cpu)
399                 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
400
401         printk(KERN_INFO "SMP: Total of %d processors activated "
402                "(%lu.%02lu BogoMIPS).\n",
403                num_online_cpus(),
404                bogosum / (500000/HZ),
405                (bogosum / (5000/HZ)) % 100);
406
407         hyp_mode_check();
408 }
409
410 void __init smp_prepare_boot_cpu(void)
411 {
412         set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
413 }
414
415 void __init smp_prepare_cpus(unsigned int max_cpus)
416 {
417         unsigned int ncores = num_possible_cpus();
418
419         init_cpu_topology();
420
421         smp_store_cpu_info(smp_processor_id());
422
423         /*
424          * are we trying to boot more cores than exist?
425          */
426         if (max_cpus > ncores)
427                 max_cpus = ncores;
428         if (ncores > 1 && max_cpus) {
429                 /*
430                  * Initialise the present map, which describes the set of CPUs
431                  * actually populated at the present time. A platform should
432                  * re-initialize the map in the platforms smp_prepare_cpus()
433                  * if present != possible (e.g. physical hotplug).
434                  */
435                 init_cpu_present(cpu_possible_mask);
436
437                 /*
438                  * Initialise the SCU if there are more than one CPU
439                  * and let them know where to start.
440                  */
441                 if (smp_ops.smp_prepare_cpus)
442                         smp_ops.smp_prepare_cpus(max_cpus);
443         }
444 }
445
446 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
447
448 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
449 {
450         if (!__smp_cross_call)
451                 __smp_cross_call = fn;
452 }
453
454 static const char *ipi_types[NR_IPI] __tracepoint_string = {
455 #define S(x,s)  [x] = s
456         S(IPI_WAKEUP, "CPU wakeup interrupts"),
457         S(IPI_TIMER, "Timer broadcast interrupts"),
458         S(IPI_RESCHEDULE, "Rescheduling interrupts"),
459         S(IPI_CALL_FUNC, "Function call interrupts"),
460         S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
461         S(IPI_CPU_STOP, "CPU stop interrupts"),
462         S(IPI_IRQ_WORK, "IRQ work interrupts"),
463         S(IPI_COMPLETION, "completion interrupts"),
464 };
465
466 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
467 {
468         trace_ipi_raise(target, ipi_types[ipinr]);
469         __smp_cross_call(target, ipinr);
470 }
471
472 void show_ipi_list(struct seq_file *p, int prec)
473 {
474         unsigned int cpu, i;
475
476         for (i = 0; i < NR_IPI; i++) {
477                 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
478
479                 for_each_online_cpu(cpu)
480                         seq_printf(p, "%10u ",
481                                    __get_irq_stat(cpu, ipi_irqs[i]));
482
483                 seq_printf(p, " %s\n", ipi_types[i]);
484         }
485 }
486
487 u64 smp_irq_stat_cpu(unsigned int cpu)
488 {
489         u64 sum = 0;
490         int i;
491
492         for (i = 0; i < NR_IPI; i++)
493                 sum += __get_irq_stat(cpu, ipi_irqs[i]);
494
495         return sum;
496 }
497
498 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
499 {
500         smp_cross_call(mask, IPI_CALL_FUNC);
501 }
502
503 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
504 {
505         smp_cross_call(mask, IPI_WAKEUP);
506 }
507
508 void arch_send_call_function_single_ipi(int cpu)
509 {
510         smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
511 }
512
513 #ifdef CONFIG_IRQ_WORK
514 void arch_irq_work_raise(void)
515 {
516         if (arch_irq_work_has_interrupt())
517                 smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
518 }
519 #endif
520
521 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
522 void tick_broadcast(const struct cpumask *mask)
523 {
524         smp_cross_call(mask, IPI_TIMER);
525 }
526 #endif
527
528 static DEFINE_RAW_SPINLOCK(stop_lock);
529
530 /*
531  * ipi_cpu_stop - handle IPI from smp_send_stop()
532  */
533 static void ipi_cpu_stop(unsigned int cpu)
534 {
535         if (system_state == SYSTEM_BOOTING ||
536             system_state == SYSTEM_RUNNING) {
537                 raw_spin_lock(&stop_lock);
538                 pr_crit("CPU%u: stopping\n", cpu);
539                 dump_stack();
540                 raw_spin_unlock(&stop_lock);
541         }
542
543         set_cpu_online(cpu, false);
544
545         local_fiq_disable();
546         local_irq_disable();
547
548         while (1)
549                 cpu_relax();
550 }
551
552 static DEFINE_PER_CPU(struct completion *, cpu_completion);
553
554 int register_ipi_completion(struct completion *completion, int cpu)
555 {
556         per_cpu(cpu_completion, cpu) = completion;
557         return IPI_COMPLETION;
558 }
559
560 static void ipi_complete(unsigned int cpu)
561 {
562         complete(per_cpu(cpu_completion, cpu));
563 }
564
565 /*
566  * Main handler for inter-processor interrupts
567  */
568 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
569 {
570         handle_IPI(ipinr, regs);
571 }
572
573 void handle_IPI(int ipinr, struct pt_regs *regs)
574 {
575         unsigned int cpu = smp_processor_id();
576         struct pt_regs *old_regs = set_irq_regs(regs);
577
578         if ((unsigned)ipinr < NR_IPI) {
579                 trace_ipi_entry(ipi_types[ipinr]);
580                 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
581         }
582
583         switch (ipinr) {
584         case IPI_WAKEUP:
585                 break;
586
587 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
588         case IPI_TIMER:
589                 irq_enter();
590                 tick_receive_broadcast();
591                 irq_exit();
592                 break;
593 #endif
594
595         case IPI_RESCHEDULE:
596                 scheduler_ipi();
597                 break;
598
599         case IPI_CALL_FUNC:
600                 irq_enter();
601                 generic_smp_call_function_interrupt();
602                 irq_exit();
603                 break;
604
605         case IPI_CALL_FUNC_SINGLE:
606                 irq_enter();
607                 generic_smp_call_function_single_interrupt();
608                 irq_exit();
609                 break;
610
611         case IPI_CPU_STOP:
612                 irq_enter();
613                 ipi_cpu_stop(cpu);
614                 irq_exit();
615                 break;
616
617 #ifdef CONFIG_IRQ_WORK
618         case IPI_IRQ_WORK:
619                 irq_enter();
620                 irq_work_run();
621                 irq_exit();
622                 break;
623 #endif
624
625         case IPI_COMPLETION:
626                 irq_enter();
627                 ipi_complete(cpu);
628                 irq_exit();
629                 break;
630
631         default:
632                 pr_crit("CPU%u: Unknown IPI message 0x%x\n",
633                         cpu, ipinr);
634                 break;
635         }
636
637         if ((unsigned)ipinr < NR_IPI)
638                 trace_ipi_exit(ipi_types[ipinr]);
639         set_irq_regs(old_regs);
640 }
641
642 void smp_send_reschedule(int cpu)
643 {
644         smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
645 }
646
647 void smp_send_stop(void)
648 {
649         unsigned long timeout;
650         struct cpumask mask;
651
652         cpumask_copy(&mask, cpu_online_mask);
653         cpumask_clear_cpu(smp_processor_id(), &mask);
654         if (!cpumask_empty(&mask))
655                 smp_cross_call(&mask, IPI_CPU_STOP);
656
657         /* Wait up to one second for other CPUs to stop */
658         timeout = USEC_PER_SEC;
659         while (num_online_cpus() > 1 && timeout--)
660                 udelay(1);
661
662         if (num_online_cpus() > 1)
663                 pr_warn("SMP: failed to stop secondary CPUs\n");
664 }
665
666 /*
667  * not supported here
668  */
669 int setup_profiling_timer(unsigned int multiplier)
670 {
671         return -EINVAL;
672 }
673
674 #ifdef CONFIG_CPU_FREQ
675
676 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
677 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
678 static unsigned long global_l_p_j_ref;
679 static unsigned long global_l_p_j_ref_freq;
680
681 static int cpufreq_callback(struct notifier_block *nb,
682                                         unsigned long val, void *data)
683 {
684         struct cpufreq_freqs *freq = data;
685         int cpu = freq->cpu;
686
687         if (freq->flags & CPUFREQ_CONST_LOOPS)
688                 return NOTIFY_OK;
689
690         if (!per_cpu(l_p_j_ref, cpu)) {
691                 per_cpu(l_p_j_ref, cpu) =
692                         per_cpu(cpu_data, cpu).loops_per_jiffy;
693                 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
694                 if (!global_l_p_j_ref) {
695                         global_l_p_j_ref = loops_per_jiffy;
696                         global_l_p_j_ref_freq = freq->old;
697                 }
698         }
699
700         if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
701             (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
702                 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
703                                                 global_l_p_j_ref_freq,
704                                                 freq->new);
705                 per_cpu(cpu_data, cpu).loops_per_jiffy =
706                         cpufreq_scale(per_cpu(l_p_j_ref, cpu),
707                                         per_cpu(l_p_j_ref_freq, cpu),
708                                         freq->new);
709         }
710         return NOTIFY_OK;
711 }
712
713 static struct notifier_block cpufreq_notifier = {
714         .notifier_call  = cpufreq_callback,
715 };
716
717 static int __init register_cpufreq_notifier(void)
718 {
719         return cpufreq_register_notifier(&cpufreq_notifier,
720                                                 CPUFREQ_TRANSITION_NOTIFIER);
721 }
722 core_initcall(register_cpufreq_notifier);
723
724 #endif