missing bits of "splice: fix racy pipe->buffers uses"
[linux.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/export.h>
33 #include <linux/swap.h>
34 #include <linux/aio.h>
35
36 static struct vfsmount *shm_mnt;
37
38 #ifdef CONFIG_SHMEM
39 /*
40  * This virtual memory filesystem is heavily based on the ramfs. It
41  * extends ramfs by the ability to use swap and honor resource limits
42  * which makes it a completely usable filesystem.
43  */
44
45 #include <linux/xattr.h>
46 #include <linux/exportfs.h>
47 #include <linux/posix_acl.h>
48 #include <linux/posix_acl_xattr.h>
49 #include <linux/mman.h>
50 #include <linux/string.h>
51 #include <linux/slab.h>
52 #include <linux/backing-dev.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/writeback.h>
55 #include <linux/blkdev.h>
56 #include <linux/pagevec.h>
57 #include <linux/percpu_counter.h>
58 #include <linux/falloc.h>
59 #include <linux/splice.h>
60 #include <linux/security.h>
61 #include <linux/swapops.h>
62 #include <linux/mempolicy.h>
63 #include <linux/namei.h>
64 #include <linux/ctype.h>
65 #include <linux/migrate.h>
66 #include <linux/highmem.h>
67 #include <linux/seq_file.h>
68 #include <linux/magic.h>
69
70 #include <asm/uaccess.h>
71 #include <asm/pgtable.h>
72
73 #define BLOCKS_PER_PAGE  (PAGE_CACHE_SIZE/512)
74 #define VM_ACCT(size)    (PAGE_CACHE_ALIGN(size) >> PAGE_SHIFT)
75
76 /* Pretend that each entry is of this size in directory's i_size */
77 #define BOGO_DIRENT_SIZE 20
78
79 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
80 #define SHORT_SYMLINK_LEN 128
81
82 /*
83  * shmem_fallocate and shmem_writepage communicate via inode->i_private
84  * (with i_mutex making sure that it has only one user at a time):
85  * we would prefer not to enlarge the shmem inode just for that.
86  */
87 struct shmem_falloc {
88         pgoff_t start;          /* start of range currently being fallocated */
89         pgoff_t next;           /* the next page offset to be fallocated */
90         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
91         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
92 };
93
94 /* Flag allocation requirements to shmem_getpage */
95 enum sgp_type {
96         SGP_READ,       /* don't exceed i_size, don't allocate page */
97         SGP_CACHE,      /* don't exceed i_size, may allocate page */
98         SGP_DIRTY,      /* like SGP_CACHE, but set new page dirty */
99         SGP_WRITE,      /* may exceed i_size, may allocate !Uptodate page */
100         SGP_FALLOC,     /* like SGP_WRITE, but make existing page Uptodate */
101 };
102
103 #ifdef CONFIG_TMPFS
104 static unsigned long shmem_default_max_blocks(void)
105 {
106         return totalram_pages / 2;
107 }
108
109 static unsigned long shmem_default_max_inodes(void)
110 {
111         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
112 }
113 #endif
114
115 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
116 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
117                                 struct shmem_inode_info *info, pgoff_t index);
118 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
119         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type);
120
121 static inline int shmem_getpage(struct inode *inode, pgoff_t index,
122         struct page **pagep, enum sgp_type sgp, int *fault_type)
123 {
124         return shmem_getpage_gfp(inode, index, pagep, sgp,
125                         mapping_gfp_mask(inode->i_mapping), fault_type);
126 }
127
128 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
129 {
130         return sb->s_fs_info;
131 }
132
133 /*
134  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
135  * for shared memory and for shared anonymous (/dev/zero) mappings
136  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
137  * consistent with the pre-accounting of private mappings ...
138  */
139 static inline int shmem_acct_size(unsigned long flags, loff_t size)
140 {
141         return (flags & VM_NORESERVE) ?
142                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
143 }
144
145 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
146 {
147         if (!(flags & VM_NORESERVE))
148                 vm_unacct_memory(VM_ACCT(size));
149 }
150
151 /*
152  * ... whereas tmpfs objects are accounted incrementally as
153  * pages are allocated, in order to allow huge sparse files.
154  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
155  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
156  */
157 static inline int shmem_acct_block(unsigned long flags)
158 {
159         return (flags & VM_NORESERVE) ?
160                 security_vm_enough_memory_mm(current->mm, VM_ACCT(PAGE_CACHE_SIZE)) : 0;
161 }
162
163 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
164 {
165         if (flags & VM_NORESERVE)
166                 vm_unacct_memory(pages * VM_ACCT(PAGE_CACHE_SIZE));
167 }
168
169 static const struct super_operations shmem_ops;
170 static const struct address_space_operations shmem_aops;
171 static const struct file_operations shmem_file_operations;
172 static const struct inode_operations shmem_inode_operations;
173 static const struct inode_operations shmem_dir_inode_operations;
174 static const struct inode_operations shmem_special_inode_operations;
175 static const struct vm_operations_struct shmem_vm_ops;
176
177 static struct backing_dev_info shmem_backing_dev_info  __read_mostly = {
178         .ra_pages       = 0,    /* No readahead */
179         .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
180 };
181
182 static LIST_HEAD(shmem_swaplist);
183 static DEFINE_MUTEX(shmem_swaplist_mutex);
184
185 static int shmem_reserve_inode(struct super_block *sb)
186 {
187         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
188         if (sbinfo->max_inodes) {
189                 spin_lock(&sbinfo->stat_lock);
190                 if (!sbinfo->free_inodes) {
191                         spin_unlock(&sbinfo->stat_lock);
192                         return -ENOSPC;
193                 }
194                 sbinfo->free_inodes--;
195                 spin_unlock(&sbinfo->stat_lock);
196         }
197         return 0;
198 }
199
200 static void shmem_free_inode(struct super_block *sb)
201 {
202         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
203         if (sbinfo->max_inodes) {
204                 spin_lock(&sbinfo->stat_lock);
205                 sbinfo->free_inodes++;
206                 spin_unlock(&sbinfo->stat_lock);
207         }
208 }
209
210 /**
211  * shmem_recalc_inode - recalculate the block usage of an inode
212  * @inode: inode to recalc
213  *
214  * We have to calculate the free blocks since the mm can drop
215  * undirtied hole pages behind our back.
216  *
217  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
218  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
219  *
220  * It has to be called with the spinlock held.
221  */
222 static void shmem_recalc_inode(struct inode *inode)
223 {
224         struct shmem_inode_info *info = SHMEM_I(inode);
225         long freed;
226
227         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
228         if (freed > 0) {
229                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
230                 if (sbinfo->max_blocks)
231                         percpu_counter_add(&sbinfo->used_blocks, -freed);
232                 info->alloced -= freed;
233                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
234                 shmem_unacct_blocks(info->flags, freed);
235         }
236 }
237
238 /*
239  * Replace item expected in radix tree by a new item, while holding tree lock.
240  */
241 static int shmem_radix_tree_replace(struct address_space *mapping,
242                         pgoff_t index, void *expected, void *replacement)
243 {
244         void **pslot;
245         void *item = NULL;
246
247         VM_BUG_ON(!expected);
248         pslot = radix_tree_lookup_slot(&mapping->page_tree, index);
249         if (pslot)
250                 item = radix_tree_deref_slot_protected(pslot,
251                                                         &mapping->tree_lock);
252         if (item != expected)
253                 return -ENOENT;
254         if (replacement)
255                 radix_tree_replace_slot(pslot, replacement);
256         else
257                 radix_tree_delete(&mapping->page_tree, index);
258         return 0;
259 }
260
261 /*
262  * Sometimes, before we decide whether to proceed or to fail, we must check
263  * that an entry was not already brought back from swap by a racing thread.
264  *
265  * Checking page is not enough: by the time a SwapCache page is locked, it
266  * might be reused, and again be SwapCache, using the same swap as before.
267  */
268 static bool shmem_confirm_swap(struct address_space *mapping,
269                                pgoff_t index, swp_entry_t swap)
270 {
271         void *item;
272
273         rcu_read_lock();
274         item = radix_tree_lookup(&mapping->page_tree, index);
275         rcu_read_unlock();
276         return item == swp_to_radix_entry(swap);
277 }
278
279 /*
280  * Like add_to_page_cache_locked, but error if expected item has gone.
281  */
282 static int shmem_add_to_page_cache(struct page *page,
283                                    struct address_space *mapping,
284                                    pgoff_t index, gfp_t gfp, void *expected)
285 {
286         int error;
287
288         VM_BUG_ON_PAGE(!PageLocked(page), page);
289         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
290
291         page_cache_get(page);
292         page->mapping = mapping;
293         page->index = index;
294
295         spin_lock_irq(&mapping->tree_lock);
296         if (!expected)
297                 error = radix_tree_insert(&mapping->page_tree, index, page);
298         else
299                 error = shmem_radix_tree_replace(mapping, index, expected,
300                                                                  page);
301         if (!error) {
302                 mapping->nrpages++;
303                 __inc_zone_page_state(page, NR_FILE_PAGES);
304                 __inc_zone_page_state(page, NR_SHMEM);
305                 spin_unlock_irq(&mapping->tree_lock);
306         } else {
307                 page->mapping = NULL;
308                 spin_unlock_irq(&mapping->tree_lock);
309                 page_cache_release(page);
310         }
311         return error;
312 }
313
314 /*
315  * Like delete_from_page_cache, but substitutes swap for page.
316  */
317 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
318 {
319         struct address_space *mapping = page->mapping;
320         int error;
321
322         spin_lock_irq(&mapping->tree_lock);
323         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
324         page->mapping = NULL;
325         mapping->nrpages--;
326         __dec_zone_page_state(page, NR_FILE_PAGES);
327         __dec_zone_page_state(page, NR_SHMEM);
328         spin_unlock_irq(&mapping->tree_lock);
329         page_cache_release(page);
330         BUG_ON(error);
331 }
332
333 /*
334  * Like find_get_pages, but collecting swap entries as well as pages.
335  */
336 static unsigned shmem_find_get_pages_and_swap(struct address_space *mapping,
337                                         pgoff_t start, unsigned int nr_pages,
338                                         struct page **pages, pgoff_t *indices)
339 {
340         void **slot;
341         unsigned int ret = 0;
342         struct radix_tree_iter iter;
343
344         if (!nr_pages)
345                 return 0;
346
347         rcu_read_lock();
348 restart:
349         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
350                 struct page *page;
351 repeat:
352                 page = radix_tree_deref_slot(slot);
353                 if (unlikely(!page))
354                         continue;
355                 if (radix_tree_exception(page)) {
356                         if (radix_tree_deref_retry(page))
357                                 goto restart;
358                         /*
359                          * Otherwise, we must be storing a swap entry
360                          * here as an exceptional entry: so return it
361                          * without attempting to raise page count.
362                          */
363                         goto export;
364                 }
365                 if (!page_cache_get_speculative(page))
366                         goto repeat;
367
368                 /* Has the page moved? */
369                 if (unlikely(page != *slot)) {
370                         page_cache_release(page);
371                         goto repeat;
372                 }
373 export:
374                 indices[ret] = iter.index;
375                 pages[ret] = page;
376                 if (++ret == nr_pages)
377                         break;
378         }
379         rcu_read_unlock();
380         return ret;
381 }
382
383 /*
384  * Remove swap entry from radix tree, free the swap and its page cache.
385  */
386 static int shmem_free_swap(struct address_space *mapping,
387                            pgoff_t index, void *radswap)
388 {
389         int error;
390
391         spin_lock_irq(&mapping->tree_lock);
392         error = shmem_radix_tree_replace(mapping, index, radswap, NULL);
393         spin_unlock_irq(&mapping->tree_lock);
394         if (!error)
395                 free_swap_and_cache(radix_to_swp_entry(radswap));
396         return error;
397 }
398
399 /*
400  * Pagevec may contain swap entries, so shuffle up pages before releasing.
401  */
402 static void shmem_deswap_pagevec(struct pagevec *pvec)
403 {
404         int i, j;
405
406         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
407                 struct page *page = pvec->pages[i];
408                 if (!radix_tree_exceptional_entry(page))
409                         pvec->pages[j++] = page;
410         }
411         pvec->nr = j;
412 }
413
414 /*
415  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
416  */
417 void shmem_unlock_mapping(struct address_space *mapping)
418 {
419         struct pagevec pvec;
420         pgoff_t indices[PAGEVEC_SIZE];
421         pgoff_t index = 0;
422
423         pagevec_init(&pvec, 0);
424         /*
425          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
426          */
427         while (!mapping_unevictable(mapping)) {
428                 /*
429                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
430                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
431                  */
432                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
433                                         PAGEVEC_SIZE, pvec.pages, indices);
434                 if (!pvec.nr)
435                         break;
436                 index = indices[pvec.nr - 1] + 1;
437                 shmem_deswap_pagevec(&pvec);
438                 check_move_unevictable_pages(pvec.pages, pvec.nr);
439                 pagevec_release(&pvec);
440                 cond_resched();
441         }
442 }
443
444 /*
445  * Remove range of pages and swap entries from radix tree, and free them.
446  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
447  */
448 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
449                                                                  bool unfalloc)
450 {
451         struct address_space *mapping = inode->i_mapping;
452         struct shmem_inode_info *info = SHMEM_I(inode);
453         pgoff_t start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
454         pgoff_t end = (lend + 1) >> PAGE_CACHE_SHIFT;
455         unsigned int partial_start = lstart & (PAGE_CACHE_SIZE - 1);
456         unsigned int partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1);
457         struct pagevec pvec;
458         pgoff_t indices[PAGEVEC_SIZE];
459         long nr_swaps_freed = 0;
460         pgoff_t index;
461         int i;
462
463         if (lend == -1)
464                 end = -1;       /* unsigned, so actually very big */
465
466         pagevec_init(&pvec, 0);
467         index = start;
468         while (index < end) {
469                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
470                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
471                                                         pvec.pages, indices);
472                 if (!pvec.nr)
473                         break;
474                 mem_cgroup_uncharge_start();
475                 for (i = 0; i < pagevec_count(&pvec); i++) {
476                         struct page *page = pvec.pages[i];
477
478                         index = indices[i];
479                         if (index >= end)
480                                 break;
481
482                         if (radix_tree_exceptional_entry(page)) {
483                                 if (unfalloc)
484                                         continue;
485                                 nr_swaps_freed += !shmem_free_swap(mapping,
486                                                                 index, page);
487                                 continue;
488                         }
489
490                         if (!trylock_page(page))
491                                 continue;
492                         if (!unfalloc || !PageUptodate(page)) {
493                                 if (page->mapping == mapping) {
494                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
495                                         truncate_inode_page(mapping, page);
496                                 }
497                         }
498                         unlock_page(page);
499                 }
500                 shmem_deswap_pagevec(&pvec);
501                 pagevec_release(&pvec);
502                 mem_cgroup_uncharge_end();
503                 cond_resched();
504                 index++;
505         }
506
507         if (partial_start) {
508                 struct page *page = NULL;
509                 shmem_getpage(inode, start - 1, &page, SGP_READ, NULL);
510                 if (page) {
511                         unsigned int top = PAGE_CACHE_SIZE;
512                         if (start > end) {
513                                 top = partial_end;
514                                 partial_end = 0;
515                         }
516                         zero_user_segment(page, partial_start, top);
517                         set_page_dirty(page);
518                         unlock_page(page);
519                         page_cache_release(page);
520                 }
521         }
522         if (partial_end) {
523                 struct page *page = NULL;
524                 shmem_getpage(inode, end, &page, SGP_READ, NULL);
525                 if (page) {
526                         zero_user_segment(page, 0, partial_end);
527                         set_page_dirty(page);
528                         unlock_page(page);
529                         page_cache_release(page);
530                 }
531         }
532         if (start >= end)
533                 return;
534
535         index = start;
536         for ( ; ; ) {
537                 cond_resched();
538                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
539                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
540                                                         pvec.pages, indices);
541                 if (!pvec.nr) {
542                         if (index == start || unfalloc)
543                                 break;
544                         index = start;
545                         continue;
546                 }
547                 if ((index == start || unfalloc) && indices[0] >= end) {
548                         shmem_deswap_pagevec(&pvec);
549                         pagevec_release(&pvec);
550                         break;
551                 }
552                 mem_cgroup_uncharge_start();
553                 for (i = 0; i < pagevec_count(&pvec); i++) {
554                         struct page *page = pvec.pages[i];
555
556                         index = indices[i];
557                         if (index >= end)
558                                 break;
559
560                         if (radix_tree_exceptional_entry(page)) {
561                                 if (unfalloc)
562                                         continue;
563                                 nr_swaps_freed += !shmem_free_swap(mapping,
564                                                                 index, page);
565                                 continue;
566                         }
567
568                         lock_page(page);
569                         if (!unfalloc || !PageUptodate(page)) {
570                                 if (page->mapping == mapping) {
571                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
572                                         truncate_inode_page(mapping, page);
573                                 }
574                         }
575                         unlock_page(page);
576                 }
577                 shmem_deswap_pagevec(&pvec);
578                 pagevec_release(&pvec);
579                 mem_cgroup_uncharge_end();
580                 index++;
581         }
582
583         spin_lock(&info->lock);
584         info->swapped -= nr_swaps_freed;
585         shmem_recalc_inode(inode);
586         spin_unlock(&info->lock);
587 }
588
589 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
590 {
591         shmem_undo_range(inode, lstart, lend, false);
592         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
593 }
594 EXPORT_SYMBOL_GPL(shmem_truncate_range);
595
596 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
597 {
598         struct inode *inode = dentry->d_inode;
599         int error;
600
601         error = inode_change_ok(inode, attr);
602         if (error)
603                 return error;
604
605         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
606                 loff_t oldsize = inode->i_size;
607                 loff_t newsize = attr->ia_size;
608
609                 if (newsize != oldsize) {
610                         i_size_write(inode, newsize);
611                         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
612                 }
613                 if (newsize < oldsize) {
614                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
615                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
616                         shmem_truncate_range(inode, newsize, (loff_t)-1);
617                         /* unmap again to remove racily COWed private pages */
618                         unmap_mapping_range(inode->i_mapping, holebegin, 0, 1);
619                 }
620         }
621
622         setattr_copy(inode, attr);
623         if (attr->ia_valid & ATTR_MODE)
624                 error = posix_acl_chmod(inode, inode->i_mode);
625         return error;
626 }
627
628 static void shmem_evict_inode(struct inode *inode)
629 {
630         struct shmem_inode_info *info = SHMEM_I(inode);
631
632         if (inode->i_mapping->a_ops == &shmem_aops) {
633                 shmem_unacct_size(info->flags, inode->i_size);
634                 inode->i_size = 0;
635                 shmem_truncate_range(inode, 0, (loff_t)-1);
636                 if (!list_empty(&info->swaplist)) {
637                         mutex_lock(&shmem_swaplist_mutex);
638                         list_del_init(&info->swaplist);
639                         mutex_unlock(&shmem_swaplist_mutex);
640                 }
641         } else
642                 kfree(info->symlink);
643
644         simple_xattrs_free(&info->xattrs);
645         WARN_ON(inode->i_blocks);
646         shmem_free_inode(inode->i_sb);
647         clear_inode(inode);
648 }
649
650 /*
651  * If swap found in inode, free it and move page from swapcache to filecache.
652  */
653 static int shmem_unuse_inode(struct shmem_inode_info *info,
654                              swp_entry_t swap, struct page **pagep)
655 {
656         struct address_space *mapping = info->vfs_inode.i_mapping;
657         void *radswap;
658         pgoff_t index;
659         gfp_t gfp;
660         int error = 0;
661
662         radswap = swp_to_radix_entry(swap);
663         index = radix_tree_locate_item(&mapping->page_tree, radswap);
664         if (index == -1)
665                 return 0;
666
667         /*
668          * Move _head_ to start search for next from here.
669          * But be careful: shmem_evict_inode checks list_empty without taking
670          * mutex, and there's an instant in list_move_tail when info->swaplist
671          * would appear empty, if it were the only one on shmem_swaplist.
672          */
673         if (shmem_swaplist.next != &info->swaplist)
674                 list_move_tail(&shmem_swaplist, &info->swaplist);
675
676         gfp = mapping_gfp_mask(mapping);
677         if (shmem_should_replace_page(*pagep, gfp)) {
678                 mutex_unlock(&shmem_swaplist_mutex);
679                 error = shmem_replace_page(pagep, gfp, info, index);
680                 mutex_lock(&shmem_swaplist_mutex);
681                 /*
682                  * We needed to drop mutex to make that restrictive page
683                  * allocation, but the inode might have been freed while we
684                  * dropped it: although a racing shmem_evict_inode() cannot
685                  * complete without emptying the radix_tree, our page lock
686                  * on this swapcache page is not enough to prevent that -
687                  * free_swap_and_cache() of our swap entry will only
688                  * trylock_page(), removing swap from radix_tree whatever.
689                  *
690                  * We must not proceed to shmem_add_to_page_cache() if the
691                  * inode has been freed, but of course we cannot rely on
692                  * inode or mapping or info to check that.  However, we can
693                  * safely check if our swap entry is still in use (and here
694                  * it can't have got reused for another page): if it's still
695                  * in use, then the inode cannot have been freed yet, and we
696                  * can safely proceed (if it's no longer in use, that tells
697                  * nothing about the inode, but we don't need to unuse swap).
698                  */
699                 if (!page_swapcount(*pagep))
700                         error = -ENOENT;
701         }
702
703         /*
704          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
705          * but also to hold up shmem_evict_inode(): so inode cannot be freed
706          * beneath us (pagelock doesn't help until the page is in pagecache).
707          */
708         if (!error)
709                 error = shmem_add_to_page_cache(*pagep, mapping, index,
710                                                 GFP_NOWAIT, radswap);
711         if (error != -ENOMEM) {
712                 /*
713                  * Truncation and eviction use free_swap_and_cache(), which
714                  * only does trylock page: if we raced, best clean up here.
715                  */
716                 delete_from_swap_cache(*pagep);
717                 set_page_dirty(*pagep);
718                 if (!error) {
719                         spin_lock(&info->lock);
720                         info->swapped--;
721                         spin_unlock(&info->lock);
722                         swap_free(swap);
723                 }
724                 error = 1;      /* not an error, but entry was found */
725         }
726         return error;
727 }
728
729 /*
730  * Search through swapped inodes to find and replace swap by page.
731  */
732 int shmem_unuse(swp_entry_t swap, struct page *page)
733 {
734         struct list_head *this, *next;
735         struct shmem_inode_info *info;
736         int found = 0;
737         int error = 0;
738
739         /*
740          * There's a faint possibility that swap page was replaced before
741          * caller locked it: caller will come back later with the right page.
742          */
743         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
744                 goto out;
745
746         /*
747          * Charge page using GFP_KERNEL while we can wait, before taking
748          * the shmem_swaplist_mutex which might hold up shmem_writepage().
749          * Charged back to the user (not to caller) when swap account is used.
750          */
751         error = mem_cgroup_cache_charge(page, current->mm, GFP_KERNEL);
752         if (error)
753                 goto out;
754         /* No radix_tree_preload: swap entry keeps a place for page in tree */
755
756         mutex_lock(&shmem_swaplist_mutex);
757         list_for_each_safe(this, next, &shmem_swaplist) {
758                 info = list_entry(this, struct shmem_inode_info, swaplist);
759                 if (info->swapped)
760                         found = shmem_unuse_inode(info, swap, &page);
761                 else
762                         list_del_init(&info->swaplist);
763                 cond_resched();
764                 if (found)
765                         break;
766         }
767         mutex_unlock(&shmem_swaplist_mutex);
768
769         if (found < 0)
770                 error = found;
771 out:
772         unlock_page(page);
773         page_cache_release(page);
774         return error;
775 }
776
777 /*
778  * Move the page from the page cache to the swap cache.
779  */
780 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
781 {
782         struct shmem_inode_info *info;
783         struct address_space *mapping;
784         struct inode *inode;
785         swp_entry_t swap;
786         pgoff_t index;
787
788         BUG_ON(!PageLocked(page));
789         mapping = page->mapping;
790         index = page->index;
791         inode = mapping->host;
792         info = SHMEM_I(inode);
793         if (info->flags & VM_LOCKED)
794                 goto redirty;
795         if (!total_swap_pages)
796                 goto redirty;
797
798         /*
799          * shmem_backing_dev_info's capabilities prevent regular writeback or
800          * sync from ever calling shmem_writepage; but a stacking filesystem
801          * might use ->writepage of its underlying filesystem, in which case
802          * tmpfs should write out to swap only in response to memory pressure,
803          * and not for the writeback threads or sync.
804          */
805         if (!wbc->for_reclaim) {
806                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
807                 goto redirty;
808         }
809
810         /*
811          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
812          * value into swapfile.c, the only way we can correctly account for a
813          * fallocated page arriving here is now to initialize it and write it.
814          *
815          * That's okay for a page already fallocated earlier, but if we have
816          * not yet completed the fallocation, then (a) we want to keep track
817          * of this page in case we have to undo it, and (b) it may not be a
818          * good idea to continue anyway, once we're pushing into swap.  So
819          * reactivate the page, and let shmem_fallocate() quit when too many.
820          */
821         if (!PageUptodate(page)) {
822                 if (inode->i_private) {
823                         struct shmem_falloc *shmem_falloc;
824                         spin_lock(&inode->i_lock);
825                         shmem_falloc = inode->i_private;
826                         if (shmem_falloc &&
827                             index >= shmem_falloc->start &&
828                             index < shmem_falloc->next)
829                                 shmem_falloc->nr_unswapped++;
830                         else
831                                 shmem_falloc = NULL;
832                         spin_unlock(&inode->i_lock);
833                         if (shmem_falloc)
834                                 goto redirty;
835                 }
836                 clear_highpage(page);
837                 flush_dcache_page(page);
838                 SetPageUptodate(page);
839         }
840
841         swap = get_swap_page();
842         if (!swap.val)
843                 goto redirty;
844
845         /*
846          * Add inode to shmem_unuse()'s list of swapped-out inodes,
847          * if it's not already there.  Do it now before the page is
848          * moved to swap cache, when its pagelock no longer protects
849          * the inode from eviction.  But don't unlock the mutex until
850          * we've incremented swapped, because shmem_unuse_inode() will
851          * prune a !swapped inode from the swaplist under this mutex.
852          */
853         mutex_lock(&shmem_swaplist_mutex);
854         if (list_empty(&info->swaplist))
855                 list_add_tail(&info->swaplist, &shmem_swaplist);
856
857         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
858                 swap_shmem_alloc(swap);
859                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
860
861                 spin_lock(&info->lock);
862                 info->swapped++;
863                 shmem_recalc_inode(inode);
864                 spin_unlock(&info->lock);
865
866                 mutex_unlock(&shmem_swaplist_mutex);
867                 BUG_ON(page_mapped(page));
868                 swap_writepage(page, wbc);
869                 return 0;
870         }
871
872         mutex_unlock(&shmem_swaplist_mutex);
873         swapcache_free(swap, NULL);
874 redirty:
875         set_page_dirty(page);
876         if (wbc->for_reclaim)
877                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
878         unlock_page(page);
879         return 0;
880 }
881
882 #ifdef CONFIG_NUMA
883 #ifdef CONFIG_TMPFS
884 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
885 {
886         char buffer[64];
887
888         if (!mpol || mpol->mode == MPOL_DEFAULT)
889                 return;         /* show nothing */
890
891         mpol_to_str(buffer, sizeof(buffer), mpol);
892
893         seq_printf(seq, ",mpol=%s", buffer);
894 }
895
896 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
897 {
898         struct mempolicy *mpol = NULL;
899         if (sbinfo->mpol) {
900                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
901                 mpol = sbinfo->mpol;
902                 mpol_get(mpol);
903                 spin_unlock(&sbinfo->stat_lock);
904         }
905         return mpol;
906 }
907 #endif /* CONFIG_TMPFS */
908
909 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
910                         struct shmem_inode_info *info, pgoff_t index)
911 {
912         struct vm_area_struct pvma;
913         struct page *page;
914
915         /* Create a pseudo vma that just contains the policy */
916         pvma.vm_start = 0;
917         /* Bias interleave by inode number to distribute better across nodes */
918         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
919         pvma.vm_ops = NULL;
920         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
921
922         page = swapin_readahead(swap, gfp, &pvma, 0);
923
924         /* Drop reference taken by mpol_shared_policy_lookup() */
925         mpol_cond_put(pvma.vm_policy);
926
927         return page;
928 }
929
930 static struct page *shmem_alloc_page(gfp_t gfp,
931                         struct shmem_inode_info *info, pgoff_t index)
932 {
933         struct vm_area_struct pvma;
934         struct page *page;
935
936         /* Create a pseudo vma that just contains the policy */
937         pvma.vm_start = 0;
938         /* Bias interleave by inode number to distribute better across nodes */
939         pvma.vm_pgoff = index + info->vfs_inode.i_ino;
940         pvma.vm_ops = NULL;
941         pvma.vm_policy = mpol_shared_policy_lookup(&info->policy, index);
942
943         page = alloc_page_vma(gfp, &pvma, 0);
944
945         /* Drop reference taken by mpol_shared_policy_lookup() */
946         mpol_cond_put(pvma.vm_policy);
947
948         return page;
949 }
950 #else /* !CONFIG_NUMA */
951 #ifdef CONFIG_TMPFS
952 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
953 {
954 }
955 #endif /* CONFIG_TMPFS */
956
957 static inline struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
958                         struct shmem_inode_info *info, pgoff_t index)
959 {
960         return swapin_readahead(swap, gfp, NULL, 0);
961 }
962
963 static inline struct page *shmem_alloc_page(gfp_t gfp,
964                         struct shmem_inode_info *info, pgoff_t index)
965 {
966         return alloc_page(gfp);
967 }
968 #endif /* CONFIG_NUMA */
969
970 #if !defined(CONFIG_NUMA) || !defined(CONFIG_TMPFS)
971 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
972 {
973         return NULL;
974 }
975 #endif
976
977 /*
978  * When a page is moved from swapcache to shmem filecache (either by the
979  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
980  * shmem_unuse_inode()), it may have been read in earlier from swap, in
981  * ignorance of the mapping it belongs to.  If that mapping has special
982  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
983  * we may need to copy to a suitable page before moving to filecache.
984  *
985  * In a future release, this may well be extended to respect cpuset and
986  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
987  * but for now it is a simple matter of zone.
988  */
989 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
990 {
991         return page_zonenum(page) > gfp_zone(gfp);
992 }
993
994 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
995                                 struct shmem_inode_info *info, pgoff_t index)
996 {
997         struct page *oldpage, *newpage;
998         struct address_space *swap_mapping;
999         pgoff_t swap_index;
1000         int error;
1001
1002         oldpage = *pagep;
1003         swap_index = page_private(oldpage);
1004         swap_mapping = page_mapping(oldpage);
1005
1006         /*
1007          * We have arrived here because our zones are constrained, so don't
1008          * limit chance of success by further cpuset and node constraints.
1009          */
1010         gfp &= ~GFP_CONSTRAINT_MASK;
1011         newpage = shmem_alloc_page(gfp, info, index);
1012         if (!newpage)
1013                 return -ENOMEM;
1014
1015         page_cache_get(newpage);
1016         copy_highpage(newpage, oldpage);
1017         flush_dcache_page(newpage);
1018
1019         __set_page_locked(newpage);
1020         SetPageUptodate(newpage);
1021         SetPageSwapBacked(newpage);
1022         set_page_private(newpage, swap_index);
1023         SetPageSwapCache(newpage);
1024
1025         /*
1026          * Our caller will very soon move newpage out of swapcache, but it's
1027          * a nice clean interface for us to replace oldpage by newpage there.
1028          */
1029         spin_lock_irq(&swap_mapping->tree_lock);
1030         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1031                                                                    newpage);
1032         if (!error) {
1033                 __inc_zone_page_state(newpage, NR_FILE_PAGES);
1034                 __dec_zone_page_state(oldpage, NR_FILE_PAGES);
1035         }
1036         spin_unlock_irq(&swap_mapping->tree_lock);
1037
1038         if (unlikely(error)) {
1039                 /*
1040                  * Is this possible?  I think not, now that our callers check
1041                  * both PageSwapCache and page_private after getting page lock;
1042                  * but be defensive.  Reverse old to newpage for clear and free.
1043                  */
1044                 oldpage = newpage;
1045         } else {
1046                 mem_cgroup_replace_page_cache(oldpage, newpage);
1047                 lru_cache_add_anon(newpage);
1048                 *pagep = newpage;
1049         }
1050
1051         ClearPageSwapCache(oldpage);
1052         set_page_private(oldpage, 0);
1053
1054         unlock_page(oldpage);
1055         page_cache_release(oldpage);
1056         page_cache_release(oldpage);
1057         return error;
1058 }
1059
1060 /*
1061  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1062  *
1063  * If we allocate a new one we do not mark it dirty. That's up to the
1064  * vm. If we swap it in we mark it dirty since we also free the swap
1065  * entry since a page cannot live in both the swap and page cache
1066  */
1067 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1068         struct page **pagep, enum sgp_type sgp, gfp_t gfp, int *fault_type)
1069 {
1070         struct address_space *mapping = inode->i_mapping;
1071         struct shmem_inode_info *info;
1072         struct shmem_sb_info *sbinfo;
1073         struct page *page;
1074         swp_entry_t swap;
1075         int error;
1076         int once = 0;
1077         int alloced = 0;
1078
1079         if (index > (MAX_LFS_FILESIZE >> PAGE_CACHE_SHIFT))
1080                 return -EFBIG;
1081 repeat:
1082         swap.val = 0;
1083         page = find_lock_page(mapping, index);
1084         if (radix_tree_exceptional_entry(page)) {
1085                 swap = radix_to_swp_entry(page);
1086                 page = NULL;
1087         }
1088
1089         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1090             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1091                 error = -EINVAL;
1092                 goto failed;
1093         }
1094
1095         /* fallocated page? */
1096         if (page && !PageUptodate(page)) {
1097                 if (sgp != SGP_READ)
1098                         goto clear;
1099                 unlock_page(page);
1100                 page_cache_release(page);
1101                 page = NULL;
1102         }
1103         if (page || (sgp == SGP_READ && !swap.val)) {
1104                 *pagep = page;
1105                 return 0;
1106         }
1107
1108         /*
1109          * Fast cache lookup did not find it:
1110          * bring it back from swap or allocate.
1111          */
1112         info = SHMEM_I(inode);
1113         sbinfo = SHMEM_SB(inode->i_sb);
1114
1115         if (swap.val) {
1116                 /* Look it up and read it in.. */
1117                 page = lookup_swap_cache(swap);
1118                 if (!page) {
1119                         /* here we actually do the io */
1120                         if (fault_type)
1121                                 *fault_type |= VM_FAULT_MAJOR;
1122                         page = shmem_swapin(swap, gfp, info, index);
1123                         if (!page) {
1124                                 error = -ENOMEM;
1125                                 goto failed;
1126                         }
1127                 }
1128
1129                 /* We have to do this with page locked to prevent races */
1130                 lock_page(page);
1131                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1132                     !shmem_confirm_swap(mapping, index, swap)) {
1133                         error = -EEXIST;        /* try again */
1134                         goto unlock;
1135                 }
1136                 if (!PageUptodate(page)) {
1137                         error = -EIO;
1138                         goto failed;
1139                 }
1140                 wait_on_page_writeback(page);
1141
1142                 if (shmem_should_replace_page(page, gfp)) {
1143                         error = shmem_replace_page(&page, gfp, info, index);
1144                         if (error)
1145                                 goto failed;
1146                 }
1147
1148                 error = mem_cgroup_cache_charge(page, current->mm,
1149                                                 gfp & GFP_RECLAIM_MASK);
1150                 if (!error) {
1151                         error = shmem_add_to_page_cache(page, mapping, index,
1152                                                 gfp, swp_to_radix_entry(swap));
1153                         /*
1154                          * We already confirmed swap under page lock, and make
1155                          * no memory allocation here, so usually no possibility
1156                          * of error; but free_swap_and_cache() only trylocks a
1157                          * page, so it is just possible that the entry has been
1158                          * truncated or holepunched since swap was confirmed.
1159                          * shmem_undo_range() will have done some of the
1160                          * unaccounting, now delete_from_swap_cache() will do
1161                          * the rest (including mem_cgroup_uncharge_swapcache).
1162                          * Reset swap.val? No, leave it so "failed" goes back to
1163                          * "repeat": reading a hole and writing should succeed.
1164                          */
1165                         if (error)
1166                                 delete_from_swap_cache(page);
1167                 }
1168                 if (error)
1169                         goto failed;
1170
1171                 spin_lock(&info->lock);
1172                 info->swapped--;
1173                 shmem_recalc_inode(inode);
1174                 spin_unlock(&info->lock);
1175
1176                 delete_from_swap_cache(page);
1177                 set_page_dirty(page);
1178                 swap_free(swap);
1179
1180         } else {
1181                 if (shmem_acct_block(info->flags)) {
1182                         error = -ENOSPC;
1183                         goto failed;
1184                 }
1185                 if (sbinfo->max_blocks) {
1186                         if (percpu_counter_compare(&sbinfo->used_blocks,
1187                                                 sbinfo->max_blocks) >= 0) {
1188                                 error = -ENOSPC;
1189                                 goto unacct;
1190                         }
1191                         percpu_counter_inc(&sbinfo->used_blocks);
1192                 }
1193
1194                 page = shmem_alloc_page(gfp, info, index);
1195                 if (!page) {
1196                         error = -ENOMEM;
1197                         goto decused;
1198                 }
1199
1200                 SetPageSwapBacked(page);
1201                 __set_page_locked(page);
1202                 error = mem_cgroup_cache_charge(page, current->mm,
1203                                                 gfp & GFP_RECLAIM_MASK);
1204                 if (error)
1205                         goto decused;
1206                 error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
1207                 if (!error) {
1208                         error = shmem_add_to_page_cache(page, mapping, index,
1209                                                         gfp, NULL);
1210                         radix_tree_preload_end();
1211                 }
1212                 if (error) {
1213                         mem_cgroup_uncharge_cache_page(page);
1214                         goto decused;
1215                 }
1216                 lru_cache_add_anon(page);
1217
1218                 spin_lock(&info->lock);
1219                 info->alloced++;
1220                 inode->i_blocks += BLOCKS_PER_PAGE;
1221                 shmem_recalc_inode(inode);
1222                 spin_unlock(&info->lock);
1223                 alloced = true;
1224
1225                 /*
1226                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1227                  */
1228                 if (sgp == SGP_FALLOC)
1229                         sgp = SGP_WRITE;
1230 clear:
1231                 /*
1232                  * Let SGP_WRITE caller clear ends if write does not fill page;
1233                  * but SGP_FALLOC on a page fallocated earlier must initialize
1234                  * it now, lest undo on failure cancel our earlier guarantee.
1235                  */
1236                 if (sgp != SGP_WRITE) {
1237                         clear_highpage(page);
1238                         flush_dcache_page(page);
1239                         SetPageUptodate(page);
1240                 }
1241                 if (sgp == SGP_DIRTY)
1242                         set_page_dirty(page);
1243         }
1244
1245         /* Perhaps the file has been truncated since we checked */
1246         if (sgp != SGP_WRITE && sgp != SGP_FALLOC &&
1247             ((loff_t)index << PAGE_CACHE_SHIFT) >= i_size_read(inode)) {
1248                 error = -EINVAL;
1249                 if (alloced)
1250                         goto trunc;
1251                 else
1252                         goto failed;
1253         }
1254         *pagep = page;
1255         return 0;
1256
1257         /*
1258          * Error recovery.
1259          */
1260 trunc:
1261         info = SHMEM_I(inode);
1262         ClearPageDirty(page);
1263         delete_from_page_cache(page);
1264         spin_lock(&info->lock);
1265         info->alloced--;
1266         inode->i_blocks -= BLOCKS_PER_PAGE;
1267         spin_unlock(&info->lock);
1268 decused:
1269         sbinfo = SHMEM_SB(inode->i_sb);
1270         if (sbinfo->max_blocks)
1271                 percpu_counter_add(&sbinfo->used_blocks, -1);
1272 unacct:
1273         shmem_unacct_blocks(info->flags, 1);
1274 failed:
1275         if (swap.val && error != -EINVAL &&
1276             !shmem_confirm_swap(mapping, index, swap))
1277                 error = -EEXIST;
1278 unlock:
1279         if (page) {
1280                 unlock_page(page);
1281                 page_cache_release(page);
1282         }
1283         if (error == -ENOSPC && !once++) {
1284                 info = SHMEM_I(inode);
1285                 spin_lock(&info->lock);
1286                 shmem_recalc_inode(inode);
1287                 spin_unlock(&info->lock);
1288                 goto repeat;
1289         }
1290         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1291                 goto repeat;
1292         return error;
1293 }
1294
1295 static int shmem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1296 {
1297         struct inode *inode = file_inode(vma->vm_file);
1298         int error;
1299         int ret = VM_FAULT_LOCKED;
1300
1301         error = shmem_getpage(inode, vmf->pgoff, &vmf->page, SGP_CACHE, &ret);
1302         if (error)
1303                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1304
1305         if (ret & VM_FAULT_MAJOR) {
1306                 count_vm_event(PGMAJFAULT);
1307                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1308         }
1309         return ret;
1310 }
1311
1312 #ifdef CONFIG_NUMA
1313 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
1314 {
1315         struct inode *inode = file_inode(vma->vm_file);
1316         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
1317 }
1318
1319 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
1320                                           unsigned long addr)
1321 {
1322         struct inode *inode = file_inode(vma->vm_file);
1323         pgoff_t index;
1324
1325         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1326         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
1327 }
1328 #endif
1329
1330 int shmem_lock(struct file *file, int lock, struct user_struct *user)
1331 {
1332         struct inode *inode = file_inode(file);
1333         struct shmem_inode_info *info = SHMEM_I(inode);
1334         int retval = -ENOMEM;
1335
1336         spin_lock(&info->lock);
1337         if (lock && !(info->flags & VM_LOCKED)) {
1338                 if (!user_shm_lock(inode->i_size, user))
1339                         goto out_nomem;
1340                 info->flags |= VM_LOCKED;
1341                 mapping_set_unevictable(file->f_mapping);
1342         }
1343         if (!lock && (info->flags & VM_LOCKED) && user) {
1344                 user_shm_unlock(inode->i_size, user);
1345                 info->flags &= ~VM_LOCKED;
1346                 mapping_clear_unevictable(file->f_mapping);
1347         }
1348         retval = 0;
1349
1350 out_nomem:
1351         spin_unlock(&info->lock);
1352         return retval;
1353 }
1354
1355 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
1356 {
1357         file_accessed(file);
1358         vma->vm_ops = &shmem_vm_ops;
1359         return 0;
1360 }
1361
1362 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
1363                                      umode_t mode, dev_t dev, unsigned long flags)
1364 {
1365         struct inode *inode;
1366         struct shmem_inode_info *info;
1367         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
1368
1369         if (shmem_reserve_inode(sb))
1370                 return NULL;
1371
1372         inode = new_inode(sb);
1373         if (inode) {
1374                 inode->i_ino = get_next_ino();
1375                 inode_init_owner(inode, dir, mode);
1376                 inode->i_blocks = 0;
1377                 inode->i_mapping->backing_dev_info = &shmem_backing_dev_info;
1378                 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1379                 inode->i_generation = get_seconds();
1380                 info = SHMEM_I(inode);
1381                 memset(info, 0, (char *)inode - (char *)info);
1382                 spin_lock_init(&info->lock);
1383                 info->flags = flags & VM_NORESERVE;
1384                 INIT_LIST_HEAD(&info->swaplist);
1385                 simple_xattrs_init(&info->xattrs);
1386                 cache_no_acl(inode);
1387
1388                 switch (mode & S_IFMT) {
1389                 default:
1390                         inode->i_op = &shmem_special_inode_operations;
1391                         init_special_inode(inode, mode, dev);
1392                         break;
1393                 case S_IFREG:
1394                         inode->i_mapping->a_ops = &shmem_aops;
1395                         inode->i_op = &shmem_inode_operations;
1396                         inode->i_fop = &shmem_file_operations;
1397                         mpol_shared_policy_init(&info->policy,
1398                                                  shmem_get_sbmpol(sbinfo));
1399                         break;
1400                 case S_IFDIR:
1401                         inc_nlink(inode);
1402                         /* Some things misbehave if size == 0 on a directory */
1403                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
1404                         inode->i_op = &shmem_dir_inode_operations;
1405                         inode->i_fop = &simple_dir_operations;
1406                         break;
1407                 case S_IFLNK:
1408                         /*
1409                          * Must not load anything in the rbtree,
1410                          * mpol_free_shared_policy will not be called.
1411                          */
1412                         mpol_shared_policy_init(&info->policy, NULL);
1413                         break;
1414                 }
1415         } else
1416                 shmem_free_inode(sb);
1417         return inode;
1418 }
1419
1420 #ifdef CONFIG_TMPFS
1421 static const struct inode_operations shmem_symlink_inode_operations;
1422 static const struct inode_operations shmem_short_symlink_operations;
1423
1424 #ifdef CONFIG_TMPFS_XATTR
1425 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
1426 #else
1427 #define shmem_initxattrs NULL
1428 #endif
1429
1430 static int
1431 shmem_write_begin(struct file *file, struct address_space *mapping,
1432                         loff_t pos, unsigned len, unsigned flags,
1433                         struct page **pagep, void **fsdata)
1434 {
1435         struct inode *inode = mapping->host;
1436         pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1437         return shmem_getpage(inode, index, pagep, SGP_WRITE, NULL);
1438 }
1439
1440 static int
1441 shmem_write_end(struct file *file, struct address_space *mapping,
1442                         loff_t pos, unsigned len, unsigned copied,
1443                         struct page *page, void *fsdata)
1444 {
1445         struct inode *inode = mapping->host;
1446
1447         if (pos + copied > inode->i_size)
1448                 i_size_write(inode, pos + copied);
1449
1450         if (!PageUptodate(page)) {
1451                 if (copied < PAGE_CACHE_SIZE) {
1452                         unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1453                         zero_user_segments(page, 0, from,
1454                                         from + copied, PAGE_CACHE_SIZE);
1455                 }
1456                 SetPageUptodate(page);
1457         }
1458         set_page_dirty(page);
1459         unlock_page(page);
1460         page_cache_release(page);
1461
1462         return copied;
1463 }
1464
1465 static ssize_t shmem_file_aio_read(struct kiocb *iocb,
1466                 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1467 {
1468         struct file *file = iocb->ki_filp;
1469         struct inode *inode = file_inode(file);
1470         struct address_space *mapping = inode->i_mapping;
1471         pgoff_t index;
1472         unsigned long offset;
1473         enum sgp_type sgp = SGP_READ;
1474         int error;
1475         ssize_t retval;
1476         size_t count;
1477         loff_t *ppos = &iocb->ki_pos;
1478         struct iov_iter iter;
1479
1480         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1481         if (retval)
1482                 return retval;
1483         iov_iter_init(&iter, iov, nr_segs, count, 0);
1484
1485         /*
1486          * Might this read be for a stacking filesystem?  Then when reading
1487          * holes of a sparse file, we actually need to allocate those pages,
1488          * and even mark them dirty, so it cannot exceed the max_blocks limit.
1489          */
1490         if (segment_eq(get_fs(), KERNEL_DS))
1491                 sgp = SGP_DIRTY;
1492
1493         index = *ppos >> PAGE_CACHE_SHIFT;
1494         offset = *ppos & ~PAGE_CACHE_MASK;
1495
1496         for (;;) {
1497                 struct page *page = NULL;
1498                 pgoff_t end_index;
1499                 unsigned long nr, ret;
1500                 loff_t i_size = i_size_read(inode);
1501
1502                 end_index = i_size >> PAGE_CACHE_SHIFT;
1503                 if (index > end_index)
1504                         break;
1505                 if (index == end_index) {
1506                         nr = i_size & ~PAGE_CACHE_MASK;
1507                         if (nr <= offset)
1508                                 break;
1509                 }
1510
1511                 error = shmem_getpage(inode, index, &page, sgp, NULL);
1512                 if (error) {
1513                         if (error == -EINVAL)
1514                                 error = 0;
1515                         break;
1516                 }
1517                 if (page)
1518                         unlock_page(page);
1519
1520                 /*
1521                  * We must evaluate after, since reads (unlike writes)
1522                  * are called without i_mutex protection against truncate
1523                  */
1524                 nr = PAGE_CACHE_SIZE;
1525                 i_size = i_size_read(inode);
1526                 end_index = i_size >> PAGE_CACHE_SHIFT;
1527                 if (index == end_index) {
1528                         nr = i_size & ~PAGE_CACHE_MASK;
1529                         if (nr <= offset) {
1530                                 if (page)
1531                                         page_cache_release(page);
1532                                 break;
1533                         }
1534                 }
1535                 nr -= offset;
1536
1537                 if (page) {
1538                         /*
1539                          * If users can be writing to this page using arbitrary
1540                          * virtual addresses, take care about potential aliasing
1541                          * before reading the page on the kernel side.
1542                          */
1543                         if (mapping_writably_mapped(mapping))
1544                                 flush_dcache_page(page);
1545                         /*
1546                          * Mark the page accessed if we read the beginning.
1547                          */
1548                         if (!offset)
1549                                 mark_page_accessed(page);
1550                 } else {
1551                         page = ZERO_PAGE(0);
1552                         page_cache_get(page);
1553                 }
1554
1555                 /*
1556                  * Ok, we have the page, and it's up-to-date, so
1557                  * now we can copy it to user space...
1558                  */
1559                 ret = copy_page_to_iter(page, offset, nr, &iter);
1560                 retval += ret;
1561                 offset += ret;
1562                 index += offset >> PAGE_CACHE_SHIFT;
1563                 offset &= ~PAGE_CACHE_MASK;
1564
1565                 page_cache_release(page);
1566                 if (!iov_iter_count(&iter))
1567                         break;
1568                 if (ret < nr) {
1569                         error = -EFAULT;
1570                         break;
1571                 }
1572                 cond_resched();
1573         }
1574
1575         *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1576         file_accessed(file);
1577         return retval ? retval : error;
1578 }
1579
1580 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
1581                                 struct pipe_inode_info *pipe, size_t len,
1582                                 unsigned int flags)
1583 {
1584         struct address_space *mapping = in->f_mapping;
1585         struct inode *inode = mapping->host;
1586         unsigned int loff, nr_pages, req_pages;
1587         struct page *pages[PIPE_DEF_BUFFERS];
1588         struct partial_page partial[PIPE_DEF_BUFFERS];
1589         struct page *page;
1590         pgoff_t index, end_index;
1591         loff_t isize, left;
1592         int error, page_nr;
1593         struct splice_pipe_desc spd = {
1594                 .pages = pages,
1595                 .partial = partial,
1596                 .nr_pages_max = PIPE_DEF_BUFFERS,
1597                 .flags = flags,
1598                 .ops = &page_cache_pipe_buf_ops,
1599                 .spd_release = spd_release_page,
1600         };
1601
1602         isize = i_size_read(inode);
1603         if (unlikely(*ppos >= isize))
1604                 return 0;
1605
1606         left = isize - *ppos;
1607         if (unlikely(left < len))
1608                 len = left;
1609
1610         if (splice_grow_spd(pipe, &spd))
1611                 return -ENOMEM;
1612
1613         index = *ppos >> PAGE_CACHE_SHIFT;
1614         loff = *ppos & ~PAGE_CACHE_MASK;
1615         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1616         nr_pages = min(req_pages, spd.nr_pages_max);
1617
1618         spd.nr_pages = find_get_pages_contig(mapping, index,
1619                                                 nr_pages, spd.pages);
1620         index += spd.nr_pages;
1621         error = 0;
1622
1623         while (spd.nr_pages < nr_pages) {
1624                 error = shmem_getpage(inode, index, &page, SGP_CACHE, NULL);
1625                 if (error)
1626                         break;
1627                 unlock_page(page);
1628                 spd.pages[spd.nr_pages++] = page;
1629                 index++;
1630         }
1631
1632         index = *ppos >> PAGE_CACHE_SHIFT;
1633         nr_pages = spd.nr_pages;
1634         spd.nr_pages = 0;
1635
1636         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
1637                 unsigned int this_len;
1638
1639                 if (!len)
1640                         break;
1641
1642                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
1643                 page = spd.pages[page_nr];
1644
1645                 if (!PageUptodate(page) || page->mapping != mapping) {
1646                         error = shmem_getpage(inode, index, &page,
1647                                                         SGP_CACHE, NULL);
1648                         if (error)
1649                                 break;
1650                         unlock_page(page);
1651                         page_cache_release(spd.pages[page_nr]);
1652                         spd.pages[page_nr] = page;
1653                 }
1654
1655                 isize = i_size_read(inode);
1656                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1657                 if (unlikely(!isize || index > end_index))
1658                         break;
1659
1660                 if (end_index == index) {
1661                         unsigned int plen;
1662
1663                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1664                         if (plen <= loff)
1665                                 break;
1666
1667                         this_len = min(this_len, plen - loff);
1668                         len = this_len;
1669                 }
1670
1671                 spd.partial[page_nr].offset = loff;
1672                 spd.partial[page_nr].len = this_len;
1673                 len -= this_len;
1674                 loff = 0;
1675                 spd.nr_pages++;
1676                 index++;
1677         }
1678
1679         while (page_nr < nr_pages)
1680                 page_cache_release(spd.pages[page_nr++]);
1681
1682         if (spd.nr_pages)
1683                 error = splice_to_pipe(pipe, &spd);
1684
1685         splice_shrink_spd(&spd);
1686
1687         if (error > 0) {
1688                 *ppos += error;
1689                 file_accessed(in);
1690         }
1691         return error;
1692 }
1693
1694 /*
1695  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
1696  */
1697 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
1698                                     pgoff_t index, pgoff_t end, int whence)
1699 {
1700         struct page *page;
1701         struct pagevec pvec;
1702         pgoff_t indices[PAGEVEC_SIZE];
1703         bool done = false;
1704         int i;
1705
1706         pagevec_init(&pvec, 0);
1707         pvec.nr = 1;            /* start small: we may be there already */
1708         while (!done) {
1709                 pvec.nr = shmem_find_get_pages_and_swap(mapping, index,
1710                                         pvec.nr, pvec.pages, indices);
1711                 if (!pvec.nr) {
1712                         if (whence == SEEK_DATA)
1713                                 index = end;
1714                         break;
1715                 }
1716                 for (i = 0; i < pvec.nr; i++, index++) {
1717                         if (index < indices[i]) {
1718                                 if (whence == SEEK_HOLE) {
1719                                         done = true;
1720                                         break;
1721                                 }
1722                                 index = indices[i];
1723                         }
1724                         page = pvec.pages[i];
1725                         if (page && !radix_tree_exceptional_entry(page)) {
1726                                 if (!PageUptodate(page))
1727                                         page = NULL;
1728                         }
1729                         if (index >= end ||
1730                             (page && whence == SEEK_DATA) ||
1731                             (!page && whence == SEEK_HOLE)) {
1732                                 done = true;
1733                                 break;
1734                         }
1735                 }
1736                 shmem_deswap_pagevec(&pvec);
1737                 pagevec_release(&pvec);
1738                 pvec.nr = PAGEVEC_SIZE;
1739                 cond_resched();
1740         }
1741         return index;
1742 }
1743
1744 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
1745 {
1746         struct address_space *mapping = file->f_mapping;
1747         struct inode *inode = mapping->host;
1748         pgoff_t start, end;
1749         loff_t new_offset;
1750
1751         if (whence != SEEK_DATA && whence != SEEK_HOLE)
1752                 return generic_file_llseek_size(file, offset, whence,
1753                                         MAX_LFS_FILESIZE, i_size_read(inode));
1754         mutex_lock(&inode->i_mutex);
1755         /* We're holding i_mutex so we can access i_size directly */
1756
1757         if (offset < 0)
1758                 offset = -EINVAL;
1759         else if (offset >= inode->i_size)
1760                 offset = -ENXIO;
1761         else {
1762                 start = offset >> PAGE_CACHE_SHIFT;
1763                 end = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1764                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
1765                 new_offset <<= PAGE_CACHE_SHIFT;
1766                 if (new_offset > offset) {
1767                         if (new_offset < inode->i_size)
1768                                 offset = new_offset;
1769                         else if (whence == SEEK_DATA)
1770                                 offset = -ENXIO;
1771                         else
1772                                 offset = inode->i_size;
1773                 }
1774         }
1775
1776         if (offset >= 0)
1777                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
1778         mutex_unlock(&inode->i_mutex);
1779         return offset;
1780 }
1781
1782 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
1783                                                          loff_t len)
1784 {
1785         struct inode *inode = file_inode(file);
1786         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1787         struct shmem_falloc shmem_falloc;
1788         pgoff_t start, index, end;
1789         int error;
1790
1791         mutex_lock(&inode->i_mutex);
1792
1793         if (mode & FALLOC_FL_PUNCH_HOLE) {
1794                 struct address_space *mapping = file->f_mapping;
1795                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
1796                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
1797
1798                 if ((u64)unmap_end > (u64)unmap_start)
1799                         unmap_mapping_range(mapping, unmap_start,
1800                                             1 + unmap_end - unmap_start, 0);
1801                 shmem_truncate_range(inode, offset, offset + len - 1);
1802                 /* No need to unmap again: hole-punching leaves COWed pages */
1803                 error = 0;
1804                 goto out;
1805         }
1806
1807         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
1808         error = inode_newsize_ok(inode, offset + len);
1809         if (error)
1810                 goto out;
1811
1812         start = offset >> PAGE_CACHE_SHIFT;
1813         end = (offset + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1814         /* Try to avoid a swapstorm if len is impossible to satisfy */
1815         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
1816                 error = -ENOSPC;
1817                 goto out;
1818         }
1819
1820         shmem_falloc.start = start;
1821         shmem_falloc.next  = start;
1822         shmem_falloc.nr_falloced = 0;
1823         shmem_falloc.nr_unswapped = 0;
1824         spin_lock(&inode->i_lock);
1825         inode->i_private = &shmem_falloc;
1826         spin_unlock(&inode->i_lock);
1827
1828         for (index = start; index < end; index++) {
1829                 struct page *page;
1830
1831                 /*
1832                  * Good, the fallocate(2) manpage permits EINTR: we may have
1833                  * been interrupted because we are using up too much memory.
1834                  */
1835                 if (signal_pending(current))
1836                         error = -EINTR;
1837                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
1838                         error = -ENOMEM;
1839                 else
1840                         error = shmem_getpage(inode, index, &page, SGP_FALLOC,
1841                                                                         NULL);
1842                 if (error) {
1843                         /* Remove the !PageUptodate pages we added */
1844                         shmem_undo_range(inode,
1845                                 (loff_t)start << PAGE_CACHE_SHIFT,
1846                                 (loff_t)index << PAGE_CACHE_SHIFT, true);
1847                         goto undone;
1848                 }
1849
1850                 /*
1851                  * Inform shmem_writepage() how far we have reached.
1852                  * No need for lock or barrier: we have the page lock.
1853                  */
1854                 shmem_falloc.next++;
1855                 if (!PageUptodate(page))
1856                         shmem_falloc.nr_falloced++;
1857
1858                 /*
1859                  * If !PageUptodate, leave it that way so that freeable pages
1860                  * can be recognized if we need to rollback on error later.
1861                  * But set_page_dirty so that memory pressure will swap rather
1862                  * than free the pages we are allocating (and SGP_CACHE pages
1863                  * might still be clean: we now need to mark those dirty too).
1864                  */
1865                 set_page_dirty(page);
1866                 unlock_page(page);
1867                 page_cache_release(page);
1868                 cond_resched();
1869         }
1870
1871         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
1872                 i_size_write(inode, offset + len);
1873         inode->i_ctime = CURRENT_TIME;
1874 undone:
1875         spin_lock(&inode->i_lock);
1876         inode->i_private = NULL;
1877         spin_unlock(&inode->i_lock);
1878 out:
1879         mutex_unlock(&inode->i_mutex);
1880         return error;
1881 }
1882
1883 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
1884 {
1885         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
1886
1887         buf->f_type = TMPFS_MAGIC;
1888         buf->f_bsize = PAGE_CACHE_SIZE;
1889         buf->f_namelen = NAME_MAX;
1890         if (sbinfo->max_blocks) {
1891                 buf->f_blocks = sbinfo->max_blocks;
1892                 buf->f_bavail =
1893                 buf->f_bfree  = sbinfo->max_blocks -
1894                                 percpu_counter_sum(&sbinfo->used_blocks);
1895         }
1896         if (sbinfo->max_inodes) {
1897                 buf->f_files = sbinfo->max_inodes;
1898                 buf->f_ffree = sbinfo->free_inodes;
1899         }
1900         /* else leave those fields 0 like simple_statfs */
1901         return 0;
1902 }
1903
1904 /*
1905  * File creation. Allocate an inode, and we're done..
1906  */
1907 static int
1908 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1909 {
1910         struct inode *inode;
1911         int error = -ENOSPC;
1912
1913         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
1914         if (inode) {
1915                 error = simple_acl_create(dir, inode);
1916                 if (error)
1917                         goto out_iput;
1918                 error = security_inode_init_security(inode, dir,
1919                                                      &dentry->d_name,
1920                                                      shmem_initxattrs, NULL);
1921                 if (error && error != -EOPNOTSUPP)
1922                         goto out_iput;
1923
1924                 error = 0;
1925                 dir->i_size += BOGO_DIRENT_SIZE;
1926                 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1927                 d_instantiate(dentry, inode);
1928                 dget(dentry); /* Extra count - pin the dentry in core */
1929         }
1930         return error;
1931 out_iput:
1932         iput(inode);
1933         return error;
1934 }
1935
1936 static int
1937 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
1938 {
1939         struct inode *inode;
1940         int error = -ENOSPC;
1941
1942         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
1943         if (inode) {
1944                 error = security_inode_init_security(inode, dir,
1945                                                      NULL,
1946                                                      shmem_initxattrs, NULL);
1947                 if (error && error != -EOPNOTSUPP)
1948                         goto out_iput;
1949                 error = simple_acl_create(dir, inode);
1950                 if (error)
1951                         goto out_iput;
1952                 d_tmpfile(dentry, inode);
1953         }
1954         return error;
1955 out_iput:
1956         iput(inode);
1957         return error;
1958 }
1959
1960 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1961 {
1962         int error;
1963
1964         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
1965                 return error;
1966         inc_nlink(dir);
1967         return 0;
1968 }
1969
1970 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
1971                 bool excl)
1972 {
1973         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
1974 }
1975
1976 /*
1977  * Link a file..
1978  */
1979 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1980 {
1981         struct inode *inode = old_dentry->d_inode;
1982         int ret;
1983
1984         /*
1985          * No ordinary (disk based) filesystem counts links as inodes;
1986          * but each new link needs a new dentry, pinning lowmem, and
1987          * tmpfs dentries cannot be pruned until they are unlinked.
1988          */
1989         ret = shmem_reserve_inode(inode->i_sb);
1990         if (ret)
1991                 goto out;
1992
1993         dir->i_size += BOGO_DIRENT_SIZE;
1994         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
1995         inc_nlink(inode);
1996         ihold(inode);   /* New dentry reference */
1997         dget(dentry);           /* Extra pinning count for the created dentry */
1998         d_instantiate(dentry, inode);
1999 out:
2000         return ret;
2001 }
2002
2003 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2004 {
2005         struct inode *inode = dentry->d_inode;
2006
2007         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2008                 shmem_free_inode(inode->i_sb);
2009
2010         dir->i_size -= BOGO_DIRENT_SIZE;
2011         inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2012         drop_nlink(inode);
2013         dput(dentry);   /* Undo the count from "create" - this does all the work */
2014         return 0;
2015 }
2016
2017 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2018 {
2019         if (!simple_empty(dentry))
2020                 return -ENOTEMPTY;
2021
2022         drop_nlink(dentry->d_inode);
2023         drop_nlink(dir);
2024         return shmem_unlink(dir, dentry);
2025 }
2026
2027 /*
2028  * The VFS layer already does all the dentry stuff for rename,
2029  * we just have to decrement the usage count for the target if
2030  * it exists so that the VFS layer correctly free's it when it
2031  * gets overwritten.
2032  */
2033 static int shmem_rename(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2034 {
2035         struct inode *inode = old_dentry->d_inode;
2036         int they_are_dirs = S_ISDIR(inode->i_mode);
2037
2038         if (!simple_empty(new_dentry))
2039                 return -ENOTEMPTY;
2040
2041         if (new_dentry->d_inode) {
2042                 (void) shmem_unlink(new_dir, new_dentry);
2043                 if (they_are_dirs)
2044                         drop_nlink(old_dir);
2045         } else if (they_are_dirs) {
2046                 drop_nlink(old_dir);
2047                 inc_nlink(new_dir);
2048         }
2049
2050         old_dir->i_size -= BOGO_DIRENT_SIZE;
2051         new_dir->i_size += BOGO_DIRENT_SIZE;
2052         old_dir->i_ctime = old_dir->i_mtime =
2053         new_dir->i_ctime = new_dir->i_mtime =
2054         inode->i_ctime = CURRENT_TIME;
2055         return 0;
2056 }
2057
2058 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2059 {
2060         int error;
2061         int len;
2062         struct inode *inode;
2063         struct page *page;
2064         char *kaddr;
2065         struct shmem_inode_info *info;
2066
2067         len = strlen(symname) + 1;
2068         if (len > PAGE_CACHE_SIZE)
2069                 return -ENAMETOOLONG;
2070
2071         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
2072         if (!inode)
2073                 return -ENOSPC;
2074
2075         error = security_inode_init_security(inode, dir, &dentry->d_name,
2076                                              shmem_initxattrs, NULL);
2077         if (error) {
2078                 if (error != -EOPNOTSUPP) {
2079                         iput(inode);
2080                         return error;
2081                 }
2082                 error = 0;
2083         }
2084
2085         info = SHMEM_I(inode);
2086         inode->i_size = len-1;
2087         if (len <= SHORT_SYMLINK_LEN) {
2088                 info->symlink = kmemdup(symname, len, GFP_KERNEL);
2089                 if (!info->symlink) {
2090                         iput(inode);
2091                         return -ENOMEM;
2092                 }
2093                 inode->i_op = &shmem_short_symlink_operations;
2094         } else {
2095                 error = shmem_getpage(inode, 0, &page, SGP_WRITE, NULL);
2096                 if (error) {
2097                         iput(inode);
2098                         return error;
2099                 }
2100                 inode->i_mapping->a_ops = &shmem_aops;
2101                 inode->i_op = &shmem_symlink_inode_operations;
2102                 kaddr = kmap_atomic(page);
2103                 memcpy(kaddr, symname, len);
2104                 kunmap_atomic(kaddr);
2105                 SetPageUptodate(page);
2106                 set_page_dirty(page);
2107                 unlock_page(page);
2108                 page_cache_release(page);
2109         }
2110         dir->i_size += BOGO_DIRENT_SIZE;
2111         dir->i_ctime = dir->i_mtime = CURRENT_TIME;
2112         d_instantiate(dentry, inode);
2113         dget(dentry);
2114         return 0;
2115 }
2116
2117 static void *shmem_follow_short_symlink(struct dentry *dentry, struct nameidata *nd)
2118 {
2119         nd_set_link(nd, SHMEM_I(dentry->d_inode)->symlink);
2120         return NULL;
2121 }
2122
2123 static void *shmem_follow_link(struct dentry *dentry, struct nameidata *nd)
2124 {
2125         struct page *page = NULL;
2126         int error = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ, NULL);
2127         nd_set_link(nd, error ? ERR_PTR(error) : kmap(page));
2128         if (page)
2129                 unlock_page(page);
2130         return page;
2131 }
2132
2133 static void shmem_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2134 {
2135         if (!IS_ERR(nd_get_link(nd))) {
2136                 struct page *page = cookie;
2137                 kunmap(page);
2138                 mark_page_accessed(page);
2139                 page_cache_release(page);
2140         }
2141 }
2142
2143 #ifdef CONFIG_TMPFS_XATTR
2144 /*
2145  * Superblocks without xattr inode operations may get some security.* xattr
2146  * support from the LSM "for free". As soon as we have any other xattrs
2147  * like ACLs, we also need to implement the security.* handlers at
2148  * filesystem level, though.
2149  */
2150
2151 /*
2152  * Callback for security_inode_init_security() for acquiring xattrs.
2153  */
2154 static int shmem_initxattrs(struct inode *inode,
2155                             const struct xattr *xattr_array,
2156                             void *fs_info)
2157 {
2158         struct shmem_inode_info *info = SHMEM_I(inode);
2159         const struct xattr *xattr;
2160         struct simple_xattr *new_xattr;
2161         size_t len;
2162
2163         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
2164                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
2165                 if (!new_xattr)
2166                         return -ENOMEM;
2167
2168                 len = strlen(xattr->name) + 1;
2169                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
2170                                           GFP_KERNEL);
2171                 if (!new_xattr->name) {
2172                         kfree(new_xattr);
2173                         return -ENOMEM;
2174                 }
2175
2176                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
2177                        XATTR_SECURITY_PREFIX_LEN);
2178                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
2179                        xattr->name, len);
2180
2181                 simple_xattr_list_add(&info->xattrs, new_xattr);
2182         }
2183
2184         return 0;
2185 }
2186
2187 static const struct xattr_handler *shmem_xattr_handlers[] = {
2188 #ifdef CONFIG_TMPFS_POSIX_ACL
2189         &posix_acl_access_xattr_handler,
2190         &posix_acl_default_xattr_handler,
2191 #endif
2192         NULL
2193 };
2194
2195 static int shmem_xattr_validate(const char *name)
2196 {
2197         struct { const char *prefix; size_t len; } arr[] = {
2198                 { XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN },
2199                 { XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN }
2200         };
2201         int i;
2202
2203         for (i = 0; i < ARRAY_SIZE(arr); i++) {
2204                 size_t preflen = arr[i].len;
2205                 if (strncmp(name, arr[i].prefix, preflen) == 0) {
2206                         if (!name[preflen])
2207                                 return -EINVAL;
2208                         return 0;
2209                 }
2210         }
2211         return -EOPNOTSUPP;
2212 }
2213
2214 static ssize_t shmem_getxattr(struct dentry *dentry, const char *name,
2215                               void *buffer, size_t size)
2216 {
2217         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2218         int err;
2219
2220         /*
2221          * If this is a request for a synthetic attribute in the system.*
2222          * namespace use the generic infrastructure to resolve a handler
2223          * for it via sb->s_xattr.
2224          */
2225         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2226                 return generic_getxattr(dentry, name, buffer, size);
2227
2228         err = shmem_xattr_validate(name);
2229         if (err)
2230                 return err;
2231
2232         return simple_xattr_get(&info->xattrs, name, buffer, size);
2233 }
2234
2235 static int shmem_setxattr(struct dentry *dentry, const char *name,
2236                           const void *value, size_t size, int flags)
2237 {
2238         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2239         int err;
2240
2241         /*
2242          * If this is a request for a synthetic attribute in the system.*
2243          * namespace use the generic infrastructure to resolve a handler
2244          * for it via sb->s_xattr.
2245          */
2246         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2247                 return generic_setxattr(dentry, name, value, size, flags);
2248
2249         err = shmem_xattr_validate(name);
2250         if (err)
2251                 return err;
2252
2253         return simple_xattr_set(&info->xattrs, name, value, size, flags);
2254 }
2255
2256 static int shmem_removexattr(struct dentry *dentry, const char *name)
2257 {
2258         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2259         int err;
2260
2261         /*
2262          * If this is a request for a synthetic attribute in the system.*
2263          * namespace use the generic infrastructure to resolve a handler
2264          * for it via sb->s_xattr.
2265          */
2266         if (!strncmp(name, XATTR_SYSTEM_PREFIX, XATTR_SYSTEM_PREFIX_LEN))
2267                 return generic_removexattr(dentry, name);
2268
2269         err = shmem_xattr_validate(name);
2270         if (err)
2271                 return err;
2272
2273         return simple_xattr_remove(&info->xattrs, name);
2274 }
2275
2276 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
2277 {
2278         struct shmem_inode_info *info = SHMEM_I(dentry->d_inode);
2279         return simple_xattr_list(&info->xattrs, buffer, size);
2280 }
2281 #endif /* CONFIG_TMPFS_XATTR */
2282
2283 static const struct inode_operations shmem_short_symlink_operations = {
2284         .readlink       = generic_readlink,
2285         .follow_link    = shmem_follow_short_symlink,
2286 #ifdef CONFIG_TMPFS_XATTR
2287         .setxattr       = shmem_setxattr,
2288         .getxattr       = shmem_getxattr,
2289         .listxattr      = shmem_listxattr,
2290         .removexattr    = shmem_removexattr,
2291 #endif
2292 };
2293
2294 static const struct inode_operations shmem_symlink_inode_operations = {
2295         .readlink       = generic_readlink,
2296         .follow_link    = shmem_follow_link,
2297         .put_link       = shmem_put_link,
2298 #ifdef CONFIG_TMPFS_XATTR
2299         .setxattr       = shmem_setxattr,
2300         .getxattr       = shmem_getxattr,
2301         .listxattr      = shmem_listxattr,
2302         .removexattr    = shmem_removexattr,
2303 #endif
2304 };
2305
2306 static struct dentry *shmem_get_parent(struct dentry *child)
2307 {
2308         return ERR_PTR(-ESTALE);
2309 }
2310
2311 static int shmem_match(struct inode *ino, void *vfh)
2312 {
2313         __u32 *fh = vfh;
2314         __u64 inum = fh[2];
2315         inum = (inum << 32) | fh[1];
2316         return ino->i_ino == inum && fh[0] == ino->i_generation;
2317 }
2318
2319 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
2320                 struct fid *fid, int fh_len, int fh_type)
2321 {
2322         struct inode *inode;
2323         struct dentry *dentry = NULL;
2324         u64 inum;
2325
2326         if (fh_len < 3)
2327                 return NULL;
2328
2329         inum = fid->raw[2];
2330         inum = (inum << 32) | fid->raw[1];
2331
2332         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
2333                         shmem_match, fid->raw);
2334         if (inode) {
2335                 dentry = d_find_alias(inode);
2336                 iput(inode);
2337         }
2338
2339         return dentry;
2340 }
2341
2342 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
2343                                 struct inode *parent)
2344 {
2345         if (*len < 3) {
2346                 *len = 3;
2347                 return FILEID_INVALID;
2348         }
2349
2350         if (inode_unhashed(inode)) {
2351                 /* Unfortunately insert_inode_hash is not idempotent,
2352                  * so as we hash inodes here rather than at creation
2353                  * time, we need a lock to ensure we only try
2354                  * to do it once
2355                  */
2356                 static DEFINE_SPINLOCK(lock);
2357                 spin_lock(&lock);
2358                 if (inode_unhashed(inode))
2359                         __insert_inode_hash(inode,
2360                                             inode->i_ino + inode->i_generation);
2361                 spin_unlock(&lock);
2362         }
2363
2364         fh[0] = inode->i_generation;
2365         fh[1] = inode->i_ino;
2366         fh[2] = ((__u64)inode->i_ino) >> 32;
2367
2368         *len = 3;
2369         return 1;
2370 }
2371
2372 static const struct export_operations shmem_export_ops = {
2373         .get_parent     = shmem_get_parent,
2374         .encode_fh      = shmem_encode_fh,
2375         .fh_to_dentry   = shmem_fh_to_dentry,
2376 };
2377
2378 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
2379                                bool remount)
2380 {
2381         char *this_char, *value, *rest;
2382         struct mempolicy *mpol = NULL;
2383         uid_t uid;
2384         gid_t gid;
2385
2386         while (options != NULL) {
2387                 this_char = options;
2388                 for (;;) {
2389                         /*
2390                          * NUL-terminate this option: unfortunately,
2391                          * mount options form a comma-separated list,
2392                          * but mpol's nodelist may also contain commas.
2393                          */
2394                         options = strchr(options, ',');
2395                         if (options == NULL)
2396                                 break;
2397                         options++;
2398                         if (!isdigit(*options)) {
2399                                 options[-1] = '\0';
2400                                 break;
2401                         }
2402                 }
2403                 if (!*this_char)
2404                         continue;
2405                 if ((value = strchr(this_char,'=')) != NULL) {
2406                         *value++ = 0;
2407                 } else {
2408                         printk(KERN_ERR
2409                             "tmpfs: No value for mount option '%s'\n",
2410                             this_char);
2411                         goto error;
2412                 }
2413
2414                 if (!strcmp(this_char,"size")) {
2415                         unsigned long long size;
2416                         size = memparse(value,&rest);
2417                         if (*rest == '%') {
2418                                 size <<= PAGE_SHIFT;
2419                                 size *= totalram_pages;
2420                                 do_div(size, 100);
2421                                 rest++;
2422                         }
2423                         if (*rest)
2424                                 goto bad_val;
2425                         sbinfo->max_blocks =
2426                                 DIV_ROUND_UP(size, PAGE_CACHE_SIZE);
2427                 } else if (!strcmp(this_char,"nr_blocks")) {
2428                         sbinfo->max_blocks = memparse(value, &rest);
2429                         if (*rest)
2430                                 goto bad_val;
2431                 } else if (!strcmp(this_char,"nr_inodes")) {
2432                         sbinfo->max_inodes = memparse(value, &rest);
2433                         if (*rest)
2434                                 goto bad_val;
2435                 } else if (!strcmp(this_char,"mode")) {
2436                         if (remount)
2437                                 continue;
2438                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
2439                         if (*rest)
2440                                 goto bad_val;
2441                 } else if (!strcmp(this_char,"uid")) {
2442                         if (remount)
2443                                 continue;
2444                         uid = simple_strtoul(value, &rest, 0);
2445                         if (*rest)
2446                                 goto bad_val;
2447                         sbinfo->uid = make_kuid(current_user_ns(), uid);
2448                         if (!uid_valid(sbinfo->uid))
2449                                 goto bad_val;
2450                 } else if (!strcmp(this_char,"gid")) {
2451                         if (remount)
2452                                 continue;
2453                         gid = simple_strtoul(value, &rest, 0);
2454                         if (*rest)
2455                                 goto bad_val;
2456                         sbinfo->gid = make_kgid(current_user_ns(), gid);
2457                         if (!gid_valid(sbinfo->gid))
2458                                 goto bad_val;
2459                 } else if (!strcmp(this_char,"mpol")) {
2460                         mpol_put(mpol);
2461                         mpol = NULL;
2462                         if (mpol_parse_str(value, &mpol))
2463                                 goto bad_val;
2464                 } else {
2465                         printk(KERN_ERR "tmpfs: Bad mount option %s\n",
2466                                this_char);
2467                         goto error;
2468                 }
2469         }
2470         sbinfo->mpol = mpol;
2471         return 0;
2472
2473 bad_val:
2474         printk(KERN_ERR "tmpfs: Bad value '%s' for mount option '%s'\n",
2475                value, this_char);
2476 error:
2477         mpol_put(mpol);
2478         return 1;
2479
2480 }
2481
2482 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
2483 {
2484         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2485         struct shmem_sb_info config = *sbinfo;
2486         unsigned long inodes;
2487         int error = -EINVAL;
2488
2489         config.mpol = NULL;
2490         if (shmem_parse_options(data, &config, true))
2491                 return error;
2492
2493         spin_lock(&sbinfo->stat_lock);
2494         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
2495         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
2496                 goto out;
2497         if (config.max_inodes < inodes)
2498                 goto out;
2499         /*
2500          * Those tests disallow limited->unlimited while any are in use;
2501          * but we must separately disallow unlimited->limited, because
2502          * in that case we have no record of how much is already in use.
2503          */
2504         if (config.max_blocks && !sbinfo->max_blocks)
2505                 goto out;
2506         if (config.max_inodes && !sbinfo->max_inodes)
2507                 goto out;
2508
2509         error = 0;
2510         sbinfo->max_blocks  = config.max_blocks;
2511         sbinfo->max_inodes  = config.max_inodes;
2512         sbinfo->free_inodes = config.max_inodes - inodes;
2513
2514         /*
2515          * Preserve previous mempolicy unless mpol remount option was specified.
2516          */
2517         if (config.mpol) {
2518                 mpol_put(sbinfo->mpol);
2519                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
2520         }
2521 out:
2522         spin_unlock(&sbinfo->stat_lock);
2523         return error;
2524 }
2525
2526 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
2527 {
2528         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
2529
2530         if (sbinfo->max_blocks != shmem_default_max_blocks())
2531                 seq_printf(seq, ",size=%luk",
2532                         sbinfo->max_blocks << (PAGE_CACHE_SHIFT - 10));
2533         if (sbinfo->max_inodes != shmem_default_max_inodes())
2534                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
2535         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
2536                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
2537         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
2538                 seq_printf(seq, ",uid=%u",
2539                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
2540         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
2541                 seq_printf(seq, ",gid=%u",
2542                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
2543         shmem_show_mpol(seq, sbinfo->mpol);
2544         return 0;
2545 }
2546 #endif /* CONFIG_TMPFS */
2547
2548 static void shmem_put_super(struct super_block *sb)
2549 {
2550         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2551
2552         percpu_counter_destroy(&sbinfo->used_blocks);
2553         mpol_put(sbinfo->mpol);
2554         kfree(sbinfo);
2555         sb->s_fs_info = NULL;
2556 }
2557
2558 int shmem_fill_super(struct super_block *sb, void *data, int silent)
2559 {
2560         struct inode *inode;
2561         struct shmem_sb_info *sbinfo;
2562         int err = -ENOMEM;
2563
2564         /* Round up to L1_CACHE_BYTES to resist false sharing */
2565         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
2566                                 L1_CACHE_BYTES), GFP_KERNEL);
2567         if (!sbinfo)
2568                 return -ENOMEM;
2569
2570         sbinfo->mode = S_IRWXUGO | S_ISVTX;
2571         sbinfo->uid = current_fsuid();
2572         sbinfo->gid = current_fsgid();
2573         sb->s_fs_info = sbinfo;
2574
2575 #ifdef CONFIG_TMPFS
2576         /*
2577          * Per default we only allow half of the physical ram per
2578          * tmpfs instance, limiting inodes to one per page of lowmem;
2579          * but the internal instance is left unlimited.
2580          */
2581         if (!(sb->s_flags & MS_KERNMOUNT)) {
2582                 sbinfo->max_blocks = shmem_default_max_blocks();
2583                 sbinfo->max_inodes = shmem_default_max_inodes();
2584                 if (shmem_parse_options(data, sbinfo, false)) {
2585                         err = -EINVAL;
2586                         goto failed;
2587                 }
2588         } else {
2589                 sb->s_flags |= MS_NOUSER;
2590         }
2591         sb->s_export_op = &shmem_export_ops;
2592         sb->s_flags |= MS_NOSEC;
2593 #else
2594         sb->s_flags |= MS_NOUSER;
2595 #endif
2596
2597         spin_lock_init(&sbinfo->stat_lock);
2598         if (percpu_counter_init(&sbinfo->used_blocks, 0))
2599                 goto failed;
2600         sbinfo->free_inodes = sbinfo->max_inodes;
2601
2602         sb->s_maxbytes = MAX_LFS_FILESIZE;
2603         sb->s_blocksize = PAGE_CACHE_SIZE;
2604         sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2605         sb->s_magic = TMPFS_MAGIC;
2606         sb->s_op = &shmem_ops;
2607         sb->s_time_gran = 1;
2608 #ifdef CONFIG_TMPFS_XATTR
2609         sb->s_xattr = shmem_xattr_handlers;
2610 #endif
2611 #ifdef CONFIG_TMPFS_POSIX_ACL
2612         sb->s_flags |= MS_POSIXACL;
2613 #endif
2614
2615         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
2616         if (!inode)
2617                 goto failed;
2618         inode->i_uid = sbinfo->uid;
2619         inode->i_gid = sbinfo->gid;
2620         sb->s_root = d_make_root(inode);
2621         if (!sb->s_root)
2622                 goto failed;
2623         return 0;
2624
2625 failed:
2626         shmem_put_super(sb);
2627         return err;
2628 }
2629
2630 static struct kmem_cache *shmem_inode_cachep;
2631
2632 static struct inode *shmem_alloc_inode(struct super_block *sb)
2633 {
2634         struct shmem_inode_info *info;
2635         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
2636         if (!info)
2637                 return NULL;
2638         return &info->vfs_inode;
2639 }
2640
2641 static void shmem_destroy_callback(struct rcu_head *head)
2642 {
2643         struct inode *inode = container_of(head, struct inode, i_rcu);
2644         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
2645 }
2646
2647 static void shmem_destroy_inode(struct inode *inode)
2648 {
2649         if (S_ISREG(inode->i_mode))
2650                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
2651         call_rcu(&inode->i_rcu, shmem_destroy_callback);
2652 }
2653
2654 static void shmem_init_inode(void *foo)
2655 {
2656         struct shmem_inode_info *info = foo;
2657         inode_init_once(&info->vfs_inode);
2658 }
2659
2660 static int shmem_init_inodecache(void)
2661 {
2662         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
2663                                 sizeof(struct shmem_inode_info),
2664                                 0, SLAB_PANIC, shmem_init_inode);
2665         return 0;
2666 }
2667
2668 static void shmem_destroy_inodecache(void)
2669 {
2670         kmem_cache_destroy(shmem_inode_cachep);
2671 }
2672
2673 static const struct address_space_operations shmem_aops = {
2674         .writepage      = shmem_writepage,
2675         .set_page_dirty = __set_page_dirty_no_writeback,
2676 #ifdef CONFIG_TMPFS
2677         .write_begin    = shmem_write_begin,
2678         .write_end      = shmem_write_end,
2679 #endif
2680         .migratepage    = migrate_page,
2681         .error_remove_page = generic_error_remove_page,
2682 };
2683
2684 static const struct file_operations shmem_file_operations = {
2685         .mmap           = shmem_mmap,
2686 #ifdef CONFIG_TMPFS
2687         .llseek         = shmem_file_llseek,
2688         .read           = do_sync_read,
2689         .write          = do_sync_write,
2690         .aio_read       = shmem_file_aio_read,
2691         .aio_write      = generic_file_aio_write,
2692         .fsync          = noop_fsync,
2693         .splice_read    = shmem_file_splice_read,
2694         .splice_write   = generic_file_splice_write,
2695         .fallocate      = shmem_fallocate,
2696 #endif
2697 };
2698
2699 static const struct inode_operations shmem_inode_operations = {
2700         .setattr        = shmem_setattr,
2701 #ifdef CONFIG_TMPFS_XATTR
2702         .setxattr       = shmem_setxattr,
2703         .getxattr       = shmem_getxattr,
2704         .listxattr      = shmem_listxattr,
2705         .removexattr    = shmem_removexattr,
2706         .set_acl        = simple_set_acl,
2707 #endif
2708 };
2709
2710 static const struct inode_operations shmem_dir_inode_operations = {
2711 #ifdef CONFIG_TMPFS
2712         .create         = shmem_create,
2713         .lookup         = simple_lookup,
2714         .link           = shmem_link,
2715         .unlink         = shmem_unlink,
2716         .symlink        = shmem_symlink,
2717         .mkdir          = shmem_mkdir,
2718         .rmdir          = shmem_rmdir,
2719         .mknod          = shmem_mknod,
2720         .rename         = shmem_rename,
2721         .tmpfile        = shmem_tmpfile,
2722 #endif
2723 #ifdef CONFIG_TMPFS_XATTR
2724         .setxattr       = shmem_setxattr,
2725         .getxattr       = shmem_getxattr,
2726         .listxattr      = shmem_listxattr,
2727         .removexattr    = shmem_removexattr,
2728 #endif
2729 #ifdef CONFIG_TMPFS_POSIX_ACL
2730         .setattr        = shmem_setattr,
2731         .set_acl        = simple_set_acl,
2732 #endif
2733 };
2734
2735 static const struct inode_operations shmem_special_inode_operations = {
2736 #ifdef CONFIG_TMPFS_XATTR
2737         .setxattr       = shmem_setxattr,
2738         .getxattr       = shmem_getxattr,
2739         .listxattr      = shmem_listxattr,
2740         .removexattr    = shmem_removexattr,
2741 #endif
2742 #ifdef CONFIG_TMPFS_POSIX_ACL
2743         .setattr        = shmem_setattr,
2744         .set_acl        = simple_set_acl,
2745 #endif
2746 };
2747
2748 static const struct super_operations shmem_ops = {
2749         .alloc_inode    = shmem_alloc_inode,
2750         .destroy_inode  = shmem_destroy_inode,
2751 #ifdef CONFIG_TMPFS
2752         .statfs         = shmem_statfs,
2753         .remount_fs     = shmem_remount_fs,
2754         .show_options   = shmem_show_options,
2755 #endif
2756         .evict_inode    = shmem_evict_inode,
2757         .drop_inode     = generic_delete_inode,
2758         .put_super      = shmem_put_super,
2759 };
2760
2761 static const struct vm_operations_struct shmem_vm_ops = {
2762         .fault          = shmem_fault,
2763 #ifdef CONFIG_NUMA
2764         .set_policy     = shmem_set_policy,
2765         .get_policy     = shmem_get_policy,
2766 #endif
2767         .remap_pages    = generic_file_remap_pages,
2768 };
2769
2770 static struct dentry *shmem_mount(struct file_system_type *fs_type,
2771         int flags, const char *dev_name, void *data)
2772 {
2773         return mount_nodev(fs_type, flags, data, shmem_fill_super);
2774 }
2775
2776 static struct file_system_type shmem_fs_type = {
2777         .owner          = THIS_MODULE,
2778         .name           = "tmpfs",
2779         .mount          = shmem_mount,
2780         .kill_sb        = kill_litter_super,
2781         .fs_flags       = FS_USERNS_MOUNT,
2782 };
2783
2784 int __init shmem_init(void)
2785 {
2786         int error;
2787
2788         /* If rootfs called this, don't re-init */
2789         if (shmem_inode_cachep)
2790                 return 0;
2791
2792         error = bdi_init(&shmem_backing_dev_info);
2793         if (error)
2794                 goto out4;
2795
2796         error = shmem_init_inodecache();
2797         if (error)
2798                 goto out3;
2799
2800         error = register_filesystem(&shmem_fs_type);
2801         if (error) {
2802                 printk(KERN_ERR "Could not register tmpfs\n");
2803                 goto out2;
2804         }
2805
2806         shm_mnt = kern_mount(&shmem_fs_type);
2807         if (IS_ERR(shm_mnt)) {
2808                 error = PTR_ERR(shm_mnt);
2809                 printk(KERN_ERR "Could not kern_mount tmpfs\n");
2810                 goto out1;
2811         }
2812         return 0;
2813
2814 out1:
2815         unregister_filesystem(&shmem_fs_type);
2816 out2:
2817         shmem_destroy_inodecache();
2818 out3:
2819         bdi_destroy(&shmem_backing_dev_info);
2820 out4:
2821         shm_mnt = ERR_PTR(error);
2822         return error;
2823 }
2824
2825 #else /* !CONFIG_SHMEM */
2826
2827 /*
2828  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
2829  *
2830  * This is intended for small system where the benefits of the full
2831  * shmem code (swap-backed and resource-limited) are outweighed by
2832  * their complexity. On systems without swap this code should be
2833  * effectively equivalent, but much lighter weight.
2834  */
2835
2836 static struct file_system_type shmem_fs_type = {
2837         .name           = "tmpfs",
2838         .mount          = ramfs_mount,
2839         .kill_sb        = kill_litter_super,
2840         .fs_flags       = FS_USERNS_MOUNT,
2841 };
2842
2843 int __init shmem_init(void)
2844 {
2845         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
2846
2847         shm_mnt = kern_mount(&shmem_fs_type);
2848         BUG_ON(IS_ERR(shm_mnt));
2849
2850         return 0;
2851 }
2852
2853 int shmem_unuse(swp_entry_t swap, struct page *page)
2854 {
2855         return 0;
2856 }
2857
2858 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2859 {
2860         return 0;
2861 }
2862
2863 void shmem_unlock_mapping(struct address_space *mapping)
2864 {
2865 }
2866
2867 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
2868 {
2869         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
2870 }
2871 EXPORT_SYMBOL_GPL(shmem_truncate_range);
2872
2873 #define shmem_vm_ops                            generic_file_vm_ops
2874 #define shmem_file_operations                   ramfs_file_operations
2875 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
2876 #define shmem_acct_size(flags, size)            0
2877 #define shmem_unacct_size(flags, size)          do {} while (0)
2878
2879 #endif /* CONFIG_SHMEM */
2880
2881 /* common code */
2882
2883 static struct dentry_operations anon_ops = {
2884         .d_dname = simple_dname
2885 };
2886
2887 static struct file *__shmem_file_setup(const char *name, loff_t size,
2888                                        unsigned long flags, unsigned int i_flags)
2889 {
2890         struct file *res;
2891         struct inode *inode;
2892         struct path path;
2893         struct super_block *sb;
2894         struct qstr this;
2895
2896         if (IS_ERR(shm_mnt))
2897                 return ERR_CAST(shm_mnt);
2898
2899         if (size < 0 || size > MAX_LFS_FILESIZE)
2900                 return ERR_PTR(-EINVAL);
2901
2902         if (shmem_acct_size(flags, size))
2903                 return ERR_PTR(-ENOMEM);
2904
2905         res = ERR_PTR(-ENOMEM);
2906         this.name = name;
2907         this.len = strlen(name);
2908         this.hash = 0; /* will go */
2909         sb = shm_mnt->mnt_sb;
2910         path.dentry = d_alloc_pseudo(sb, &this);
2911         if (!path.dentry)
2912                 goto put_memory;
2913         d_set_d_op(path.dentry, &anon_ops);
2914         path.mnt = mntget(shm_mnt);
2915
2916         res = ERR_PTR(-ENOSPC);
2917         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
2918         if (!inode)
2919                 goto put_dentry;
2920
2921         inode->i_flags |= i_flags;
2922         d_instantiate(path.dentry, inode);
2923         inode->i_size = size;
2924         clear_nlink(inode);     /* It is unlinked */
2925         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
2926         if (IS_ERR(res))
2927                 goto put_dentry;
2928
2929         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
2930                   &shmem_file_operations);
2931         if (IS_ERR(res))
2932                 goto put_dentry;
2933
2934         return res;
2935
2936 put_dentry:
2937         path_put(&path);
2938 put_memory:
2939         shmem_unacct_size(flags, size);
2940         return res;
2941 }
2942
2943 /**
2944  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
2945  *      kernel internal.  There will be NO LSM permission checks against the
2946  *      underlying inode.  So users of this interface must do LSM checks at a
2947  *      higher layer.  The one user is the big_key implementation.  LSM checks
2948  *      are provided at the key level rather than the inode level.
2949  * @name: name for dentry (to be seen in /proc/<pid>/maps
2950  * @size: size to be set for the file
2951  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2952  */
2953 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
2954 {
2955         return __shmem_file_setup(name, size, flags, S_PRIVATE);
2956 }
2957
2958 /**
2959  * shmem_file_setup - get an unlinked file living in tmpfs
2960  * @name: name for dentry (to be seen in /proc/<pid>/maps
2961  * @size: size to be set for the file
2962  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
2963  */
2964 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
2965 {
2966         return __shmem_file_setup(name, size, flags, 0);
2967 }
2968 EXPORT_SYMBOL_GPL(shmem_file_setup);
2969
2970 /**
2971  * shmem_zero_setup - setup a shared anonymous mapping
2972  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
2973  */
2974 int shmem_zero_setup(struct vm_area_struct *vma)
2975 {
2976         struct file *file;
2977         loff_t size = vma->vm_end - vma->vm_start;
2978
2979         file = shmem_file_setup("dev/zero", size, vma->vm_flags);
2980         if (IS_ERR(file))
2981                 return PTR_ERR(file);
2982
2983         if (vma->vm_file)
2984                 fput(vma->vm_file);
2985         vma->vm_file = file;
2986         vma->vm_ops = &shmem_vm_ops;
2987         return 0;
2988 }
2989
2990 /**
2991  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
2992  * @mapping:    the page's address_space
2993  * @index:      the page index
2994  * @gfp:        the page allocator flags to use if allocating
2995  *
2996  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
2997  * with any new page allocations done using the specified allocation flags.
2998  * But read_cache_page_gfp() uses the ->readpage() method: which does not
2999  * suit tmpfs, since it may have pages in swapcache, and needs to find those
3000  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
3001  *
3002  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
3003  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
3004  */
3005 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
3006                                          pgoff_t index, gfp_t gfp)
3007 {
3008 #ifdef CONFIG_SHMEM
3009         struct inode *inode = mapping->host;
3010         struct page *page;
3011         int error;
3012
3013         BUG_ON(mapping->a_ops != &shmem_aops);
3014         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE, gfp, NULL);
3015         if (error)
3016                 page = ERR_PTR(error);
3017         else
3018                 unlock_page(page);
3019         return page;
3020 #else
3021         /*
3022          * The tiny !SHMEM case uses ramfs without swap
3023          */
3024         return read_cache_page_gfp(mapping, index, gfp);
3025 #endif
3026 }
3027 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);