Merge tag 'trace-3.15-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / mm / filemap.c
1 /*
2  *      linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex              (truncate_pagecache)
65  *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock             (exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex            (truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
75  *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page               (access_process_vm)
79  *
80  *  ->i_mutex                   (generic_file_buffered_write)
81  *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock                   (fs/fs-writeback.c)
85  *    ->mapping->tree_lock      (__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock           (vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock               (try_to_unmap_one)
95  *    ->private_lock            (try_to_unmap_one)
96  *    ->tree_lock               (try_to_unmap_one)
97  *    ->zone.lru_lock           (follow_page->mark_page_accessed)
98  *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
99  *    ->private_lock            (page_remove_rmap->set_page_dirty)
100  *    ->tree_lock               (page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
105  *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112                                    struct page *page, void *shadow)
113 {
114         struct radix_tree_node *node;
115         unsigned long index;
116         unsigned int offset;
117         unsigned int tag;
118         void **slot;
119
120         VM_BUG_ON(!PageLocked(page));
121
122         __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124         if (shadow) {
125                 mapping->nrshadows++;
126                 /*
127                  * Make sure the nrshadows update is committed before
128                  * the nrpages update so that final truncate racing
129                  * with reclaim does not see both counters 0 at the
130                  * same time and miss a shadow entry.
131                  */
132                 smp_wmb();
133         }
134         mapping->nrpages--;
135
136         if (!node) {
137                 /* Clear direct pointer tags in root node */
138                 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139                 radix_tree_replace_slot(slot, shadow);
140                 return;
141         }
142
143         /* Clear tree tags for the removed page */
144         index = page->index;
145         offset = index & RADIX_TREE_MAP_MASK;
146         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147                 if (test_bit(offset, node->tags[tag]))
148                         radix_tree_tag_clear(&mapping->page_tree, index, tag);
149         }
150
151         /* Delete page, swap shadow entry */
152         radix_tree_replace_slot(slot, shadow);
153         workingset_node_pages_dec(node);
154         if (shadow)
155                 workingset_node_shadows_inc(node);
156         else
157                 if (__radix_tree_delete_node(&mapping->page_tree, node))
158                         return;
159
160         /*
161          * Track node that only contains shadow entries.
162          *
163          * Avoid acquiring the list_lru lock if already tracked.  The
164          * list_empty() test is safe as node->private_list is
165          * protected by mapping->tree_lock.
166          */
167         if (!workingset_node_pages(node) &&
168             list_empty(&node->private_list)) {
169                 node->private_data = mapping;
170                 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171         }
172 }
173
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181         struct address_space *mapping = page->mapping;
182
183         trace_mm_filemap_delete_from_page_cache(page);
184         /*
185          * if we're uptodate, flush out into the cleancache, otherwise
186          * invalidate any existing cleancache entries.  We can't leave
187          * stale data around in the cleancache once our page is gone
188          */
189         if (PageUptodate(page) && PageMappedToDisk(page))
190                 cleancache_put_page(page);
191         else
192                 cleancache_invalidate_page(mapping, page);
193
194         page_cache_tree_delete(mapping, page, shadow);
195
196         page->mapping = NULL;
197         /* Leave page->index set: truncation lookup relies upon it */
198
199         __dec_zone_page_state(page, NR_FILE_PAGES);
200         if (PageSwapBacked(page))
201                 __dec_zone_page_state(page, NR_SHMEM);
202         BUG_ON(page_mapped(page));
203
204         /*
205          * Some filesystems seem to re-dirty the page even after
206          * the VM has canceled the dirty bit (eg ext3 journaling).
207          *
208          * Fix it up by doing a final dirty accounting check after
209          * having removed the page entirely.
210          */
211         if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212                 dec_zone_page_state(page, NR_FILE_DIRTY);
213                 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214         }
215 }
216
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227         struct address_space *mapping = page->mapping;
228         void (*freepage)(struct page *);
229
230         BUG_ON(!PageLocked(page));
231
232         freepage = mapping->a_ops->freepage;
233         spin_lock_irq(&mapping->tree_lock);
234         __delete_from_page_cache(page, NULL);
235         spin_unlock_irq(&mapping->tree_lock);
236         mem_cgroup_uncharge_cache_page(page);
237
238         if (freepage)
239                 freepage(page);
240         page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246         io_schedule();
247         return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252         sleep_on_page(word);
253         return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258         int ret = 0;
259         /* Check for outstanding write errors */
260         if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261                 ret = -ENOSPC;
262         if (test_and_clear_bit(AS_EIO, &mapping->flags))
263                 ret = -EIO;
264         return ret;
265 }
266
267 /**
268  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269  * @mapping:    address space structure to write
270  * @start:      offset in bytes where the range starts
271  * @end:        offset in bytes where the range ends (inclusive)
272  * @sync_mode:  enable synchronous operation
273  *
274  * Start writeback against all of a mapping's dirty pages that lie
275  * within the byte offsets <start, end> inclusive.
276  *
277  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278  * opposed to a regular memory cleansing writeback.  The difference between
279  * these two operations is that if a dirty page/buffer is encountered, it must
280  * be waited upon, and not just skipped over.
281  */
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283                                 loff_t end, int sync_mode)
284 {
285         int ret;
286         struct writeback_control wbc = {
287                 .sync_mode = sync_mode,
288                 .nr_to_write = LONG_MAX,
289                 .range_start = start,
290                 .range_end = end,
291         };
292
293         if (!mapping_cap_writeback_dirty(mapping))
294                 return 0;
295
296         ret = do_writepages(mapping, &wbc);
297         return ret;
298 }
299
300 static inline int __filemap_fdatawrite(struct address_space *mapping,
301         int sync_mode)
302 {
303         return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
304 }
305
306 int filemap_fdatawrite(struct address_space *mapping)
307 {
308         return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
309 }
310 EXPORT_SYMBOL(filemap_fdatawrite);
311
312 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
313                                 loff_t end)
314 {
315         return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
316 }
317 EXPORT_SYMBOL(filemap_fdatawrite_range);
318
319 /**
320  * filemap_flush - mostly a non-blocking flush
321  * @mapping:    target address_space
322  *
323  * This is a mostly non-blocking flush.  Not suitable for data-integrity
324  * purposes - I/O may not be started against all dirty pages.
325  */
326 int filemap_flush(struct address_space *mapping)
327 {
328         return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
329 }
330 EXPORT_SYMBOL(filemap_flush);
331
332 /**
333  * filemap_fdatawait_range - wait for writeback to complete
334  * @mapping:            address space structure to wait for
335  * @start_byte:         offset in bytes where the range starts
336  * @end_byte:           offset in bytes where the range ends (inclusive)
337  *
338  * Walk the list of under-writeback pages of the given address space
339  * in the given range and wait for all of them.
340  */
341 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
342                             loff_t end_byte)
343 {
344         pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
345         pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
346         struct pagevec pvec;
347         int nr_pages;
348         int ret2, ret = 0;
349
350         if (end_byte < start_byte)
351                 goto out;
352
353         pagevec_init(&pvec, 0);
354         while ((index <= end) &&
355                         (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356                         PAGECACHE_TAG_WRITEBACK,
357                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
358                 unsigned i;
359
360                 for (i = 0; i < nr_pages; i++) {
361                         struct page *page = pvec.pages[i];
362
363                         /* until radix tree lookup accepts end_index */
364                         if (page->index > end)
365                                 continue;
366
367                         wait_on_page_writeback(page);
368                         if (TestClearPageError(page))
369                                 ret = -EIO;
370                 }
371                 pagevec_release(&pvec);
372                 cond_resched();
373         }
374 out:
375         ret2 = filemap_check_errors(mapping);
376         if (!ret)
377                 ret = ret2;
378
379         return ret;
380 }
381 EXPORT_SYMBOL(filemap_fdatawait_range);
382
383 /**
384  * filemap_fdatawait - wait for all under-writeback pages to complete
385  * @mapping: address space structure to wait for
386  *
387  * Walk the list of under-writeback pages of the given address space
388  * and wait for all of them.
389  */
390 int filemap_fdatawait(struct address_space *mapping)
391 {
392         loff_t i_size = i_size_read(mapping->host);
393
394         if (i_size == 0)
395                 return 0;
396
397         return filemap_fdatawait_range(mapping, 0, i_size - 1);
398 }
399 EXPORT_SYMBOL(filemap_fdatawait);
400
401 int filemap_write_and_wait(struct address_space *mapping)
402 {
403         int err = 0;
404
405         if (mapping->nrpages) {
406                 err = filemap_fdatawrite(mapping);
407                 /*
408                  * Even if the above returned error, the pages may be
409                  * written partially (e.g. -ENOSPC), so we wait for it.
410                  * But the -EIO is special case, it may indicate the worst
411                  * thing (e.g. bug) happened, so we avoid waiting for it.
412                  */
413                 if (err != -EIO) {
414                         int err2 = filemap_fdatawait(mapping);
415                         if (!err)
416                                 err = err2;
417                 }
418         } else {
419                 err = filemap_check_errors(mapping);
420         }
421         return err;
422 }
423 EXPORT_SYMBOL(filemap_write_and_wait);
424
425 /**
426  * filemap_write_and_wait_range - write out & wait on a file range
427  * @mapping:    the address_space for the pages
428  * @lstart:     offset in bytes where the range starts
429  * @lend:       offset in bytes where the range ends (inclusive)
430  *
431  * Write out and wait upon file offsets lstart->lend, inclusive.
432  *
433  * Note that `lend' is inclusive (describes the last byte to be written) so
434  * that this function can be used to write to the very end-of-file (end = -1).
435  */
436 int filemap_write_and_wait_range(struct address_space *mapping,
437                                  loff_t lstart, loff_t lend)
438 {
439         int err = 0;
440
441         if (mapping->nrpages) {
442                 err = __filemap_fdatawrite_range(mapping, lstart, lend,
443                                                  WB_SYNC_ALL);
444                 /* See comment of filemap_write_and_wait() */
445                 if (err != -EIO) {
446                         int err2 = filemap_fdatawait_range(mapping,
447                                                 lstart, lend);
448                         if (!err)
449                                 err = err2;
450                 }
451         } else {
452                 err = filemap_check_errors(mapping);
453         }
454         return err;
455 }
456 EXPORT_SYMBOL(filemap_write_and_wait_range);
457
458 /**
459  * replace_page_cache_page - replace a pagecache page with a new one
460  * @old:        page to be replaced
461  * @new:        page to replace with
462  * @gfp_mask:   allocation mode
463  *
464  * This function replaces a page in the pagecache with a new one.  On
465  * success it acquires the pagecache reference for the new page and
466  * drops it for the old page.  Both the old and new pages must be
467  * locked.  This function does not add the new page to the LRU, the
468  * caller must do that.
469  *
470  * The remove + add is atomic.  The only way this function can fail is
471  * memory allocation failure.
472  */
473 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
474 {
475         int error;
476
477         VM_BUG_ON_PAGE(!PageLocked(old), old);
478         VM_BUG_ON_PAGE(!PageLocked(new), new);
479         VM_BUG_ON_PAGE(new->mapping, new);
480
481         error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
482         if (!error) {
483                 struct address_space *mapping = old->mapping;
484                 void (*freepage)(struct page *);
485
486                 pgoff_t offset = old->index;
487                 freepage = mapping->a_ops->freepage;
488
489                 page_cache_get(new);
490                 new->mapping = mapping;
491                 new->index = offset;
492
493                 spin_lock_irq(&mapping->tree_lock);
494                 __delete_from_page_cache(old, NULL);
495                 error = radix_tree_insert(&mapping->page_tree, offset, new);
496                 BUG_ON(error);
497                 mapping->nrpages++;
498                 __inc_zone_page_state(new, NR_FILE_PAGES);
499                 if (PageSwapBacked(new))
500                         __inc_zone_page_state(new, NR_SHMEM);
501                 spin_unlock_irq(&mapping->tree_lock);
502                 /* mem_cgroup codes must not be called under tree_lock */
503                 mem_cgroup_replace_page_cache(old, new);
504                 radix_tree_preload_end();
505                 if (freepage)
506                         freepage(old);
507                 page_cache_release(old);
508         }
509
510         return error;
511 }
512 EXPORT_SYMBOL_GPL(replace_page_cache_page);
513
514 static int page_cache_tree_insert(struct address_space *mapping,
515                                   struct page *page, void **shadowp)
516 {
517         struct radix_tree_node *node;
518         void **slot;
519         int error;
520
521         error = __radix_tree_create(&mapping->page_tree, page->index,
522                                     &node, &slot);
523         if (error)
524                 return error;
525         if (*slot) {
526                 void *p;
527
528                 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
529                 if (!radix_tree_exceptional_entry(p))
530                         return -EEXIST;
531                 if (shadowp)
532                         *shadowp = p;
533                 mapping->nrshadows--;
534                 if (node)
535                         workingset_node_shadows_dec(node);
536         }
537         radix_tree_replace_slot(slot, page);
538         mapping->nrpages++;
539         if (node) {
540                 workingset_node_pages_inc(node);
541                 /*
542                  * Don't track node that contains actual pages.
543                  *
544                  * Avoid acquiring the list_lru lock if already
545                  * untracked.  The list_empty() test is safe as
546                  * node->private_list is protected by
547                  * mapping->tree_lock.
548                  */
549                 if (!list_empty(&node->private_list))
550                         list_lru_del(&workingset_shadow_nodes,
551                                      &node->private_list);
552         }
553         return 0;
554 }
555
556 static int __add_to_page_cache_locked(struct page *page,
557                                       struct address_space *mapping,
558                                       pgoff_t offset, gfp_t gfp_mask,
559                                       void **shadowp)
560 {
561         int error;
562
563         VM_BUG_ON_PAGE(!PageLocked(page), page);
564         VM_BUG_ON_PAGE(PageSwapBacked(page), page);
565
566         error = mem_cgroup_charge_file(page, current->mm,
567                                         gfp_mask & GFP_RECLAIM_MASK);
568         if (error)
569                 return error;
570
571         error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
572         if (error) {
573                 mem_cgroup_uncharge_cache_page(page);
574                 return error;
575         }
576
577         page_cache_get(page);
578         page->mapping = mapping;
579         page->index = offset;
580
581         spin_lock_irq(&mapping->tree_lock);
582         error = page_cache_tree_insert(mapping, page, shadowp);
583         radix_tree_preload_end();
584         if (unlikely(error))
585                 goto err_insert;
586         __inc_zone_page_state(page, NR_FILE_PAGES);
587         spin_unlock_irq(&mapping->tree_lock);
588         trace_mm_filemap_add_to_page_cache(page);
589         return 0;
590 err_insert:
591         page->mapping = NULL;
592         /* Leave page->index set: truncation relies upon it */
593         spin_unlock_irq(&mapping->tree_lock);
594         mem_cgroup_uncharge_cache_page(page);
595         page_cache_release(page);
596         return error;
597 }
598
599 /**
600  * add_to_page_cache_locked - add a locked page to the pagecache
601  * @page:       page to add
602  * @mapping:    the page's address_space
603  * @offset:     page index
604  * @gfp_mask:   page allocation mode
605  *
606  * This function is used to add a page to the pagecache. It must be locked.
607  * This function does not add the page to the LRU.  The caller must do that.
608  */
609 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
610                 pgoff_t offset, gfp_t gfp_mask)
611 {
612         return __add_to_page_cache_locked(page, mapping, offset,
613                                           gfp_mask, NULL);
614 }
615 EXPORT_SYMBOL(add_to_page_cache_locked);
616
617 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
618                                 pgoff_t offset, gfp_t gfp_mask)
619 {
620         void *shadow = NULL;
621         int ret;
622
623         __set_page_locked(page);
624         ret = __add_to_page_cache_locked(page, mapping, offset,
625                                          gfp_mask, &shadow);
626         if (unlikely(ret))
627                 __clear_page_locked(page);
628         else {
629                 /*
630                  * The page might have been evicted from cache only
631                  * recently, in which case it should be activated like
632                  * any other repeatedly accessed page.
633                  */
634                 if (shadow && workingset_refault(shadow)) {
635                         SetPageActive(page);
636                         workingset_activation(page);
637                 } else
638                         ClearPageActive(page);
639                 lru_cache_add(page);
640         }
641         return ret;
642 }
643 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
644
645 #ifdef CONFIG_NUMA
646 struct page *__page_cache_alloc(gfp_t gfp)
647 {
648         int n;
649         struct page *page;
650
651         if (cpuset_do_page_mem_spread()) {
652                 unsigned int cpuset_mems_cookie;
653                 do {
654                         cpuset_mems_cookie = read_mems_allowed_begin();
655                         n = cpuset_mem_spread_node();
656                         page = alloc_pages_exact_node(n, gfp, 0);
657                 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
658
659                 return page;
660         }
661         return alloc_pages(gfp, 0);
662 }
663 EXPORT_SYMBOL(__page_cache_alloc);
664 #endif
665
666 /*
667  * In order to wait for pages to become available there must be
668  * waitqueues associated with pages. By using a hash table of
669  * waitqueues where the bucket discipline is to maintain all
670  * waiters on the same queue and wake all when any of the pages
671  * become available, and for the woken contexts to check to be
672  * sure the appropriate page became available, this saves space
673  * at a cost of "thundering herd" phenomena during rare hash
674  * collisions.
675  */
676 static wait_queue_head_t *page_waitqueue(struct page *page)
677 {
678         const struct zone *zone = page_zone(page);
679
680         return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
681 }
682
683 static inline void wake_up_page(struct page *page, int bit)
684 {
685         __wake_up_bit(page_waitqueue(page), &page->flags, bit);
686 }
687
688 void wait_on_page_bit(struct page *page, int bit_nr)
689 {
690         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691
692         if (test_bit(bit_nr, &page->flags))
693                 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
694                                                         TASK_UNINTERRUPTIBLE);
695 }
696 EXPORT_SYMBOL(wait_on_page_bit);
697
698 int wait_on_page_bit_killable(struct page *page, int bit_nr)
699 {
700         DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
701
702         if (!test_bit(bit_nr, &page->flags))
703                 return 0;
704
705         return __wait_on_bit(page_waitqueue(page), &wait,
706                              sleep_on_page_killable, TASK_KILLABLE);
707 }
708
709 /**
710  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
711  * @page: Page defining the wait queue of interest
712  * @waiter: Waiter to add to the queue
713  *
714  * Add an arbitrary @waiter to the wait queue for the nominated @page.
715  */
716 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
717 {
718         wait_queue_head_t *q = page_waitqueue(page);
719         unsigned long flags;
720
721         spin_lock_irqsave(&q->lock, flags);
722         __add_wait_queue(q, waiter);
723         spin_unlock_irqrestore(&q->lock, flags);
724 }
725 EXPORT_SYMBOL_GPL(add_page_wait_queue);
726
727 /**
728  * unlock_page - unlock a locked page
729  * @page: the page
730  *
731  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
732  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
733  * mechananism between PageLocked pages and PageWriteback pages is shared.
734  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
735  *
736  * The mb is necessary to enforce ordering between the clear_bit and the read
737  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
738  */
739 void unlock_page(struct page *page)
740 {
741         VM_BUG_ON_PAGE(!PageLocked(page), page);
742         clear_bit_unlock(PG_locked, &page->flags);
743         smp_mb__after_clear_bit();
744         wake_up_page(page, PG_locked);
745 }
746 EXPORT_SYMBOL(unlock_page);
747
748 /**
749  * end_page_writeback - end writeback against a page
750  * @page: the page
751  */
752 void end_page_writeback(struct page *page)
753 {
754         if (TestClearPageReclaim(page))
755                 rotate_reclaimable_page(page);
756
757         if (!test_clear_page_writeback(page))
758                 BUG();
759
760         smp_mb__after_clear_bit();
761         wake_up_page(page, PG_writeback);
762 }
763 EXPORT_SYMBOL(end_page_writeback);
764
765 /**
766  * __lock_page - get a lock on the page, assuming we need to sleep to get it
767  * @page: the page to lock
768  */
769 void __lock_page(struct page *page)
770 {
771         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
772
773         __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
774                                                         TASK_UNINTERRUPTIBLE);
775 }
776 EXPORT_SYMBOL(__lock_page);
777
778 int __lock_page_killable(struct page *page)
779 {
780         DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
781
782         return __wait_on_bit_lock(page_waitqueue(page), &wait,
783                                         sleep_on_page_killable, TASK_KILLABLE);
784 }
785 EXPORT_SYMBOL_GPL(__lock_page_killable);
786
787 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
788                          unsigned int flags)
789 {
790         if (flags & FAULT_FLAG_ALLOW_RETRY) {
791                 /*
792                  * CAUTION! In this case, mmap_sem is not released
793                  * even though return 0.
794                  */
795                 if (flags & FAULT_FLAG_RETRY_NOWAIT)
796                         return 0;
797
798                 up_read(&mm->mmap_sem);
799                 if (flags & FAULT_FLAG_KILLABLE)
800                         wait_on_page_locked_killable(page);
801                 else
802                         wait_on_page_locked(page);
803                 return 0;
804         } else {
805                 if (flags & FAULT_FLAG_KILLABLE) {
806                         int ret;
807
808                         ret = __lock_page_killable(page);
809                         if (ret) {
810                                 up_read(&mm->mmap_sem);
811                                 return 0;
812                         }
813                 } else
814                         __lock_page(page);
815                 return 1;
816         }
817 }
818
819 /**
820  * page_cache_next_hole - find the next hole (not-present entry)
821  * @mapping: mapping
822  * @index: index
823  * @max_scan: maximum range to search
824  *
825  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
826  * lowest indexed hole.
827  *
828  * Returns: the index of the hole if found, otherwise returns an index
829  * outside of the set specified (in which case 'return - index >=
830  * max_scan' will be true). In rare cases of index wrap-around, 0 will
831  * be returned.
832  *
833  * page_cache_next_hole may be called under rcu_read_lock. However,
834  * like radix_tree_gang_lookup, this will not atomically search a
835  * snapshot of the tree at a single point in time. For example, if a
836  * hole is created at index 5, then subsequently a hole is created at
837  * index 10, page_cache_next_hole covering both indexes may return 10
838  * if called under rcu_read_lock.
839  */
840 pgoff_t page_cache_next_hole(struct address_space *mapping,
841                              pgoff_t index, unsigned long max_scan)
842 {
843         unsigned long i;
844
845         for (i = 0; i < max_scan; i++) {
846                 struct page *page;
847
848                 page = radix_tree_lookup(&mapping->page_tree, index);
849                 if (!page || radix_tree_exceptional_entry(page))
850                         break;
851                 index++;
852                 if (index == 0)
853                         break;
854         }
855
856         return index;
857 }
858 EXPORT_SYMBOL(page_cache_next_hole);
859
860 /**
861  * page_cache_prev_hole - find the prev hole (not-present entry)
862  * @mapping: mapping
863  * @index: index
864  * @max_scan: maximum range to search
865  *
866  * Search backwards in the range [max(index-max_scan+1, 0), index] for
867  * the first hole.
868  *
869  * Returns: the index of the hole if found, otherwise returns an index
870  * outside of the set specified (in which case 'index - return >=
871  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
872  * will be returned.
873  *
874  * page_cache_prev_hole may be called under rcu_read_lock. However,
875  * like radix_tree_gang_lookup, this will not atomically search a
876  * snapshot of the tree at a single point in time. For example, if a
877  * hole is created at index 10, then subsequently a hole is created at
878  * index 5, page_cache_prev_hole covering both indexes may return 5 if
879  * called under rcu_read_lock.
880  */
881 pgoff_t page_cache_prev_hole(struct address_space *mapping,
882                              pgoff_t index, unsigned long max_scan)
883 {
884         unsigned long i;
885
886         for (i = 0; i < max_scan; i++) {
887                 struct page *page;
888
889                 page = radix_tree_lookup(&mapping->page_tree, index);
890                 if (!page || radix_tree_exceptional_entry(page))
891                         break;
892                 index--;
893                 if (index == ULONG_MAX)
894                         break;
895         }
896
897         return index;
898 }
899 EXPORT_SYMBOL(page_cache_prev_hole);
900
901 /**
902  * find_get_entry - find and get a page cache entry
903  * @mapping: the address_space to search
904  * @offset: the page cache index
905  *
906  * Looks up the page cache slot at @mapping & @offset.  If there is a
907  * page cache page, it is returned with an increased refcount.
908  *
909  * If the slot holds a shadow entry of a previously evicted page, it
910  * is returned.
911  *
912  * Otherwise, %NULL is returned.
913  */
914 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
915 {
916         void **pagep;
917         struct page *page;
918
919         rcu_read_lock();
920 repeat:
921         page = NULL;
922         pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
923         if (pagep) {
924                 page = radix_tree_deref_slot(pagep);
925                 if (unlikely(!page))
926                         goto out;
927                 if (radix_tree_exception(page)) {
928                         if (radix_tree_deref_retry(page))
929                                 goto repeat;
930                         /*
931                          * Otherwise, shmem/tmpfs must be storing a swap entry
932                          * here as an exceptional entry: so return it without
933                          * attempting to raise page count.
934                          */
935                         goto out;
936                 }
937                 if (!page_cache_get_speculative(page))
938                         goto repeat;
939
940                 /*
941                  * Has the page moved?
942                  * This is part of the lockless pagecache protocol. See
943                  * include/linux/pagemap.h for details.
944                  */
945                 if (unlikely(page != *pagep)) {
946                         page_cache_release(page);
947                         goto repeat;
948                 }
949         }
950 out:
951         rcu_read_unlock();
952
953         return page;
954 }
955 EXPORT_SYMBOL(find_get_entry);
956
957 /**
958  * find_get_page - find and get a page reference
959  * @mapping: the address_space to search
960  * @offset: the page index
961  *
962  * Looks up the page cache slot at @mapping & @offset.  If there is a
963  * page cache page, it is returned with an increased refcount.
964  *
965  * Otherwise, %NULL is returned.
966  */
967 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
968 {
969         struct page *page = find_get_entry(mapping, offset);
970
971         if (radix_tree_exceptional_entry(page))
972                 page = NULL;
973         return page;
974 }
975 EXPORT_SYMBOL(find_get_page);
976
977 /**
978  * find_lock_entry - locate, pin and lock a page cache entry
979  * @mapping: the address_space to search
980  * @offset: the page cache index
981  *
982  * Looks up the page cache slot at @mapping & @offset.  If there is a
983  * page cache page, it is returned locked and with an increased
984  * refcount.
985  *
986  * If the slot holds a shadow entry of a previously evicted page, it
987  * is returned.
988  *
989  * Otherwise, %NULL is returned.
990  *
991  * find_lock_entry() may sleep.
992  */
993 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
994 {
995         struct page *page;
996
997 repeat:
998         page = find_get_entry(mapping, offset);
999         if (page && !radix_tree_exception(page)) {
1000                 lock_page(page);
1001                 /* Has the page been truncated? */
1002                 if (unlikely(page->mapping != mapping)) {
1003                         unlock_page(page);
1004                         page_cache_release(page);
1005                         goto repeat;
1006                 }
1007                 VM_BUG_ON_PAGE(page->index != offset, page);
1008         }
1009         return page;
1010 }
1011 EXPORT_SYMBOL(find_lock_entry);
1012
1013 /**
1014  * find_lock_page - locate, pin and lock a pagecache page
1015  * @mapping: the address_space to search
1016  * @offset: the page index
1017  *
1018  * Looks up the page cache slot at @mapping & @offset.  If there is a
1019  * page cache page, it is returned locked and with an increased
1020  * refcount.
1021  *
1022  * Otherwise, %NULL is returned.
1023  *
1024  * find_lock_page() may sleep.
1025  */
1026 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1027 {
1028         struct page *page = find_lock_entry(mapping, offset);
1029
1030         if (radix_tree_exceptional_entry(page))
1031                 page = NULL;
1032         return page;
1033 }
1034 EXPORT_SYMBOL(find_lock_page);
1035
1036 /**
1037  * find_or_create_page - locate or add a pagecache page
1038  * @mapping: the page's address_space
1039  * @index: the page's index into the mapping
1040  * @gfp_mask: page allocation mode
1041  *
1042  * Looks up the page cache slot at @mapping & @offset.  If there is a
1043  * page cache page, it is returned locked and with an increased
1044  * refcount.
1045  *
1046  * If the page is not present, a new page is allocated using @gfp_mask
1047  * and added to the page cache and the VM's LRU list.  The page is
1048  * returned locked and with an increased refcount.
1049  *
1050  * On memory exhaustion, %NULL is returned.
1051  *
1052  * find_or_create_page() may sleep, even if @gfp_flags specifies an
1053  * atomic allocation!
1054  */
1055 struct page *find_or_create_page(struct address_space *mapping,
1056                 pgoff_t index, gfp_t gfp_mask)
1057 {
1058         struct page *page;
1059         int err;
1060 repeat:
1061         page = find_lock_page(mapping, index);
1062         if (!page) {
1063                 page = __page_cache_alloc(gfp_mask);
1064                 if (!page)
1065                         return NULL;
1066                 /*
1067                  * We want a regular kernel memory (not highmem or DMA etc)
1068                  * allocation for the radix tree nodes, but we need to honour
1069                  * the context-specific requirements the caller has asked for.
1070                  * GFP_RECLAIM_MASK collects those requirements.
1071                  */
1072                 err = add_to_page_cache_lru(page, mapping, index,
1073                         (gfp_mask & GFP_RECLAIM_MASK));
1074                 if (unlikely(err)) {
1075                         page_cache_release(page);
1076                         page = NULL;
1077                         if (err == -EEXIST)
1078                                 goto repeat;
1079                 }
1080         }
1081         return page;
1082 }
1083 EXPORT_SYMBOL(find_or_create_page);
1084
1085 /**
1086  * find_get_entries - gang pagecache lookup
1087  * @mapping:    The address_space to search
1088  * @start:      The starting page cache index
1089  * @nr_entries: The maximum number of entries
1090  * @entries:    Where the resulting entries are placed
1091  * @indices:    The cache indices corresponding to the entries in @entries
1092  *
1093  * find_get_entries() will search for and return a group of up to
1094  * @nr_entries entries in the mapping.  The entries are placed at
1095  * @entries.  find_get_entries() takes a reference against any actual
1096  * pages it returns.
1097  *
1098  * The search returns a group of mapping-contiguous page cache entries
1099  * with ascending indexes.  There may be holes in the indices due to
1100  * not-present pages.
1101  *
1102  * Any shadow entries of evicted pages are included in the returned
1103  * array.
1104  *
1105  * find_get_entries() returns the number of pages and shadow entries
1106  * which were found.
1107  */
1108 unsigned find_get_entries(struct address_space *mapping,
1109                           pgoff_t start, unsigned int nr_entries,
1110                           struct page **entries, pgoff_t *indices)
1111 {
1112         void **slot;
1113         unsigned int ret = 0;
1114         struct radix_tree_iter iter;
1115
1116         if (!nr_entries)
1117                 return 0;
1118
1119         rcu_read_lock();
1120 restart:
1121         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1122                 struct page *page;
1123 repeat:
1124                 page = radix_tree_deref_slot(slot);
1125                 if (unlikely(!page))
1126                         continue;
1127                 if (radix_tree_exception(page)) {
1128                         if (radix_tree_deref_retry(page))
1129                                 goto restart;
1130                         /*
1131                          * Otherwise, we must be storing a swap entry
1132                          * here as an exceptional entry: so return it
1133                          * without attempting to raise page count.
1134                          */
1135                         goto export;
1136                 }
1137                 if (!page_cache_get_speculative(page))
1138                         goto repeat;
1139
1140                 /* Has the page moved? */
1141                 if (unlikely(page != *slot)) {
1142                         page_cache_release(page);
1143                         goto repeat;
1144                 }
1145 export:
1146                 indices[ret] = iter.index;
1147                 entries[ret] = page;
1148                 if (++ret == nr_entries)
1149                         break;
1150         }
1151         rcu_read_unlock();
1152         return ret;
1153 }
1154
1155 /**
1156  * find_get_pages - gang pagecache lookup
1157  * @mapping:    The address_space to search
1158  * @start:      The starting page index
1159  * @nr_pages:   The maximum number of pages
1160  * @pages:      Where the resulting pages are placed
1161  *
1162  * find_get_pages() will search for and return a group of up to
1163  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1164  * find_get_pages() takes a reference against the returned pages.
1165  *
1166  * The search returns a group of mapping-contiguous pages with ascending
1167  * indexes.  There may be holes in the indices due to not-present pages.
1168  *
1169  * find_get_pages() returns the number of pages which were found.
1170  */
1171 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1172                             unsigned int nr_pages, struct page **pages)
1173 {
1174         struct radix_tree_iter iter;
1175         void **slot;
1176         unsigned ret = 0;
1177
1178         if (unlikely(!nr_pages))
1179                 return 0;
1180
1181         rcu_read_lock();
1182 restart:
1183         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1184                 struct page *page;
1185 repeat:
1186                 page = radix_tree_deref_slot(slot);
1187                 if (unlikely(!page))
1188                         continue;
1189
1190                 if (radix_tree_exception(page)) {
1191                         if (radix_tree_deref_retry(page)) {
1192                                 /*
1193                                  * Transient condition which can only trigger
1194                                  * when entry at index 0 moves out of or back
1195                                  * to root: none yet gotten, safe to restart.
1196                                  */
1197                                 WARN_ON(iter.index);
1198                                 goto restart;
1199                         }
1200                         /*
1201                          * Otherwise, shmem/tmpfs must be storing a swap entry
1202                          * here as an exceptional entry: so skip over it -
1203                          * we only reach this from invalidate_mapping_pages().
1204                          */
1205                         continue;
1206                 }
1207
1208                 if (!page_cache_get_speculative(page))
1209                         goto repeat;
1210
1211                 /* Has the page moved? */
1212                 if (unlikely(page != *slot)) {
1213                         page_cache_release(page);
1214                         goto repeat;
1215                 }
1216
1217                 pages[ret] = page;
1218                 if (++ret == nr_pages)
1219                         break;
1220         }
1221
1222         rcu_read_unlock();
1223         return ret;
1224 }
1225
1226 /**
1227  * find_get_pages_contig - gang contiguous pagecache lookup
1228  * @mapping:    The address_space to search
1229  * @index:      The starting page index
1230  * @nr_pages:   The maximum number of pages
1231  * @pages:      Where the resulting pages are placed
1232  *
1233  * find_get_pages_contig() works exactly like find_get_pages(), except
1234  * that the returned number of pages are guaranteed to be contiguous.
1235  *
1236  * find_get_pages_contig() returns the number of pages which were found.
1237  */
1238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1239                                unsigned int nr_pages, struct page **pages)
1240 {
1241         struct radix_tree_iter iter;
1242         void **slot;
1243         unsigned int ret = 0;
1244
1245         if (unlikely(!nr_pages))
1246                 return 0;
1247
1248         rcu_read_lock();
1249 restart:
1250         radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1251                 struct page *page;
1252 repeat:
1253                 page = radix_tree_deref_slot(slot);
1254                 /* The hole, there no reason to continue */
1255                 if (unlikely(!page))
1256                         break;
1257
1258                 if (radix_tree_exception(page)) {
1259                         if (radix_tree_deref_retry(page)) {
1260                                 /*
1261                                  * Transient condition which can only trigger
1262                                  * when entry at index 0 moves out of or back
1263                                  * to root: none yet gotten, safe to restart.
1264                                  */
1265                                 goto restart;
1266                         }
1267                         /*
1268                          * Otherwise, shmem/tmpfs must be storing a swap entry
1269                          * here as an exceptional entry: so stop looking for
1270                          * contiguous pages.
1271                          */
1272                         break;
1273                 }
1274
1275                 if (!page_cache_get_speculative(page))
1276                         goto repeat;
1277
1278                 /* Has the page moved? */
1279                 if (unlikely(page != *slot)) {
1280                         page_cache_release(page);
1281                         goto repeat;
1282                 }
1283
1284                 /*
1285                  * must check mapping and index after taking the ref.
1286                  * otherwise we can get both false positives and false
1287                  * negatives, which is just confusing to the caller.
1288                  */
1289                 if (page->mapping == NULL || page->index != iter.index) {
1290                         page_cache_release(page);
1291                         break;
1292                 }
1293
1294                 pages[ret] = page;
1295                 if (++ret == nr_pages)
1296                         break;
1297         }
1298         rcu_read_unlock();
1299         return ret;
1300 }
1301 EXPORT_SYMBOL(find_get_pages_contig);
1302
1303 /**
1304  * find_get_pages_tag - find and return pages that match @tag
1305  * @mapping:    the address_space to search
1306  * @index:      the starting page index
1307  * @tag:        the tag index
1308  * @nr_pages:   the maximum number of pages
1309  * @pages:      where the resulting pages are placed
1310  *
1311  * Like find_get_pages, except we only return pages which are tagged with
1312  * @tag.   We update @index to index the next page for the traversal.
1313  */
1314 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1315                         int tag, unsigned int nr_pages, struct page **pages)
1316 {
1317         struct radix_tree_iter iter;
1318         void **slot;
1319         unsigned ret = 0;
1320
1321         if (unlikely(!nr_pages))
1322                 return 0;
1323
1324         rcu_read_lock();
1325 restart:
1326         radix_tree_for_each_tagged(slot, &mapping->page_tree,
1327                                    &iter, *index, tag) {
1328                 struct page *page;
1329 repeat:
1330                 page = radix_tree_deref_slot(slot);
1331                 if (unlikely(!page))
1332                         continue;
1333
1334                 if (radix_tree_exception(page)) {
1335                         if (radix_tree_deref_retry(page)) {
1336                                 /*
1337                                  * Transient condition which can only trigger
1338                                  * when entry at index 0 moves out of or back
1339                                  * to root: none yet gotten, safe to restart.
1340                                  */
1341                                 goto restart;
1342                         }
1343                         /*
1344                          * This function is never used on a shmem/tmpfs
1345                          * mapping, so a swap entry won't be found here.
1346                          */
1347                         BUG();
1348                 }
1349
1350                 if (!page_cache_get_speculative(page))
1351                         goto repeat;
1352
1353                 /* Has the page moved? */
1354                 if (unlikely(page != *slot)) {
1355                         page_cache_release(page);
1356                         goto repeat;
1357                 }
1358
1359                 pages[ret] = page;
1360                 if (++ret == nr_pages)
1361                         break;
1362         }
1363
1364         rcu_read_unlock();
1365
1366         if (ret)
1367                 *index = pages[ret - 1]->index + 1;
1368
1369         return ret;
1370 }
1371 EXPORT_SYMBOL(find_get_pages_tag);
1372
1373 /**
1374  * grab_cache_page_nowait - returns locked page at given index in given cache
1375  * @mapping: target address_space
1376  * @index: the page index
1377  *
1378  * Same as grab_cache_page(), but do not wait if the page is unavailable.
1379  * This is intended for speculative data generators, where the data can
1380  * be regenerated if the page couldn't be grabbed.  This routine should
1381  * be safe to call while holding the lock for another page.
1382  *
1383  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1384  * and deadlock against the caller's locked page.
1385  */
1386 struct page *
1387 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1388 {
1389         struct page *page = find_get_page(mapping, index);
1390
1391         if (page) {
1392                 if (trylock_page(page))
1393                         return page;
1394                 page_cache_release(page);
1395                 return NULL;
1396         }
1397         page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1398         if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1399                 page_cache_release(page);
1400                 page = NULL;
1401         }
1402         return page;
1403 }
1404 EXPORT_SYMBOL(grab_cache_page_nowait);
1405
1406 /*
1407  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408  * a _large_ part of the i/o request. Imagine the worst scenario:
1409  *
1410  *      ---R__________________________________________B__________
1411  *         ^ reading here                             ^ bad block(assume 4k)
1412  *
1413  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414  * => failing the whole request => read(R) => read(R+1) =>
1415  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1418  *
1419  * It is going insane. Fix it by quickly scaling down the readahead size.
1420  */
1421 static void shrink_readahead_size_eio(struct file *filp,
1422                                         struct file_ra_state *ra)
1423 {
1424         ra->ra_pages /= 4;
1425 }
1426
1427 /**
1428  * do_generic_file_read - generic file read routine
1429  * @filp:       the file to read
1430  * @ppos:       current file position
1431  * @desc:       read_descriptor
1432  *
1433  * This is a generic file read routine, and uses the
1434  * mapping->a_ops->readpage() function for the actual low-level stuff.
1435  *
1436  * This is really ugly. But the goto's actually try to clarify some
1437  * of the logic when it comes to error handling etc.
1438  */
1439 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1440                 read_descriptor_t *desc)
1441 {
1442         struct address_space *mapping = filp->f_mapping;
1443         struct inode *inode = mapping->host;
1444         struct file_ra_state *ra = &filp->f_ra;
1445         pgoff_t index;
1446         pgoff_t last_index;
1447         pgoff_t prev_index;
1448         unsigned long offset;      /* offset into pagecache page */
1449         unsigned int prev_offset;
1450         int error;
1451
1452         index = *ppos >> PAGE_CACHE_SHIFT;
1453         prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1454         prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1455         last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1456         offset = *ppos & ~PAGE_CACHE_MASK;
1457
1458         for (;;) {
1459                 struct page *page;
1460                 pgoff_t end_index;
1461                 loff_t isize;
1462                 unsigned long nr, ret;
1463
1464                 cond_resched();
1465 find_page:
1466                 page = find_get_page(mapping, index);
1467                 if (!page) {
1468                         page_cache_sync_readahead(mapping,
1469                                         ra, filp,
1470                                         index, last_index - index);
1471                         page = find_get_page(mapping, index);
1472                         if (unlikely(page == NULL))
1473                                 goto no_cached_page;
1474                 }
1475                 if (PageReadahead(page)) {
1476                         page_cache_async_readahead(mapping,
1477                                         ra, filp, page,
1478                                         index, last_index - index);
1479                 }
1480                 if (!PageUptodate(page)) {
1481                         if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1482                                         !mapping->a_ops->is_partially_uptodate)
1483                                 goto page_not_up_to_date;
1484                         if (!trylock_page(page))
1485                                 goto page_not_up_to_date;
1486                         /* Did it get truncated before we got the lock? */
1487                         if (!page->mapping)
1488                                 goto page_not_up_to_date_locked;
1489                         if (!mapping->a_ops->is_partially_uptodate(page,
1490                                                                 desc, offset))
1491                                 goto page_not_up_to_date_locked;
1492                         unlock_page(page);
1493                 }
1494 page_ok:
1495                 /*
1496                  * i_size must be checked after we know the page is Uptodate.
1497                  *
1498                  * Checking i_size after the check allows us to calculate
1499                  * the correct value for "nr", which means the zero-filled
1500                  * part of the page is not copied back to userspace (unless
1501                  * another truncate extends the file - this is desired though).
1502                  */
1503
1504                 isize = i_size_read(inode);
1505                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1506                 if (unlikely(!isize || index > end_index)) {
1507                         page_cache_release(page);
1508                         goto out;
1509                 }
1510
1511                 /* nr is the maximum number of bytes to copy from this page */
1512                 nr = PAGE_CACHE_SIZE;
1513                 if (index == end_index) {
1514                         nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1515                         if (nr <= offset) {
1516                                 page_cache_release(page);
1517                                 goto out;
1518                         }
1519                 }
1520                 nr = nr - offset;
1521
1522                 /* If users can be writing to this page using arbitrary
1523                  * virtual addresses, take care about potential aliasing
1524                  * before reading the page on the kernel side.
1525                  */
1526                 if (mapping_writably_mapped(mapping))
1527                         flush_dcache_page(page);
1528
1529                 /*
1530                  * When a sequential read accesses a page several times,
1531                  * only mark it as accessed the first time.
1532                  */
1533                 if (prev_index != index || offset != prev_offset)
1534                         mark_page_accessed(page);
1535                 prev_index = index;
1536
1537                 /*
1538                  * Ok, we have the page, and it's up-to-date, so
1539                  * now we can copy it to user space...
1540                  *
1541                  * The file_read_actor routine returns how many bytes were
1542                  * actually used..
1543                  * NOTE! This may not be the same as how much of a user buffer
1544                  * we filled up (we may be padding etc), so we can only update
1545                  * "pos" here (the actor routine has to update the user buffer
1546                  * pointers and the remaining count).
1547                  */
1548                 ret = file_read_actor(desc, page, offset, nr);
1549                 offset += ret;
1550                 index += offset >> PAGE_CACHE_SHIFT;
1551                 offset &= ~PAGE_CACHE_MASK;
1552                 prev_offset = offset;
1553
1554                 page_cache_release(page);
1555                 if (ret == nr && desc->count)
1556                         continue;
1557                 goto out;
1558
1559 page_not_up_to_date:
1560                 /* Get exclusive access to the page ... */
1561                 error = lock_page_killable(page);
1562                 if (unlikely(error))
1563                         goto readpage_error;
1564
1565 page_not_up_to_date_locked:
1566                 /* Did it get truncated before we got the lock? */
1567                 if (!page->mapping) {
1568                         unlock_page(page);
1569                         page_cache_release(page);
1570                         continue;
1571                 }
1572
1573                 /* Did somebody else fill it already? */
1574                 if (PageUptodate(page)) {
1575                         unlock_page(page);
1576                         goto page_ok;
1577                 }
1578
1579 readpage:
1580                 /*
1581                  * A previous I/O error may have been due to temporary
1582                  * failures, eg. multipath errors.
1583                  * PG_error will be set again if readpage fails.
1584                  */
1585                 ClearPageError(page);
1586                 /* Start the actual read. The read will unlock the page. */
1587                 error = mapping->a_ops->readpage(filp, page);
1588
1589                 if (unlikely(error)) {
1590                         if (error == AOP_TRUNCATED_PAGE) {
1591                                 page_cache_release(page);
1592                                 goto find_page;
1593                         }
1594                         goto readpage_error;
1595                 }
1596
1597                 if (!PageUptodate(page)) {
1598                         error = lock_page_killable(page);
1599                         if (unlikely(error))
1600                                 goto readpage_error;
1601                         if (!PageUptodate(page)) {
1602                                 if (page->mapping == NULL) {
1603                                         /*
1604                                          * invalidate_mapping_pages got it
1605                                          */
1606                                         unlock_page(page);
1607                                         page_cache_release(page);
1608                                         goto find_page;
1609                                 }
1610                                 unlock_page(page);
1611                                 shrink_readahead_size_eio(filp, ra);
1612                                 error = -EIO;
1613                                 goto readpage_error;
1614                         }
1615                         unlock_page(page);
1616                 }
1617
1618                 goto page_ok;
1619
1620 readpage_error:
1621                 /* UHHUH! A synchronous read error occurred. Report it */
1622                 desc->error = error;
1623                 page_cache_release(page);
1624                 goto out;
1625
1626 no_cached_page:
1627                 /*
1628                  * Ok, it wasn't cached, so we need to create a new
1629                  * page..
1630                  */
1631                 page = page_cache_alloc_cold(mapping);
1632                 if (!page) {
1633                         desc->error = -ENOMEM;
1634                         goto out;
1635                 }
1636                 error = add_to_page_cache_lru(page, mapping,
1637                                                 index, GFP_KERNEL);
1638                 if (error) {
1639                         page_cache_release(page);
1640                         if (error == -EEXIST)
1641                                 goto find_page;
1642                         desc->error = error;
1643                         goto out;
1644                 }
1645                 goto readpage;
1646         }
1647
1648 out:
1649         ra->prev_pos = prev_index;
1650         ra->prev_pos <<= PAGE_CACHE_SHIFT;
1651         ra->prev_pos |= prev_offset;
1652
1653         *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1654         file_accessed(filp);
1655 }
1656
1657 int file_read_actor(read_descriptor_t *desc, struct page *page,
1658                         unsigned long offset, unsigned long size)
1659 {
1660         char *kaddr;
1661         unsigned long left, count = desc->count;
1662
1663         if (size > count)
1664                 size = count;
1665
1666         /*
1667          * Faults on the destination of a read are common, so do it before
1668          * taking the kmap.
1669          */
1670         if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1671                 kaddr = kmap_atomic(page);
1672                 left = __copy_to_user_inatomic(desc->arg.buf,
1673                                                 kaddr + offset, size);
1674                 kunmap_atomic(kaddr);
1675                 if (left == 0)
1676                         goto success;
1677         }
1678
1679         /* Do it the slow way */
1680         kaddr = kmap(page);
1681         left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1682         kunmap(page);
1683
1684         if (left) {
1685                 size -= left;
1686                 desc->error = -EFAULT;
1687         }
1688 success:
1689         desc->count = count - size;
1690         desc->written += size;
1691         desc->arg.buf += size;
1692         return size;
1693 }
1694
1695 /*
1696  * Performs necessary checks before doing a write
1697  * @iov:        io vector request
1698  * @nr_segs:    number of segments in the iovec
1699  * @count:      number of bytes to write
1700  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1701  *
1702  * Adjust number of segments and amount of bytes to write (nr_segs should be
1703  * properly initialized first). Returns appropriate error code that caller
1704  * should return or zero in case that write should be allowed.
1705  */
1706 int generic_segment_checks(const struct iovec *iov,
1707                         unsigned long *nr_segs, size_t *count, int access_flags)
1708 {
1709         unsigned long   seg;
1710         size_t cnt = 0;
1711         for (seg = 0; seg < *nr_segs; seg++) {
1712                 const struct iovec *iv = &iov[seg];
1713
1714                 /*
1715                  * If any segment has a negative length, or the cumulative
1716                  * length ever wraps negative then return -EINVAL.
1717                  */
1718                 cnt += iv->iov_len;
1719                 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1720                         return -EINVAL;
1721                 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1722                         continue;
1723                 if (seg == 0)
1724                         return -EFAULT;
1725                 *nr_segs = seg;
1726                 cnt -= iv->iov_len;     /* This segment is no good */
1727                 break;
1728         }
1729         *count = cnt;
1730         return 0;
1731 }
1732 EXPORT_SYMBOL(generic_segment_checks);
1733
1734 /**
1735  * generic_file_aio_read - generic filesystem read routine
1736  * @iocb:       kernel I/O control block
1737  * @iov:        io vector request
1738  * @nr_segs:    number of segments in the iovec
1739  * @pos:        current file position
1740  *
1741  * This is the "read()" routine for all filesystems
1742  * that can use the page cache directly.
1743  */
1744 ssize_t
1745 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1746                 unsigned long nr_segs, loff_t pos)
1747 {
1748         struct file *filp = iocb->ki_filp;
1749         ssize_t retval;
1750         unsigned long seg = 0;
1751         size_t count;
1752         loff_t *ppos = &iocb->ki_pos;
1753
1754         count = 0;
1755         retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1756         if (retval)
1757                 return retval;
1758
1759         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1760         if (filp->f_flags & O_DIRECT) {
1761                 loff_t size;
1762                 struct address_space *mapping;
1763                 struct inode *inode;
1764
1765                 mapping = filp->f_mapping;
1766                 inode = mapping->host;
1767                 if (!count)
1768                         goto out; /* skip atime */
1769                 size = i_size_read(inode);
1770                 retval = filemap_write_and_wait_range(mapping, pos,
1771                                         pos + iov_length(iov, nr_segs) - 1);
1772                 if (!retval) {
1773                         retval = mapping->a_ops->direct_IO(READ, iocb,
1774                                                            iov, pos, nr_segs);
1775                 }
1776                 if (retval > 0) {
1777                         *ppos = pos + retval;
1778                         count -= retval;
1779                 }
1780
1781                 /*
1782                  * Btrfs can have a short DIO read if we encounter
1783                  * compressed extents, so if there was an error, or if
1784                  * we've already read everything we wanted to, or if
1785                  * there was a short read because we hit EOF, go ahead
1786                  * and return.  Otherwise fallthrough to buffered io for
1787                  * the rest of the read.
1788                  */
1789                 if (retval < 0 || !count || *ppos >= size) {
1790                         file_accessed(filp);
1791                         goto out;
1792                 }
1793         }
1794
1795         count = retval;
1796         for (seg = 0; seg < nr_segs; seg++) {
1797                 read_descriptor_t desc;
1798                 loff_t offset = 0;
1799
1800                 /*
1801                  * If we did a short DIO read we need to skip the section of the
1802                  * iov that we've already read data into.
1803                  */
1804                 if (count) {
1805                         if (count > iov[seg].iov_len) {
1806                                 count -= iov[seg].iov_len;
1807                                 continue;
1808                         }
1809                         offset = count;
1810                         count = 0;
1811                 }
1812
1813                 desc.written = 0;
1814                 desc.arg.buf = iov[seg].iov_base + offset;
1815                 desc.count = iov[seg].iov_len - offset;
1816                 if (desc.count == 0)
1817                         continue;
1818                 desc.error = 0;
1819                 do_generic_file_read(filp, ppos, &desc);
1820                 retval += desc.written;
1821                 if (desc.error) {
1822                         retval = retval ?: desc.error;
1823                         break;
1824                 }
1825                 if (desc.count > 0)
1826                         break;
1827         }
1828 out:
1829         return retval;
1830 }
1831 EXPORT_SYMBOL(generic_file_aio_read);
1832
1833 #ifdef CONFIG_MMU
1834 /**
1835  * page_cache_read - adds requested page to the page cache if not already there
1836  * @file:       file to read
1837  * @offset:     page index
1838  *
1839  * This adds the requested page to the page cache if it isn't already there,
1840  * and schedules an I/O to read in its contents from disk.
1841  */
1842 static int page_cache_read(struct file *file, pgoff_t offset)
1843 {
1844         struct address_space *mapping = file->f_mapping;
1845         struct page *page; 
1846         int ret;
1847
1848         do {
1849                 page = page_cache_alloc_cold(mapping);
1850                 if (!page)
1851                         return -ENOMEM;
1852
1853                 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1854                 if (ret == 0)
1855                         ret = mapping->a_ops->readpage(file, page);
1856                 else if (ret == -EEXIST)
1857                         ret = 0; /* losing race to add is OK */
1858
1859                 page_cache_release(page);
1860
1861         } while (ret == AOP_TRUNCATED_PAGE);
1862                 
1863         return ret;
1864 }
1865
1866 #define MMAP_LOTSAMISS  (100)
1867
1868 /*
1869  * Synchronous readahead happens when we don't even find
1870  * a page in the page cache at all.
1871  */
1872 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1873                                    struct file_ra_state *ra,
1874                                    struct file *file,
1875                                    pgoff_t offset)
1876 {
1877         unsigned long ra_pages;
1878         struct address_space *mapping = file->f_mapping;
1879
1880         /* If we don't want any read-ahead, don't bother */
1881         if (vma->vm_flags & VM_RAND_READ)
1882                 return;
1883         if (!ra->ra_pages)
1884                 return;
1885
1886         if (vma->vm_flags & VM_SEQ_READ) {
1887                 page_cache_sync_readahead(mapping, ra, file, offset,
1888                                           ra->ra_pages);
1889                 return;
1890         }
1891
1892         /* Avoid banging the cache line if not needed */
1893         if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1894                 ra->mmap_miss++;
1895
1896         /*
1897          * Do we miss much more than hit in this file? If so,
1898          * stop bothering with read-ahead. It will only hurt.
1899          */
1900         if (ra->mmap_miss > MMAP_LOTSAMISS)
1901                 return;
1902
1903         /*
1904          * mmap read-around
1905          */
1906         ra_pages = max_sane_readahead(ra->ra_pages);
1907         ra->start = max_t(long, 0, offset - ra_pages / 2);
1908         ra->size = ra_pages;
1909         ra->async_size = ra_pages / 4;
1910         ra_submit(ra, mapping, file);
1911 }
1912
1913 /*
1914  * Asynchronous readahead happens when we find the page and PG_readahead,
1915  * so we want to possibly extend the readahead further..
1916  */
1917 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1918                                     struct file_ra_state *ra,
1919                                     struct file *file,
1920                                     struct page *page,
1921                                     pgoff_t offset)
1922 {
1923         struct address_space *mapping = file->f_mapping;
1924
1925         /* If we don't want any read-ahead, don't bother */
1926         if (vma->vm_flags & VM_RAND_READ)
1927                 return;
1928         if (ra->mmap_miss > 0)
1929                 ra->mmap_miss--;
1930         if (PageReadahead(page))
1931                 page_cache_async_readahead(mapping, ra, file,
1932                                            page, offset, ra->ra_pages);
1933 }
1934
1935 /**
1936  * filemap_fault - read in file data for page fault handling
1937  * @vma:        vma in which the fault was taken
1938  * @vmf:        struct vm_fault containing details of the fault
1939  *
1940  * filemap_fault() is invoked via the vma operations vector for a
1941  * mapped memory region to read in file data during a page fault.
1942  *
1943  * The goto's are kind of ugly, but this streamlines the normal case of having
1944  * it in the page cache, and handles the special cases reasonably without
1945  * having a lot of duplicated code.
1946  */
1947 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1948 {
1949         int error;
1950         struct file *file = vma->vm_file;
1951         struct address_space *mapping = file->f_mapping;
1952         struct file_ra_state *ra = &file->f_ra;
1953         struct inode *inode = mapping->host;
1954         pgoff_t offset = vmf->pgoff;
1955         struct page *page;
1956         loff_t size;
1957         int ret = 0;
1958
1959         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1960         if (offset >= size >> PAGE_CACHE_SHIFT)
1961                 return VM_FAULT_SIGBUS;
1962
1963         /*
1964          * Do we have something in the page cache already?
1965          */
1966         page = find_get_page(mapping, offset);
1967         if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1968                 /*
1969                  * We found the page, so try async readahead before
1970                  * waiting for the lock.
1971                  */
1972                 do_async_mmap_readahead(vma, ra, file, page, offset);
1973         } else if (!page) {
1974                 /* No page in the page cache at all */
1975                 do_sync_mmap_readahead(vma, ra, file, offset);
1976                 count_vm_event(PGMAJFAULT);
1977                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1978                 ret = VM_FAULT_MAJOR;
1979 retry_find:
1980                 page = find_get_page(mapping, offset);
1981                 if (!page)
1982                         goto no_cached_page;
1983         }
1984
1985         if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1986                 page_cache_release(page);
1987                 return ret | VM_FAULT_RETRY;
1988         }
1989
1990         /* Did it get truncated? */
1991         if (unlikely(page->mapping != mapping)) {
1992                 unlock_page(page);
1993                 put_page(page);
1994                 goto retry_find;
1995         }
1996         VM_BUG_ON_PAGE(page->index != offset, page);
1997
1998         /*
1999          * We have a locked page in the page cache, now we need to check
2000          * that it's up-to-date. If not, it is going to be due to an error.
2001          */
2002         if (unlikely(!PageUptodate(page)))
2003                 goto page_not_uptodate;
2004
2005         /*
2006          * Found the page and have a reference on it.
2007          * We must recheck i_size under page lock.
2008          */
2009         size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2010         if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2011                 unlock_page(page);
2012                 page_cache_release(page);
2013                 return VM_FAULT_SIGBUS;
2014         }
2015
2016         vmf->page = page;
2017         return ret | VM_FAULT_LOCKED;
2018
2019 no_cached_page:
2020         /*
2021          * We're only likely to ever get here if MADV_RANDOM is in
2022          * effect.
2023          */
2024         error = page_cache_read(file, offset);
2025
2026         /*
2027          * The page we want has now been added to the page cache.
2028          * In the unlikely event that someone removed it in the
2029          * meantime, we'll just come back here and read it again.
2030          */
2031         if (error >= 0)
2032                 goto retry_find;
2033
2034         /*
2035          * An error return from page_cache_read can result if the
2036          * system is low on memory, or a problem occurs while trying
2037          * to schedule I/O.
2038          */
2039         if (error == -ENOMEM)
2040                 return VM_FAULT_OOM;
2041         return VM_FAULT_SIGBUS;
2042
2043 page_not_uptodate:
2044         /*
2045          * Umm, take care of errors if the page isn't up-to-date.
2046          * Try to re-read it _once_. We do this synchronously,
2047          * because there really aren't any performance issues here
2048          * and we need to check for errors.
2049          */
2050         ClearPageError(page);
2051         error = mapping->a_ops->readpage(file, page);
2052         if (!error) {
2053                 wait_on_page_locked(page);
2054                 if (!PageUptodate(page))
2055                         error = -EIO;
2056         }
2057         page_cache_release(page);
2058
2059         if (!error || error == AOP_TRUNCATED_PAGE)
2060                 goto retry_find;
2061
2062         /* Things didn't work out. Return zero to tell the mm layer so. */
2063         shrink_readahead_size_eio(file, ra);
2064         return VM_FAULT_SIGBUS;
2065 }
2066 EXPORT_SYMBOL(filemap_fault);
2067
2068 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2069 {
2070         struct radix_tree_iter iter;
2071         void **slot;
2072         struct file *file = vma->vm_file;
2073         struct address_space *mapping = file->f_mapping;
2074         loff_t size;
2075         struct page *page;
2076         unsigned long address = (unsigned long) vmf->virtual_address;
2077         unsigned long addr;
2078         pte_t *pte;
2079
2080         rcu_read_lock();
2081         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2082                 if (iter.index > vmf->max_pgoff)
2083                         break;
2084 repeat:
2085                 page = radix_tree_deref_slot(slot);
2086                 if (unlikely(!page))
2087                         goto next;
2088                 if (radix_tree_exception(page)) {
2089                         if (radix_tree_deref_retry(page))
2090                                 break;
2091                         else
2092                                 goto next;
2093                 }
2094
2095                 if (!page_cache_get_speculative(page))
2096                         goto repeat;
2097
2098                 /* Has the page moved? */
2099                 if (unlikely(page != *slot)) {
2100                         page_cache_release(page);
2101                         goto repeat;
2102                 }
2103
2104                 if (!PageUptodate(page) ||
2105                                 PageReadahead(page) ||
2106                                 PageHWPoison(page))
2107                         goto skip;
2108                 if (!trylock_page(page))
2109                         goto skip;
2110
2111                 if (page->mapping != mapping || !PageUptodate(page))
2112                         goto unlock;
2113
2114                 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2115                 if (page->index >= size >> PAGE_CACHE_SHIFT)
2116                         goto unlock;
2117
2118                 pte = vmf->pte + page->index - vmf->pgoff;
2119                 if (!pte_none(*pte))
2120                         goto unlock;
2121
2122                 if (file->f_ra.mmap_miss > 0)
2123                         file->f_ra.mmap_miss--;
2124                 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2125                 do_set_pte(vma, addr, page, pte, false, false);
2126                 unlock_page(page);
2127                 goto next;
2128 unlock:
2129                 unlock_page(page);
2130 skip:
2131                 page_cache_release(page);
2132 next:
2133                 if (iter.index == vmf->max_pgoff)
2134                         break;
2135         }
2136         rcu_read_unlock();
2137 }
2138 EXPORT_SYMBOL(filemap_map_pages);
2139
2140 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2141 {
2142         struct page *page = vmf->page;
2143         struct inode *inode = file_inode(vma->vm_file);
2144         int ret = VM_FAULT_LOCKED;
2145
2146         sb_start_pagefault(inode->i_sb);
2147         file_update_time(vma->vm_file);
2148         lock_page(page);
2149         if (page->mapping != inode->i_mapping) {
2150                 unlock_page(page);
2151                 ret = VM_FAULT_NOPAGE;
2152                 goto out;
2153         }
2154         /*
2155          * We mark the page dirty already here so that when freeze is in
2156          * progress, we are guaranteed that writeback during freezing will
2157          * see the dirty page and writeprotect it again.
2158          */
2159         set_page_dirty(page);
2160         wait_for_stable_page(page);
2161 out:
2162         sb_end_pagefault(inode->i_sb);
2163         return ret;
2164 }
2165 EXPORT_SYMBOL(filemap_page_mkwrite);
2166
2167 const struct vm_operations_struct generic_file_vm_ops = {
2168         .fault          = filemap_fault,
2169         .map_pages      = filemap_map_pages,
2170         .page_mkwrite   = filemap_page_mkwrite,
2171         .remap_pages    = generic_file_remap_pages,
2172 };
2173
2174 /* This is used for a general mmap of a disk file */
2175
2176 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2177 {
2178         struct address_space *mapping = file->f_mapping;
2179
2180         if (!mapping->a_ops->readpage)
2181                 return -ENOEXEC;
2182         file_accessed(file);
2183         vma->vm_ops = &generic_file_vm_ops;
2184         return 0;
2185 }
2186
2187 /*
2188  * This is for filesystems which do not implement ->writepage.
2189  */
2190 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2191 {
2192         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2193                 return -EINVAL;
2194         return generic_file_mmap(file, vma);
2195 }
2196 #else
2197 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2198 {
2199         return -ENOSYS;
2200 }
2201 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2202 {
2203         return -ENOSYS;
2204 }
2205 #endif /* CONFIG_MMU */
2206
2207 EXPORT_SYMBOL(generic_file_mmap);
2208 EXPORT_SYMBOL(generic_file_readonly_mmap);
2209
2210 static struct page *wait_on_page_read(struct page *page)
2211 {
2212         if (!IS_ERR(page)) {
2213                 wait_on_page_locked(page);
2214                 if (!PageUptodate(page)) {
2215                         page_cache_release(page);
2216                         page = ERR_PTR(-EIO);
2217                 }
2218         }
2219         return page;
2220 }
2221
2222 static struct page *__read_cache_page(struct address_space *mapping,
2223                                 pgoff_t index,
2224                                 int (*filler)(void *, struct page *),
2225                                 void *data,
2226                                 gfp_t gfp)
2227 {
2228         struct page *page;
2229         int err;
2230 repeat:
2231         page = find_get_page(mapping, index);
2232         if (!page) {
2233                 page = __page_cache_alloc(gfp | __GFP_COLD);
2234                 if (!page)
2235                         return ERR_PTR(-ENOMEM);
2236                 err = add_to_page_cache_lru(page, mapping, index, gfp);
2237                 if (unlikely(err)) {
2238                         page_cache_release(page);
2239                         if (err == -EEXIST)
2240                                 goto repeat;
2241                         /* Presumably ENOMEM for radix tree node */
2242                         return ERR_PTR(err);
2243                 }
2244                 err = filler(data, page);
2245                 if (err < 0) {
2246                         page_cache_release(page);
2247                         page = ERR_PTR(err);
2248                 } else {
2249                         page = wait_on_page_read(page);
2250                 }
2251         }
2252         return page;
2253 }
2254
2255 static struct page *do_read_cache_page(struct address_space *mapping,
2256                                 pgoff_t index,
2257                                 int (*filler)(void *, struct page *),
2258                                 void *data,
2259                                 gfp_t gfp)
2260
2261 {
2262         struct page *page;
2263         int err;
2264
2265 retry:
2266         page = __read_cache_page(mapping, index, filler, data, gfp);
2267         if (IS_ERR(page))
2268                 return page;
2269         if (PageUptodate(page))
2270                 goto out;
2271
2272         lock_page(page);
2273         if (!page->mapping) {
2274                 unlock_page(page);
2275                 page_cache_release(page);
2276                 goto retry;
2277         }
2278         if (PageUptodate(page)) {
2279                 unlock_page(page);
2280                 goto out;
2281         }
2282         err = filler(data, page);
2283         if (err < 0) {
2284                 page_cache_release(page);
2285                 return ERR_PTR(err);
2286         } else {
2287                 page = wait_on_page_read(page);
2288                 if (IS_ERR(page))
2289                         return page;
2290         }
2291 out:
2292         mark_page_accessed(page);
2293         return page;
2294 }
2295
2296 /**
2297  * read_cache_page - read into page cache, fill it if needed
2298  * @mapping:    the page's address_space
2299  * @index:      the page index
2300  * @filler:     function to perform the read
2301  * @data:       first arg to filler(data, page) function, often left as NULL
2302  *
2303  * Read into the page cache. If a page already exists, and PageUptodate() is
2304  * not set, try to fill the page and wait for it to become unlocked.
2305  *
2306  * If the page does not get brought uptodate, return -EIO.
2307  */
2308 struct page *read_cache_page(struct address_space *mapping,
2309                                 pgoff_t index,
2310                                 int (*filler)(void *, struct page *),
2311                                 void *data)
2312 {
2313         return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2314 }
2315 EXPORT_SYMBOL(read_cache_page);
2316
2317 /**
2318  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2319  * @mapping:    the page's address_space
2320  * @index:      the page index
2321  * @gfp:        the page allocator flags to use if allocating
2322  *
2323  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2324  * any new page allocations done using the specified allocation flags.
2325  *
2326  * If the page does not get brought uptodate, return -EIO.
2327  */
2328 struct page *read_cache_page_gfp(struct address_space *mapping,
2329                                 pgoff_t index,
2330                                 gfp_t gfp)
2331 {
2332         filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2333
2334         return do_read_cache_page(mapping, index, filler, NULL, gfp);
2335 }
2336 EXPORT_SYMBOL(read_cache_page_gfp);
2337
2338 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2339                         const struct iovec *iov, size_t base, size_t bytes)
2340 {
2341         size_t copied = 0, left = 0;
2342
2343         while (bytes) {
2344                 char __user *buf = iov->iov_base + base;
2345                 int copy = min(bytes, iov->iov_len - base);
2346
2347                 base = 0;
2348                 left = __copy_from_user_inatomic(vaddr, buf, copy);
2349                 copied += copy;
2350                 bytes -= copy;
2351                 vaddr += copy;
2352                 iov++;
2353
2354                 if (unlikely(left))
2355                         break;
2356         }
2357         return copied - left;
2358 }
2359
2360 /*
2361  * Copy as much as we can into the page and return the number of bytes which
2362  * were successfully copied.  If a fault is encountered then return the number of
2363  * bytes which were copied.
2364  */
2365 size_t iov_iter_copy_from_user_atomic(struct page *page,
2366                 struct iov_iter *i, unsigned long offset, size_t bytes)
2367 {
2368         char *kaddr;
2369         size_t copied;
2370
2371         BUG_ON(!in_atomic());
2372         kaddr = kmap_atomic(page);
2373         if (likely(i->nr_segs == 1)) {
2374                 int left;
2375                 char __user *buf = i->iov->iov_base + i->iov_offset;
2376                 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2377                 copied = bytes - left;
2378         } else {
2379                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2380                                                 i->iov, i->iov_offset, bytes);
2381         }
2382         kunmap_atomic(kaddr);
2383
2384         return copied;
2385 }
2386 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2387
2388 /*
2389  * This has the same sideeffects and return value as
2390  * iov_iter_copy_from_user_atomic().
2391  * The difference is that it attempts to resolve faults.
2392  * Page must not be locked.
2393  */
2394 size_t iov_iter_copy_from_user(struct page *page,
2395                 struct iov_iter *i, unsigned long offset, size_t bytes)
2396 {
2397         char *kaddr;
2398         size_t copied;
2399
2400         kaddr = kmap(page);
2401         if (likely(i->nr_segs == 1)) {
2402                 int left;
2403                 char __user *buf = i->iov->iov_base + i->iov_offset;
2404                 left = __copy_from_user(kaddr + offset, buf, bytes);
2405                 copied = bytes - left;
2406         } else {
2407                 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2408                                                 i->iov, i->iov_offset, bytes);
2409         }
2410         kunmap(page);
2411         return copied;
2412 }
2413 EXPORT_SYMBOL(iov_iter_copy_from_user);
2414
2415 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2416 {
2417         BUG_ON(i->count < bytes);
2418
2419         if (likely(i->nr_segs == 1)) {
2420                 i->iov_offset += bytes;
2421                 i->count -= bytes;
2422         } else {
2423                 const struct iovec *iov = i->iov;
2424                 size_t base = i->iov_offset;
2425                 unsigned long nr_segs = i->nr_segs;
2426
2427                 /*
2428                  * The !iov->iov_len check ensures we skip over unlikely
2429                  * zero-length segments (without overruning the iovec).
2430                  */
2431                 while (bytes || unlikely(i->count && !iov->iov_len)) {
2432                         int copy;
2433
2434                         copy = min(bytes, iov->iov_len - base);
2435                         BUG_ON(!i->count || i->count < copy);
2436                         i->count -= copy;
2437                         bytes -= copy;
2438                         base += copy;
2439                         if (iov->iov_len == base) {
2440                                 iov++;
2441                                 nr_segs--;
2442                                 base = 0;
2443                         }
2444                 }
2445                 i->iov = iov;
2446                 i->iov_offset = base;
2447                 i->nr_segs = nr_segs;
2448         }
2449 }
2450 EXPORT_SYMBOL(iov_iter_advance);
2451
2452 /*
2453  * Fault in the first iovec of the given iov_iter, to a maximum length
2454  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2455  * accessed (ie. because it is an invalid address).
2456  *
2457  * writev-intensive code may want this to prefault several iovecs -- that
2458  * would be possible (callers must not rely on the fact that _only_ the
2459  * first iovec will be faulted with the current implementation).
2460  */
2461 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2462 {
2463         char __user *buf = i->iov->iov_base + i->iov_offset;
2464         bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2465         return fault_in_pages_readable(buf, bytes);
2466 }
2467 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2468
2469 /*
2470  * Return the count of just the current iov_iter segment.
2471  */
2472 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2473 {
2474         const struct iovec *iov = i->iov;
2475         if (i->nr_segs == 1)
2476                 return i->count;
2477         else
2478                 return min(i->count, iov->iov_len - i->iov_offset);
2479 }
2480 EXPORT_SYMBOL(iov_iter_single_seg_count);
2481
2482 /*
2483  * Performs necessary checks before doing a write
2484  *
2485  * Can adjust writing position or amount of bytes to write.
2486  * Returns appropriate error code that caller should return or
2487  * zero in case that write should be allowed.
2488  */
2489 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2490 {
2491         struct inode *inode = file->f_mapping->host;
2492         unsigned long limit = rlimit(RLIMIT_FSIZE);
2493
2494         if (unlikely(*pos < 0))
2495                 return -EINVAL;
2496
2497         if (!isblk) {
2498                 /* FIXME: this is for backwards compatibility with 2.4 */
2499                 if (file->f_flags & O_APPEND)
2500                         *pos = i_size_read(inode);
2501
2502                 if (limit != RLIM_INFINITY) {
2503                         if (*pos >= limit) {
2504                                 send_sig(SIGXFSZ, current, 0);
2505                                 return -EFBIG;
2506                         }
2507                         if (*count > limit - (typeof(limit))*pos) {
2508                                 *count = limit - (typeof(limit))*pos;
2509                         }
2510                 }
2511         }
2512
2513         /*
2514          * LFS rule
2515          */
2516         if (unlikely(*pos + *count > MAX_NON_LFS &&
2517                                 !(file->f_flags & O_LARGEFILE))) {
2518                 if (*pos >= MAX_NON_LFS) {
2519                         return -EFBIG;
2520                 }
2521                 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2522                         *count = MAX_NON_LFS - (unsigned long)*pos;
2523                 }
2524         }
2525
2526         /*
2527          * Are we about to exceed the fs block limit ?
2528          *
2529          * If we have written data it becomes a short write.  If we have
2530          * exceeded without writing data we send a signal and return EFBIG.
2531          * Linus frestrict idea will clean these up nicely..
2532          */
2533         if (likely(!isblk)) {
2534                 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2535                         if (*count || *pos > inode->i_sb->s_maxbytes) {
2536                                 return -EFBIG;
2537                         }
2538                         /* zero-length writes at ->s_maxbytes are OK */
2539                 }
2540
2541                 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2542                         *count = inode->i_sb->s_maxbytes - *pos;
2543         } else {
2544 #ifdef CONFIG_BLOCK
2545                 loff_t isize;
2546                 if (bdev_read_only(I_BDEV(inode)))
2547                         return -EPERM;
2548                 isize = i_size_read(inode);
2549                 if (*pos >= isize) {
2550                         if (*count || *pos > isize)
2551                                 return -ENOSPC;
2552                 }
2553
2554                 if (*pos + *count > isize)
2555                         *count = isize - *pos;
2556 #else
2557                 return -EPERM;
2558 #endif
2559         }
2560         return 0;
2561 }
2562 EXPORT_SYMBOL(generic_write_checks);
2563
2564 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2565                                 loff_t pos, unsigned len, unsigned flags,
2566                                 struct page **pagep, void **fsdata)
2567 {
2568         const struct address_space_operations *aops = mapping->a_ops;
2569
2570         return aops->write_begin(file, mapping, pos, len, flags,
2571                                                         pagep, fsdata);
2572 }
2573 EXPORT_SYMBOL(pagecache_write_begin);
2574
2575 int pagecache_write_end(struct file *file, struct address_space *mapping,
2576                                 loff_t pos, unsigned len, unsigned copied,
2577                                 struct page *page, void *fsdata)
2578 {
2579         const struct address_space_operations *aops = mapping->a_ops;
2580
2581         mark_page_accessed(page);
2582         return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2583 }
2584 EXPORT_SYMBOL(pagecache_write_end);
2585
2586 ssize_t
2587 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2588                 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2589                 size_t count, size_t ocount)
2590 {
2591         struct file     *file = iocb->ki_filp;
2592         struct address_space *mapping = file->f_mapping;
2593         struct inode    *inode = mapping->host;
2594         ssize_t         written;
2595         size_t          write_len;
2596         pgoff_t         end;
2597
2598         if (count != ocount)
2599                 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2600
2601         write_len = iov_length(iov, *nr_segs);
2602         end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2603
2604         written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2605         if (written)
2606                 goto out;
2607
2608         /*
2609          * After a write we want buffered reads to be sure to go to disk to get
2610          * the new data.  We invalidate clean cached page from the region we're
2611          * about to write.  We do this *before* the write so that we can return
2612          * without clobbering -EIOCBQUEUED from ->direct_IO().
2613          */
2614         if (mapping->nrpages) {
2615                 written = invalidate_inode_pages2_range(mapping,
2616                                         pos >> PAGE_CACHE_SHIFT, end);
2617                 /*
2618                  * If a page can not be invalidated, return 0 to fall back
2619                  * to buffered write.
2620                  */
2621                 if (written) {
2622                         if (written == -EBUSY)
2623                                 return 0;
2624                         goto out;
2625                 }
2626         }
2627
2628         written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2629
2630         /*
2631          * Finally, try again to invalidate clean pages which might have been
2632          * cached by non-direct readahead, or faulted in by get_user_pages()
2633          * if the source of the write was an mmap'ed region of the file
2634          * we're writing.  Either one is a pretty crazy thing to do,
2635          * so we don't support it 100%.  If this invalidation
2636          * fails, tough, the write still worked...
2637          */
2638         if (mapping->nrpages) {
2639                 invalidate_inode_pages2_range(mapping,
2640                                               pos >> PAGE_CACHE_SHIFT, end);
2641         }
2642
2643         if (written > 0) {
2644                 pos += written;
2645                 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2646                         i_size_write(inode, pos);
2647                         mark_inode_dirty(inode);
2648                 }
2649                 *ppos = pos;
2650         }
2651 out:
2652         return written;
2653 }
2654 EXPORT_SYMBOL(generic_file_direct_write);
2655
2656 /*
2657  * Find or create a page at the given pagecache position. Return the locked
2658  * page. This function is specifically for buffered writes.
2659  */
2660 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2661                                         pgoff_t index, unsigned flags)
2662 {
2663         int status;
2664         gfp_t gfp_mask;
2665         struct page *page;
2666         gfp_t gfp_notmask = 0;
2667
2668         gfp_mask = mapping_gfp_mask(mapping);
2669         if (mapping_cap_account_dirty(mapping))
2670                 gfp_mask |= __GFP_WRITE;
2671         if (flags & AOP_FLAG_NOFS)
2672                 gfp_notmask = __GFP_FS;
2673 repeat:
2674         page = find_lock_page(mapping, index);
2675         if (page)
2676                 goto found;
2677
2678         page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2679         if (!page)
2680                 return NULL;
2681         status = add_to_page_cache_lru(page, mapping, index,
2682                                                 GFP_KERNEL & ~gfp_notmask);
2683         if (unlikely(status)) {
2684                 page_cache_release(page);
2685                 if (status == -EEXIST)
2686                         goto repeat;
2687                 return NULL;
2688         }
2689 found:
2690         wait_for_stable_page(page);
2691         return page;
2692 }
2693 EXPORT_SYMBOL(grab_cache_page_write_begin);
2694
2695 static ssize_t generic_perform_write(struct file *file,
2696                                 struct iov_iter *i, loff_t pos)
2697 {
2698         struct address_space *mapping = file->f_mapping;
2699         const struct address_space_operations *a_ops = mapping->a_ops;
2700         long status = 0;
2701         ssize_t written = 0;
2702         unsigned int flags = 0;
2703
2704         /*
2705          * Copies from kernel address space cannot fail (NFSD is a big user).
2706          */
2707         if (segment_eq(get_fs(), KERNEL_DS))
2708                 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2709
2710         do {
2711                 struct page *page;
2712                 unsigned long offset;   /* Offset into pagecache page */
2713                 unsigned long bytes;    /* Bytes to write to page */
2714                 size_t copied;          /* Bytes copied from user */
2715                 void *fsdata;
2716
2717                 offset = (pos & (PAGE_CACHE_SIZE - 1));
2718                 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2719                                                 iov_iter_count(i));
2720
2721 again:
2722                 /*
2723                  * Bring in the user page that we will copy from _first_.
2724                  * Otherwise there's a nasty deadlock on copying from the
2725                  * same page as we're writing to, without it being marked
2726                  * up-to-date.
2727                  *
2728                  * Not only is this an optimisation, but it is also required
2729                  * to check that the address is actually valid, when atomic
2730                  * usercopies are used, below.
2731                  */
2732                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2733                         status = -EFAULT;
2734                         break;
2735                 }
2736
2737                 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2738                                                 &page, &fsdata);
2739                 if (unlikely(status))
2740                         break;
2741
2742                 if (mapping_writably_mapped(mapping))
2743                         flush_dcache_page(page);
2744
2745                 pagefault_disable();
2746                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2747                 pagefault_enable();
2748                 flush_dcache_page(page);
2749
2750                 mark_page_accessed(page);
2751                 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2752                                                 page, fsdata);
2753                 if (unlikely(status < 0))
2754                         break;
2755                 copied = status;
2756
2757                 cond_resched();
2758
2759                 iov_iter_advance(i, copied);
2760                 if (unlikely(copied == 0)) {
2761                         /*
2762                          * If we were unable to copy any data at all, we must
2763                          * fall back to a single segment length write.
2764                          *
2765                          * If we didn't fallback here, we could livelock
2766                          * because not all segments in the iov can be copied at
2767                          * once without a pagefault.
2768                          */
2769                         bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2770                                                 iov_iter_single_seg_count(i));
2771                         goto again;
2772                 }
2773                 pos += copied;
2774                 written += copied;
2775
2776                 balance_dirty_pages_ratelimited(mapping);
2777                 if (fatal_signal_pending(current)) {
2778                         status = -EINTR;
2779                         break;
2780                 }
2781         } while (iov_iter_count(i));
2782
2783         return written ? written : status;
2784 }
2785
2786 ssize_t
2787 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2788                 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2789                 size_t count, ssize_t written)
2790 {
2791         struct file *file = iocb->ki_filp;
2792         ssize_t status;
2793         struct iov_iter i;
2794
2795         iov_iter_init(&i, iov, nr_segs, count, written);
2796         status = generic_perform_write(file, &i, pos);
2797
2798         if (likely(status >= 0)) {
2799                 written += status;
2800                 *ppos = pos + status;
2801         }
2802         
2803         return written ? written : status;
2804 }
2805 EXPORT_SYMBOL(generic_file_buffered_write);
2806
2807 /**
2808  * __generic_file_aio_write - write data to a file
2809  * @iocb:       IO state structure (file, offset, etc.)
2810  * @iov:        vector with data to write
2811  * @nr_segs:    number of segments in the vector
2812  * @ppos:       position where to write
2813  *
2814  * This function does all the work needed for actually writing data to a
2815  * file. It does all basic checks, removes SUID from the file, updates
2816  * modification times and calls proper subroutines depending on whether we
2817  * do direct IO or a standard buffered write.
2818  *
2819  * It expects i_mutex to be grabbed unless we work on a block device or similar
2820  * object which does not need locking at all.
2821  *
2822  * This function does *not* take care of syncing data in case of O_SYNC write.
2823  * A caller has to handle it. This is mainly due to the fact that we want to
2824  * avoid syncing under i_mutex.
2825  */
2826 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2827                                  unsigned long nr_segs, loff_t *ppos)
2828 {
2829         struct file *file = iocb->ki_filp;
2830         struct address_space * mapping = file->f_mapping;
2831         size_t ocount;          /* original count */
2832         size_t count;           /* after file limit checks */
2833         struct inode    *inode = mapping->host;
2834         loff_t          pos;
2835         ssize_t         written;
2836         ssize_t         err;
2837
2838         ocount = 0;
2839         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2840         if (err)
2841                 return err;
2842
2843         count = ocount;
2844         pos = *ppos;
2845
2846         /* We can write back this queue in page reclaim */
2847         current->backing_dev_info = mapping->backing_dev_info;
2848         written = 0;
2849
2850         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2851         if (err)
2852                 goto out;
2853
2854         if (count == 0)
2855                 goto out;
2856
2857         err = file_remove_suid(file);
2858         if (err)
2859                 goto out;
2860
2861         err = file_update_time(file);
2862         if (err)
2863                 goto out;
2864
2865         /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2866         if (unlikely(file->f_flags & O_DIRECT)) {
2867                 loff_t endbyte;
2868                 ssize_t written_buffered;
2869
2870                 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2871                                                         ppos, count, ocount);
2872                 if (written < 0 || written == count)
2873                         goto out;
2874                 /*
2875                  * direct-io write to a hole: fall through to buffered I/O
2876                  * for completing the rest of the request.
2877                  */
2878                 pos += written;
2879                 count -= written;
2880                 written_buffered = generic_file_buffered_write(iocb, iov,
2881                                                 nr_segs, pos, ppos, count,
2882                                                 written);
2883                 /*
2884                  * If generic_file_buffered_write() retuned a synchronous error
2885                  * then we want to return the number of bytes which were
2886                  * direct-written, or the error code if that was zero.  Note
2887                  * that this differs from normal direct-io semantics, which
2888                  * will return -EFOO even if some bytes were written.
2889                  */
2890                 if (written_buffered < 0) {
2891                         err = written_buffered;
2892                         goto out;
2893                 }
2894
2895                 /*
2896                  * We need to ensure that the page cache pages are written to
2897                  * disk and invalidated to preserve the expected O_DIRECT
2898                  * semantics.
2899                  */
2900                 endbyte = pos + written_buffered - written - 1;
2901                 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2902                 if (err == 0) {
2903                         written = written_buffered;
2904                         invalidate_mapping_pages(mapping,
2905                                                  pos >> PAGE_CACHE_SHIFT,
2906                                                  endbyte >> PAGE_CACHE_SHIFT);
2907                 } else {
2908                         /*
2909                          * We don't know how much we wrote, so just return
2910                          * the number of bytes which were direct-written
2911                          */
2912                 }
2913         } else {
2914                 written = generic_file_buffered_write(iocb, iov, nr_segs,
2915                                 pos, ppos, count, written);
2916         }
2917 out:
2918         current->backing_dev_info = NULL;
2919         return written ? written : err;
2920 }
2921 EXPORT_SYMBOL(__generic_file_aio_write);
2922
2923 /**
2924  * generic_file_aio_write - write data to a file
2925  * @iocb:       IO state structure
2926  * @iov:        vector with data to write
2927  * @nr_segs:    number of segments in the vector
2928  * @pos:        position in file where to write
2929  *
2930  * This is a wrapper around __generic_file_aio_write() to be used by most
2931  * filesystems. It takes care of syncing the file in case of O_SYNC file
2932  * and acquires i_mutex as needed.
2933  */
2934 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2935                 unsigned long nr_segs, loff_t pos)
2936 {
2937         struct file *file = iocb->ki_filp;
2938         struct inode *inode = file->f_mapping->host;
2939         ssize_t ret;
2940
2941         BUG_ON(iocb->ki_pos != pos);
2942
2943         mutex_lock(&inode->i_mutex);
2944         ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2945         mutex_unlock(&inode->i_mutex);
2946
2947         if (ret > 0) {
2948                 ssize_t err;
2949
2950                 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2951                 if (err < 0)
2952                         ret = err;
2953         }
2954         return ret;
2955 }
2956 EXPORT_SYMBOL(generic_file_aio_write);
2957
2958 /**
2959  * try_to_release_page() - release old fs-specific metadata on a page
2960  *
2961  * @page: the page which the kernel is trying to free
2962  * @gfp_mask: memory allocation flags (and I/O mode)
2963  *
2964  * The address_space is to try to release any data against the page
2965  * (presumably at page->private).  If the release was successful, return `1'.
2966  * Otherwise return zero.
2967  *
2968  * This may also be called if PG_fscache is set on a page, indicating that the
2969  * page is known to the local caching routines.
2970  *
2971  * The @gfp_mask argument specifies whether I/O may be performed to release
2972  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2973  *
2974  */
2975 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2976 {
2977         struct address_space * const mapping = page->mapping;
2978
2979         BUG_ON(!PageLocked(page));
2980         if (PageWriteback(page))
2981                 return 0;
2982
2983         if (mapping && mapping->a_ops->releasepage)
2984                 return mapping->a_ops->releasepage(page, gfp_mask);
2985         return try_to_free_buffers(page);
2986 }
2987
2988 EXPORT_SYMBOL(try_to_release_page);