6801b3751a95cd0933463fc38039cb77d6ced705
[linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * Basic futex operation and ordering guarantees:
74  *
75  * The waiter reads the futex value in user space and calls
76  * futex_wait(). This function computes the hash bucket and acquires
77  * the hash bucket lock. After that it reads the futex user space value
78  * again and verifies that the data has not changed. If it has not changed
79  * it enqueues itself into the hash bucket, releases the hash bucket lock
80  * and schedules.
81  *
82  * The waker side modifies the user space value of the futex and calls
83  * futex_wake(). This function computes the hash bucket and acquires the
84  * hash bucket lock. Then it looks for waiters on that futex in the hash
85  * bucket and wakes them.
86  *
87  * In futex wake up scenarios where no tasks are blocked on a futex, taking
88  * the hb spinlock can be avoided and simply return. In order for this
89  * optimization to work, ordering guarantees must exist so that the waiter
90  * being added to the list is acknowledged when the list is concurrently being
91  * checked by the waker, avoiding scenarios like the following:
92  *
93  * CPU 0                               CPU 1
94  * val = *futex;
95  * sys_futex(WAIT, futex, val);
96  *   futex_wait(futex, val);
97  *   uval = *futex;
98  *                                     *futex = newval;
99  *                                     sys_futex(WAKE, futex);
100  *                                       futex_wake(futex);
101  *                                       if (queue_empty())
102  *                                         return;
103  *   if (uval == val)
104  *      lock(hash_bucket(futex));
105  *      queue();
106  *     unlock(hash_bucket(futex));
107  *     schedule();
108  *
109  * This would cause the waiter on CPU 0 to wait forever because it
110  * missed the transition of the user space value from val to newval
111  * and the waker did not find the waiter in the hash bucket queue.
112  *
113  * The correct serialization ensures that a waiter either observes
114  * the changed user space value before blocking or is woken by a
115  * concurrent waker:
116  *
117  * CPU 0                                 CPU 1
118  * val = *futex;
119  * sys_futex(WAIT, futex, val);
120  *   futex_wait(futex, val);
121  *
122  *   waiters++;
123  *   mb(); (A) <-- paired with -.
124  *                              |
125  *   lock(hash_bucket(futex));  |
126  *                              |
127  *   uval = *futex;             |
128  *                              |        *futex = newval;
129  *                              |        sys_futex(WAKE, futex);
130  *                              |          futex_wake(futex);
131  *                              |
132  *                              `------->  mb(); (B)
133  *   if (uval == val)
134  *     queue();
135  *     unlock(hash_bucket(futex));
136  *     schedule();                         if (waiters)
137  *                                           lock(hash_bucket(futex));
138  *                                           wake_waiters(futex);
139  *                                           unlock(hash_bucket(futex));
140  *
141  * Where (A) orders the waiters increment and the futex value read -- this
142  * is guaranteed by the head counter in the hb spinlock; and where (B)
143  * orders the write to futex and the waiters read -- this is done by the
144  * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145  * depending on the futex type.
146  *
147  * This yields the following case (where X:=waiters, Y:=futex):
148  *
149  *      X = Y = 0
150  *
151  *      w[X]=1          w[Y]=1
152  *      MB              MB
153  *      r[Y]=y          r[X]=x
154  *
155  * Which guarantees that x==0 && y==0 is impossible; which translates back into
156  * the guarantee that we cannot both miss the futex variable change and the
157  * enqueue.
158  */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165  * Futex flags used to encode options to functions and preserve them across
166  * restarts.
167  */
168 #define FLAGS_SHARED            0x01
169 #define FLAGS_CLOCKRT           0x02
170 #define FLAGS_HAS_TIMEOUT       0x04
171
172 /*
173  * Priority Inheritance state:
174  */
175 struct futex_pi_state {
176         /*
177          * list of 'owned' pi_state instances - these have to be
178          * cleaned up in do_exit() if the task exits prematurely:
179          */
180         struct list_head list;
181
182         /*
183          * The PI object:
184          */
185         struct rt_mutex pi_mutex;
186
187         struct task_struct *owner;
188         atomic_t refcount;
189
190         union futex_key key;
191 };
192
193 /**
194  * struct futex_q - The hashed futex queue entry, one per waiting task
195  * @list:               priority-sorted list of tasks waiting on this futex
196  * @task:               the task waiting on the futex
197  * @lock_ptr:           the hash bucket lock
198  * @key:                the key the futex is hashed on
199  * @pi_state:           optional priority inheritance state
200  * @rt_waiter:          rt_waiter storage for use with requeue_pi
201  * @requeue_pi_key:     the requeue_pi target futex key
202  * @bitset:             bitset for the optional bitmasked wakeup
203  *
204  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205  * we can wake only the relevant ones (hashed queues may be shared).
206  *
207  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209  * The order of wakeup is always to make the first condition true, then
210  * the second.
211  *
212  * PI futexes are typically woken before they are removed from the hash list via
213  * the rt_mutex code. See unqueue_me_pi().
214  */
215 struct futex_q {
216         struct plist_node list;
217
218         struct task_struct *task;
219         spinlock_t *lock_ptr;
220         union futex_key key;
221         struct futex_pi_state *pi_state;
222         struct rt_mutex_waiter *rt_waiter;
223         union futex_key *requeue_pi_key;
224         u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228         /* list gets initialized in queue_me()*/
229         .key = FUTEX_KEY_INIT,
230         .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234  * Hash buckets are shared by all the futex_keys that hash to the same
235  * location.  Each key may have multiple futex_q structures, one for each task
236  * waiting on a futex.
237  */
238 struct futex_hash_bucket {
239         atomic_t waiters;
240         spinlock_t lock;
241         struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250         atomic_inc(&key->private.mm->mm_count);
251         /*
252          * Ensure futex_get_mm() implies a full barrier such that
253          * get_futex_key() implies a full barrier. This is relied upon
254          * as full barrier (B), see the ordering comment above.
255          */
256         smp_mb__after_atomic_inc();
257 }
258
259 /*
260  * Reflects a new waiter being added to the waitqueue.
261  */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265         atomic_inc(&hb->waiters);
266         /*
267          * Full barrier (A), see the ordering comment above.
268          */
269         smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274  * Reflects a waiter being removed from the waitqueue by wakeup
275  * paths.
276  */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280         atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287         return atomic_read(&hb->waiters);
288 #else
289         return 1;
290 #endif
291 }
292
293 /*
294  * We hash on the keys returned from get_futex_key (see below).
295  */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298         u32 hash = jhash2((u32*)&key->both.word,
299                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300                           key->both.offset);
301         return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305  * Return 1 if two futex_keys are equal, 0 otherwise.
306  */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309         return (key1 && key2
310                 && key1->both.word == key2->both.word
311                 && key1->both.ptr == key2->both.ptr
312                 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316  * Take a reference to the resource addressed by a key.
317  * Can be called while holding spinlocks.
318  *
319  */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322         if (!key->both.ptr)
323                 return;
324
325         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326         case FUT_OFF_INODE:
327                 ihold(key->shared.inode); /* implies MB (B) */
328                 break;
329         case FUT_OFF_MMSHARED:
330                 futex_get_mm(key); /* implies MB (B) */
331                 break;
332         }
333 }
334
335 /*
336  * Drop a reference to the resource addressed by a key.
337  * The hash bucket spinlock must not be held.
338  */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341         if (!key->both.ptr) {
342                 /* If we're here then we tried to put a key we failed to get */
343                 WARN_ON_ONCE(1);
344                 return;
345         }
346
347         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348         case FUT_OFF_INODE:
349                 iput(key->shared.inode);
350                 break;
351         case FUT_OFF_MMSHARED:
352                 mmdrop(key->private.mm);
353                 break;
354         }
355 }
356
357 /**
358  * get_futex_key() - Get parameters which are the keys for a futex
359  * @uaddr:      virtual address of the futex
360  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361  * @key:        address where result is stored.
362  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
363  *              VERIFY_WRITE)
364  *
365  * Return: a negative error code or 0
366  *
367  * The key words are stored in *key on success.
368  *
369  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
371  * We can usually work out the index without swapping in the page.
372  *
373  * lock_page() might sleep, the caller should not hold a spinlock.
374  */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378         unsigned long address = (unsigned long)uaddr;
379         struct mm_struct *mm = current->mm;
380         struct page *page, *page_head;
381         int err, ro = 0;
382
383         /*
384          * The futex address must be "naturally" aligned.
385          */
386         key->both.offset = address % PAGE_SIZE;
387         if (unlikely((address % sizeof(u32)) != 0))
388                 return -EINVAL;
389         address -= key->both.offset;
390
391         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392                 return -EFAULT;
393
394         /*
395          * PROCESS_PRIVATE futexes are fast.
396          * As the mm cannot disappear under us and the 'key' only needs
397          * virtual address, we dont even have to find the underlying vma.
398          * Note : We do have to check 'uaddr' is a valid user address,
399          *        but access_ok() should be faster than find_vma()
400          */
401         if (!fshared) {
402                 key->private.mm = mm;
403                 key->private.address = address;
404                 get_futex_key_refs(key);  /* implies MB (B) */
405                 return 0;
406         }
407
408 again:
409         err = get_user_pages_fast(address, 1, 1, &page);
410         /*
411          * If write access is not required (eg. FUTEX_WAIT), try
412          * and get read-only access.
413          */
414         if (err == -EFAULT && rw == VERIFY_READ) {
415                 err = get_user_pages_fast(address, 1, 0, &page);
416                 ro = 1;
417         }
418         if (err < 0)
419                 return err;
420         else
421                 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424         page_head = page;
425         if (unlikely(PageTail(page))) {
426                 put_page(page);
427                 /* serialize against __split_huge_page_splitting() */
428                 local_irq_disable();
429                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430                         page_head = compound_head(page);
431                         /*
432                          * page_head is valid pointer but we must pin
433                          * it before taking the PG_lock and/or
434                          * PG_compound_lock. The moment we re-enable
435                          * irqs __split_huge_page_splitting() can
436                          * return and the head page can be freed from
437                          * under us. We can't take the PG_lock and/or
438                          * PG_compound_lock on a page that could be
439                          * freed from under us.
440                          */
441                         if (page != page_head) {
442                                 get_page(page_head);
443                                 put_page(page);
444                         }
445                         local_irq_enable();
446                 } else {
447                         local_irq_enable();
448                         goto again;
449                 }
450         }
451 #else
452         page_head = compound_head(page);
453         if (page != page_head) {
454                 get_page(page_head);
455                 put_page(page);
456         }
457 #endif
458
459         lock_page(page_head);
460
461         /*
462          * If page_head->mapping is NULL, then it cannot be a PageAnon
463          * page; but it might be the ZERO_PAGE or in the gate area or
464          * in a special mapping (all cases which we are happy to fail);
465          * or it may have been a good file page when get_user_pages_fast
466          * found it, but truncated or holepunched or subjected to
467          * invalidate_complete_page2 before we got the page lock (also
468          * cases which we are happy to fail).  And we hold a reference,
469          * so refcount care in invalidate_complete_page's remove_mapping
470          * prevents drop_caches from setting mapping to NULL beneath us.
471          *
472          * The case we do have to guard against is when memory pressure made
473          * shmem_writepage move it from filecache to swapcache beneath us:
474          * an unlikely race, but we do need to retry for page_head->mapping.
475          */
476         if (!page_head->mapping) {
477                 int shmem_swizzled = PageSwapCache(page_head);
478                 unlock_page(page_head);
479                 put_page(page_head);
480                 if (shmem_swizzled)
481                         goto again;
482                 return -EFAULT;
483         }
484
485         /*
486          * Private mappings are handled in a simple way.
487          *
488          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489          * it's a read-only handle, it's expected that futexes attach to
490          * the object not the particular process.
491          */
492         if (PageAnon(page_head)) {
493                 /*
494                  * A RO anonymous page will never change and thus doesn't make
495                  * sense for futex operations.
496                  */
497                 if (ro) {
498                         err = -EFAULT;
499                         goto out;
500                 }
501
502                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503                 key->private.mm = mm;
504                 key->private.address = address;
505         } else {
506                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507                 key->shared.inode = page_head->mapping->host;
508                 key->shared.pgoff = basepage_index(page);
509         }
510
511         get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514         unlock_page(page_head);
515         put_page(page_head);
516         return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521         drop_futex_key_refs(key);
522 }
523
524 /**
525  * fault_in_user_writeable() - Fault in user address and verify RW access
526  * @uaddr:      pointer to faulting user space address
527  *
528  * Slow path to fixup the fault we just took in the atomic write
529  * access to @uaddr.
530  *
531  * We have no generic implementation of a non-destructive write to the
532  * user address. We know that we faulted in the atomic pagefault
533  * disabled section so we can as well avoid the #PF overhead by
534  * calling get_user_pages() right away.
535  */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538         struct mm_struct *mm = current->mm;
539         int ret;
540
541         down_read(&mm->mmap_sem);
542         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543                                FAULT_FLAG_WRITE);
544         up_read(&mm->mmap_sem);
545
546         return ret < 0 ? ret : 0;
547 }
548
549 /**
550  * futex_top_waiter() - Return the highest priority waiter on a futex
551  * @hb:         the hash bucket the futex_q's reside in
552  * @key:        the futex key (to distinguish it from other futex futex_q's)
553  *
554  * Must be called with the hb lock held.
555  */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557                                         union futex_key *key)
558 {
559         struct futex_q *this;
560
561         plist_for_each_entry(this, &hb->chain, list) {
562                 if (match_futex(&this->key, key))
563                         return this;
564         }
565         return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569                                       u32 uval, u32 newval)
570 {
571         int ret;
572
573         pagefault_disable();
574         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575         pagefault_enable();
576
577         return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582         int ret;
583
584         pagefault_disable();
585         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586         pagefault_enable();
587
588         return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593  * PI code:
594  */
595 static int refill_pi_state_cache(void)
596 {
597         struct futex_pi_state *pi_state;
598
599         if (likely(current->pi_state_cache))
600                 return 0;
601
602         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604         if (!pi_state)
605                 return -ENOMEM;
606
607         INIT_LIST_HEAD(&pi_state->list);
608         /* pi_mutex gets initialized later */
609         pi_state->owner = NULL;
610         atomic_set(&pi_state->refcount, 1);
611         pi_state->key = FUTEX_KEY_INIT;
612
613         current->pi_state_cache = pi_state;
614
615         return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620         struct futex_pi_state *pi_state = current->pi_state_cache;
621
622         WARN_ON(!pi_state);
623         current->pi_state_cache = NULL;
624
625         return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630         if (!atomic_dec_and_test(&pi_state->refcount))
631                 return;
632
633         /*
634          * If pi_state->owner is NULL, the owner is most probably dying
635          * and has cleaned up the pi_state already
636          */
637         if (pi_state->owner) {
638                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639                 list_del_init(&pi_state->list);
640                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643         }
644
645         if (current->pi_state_cache)
646                 kfree(pi_state);
647         else {
648                 /*
649                  * pi_state->list is already empty.
650                  * clear pi_state->owner.
651                  * refcount is at 0 - put it back to 1.
652                  */
653                 pi_state->owner = NULL;
654                 atomic_set(&pi_state->refcount, 1);
655                 current->pi_state_cache = pi_state;
656         }
657 }
658
659 /*
660  * Look up the task based on what TID userspace gave us.
661  * We dont trust it.
662  */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665         struct task_struct *p;
666
667         rcu_read_lock();
668         p = find_task_by_vpid(pid);
669         if (p)
670                 get_task_struct(p);
671
672         rcu_read_unlock();
673
674         return p;
675 }
676
677 /*
678  * This task is holding PI mutexes at exit time => bad.
679  * Kernel cleans up PI-state, but userspace is likely hosed.
680  * (Robust-futex cleanup is separate and might save the day for userspace.)
681  */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684         struct list_head *next, *head = &curr->pi_state_list;
685         struct futex_pi_state *pi_state;
686         struct futex_hash_bucket *hb;
687         union futex_key key = FUTEX_KEY_INIT;
688
689         if (!futex_cmpxchg_enabled)
690                 return;
691         /*
692          * We are a ZOMBIE and nobody can enqueue itself on
693          * pi_state_list anymore, but we have to be careful
694          * versus waiters unqueueing themselves:
695          */
696         raw_spin_lock_irq(&curr->pi_lock);
697         while (!list_empty(head)) {
698
699                 next = head->next;
700                 pi_state = list_entry(next, struct futex_pi_state, list);
701                 key = pi_state->key;
702                 hb = hash_futex(&key);
703                 raw_spin_unlock_irq(&curr->pi_lock);
704
705                 spin_lock(&hb->lock);
706
707                 raw_spin_lock_irq(&curr->pi_lock);
708                 /*
709                  * We dropped the pi-lock, so re-check whether this
710                  * task still owns the PI-state:
711                  */
712                 if (head->next != next) {
713                         spin_unlock(&hb->lock);
714                         continue;
715                 }
716
717                 WARN_ON(pi_state->owner != curr);
718                 WARN_ON(list_empty(&pi_state->list));
719                 list_del_init(&pi_state->list);
720                 pi_state->owner = NULL;
721                 raw_spin_unlock_irq(&curr->pi_lock);
722
723                 rt_mutex_unlock(&pi_state->pi_mutex);
724
725                 spin_unlock(&hb->lock);
726
727                 raw_spin_lock_irq(&curr->pi_lock);
728         }
729         raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734                 union futex_key *key, struct futex_pi_state **ps)
735 {
736         struct futex_pi_state *pi_state = NULL;
737         struct futex_q *this, *next;
738         struct task_struct *p;
739         pid_t pid = uval & FUTEX_TID_MASK;
740
741         plist_for_each_entry_safe(this, next, &hb->chain, list) {
742                 if (match_futex(&this->key, key)) {
743                         /*
744                          * Another waiter already exists - bump up
745                          * the refcount and return its pi_state:
746                          */
747                         pi_state = this->pi_state;
748                         /*
749                          * Userspace might have messed up non-PI and PI futexes
750                          */
751                         if (unlikely(!pi_state))
752                                 return -EINVAL;
753
754                         WARN_ON(!atomic_read(&pi_state->refcount));
755
756                         /*
757                          * When pi_state->owner is NULL then the owner died
758                          * and another waiter is on the fly. pi_state->owner
759                          * is fixed up by the task which acquires
760                          * pi_state->rt_mutex.
761                          *
762                          * We do not check for pid == 0 which can happen when
763                          * the owner died and robust_list_exit() cleared the
764                          * TID.
765                          */
766                         if (pid && pi_state->owner) {
767                                 /*
768                                  * Bail out if user space manipulated the
769                                  * futex value.
770                                  */
771                                 if (pid != task_pid_vnr(pi_state->owner))
772                                         return -EINVAL;
773                         }
774
775                         atomic_inc(&pi_state->refcount);
776                         *ps = pi_state;
777
778                         return 0;
779                 }
780         }
781
782         /*
783          * We are the first waiter - try to look up the real owner and attach
784          * the new pi_state to it, but bail out when TID = 0
785          */
786         if (!pid)
787                 return -ESRCH;
788         p = futex_find_get_task(pid);
789         if (!p)
790                 return -ESRCH;
791
792         /*
793          * We need to look at the task state flags to figure out,
794          * whether the task is exiting. To protect against the do_exit
795          * change of the task flags, we do this protected by
796          * p->pi_lock:
797          */
798         raw_spin_lock_irq(&p->pi_lock);
799         if (unlikely(p->flags & PF_EXITING)) {
800                 /*
801                  * The task is on the way out. When PF_EXITPIDONE is
802                  * set, we know that the task has finished the
803                  * cleanup:
804                  */
805                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
806
807                 raw_spin_unlock_irq(&p->pi_lock);
808                 put_task_struct(p);
809                 return ret;
810         }
811
812         pi_state = alloc_pi_state();
813
814         /*
815          * Initialize the pi_mutex in locked state and make 'p'
816          * the owner of it:
817          */
818         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
819
820         /* Store the key for possible exit cleanups: */
821         pi_state->key = *key;
822
823         WARN_ON(!list_empty(&pi_state->list));
824         list_add(&pi_state->list, &p->pi_state_list);
825         pi_state->owner = p;
826         raw_spin_unlock_irq(&p->pi_lock);
827
828         put_task_struct(p);
829
830         *ps = pi_state;
831
832         return 0;
833 }
834
835 /**
836  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
837  * @uaddr:              the pi futex user address
838  * @hb:                 the pi futex hash bucket
839  * @key:                the futex key associated with uaddr and hb
840  * @ps:                 the pi_state pointer where we store the result of the
841  *                      lookup
842  * @task:               the task to perform the atomic lock work for.  This will
843  *                      be "current" except in the case of requeue pi.
844  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
845  *
846  * Return:
847  *  0 - ready to wait;
848  *  1 - acquired the lock;
849  * <0 - error
850  *
851  * The hb->lock and futex_key refs shall be held by the caller.
852  */
853 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
854                                 union futex_key *key,
855                                 struct futex_pi_state **ps,
856                                 struct task_struct *task, int set_waiters)
857 {
858         int lock_taken, ret, force_take = 0;
859         u32 uval, newval, curval, vpid = task_pid_vnr(task);
860
861 retry:
862         ret = lock_taken = 0;
863
864         /*
865          * To avoid races, we attempt to take the lock here again
866          * (by doing a 0 -> TID atomic cmpxchg), while holding all
867          * the locks. It will most likely not succeed.
868          */
869         newval = vpid;
870         if (set_waiters)
871                 newval |= FUTEX_WAITERS;
872
873         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
874                 return -EFAULT;
875
876         /*
877          * Detect deadlocks.
878          */
879         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
880                 return -EDEADLK;
881
882         /*
883          * Surprise - we got the lock. Just return to userspace:
884          */
885         if (unlikely(!curval))
886                 return 1;
887
888         uval = curval;
889
890         /*
891          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
892          * to wake at the next unlock.
893          */
894         newval = curval | FUTEX_WAITERS;
895
896         /*
897          * Should we force take the futex? See below.
898          */
899         if (unlikely(force_take)) {
900                 /*
901                  * Keep the OWNER_DIED and the WAITERS bit and set the
902                  * new TID value.
903                  */
904                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
905                 force_take = 0;
906                 lock_taken = 1;
907         }
908
909         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
910                 return -EFAULT;
911         if (unlikely(curval != uval))
912                 goto retry;
913
914         /*
915          * We took the lock due to forced take over.
916          */
917         if (unlikely(lock_taken))
918                 return 1;
919
920         /*
921          * We dont have the lock. Look up the PI state (or create it if
922          * we are the first waiter):
923          */
924         ret = lookup_pi_state(uval, hb, key, ps);
925
926         if (unlikely(ret)) {
927                 switch (ret) {
928                 case -ESRCH:
929                         /*
930                          * We failed to find an owner for this
931                          * futex. So we have no pi_state to block
932                          * on. This can happen in two cases:
933                          *
934                          * 1) The owner died
935                          * 2) A stale FUTEX_WAITERS bit
936                          *
937                          * Re-read the futex value.
938                          */
939                         if (get_futex_value_locked(&curval, uaddr))
940                                 return -EFAULT;
941
942                         /*
943                          * If the owner died or we have a stale
944                          * WAITERS bit the owner TID in the user space
945                          * futex is 0.
946                          */
947                         if (!(curval & FUTEX_TID_MASK)) {
948                                 force_take = 1;
949                                 goto retry;
950                         }
951                 default:
952                         break;
953                 }
954         }
955
956         return ret;
957 }
958
959 /**
960  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
961  * @q:  The futex_q to unqueue
962  *
963  * The q->lock_ptr must not be NULL and must be held by the caller.
964  */
965 static void __unqueue_futex(struct futex_q *q)
966 {
967         struct futex_hash_bucket *hb;
968
969         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
970             || WARN_ON(plist_node_empty(&q->list)))
971                 return;
972
973         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
974         plist_del(&q->list, &hb->chain);
975         hb_waiters_dec(hb);
976 }
977
978 /*
979  * The hash bucket lock must be held when this is called.
980  * Afterwards, the futex_q must not be accessed.
981  */
982 static void wake_futex(struct futex_q *q)
983 {
984         struct task_struct *p = q->task;
985
986         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
987                 return;
988
989         /*
990          * We set q->lock_ptr = NULL _before_ we wake up the task. If
991          * a non-futex wake up happens on another CPU then the task
992          * might exit and p would dereference a non-existing task
993          * struct. Prevent this by holding a reference on p across the
994          * wake up.
995          */
996         get_task_struct(p);
997
998         __unqueue_futex(q);
999         /*
1000          * The waiting task can free the futex_q as soon as
1001          * q->lock_ptr = NULL is written, without taking any locks. A
1002          * memory barrier is required here to prevent the following
1003          * store to lock_ptr from getting ahead of the plist_del.
1004          */
1005         smp_wmb();
1006         q->lock_ptr = NULL;
1007
1008         wake_up_state(p, TASK_NORMAL);
1009         put_task_struct(p);
1010 }
1011
1012 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1013 {
1014         struct task_struct *new_owner;
1015         struct futex_pi_state *pi_state = this->pi_state;
1016         u32 uninitialized_var(curval), newval;
1017
1018         if (!pi_state)
1019                 return -EINVAL;
1020
1021         /*
1022          * If current does not own the pi_state then the futex is
1023          * inconsistent and user space fiddled with the futex value.
1024          */
1025         if (pi_state->owner != current)
1026                 return -EINVAL;
1027
1028         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1029         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1030
1031         /*
1032          * It is possible that the next waiter (the one that brought
1033          * this owner to the kernel) timed out and is no longer
1034          * waiting on the lock.
1035          */
1036         if (!new_owner)
1037                 new_owner = this->task;
1038
1039         /*
1040          * We pass it to the next owner. (The WAITERS bit is always
1041          * kept enabled while there is PI state around. We must also
1042          * preserve the owner died bit.)
1043          */
1044         if (!(uval & FUTEX_OWNER_DIED)) {
1045                 int ret = 0;
1046
1047                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1048
1049                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1050                         ret = -EFAULT;
1051                 else if (curval != uval)
1052                         ret = -EINVAL;
1053                 if (ret) {
1054                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1055                         return ret;
1056                 }
1057         }
1058
1059         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1060         WARN_ON(list_empty(&pi_state->list));
1061         list_del_init(&pi_state->list);
1062         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1063
1064         raw_spin_lock_irq(&new_owner->pi_lock);
1065         WARN_ON(!list_empty(&pi_state->list));
1066         list_add(&pi_state->list, &new_owner->pi_state_list);
1067         pi_state->owner = new_owner;
1068         raw_spin_unlock_irq(&new_owner->pi_lock);
1069
1070         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1071         rt_mutex_unlock(&pi_state->pi_mutex);
1072
1073         return 0;
1074 }
1075
1076 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1077 {
1078         u32 uninitialized_var(oldval);
1079
1080         /*
1081          * There is no waiter, so we unlock the futex. The owner died
1082          * bit has not to be preserved here. We are the owner:
1083          */
1084         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1085                 return -EFAULT;
1086         if (oldval != uval)
1087                 return -EAGAIN;
1088
1089         return 0;
1090 }
1091
1092 /*
1093  * Express the locking dependencies for lockdep:
1094  */
1095 static inline void
1096 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1097 {
1098         if (hb1 <= hb2) {
1099                 spin_lock(&hb1->lock);
1100                 if (hb1 < hb2)
1101                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1102         } else { /* hb1 > hb2 */
1103                 spin_lock(&hb2->lock);
1104                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1105         }
1106 }
1107
1108 static inline void
1109 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1110 {
1111         spin_unlock(&hb1->lock);
1112         if (hb1 != hb2)
1113                 spin_unlock(&hb2->lock);
1114 }
1115
1116 /*
1117  * Wake up waiters matching bitset queued on this futex (uaddr).
1118  */
1119 static int
1120 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1121 {
1122         struct futex_hash_bucket *hb;
1123         struct futex_q *this, *next;
1124         union futex_key key = FUTEX_KEY_INIT;
1125         int ret;
1126
1127         if (!bitset)
1128                 return -EINVAL;
1129
1130         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1131         if (unlikely(ret != 0))
1132                 goto out;
1133
1134         hb = hash_futex(&key);
1135
1136         /* Make sure we really have tasks to wakeup */
1137         if (!hb_waiters_pending(hb))
1138                 goto out_put_key;
1139
1140         spin_lock(&hb->lock);
1141
1142         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1143                 if (match_futex (&this->key, &key)) {
1144                         if (this->pi_state || this->rt_waiter) {
1145                                 ret = -EINVAL;
1146                                 break;
1147                         }
1148
1149                         /* Check if one of the bits is set in both bitsets */
1150                         if (!(this->bitset & bitset))
1151                                 continue;
1152
1153                         wake_futex(this);
1154                         if (++ret >= nr_wake)
1155                                 break;
1156                 }
1157         }
1158
1159         spin_unlock(&hb->lock);
1160 out_put_key:
1161         put_futex_key(&key);
1162 out:
1163         return ret;
1164 }
1165
1166 /*
1167  * Wake up all waiters hashed on the physical page that is mapped
1168  * to this virtual address:
1169  */
1170 static int
1171 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1172               int nr_wake, int nr_wake2, int op)
1173 {
1174         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1175         struct futex_hash_bucket *hb1, *hb2;
1176         struct futex_q *this, *next;
1177         int ret, op_ret;
1178
1179 retry:
1180         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1181         if (unlikely(ret != 0))
1182                 goto out;
1183         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1184         if (unlikely(ret != 0))
1185                 goto out_put_key1;
1186
1187         hb1 = hash_futex(&key1);
1188         hb2 = hash_futex(&key2);
1189
1190 retry_private:
1191         double_lock_hb(hb1, hb2);
1192         op_ret = futex_atomic_op_inuser(op, uaddr2);
1193         if (unlikely(op_ret < 0)) {
1194
1195                 double_unlock_hb(hb1, hb2);
1196
1197 #ifndef CONFIG_MMU
1198                 /*
1199                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1200                  * but we might get them from range checking
1201                  */
1202                 ret = op_ret;
1203                 goto out_put_keys;
1204 #endif
1205
1206                 if (unlikely(op_ret != -EFAULT)) {
1207                         ret = op_ret;
1208                         goto out_put_keys;
1209                 }
1210
1211                 ret = fault_in_user_writeable(uaddr2);
1212                 if (ret)
1213                         goto out_put_keys;
1214
1215                 if (!(flags & FLAGS_SHARED))
1216                         goto retry_private;
1217
1218                 put_futex_key(&key2);
1219                 put_futex_key(&key1);
1220                 goto retry;
1221         }
1222
1223         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1224                 if (match_futex (&this->key, &key1)) {
1225                         if (this->pi_state || this->rt_waiter) {
1226                                 ret = -EINVAL;
1227                                 goto out_unlock;
1228                         }
1229                         wake_futex(this);
1230                         if (++ret >= nr_wake)
1231                                 break;
1232                 }
1233         }
1234
1235         if (op_ret > 0) {
1236                 op_ret = 0;
1237                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1238                         if (match_futex (&this->key, &key2)) {
1239                                 if (this->pi_state || this->rt_waiter) {
1240                                         ret = -EINVAL;
1241                                         goto out_unlock;
1242                                 }
1243                                 wake_futex(this);
1244                                 if (++op_ret >= nr_wake2)
1245                                         break;
1246                         }
1247                 }
1248                 ret += op_ret;
1249         }
1250
1251 out_unlock:
1252         double_unlock_hb(hb1, hb2);
1253 out_put_keys:
1254         put_futex_key(&key2);
1255 out_put_key1:
1256         put_futex_key(&key1);
1257 out:
1258         return ret;
1259 }
1260
1261 /**
1262  * requeue_futex() - Requeue a futex_q from one hb to another
1263  * @q:          the futex_q to requeue
1264  * @hb1:        the source hash_bucket
1265  * @hb2:        the target hash_bucket
1266  * @key2:       the new key for the requeued futex_q
1267  */
1268 static inline
1269 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1270                    struct futex_hash_bucket *hb2, union futex_key *key2)
1271 {
1272
1273         /*
1274          * If key1 and key2 hash to the same bucket, no need to
1275          * requeue.
1276          */
1277         if (likely(&hb1->chain != &hb2->chain)) {
1278                 plist_del(&q->list, &hb1->chain);
1279                 hb_waiters_dec(hb1);
1280                 plist_add(&q->list, &hb2->chain);
1281                 hb_waiters_inc(hb2);
1282                 q->lock_ptr = &hb2->lock;
1283         }
1284         get_futex_key_refs(key2);
1285         q->key = *key2;
1286 }
1287
1288 /**
1289  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1290  * @q:          the futex_q
1291  * @key:        the key of the requeue target futex
1292  * @hb:         the hash_bucket of the requeue target futex
1293  *
1294  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1295  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1296  * to the requeue target futex so the waiter can detect the wakeup on the right
1297  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1298  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1299  * to protect access to the pi_state to fixup the owner later.  Must be called
1300  * with both q->lock_ptr and hb->lock held.
1301  */
1302 static inline
1303 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1304                            struct futex_hash_bucket *hb)
1305 {
1306         get_futex_key_refs(key);
1307         q->key = *key;
1308
1309         __unqueue_futex(q);
1310
1311         WARN_ON(!q->rt_waiter);
1312         q->rt_waiter = NULL;
1313
1314         q->lock_ptr = &hb->lock;
1315
1316         wake_up_state(q->task, TASK_NORMAL);
1317 }
1318
1319 /**
1320  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1321  * @pifutex:            the user address of the to futex
1322  * @hb1:                the from futex hash bucket, must be locked by the caller
1323  * @hb2:                the to futex hash bucket, must be locked by the caller
1324  * @key1:               the from futex key
1325  * @key2:               the to futex key
1326  * @ps:                 address to store the pi_state pointer
1327  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1328  *
1329  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1330  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1331  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1332  * hb1 and hb2 must be held by the caller.
1333  *
1334  * Return:
1335  *  0 - failed to acquire the lock atomically;
1336  *  1 - acquired the lock;
1337  * <0 - error
1338  */
1339 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1340                                  struct futex_hash_bucket *hb1,
1341                                  struct futex_hash_bucket *hb2,
1342                                  union futex_key *key1, union futex_key *key2,
1343                                  struct futex_pi_state **ps, int set_waiters)
1344 {
1345         struct futex_q *top_waiter = NULL;
1346         u32 curval;
1347         int ret;
1348
1349         if (get_futex_value_locked(&curval, pifutex))
1350                 return -EFAULT;
1351
1352         /*
1353          * Find the top_waiter and determine if there are additional waiters.
1354          * If the caller intends to requeue more than 1 waiter to pifutex,
1355          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1356          * as we have means to handle the possible fault.  If not, don't set
1357          * the bit unecessarily as it will force the subsequent unlock to enter
1358          * the kernel.
1359          */
1360         top_waiter = futex_top_waiter(hb1, key1);
1361
1362         /* There are no waiters, nothing for us to do. */
1363         if (!top_waiter)
1364                 return 0;
1365
1366         /* Ensure we requeue to the expected futex. */
1367         if (!match_futex(top_waiter->requeue_pi_key, key2))
1368                 return -EINVAL;
1369
1370         /*
1371          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1372          * the contended case or if set_waiters is 1.  The pi_state is returned
1373          * in ps in contended cases.
1374          */
1375         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1376                                    set_waiters);
1377         if (ret == 1)
1378                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1379
1380         return ret;
1381 }
1382
1383 /**
1384  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1385  * @uaddr1:     source futex user address
1386  * @flags:      futex flags (FLAGS_SHARED, etc.)
1387  * @uaddr2:     target futex user address
1388  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1389  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1390  * @cmpval:     @uaddr1 expected value (or %NULL)
1391  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1392  *              pi futex (pi to pi requeue is not supported)
1393  *
1394  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1395  * uaddr2 atomically on behalf of the top waiter.
1396  *
1397  * Return:
1398  * >=0 - on success, the number of tasks requeued or woken;
1399  *  <0 - on error
1400  */
1401 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1402                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1403                          u32 *cmpval, int requeue_pi)
1404 {
1405         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1406         int drop_count = 0, task_count = 0, ret;
1407         struct futex_pi_state *pi_state = NULL;
1408         struct futex_hash_bucket *hb1, *hb2;
1409         struct futex_q *this, *next;
1410         u32 curval2;
1411
1412         if (requeue_pi) {
1413                 /*
1414                  * requeue_pi requires a pi_state, try to allocate it now
1415                  * without any locks in case it fails.
1416                  */
1417                 if (refill_pi_state_cache())
1418                         return -ENOMEM;
1419                 /*
1420                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1421                  * + nr_requeue, since it acquires the rt_mutex prior to
1422                  * returning to userspace, so as to not leave the rt_mutex with
1423                  * waiters and no owner.  However, second and third wake-ups
1424                  * cannot be predicted as they involve race conditions with the
1425                  * first wake and a fault while looking up the pi_state.  Both
1426                  * pthread_cond_signal() and pthread_cond_broadcast() should
1427                  * use nr_wake=1.
1428                  */
1429                 if (nr_wake != 1)
1430                         return -EINVAL;
1431         }
1432
1433 retry:
1434         if (pi_state != NULL) {
1435                 /*
1436                  * We will have to lookup the pi_state again, so free this one
1437                  * to keep the accounting correct.
1438                  */
1439                 free_pi_state(pi_state);
1440                 pi_state = NULL;
1441         }
1442
1443         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1444         if (unlikely(ret != 0))
1445                 goto out;
1446         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1447                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1448         if (unlikely(ret != 0))
1449                 goto out_put_key1;
1450
1451         hb1 = hash_futex(&key1);
1452         hb2 = hash_futex(&key2);
1453
1454 retry_private:
1455         hb_waiters_inc(hb2);
1456         double_lock_hb(hb1, hb2);
1457
1458         if (likely(cmpval != NULL)) {
1459                 u32 curval;
1460
1461                 ret = get_futex_value_locked(&curval, uaddr1);
1462
1463                 if (unlikely(ret)) {
1464                         double_unlock_hb(hb1, hb2);
1465                         hb_waiters_dec(hb2);
1466
1467                         ret = get_user(curval, uaddr1);
1468                         if (ret)
1469                                 goto out_put_keys;
1470
1471                         if (!(flags & FLAGS_SHARED))
1472                                 goto retry_private;
1473
1474                         put_futex_key(&key2);
1475                         put_futex_key(&key1);
1476                         goto retry;
1477                 }
1478                 if (curval != *cmpval) {
1479                         ret = -EAGAIN;
1480                         goto out_unlock;
1481                 }
1482         }
1483
1484         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1485                 /*
1486                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1487                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1488                  * bit.  We force this here where we are able to easily handle
1489                  * faults rather in the requeue loop below.
1490                  */
1491                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1492                                                  &key2, &pi_state, nr_requeue);
1493
1494                 /*
1495                  * At this point the top_waiter has either taken uaddr2 or is
1496                  * waiting on it.  If the former, then the pi_state will not
1497                  * exist yet, look it up one more time to ensure we have a
1498                  * reference to it.
1499                  */
1500                 if (ret == 1) {
1501                         WARN_ON(pi_state);
1502                         drop_count++;
1503                         task_count++;
1504                         ret = get_futex_value_locked(&curval2, uaddr2);
1505                         if (!ret)
1506                                 ret = lookup_pi_state(curval2, hb2, &key2,
1507                                                       &pi_state);
1508                 }
1509
1510                 switch (ret) {
1511                 case 0:
1512                         break;
1513                 case -EFAULT:
1514                         double_unlock_hb(hb1, hb2);
1515                         hb_waiters_dec(hb2);
1516                         put_futex_key(&key2);
1517                         put_futex_key(&key1);
1518                         ret = fault_in_user_writeable(uaddr2);
1519                         if (!ret)
1520                                 goto retry;
1521                         goto out;
1522                 case -EAGAIN:
1523                         /* The owner was exiting, try again. */
1524                         double_unlock_hb(hb1, hb2);
1525                         hb_waiters_dec(hb2);
1526                         put_futex_key(&key2);
1527                         put_futex_key(&key1);
1528                         cond_resched();
1529                         goto retry;
1530                 default:
1531                         goto out_unlock;
1532                 }
1533         }
1534
1535         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1536                 if (task_count - nr_wake >= nr_requeue)
1537                         break;
1538
1539                 if (!match_futex(&this->key, &key1))
1540                         continue;
1541
1542                 /*
1543                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1544                  * be paired with each other and no other futex ops.
1545                  *
1546                  * We should never be requeueing a futex_q with a pi_state,
1547                  * which is awaiting a futex_unlock_pi().
1548                  */
1549                 if ((requeue_pi && !this->rt_waiter) ||
1550                     (!requeue_pi && this->rt_waiter) ||
1551                     this->pi_state) {
1552                         ret = -EINVAL;
1553                         break;
1554                 }
1555
1556                 /*
1557                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1558                  * lock, we already woke the top_waiter.  If not, it will be
1559                  * woken by futex_unlock_pi().
1560                  */
1561                 if (++task_count <= nr_wake && !requeue_pi) {
1562                         wake_futex(this);
1563                         continue;
1564                 }
1565
1566                 /* Ensure we requeue to the expected futex for requeue_pi. */
1567                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1568                         ret = -EINVAL;
1569                         break;
1570                 }
1571
1572                 /*
1573                  * Requeue nr_requeue waiters and possibly one more in the case
1574                  * of requeue_pi if we couldn't acquire the lock atomically.
1575                  */
1576                 if (requeue_pi) {
1577                         /* Prepare the waiter to take the rt_mutex. */
1578                         atomic_inc(&pi_state->refcount);
1579                         this->pi_state = pi_state;
1580                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1581                                                         this->rt_waiter,
1582                                                         this->task, 1);
1583                         if (ret == 1) {
1584                                 /* We got the lock. */
1585                                 requeue_pi_wake_futex(this, &key2, hb2);
1586                                 drop_count++;
1587                                 continue;
1588                         } else if (ret) {
1589                                 /* -EDEADLK */
1590                                 this->pi_state = NULL;
1591                                 free_pi_state(pi_state);
1592                                 goto out_unlock;
1593                         }
1594                 }
1595                 requeue_futex(this, hb1, hb2, &key2);
1596                 drop_count++;
1597         }
1598
1599 out_unlock:
1600         double_unlock_hb(hb1, hb2);
1601         hb_waiters_dec(hb2);
1602
1603         /*
1604          * drop_futex_key_refs() must be called outside the spinlocks. During
1605          * the requeue we moved futex_q's from the hash bucket at key1 to the
1606          * one at key2 and updated their key pointer.  We no longer need to
1607          * hold the references to key1.
1608          */
1609         while (--drop_count >= 0)
1610                 drop_futex_key_refs(&key1);
1611
1612 out_put_keys:
1613         put_futex_key(&key2);
1614 out_put_key1:
1615         put_futex_key(&key1);
1616 out:
1617         if (pi_state != NULL)
1618                 free_pi_state(pi_state);
1619         return ret ? ret : task_count;
1620 }
1621
1622 /* The key must be already stored in q->key. */
1623 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1624         __acquires(&hb->lock)
1625 {
1626         struct futex_hash_bucket *hb;
1627
1628         hb = hash_futex(&q->key);
1629
1630         /*
1631          * Increment the counter before taking the lock so that
1632          * a potential waker won't miss a to-be-slept task that is
1633          * waiting for the spinlock. This is safe as all queue_lock()
1634          * users end up calling queue_me(). Similarly, for housekeeping,
1635          * decrement the counter at queue_unlock() when some error has
1636          * occurred and we don't end up adding the task to the list.
1637          */
1638         hb_waiters_inc(hb);
1639
1640         q->lock_ptr = &hb->lock;
1641
1642         spin_lock(&hb->lock); /* implies MB (A) */
1643         return hb;
1644 }
1645
1646 static inline void
1647 queue_unlock(struct futex_hash_bucket *hb)
1648         __releases(&hb->lock)
1649 {
1650         spin_unlock(&hb->lock);
1651         hb_waiters_dec(hb);
1652 }
1653
1654 /**
1655  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1656  * @q:  The futex_q to enqueue
1657  * @hb: The destination hash bucket
1658  *
1659  * The hb->lock must be held by the caller, and is released here. A call to
1660  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1661  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1662  * or nothing if the unqueue is done as part of the wake process and the unqueue
1663  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1664  * an example).
1665  */
1666 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1667         __releases(&hb->lock)
1668 {
1669         int prio;
1670
1671         /*
1672          * The priority used to register this element is
1673          * - either the real thread-priority for the real-time threads
1674          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1675          * - or MAX_RT_PRIO for non-RT threads.
1676          * Thus, all RT-threads are woken first in priority order, and
1677          * the others are woken last, in FIFO order.
1678          */
1679         prio = min(current->normal_prio, MAX_RT_PRIO);
1680
1681         plist_node_init(&q->list, prio);
1682         plist_add(&q->list, &hb->chain);
1683         q->task = current;
1684         spin_unlock(&hb->lock);
1685 }
1686
1687 /**
1688  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1689  * @q:  The futex_q to unqueue
1690  *
1691  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1692  * be paired with exactly one earlier call to queue_me().
1693  *
1694  * Return:
1695  *   1 - if the futex_q was still queued (and we removed unqueued it);
1696  *   0 - if the futex_q was already removed by the waking thread
1697  */
1698 static int unqueue_me(struct futex_q *q)
1699 {
1700         spinlock_t *lock_ptr;
1701         int ret = 0;
1702
1703         /* In the common case we don't take the spinlock, which is nice. */
1704 retry:
1705         lock_ptr = q->lock_ptr;
1706         barrier();
1707         if (lock_ptr != NULL) {
1708                 spin_lock(lock_ptr);
1709                 /*
1710                  * q->lock_ptr can change between reading it and
1711                  * spin_lock(), causing us to take the wrong lock.  This
1712                  * corrects the race condition.
1713                  *
1714                  * Reasoning goes like this: if we have the wrong lock,
1715                  * q->lock_ptr must have changed (maybe several times)
1716                  * between reading it and the spin_lock().  It can
1717                  * change again after the spin_lock() but only if it was
1718                  * already changed before the spin_lock().  It cannot,
1719                  * however, change back to the original value.  Therefore
1720                  * we can detect whether we acquired the correct lock.
1721                  */
1722                 if (unlikely(lock_ptr != q->lock_ptr)) {
1723                         spin_unlock(lock_ptr);
1724                         goto retry;
1725                 }
1726                 __unqueue_futex(q);
1727
1728                 BUG_ON(q->pi_state);
1729
1730                 spin_unlock(lock_ptr);
1731                 ret = 1;
1732         }
1733
1734         drop_futex_key_refs(&q->key);
1735         return ret;
1736 }
1737
1738 /*
1739  * PI futexes can not be requeued and must remove themself from the
1740  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1741  * and dropped here.
1742  */
1743 static void unqueue_me_pi(struct futex_q *q)
1744         __releases(q->lock_ptr)
1745 {
1746         __unqueue_futex(q);
1747
1748         BUG_ON(!q->pi_state);
1749         free_pi_state(q->pi_state);
1750         q->pi_state = NULL;
1751
1752         spin_unlock(q->lock_ptr);
1753 }
1754
1755 /*
1756  * Fixup the pi_state owner with the new owner.
1757  *
1758  * Must be called with hash bucket lock held and mm->sem held for non
1759  * private futexes.
1760  */
1761 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1762                                 struct task_struct *newowner)
1763 {
1764         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1765         struct futex_pi_state *pi_state = q->pi_state;
1766         struct task_struct *oldowner = pi_state->owner;
1767         u32 uval, uninitialized_var(curval), newval;
1768         int ret;
1769
1770         /* Owner died? */
1771         if (!pi_state->owner)
1772                 newtid |= FUTEX_OWNER_DIED;
1773
1774         /*
1775          * We are here either because we stole the rtmutex from the
1776          * previous highest priority waiter or we are the highest priority
1777          * waiter but failed to get the rtmutex the first time.
1778          * We have to replace the newowner TID in the user space variable.
1779          * This must be atomic as we have to preserve the owner died bit here.
1780          *
1781          * Note: We write the user space value _before_ changing the pi_state
1782          * because we can fault here. Imagine swapped out pages or a fork
1783          * that marked all the anonymous memory readonly for cow.
1784          *
1785          * Modifying pi_state _before_ the user space value would
1786          * leave the pi_state in an inconsistent state when we fault
1787          * here, because we need to drop the hash bucket lock to
1788          * handle the fault. This might be observed in the PID check
1789          * in lookup_pi_state.
1790          */
1791 retry:
1792         if (get_futex_value_locked(&uval, uaddr))
1793                 goto handle_fault;
1794
1795         while (1) {
1796                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1797
1798                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1799                         goto handle_fault;
1800                 if (curval == uval)
1801                         break;
1802                 uval = curval;
1803         }
1804
1805         /*
1806          * We fixed up user space. Now we need to fix the pi_state
1807          * itself.
1808          */
1809         if (pi_state->owner != NULL) {
1810                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1811                 WARN_ON(list_empty(&pi_state->list));
1812                 list_del_init(&pi_state->list);
1813                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1814         }
1815
1816         pi_state->owner = newowner;
1817
1818         raw_spin_lock_irq(&newowner->pi_lock);
1819         WARN_ON(!list_empty(&pi_state->list));
1820         list_add(&pi_state->list, &newowner->pi_state_list);
1821         raw_spin_unlock_irq(&newowner->pi_lock);
1822         return 0;
1823
1824         /*
1825          * To handle the page fault we need to drop the hash bucket
1826          * lock here. That gives the other task (either the highest priority
1827          * waiter itself or the task which stole the rtmutex) the
1828          * chance to try the fixup of the pi_state. So once we are
1829          * back from handling the fault we need to check the pi_state
1830          * after reacquiring the hash bucket lock and before trying to
1831          * do another fixup. When the fixup has been done already we
1832          * simply return.
1833          */
1834 handle_fault:
1835         spin_unlock(q->lock_ptr);
1836
1837         ret = fault_in_user_writeable(uaddr);
1838
1839         spin_lock(q->lock_ptr);
1840
1841         /*
1842          * Check if someone else fixed it for us:
1843          */
1844         if (pi_state->owner != oldowner)
1845                 return 0;
1846
1847         if (ret)
1848                 return ret;
1849
1850         goto retry;
1851 }
1852
1853 static long futex_wait_restart(struct restart_block *restart);
1854
1855 /**
1856  * fixup_owner() - Post lock pi_state and corner case management
1857  * @uaddr:      user address of the futex
1858  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1859  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1860  *
1861  * After attempting to lock an rt_mutex, this function is called to cleanup
1862  * the pi_state owner as well as handle race conditions that may allow us to
1863  * acquire the lock. Must be called with the hb lock held.
1864  *
1865  * Return:
1866  *  1 - success, lock taken;
1867  *  0 - success, lock not taken;
1868  * <0 - on error (-EFAULT)
1869  */
1870 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1871 {
1872         struct task_struct *owner;
1873         int ret = 0;
1874
1875         if (locked) {
1876                 /*
1877                  * Got the lock. We might not be the anticipated owner if we
1878                  * did a lock-steal - fix up the PI-state in that case:
1879                  */
1880                 if (q->pi_state->owner != current)
1881                         ret = fixup_pi_state_owner(uaddr, q, current);
1882                 goto out;
1883         }
1884
1885         /*
1886          * Catch the rare case, where the lock was released when we were on the
1887          * way back before we locked the hash bucket.
1888          */
1889         if (q->pi_state->owner == current) {
1890                 /*
1891                  * Try to get the rt_mutex now. This might fail as some other
1892                  * task acquired the rt_mutex after we removed ourself from the
1893                  * rt_mutex waiters list.
1894                  */
1895                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1896                         locked = 1;
1897                         goto out;
1898                 }
1899
1900                 /*
1901                  * pi_state is incorrect, some other task did a lock steal and
1902                  * we returned due to timeout or signal without taking the
1903                  * rt_mutex. Too late.
1904                  */
1905                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1906                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1907                 if (!owner)
1908                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1909                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1910                 ret = fixup_pi_state_owner(uaddr, q, owner);
1911                 goto out;
1912         }
1913
1914         /*
1915          * Paranoia check. If we did not take the lock, then we should not be
1916          * the owner of the rt_mutex.
1917          */
1918         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1919                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1920                                 "pi-state %p\n", ret,
1921                                 q->pi_state->pi_mutex.owner,
1922                                 q->pi_state->owner);
1923
1924 out:
1925         return ret ? ret : locked;
1926 }
1927
1928 /**
1929  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1930  * @hb:         the futex hash bucket, must be locked by the caller
1931  * @q:          the futex_q to queue up on
1932  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1933  */
1934 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1935                                 struct hrtimer_sleeper *timeout)
1936 {
1937         /*
1938          * The task state is guaranteed to be set before another task can
1939          * wake it. set_current_state() is implemented using set_mb() and
1940          * queue_me() calls spin_unlock() upon completion, both serializing
1941          * access to the hash list and forcing another memory barrier.
1942          */
1943         set_current_state(TASK_INTERRUPTIBLE);
1944         queue_me(q, hb);
1945
1946         /* Arm the timer */
1947         if (timeout) {
1948                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1949                 if (!hrtimer_active(&timeout->timer))
1950                         timeout->task = NULL;
1951         }
1952
1953         /*
1954          * If we have been removed from the hash list, then another task
1955          * has tried to wake us, and we can skip the call to schedule().
1956          */
1957         if (likely(!plist_node_empty(&q->list))) {
1958                 /*
1959                  * If the timer has already expired, current will already be
1960                  * flagged for rescheduling. Only call schedule if there
1961                  * is no timeout, or if it has yet to expire.
1962                  */
1963                 if (!timeout || timeout->task)
1964                         freezable_schedule();
1965         }
1966         __set_current_state(TASK_RUNNING);
1967 }
1968
1969 /**
1970  * futex_wait_setup() - Prepare to wait on a futex
1971  * @uaddr:      the futex userspace address
1972  * @val:        the expected value
1973  * @flags:      futex flags (FLAGS_SHARED, etc.)
1974  * @q:          the associated futex_q
1975  * @hb:         storage for hash_bucket pointer to be returned to caller
1976  *
1977  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1978  * compare it with the expected value.  Handle atomic faults internally.
1979  * Return with the hb lock held and a q.key reference on success, and unlocked
1980  * with no q.key reference on failure.
1981  *
1982  * Return:
1983  *  0 - uaddr contains val and hb has been locked;
1984  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1985  */
1986 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1987                            struct futex_q *q, struct futex_hash_bucket **hb)
1988 {
1989         u32 uval;
1990         int ret;
1991
1992         /*
1993          * Access the page AFTER the hash-bucket is locked.
1994          * Order is important:
1995          *
1996          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1997          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
1998          *
1999          * The basic logical guarantee of a futex is that it blocks ONLY
2000          * if cond(var) is known to be true at the time of blocking, for
2001          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2002          * would open a race condition where we could block indefinitely with
2003          * cond(var) false, which would violate the guarantee.
2004          *
2005          * On the other hand, we insert q and release the hash-bucket only
2006          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2007          * absorb a wakeup if *uaddr does not match the desired values
2008          * while the syscall executes.
2009          */
2010 retry:
2011         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2012         if (unlikely(ret != 0))
2013                 return ret;
2014
2015 retry_private:
2016         *hb = queue_lock(q);
2017
2018         ret = get_futex_value_locked(&uval, uaddr);
2019
2020         if (ret) {
2021                 queue_unlock(*hb);
2022
2023                 ret = get_user(uval, uaddr);
2024                 if (ret)
2025                         goto out;
2026
2027                 if (!(flags & FLAGS_SHARED))
2028                         goto retry_private;
2029
2030                 put_futex_key(&q->key);
2031                 goto retry;
2032         }
2033
2034         if (uval != val) {
2035                 queue_unlock(*hb);
2036                 ret = -EWOULDBLOCK;
2037         }
2038
2039 out:
2040         if (ret)
2041                 put_futex_key(&q->key);
2042         return ret;
2043 }
2044
2045 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2046                       ktime_t *abs_time, u32 bitset)
2047 {
2048         struct hrtimer_sleeper timeout, *to = NULL;
2049         struct restart_block *restart;
2050         struct futex_hash_bucket *hb;
2051         struct futex_q q = futex_q_init;
2052         int ret;
2053
2054         if (!bitset)
2055                 return -EINVAL;
2056         q.bitset = bitset;
2057
2058         if (abs_time) {
2059                 to = &timeout;
2060
2061                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2062                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2063                                       HRTIMER_MODE_ABS);
2064                 hrtimer_init_sleeper(to, current);
2065                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2066                                              current->timer_slack_ns);
2067         }
2068
2069 retry:
2070         /*
2071          * Prepare to wait on uaddr. On success, holds hb lock and increments
2072          * q.key refs.
2073          */
2074         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2075         if (ret)
2076                 goto out;
2077
2078         /* queue_me and wait for wakeup, timeout, or a signal. */
2079         futex_wait_queue_me(hb, &q, to);
2080
2081         /* If we were woken (and unqueued), we succeeded, whatever. */
2082         ret = 0;
2083         /* unqueue_me() drops q.key ref */
2084         if (!unqueue_me(&q))
2085                 goto out;
2086         ret = -ETIMEDOUT;
2087         if (to && !to->task)
2088                 goto out;
2089
2090         /*
2091          * We expect signal_pending(current), but we might be the
2092          * victim of a spurious wakeup as well.
2093          */
2094         if (!signal_pending(current))
2095                 goto retry;
2096
2097         ret = -ERESTARTSYS;
2098         if (!abs_time)
2099                 goto out;
2100
2101         restart = &current_thread_info()->restart_block;
2102         restart->fn = futex_wait_restart;
2103         restart->futex.uaddr = uaddr;
2104         restart->futex.val = val;
2105         restart->futex.time = abs_time->tv64;
2106         restart->futex.bitset = bitset;
2107         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2108
2109         ret = -ERESTART_RESTARTBLOCK;
2110
2111 out:
2112         if (to) {
2113                 hrtimer_cancel(&to->timer);
2114                 destroy_hrtimer_on_stack(&to->timer);
2115         }
2116         return ret;
2117 }
2118
2119
2120 static long futex_wait_restart(struct restart_block *restart)
2121 {
2122         u32 __user *uaddr = restart->futex.uaddr;
2123         ktime_t t, *tp = NULL;
2124
2125         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2126                 t.tv64 = restart->futex.time;
2127                 tp = &t;
2128         }
2129         restart->fn = do_no_restart_syscall;
2130
2131         return (long)futex_wait(uaddr, restart->futex.flags,
2132                                 restart->futex.val, tp, restart->futex.bitset);
2133 }
2134
2135
2136 /*
2137  * Userspace tried a 0 -> TID atomic transition of the futex value
2138  * and failed. The kernel side here does the whole locking operation:
2139  * if there are waiters then it will block, it does PI, etc. (Due to
2140  * races the kernel might see a 0 value of the futex too.)
2141  */
2142 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2143                          ktime_t *time, int trylock)
2144 {
2145         struct hrtimer_sleeper timeout, *to = NULL;
2146         struct futex_hash_bucket *hb;
2147         struct futex_q q = futex_q_init;
2148         int res, ret;
2149
2150         if (refill_pi_state_cache())
2151                 return -ENOMEM;
2152
2153         if (time) {
2154                 to = &timeout;
2155                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2156                                       HRTIMER_MODE_ABS);
2157                 hrtimer_init_sleeper(to, current);
2158                 hrtimer_set_expires(&to->timer, *time);
2159         }
2160
2161 retry:
2162         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2163         if (unlikely(ret != 0))
2164                 goto out;
2165
2166 retry_private:
2167         hb = queue_lock(&q);
2168
2169         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2170         if (unlikely(ret)) {
2171                 switch (ret) {
2172                 case 1:
2173                         /* We got the lock. */
2174                         ret = 0;
2175                         goto out_unlock_put_key;
2176                 case -EFAULT:
2177                         goto uaddr_faulted;
2178                 case -EAGAIN:
2179                         /*
2180                          * Task is exiting and we just wait for the
2181                          * exit to complete.
2182                          */
2183                         queue_unlock(hb);
2184                         put_futex_key(&q.key);
2185                         cond_resched();
2186                         goto retry;
2187                 default:
2188                         goto out_unlock_put_key;
2189                 }
2190         }
2191
2192         /*
2193          * Only actually queue now that the atomic ops are done:
2194          */
2195         queue_me(&q, hb);
2196
2197         WARN_ON(!q.pi_state);
2198         /*
2199          * Block on the PI mutex:
2200          */
2201         if (!trylock)
2202                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2203         else {
2204                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2205                 /* Fixup the trylock return value: */
2206                 ret = ret ? 0 : -EWOULDBLOCK;
2207         }
2208
2209         spin_lock(q.lock_ptr);
2210         /*
2211          * Fixup the pi_state owner and possibly acquire the lock if we
2212          * haven't already.
2213          */
2214         res = fixup_owner(uaddr, &q, !ret);
2215         /*
2216          * If fixup_owner() returned an error, proprogate that.  If it acquired
2217          * the lock, clear our -ETIMEDOUT or -EINTR.
2218          */
2219         if (res)
2220                 ret = (res < 0) ? res : 0;
2221
2222         /*
2223          * If fixup_owner() faulted and was unable to handle the fault, unlock
2224          * it and return the fault to userspace.
2225          */
2226         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2227                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2228
2229         /* Unqueue and drop the lock */
2230         unqueue_me_pi(&q);
2231
2232         goto out_put_key;
2233
2234 out_unlock_put_key:
2235         queue_unlock(hb);
2236
2237 out_put_key:
2238         put_futex_key(&q.key);
2239 out:
2240         if (to)
2241                 destroy_hrtimer_on_stack(&to->timer);
2242         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2243
2244 uaddr_faulted:
2245         queue_unlock(hb);
2246
2247         ret = fault_in_user_writeable(uaddr);
2248         if (ret)
2249                 goto out_put_key;
2250
2251         if (!(flags & FLAGS_SHARED))
2252                 goto retry_private;
2253
2254         put_futex_key(&q.key);
2255         goto retry;
2256 }
2257
2258 /*
2259  * Userspace attempted a TID -> 0 atomic transition, and failed.
2260  * This is the in-kernel slowpath: we look up the PI state (if any),
2261  * and do the rt-mutex unlock.
2262  */
2263 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2264 {
2265         struct futex_hash_bucket *hb;
2266         struct futex_q *this, *next;
2267         union futex_key key = FUTEX_KEY_INIT;
2268         u32 uval, vpid = task_pid_vnr(current);
2269         int ret;
2270
2271 retry:
2272         if (get_user(uval, uaddr))
2273                 return -EFAULT;
2274         /*
2275          * We release only a lock we actually own:
2276          */
2277         if ((uval & FUTEX_TID_MASK) != vpid)
2278                 return -EPERM;
2279
2280         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2281         if (unlikely(ret != 0))
2282                 goto out;
2283
2284         hb = hash_futex(&key);
2285         spin_lock(&hb->lock);
2286
2287         /*
2288          * To avoid races, try to do the TID -> 0 atomic transition
2289          * again. If it succeeds then we can return without waking
2290          * anyone else up:
2291          */
2292         if (!(uval & FUTEX_OWNER_DIED) &&
2293             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2294                 goto pi_faulted;
2295         /*
2296          * Rare case: we managed to release the lock atomically,
2297          * no need to wake anyone else up:
2298          */
2299         if (unlikely(uval == vpid))
2300                 goto out_unlock;
2301
2302         /*
2303          * Ok, other tasks may need to be woken up - check waiters
2304          * and do the wakeup if necessary:
2305          */
2306         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2307                 if (!match_futex (&this->key, &key))
2308                         continue;
2309                 ret = wake_futex_pi(uaddr, uval, this);
2310                 /*
2311                  * The atomic access to the futex value
2312                  * generated a pagefault, so retry the
2313                  * user-access and the wakeup:
2314                  */
2315                 if (ret == -EFAULT)
2316                         goto pi_faulted;
2317                 goto out_unlock;
2318         }
2319         /*
2320          * No waiters - kernel unlocks the futex:
2321          */
2322         if (!(uval & FUTEX_OWNER_DIED)) {
2323                 ret = unlock_futex_pi(uaddr, uval);
2324                 if (ret == -EFAULT)
2325                         goto pi_faulted;
2326         }
2327
2328 out_unlock:
2329         spin_unlock(&hb->lock);
2330         put_futex_key(&key);
2331
2332 out:
2333         return ret;
2334
2335 pi_faulted:
2336         spin_unlock(&hb->lock);
2337         put_futex_key(&key);
2338
2339         ret = fault_in_user_writeable(uaddr);
2340         if (!ret)
2341                 goto retry;
2342
2343         return ret;
2344 }
2345
2346 /**
2347  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2348  * @hb:         the hash_bucket futex_q was original enqueued on
2349  * @q:          the futex_q woken while waiting to be requeued
2350  * @key2:       the futex_key of the requeue target futex
2351  * @timeout:    the timeout associated with the wait (NULL if none)
2352  *
2353  * Detect if the task was woken on the initial futex as opposed to the requeue
2354  * target futex.  If so, determine if it was a timeout or a signal that caused
2355  * the wakeup and return the appropriate error code to the caller.  Must be
2356  * called with the hb lock held.
2357  *
2358  * Return:
2359  *  0 = no early wakeup detected;
2360  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2361  */
2362 static inline
2363 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2364                                    struct futex_q *q, union futex_key *key2,
2365                                    struct hrtimer_sleeper *timeout)
2366 {
2367         int ret = 0;
2368
2369         /*
2370          * With the hb lock held, we avoid races while we process the wakeup.
2371          * We only need to hold hb (and not hb2) to ensure atomicity as the
2372          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2373          * It can't be requeued from uaddr2 to something else since we don't
2374          * support a PI aware source futex for requeue.
2375          */
2376         if (!match_futex(&q->key, key2)) {
2377                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2378                 /*
2379                  * We were woken prior to requeue by a timeout or a signal.
2380                  * Unqueue the futex_q and determine which it was.
2381                  */
2382                 plist_del(&q->list, &hb->chain);
2383                 hb_waiters_dec(hb);
2384
2385                 /* Handle spurious wakeups gracefully */
2386                 ret = -EWOULDBLOCK;
2387                 if (timeout && !timeout->task)
2388                         ret = -ETIMEDOUT;
2389                 else if (signal_pending(current))
2390                         ret = -ERESTARTNOINTR;
2391         }
2392         return ret;
2393 }
2394
2395 /**
2396  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2397  * @uaddr:      the futex we initially wait on (non-pi)
2398  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2399  *              the same type, no requeueing from private to shared, etc.
2400  * @val:        the expected value of uaddr
2401  * @abs_time:   absolute timeout
2402  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2403  * @uaddr2:     the pi futex we will take prior to returning to user-space
2404  *
2405  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2406  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2407  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2408  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2409  * without one, the pi logic would not know which task to boost/deboost, if
2410  * there was a need to.
2411  *
2412  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2413  * via the following--
2414  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2415  * 2) wakeup on uaddr2 after a requeue
2416  * 3) signal
2417  * 4) timeout
2418  *
2419  * If 3, cleanup and return -ERESTARTNOINTR.
2420  *
2421  * If 2, we may then block on trying to take the rt_mutex and return via:
2422  * 5) successful lock
2423  * 6) signal
2424  * 7) timeout
2425  * 8) other lock acquisition failure
2426  *
2427  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2428  *
2429  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2430  *
2431  * Return:
2432  *  0 - On success;
2433  * <0 - On error
2434  */
2435 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2436                                  u32 val, ktime_t *abs_time, u32 bitset,
2437                                  u32 __user *uaddr2)
2438 {
2439         struct hrtimer_sleeper timeout, *to = NULL;
2440         struct rt_mutex_waiter rt_waiter;
2441         struct rt_mutex *pi_mutex = NULL;
2442         struct futex_hash_bucket *hb;
2443         union futex_key key2 = FUTEX_KEY_INIT;
2444         struct futex_q q = futex_q_init;
2445         int res, ret;
2446
2447         if (uaddr == uaddr2)
2448                 return -EINVAL;
2449
2450         if (!bitset)
2451                 return -EINVAL;
2452
2453         if (abs_time) {
2454                 to = &timeout;
2455                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2456                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2457                                       HRTIMER_MODE_ABS);
2458                 hrtimer_init_sleeper(to, current);
2459                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2460                                              current->timer_slack_ns);
2461         }
2462
2463         /*
2464          * The waiter is allocated on our stack, manipulated by the requeue
2465          * code while we sleep on uaddr.
2466          */
2467         debug_rt_mutex_init_waiter(&rt_waiter);
2468         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2469         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2470         rt_waiter.task = NULL;
2471
2472         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2473         if (unlikely(ret != 0))
2474                 goto out;
2475
2476         q.bitset = bitset;
2477         q.rt_waiter = &rt_waiter;
2478         q.requeue_pi_key = &key2;
2479
2480         /*
2481          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2482          * count.
2483          */
2484         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2485         if (ret)
2486                 goto out_key2;
2487
2488         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2489         futex_wait_queue_me(hb, &q, to);
2490
2491         spin_lock(&hb->lock);
2492         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2493         spin_unlock(&hb->lock);
2494         if (ret)
2495                 goto out_put_keys;
2496
2497         /*
2498          * In order for us to be here, we know our q.key == key2, and since
2499          * we took the hb->lock above, we also know that futex_requeue() has
2500          * completed and we no longer have to concern ourselves with a wakeup
2501          * race with the atomic proxy lock acquisition by the requeue code. The
2502          * futex_requeue dropped our key1 reference and incremented our key2
2503          * reference count.
2504          */
2505
2506         /* Check if the requeue code acquired the second futex for us. */
2507         if (!q.rt_waiter) {
2508                 /*
2509                  * Got the lock. We might not be the anticipated owner if we
2510                  * did a lock-steal - fix up the PI-state in that case.
2511                  */
2512                 if (q.pi_state && (q.pi_state->owner != current)) {
2513                         spin_lock(q.lock_ptr);
2514                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2515                         spin_unlock(q.lock_ptr);
2516                 }
2517         } else {
2518                 /*
2519                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2520                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2521                  * the pi_state.
2522                  */
2523                 WARN_ON(!q.pi_state);
2524                 pi_mutex = &q.pi_state->pi_mutex;
2525                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2526                 debug_rt_mutex_free_waiter(&rt_waiter);
2527
2528                 spin_lock(q.lock_ptr);
2529                 /*
2530                  * Fixup the pi_state owner and possibly acquire the lock if we
2531                  * haven't already.
2532                  */
2533                 res = fixup_owner(uaddr2, &q, !ret);
2534                 /*
2535                  * If fixup_owner() returned an error, proprogate that.  If it
2536                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2537                  */
2538                 if (res)
2539                         ret = (res < 0) ? res : 0;
2540
2541                 /* Unqueue and drop the lock. */
2542                 unqueue_me_pi(&q);
2543         }
2544
2545         /*
2546          * If fixup_pi_state_owner() faulted and was unable to handle the
2547          * fault, unlock the rt_mutex and return the fault to userspace.
2548          */
2549         if (ret == -EFAULT) {
2550                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2551                         rt_mutex_unlock(pi_mutex);
2552         } else if (ret == -EINTR) {
2553                 /*
2554                  * We've already been requeued, but cannot restart by calling
2555                  * futex_lock_pi() directly. We could restart this syscall, but
2556                  * it would detect that the user space "val" changed and return
2557                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2558                  * -EWOULDBLOCK directly.
2559                  */
2560                 ret = -EWOULDBLOCK;
2561         }
2562
2563 out_put_keys:
2564         put_futex_key(&q.key);
2565 out_key2:
2566         put_futex_key(&key2);
2567
2568 out:
2569         if (to) {
2570                 hrtimer_cancel(&to->timer);
2571                 destroy_hrtimer_on_stack(&to->timer);
2572         }
2573         return ret;
2574 }
2575
2576 /*
2577  * Support for robust futexes: the kernel cleans up held futexes at
2578  * thread exit time.
2579  *
2580  * Implementation: user-space maintains a per-thread list of locks it
2581  * is holding. Upon do_exit(), the kernel carefully walks this list,
2582  * and marks all locks that are owned by this thread with the
2583  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2584  * always manipulated with the lock held, so the list is private and
2585  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2586  * field, to allow the kernel to clean up if the thread dies after
2587  * acquiring the lock, but just before it could have added itself to
2588  * the list. There can only be one such pending lock.
2589  */
2590
2591 /**
2592  * sys_set_robust_list() - Set the robust-futex list head of a task
2593  * @head:       pointer to the list-head
2594  * @len:        length of the list-head, as userspace expects
2595  */
2596 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2597                 size_t, len)
2598 {
2599         if (!futex_cmpxchg_enabled)
2600                 return -ENOSYS;
2601         /*
2602          * The kernel knows only one size for now:
2603          */
2604         if (unlikely(len != sizeof(*head)))
2605                 return -EINVAL;
2606
2607         current->robust_list = head;
2608
2609         return 0;
2610 }
2611
2612 /**
2613  * sys_get_robust_list() - Get the robust-futex list head of a task
2614  * @pid:        pid of the process [zero for current task]
2615  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2616  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2617  */
2618 SYSCALL_DEFINE3(get_robust_list, int, pid,
2619                 struct robust_list_head __user * __user *, head_ptr,
2620                 size_t __user *, len_ptr)
2621 {
2622         struct robust_list_head __user *head;
2623         unsigned long ret;
2624         struct task_struct *p;
2625
2626         if (!futex_cmpxchg_enabled)
2627                 return -ENOSYS;
2628
2629         rcu_read_lock();
2630
2631         ret = -ESRCH;
2632         if (!pid)
2633                 p = current;
2634         else {
2635                 p = find_task_by_vpid(pid);
2636                 if (!p)
2637                         goto err_unlock;
2638         }
2639
2640         ret = -EPERM;
2641         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2642                 goto err_unlock;
2643
2644         head = p->robust_list;
2645         rcu_read_unlock();
2646
2647         if (put_user(sizeof(*head), len_ptr))
2648                 return -EFAULT;
2649         return put_user(head, head_ptr);
2650
2651 err_unlock:
2652         rcu_read_unlock();
2653
2654         return ret;
2655 }
2656
2657 /*
2658  * Process a futex-list entry, check whether it's owned by the
2659  * dying task, and do notification if so:
2660  */
2661 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2662 {
2663         u32 uval, uninitialized_var(nval), mval;
2664
2665 retry:
2666         if (get_user(uval, uaddr))
2667                 return -1;
2668
2669         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2670                 /*
2671                  * Ok, this dying thread is truly holding a futex
2672                  * of interest. Set the OWNER_DIED bit atomically
2673                  * via cmpxchg, and if the value had FUTEX_WAITERS
2674                  * set, wake up a waiter (if any). (We have to do a
2675                  * futex_wake() even if OWNER_DIED is already set -
2676                  * to handle the rare but possible case of recursive
2677                  * thread-death.) The rest of the cleanup is done in
2678                  * userspace.
2679                  */
2680                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2681                 /*
2682                  * We are not holding a lock here, but we want to have
2683                  * the pagefault_disable/enable() protection because
2684                  * we want to handle the fault gracefully. If the
2685                  * access fails we try to fault in the futex with R/W
2686                  * verification via get_user_pages. get_user() above
2687                  * does not guarantee R/W access. If that fails we
2688                  * give up and leave the futex locked.
2689                  */
2690                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2691                         if (fault_in_user_writeable(uaddr))
2692                                 return -1;
2693                         goto retry;
2694                 }
2695                 if (nval != uval)
2696                         goto retry;
2697
2698                 /*
2699                  * Wake robust non-PI futexes here. The wakeup of
2700                  * PI futexes happens in exit_pi_state():
2701                  */
2702                 if (!pi && (uval & FUTEX_WAITERS))
2703                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2704         }
2705         return 0;
2706 }
2707
2708 /*
2709  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2710  */
2711 static inline int fetch_robust_entry(struct robust_list __user **entry,
2712                                      struct robust_list __user * __user *head,
2713                                      unsigned int *pi)
2714 {
2715         unsigned long uentry;
2716
2717         if (get_user(uentry, (unsigned long __user *)head))
2718                 return -EFAULT;
2719
2720         *entry = (void __user *)(uentry & ~1UL);
2721         *pi = uentry & 1;
2722
2723         return 0;
2724 }
2725
2726 /*
2727  * Walk curr->robust_list (very carefully, it's a userspace list!)
2728  * and mark any locks found there dead, and notify any waiters.
2729  *
2730  * We silently return on any sign of list-walking problem.
2731  */
2732 void exit_robust_list(struct task_struct *curr)
2733 {
2734         struct robust_list_head __user *head = curr->robust_list;
2735         struct robust_list __user *entry, *next_entry, *pending;
2736         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2737         unsigned int uninitialized_var(next_pi);
2738         unsigned long futex_offset;
2739         int rc;
2740
2741         if (!futex_cmpxchg_enabled)
2742                 return;
2743
2744         /*
2745          * Fetch the list head (which was registered earlier, via
2746          * sys_set_robust_list()):
2747          */
2748         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2749                 return;
2750         /*
2751          * Fetch the relative futex offset:
2752          */
2753         if (get_user(futex_offset, &head->futex_offset))
2754                 return;
2755         /*
2756          * Fetch any possibly pending lock-add first, and handle it
2757          * if it exists:
2758          */
2759         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2760                 return;
2761
2762         next_entry = NULL;      /* avoid warning with gcc */
2763         while (entry != &head->list) {
2764                 /*
2765                  * Fetch the next entry in the list before calling
2766                  * handle_futex_death:
2767                  */
2768                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2769                 /*
2770                  * A pending lock might already be on the list, so
2771                  * don't process it twice:
2772                  */
2773                 if (entry != pending)
2774                         if (handle_futex_death((void __user *)entry + futex_offset,
2775                                                 curr, pi))
2776                                 return;
2777                 if (rc)
2778                         return;
2779                 entry = next_entry;
2780                 pi = next_pi;
2781                 /*
2782                  * Avoid excessively long or circular lists:
2783                  */
2784                 if (!--limit)
2785                         break;
2786
2787                 cond_resched();
2788         }
2789
2790         if (pending)
2791                 handle_futex_death((void __user *)pending + futex_offset,
2792                                    curr, pip);
2793 }
2794
2795 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2796                 u32 __user *uaddr2, u32 val2, u32 val3)
2797 {
2798         int cmd = op & FUTEX_CMD_MASK;
2799         unsigned int flags = 0;
2800
2801         if (!(op & FUTEX_PRIVATE_FLAG))
2802                 flags |= FLAGS_SHARED;
2803
2804         if (op & FUTEX_CLOCK_REALTIME) {
2805                 flags |= FLAGS_CLOCKRT;
2806                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2807                         return -ENOSYS;
2808         }
2809
2810         switch (cmd) {
2811         case FUTEX_LOCK_PI:
2812         case FUTEX_UNLOCK_PI:
2813         case FUTEX_TRYLOCK_PI:
2814         case FUTEX_WAIT_REQUEUE_PI:
2815         case FUTEX_CMP_REQUEUE_PI:
2816                 if (!futex_cmpxchg_enabled)
2817                         return -ENOSYS;
2818         }
2819
2820         switch (cmd) {
2821         case FUTEX_WAIT:
2822                 val3 = FUTEX_BITSET_MATCH_ANY;
2823         case FUTEX_WAIT_BITSET:
2824                 return futex_wait(uaddr, flags, val, timeout, val3);
2825         case FUTEX_WAKE:
2826                 val3 = FUTEX_BITSET_MATCH_ANY;
2827         case FUTEX_WAKE_BITSET:
2828                 return futex_wake(uaddr, flags, val, val3);
2829         case FUTEX_REQUEUE:
2830                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2831         case FUTEX_CMP_REQUEUE:
2832                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2833         case FUTEX_WAKE_OP:
2834                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2835         case FUTEX_LOCK_PI:
2836                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2837         case FUTEX_UNLOCK_PI:
2838                 return futex_unlock_pi(uaddr, flags);
2839         case FUTEX_TRYLOCK_PI:
2840                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2841         case FUTEX_WAIT_REQUEUE_PI:
2842                 val3 = FUTEX_BITSET_MATCH_ANY;
2843                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2844                                              uaddr2);
2845         case FUTEX_CMP_REQUEUE_PI:
2846                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2847         }
2848         return -ENOSYS;
2849 }
2850
2851
2852 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2853                 struct timespec __user *, utime, u32 __user *, uaddr2,
2854                 u32, val3)
2855 {
2856         struct timespec ts;
2857         ktime_t t, *tp = NULL;
2858         u32 val2 = 0;
2859         int cmd = op & FUTEX_CMD_MASK;
2860
2861         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2862                       cmd == FUTEX_WAIT_BITSET ||
2863                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2864                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2865                         return -EFAULT;
2866                 if (!timespec_valid(&ts))
2867                         return -EINVAL;
2868
2869                 t = timespec_to_ktime(ts);
2870                 if (cmd == FUTEX_WAIT)
2871                         t = ktime_add_safe(ktime_get(), t);
2872                 tp = &t;
2873         }
2874         /*
2875          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2876          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2877          */
2878         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2879             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2880                 val2 = (u32) (unsigned long) utime;
2881
2882         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2883 }
2884
2885 static void __init futex_detect_cmpxchg(void)
2886 {
2887 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2888         u32 curval;
2889
2890         /*
2891          * This will fail and we want it. Some arch implementations do
2892          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2893          * functionality. We want to know that before we call in any
2894          * of the complex code paths. Also we want to prevent
2895          * registration of robust lists in that case. NULL is
2896          * guaranteed to fault and we get -EFAULT on functional
2897          * implementation, the non-functional ones will return
2898          * -ENOSYS.
2899          */
2900         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2901                 futex_cmpxchg_enabled = 1;
2902 #endif
2903 }
2904
2905 static int __init futex_init(void)
2906 {
2907         unsigned int futex_shift;
2908         unsigned long i;
2909
2910 #if CONFIG_BASE_SMALL
2911         futex_hashsize = 16;
2912 #else
2913         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2914 #endif
2915
2916         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2917                                                futex_hashsize, 0,
2918                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2919                                                &futex_shift, NULL,
2920                                                futex_hashsize, futex_hashsize);
2921         futex_hashsize = 1UL << futex_shift;
2922
2923         futex_detect_cmpxchg();
2924
2925         for (i = 0; i < futex_hashsize; i++) {
2926                 atomic_set(&futex_queues[i].waiters, 0);
2927                 plist_head_init(&futex_queues[i].chain);
2928                 spin_lock_init(&futex_queues[i].lock);
2929         }
2930
2931         return 0;
2932 }
2933 __initcall(futex_init);