futex: update documentation for ordering guarantees
[linux.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73  * READ this before attempting to hack on futexes!
74  *
75  * Basic futex operation and ordering guarantees
76  * =============================================
77  *
78  * The waiter reads the futex value in user space and calls
79  * futex_wait(). This function computes the hash bucket and acquires
80  * the hash bucket lock. After that it reads the futex user space value
81  * again and verifies that the data has not changed. If it has not changed
82  * it enqueues itself into the hash bucket, releases the hash bucket lock
83  * and schedules.
84  *
85  * The waker side modifies the user space value of the futex and calls
86  * futex_wake(). This function computes the hash bucket and acquires the
87  * hash bucket lock. Then it looks for waiters on that futex in the hash
88  * bucket and wakes them.
89  *
90  * In futex wake up scenarios where no tasks are blocked on a futex, taking
91  * the hb spinlock can be avoided and simply return. In order for this
92  * optimization to work, ordering guarantees must exist so that the waiter
93  * being added to the list is acknowledged when the list is concurrently being
94  * checked by the waker, avoiding scenarios like the following:
95  *
96  * CPU 0                               CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *   uval = *futex;
101  *                                     *futex = newval;
102  *                                     sys_futex(WAKE, futex);
103  *                                       futex_wake(futex);
104  *                                       if (queue_empty())
105  *                                         return;
106  *   if (uval == val)
107  *      lock(hash_bucket(futex));
108  *      queue();
109  *     unlock(hash_bucket(futex));
110  *     schedule();
111  *
112  * This would cause the waiter on CPU 0 to wait forever because it
113  * missed the transition of the user space value from val to newval
114  * and the waker did not find the waiter in the hash bucket queue.
115  *
116  * The correct serialization ensures that a waiter either observes
117  * the changed user space value before blocking or is woken by a
118  * concurrent waker:
119  *
120  * CPU 0                                 CPU 1
121  * val = *futex;
122  * sys_futex(WAIT, futex, val);
123  *   futex_wait(futex, val);
124  *
125  *   waiters++; (a)
126  *   mb(); (A) <-- paired with -.
127  *                              |
128  *   lock(hash_bucket(futex));  |
129  *                              |
130  *   uval = *futex;             |
131  *                              |        *futex = newval;
132  *                              |        sys_futex(WAKE, futex);
133  *                              |          futex_wake(futex);
134  *                              |
135  *                              `------->  mb(); (B)
136  *   if (uval == val)
137  *     queue();
138  *     unlock(hash_bucket(futex));
139  *     schedule();                         if (waiters)
140  *                                           lock(hash_bucket(futex));
141  *   else                                    wake_waiters(futex);
142  *     waiters--; (b)                        unlock(hash_bucket(futex));
143  *
144  * Where (A) orders the waiters increment and the futex value read through
145  * atomic operations (see hb_waiters_inc) and where (B) orders the write
146  * to futex and the waiters read -- this is done by the barriers in
147  * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148  * futex type.
149  *
150  * This yields the following case (where X:=waiters, Y:=futex):
151  *
152  *      X = Y = 0
153  *
154  *      w[X]=1          w[Y]=1
155  *      MB              MB
156  *      r[Y]=y          r[X]=x
157  *
158  * Which guarantees that x==0 && y==0 is impossible; which translates back into
159  * the guarantee that we cannot both miss the futex variable change and the
160  * enqueue.
161  *
162  * Note that a new waiter is accounted for in (a) even when it is possible that
163  * the wait call can return error, in which case we backtrack from it in (b).
164  * Refer to the comment in queue_lock().
165  *
166  * Similarly, in order to account for waiters being requeued on another
167  * address we always increment the waiters for the destination bucket before
168  * acquiring the lock. It then decrements them again  after releasing it -
169  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170  * will do the additional required waiter count housekeeping. This is done for
171  * double_lock_hb() and double_unlock_hb(), respectively.
172  */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179  * Futex flags used to encode options to functions and preserve them across
180  * restarts.
181  */
182 #define FLAGS_SHARED            0x01
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         atomic_t refcount;
203
204         union futex_key key;
205 };
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264         atomic_inc(&key->private.mm->mm_count);
265         /*
266          * Ensure futex_get_mm() implies a full barrier such that
267          * get_futex_key() implies a full barrier. This is relied upon
268          * as full barrier (B), see the ordering comment above.
269          */
270         smp_mb__after_atomic_inc();
271 }
272
273 /*
274  * Reflects a new waiter being added to the waitqueue.
275  */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279         atomic_inc(&hb->waiters);
280         /*
281          * Full barrier (A), see the ordering comment above.
282          */
283         smp_mb__after_atomic_inc();
284 #endif
285 }
286
287 /*
288  * Reflects a waiter being removed from the waitqueue by wakeup
289  * paths.
290  */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294         atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301         return atomic_read(&hb->waiters);
302 #else
303         return 1;
304 #endif
305 }
306
307 /*
308  * We hash on the keys returned from get_futex_key (see below).
309  */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312         u32 hash = jhash2((u32*)&key->both.word,
313                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314                           key->both.offset);
315         return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319  * Return 1 if two futex_keys are equal, 0 otherwise.
320  */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323         return (key1 && key2
324                 && key1->both.word == key2->both.word
325                 && key1->both.ptr == key2->both.ptr
326                 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330  * Take a reference to the resource addressed by a key.
331  * Can be called while holding spinlocks.
332  *
333  */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336         if (!key->both.ptr)
337                 return;
338
339         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340         case FUT_OFF_INODE:
341                 ihold(key->shared.inode); /* implies MB (B) */
342                 break;
343         case FUT_OFF_MMSHARED:
344                 futex_get_mm(key); /* implies MB (B) */
345                 break;
346         }
347 }
348
349 /*
350  * Drop a reference to the resource addressed by a key.
351  * The hash bucket spinlock must not be held.
352  */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355         if (!key->both.ptr) {
356                 /* If we're here then we tried to put a key we failed to get */
357                 WARN_ON_ONCE(1);
358                 return;
359         }
360
361         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362         case FUT_OFF_INODE:
363                 iput(key->shared.inode);
364                 break;
365         case FUT_OFF_MMSHARED:
366                 mmdrop(key->private.mm);
367                 break;
368         }
369 }
370
371 /**
372  * get_futex_key() - Get parameters which are the keys for a futex
373  * @uaddr:      virtual address of the futex
374  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375  * @key:        address where result is stored.
376  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
377  *              VERIFY_WRITE)
378  *
379  * Return: a negative error code or 0
380  *
381  * The key words are stored in *key on success.
382  *
383  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
385  * We can usually work out the index without swapping in the page.
386  *
387  * lock_page() might sleep, the caller should not hold a spinlock.
388  */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392         unsigned long address = (unsigned long)uaddr;
393         struct mm_struct *mm = current->mm;
394         struct page *page, *page_head;
395         int err, ro = 0;
396
397         /*
398          * The futex address must be "naturally" aligned.
399          */
400         key->both.offset = address % PAGE_SIZE;
401         if (unlikely((address % sizeof(u32)) != 0))
402                 return -EINVAL;
403         address -= key->both.offset;
404
405         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406                 return -EFAULT;
407
408         /*
409          * PROCESS_PRIVATE futexes are fast.
410          * As the mm cannot disappear under us and the 'key' only needs
411          * virtual address, we dont even have to find the underlying vma.
412          * Note : We do have to check 'uaddr' is a valid user address,
413          *        but access_ok() should be faster than find_vma()
414          */
415         if (!fshared) {
416                 key->private.mm = mm;
417                 key->private.address = address;
418                 get_futex_key_refs(key);  /* implies MB (B) */
419                 return 0;
420         }
421
422 again:
423         err = get_user_pages_fast(address, 1, 1, &page);
424         /*
425          * If write access is not required (eg. FUTEX_WAIT), try
426          * and get read-only access.
427          */
428         if (err == -EFAULT && rw == VERIFY_READ) {
429                 err = get_user_pages_fast(address, 1, 0, &page);
430                 ro = 1;
431         }
432         if (err < 0)
433                 return err;
434         else
435                 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438         page_head = page;
439         if (unlikely(PageTail(page))) {
440                 put_page(page);
441                 /* serialize against __split_huge_page_splitting() */
442                 local_irq_disable();
443                 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444                         page_head = compound_head(page);
445                         /*
446                          * page_head is valid pointer but we must pin
447                          * it before taking the PG_lock and/or
448                          * PG_compound_lock. The moment we re-enable
449                          * irqs __split_huge_page_splitting() can
450                          * return and the head page can be freed from
451                          * under us. We can't take the PG_lock and/or
452                          * PG_compound_lock on a page that could be
453                          * freed from under us.
454                          */
455                         if (page != page_head) {
456                                 get_page(page_head);
457                                 put_page(page);
458                         }
459                         local_irq_enable();
460                 } else {
461                         local_irq_enable();
462                         goto again;
463                 }
464         }
465 #else
466         page_head = compound_head(page);
467         if (page != page_head) {
468                 get_page(page_head);
469                 put_page(page);
470         }
471 #endif
472
473         lock_page(page_head);
474
475         /*
476          * If page_head->mapping is NULL, then it cannot be a PageAnon
477          * page; but it might be the ZERO_PAGE or in the gate area or
478          * in a special mapping (all cases which we are happy to fail);
479          * or it may have been a good file page when get_user_pages_fast
480          * found it, but truncated or holepunched or subjected to
481          * invalidate_complete_page2 before we got the page lock (also
482          * cases which we are happy to fail).  And we hold a reference,
483          * so refcount care in invalidate_complete_page's remove_mapping
484          * prevents drop_caches from setting mapping to NULL beneath us.
485          *
486          * The case we do have to guard against is when memory pressure made
487          * shmem_writepage move it from filecache to swapcache beneath us:
488          * an unlikely race, but we do need to retry for page_head->mapping.
489          */
490         if (!page_head->mapping) {
491                 int shmem_swizzled = PageSwapCache(page_head);
492                 unlock_page(page_head);
493                 put_page(page_head);
494                 if (shmem_swizzled)
495                         goto again;
496                 return -EFAULT;
497         }
498
499         /*
500          * Private mappings are handled in a simple way.
501          *
502          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503          * it's a read-only handle, it's expected that futexes attach to
504          * the object not the particular process.
505          */
506         if (PageAnon(page_head)) {
507                 /*
508                  * A RO anonymous page will never change and thus doesn't make
509                  * sense for futex operations.
510                  */
511                 if (ro) {
512                         err = -EFAULT;
513                         goto out;
514                 }
515
516                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517                 key->private.mm = mm;
518                 key->private.address = address;
519         } else {
520                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521                 key->shared.inode = page_head->mapping->host;
522                 key->shared.pgoff = basepage_index(page);
523         }
524
525         get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528         unlock_page(page_head);
529         put_page(page_head);
530         return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535         drop_futex_key_refs(key);
536 }
537
538 /**
539  * fault_in_user_writeable() - Fault in user address and verify RW access
540  * @uaddr:      pointer to faulting user space address
541  *
542  * Slow path to fixup the fault we just took in the atomic write
543  * access to @uaddr.
544  *
545  * We have no generic implementation of a non-destructive write to the
546  * user address. We know that we faulted in the atomic pagefault
547  * disabled section so we can as well avoid the #PF overhead by
548  * calling get_user_pages() right away.
549  */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552         struct mm_struct *mm = current->mm;
553         int ret;
554
555         down_read(&mm->mmap_sem);
556         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557                                FAULT_FLAG_WRITE);
558         up_read(&mm->mmap_sem);
559
560         return ret < 0 ? ret : 0;
561 }
562
563 /**
564  * futex_top_waiter() - Return the highest priority waiter on a futex
565  * @hb:         the hash bucket the futex_q's reside in
566  * @key:        the futex key (to distinguish it from other futex futex_q's)
567  *
568  * Must be called with the hb lock held.
569  */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571                                         union futex_key *key)
572 {
573         struct futex_q *this;
574
575         plist_for_each_entry(this, &hb->chain, list) {
576                 if (match_futex(&this->key, key))
577                         return this;
578         }
579         return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583                                       u32 uval, u32 newval)
584 {
585         int ret;
586
587         pagefault_disable();
588         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589         pagefault_enable();
590
591         return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596         int ret;
597
598         pagefault_disable();
599         ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600         pagefault_enable();
601
602         return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607  * PI code:
608  */
609 static int refill_pi_state_cache(void)
610 {
611         struct futex_pi_state *pi_state;
612
613         if (likely(current->pi_state_cache))
614                 return 0;
615
616         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618         if (!pi_state)
619                 return -ENOMEM;
620
621         INIT_LIST_HEAD(&pi_state->list);
622         /* pi_mutex gets initialized later */
623         pi_state->owner = NULL;
624         atomic_set(&pi_state->refcount, 1);
625         pi_state->key = FUTEX_KEY_INIT;
626
627         current->pi_state_cache = pi_state;
628
629         return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634         struct futex_pi_state *pi_state = current->pi_state_cache;
635
636         WARN_ON(!pi_state);
637         current->pi_state_cache = NULL;
638
639         return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644         if (!atomic_dec_and_test(&pi_state->refcount))
645                 return;
646
647         /*
648          * If pi_state->owner is NULL, the owner is most probably dying
649          * and has cleaned up the pi_state already
650          */
651         if (pi_state->owner) {
652                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653                 list_del_init(&pi_state->list);
654                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657         }
658
659         if (current->pi_state_cache)
660                 kfree(pi_state);
661         else {
662                 /*
663                  * pi_state->list is already empty.
664                  * clear pi_state->owner.
665                  * refcount is at 0 - put it back to 1.
666                  */
667                 pi_state->owner = NULL;
668                 atomic_set(&pi_state->refcount, 1);
669                 current->pi_state_cache = pi_state;
670         }
671 }
672
673 /*
674  * Look up the task based on what TID userspace gave us.
675  * We dont trust it.
676  */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679         struct task_struct *p;
680
681         rcu_read_lock();
682         p = find_task_by_vpid(pid);
683         if (p)
684                 get_task_struct(p);
685
686         rcu_read_unlock();
687
688         return p;
689 }
690
691 /*
692  * This task is holding PI mutexes at exit time => bad.
693  * Kernel cleans up PI-state, but userspace is likely hosed.
694  * (Robust-futex cleanup is separate and might save the day for userspace.)
695  */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698         struct list_head *next, *head = &curr->pi_state_list;
699         struct futex_pi_state *pi_state;
700         struct futex_hash_bucket *hb;
701         union futex_key key = FUTEX_KEY_INIT;
702
703         if (!futex_cmpxchg_enabled)
704                 return;
705         /*
706          * We are a ZOMBIE and nobody can enqueue itself on
707          * pi_state_list anymore, but we have to be careful
708          * versus waiters unqueueing themselves:
709          */
710         raw_spin_lock_irq(&curr->pi_lock);
711         while (!list_empty(head)) {
712
713                 next = head->next;
714                 pi_state = list_entry(next, struct futex_pi_state, list);
715                 key = pi_state->key;
716                 hb = hash_futex(&key);
717                 raw_spin_unlock_irq(&curr->pi_lock);
718
719                 spin_lock(&hb->lock);
720
721                 raw_spin_lock_irq(&curr->pi_lock);
722                 /*
723                  * We dropped the pi-lock, so re-check whether this
724                  * task still owns the PI-state:
725                  */
726                 if (head->next != next) {
727                         spin_unlock(&hb->lock);
728                         continue;
729                 }
730
731                 WARN_ON(pi_state->owner != curr);
732                 WARN_ON(list_empty(&pi_state->list));
733                 list_del_init(&pi_state->list);
734                 pi_state->owner = NULL;
735                 raw_spin_unlock_irq(&curr->pi_lock);
736
737                 rt_mutex_unlock(&pi_state->pi_mutex);
738
739                 spin_unlock(&hb->lock);
740
741                 raw_spin_lock_irq(&curr->pi_lock);
742         }
743         raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 static int
747 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748                 union futex_key *key, struct futex_pi_state **ps)
749 {
750         struct futex_pi_state *pi_state = NULL;
751         struct futex_q *this, *next;
752         struct task_struct *p;
753         pid_t pid = uval & FUTEX_TID_MASK;
754
755         plist_for_each_entry_safe(this, next, &hb->chain, list) {
756                 if (match_futex(&this->key, key)) {
757                         /*
758                          * Another waiter already exists - bump up
759                          * the refcount and return its pi_state:
760                          */
761                         pi_state = this->pi_state;
762                         /*
763                          * Userspace might have messed up non-PI and PI futexes
764                          */
765                         if (unlikely(!pi_state))
766                                 return -EINVAL;
767
768                         WARN_ON(!atomic_read(&pi_state->refcount));
769
770                         /*
771                          * When pi_state->owner is NULL then the owner died
772                          * and another waiter is on the fly. pi_state->owner
773                          * is fixed up by the task which acquires
774                          * pi_state->rt_mutex.
775                          *
776                          * We do not check for pid == 0 which can happen when
777                          * the owner died and robust_list_exit() cleared the
778                          * TID.
779                          */
780                         if (pid && pi_state->owner) {
781                                 /*
782                                  * Bail out if user space manipulated the
783                                  * futex value.
784                                  */
785                                 if (pid != task_pid_vnr(pi_state->owner))
786                                         return -EINVAL;
787                         }
788
789                         atomic_inc(&pi_state->refcount);
790                         *ps = pi_state;
791
792                         return 0;
793                 }
794         }
795
796         /*
797          * We are the first waiter - try to look up the real owner and attach
798          * the new pi_state to it, but bail out when TID = 0
799          */
800         if (!pid)
801                 return -ESRCH;
802         p = futex_find_get_task(pid);
803         if (!p)
804                 return -ESRCH;
805
806         /*
807          * We need to look at the task state flags to figure out,
808          * whether the task is exiting. To protect against the do_exit
809          * change of the task flags, we do this protected by
810          * p->pi_lock:
811          */
812         raw_spin_lock_irq(&p->pi_lock);
813         if (unlikely(p->flags & PF_EXITING)) {
814                 /*
815                  * The task is on the way out. When PF_EXITPIDONE is
816                  * set, we know that the task has finished the
817                  * cleanup:
818                  */
819                 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
820
821                 raw_spin_unlock_irq(&p->pi_lock);
822                 put_task_struct(p);
823                 return ret;
824         }
825
826         pi_state = alloc_pi_state();
827
828         /*
829          * Initialize the pi_mutex in locked state and make 'p'
830          * the owner of it:
831          */
832         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
833
834         /* Store the key for possible exit cleanups: */
835         pi_state->key = *key;
836
837         WARN_ON(!list_empty(&pi_state->list));
838         list_add(&pi_state->list, &p->pi_state_list);
839         pi_state->owner = p;
840         raw_spin_unlock_irq(&p->pi_lock);
841
842         put_task_struct(p);
843
844         *ps = pi_state;
845
846         return 0;
847 }
848
849 /**
850  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
851  * @uaddr:              the pi futex user address
852  * @hb:                 the pi futex hash bucket
853  * @key:                the futex key associated with uaddr and hb
854  * @ps:                 the pi_state pointer where we store the result of the
855  *                      lookup
856  * @task:               the task to perform the atomic lock work for.  This will
857  *                      be "current" except in the case of requeue pi.
858  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
859  *
860  * Return:
861  *  0 - ready to wait;
862  *  1 - acquired the lock;
863  * <0 - error
864  *
865  * The hb->lock and futex_key refs shall be held by the caller.
866  */
867 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
868                                 union futex_key *key,
869                                 struct futex_pi_state **ps,
870                                 struct task_struct *task, int set_waiters)
871 {
872         int lock_taken, ret, force_take = 0;
873         u32 uval, newval, curval, vpid = task_pid_vnr(task);
874
875 retry:
876         ret = lock_taken = 0;
877
878         /*
879          * To avoid races, we attempt to take the lock here again
880          * (by doing a 0 -> TID atomic cmpxchg), while holding all
881          * the locks. It will most likely not succeed.
882          */
883         newval = vpid;
884         if (set_waiters)
885                 newval |= FUTEX_WAITERS;
886
887         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
888                 return -EFAULT;
889
890         /*
891          * Detect deadlocks.
892          */
893         if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
894                 return -EDEADLK;
895
896         /*
897          * Surprise - we got the lock. Just return to userspace:
898          */
899         if (unlikely(!curval))
900                 return 1;
901
902         uval = curval;
903
904         /*
905          * Set the FUTEX_WAITERS flag, so the owner will know it has someone
906          * to wake at the next unlock.
907          */
908         newval = curval | FUTEX_WAITERS;
909
910         /*
911          * Should we force take the futex? See below.
912          */
913         if (unlikely(force_take)) {
914                 /*
915                  * Keep the OWNER_DIED and the WAITERS bit and set the
916                  * new TID value.
917                  */
918                 newval = (curval & ~FUTEX_TID_MASK) | vpid;
919                 force_take = 0;
920                 lock_taken = 1;
921         }
922
923         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
924                 return -EFAULT;
925         if (unlikely(curval != uval))
926                 goto retry;
927
928         /*
929          * We took the lock due to forced take over.
930          */
931         if (unlikely(lock_taken))
932                 return 1;
933
934         /*
935          * We dont have the lock. Look up the PI state (or create it if
936          * we are the first waiter):
937          */
938         ret = lookup_pi_state(uval, hb, key, ps);
939
940         if (unlikely(ret)) {
941                 switch (ret) {
942                 case -ESRCH:
943                         /*
944                          * We failed to find an owner for this
945                          * futex. So we have no pi_state to block
946                          * on. This can happen in two cases:
947                          *
948                          * 1) The owner died
949                          * 2) A stale FUTEX_WAITERS bit
950                          *
951                          * Re-read the futex value.
952                          */
953                         if (get_futex_value_locked(&curval, uaddr))
954                                 return -EFAULT;
955
956                         /*
957                          * If the owner died or we have a stale
958                          * WAITERS bit the owner TID in the user space
959                          * futex is 0.
960                          */
961                         if (!(curval & FUTEX_TID_MASK)) {
962                                 force_take = 1;
963                                 goto retry;
964                         }
965                 default:
966                         break;
967                 }
968         }
969
970         return ret;
971 }
972
973 /**
974  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
975  * @q:  The futex_q to unqueue
976  *
977  * The q->lock_ptr must not be NULL and must be held by the caller.
978  */
979 static void __unqueue_futex(struct futex_q *q)
980 {
981         struct futex_hash_bucket *hb;
982
983         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
984             || WARN_ON(plist_node_empty(&q->list)))
985                 return;
986
987         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
988         plist_del(&q->list, &hb->chain);
989         hb_waiters_dec(hb);
990 }
991
992 /*
993  * The hash bucket lock must be held when this is called.
994  * Afterwards, the futex_q must not be accessed.
995  */
996 static void wake_futex(struct futex_q *q)
997 {
998         struct task_struct *p = q->task;
999
1000         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1001                 return;
1002
1003         /*
1004          * We set q->lock_ptr = NULL _before_ we wake up the task. If
1005          * a non-futex wake up happens on another CPU then the task
1006          * might exit and p would dereference a non-existing task
1007          * struct. Prevent this by holding a reference on p across the
1008          * wake up.
1009          */
1010         get_task_struct(p);
1011
1012         __unqueue_futex(q);
1013         /*
1014          * The waiting task can free the futex_q as soon as
1015          * q->lock_ptr = NULL is written, without taking any locks. A
1016          * memory barrier is required here to prevent the following
1017          * store to lock_ptr from getting ahead of the plist_del.
1018          */
1019         smp_wmb();
1020         q->lock_ptr = NULL;
1021
1022         wake_up_state(p, TASK_NORMAL);
1023         put_task_struct(p);
1024 }
1025
1026 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1027 {
1028         struct task_struct *new_owner;
1029         struct futex_pi_state *pi_state = this->pi_state;
1030         u32 uninitialized_var(curval), newval;
1031
1032         if (!pi_state)
1033                 return -EINVAL;
1034
1035         /*
1036          * If current does not own the pi_state then the futex is
1037          * inconsistent and user space fiddled with the futex value.
1038          */
1039         if (pi_state->owner != current)
1040                 return -EINVAL;
1041
1042         raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1043         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1044
1045         /*
1046          * It is possible that the next waiter (the one that brought
1047          * this owner to the kernel) timed out and is no longer
1048          * waiting on the lock.
1049          */
1050         if (!new_owner)
1051                 new_owner = this->task;
1052
1053         /*
1054          * We pass it to the next owner. (The WAITERS bit is always
1055          * kept enabled while there is PI state around. We must also
1056          * preserve the owner died bit.)
1057          */
1058         if (!(uval & FUTEX_OWNER_DIED)) {
1059                 int ret = 0;
1060
1061                 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1062
1063                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1064                         ret = -EFAULT;
1065                 else if (curval != uval)
1066                         ret = -EINVAL;
1067                 if (ret) {
1068                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1069                         return ret;
1070                 }
1071         }
1072
1073         raw_spin_lock_irq(&pi_state->owner->pi_lock);
1074         WARN_ON(list_empty(&pi_state->list));
1075         list_del_init(&pi_state->list);
1076         raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1077
1078         raw_spin_lock_irq(&new_owner->pi_lock);
1079         WARN_ON(!list_empty(&pi_state->list));
1080         list_add(&pi_state->list, &new_owner->pi_state_list);
1081         pi_state->owner = new_owner;
1082         raw_spin_unlock_irq(&new_owner->pi_lock);
1083
1084         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1085         rt_mutex_unlock(&pi_state->pi_mutex);
1086
1087         return 0;
1088 }
1089
1090 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1091 {
1092         u32 uninitialized_var(oldval);
1093
1094         /*
1095          * There is no waiter, so we unlock the futex. The owner died
1096          * bit has not to be preserved here. We are the owner:
1097          */
1098         if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1099                 return -EFAULT;
1100         if (oldval != uval)
1101                 return -EAGAIN;
1102
1103         return 0;
1104 }
1105
1106 /*
1107  * Express the locking dependencies for lockdep:
1108  */
1109 static inline void
1110 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1111 {
1112         if (hb1 <= hb2) {
1113                 spin_lock(&hb1->lock);
1114                 if (hb1 < hb2)
1115                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1116         } else { /* hb1 > hb2 */
1117                 spin_lock(&hb2->lock);
1118                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1119         }
1120 }
1121
1122 static inline void
1123 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1124 {
1125         spin_unlock(&hb1->lock);
1126         if (hb1 != hb2)
1127                 spin_unlock(&hb2->lock);
1128 }
1129
1130 /*
1131  * Wake up waiters matching bitset queued on this futex (uaddr).
1132  */
1133 static int
1134 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1135 {
1136         struct futex_hash_bucket *hb;
1137         struct futex_q *this, *next;
1138         union futex_key key = FUTEX_KEY_INIT;
1139         int ret;
1140
1141         if (!bitset)
1142                 return -EINVAL;
1143
1144         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1145         if (unlikely(ret != 0))
1146                 goto out;
1147
1148         hb = hash_futex(&key);
1149
1150         /* Make sure we really have tasks to wakeup */
1151         if (!hb_waiters_pending(hb))
1152                 goto out_put_key;
1153
1154         spin_lock(&hb->lock);
1155
1156         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1157                 if (match_futex (&this->key, &key)) {
1158                         if (this->pi_state || this->rt_waiter) {
1159                                 ret = -EINVAL;
1160                                 break;
1161                         }
1162
1163                         /* Check if one of the bits is set in both bitsets */
1164                         if (!(this->bitset & bitset))
1165                                 continue;
1166
1167                         wake_futex(this);
1168                         if (++ret >= nr_wake)
1169                                 break;
1170                 }
1171         }
1172
1173         spin_unlock(&hb->lock);
1174 out_put_key:
1175         put_futex_key(&key);
1176 out:
1177         return ret;
1178 }
1179
1180 /*
1181  * Wake up all waiters hashed on the physical page that is mapped
1182  * to this virtual address:
1183  */
1184 static int
1185 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1186               int nr_wake, int nr_wake2, int op)
1187 {
1188         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1189         struct futex_hash_bucket *hb1, *hb2;
1190         struct futex_q *this, *next;
1191         int ret, op_ret;
1192
1193 retry:
1194         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1195         if (unlikely(ret != 0))
1196                 goto out;
1197         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1198         if (unlikely(ret != 0))
1199                 goto out_put_key1;
1200
1201         hb1 = hash_futex(&key1);
1202         hb2 = hash_futex(&key2);
1203
1204 retry_private:
1205         double_lock_hb(hb1, hb2);
1206         op_ret = futex_atomic_op_inuser(op, uaddr2);
1207         if (unlikely(op_ret < 0)) {
1208
1209                 double_unlock_hb(hb1, hb2);
1210
1211 #ifndef CONFIG_MMU
1212                 /*
1213                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1214                  * but we might get them from range checking
1215                  */
1216                 ret = op_ret;
1217                 goto out_put_keys;
1218 #endif
1219
1220                 if (unlikely(op_ret != -EFAULT)) {
1221                         ret = op_ret;
1222                         goto out_put_keys;
1223                 }
1224
1225                 ret = fault_in_user_writeable(uaddr2);
1226                 if (ret)
1227                         goto out_put_keys;
1228
1229                 if (!(flags & FLAGS_SHARED))
1230                         goto retry_private;
1231
1232                 put_futex_key(&key2);
1233                 put_futex_key(&key1);
1234                 goto retry;
1235         }
1236
1237         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1238                 if (match_futex (&this->key, &key1)) {
1239                         if (this->pi_state || this->rt_waiter) {
1240                                 ret = -EINVAL;
1241                                 goto out_unlock;
1242                         }
1243                         wake_futex(this);
1244                         if (++ret >= nr_wake)
1245                                 break;
1246                 }
1247         }
1248
1249         if (op_ret > 0) {
1250                 op_ret = 0;
1251                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1252                         if (match_futex (&this->key, &key2)) {
1253                                 if (this->pi_state || this->rt_waiter) {
1254                                         ret = -EINVAL;
1255                                         goto out_unlock;
1256                                 }
1257                                 wake_futex(this);
1258                                 if (++op_ret >= nr_wake2)
1259                                         break;
1260                         }
1261                 }
1262                 ret += op_ret;
1263         }
1264
1265 out_unlock:
1266         double_unlock_hb(hb1, hb2);
1267 out_put_keys:
1268         put_futex_key(&key2);
1269 out_put_key1:
1270         put_futex_key(&key1);
1271 out:
1272         return ret;
1273 }
1274
1275 /**
1276  * requeue_futex() - Requeue a futex_q from one hb to another
1277  * @q:          the futex_q to requeue
1278  * @hb1:        the source hash_bucket
1279  * @hb2:        the target hash_bucket
1280  * @key2:       the new key for the requeued futex_q
1281  */
1282 static inline
1283 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1284                    struct futex_hash_bucket *hb2, union futex_key *key2)
1285 {
1286
1287         /*
1288          * If key1 and key2 hash to the same bucket, no need to
1289          * requeue.
1290          */
1291         if (likely(&hb1->chain != &hb2->chain)) {
1292                 plist_del(&q->list, &hb1->chain);
1293                 hb_waiters_dec(hb1);
1294                 plist_add(&q->list, &hb2->chain);
1295                 hb_waiters_inc(hb2);
1296                 q->lock_ptr = &hb2->lock;
1297         }
1298         get_futex_key_refs(key2);
1299         q->key = *key2;
1300 }
1301
1302 /**
1303  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1304  * @q:          the futex_q
1305  * @key:        the key of the requeue target futex
1306  * @hb:         the hash_bucket of the requeue target futex
1307  *
1308  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1309  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1310  * to the requeue target futex so the waiter can detect the wakeup on the right
1311  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1312  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1313  * to protect access to the pi_state to fixup the owner later.  Must be called
1314  * with both q->lock_ptr and hb->lock held.
1315  */
1316 static inline
1317 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1318                            struct futex_hash_bucket *hb)
1319 {
1320         get_futex_key_refs(key);
1321         q->key = *key;
1322
1323         __unqueue_futex(q);
1324
1325         WARN_ON(!q->rt_waiter);
1326         q->rt_waiter = NULL;
1327
1328         q->lock_ptr = &hb->lock;
1329
1330         wake_up_state(q->task, TASK_NORMAL);
1331 }
1332
1333 /**
1334  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1335  * @pifutex:            the user address of the to futex
1336  * @hb1:                the from futex hash bucket, must be locked by the caller
1337  * @hb2:                the to futex hash bucket, must be locked by the caller
1338  * @key1:               the from futex key
1339  * @key2:               the to futex key
1340  * @ps:                 address to store the pi_state pointer
1341  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1342  *
1343  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1344  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1345  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1346  * hb1 and hb2 must be held by the caller.
1347  *
1348  * Return:
1349  *  0 - failed to acquire the lock atomically;
1350  *  1 - acquired the lock;
1351  * <0 - error
1352  */
1353 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1354                                  struct futex_hash_bucket *hb1,
1355                                  struct futex_hash_bucket *hb2,
1356                                  union futex_key *key1, union futex_key *key2,
1357                                  struct futex_pi_state **ps, int set_waiters)
1358 {
1359         struct futex_q *top_waiter = NULL;
1360         u32 curval;
1361         int ret;
1362
1363         if (get_futex_value_locked(&curval, pifutex))
1364                 return -EFAULT;
1365
1366         /*
1367          * Find the top_waiter and determine if there are additional waiters.
1368          * If the caller intends to requeue more than 1 waiter to pifutex,
1369          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1370          * as we have means to handle the possible fault.  If not, don't set
1371          * the bit unecessarily as it will force the subsequent unlock to enter
1372          * the kernel.
1373          */
1374         top_waiter = futex_top_waiter(hb1, key1);
1375
1376         /* There are no waiters, nothing for us to do. */
1377         if (!top_waiter)
1378                 return 0;
1379
1380         /* Ensure we requeue to the expected futex. */
1381         if (!match_futex(top_waiter->requeue_pi_key, key2))
1382                 return -EINVAL;
1383
1384         /*
1385          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1386          * the contended case or if set_waiters is 1.  The pi_state is returned
1387          * in ps in contended cases.
1388          */
1389         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1390                                    set_waiters);
1391         if (ret == 1)
1392                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1393
1394         return ret;
1395 }
1396
1397 /**
1398  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1399  * @uaddr1:     source futex user address
1400  * @flags:      futex flags (FLAGS_SHARED, etc.)
1401  * @uaddr2:     target futex user address
1402  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1403  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1404  * @cmpval:     @uaddr1 expected value (or %NULL)
1405  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1406  *              pi futex (pi to pi requeue is not supported)
1407  *
1408  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1409  * uaddr2 atomically on behalf of the top waiter.
1410  *
1411  * Return:
1412  * >=0 - on success, the number of tasks requeued or woken;
1413  *  <0 - on error
1414  */
1415 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1416                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1417                          u32 *cmpval, int requeue_pi)
1418 {
1419         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1420         int drop_count = 0, task_count = 0, ret;
1421         struct futex_pi_state *pi_state = NULL;
1422         struct futex_hash_bucket *hb1, *hb2;
1423         struct futex_q *this, *next;
1424         u32 curval2;
1425
1426         if (requeue_pi) {
1427                 /*
1428                  * requeue_pi requires a pi_state, try to allocate it now
1429                  * without any locks in case it fails.
1430                  */
1431                 if (refill_pi_state_cache())
1432                         return -ENOMEM;
1433                 /*
1434                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1435                  * + nr_requeue, since it acquires the rt_mutex prior to
1436                  * returning to userspace, so as to not leave the rt_mutex with
1437                  * waiters and no owner.  However, second and third wake-ups
1438                  * cannot be predicted as they involve race conditions with the
1439                  * first wake and a fault while looking up the pi_state.  Both
1440                  * pthread_cond_signal() and pthread_cond_broadcast() should
1441                  * use nr_wake=1.
1442                  */
1443                 if (nr_wake != 1)
1444                         return -EINVAL;
1445         }
1446
1447 retry:
1448         if (pi_state != NULL) {
1449                 /*
1450                  * We will have to lookup the pi_state again, so free this one
1451                  * to keep the accounting correct.
1452                  */
1453                 free_pi_state(pi_state);
1454                 pi_state = NULL;
1455         }
1456
1457         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1458         if (unlikely(ret != 0))
1459                 goto out;
1460         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1461                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1462         if (unlikely(ret != 0))
1463                 goto out_put_key1;
1464
1465         hb1 = hash_futex(&key1);
1466         hb2 = hash_futex(&key2);
1467
1468 retry_private:
1469         hb_waiters_inc(hb2);
1470         double_lock_hb(hb1, hb2);
1471
1472         if (likely(cmpval != NULL)) {
1473                 u32 curval;
1474
1475                 ret = get_futex_value_locked(&curval, uaddr1);
1476
1477                 if (unlikely(ret)) {
1478                         double_unlock_hb(hb1, hb2);
1479                         hb_waiters_dec(hb2);
1480
1481                         ret = get_user(curval, uaddr1);
1482                         if (ret)
1483                                 goto out_put_keys;
1484
1485                         if (!(flags & FLAGS_SHARED))
1486                                 goto retry_private;
1487
1488                         put_futex_key(&key2);
1489                         put_futex_key(&key1);
1490                         goto retry;
1491                 }
1492                 if (curval != *cmpval) {
1493                         ret = -EAGAIN;
1494                         goto out_unlock;
1495                 }
1496         }
1497
1498         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1499                 /*
1500                  * Attempt to acquire uaddr2 and wake the top waiter. If we
1501                  * intend to requeue waiters, force setting the FUTEX_WAITERS
1502                  * bit.  We force this here where we are able to easily handle
1503                  * faults rather in the requeue loop below.
1504                  */
1505                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1506                                                  &key2, &pi_state, nr_requeue);
1507
1508                 /*
1509                  * At this point the top_waiter has either taken uaddr2 or is
1510                  * waiting on it.  If the former, then the pi_state will not
1511                  * exist yet, look it up one more time to ensure we have a
1512                  * reference to it.
1513                  */
1514                 if (ret == 1) {
1515                         WARN_ON(pi_state);
1516                         drop_count++;
1517                         task_count++;
1518                         ret = get_futex_value_locked(&curval2, uaddr2);
1519                         if (!ret)
1520                                 ret = lookup_pi_state(curval2, hb2, &key2,
1521                                                       &pi_state);
1522                 }
1523
1524                 switch (ret) {
1525                 case 0:
1526                         break;
1527                 case -EFAULT:
1528                         double_unlock_hb(hb1, hb2);
1529                         hb_waiters_dec(hb2);
1530                         put_futex_key(&key2);
1531                         put_futex_key(&key1);
1532                         ret = fault_in_user_writeable(uaddr2);
1533                         if (!ret)
1534                                 goto retry;
1535                         goto out;
1536                 case -EAGAIN:
1537                         /* The owner was exiting, try again. */
1538                         double_unlock_hb(hb1, hb2);
1539                         hb_waiters_dec(hb2);
1540                         put_futex_key(&key2);
1541                         put_futex_key(&key1);
1542                         cond_resched();
1543                         goto retry;
1544                 default:
1545                         goto out_unlock;
1546                 }
1547         }
1548
1549         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1550                 if (task_count - nr_wake >= nr_requeue)
1551                         break;
1552
1553                 if (!match_futex(&this->key, &key1))
1554                         continue;
1555
1556                 /*
1557                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1558                  * be paired with each other and no other futex ops.
1559                  *
1560                  * We should never be requeueing a futex_q with a pi_state,
1561                  * which is awaiting a futex_unlock_pi().
1562                  */
1563                 if ((requeue_pi && !this->rt_waiter) ||
1564                     (!requeue_pi && this->rt_waiter) ||
1565                     this->pi_state) {
1566                         ret = -EINVAL;
1567                         break;
1568                 }
1569
1570                 /*
1571                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1572                  * lock, we already woke the top_waiter.  If not, it will be
1573                  * woken by futex_unlock_pi().
1574                  */
1575                 if (++task_count <= nr_wake && !requeue_pi) {
1576                         wake_futex(this);
1577                         continue;
1578                 }
1579
1580                 /* Ensure we requeue to the expected futex for requeue_pi. */
1581                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1582                         ret = -EINVAL;
1583                         break;
1584                 }
1585
1586                 /*
1587                  * Requeue nr_requeue waiters and possibly one more in the case
1588                  * of requeue_pi if we couldn't acquire the lock atomically.
1589                  */
1590                 if (requeue_pi) {
1591                         /* Prepare the waiter to take the rt_mutex. */
1592                         atomic_inc(&pi_state->refcount);
1593                         this->pi_state = pi_state;
1594                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1595                                                         this->rt_waiter,
1596                                                         this->task, 1);
1597                         if (ret == 1) {
1598                                 /* We got the lock. */
1599                                 requeue_pi_wake_futex(this, &key2, hb2);
1600                                 drop_count++;
1601                                 continue;
1602                         } else if (ret) {
1603                                 /* -EDEADLK */
1604                                 this->pi_state = NULL;
1605                                 free_pi_state(pi_state);
1606                                 goto out_unlock;
1607                         }
1608                 }
1609                 requeue_futex(this, hb1, hb2, &key2);
1610                 drop_count++;
1611         }
1612
1613 out_unlock:
1614         double_unlock_hb(hb1, hb2);
1615         hb_waiters_dec(hb2);
1616
1617         /*
1618          * drop_futex_key_refs() must be called outside the spinlocks. During
1619          * the requeue we moved futex_q's from the hash bucket at key1 to the
1620          * one at key2 and updated their key pointer.  We no longer need to
1621          * hold the references to key1.
1622          */
1623         while (--drop_count >= 0)
1624                 drop_futex_key_refs(&key1);
1625
1626 out_put_keys:
1627         put_futex_key(&key2);
1628 out_put_key1:
1629         put_futex_key(&key1);
1630 out:
1631         if (pi_state != NULL)
1632                 free_pi_state(pi_state);
1633         return ret ? ret : task_count;
1634 }
1635
1636 /* The key must be already stored in q->key. */
1637 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1638         __acquires(&hb->lock)
1639 {
1640         struct futex_hash_bucket *hb;
1641
1642         hb = hash_futex(&q->key);
1643
1644         /*
1645          * Increment the counter before taking the lock so that
1646          * a potential waker won't miss a to-be-slept task that is
1647          * waiting for the spinlock. This is safe as all queue_lock()
1648          * users end up calling queue_me(). Similarly, for housekeeping,
1649          * decrement the counter at queue_unlock() when some error has
1650          * occurred and we don't end up adding the task to the list.
1651          */
1652         hb_waiters_inc(hb);
1653
1654         q->lock_ptr = &hb->lock;
1655
1656         spin_lock(&hb->lock); /* implies MB (A) */
1657         return hb;
1658 }
1659
1660 static inline void
1661 queue_unlock(struct futex_hash_bucket *hb)
1662         __releases(&hb->lock)
1663 {
1664         spin_unlock(&hb->lock);
1665         hb_waiters_dec(hb);
1666 }
1667
1668 /**
1669  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1670  * @q:  The futex_q to enqueue
1671  * @hb: The destination hash bucket
1672  *
1673  * The hb->lock must be held by the caller, and is released here. A call to
1674  * queue_me() is typically paired with exactly one call to unqueue_me().  The
1675  * exceptions involve the PI related operations, which may use unqueue_me_pi()
1676  * or nothing if the unqueue is done as part of the wake process and the unqueue
1677  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1678  * an example).
1679  */
1680 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1681         __releases(&hb->lock)
1682 {
1683         int prio;
1684
1685         /*
1686          * The priority used to register this element is
1687          * - either the real thread-priority for the real-time threads
1688          * (i.e. threads with a priority lower than MAX_RT_PRIO)
1689          * - or MAX_RT_PRIO for non-RT threads.
1690          * Thus, all RT-threads are woken first in priority order, and
1691          * the others are woken last, in FIFO order.
1692          */
1693         prio = min(current->normal_prio, MAX_RT_PRIO);
1694
1695         plist_node_init(&q->list, prio);
1696         plist_add(&q->list, &hb->chain);
1697         q->task = current;
1698         spin_unlock(&hb->lock);
1699 }
1700
1701 /**
1702  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1703  * @q:  The futex_q to unqueue
1704  *
1705  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1706  * be paired with exactly one earlier call to queue_me().
1707  *
1708  * Return:
1709  *   1 - if the futex_q was still queued (and we removed unqueued it);
1710  *   0 - if the futex_q was already removed by the waking thread
1711  */
1712 static int unqueue_me(struct futex_q *q)
1713 {
1714         spinlock_t *lock_ptr;
1715         int ret = 0;
1716
1717         /* In the common case we don't take the spinlock, which is nice. */
1718 retry:
1719         lock_ptr = q->lock_ptr;
1720         barrier();
1721         if (lock_ptr != NULL) {
1722                 spin_lock(lock_ptr);
1723                 /*
1724                  * q->lock_ptr can change between reading it and
1725                  * spin_lock(), causing us to take the wrong lock.  This
1726                  * corrects the race condition.
1727                  *
1728                  * Reasoning goes like this: if we have the wrong lock,
1729                  * q->lock_ptr must have changed (maybe several times)
1730                  * between reading it and the spin_lock().  It can
1731                  * change again after the spin_lock() but only if it was
1732                  * already changed before the spin_lock().  It cannot,
1733                  * however, change back to the original value.  Therefore
1734                  * we can detect whether we acquired the correct lock.
1735                  */
1736                 if (unlikely(lock_ptr != q->lock_ptr)) {
1737                         spin_unlock(lock_ptr);
1738                         goto retry;
1739                 }
1740                 __unqueue_futex(q);
1741
1742                 BUG_ON(q->pi_state);
1743
1744                 spin_unlock(lock_ptr);
1745                 ret = 1;
1746         }
1747
1748         drop_futex_key_refs(&q->key);
1749         return ret;
1750 }
1751
1752 /*
1753  * PI futexes can not be requeued and must remove themself from the
1754  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1755  * and dropped here.
1756  */
1757 static void unqueue_me_pi(struct futex_q *q)
1758         __releases(q->lock_ptr)
1759 {
1760         __unqueue_futex(q);
1761
1762         BUG_ON(!q->pi_state);
1763         free_pi_state(q->pi_state);
1764         q->pi_state = NULL;
1765
1766         spin_unlock(q->lock_ptr);
1767 }
1768
1769 /*
1770  * Fixup the pi_state owner with the new owner.
1771  *
1772  * Must be called with hash bucket lock held and mm->sem held for non
1773  * private futexes.
1774  */
1775 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1776                                 struct task_struct *newowner)
1777 {
1778         u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1779         struct futex_pi_state *pi_state = q->pi_state;
1780         struct task_struct *oldowner = pi_state->owner;
1781         u32 uval, uninitialized_var(curval), newval;
1782         int ret;
1783
1784         /* Owner died? */
1785         if (!pi_state->owner)
1786                 newtid |= FUTEX_OWNER_DIED;
1787
1788         /*
1789          * We are here either because we stole the rtmutex from the
1790          * previous highest priority waiter or we are the highest priority
1791          * waiter but failed to get the rtmutex the first time.
1792          * We have to replace the newowner TID in the user space variable.
1793          * This must be atomic as we have to preserve the owner died bit here.
1794          *
1795          * Note: We write the user space value _before_ changing the pi_state
1796          * because we can fault here. Imagine swapped out pages or a fork
1797          * that marked all the anonymous memory readonly for cow.
1798          *
1799          * Modifying pi_state _before_ the user space value would
1800          * leave the pi_state in an inconsistent state when we fault
1801          * here, because we need to drop the hash bucket lock to
1802          * handle the fault. This might be observed in the PID check
1803          * in lookup_pi_state.
1804          */
1805 retry:
1806         if (get_futex_value_locked(&uval, uaddr))
1807                 goto handle_fault;
1808
1809         while (1) {
1810                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1811
1812                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1813                         goto handle_fault;
1814                 if (curval == uval)
1815                         break;
1816                 uval = curval;
1817         }
1818
1819         /*
1820          * We fixed up user space. Now we need to fix the pi_state
1821          * itself.
1822          */
1823         if (pi_state->owner != NULL) {
1824                 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1825                 WARN_ON(list_empty(&pi_state->list));
1826                 list_del_init(&pi_state->list);
1827                 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1828         }
1829
1830         pi_state->owner = newowner;
1831
1832         raw_spin_lock_irq(&newowner->pi_lock);
1833         WARN_ON(!list_empty(&pi_state->list));
1834         list_add(&pi_state->list, &newowner->pi_state_list);
1835         raw_spin_unlock_irq(&newowner->pi_lock);
1836         return 0;
1837
1838         /*
1839          * To handle the page fault we need to drop the hash bucket
1840          * lock here. That gives the other task (either the highest priority
1841          * waiter itself or the task which stole the rtmutex) the
1842          * chance to try the fixup of the pi_state. So once we are
1843          * back from handling the fault we need to check the pi_state
1844          * after reacquiring the hash bucket lock and before trying to
1845          * do another fixup. When the fixup has been done already we
1846          * simply return.
1847          */
1848 handle_fault:
1849         spin_unlock(q->lock_ptr);
1850
1851         ret = fault_in_user_writeable(uaddr);
1852
1853         spin_lock(q->lock_ptr);
1854
1855         /*
1856          * Check if someone else fixed it for us:
1857          */
1858         if (pi_state->owner != oldowner)
1859                 return 0;
1860
1861         if (ret)
1862                 return ret;
1863
1864         goto retry;
1865 }
1866
1867 static long futex_wait_restart(struct restart_block *restart);
1868
1869 /**
1870  * fixup_owner() - Post lock pi_state and corner case management
1871  * @uaddr:      user address of the futex
1872  * @q:          futex_q (contains pi_state and access to the rt_mutex)
1873  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
1874  *
1875  * After attempting to lock an rt_mutex, this function is called to cleanup
1876  * the pi_state owner as well as handle race conditions that may allow us to
1877  * acquire the lock. Must be called with the hb lock held.
1878  *
1879  * Return:
1880  *  1 - success, lock taken;
1881  *  0 - success, lock not taken;
1882  * <0 - on error (-EFAULT)
1883  */
1884 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1885 {
1886         struct task_struct *owner;
1887         int ret = 0;
1888
1889         if (locked) {
1890                 /*
1891                  * Got the lock. We might not be the anticipated owner if we
1892                  * did a lock-steal - fix up the PI-state in that case:
1893                  */
1894                 if (q->pi_state->owner != current)
1895                         ret = fixup_pi_state_owner(uaddr, q, current);
1896                 goto out;
1897         }
1898
1899         /*
1900          * Catch the rare case, where the lock was released when we were on the
1901          * way back before we locked the hash bucket.
1902          */
1903         if (q->pi_state->owner == current) {
1904                 /*
1905                  * Try to get the rt_mutex now. This might fail as some other
1906                  * task acquired the rt_mutex after we removed ourself from the
1907                  * rt_mutex waiters list.
1908                  */
1909                 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1910                         locked = 1;
1911                         goto out;
1912                 }
1913
1914                 /*
1915                  * pi_state is incorrect, some other task did a lock steal and
1916                  * we returned due to timeout or signal without taking the
1917                  * rt_mutex. Too late.
1918                  */
1919                 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1920                 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1921                 if (!owner)
1922                         owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1923                 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1924                 ret = fixup_pi_state_owner(uaddr, q, owner);
1925                 goto out;
1926         }
1927
1928         /*
1929          * Paranoia check. If we did not take the lock, then we should not be
1930          * the owner of the rt_mutex.
1931          */
1932         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1933                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1934                                 "pi-state %p\n", ret,
1935                                 q->pi_state->pi_mutex.owner,
1936                                 q->pi_state->owner);
1937
1938 out:
1939         return ret ? ret : locked;
1940 }
1941
1942 /**
1943  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1944  * @hb:         the futex hash bucket, must be locked by the caller
1945  * @q:          the futex_q to queue up on
1946  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
1947  */
1948 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1949                                 struct hrtimer_sleeper *timeout)
1950 {
1951         /*
1952          * The task state is guaranteed to be set before another task can
1953          * wake it. set_current_state() is implemented using set_mb() and
1954          * queue_me() calls spin_unlock() upon completion, both serializing
1955          * access to the hash list and forcing another memory barrier.
1956          */
1957         set_current_state(TASK_INTERRUPTIBLE);
1958         queue_me(q, hb);
1959
1960         /* Arm the timer */
1961         if (timeout) {
1962                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1963                 if (!hrtimer_active(&timeout->timer))
1964                         timeout->task = NULL;
1965         }
1966
1967         /*
1968          * If we have been removed from the hash list, then another task
1969          * has tried to wake us, and we can skip the call to schedule().
1970          */
1971         if (likely(!plist_node_empty(&q->list))) {
1972                 /*
1973                  * If the timer has already expired, current will already be
1974                  * flagged for rescheduling. Only call schedule if there
1975                  * is no timeout, or if it has yet to expire.
1976                  */
1977                 if (!timeout || timeout->task)
1978                         freezable_schedule();
1979         }
1980         __set_current_state(TASK_RUNNING);
1981 }
1982
1983 /**
1984  * futex_wait_setup() - Prepare to wait on a futex
1985  * @uaddr:      the futex userspace address
1986  * @val:        the expected value
1987  * @flags:      futex flags (FLAGS_SHARED, etc.)
1988  * @q:          the associated futex_q
1989  * @hb:         storage for hash_bucket pointer to be returned to caller
1990  *
1991  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
1992  * compare it with the expected value.  Handle atomic faults internally.
1993  * Return with the hb lock held and a q.key reference on success, and unlocked
1994  * with no q.key reference on failure.
1995  *
1996  * Return:
1997  *  0 - uaddr contains val and hb has been locked;
1998  * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1999  */
2000 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2001                            struct futex_q *q, struct futex_hash_bucket **hb)
2002 {
2003         u32 uval;
2004         int ret;
2005
2006         /*
2007          * Access the page AFTER the hash-bucket is locked.
2008          * Order is important:
2009          *
2010          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2011          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2012          *
2013          * The basic logical guarantee of a futex is that it blocks ONLY
2014          * if cond(var) is known to be true at the time of blocking, for
2015          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2016          * would open a race condition where we could block indefinitely with
2017          * cond(var) false, which would violate the guarantee.
2018          *
2019          * On the other hand, we insert q and release the hash-bucket only
2020          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2021          * absorb a wakeup if *uaddr does not match the desired values
2022          * while the syscall executes.
2023          */
2024 retry:
2025         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2026         if (unlikely(ret != 0))
2027                 return ret;
2028
2029 retry_private:
2030         *hb = queue_lock(q);
2031
2032         ret = get_futex_value_locked(&uval, uaddr);
2033
2034         if (ret) {
2035                 queue_unlock(*hb);
2036
2037                 ret = get_user(uval, uaddr);
2038                 if (ret)
2039                         goto out;
2040
2041                 if (!(flags & FLAGS_SHARED))
2042                         goto retry_private;
2043
2044                 put_futex_key(&q->key);
2045                 goto retry;
2046         }
2047
2048         if (uval != val) {
2049                 queue_unlock(*hb);
2050                 ret = -EWOULDBLOCK;
2051         }
2052
2053 out:
2054         if (ret)
2055                 put_futex_key(&q->key);
2056         return ret;
2057 }
2058
2059 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2060                       ktime_t *abs_time, u32 bitset)
2061 {
2062         struct hrtimer_sleeper timeout, *to = NULL;
2063         struct restart_block *restart;
2064         struct futex_hash_bucket *hb;
2065         struct futex_q q = futex_q_init;
2066         int ret;
2067
2068         if (!bitset)
2069                 return -EINVAL;
2070         q.bitset = bitset;
2071
2072         if (abs_time) {
2073                 to = &timeout;
2074
2075                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2076                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2077                                       HRTIMER_MODE_ABS);
2078                 hrtimer_init_sleeper(to, current);
2079                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2080                                              current->timer_slack_ns);
2081         }
2082
2083 retry:
2084         /*
2085          * Prepare to wait on uaddr. On success, holds hb lock and increments
2086          * q.key refs.
2087          */
2088         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2089         if (ret)
2090                 goto out;
2091
2092         /* queue_me and wait for wakeup, timeout, or a signal. */
2093         futex_wait_queue_me(hb, &q, to);
2094
2095         /* If we were woken (and unqueued), we succeeded, whatever. */
2096         ret = 0;
2097         /* unqueue_me() drops q.key ref */
2098         if (!unqueue_me(&q))
2099                 goto out;
2100         ret = -ETIMEDOUT;
2101         if (to && !to->task)
2102                 goto out;
2103
2104         /*
2105          * We expect signal_pending(current), but we might be the
2106          * victim of a spurious wakeup as well.
2107          */
2108         if (!signal_pending(current))
2109                 goto retry;
2110
2111         ret = -ERESTARTSYS;
2112         if (!abs_time)
2113                 goto out;
2114
2115         restart = &current_thread_info()->restart_block;
2116         restart->fn = futex_wait_restart;
2117         restart->futex.uaddr = uaddr;
2118         restart->futex.val = val;
2119         restart->futex.time = abs_time->tv64;
2120         restart->futex.bitset = bitset;
2121         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2122
2123         ret = -ERESTART_RESTARTBLOCK;
2124
2125 out:
2126         if (to) {
2127                 hrtimer_cancel(&to->timer);
2128                 destroy_hrtimer_on_stack(&to->timer);
2129         }
2130         return ret;
2131 }
2132
2133
2134 static long futex_wait_restart(struct restart_block *restart)
2135 {
2136         u32 __user *uaddr = restart->futex.uaddr;
2137         ktime_t t, *tp = NULL;
2138
2139         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2140                 t.tv64 = restart->futex.time;
2141                 tp = &t;
2142         }
2143         restart->fn = do_no_restart_syscall;
2144
2145         return (long)futex_wait(uaddr, restart->futex.flags,
2146                                 restart->futex.val, tp, restart->futex.bitset);
2147 }
2148
2149
2150 /*
2151  * Userspace tried a 0 -> TID atomic transition of the futex value
2152  * and failed. The kernel side here does the whole locking operation:
2153  * if there are waiters then it will block, it does PI, etc. (Due to
2154  * races the kernel might see a 0 value of the futex too.)
2155  */
2156 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2157                          ktime_t *time, int trylock)
2158 {
2159         struct hrtimer_sleeper timeout, *to = NULL;
2160         struct futex_hash_bucket *hb;
2161         struct futex_q q = futex_q_init;
2162         int res, ret;
2163
2164         if (refill_pi_state_cache())
2165                 return -ENOMEM;
2166
2167         if (time) {
2168                 to = &timeout;
2169                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2170                                       HRTIMER_MODE_ABS);
2171                 hrtimer_init_sleeper(to, current);
2172                 hrtimer_set_expires(&to->timer, *time);
2173         }
2174
2175 retry:
2176         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2177         if (unlikely(ret != 0))
2178                 goto out;
2179
2180 retry_private:
2181         hb = queue_lock(&q);
2182
2183         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2184         if (unlikely(ret)) {
2185                 switch (ret) {
2186                 case 1:
2187                         /* We got the lock. */
2188                         ret = 0;
2189                         goto out_unlock_put_key;
2190                 case -EFAULT:
2191                         goto uaddr_faulted;
2192                 case -EAGAIN:
2193                         /*
2194                          * Task is exiting and we just wait for the
2195                          * exit to complete.
2196                          */
2197                         queue_unlock(hb);
2198                         put_futex_key(&q.key);
2199                         cond_resched();
2200                         goto retry;
2201                 default:
2202                         goto out_unlock_put_key;
2203                 }
2204         }
2205
2206         /*
2207          * Only actually queue now that the atomic ops are done:
2208          */
2209         queue_me(&q, hb);
2210
2211         WARN_ON(!q.pi_state);
2212         /*
2213          * Block on the PI mutex:
2214          */
2215         if (!trylock)
2216                 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2217         else {
2218                 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2219                 /* Fixup the trylock return value: */
2220                 ret = ret ? 0 : -EWOULDBLOCK;
2221         }
2222
2223         spin_lock(q.lock_ptr);
2224         /*
2225          * Fixup the pi_state owner and possibly acquire the lock if we
2226          * haven't already.
2227          */
2228         res = fixup_owner(uaddr, &q, !ret);
2229         /*
2230          * If fixup_owner() returned an error, proprogate that.  If it acquired
2231          * the lock, clear our -ETIMEDOUT or -EINTR.
2232          */
2233         if (res)
2234                 ret = (res < 0) ? res : 0;
2235
2236         /*
2237          * If fixup_owner() faulted and was unable to handle the fault, unlock
2238          * it and return the fault to userspace.
2239          */
2240         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2241                 rt_mutex_unlock(&q.pi_state->pi_mutex);
2242
2243         /* Unqueue and drop the lock */
2244         unqueue_me_pi(&q);
2245
2246         goto out_put_key;
2247
2248 out_unlock_put_key:
2249         queue_unlock(hb);
2250
2251 out_put_key:
2252         put_futex_key(&q.key);
2253 out:
2254         if (to)
2255                 destroy_hrtimer_on_stack(&to->timer);
2256         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2257
2258 uaddr_faulted:
2259         queue_unlock(hb);
2260
2261         ret = fault_in_user_writeable(uaddr);
2262         if (ret)
2263                 goto out_put_key;
2264
2265         if (!(flags & FLAGS_SHARED))
2266                 goto retry_private;
2267
2268         put_futex_key(&q.key);
2269         goto retry;
2270 }
2271
2272 /*
2273  * Userspace attempted a TID -> 0 atomic transition, and failed.
2274  * This is the in-kernel slowpath: we look up the PI state (if any),
2275  * and do the rt-mutex unlock.
2276  */
2277 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2278 {
2279         struct futex_hash_bucket *hb;
2280         struct futex_q *this, *next;
2281         union futex_key key = FUTEX_KEY_INIT;
2282         u32 uval, vpid = task_pid_vnr(current);
2283         int ret;
2284
2285 retry:
2286         if (get_user(uval, uaddr))
2287                 return -EFAULT;
2288         /*
2289          * We release only a lock we actually own:
2290          */
2291         if ((uval & FUTEX_TID_MASK) != vpid)
2292                 return -EPERM;
2293
2294         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2295         if (unlikely(ret != 0))
2296                 goto out;
2297
2298         hb = hash_futex(&key);
2299         spin_lock(&hb->lock);
2300
2301         /*
2302          * To avoid races, try to do the TID -> 0 atomic transition
2303          * again. If it succeeds then we can return without waking
2304          * anyone else up:
2305          */
2306         if (!(uval & FUTEX_OWNER_DIED) &&
2307             cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2308                 goto pi_faulted;
2309         /*
2310          * Rare case: we managed to release the lock atomically,
2311          * no need to wake anyone else up:
2312          */
2313         if (unlikely(uval == vpid))
2314                 goto out_unlock;
2315
2316         /*
2317          * Ok, other tasks may need to be woken up - check waiters
2318          * and do the wakeup if necessary:
2319          */
2320         plist_for_each_entry_safe(this, next, &hb->chain, list) {
2321                 if (!match_futex (&this->key, &key))
2322                         continue;
2323                 ret = wake_futex_pi(uaddr, uval, this);
2324                 /*
2325                  * The atomic access to the futex value
2326                  * generated a pagefault, so retry the
2327                  * user-access and the wakeup:
2328                  */
2329                 if (ret == -EFAULT)
2330                         goto pi_faulted;
2331                 goto out_unlock;
2332         }
2333         /*
2334          * No waiters - kernel unlocks the futex:
2335          */
2336         if (!(uval & FUTEX_OWNER_DIED)) {
2337                 ret = unlock_futex_pi(uaddr, uval);
2338                 if (ret == -EFAULT)
2339                         goto pi_faulted;
2340         }
2341
2342 out_unlock:
2343         spin_unlock(&hb->lock);
2344         put_futex_key(&key);
2345
2346 out:
2347         return ret;
2348
2349 pi_faulted:
2350         spin_unlock(&hb->lock);
2351         put_futex_key(&key);
2352
2353         ret = fault_in_user_writeable(uaddr);
2354         if (!ret)
2355                 goto retry;
2356
2357         return ret;
2358 }
2359
2360 /**
2361  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2362  * @hb:         the hash_bucket futex_q was original enqueued on
2363  * @q:          the futex_q woken while waiting to be requeued
2364  * @key2:       the futex_key of the requeue target futex
2365  * @timeout:    the timeout associated with the wait (NULL if none)
2366  *
2367  * Detect if the task was woken on the initial futex as opposed to the requeue
2368  * target futex.  If so, determine if it was a timeout or a signal that caused
2369  * the wakeup and return the appropriate error code to the caller.  Must be
2370  * called with the hb lock held.
2371  *
2372  * Return:
2373  *  0 = no early wakeup detected;
2374  * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2375  */
2376 static inline
2377 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2378                                    struct futex_q *q, union futex_key *key2,
2379                                    struct hrtimer_sleeper *timeout)
2380 {
2381         int ret = 0;
2382
2383         /*
2384          * With the hb lock held, we avoid races while we process the wakeup.
2385          * We only need to hold hb (and not hb2) to ensure atomicity as the
2386          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2387          * It can't be requeued from uaddr2 to something else since we don't
2388          * support a PI aware source futex for requeue.
2389          */
2390         if (!match_futex(&q->key, key2)) {
2391                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2392                 /*
2393                  * We were woken prior to requeue by a timeout or a signal.
2394                  * Unqueue the futex_q and determine which it was.
2395                  */
2396                 plist_del(&q->list, &hb->chain);
2397                 hb_waiters_dec(hb);
2398
2399                 /* Handle spurious wakeups gracefully */
2400                 ret = -EWOULDBLOCK;
2401                 if (timeout && !timeout->task)
2402                         ret = -ETIMEDOUT;
2403                 else if (signal_pending(current))
2404                         ret = -ERESTARTNOINTR;
2405         }
2406         return ret;
2407 }
2408
2409 /**
2410  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2411  * @uaddr:      the futex we initially wait on (non-pi)
2412  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2413  *              the same type, no requeueing from private to shared, etc.
2414  * @val:        the expected value of uaddr
2415  * @abs_time:   absolute timeout
2416  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
2417  * @uaddr2:     the pi futex we will take prior to returning to user-space
2418  *
2419  * The caller will wait on uaddr and will be requeued by futex_requeue() to
2420  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2421  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2422  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2423  * without one, the pi logic would not know which task to boost/deboost, if
2424  * there was a need to.
2425  *
2426  * We call schedule in futex_wait_queue_me() when we enqueue and return there
2427  * via the following--
2428  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2429  * 2) wakeup on uaddr2 after a requeue
2430  * 3) signal
2431  * 4) timeout
2432  *
2433  * If 3, cleanup and return -ERESTARTNOINTR.
2434  *
2435  * If 2, we may then block on trying to take the rt_mutex and return via:
2436  * 5) successful lock
2437  * 6) signal
2438  * 7) timeout
2439  * 8) other lock acquisition failure
2440  *
2441  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2442  *
2443  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2444  *
2445  * Return:
2446  *  0 - On success;
2447  * <0 - On error
2448  */
2449 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2450                                  u32 val, ktime_t *abs_time, u32 bitset,
2451                                  u32 __user *uaddr2)
2452 {
2453         struct hrtimer_sleeper timeout, *to = NULL;
2454         struct rt_mutex_waiter rt_waiter;
2455         struct rt_mutex *pi_mutex = NULL;
2456         struct futex_hash_bucket *hb;
2457         union futex_key key2 = FUTEX_KEY_INIT;
2458         struct futex_q q = futex_q_init;
2459         int res, ret;
2460
2461         if (uaddr == uaddr2)
2462                 return -EINVAL;
2463
2464         if (!bitset)
2465                 return -EINVAL;
2466
2467         if (abs_time) {
2468                 to = &timeout;
2469                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2470                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2471                                       HRTIMER_MODE_ABS);
2472                 hrtimer_init_sleeper(to, current);
2473                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2474                                              current->timer_slack_ns);
2475         }
2476
2477         /*
2478          * The waiter is allocated on our stack, manipulated by the requeue
2479          * code while we sleep on uaddr.
2480          */
2481         debug_rt_mutex_init_waiter(&rt_waiter);
2482         RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2483         RB_CLEAR_NODE(&rt_waiter.tree_entry);
2484         rt_waiter.task = NULL;
2485
2486         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2487         if (unlikely(ret != 0))
2488                 goto out;
2489
2490         q.bitset = bitset;
2491         q.rt_waiter = &rt_waiter;
2492         q.requeue_pi_key = &key2;
2493
2494         /*
2495          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2496          * count.
2497          */
2498         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2499         if (ret)
2500                 goto out_key2;
2501
2502         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2503         futex_wait_queue_me(hb, &q, to);
2504
2505         spin_lock(&hb->lock);
2506         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2507         spin_unlock(&hb->lock);
2508         if (ret)
2509                 goto out_put_keys;
2510
2511         /*
2512          * In order for us to be here, we know our q.key == key2, and since
2513          * we took the hb->lock above, we also know that futex_requeue() has
2514          * completed and we no longer have to concern ourselves with a wakeup
2515          * race with the atomic proxy lock acquisition by the requeue code. The
2516          * futex_requeue dropped our key1 reference and incremented our key2
2517          * reference count.
2518          */
2519
2520         /* Check if the requeue code acquired the second futex for us. */
2521         if (!q.rt_waiter) {
2522                 /*
2523                  * Got the lock. We might not be the anticipated owner if we
2524                  * did a lock-steal - fix up the PI-state in that case.
2525                  */
2526                 if (q.pi_state && (q.pi_state->owner != current)) {
2527                         spin_lock(q.lock_ptr);
2528                         ret = fixup_pi_state_owner(uaddr2, &q, current);
2529                         spin_unlock(q.lock_ptr);
2530                 }
2531         } else {
2532                 /*
2533                  * We have been woken up by futex_unlock_pi(), a timeout, or a
2534                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2535                  * the pi_state.
2536                  */
2537                 WARN_ON(!q.pi_state);
2538                 pi_mutex = &q.pi_state->pi_mutex;
2539                 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2540                 debug_rt_mutex_free_waiter(&rt_waiter);
2541
2542                 spin_lock(q.lock_ptr);
2543                 /*
2544                  * Fixup the pi_state owner and possibly acquire the lock if we
2545                  * haven't already.
2546                  */
2547                 res = fixup_owner(uaddr2, &q, !ret);
2548                 /*
2549                  * If fixup_owner() returned an error, proprogate that.  If it
2550                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
2551                  */
2552                 if (res)
2553                         ret = (res < 0) ? res : 0;
2554
2555                 /* Unqueue and drop the lock. */
2556                 unqueue_me_pi(&q);
2557         }
2558
2559         /*
2560          * If fixup_pi_state_owner() faulted and was unable to handle the
2561          * fault, unlock the rt_mutex and return the fault to userspace.
2562          */
2563         if (ret == -EFAULT) {
2564                 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2565                         rt_mutex_unlock(pi_mutex);
2566         } else if (ret == -EINTR) {
2567                 /*
2568                  * We've already been requeued, but cannot restart by calling
2569                  * futex_lock_pi() directly. We could restart this syscall, but
2570                  * it would detect that the user space "val" changed and return
2571                  * -EWOULDBLOCK.  Save the overhead of the restart and return
2572                  * -EWOULDBLOCK directly.
2573                  */
2574                 ret = -EWOULDBLOCK;
2575         }
2576
2577 out_put_keys:
2578         put_futex_key(&q.key);
2579 out_key2:
2580         put_futex_key(&key2);
2581
2582 out:
2583         if (to) {
2584                 hrtimer_cancel(&to->timer);
2585                 destroy_hrtimer_on_stack(&to->timer);
2586         }
2587         return ret;
2588 }
2589
2590 /*
2591  * Support for robust futexes: the kernel cleans up held futexes at
2592  * thread exit time.
2593  *
2594  * Implementation: user-space maintains a per-thread list of locks it
2595  * is holding. Upon do_exit(), the kernel carefully walks this list,
2596  * and marks all locks that are owned by this thread with the
2597  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2598  * always manipulated with the lock held, so the list is private and
2599  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2600  * field, to allow the kernel to clean up if the thread dies after
2601  * acquiring the lock, but just before it could have added itself to
2602  * the list. There can only be one such pending lock.
2603  */
2604
2605 /**
2606  * sys_set_robust_list() - Set the robust-futex list head of a task
2607  * @head:       pointer to the list-head
2608  * @len:        length of the list-head, as userspace expects
2609  */
2610 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2611                 size_t, len)
2612 {
2613         if (!futex_cmpxchg_enabled)
2614                 return -ENOSYS;
2615         /*
2616          * The kernel knows only one size for now:
2617          */
2618         if (unlikely(len != sizeof(*head)))
2619                 return -EINVAL;
2620
2621         current->robust_list = head;
2622
2623         return 0;
2624 }
2625
2626 /**
2627  * sys_get_robust_list() - Get the robust-futex list head of a task
2628  * @pid:        pid of the process [zero for current task]
2629  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
2630  * @len_ptr:    pointer to a length field, the kernel fills in the header size
2631  */
2632 SYSCALL_DEFINE3(get_robust_list, int, pid,
2633                 struct robust_list_head __user * __user *, head_ptr,
2634                 size_t __user *, len_ptr)
2635 {
2636         struct robust_list_head __user *head;
2637         unsigned long ret;
2638         struct task_struct *p;
2639
2640         if (!futex_cmpxchg_enabled)
2641                 return -ENOSYS;
2642
2643         rcu_read_lock();
2644
2645         ret = -ESRCH;
2646         if (!pid)
2647                 p = current;
2648         else {
2649                 p = find_task_by_vpid(pid);
2650                 if (!p)
2651                         goto err_unlock;
2652         }
2653
2654         ret = -EPERM;
2655         if (!ptrace_may_access(p, PTRACE_MODE_READ))
2656                 goto err_unlock;
2657
2658         head = p->robust_list;
2659         rcu_read_unlock();
2660
2661         if (put_user(sizeof(*head), len_ptr))
2662                 return -EFAULT;
2663         return put_user(head, head_ptr);
2664
2665 err_unlock:
2666         rcu_read_unlock();
2667
2668         return ret;
2669 }
2670
2671 /*
2672  * Process a futex-list entry, check whether it's owned by the
2673  * dying task, and do notification if so:
2674  */
2675 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2676 {
2677         u32 uval, uninitialized_var(nval), mval;
2678
2679 retry:
2680         if (get_user(uval, uaddr))
2681                 return -1;
2682
2683         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2684                 /*
2685                  * Ok, this dying thread is truly holding a futex
2686                  * of interest. Set the OWNER_DIED bit atomically
2687                  * via cmpxchg, and if the value had FUTEX_WAITERS
2688                  * set, wake up a waiter (if any). (We have to do a
2689                  * futex_wake() even if OWNER_DIED is already set -
2690                  * to handle the rare but possible case of recursive
2691                  * thread-death.) The rest of the cleanup is done in
2692                  * userspace.
2693                  */
2694                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2695                 /*
2696                  * We are not holding a lock here, but we want to have
2697                  * the pagefault_disable/enable() protection because
2698                  * we want to handle the fault gracefully. If the
2699                  * access fails we try to fault in the futex with R/W
2700                  * verification via get_user_pages. get_user() above
2701                  * does not guarantee R/W access. If that fails we
2702                  * give up and leave the futex locked.
2703                  */
2704                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2705                         if (fault_in_user_writeable(uaddr))
2706                                 return -1;
2707                         goto retry;
2708                 }
2709                 if (nval != uval)
2710                         goto retry;
2711
2712                 /*
2713                  * Wake robust non-PI futexes here. The wakeup of
2714                  * PI futexes happens in exit_pi_state():
2715                  */
2716                 if (!pi && (uval & FUTEX_WAITERS))
2717                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2718         }
2719         return 0;
2720 }
2721
2722 /*
2723  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2724  */
2725 static inline int fetch_robust_entry(struct robust_list __user **entry,
2726                                      struct robust_list __user * __user *head,
2727                                      unsigned int *pi)
2728 {
2729         unsigned long uentry;
2730
2731         if (get_user(uentry, (unsigned long __user *)head))
2732                 return -EFAULT;
2733
2734         *entry = (void __user *)(uentry & ~1UL);
2735         *pi = uentry & 1;
2736
2737         return 0;
2738 }
2739
2740 /*
2741  * Walk curr->robust_list (very carefully, it's a userspace list!)
2742  * and mark any locks found there dead, and notify any waiters.
2743  *
2744  * We silently return on any sign of list-walking problem.
2745  */
2746 void exit_robust_list(struct task_struct *curr)
2747 {
2748         struct robust_list_head __user *head = curr->robust_list;
2749         struct robust_list __user *entry, *next_entry, *pending;
2750         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2751         unsigned int uninitialized_var(next_pi);
2752         unsigned long futex_offset;
2753         int rc;
2754
2755         if (!futex_cmpxchg_enabled)
2756                 return;
2757
2758         /*
2759          * Fetch the list head (which was registered earlier, via
2760          * sys_set_robust_list()):
2761          */
2762         if (fetch_robust_entry(&entry, &head->list.next, &pi))
2763                 return;
2764         /*
2765          * Fetch the relative futex offset:
2766          */
2767         if (get_user(futex_offset, &head->futex_offset))
2768                 return;
2769         /*
2770          * Fetch any possibly pending lock-add first, and handle it
2771          * if it exists:
2772          */
2773         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2774                 return;
2775
2776         next_entry = NULL;      /* avoid warning with gcc */
2777         while (entry != &head->list) {
2778                 /*
2779                  * Fetch the next entry in the list before calling
2780                  * handle_futex_death:
2781                  */
2782                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2783                 /*
2784                  * A pending lock might already be on the list, so
2785                  * don't process it twice:
2786                  */
2787                 if (entry != pending)
2788                         if (handle_futex_death((void __user *)entry + futex_offset,
2789                                                 curr, pi))
2790                                 return;
2791                 if (rc)
2792                         return;
2793                 entry = next_entry;
2794                 pi = next_pi;
2795                 /*
2796                  * Avoid excessively long or circular lists:
2797                  */
2798                 if (!--limit)
2799                         break;
2800
2801                 cond_resched();
2802         }
2803
2804         if (pending)
2805                 handle_futex_death((void __user *)pending + futex_offset,
2806                                    curr, pip);
2807 }
2808
2809 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2810                 u32 __user *uaddr2, u32 val2, u32 val3)
2811 {
2812         int cmd = op & FUTEX_CMD_MASK;
2813         unsigned int flags = 0;
2814
2815         if (!(op & FUTEX_PRIVATE_FLAG))
2816                 flags |= FLAGS_SHARED;
2817
2818         if (op & FUTEX_CLOCK_REALTIME) {
2819                 flags |= FLAGS_CLOCKRT;
2820                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2821                         return -ENOSYS;
2822         }
2823
2824         switch (cmd) {
2825         case FUTEX_LOCK_PI:
2826         case FUTEX_UNLOCK_PI:
2827         case FUTEX_TRYLOCK_PI:
2828         case FUTEX_WAIT_REQUEUE_PI:
2829         case FUTEX_CMP_REQUEUE_PI:
2830                 if (!futex_cmpxchg_enabled)
2831                         return -ENOSYS;
2832         }
2833
2834         switch (cmd) {
2835         case FUTEX_WAIT:
2836                 val3 = FUTEX_BITSET_MATCH_ANY;
2837         case FUTEX_WAIT_BITSET:
2838                 return futex_wait(uaddr, flags, val, timeout, val3);
2839         case FUTEX_WAKE:
2840                 val3 = FUTEX_BITSET_MATCH_ANY;
2841         case FUTEX_WAKE_BITSET:
2842                 return futex_wake(uaddr, flags, val, val3);
2843         case FUTEX_REQUEUE:
2844                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2845         case FUTEX_CMP_REQUEUE:
2846                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2847         case FUTEX_WAKE_OP:
2848                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2849         case FUTEX_LOCK_PI:
2850                 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2851         case FUTEX_UNLOCK_PI:
2852                 return futex_unlock_pi(uaddr, flags);
2853         case FUTEX_TRYLOCK_PI:
2854                 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2855         case FUTEX_WAIT_REQUEUE_PI:
2856                 val3 = FUTEX_BITSET_MATCH_ANY;
2857                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2858                                              uaddr2);
2859         case FUTEX_CMP_REQUEUE_PI:
2860                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2861         }
2862         return -ENOSYS;
2863 }
2864
2865
2866 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2867                 struct timespec __user *, utime, u32 __user *, uaddr2,
2868                 u32, val3)
2869 {
2870         struct timespec ts;
2871         ktime_t t, *tp = NULL;
2872         u32 val2 = 0;
2873         int cmd = op & FUTEX_CMD_MASK;
2874
2875         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2876                       cmd == FUTEX_WAIT_BITSET ||
2877                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
2878                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2879                         return -EFAULT;
2880                 if (!timespec_valid(&ts))
2881                         return -EINVAL;
2882
2883                 t = timespec_to_ktime(ts);
2884                 if (cmd == FUTEX_WAIT)
2885                         t = ktime_add_safe(ktime_get(), t);
2886                 tp = &t;
2887         }
2888         /*
2889          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2890          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2891          */
2892         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2893             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2894                 val2 = (u32) (unsigned long) utime;
2895
2896         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2897 }
2898
2899 static void __init futex_detect_cmpxchg(void)
2900 {
2901 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2902         u32 curval;
2903
2904         /*
2905          * This will fail and we want it. Some arch implementations do
2906          * runtime detection of the futex_atomic_cmpxchg_inatomic()
2907          * functionality. We want to know that before we call in any
2908          * of the complex code paths. Also we want to prevent
2909          * registration of robust lists in that case. NULL is
2910          * guaranteed to fault and we get -EFAULT on functional
2911          * implementation, the non-functional ones will return
2912          * -ENOSYS.
2913          */
2914         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2915                 futex_cmpxchg_enabled = 1;
2916 #endif
2917 }
2918
2919 static int __init futex_init(void)
2920 {
2921         unsigned int futex_shift;
2922         unsigned long i;
2923
2924 #if CONFIG_BASE_SMALL
2925         futex_hashsize = 16;
2926 #else
2927         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2928 #endif
2929
2930         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2931                                                futex_hashsize, 0,
2932                                                futex_hashsize < 256 ? HASH_SMALL : 0,
2933                                                &futex_shift, NULL,
2934                                                futex_hashsize, futex_hashsize);
2935         futex_hashsize = 1UL << futex_shift;
2936
2937         futex_detect_cmpxchg();
2938
2939         for (i = 0; i < futex_hashsize; i++) {
2940                 atomic_set(&futex_queues[i].waiters, 0);
2941                 plist_head_init(&futex_queues[i].chain);
2942                 spin_lock_init(&futex_queues[i].lock);
2943         }
2944
2945         return 0;
2946 }
2947 __initcall(futex_init);