Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux.git] / fs / exec.c
1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats. 
23  */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59
60 #include <asm/uaccess.h>
61 #include <asm/mmu_context.h>
62 #include <asm/tlb.h>
63
64 #include <trace/events/task.h>
65 #include "internal.h"
66
67 #include <trace/events/sched.h>
68
69 int suid_dumpable = 0;
70
71 static LIST_HEAD(formats);
72 static DEFINE_RWLOCK(binfmt_lock);
73
74 void __register_binfmt(struct linux_binfmt * fmt, int insert)
75 {
76         BUG_ON(!fmt);
77         if (WARN_ON(!fmt->load_binary))
78                 return;
79         write_lock(&binfmt_lock);
80         insert ? list_add(&fmt->lh, &formats) :
81                  list_add_tail(&fmt->lh, &formats);
82         write_unlock(&binfmt_lock);
83 }
84
85 EXPORT_SYMBOL(__register_binfmt);
86
87 void unregister_binfmt(struct linux_binfmt * fmt)
88 {
89         write_lock(&binfmt_lock);
90         list_del(&fmt->lh);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(unregister_binfmt);
95
96 static inline void put_binfmt(struct linux_binfmt * fmt)
97 {
98         module_put(fmt->module);
99 }
100
101 #ifdef CONFIG_USELIB
102 /*
103  * Note that a shared library must be both readable and executable due to
104  * security reasons.
105  *
106  * Also note that we take the address to load from from the file itself.
107  */
108 SYSCALL_DEFINE1(uselib, const char __user *, library)
109 {
110         struct linux_binfmt *fmt;
111         struct file *file;
112         struct filename *tmp = getname(library);
113         int error = PTR_ERR(tmp);
114         static const struct open_flags uselib_flags = {
115                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
116                 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
117                 .intent = LOOKUP_OPEN,
118                 .lookup_flags = LOOKUP_FOLLOW,
119         };
120
121         if (IS_ERR(tmp))
122                 goto out;
123
124         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
125         putname(tmp);
126         error = PTR_ERR(file);
127         if (IS_ERR(file))
128                 goto out;
129
130         error = -EINVAL;
131         if (!S_ISREG(file_inode(file)->i_mode))
132                 goto exit;
133
134         error = -EACCES;
135         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
136                 goto exit;
137
138         fsnotify_open(file);
139
140         error = -ENOEXEC;
141
142         read_lock(&binfmt_lock);
143         list_for_each_entry(fmt, &formats, lh) {
144                 if (!fmt->load_shlib)
145                         continue;
146                 if (!try_module_get(fmt->module))
147                         continue;
148                 read_unlock(&binfmt_lock);
149                 error = fmt->load_shlib(file);
150                 read_lock(&binfmt_lock);
151                 put_binfmt(fmt);
152                 if (error != -ENOEXEC)
153                         break;
154         }
155         read_unlock(&binfmt_lock);
156 exit:
157         fput(file);
158 out:
159         return error;
160 }
161 #endif /* #ifdef CONFIG_USELIB */
162
163 #ifdef CONFIG_MMU
164 /*
165  * The nascent bprm->mm is not visible until exec_mmap() but it can
166  * use a lot of memory, account these pages in current->mm temporary
167  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
168  * change the counter back via acct_arg_size(0).
169  */
170 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
171 {
172         struct mm_struct *mm = current->mm;
173         long diff = (long)(pages - bprm->vma_pages);
174
175         if (!mm || !diff)
176                 return;
177
178         bprm->vma_pages = pages;
179         add_mm_counter(mm, MM_ANONPAGES, diff);
180 }
181
182 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
183                 int write)
184 {
185         struct page *page;
186         int ret;
187
188 #ifdef CONFIG_STACK_GROWSUP
189         if (write) {
190                 ret = expand_downwards(bprm->vma, pos);
191                 if (ret < 0)
192                         return NULL;
193         }
194 #endif
195         ret = get_user_pages(current, bprm->mm, pos,
196                         1, write, 1, &page, NULL);
197         if (ret <= 0)
198                 return NULL;
199
200         if (write) {
201                 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
202                 struct rlimit *rlim;
203
204                 acct_arg_size(bprm, size / PAGE_SIZE);
205
206                 /*
207                  * We've historically supported up to 32 pages (ARG_MAX)
208                  * of argument strings even with small stacks
209                  */
210                 if (size <= ARG_MAX)
211                         return page;
212
213                 /*
214                  * Limit to 1/4-th the stack size for the argv+env strings.
215                  * This ensures that:
216                  *  - the remaining binfmt code will not run out of stack space,
217                  *  - the program will have a reasonable amount of stack left
218                  *    to work from.
219                  */
220                 rlim = current->signal->rlim;
221                 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
222                         put_page(page);
223                         return NULL;
224                 }
225         }
226
227         return page;
228 }
229
230 static void put_arg_page(struct page *page)
231 {
232         put_page(page);
233 }
234
235 static void free_arg_page(struct linux_binprm *bprm, int i)
236 {
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
256         if (!vma)
257                 return -ENOMEM;
258
259         down_write(&mm->mmap_sem);
260         vma->vm_mm = mm;
261
262         /*
263          * Place the stack at the largest stack address the architecture
264          * supports. Later, we'll move this to an appropriate place. We don't
265          * use STACK_TOP because that can depend on attributes which aren't
266          * configured yet.
267          */
268         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
269         vma->vm_end = STACK_TOP_MAX;
270         vma->vm_start = vma->vm_end - PAGE_SIZE;
271         vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
272         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
273         INIT_LIST_HEAD(&vma->anon_vma_chain);
274
275         err = insert_vm_struct(mm, vma);
276         if (err)
277                 goto err;
278
279         mm->stack_vm = mm->total_vm = 1;
280         up_write(&mm->mmap_sem);
281         bprm->p = vma->vm_end - sizeof(void *);
282         return 0;
283 err:
284         up_write(&mm->mmap_sem);
285         bprm->vma = NULL;
286         kmem_cache_free(vm_area_cachep, vma);
287         return err;
288 }
289
290 static bool valid_arg_len(struct linux_binprm *bprm, long len)
291 {
292         return len <= MAX_ARG_STRLEN;
293 }
294
295 #else
296
297 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
298 {
299 }
300
301 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
302                 int write)
303 {
304         struct page *page;
305
306         page = bprm->page[pos / PAGE_SIZE];
307         if (!page && write) {
308                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
309                 if (!page)
310                         return NULL;
311                 bprm->page[pos / PAGE_SIZE] = page;
312         }
313
314         return page;
315 }
316
317 static void put_arg_page(struct page *page)
318 {
319 }
320
321 static void free_arg_page(struct linux_binprm *bprm, int i)
322 {
323         if (bprm->page[i]) {
324                 __free_page(bprm->page[i]);
325                 bprm->page[i] = NULL;
326         }
327 }
328
329 static void free_arg_pages(struct linux_binprm *bprm)
330 {
331         int i;
332
333         for (i = 0; i < MAX_ARG_PAGES; i++)
334                 free_arg_page(bprm, i);
335 }
336
337 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
338                 struct page *page)
339 {
340 }
341
342 static int __bprm_mm_init(struct linux_binprm *bprm)
343 {
344         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
345         return 0;
346 }
347
348 static bool valid_arg_len(struct linux_binprm *bprm, long len)
349 {
350         return len <= bprm->p;
351 }
352
353 #endif /* CONFIG_MMU */
354
355 /*
356  * Create a new mm_struct and populate it with a temporary stack
357  * vm_area_struct.  We don't have enough context at this point to set the stack
358  * flags, permissions, and offset, so we use temporary values.  We'll update
359  * them later in setup_arg_pages().
360  */
361 static int bprm_mm_init(struct linux_binprm *bprm)
362 {
363         int err;
364         struct mm_struct *mm = NULL;
365
366         bprm->mm = mm = mm_alloc();
367         err = -ENOMEM;
368         if (!mm)
369                 goto err;
370
371         err = init_new_context(current, mm);
372         if (err)
373                 goto err;
374
375         err = __bprm_mm_init(bprm);
376         if (err)
377                 goto err;
378
379         return 0;
380
381 err:
382         if (mm) {
383                 bprm->mm = NULL;
384                 mmdrop(mm);
385         }
386
387         return err;
388 }
389
390 struct user_arg_ptr {
391 #ifdef CONFIG_COMPAT
392         bool is_compat;
393 #endif
394         union {
395                 const char __user *const __user *native;
396 #ifdef CONFIG_COMPAT
397                 const compat_uptr_t __user *compat;
398 #endif
399         } ptr;
400 };
401
402 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
403 {
404         const char __user *native;
405
406 #ifdef CONFIG_COMPAT
407         if (unlikely(argv.is_compat)) {
408                 compat_uptr_t compat;
409
410                 if (get_user(compat, argv.ptr.compat + nr))
411                         return ERR_PTR(-EFAULT);
412
413                 return compat_ptr(compat);
414         }
415 #endif
416
417         if (get_user(native, argv.ptr.native + nr))
418                 return ERR_PTR(-EFAULT);
419
420         return native;
421 }
422
423 /*
424  * count() counts the number of strings in array ARGV.
425  */
426 static int count(struct user_arg_ptr argv, int max)
427 {
428         int i = 0;
429
430         if (argv.ptr.native != NULL) {
431                 for (;;) {
432                         const char __user *p = get_user_arg_ptr(argv, i);
433
434                         if (!p)
435                                 break;
436
437                         if (IS_ERR(p))
438                                 return -EFAULT;
439
440                         if (i >= max)
441                                 return -E2BIG;
442                         ++i;
443
444                         if (fatal_signal_pending(current))
445                                 return -ERESTARTNOHAND;
446                         cond_resched();
447                 }
448         }
449         return i;
450 }
451
452 /*
453  * 'copy_strings()' copies argument/environment strings from the old
454  * processes's memory to the new process's stack.  The call to get_user_pages()
455  * ensures the destination page is created and not swapped out.
456  */
457 static int copy_strings(int argc, struct user_arg_ptr argv,
458                         struct linux_binprm *bprm)
459 {
460         struct page *kmapped_page = NULL;
461         char *kaddr = NULL;
462         unsigned long kpos = 0;
463         int ret;
464
465         while (argc-- > 0) {
466                 const char __user *str;
467                 int len;
468                 unsigned long pos;
469
470                 ret = -EFAULT;
471                 str = get_user_arg_ptr(argv, argc);
472                 if (IS_ERR(str))
473                         goto out;
474
475                 len = strnlen_user(str, MAX_ARG_STRLEN);
476                 if (!len)
477                         goto out;
478
479                 ret = -E2BIG;
480                 if (!valid_arg_len(bprm, len))
481                         goto out;
482
483                 /* We're going to work our way backwords. */
484                 pos = bprm->p;
485                 str += len;
486                 bprm->p -= len;
487
488                 while (len > 0) {
489                         int offset, bytes_to_copy;
490
491                         if (fatal_signal_pending(current)) {
492                                 ret = -ERESTARTNOHAND;
493                                 goto out;
494                         }
495                         cond_resched();
496
497                         offset = pos % PAGE_SIZE;
498                         if (offset == 0)
499                                 offset = PAGE_SIZE;
500
501                         bytes_to_copy = offset;
502                         if (bytes_to_copy > len)
503                                 bytes_to_copy = len;
504
505                         offset -= bytes_to_copy;
506                         pos -= bytes_to_copy;
507                         str -= bytes_to_copy;
508                         len -= bytes_to_copy;
509
510                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
511                                 struct page *page;
512
513                                 page = get_arg_page(bprm, pos, 1);
514                                 if (!page) {
515                                         ret = -E2BIG;
516                                         goto out;
517                                 }
518
519                                 if (kmapped_page) {
520                                         flush_kernel_dcache_page(kmapped_page);
521                                         kunmap(kmapped_page);
522                                         put_arg_page(kmapped_page);
523                                 }
524                                 kmapped_page = page;
525                                 kaddr = kmap(kmapped_page);
526                                 kpos = pos & PAGE_MASK;
527                                 flush_arg_page(bprm, kpos, kmapped_page);
528                         }
529                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
530                                 ret = -EFAULT;
531                                 goto out;
532                         }
533                 }
534         }
535         ret = 0;
536 out:
537         if (kmapped_page) {
538                 flush_kernel_dcache_page(kmapped_page);
539                 kunmap(kmapped_page);
540                 put_arg_page(kmapped_page);
541         }
542         return ret;
543 }
544
545 /*
546  * Like copy_strings, but get argv and its values from kernel memory.
547  */
548 int copy_strings_kernel(int argc, const char *const *__argv,
549                         struct linux_binprm *bprm)
550 {
551         int r;
552         mm_segment_t oldfs = get_fs();
553         struct user_arg_ptr argv = {
554                 .ptr.native = (const char __user *const  __user *)__argv,
555         };
556
557         set_fs(KERNEL_DS);
558         r = copy_strings(argc, argv, bprm);
559         set_fs(oldfs);
560
561         return r;
562 }
563 EXPORT_SYMBOL(copy_strings_kernel);
564
565 #ifdef CONFIG_MMU
566
567 /*
568  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
569  * the binfmt code determines where the new stack should reside, we shift it to
570  * its final location.  The process proceeds as follows:
571  *
572  * 1) Use shift to calculate the new vma endpoints.
573  * 2) Extend vma to cover both the old and new ranges.  This ensures the
574  *    arguments passed to subsequent functions are consistent.
575  * 3) Move vma's page tables to the new range.
576  * 4) Free up any cleared pgd range.
577  * 5) Shrink the vma to cover only the new range.
578  */
579 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
580 {
581         struct mm_struct *mm = vma->vm_mm;
582         unsigned long old_start = vma->vm_start;
583         unsigned long old_end = vma->vm_end;
584         unsigned long length = old_end - old_start;
585         unsigned long new_start = old_start - shift;
586         unsigned long new_end = old_end - shift;
587         struct mmu_gather tlb;
588
589         BUG_ON(new_start > new_end);
590
591         /*
592          * ensure there are no vmas between where we want to go
593          * and where we are
594          */
595         if (vma != find_vma(mm, new_start))
596                 return -EFAULT;
597
598         /*
599          * cover the whole range: [new_start, old_end)
600          */
601         if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
602                 return -ENOMEM;
603
604         /*
605          * move the page tables downwards, on failure we rely on
606          * process cleanup to remove whatever mess we made.
607          */
608         if (length != move_page_tables(vma, old_start,
609                                        vma, new_start, length, false))
610                 return -ENOMEM;
611
612         lru_add_drain();
613         tlb_gather_mmu(&tlb, mm, old_start, old_end);
614         if (new_end > old_start) {
615                 /*
616                  * when the old and new regions overlap clear from new_end.
617                  */
618                 free_pgd_range(&tlb, new_end, old_end, new_end,
619                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
620         } else {
621                 /*
622                  * otherwise, clean from old_start; this is done to not touch
623                  * the address space in [new_end, old_start) some architectures
624                  * have constraints on va-space that make this illegal (IA64) -
625                  * for the others its just a little faster.
626                  */
627                 free_pgd_range(&tlb, old_start, old_end, new_end,
628                         vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
629         }
630         tlb_finish_mmu(&tlb, old_start, old_end);
631
632         /*
633          * Shrink the vma to just the new range.  Always succeeds.
634          */
635         vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
636
637         return 0;
638 }
639
640 /*
641  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
642  * the stack is optionally relocated, and some extra space is added.
643  */
644 int setup_arg_pages(struct linux_binprm *bprm,
645                     unsigned long stack_top,
646                     int executable_stack)
647 {
648         unsigned long ret;
649         unsigned long stack_shift;
650         struct mm_struct *mm = current->mm;
651         struct vm_area_struct *vma = bprm->vma;
652         struct vm_area_struct *prev = NULL;
653         unsigned long vm_flags;
654         unsigned long stack_base;
655         unsigned long stack_size;
656         unsigned long stack_expand;
657         unsigned long rlim_stack;
658
659 #ifdef CONFIG_STACK_GROWSUP
660         /* Limit stack size to 1GB */
661         stack_base = rlimit_max(RLIMIT_STACK);
662         if (stack_base > (1 << 30))
663                 stack_base = 1 << 30;
664
665         /* Make sure we didn't let the argument array grow too large. */
666         if (vma->vm_end - vma->vm_start > stack_base)
667                 return -ENOMEM;
668
669         stack_base = PAGE_ALIGN(stack_top - stack_base);
670
671         stack_shift = vma->vm_start - stack_base;
672         mm->arg_start = bprm->p - stack_shift;
673         bprm->p = vma->vm_end - stack_shift;
674 #else
675         stack_top = arch_align_stack(stack_top);
676         stack_top = PAGE_ALIGN(stack_top);
677
678         if (unlikely(stack_top < mmap_min_addr) ||
679             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
680                 return -ENOMEM;
681
682         stack_shift = vma->vm_end - stack_top;
683
684         bprm->p -= stack_shift;
685         mm->arg_start = bprm->p;
686 #endif
687
688         if (bprm->loader)
689                 bprm->loader -= stack_shift;
690         bprm->exec -= stack_shift;
691
692         down_write(&mm->mmap_sem);
693         vm_flags = VM_STACK_FLAGS;
694
695         /*
696          * Adjust stack execute permissions; explicitly enable for
697          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
698          * (arch default) otherwise.
699          */
700         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
701                 vm_flags |= VM_EXEC;
702         else if (executable_stack == EXSTACK_DISABLE_X)
703                 vm_flags &= ~VM_EXEC;
704         vm_flags |= mm->def_flags;
705         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
706
707         ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
708                         vm_flags);
709         if (ret)
710                 goto out_unlock;
711         BUG_ON(prev != vma);
712
713         /* Move stack pages down in memory. */
714         if (stack_shift) {
715                 ret = shift_arg_pages(vma, stack_shift);
716                 if (ret)
717                         goto out_unlock;
718         }
719
720         /* mprotect_fixup is overkill to remove the temporary stack flags */
721         vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
722
723         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
724         stack_size = vma->vm_end - vma->vm_start;
725         /*
726          * Align this down to a page boundary as expand_stack
727          * will align it up.
728          */
729         rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
730 #ifdef CONFIG_STACK_GROWSUP
731         if (stack_size + stack_expand > rlim_stack)
732                 stack_base = vma->vm_start + rlim_stack;
733         else
734                 stack_base = vma->vm_end + stack_expand;
735 #else
736         if (stack_size + stack_expand > rlim_stack)
737                 stack_base = vma->vm_end - rlim_stack;
738         else
739                 stack_base = vma->vm_start - stack_expand;
740 #endif
741         current->mm->start_stack = bprm->p;
742         ret = expand_stack(vma, stack_base);
743         if (ret)
744                 ret = -EFAULT;
745
746 out_unlock:
747         up_write(&mm->mmap_sem);
748         return ret;
749 }
750 EXPORT_SYMBOL(setup_arg_pages);
751
752 #endif /* CONFIG_MMU */
753
754 static struct file *do_open_exec(struct filename *name)
755 {
756         struct file *file;
757         int err;
758         static const struct open_flags open_exec_flags = {
759                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
760                 .acc_mode = MAY_EXEC | MAY_OPEN,
761                 .intent = LOOKUP_OPEN,
762                 .lookup_flags = LOOKUP_FOLLOW,
763         };
764
765         file = do_filp_open(AT_FDCWD, name, &open_exec_flags);
766         if (IS_ERR(file))
767                 goto out;
768
769         err = -EACCES;
770         if (!S_ISREG(file_inode(file)->i_mode))
771                 goto exit;
772
773         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
774                 goto exit;
775
776         fsnotify_open(file);
777
778         err = deny_write_access(file);
779         if (err)
780                 goto exit;
781
782 out:
783         return file;
784
785 exit:
786         fput(file);
787         return ERR_PTR(err);
788 }
789
790 struct file *open_exec(const char *name)
791 {
792         struct filename tmp = { .name = name };
793         return do_open_exec(&tmp);
794 }
795 EXPORT_SYMBOL(open_exec);
796
797 int kernel_read(struct file *file, loff_t offset,
798                 char *addr, unsigned long count)
799 {
800         mm_segment_t old_fs;
801         loff_t pos = offset;
802         int result;
803
804         old_fs = get_fs();
805         set_fs(get_ds());
806         /* The cast to a user pointer is valid due to the set_fs() */
807         result = vfs_read(file, (void __user *)addr, count, &pos);
808         set_fs(old_fs);
809         return result;
810 }
811
812 EXPORT_SYMBOL(kernel_read);
813
814 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
815 {
816         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
817         if (res > 0)
818                 flush_icache_range(addr, addr + len);
819         return res;
820 }
821 EXPORT_SYMBOL(read_code);
822
823 static int exec_mmap(struct mm_struct *mm)
824 {
825         struct task_struct *tsk;
826         struct mm_struct *old_mm, *active_mm;
827
828         /* Notify parent that we're no longer interested in the old VM */
829         tsk = current;
830         old_mm = current->mm;
831         mm_release(tsk, old_mm);
832
833         if (old_mm) {
834                 sync_mm_rss(old_mm);
835                 /*
836                  * Make sure that if there is a core dump in progress
837                  * for the old mm, we get out and die instead of going
838                  * through with the exec.  We must hold mmap_sem around
839                  * checking core_state and changing tsk->mm.
840                  */
841                 down_read(&old_mm->mmap_sem);
842                 if (unlikely(old_mm->core_state)) {
843                         up_read(&old_mm->mmap_sem);
844                         return -EINTR;
845                 }
846         }
847         task_lock(tsk);
848         active_mm = tsk->active_mm;
849         tsk->mm = mm;
850         tsk->active_mm = mm;
851         activate_mm(active_mm, mm);
852         tsk->mm->vmacache_seqnum = 0;
853         vmacache_flush(tsk);
854         task_unlock(tsk);
855         if (old_mm) {
856                 up_read(&old_mm->mmap_sem);
857                 BUG_ON(active_mm != old_mm);
858                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
859                 mm_update_next_owner(old_mm);
860                 mmput(old_mm);
861                 return 0;
862         }
863         mmdrop(active_mm);
864         return 0;
865 }
866
867 /*
868  * This function makes sure the current process has its own signal table,
869  * so that flush_signal_handlers can later reset the handlers without
870  * disturbing other processes.  (Other processes might share the signal
871  * table via the CLONE_SIGHAND option to clone().)
872  */
873 static int de_thread(struct task_struct *tsk)
874 {
875         struct signal_struct *sig = tsk->signal;
876         struct sighand_struct *oldsighand = tsk->sighand;
877         spinlock_t *lock = &oldsighand->siglock;
878
879         if (thread_group_empty(tsk))
880                 goto no_thread_group;
881
882         /*
883          * Kill all other threads in the thread group.
884          */
885         spin_lock_irq(lock);
886         if (signal_group_exit(sig)) {
887                 /*
888                  * Another group action in progress, just
889                  * return so that the signal is processed.
890                  */
891                 spin_unlock_irq(lock);
892                 return -EAGAIN;
893         }
894
895         sig->group_exit_task = tsk;
896         sig->notify_count = zap_other_threads(tsk);
897         if (!thread_group_leader(tsk))
898                 sig->notify_count--;
899
900         while (sig->notify_count) {
901                 __set_current_state(TASK_KILLABLE);
902                 spin_unlock_irq(lock);
903                 schedule();
904                 if (unlikely(__fatal_signal_pending(tsk)))
905                         goto killed;
906                 spin_lock_irq(lock);
907         }
908         spin_unlock_irq(lock);
909
910         /*
911          * At this point all other threads have exited, all we have to
912          * do is to wait for the thread group leader to become inactive,
913          * and to assume its PID:
914          */
915         if (!thread_group_leader(tsk)) {
916                 struct task_struct *leader = tsk->group_leader;
917
918                 sig->notify_count = -1; /* for exit_notify() */
919                 for (;;) {
920                         threadgroup_change_begin(tsk);
921                         write_lock_irq(&tasklist_lock);
922                         if (likely(leader->exit_state))
923                                 break;
924                         __set_current_state(TASK_KILLABLE);
925                         write_unlock_irq(&tasklist_lock);
926                         threadgroup_change_end(tsk);
927                         schedule();
928                         if (unlikely(__fatal_signal_pending(tsk)))
929                                 goto killed;
930                 }
931
932                 /*
933                  * The only record we have of the real-time age of a
934                  * process, regardless of execs it's done, is start_time.
935                  * All the past CPU time is accumulated in signal_struct
936                  * from sister threads now dead.  But in this non-leader
937                  * exec, nothing survives from the original leader thread,
938                  * whose birth marks the true age of this process now.
939                  * When we take on its identity by switching to its PID, we
940                  * also take its birthdate (always earlier than our own).
941                  */
942                 tsk->start_time = leader->start_time;
943                 tsk->real_start_time = leader->real_start_time;
944
945                 BUG_ON(!same_thread_group(leader, tsk));
946                 BUG_ON(has_group_leader_pid(tsk));
947                 /*
948                  * An exec() starts a new thread group with the
949                  * TGID of the previous thread group. Rehash the
950                  * two threads with a switched PID, and release
951                  * the former thread group leader:
952                  */
953
954                 /* Become a process group leader with the old leader's pid.
955                  * The old leader becomes a thread of the this thread group.
956                  * Note: The old leader also uses this pid until release_task
957                  *       is called.  Odd but simple and correct.
958                  */
959                 tsk->pid = leader->pid;
960                 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
961                 transfer_pid(leader, tsk, PIDTYPE_PGID);
962                 transfer_pid(leader, tsk, PIDTYPE_SID);
963
964                 list_replace_rcu(&leader->tasks, &tsk->tasks);
965                 list_replace_init(&leader->sibling, &tsk->sibling);
966
967                 tsk->group_leader = tsk;
968                 leader->group_leader = tsk;
969
970                 tsk->exit_signal = SIGCHLD;
971                 leader->exit_signal = -1;
972
973                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
974                 leader->exit_state = EXIT_DEAD;
975
976                 /*
977                  * We are going to release_task()->ptrace_unlink() silently,
978                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
979                  * the tracer wont't block again waiting for this thread.
980                  */
981                 if (unlikely(leader->ptrace))
982                         __wake_up_parent(leader, leader->parent);
983                 write_unlock_irq(&tasklist_lock);
984                 threadgroup_change_end(tsk);
985
986                 release_task(leader);
987         }
988
989         sig->group_exit_task = NULL;
990         sig->notify_count = 0;
991
992 no_thread_group:
993         /* we have changed execution domain */
994         tsk->exit_signal = SIGCHLD;
995
996         exit_itimers(sig);
997         flush_itimer_signals();
998
999         if (atomic_read(&oldsighand->count) != 1) {
1000                 struct sighand_struct *newsighand;
1001                 /*
1002                  * This ->sighand is shared with the CLONE_SIGHAND
1003                  * but not CLONE_THREAD task, switch to the new one.
1004                  */
1005                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1006                 if (!newsighand)
1007                         return -ENOMEM;
1008
1009                 atomic_set(&newsighand->count, 1);
1010                 memcpy(newsighand->action, oldsighand->action,
1011                        sizeof(newsighand->action));
1012
1013                 write_lock_irq(&tasklist_lock);
1014                 spin_lock(&oldsighand->siglock);
1015                 rcu_assign_pointer(tsk->sighand, newsighand);
1016                 spin_unlock(&oldsighand->siglock);
1017                 write_unlock_irq(&tasklist_lock);
1018
1019                 __cleanup_sighand(oldsighand);
1020         }
1021
1022         BUG_ON(!thread_group_leader(tsk));
1023         return 0;
1024
1025 killed:
1026         /* protects against exit_notify() and __exit_signal() */
1027         read_lock(&tasklist_lock);
1028         sig->group_exit_task = NULL;
1029         sig->notify_count = 0;
1030         read_unlock(&tasklist_lock);
1031         return -EAGAIN;
1032 }
1033
1034 char *get_task_comm(char *buf, struct task_struct *tsk)
1035 {
1036         /* buf must be at least sizeof(tsk->comm) in size */
1037         task_lock(tsk);
1038         strncpy(buf, tsk->comm, sizeof(tsk->comm));
1039         task_unlock(tsk);
1040         return buf;
1041 }
1042 EXPORT_SYMBOL_GPL(get_task_comm);
1043
1044 /*
1045  * These functions flushes out all traces of the currently running executable
1046  * so that a new one can be started
1047  */
1048
1049 void set_task_comm(struct task_struct *tsk, const char *buf)
1050 {
1051         task_lock(tsk);
1052         trace_task_rename(tsk, buf);
1053         strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1054         task_unlock(tsk);
1055         perf_event_comm(tsk);
1056 }
1057
1058 int flush_old_exec(struct linux_binprm * bprm)
1059 {
1060         int retval;
1061
1062         /*
1063          * Make sure we have a private signal table and that
1064          * we are unassociated from the previous thread group.
1065          */
1066         retval = de_thread(current);
1067         if (retval)
1068                 goto out;
1069
1070         set_mm_exe_file(bprm->mm, bprm->file);
1071         /*
1072          * Release all of the old mmap stuff
1073          */
1074         acct_arg_size(bprm, 0);
1075         retval = exec_mmap(bprm->mm);
1076         if (retval)
1077                 goto out;
1078
1079         bprm->mm = NULL;                /* We're using it now */
1080
1081         set_fs(USER_DS);
1082         current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1083                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1084         flush_thread();
1085         current->personality &= ~bprm->per_clear;
1086
1087         return 0;
1088
1089 out:
1090         return retval;
1091 }
1092 EXPORT_SYMBOL(flush_old_exec);
1093
1094 void would_dump(struct linux_binprm *bprm, struct file *file)
1095 {
1096         if (inode_permission(file_inode(file), MAY_READ) < 0)
1097                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1098 }
1099 EXPORT_SYMBOL(would_dump);
1100
1101 void setup_new_exec(struct linux_binprm * bprm)
1102 {
1103         arch_pick_mmap_layout(current->mm);
1104
1105         /* This is the point of no return */
1106         current->sas_ss_sp = current->sas_ss_size = 0;
1107
1108         if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1109                 set_dumpable(current->mm, SUID_DUMP_USER);
1110         else
1111                 set_dumpable(current->mm, suid_dumpable);
1112
1113         set_task_comm(current, kbasename(bprm->filename));
1114
1115         /* Set the new mm task size. We have to do that late because it may
1116          * depend on TIF_32BIT which is only updated in flush_thread() on
1117          * some architectures like powerpc
1118          */
1119         current->mm->task_size = TASK_SIZE;
1120
1121         /* install the new credentials */
1122         if (!uid_eq(bprm->cred->uid, current_euid()) ||
1123             !gid_eq(bprm->cred->gid, current_egid())) {
1124                 current->pdeath_signal = 0;
1125         } else {
1126                 would_dump(bprm, bprm->file);
1127                 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1128                         set_dumpable(current->mm, suid_dumpable);
1129         }
1130
1131         /* An exec changes our domain. We are no longer part of the thread
1132            group */
1133         current->self_exec_id++;
1134         flush_signal_handlers(current, 0);
1135         do_close_on_exec(current->files);
1136 }
1137 EXPORT_SYMBOL(setup_new_exec);
1138
1139 /*
1140  * Prepare credentials and lock ->cred_guard_mutex.
1141  * install_exec_creds() commits the new creds and drops the lock.
1142  * Or, if exec fails before, free_bprm() should release ->cred and
1143  * and unlock.
1144  */
1145 int prepare_bprm_creds(struct linux_binprm *bprm)
1146 {
1147         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1148                 return -ERESTARTNOINTR;
1149
1150         bprm->cred = prepare_exec_creds();
1151         if (likely(bprm->cred))
1152                 return 0;
1153
1154         mutex_unlock(&current->signal->cred_guard_mutex);
1155         return -ENOMEM;
1156 }
1157
1158 static void free_bprm(struct linux_binprm *bprm)
1159 {
1160         free_arg_pages(bprm);
1161         if (bprm->cred) {
1162                 mutex_unlock(&current->signal->cred_guard_mutex);
1163                 abort_creds(bprm->cred);
1164         }
1165         if (bprm->file) {
1166                 allow_write_access(bprm->file);
1167                 fput(bprm->file);
1168         }
1169         /* If a binfmt changed the interp, free it. */
1170         if (bprm->interp != bprm->filename)
1171                 kfree(bprm->interp);
1172         kfree(bprm);
1173 }
1174
1175 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1176 {
1177         /* If a binfmt changed the interp, free it first. */
1178         if (bprm->interp != bprm->filename)
1179                 kfree(bprm->interp);
1180         bprm->interp = kstrdup(interp, GFP_KERNEL);
1181         if (!bprm->interp)
1182                 return -ENOMEM;
1183         return 0;
1184 }
1185 EXPORT_SYMBOL(bprm_change_interp);
1186
1187 /*
1188  * install the new credentials for this executable
1189  */
1190 void install_exec_creds(struct linux_binprm *bprm)
1191 {
1192         security_bprm_committing_creds(bprm);
1193
1194         commit_creds(bprm->cred);
1195         bprm->cred = NULL;
1196
1197         /*
1198          * Disable monitoring for regular users
1199          * when executing setuid binaries. Must
1200          * wait until new credentials are committed
1201          * by commit_creds() above
1202          */
1203         if (get_dumpable(current->mm) != SUID_DUMP_USER)
1204                 perf_event_exit_task(current);
1205         /*
1206          * cred_guard_mutex must be held at least to this point to prevent
1207          * ptrace_attach() from altering our determination of the task's
1208          * credentials; any time after this it may be unlocked.
1209          */
1210         security_bprm_committed_creds(bprm);
1211         mutex_unlock(&current->signal->cred_guard_mutex);
1212 }
1213 EXPORT_SYMBOL(install_exec_creds);
1214
1215 /*
1216  * determine how safe it is to execute the proposed program
1217  * - the caller must hold ->cred_guard_mutex to protect against
1218  *   PTRACE_ATTACH
1219  */
1220 static void check_unsafe_exec(struct linux_binprm *bprm)
1221 {
1222         struct task_struct *p = current, *t;
1223         unsigned n_fs;
1224
1225         if (p->ptrace) {
1226                 if (p->ptrace & PT_PTRACE_CAP)
1227                         bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1228                 else
1229                         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1230         }
1231
1232         /*
1233          * This isn't strictly necessary, but it makes it harder for LSMs to
1234          * mess up.
1235          */
1236         if (current->no_new_privs)
1237                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1238
1239         t = p;
1240         n_fs = 1;
1241         spin_lock(&p->fs->lock);
1242         rcu_read_lock();
1243         while_each_thread(p, t) {
1244                 if (t->fs == p->fs)
1245                         n_fs++;
1246         }
1247         rcu_read_unlock();
1248
1249         if (p->fs->users > n_fs)
1250                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1251         else
1252                 p->fs->in_exec = 1;
1253         spin_unlock(&p->fs->lock);
1254 }
1255
1256 /*
1257  * Fill the binprm structure from the inode.
1258  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1259  *
1260  * This may be called multiple times for binary chains (scripts for example).
1261  */
1262 int prepare_binprm(struct linux_binprm *bprm)
1263 {
1264         struct inode *inode = file_inode(bprm->file);
1265         umode_t mode = inode->i_mode;
1266         int retval;
1267
1268
1269         /* clear any previous set[ug]id data from a previous binary */
1270         bprm->cred->euid = current_euid();
1271         bprm->cred->egid = current_egid();
1272
1273         if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) &&
1274             !current->no_new_privs &&
1275             kuid_has_mapping(bprm->cred->user_ns, inode->i_uid) &&
1276             kgid_has_mapping(bprm->cred->user_ns, inode->i_gid)) {
1277                 /* Set-uid? */
1278                 if (mode & S_ISUID) {
1279                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1280                         bprm->cred->euid = inode->i_uid;
1281                 }
1282
1283                 /* Set-gid? */
1284                 /*
1285                  * If setgid is set but no group execute bit then this
1286                  * is a candidate for mandatory locking, not a setgid
1287                  * executable.
1288                  */
1289                 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1290                         bprm->per_clear |= PER_CLEAR_ON_SETID;
1291                         bprm->cred->egid = inode->i_gid;
1292                 }
1293         }
1294
1295         /* fill in binprm security blob */
1296         retval = security_bprm_set_creds(bprm);
1297         if (retval)
1298                 return retval;
1299         bprm->cred_prepared = 1;
1300
1301         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1302         return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1303 }
1304
1305 EXPORT_SYMBOL(prepare_binprm);
1306
1307 /*
1308  * Arguments are '\0' separated strings found at the location bprm->p
1309  * points to; chop off the first by relocating brpm->p to right after
1310  * the first '\0' encountered.
1311  */
1312 int remove_arg_zero(struct linux_binprm *bprm)
1313 {
1314         int ret = 0;
1315         unsigned long offset;
1316         char *kaddr;
1317         struct page *page;
1318
1319         if (!bprm->argc)
1320                 return 0;
1321
1322         do {
1323                 offset = bprm->p & ~PAGE_MASK;
1324                 page = get_arg_page(bprm, bprm->p, 0);
1325                 if (!page) {
1326                         ret = -EFAULT;
1327                         goto out;
1328                 }
1329                 kaddr = kmap_atomic(page);
1330
1331                 for (; offset < PAGE_SIZE && kaddr[offset];
1332                                 offset++, bprm->p++)
1333                         ;
1334
1335                 kunmap_atomic(kaddr);
1336                 put_arg_page(page);
1337
1338                 if (offset == PAGE_SIZE)
1339                         free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1340         } while (offset == PAGE_SIZE);
1341
1342         bprm->p++;
1343         bprm->argc--;
1344         ret = 0;
1345
1346 out:
1347         return ret;
1348 }
1349 EXPORT_SYMBOL(remove_arg_zero);
1350
1351 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1352 /*
1353  * cycle the list of binary formats handler, until one recognizes the image
1354  */
1355 int search_binary_handler(struct linux_binprm *bprm)
1356 {
1357         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1358         struct linux_binfmt *fmt;
1359         int retval;
1360
1361         /* This allows 4 levels of binfmt rewrites before failing hard. */
1362         if (bprm->recursion_depth > 5)
1363                 return -ELOOP;
1364
1365         retval = security_bprm_check(bprm);
1366         if (retval)
1367                 return retval;
1368
1369         retval = -ENOENT;
1370  retry:
1371         read_lock(&binfmt_lock);
1372         list_for_each_entry(fmt, &formats, lh) {
1373                 if (!try_module_get(fmt->module))
1374                         continue;
1375                 read_unlock(&binfmt_lock);
1376                 bprm->recursion_depth++;
1377                 retval = fmt->load_binary(bprm);
1378                 bprm->recursion_depth--;
1379                 if (retval >= 0 || retval != -ENOEXEC ||
1380                     bprm->mm == NULL || bprm->file == NULL) {
1381                         put_binfmt(fmt);
1382                         return retval;
1383                 }
1384                 read_lock(&binfmt_lock);
1385                 put_binfmt(fmt);
1386         }
1387         read_unlock(&binfmt_lock);
1388
1389         if (need_retry && retval == -ENOEXEC) {
1390                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1391                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1392                         return retval;
1393                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1394                         return retval;
1395                 need_retry = false;
1396                 goto retry;
1397         }
1398
1399         return retval;
1400 }
1401 EXPORT_SYMBOL(search_binary_handler);
1402
1403 static int exec_binprm(struct linux_binprm *bprm)
1404 {
1405         pid_t old_pid, old_vpid;
1406         int ret;
1407
1408         /* Need to fetch pid before load_binary changes it */
1409         old_pid = current->pid;
1410         rcu_read_lock();
1411         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1412         rcu_read_unlock();
1413
1414         ret = search_binary_handler(bprm);
1415         if (ret >= 0) {
1416                 audit_bprm(bprm);
1417                 trace_sched_process_exec(current, old_pid, bprm);
1418                 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1419                 proc_exec_connector(current);
1420         }
1421
1422         return ret;
1423 }
1424
1425 /*
1426  * sys_execve() executes a new program.
1427  */
1428 static int do_execve_common(struct filename *filename,
1429                                 struct user_arg_ptr argv,
1430                                 struct user_arg_ptr envp)
1431 {
1432         struct linux_binprm *bprm;
1433         struct file *file;
1434         struct files_struct *displaced;
1435         int retval;
1436
1437         if (IS_ERR(filename))
1438                 return PTR_ERR(filename);
1439
1440         /*
1441          * We move the actual failure in case of RLIMIT_NPROC excess from
1442          * set*uid() to execve() because too many poorly written programs
1443          * don't check setuid() return code.  Here we additionally recheck
1444          * whether NPROC limit is still exceeded.
1445          */
1446         if ((current->flags & PF_NPROC_EXCEEDED) &&
1447             atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1448                 retval = -EAGAIN;
1449                 goto out_ret;
1450         }
1451
1452         /* We're below the limit (still or again), so we don't want to make
1453          * further execve() calls fail. */
1454         current->flags &= ~PF_NPROC_EXCEEDED;
1455
1456         retval = unshare_files(&displaced);
1457         if (retval)
1458                 goto out_ret;
1459
1460         retval = -ENOMEM;
1461         bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1462         if (!bprm)
1463                 goto out_files;
1464
1465         retval = prepare_bprm_creds(bprm);
1466         if (retval)
1467                 goto out_free;
1468
1469         check_unsafe_exec(bprm);
1470         current->in_execve = 1;
1471
1472         file = do_open_exec(filename);
1473         retval = PTR_ERR(file);
1474         if (IS_ERR(file))
1475                 goto out_unmark;
1476
1477         sched_exec();
1478
1479         bprm->file = file;
1480         bprm->filename = bprm->interp = filename->name;
1481
1482         retval = bprm_mm_init(bprm);
1483         if (retval)
1484                 goto out_unmark;
1485
1486         bprm->argc = count(argv, MAX_ARG_STRINGS);
1487         if ((retval = bprm->argc) < 0)
1488                 goto out;
1489
1490         bprm->envc = count(envp, MAX_ARG_STRINGS);
1491         if ((retval = bprm->envc) < 0)
1492                 goto out;
1493
1494         retval = prepare_binprm(bprm);
1495         if (retval < 0)
1496                 goto out;
1497
1498         retval = copy_strings_kernel(1, &bprm->filename, bprm);
1499         if (retval < 0)
1500                 goto out;
1501
1502         bprm->exec = bprm->p;
1503         retval = copy_strings(bprm->envc, envp, bprm);
1504         if (retval < 0)
1505                 goto out;
1506
1507         retval = copy_strings(bprm->argc, argv, bprm);
1508         if (retval < 0)
1509                 goto out;
1510
1511         retval = exec_binprm(bprm);
1512         if (retval < 0)
1513                 goto out;
1514
1515         /* execve succeeded */
1516         current->fs->in_exec = 0;
1517         current->in_execve = 0;
1518         acct_update_integrals(current);
1519         task_numa_free(current);
1520         free_bprm(bprm);
1521         putname(filename);
1522         if (displaced)
1523                 put_files_struct(displaced);
1524         return retval;
1525
1526 out:
1527         if (bprm->mm) {
1528                 acct_arg_size(bprm, 0);
1529                 mmput(bprm->mm);
1530         }
1531
1532 out_unmark:
1533         current->fs->in_exec = 0;
1534         current->in_execve = 0;
1535
1536 out_free:
1537         free_bprm(bprm);
1538
1539 out_files:
1540         if (displaced)
1541                 reset_files_struct(displaced);
1542 out_ret:
1543         putname(filename);
1544         return retval;
1545 }
1546
1547 int do_execve(struct filename *filename,
1548         const char __user *const __user *__argv,
1549         const char __user *const __user *__envp)
1550 {
1551         struct user_arg_ptr argv = { .ptr.native = __argv };
1552         struct user_arg_ptr envp = { .ptr.native = __envp };
1553         return do_execve_common(filename, argv, envp);
1554 }
1555
1556 #ifdef CONFIG_COMPAT
1557 static int compat_do_execve(struct filename *filename,
1558         const compat_uptr_t __user *__argv,
1559         const compat_uptr_t __user *__envp)
1560 {
1561         struct user_arg_ptr argv = {
1562                 .is_compat = true,
1563                 .ptr.compat = __argv,
1564         };
1565         struct user_arg_ptr envp = {
1566                 .is_compat = true,
1567                 .ptr.compat = __envp,
1568         };
1569         return do_execve_common(filename, argv, envp);
1570 }
1571 #endif
1572
1573 void set_binfmt(struct linux_binfmt *new)
1574 {
1575         struct mm_struct *mm = current->mm;
1576
1577         if (mm->binfmt)
1578                 module_put(mm->binfmt->module);
1579
1580         mm->binfmt = new;
1581         if (new)
1582                 __module_get(new->module);
1583 }
1584 EXPORT_SYMBOL(set_binfmt);
1585
1586 /*
1587  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1588  */
1589 void set_dumpable(struct mm_struct *mm, int value)
1590 {
1591         unsigned long old, new;
1592
1593         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1594                 return;
1595
1596         do {
1597                 old = ACCESS_ONCE(mm->flags);
1598                 new = (old & ~MMF_DUMPABLE_MASK) | value;
1599         } while (cmpxchg(&mm->flags, old, new) != old);
1600 }
1601
1602 SYSCALL_DEFINE3(execve,
1603                 const char __user *, filename,
1604                 const char __user *const __user *, argv,
1605                 const char __user *const __user *, envp)
1606 {
1607         return do_execve(getname(filename), argv, envp);
1608 }
1609 #ifdef CONFIG_COMPAT
1610 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1611         const compat_uptr_t __user *, argv,
1612         const compat_uptr_t __user *, envp)
1613 {
1614         return compat_do_execve(getname(filename), argv, envp);
1615 }
1616 #endif