Merge tag 'trace-3.15-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196                                        struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         spin_lock(&fs_info->defrag_inodes_lock);
235         p = fs_info->defrag_inodes.rb_node;
236         while (p) {
237                 parent = p;
238                 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240                 ret = __compare_inode_defrag(&tmp, entry);
241                 if (ret < 0)
242                         p = parent->rb_left;
243                 else if (ret > 0)
244                         p = parent->rb_right;
245                 else
246                         goto out;
247         }
248
249         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                 parent = rb_next(parent);
251                 if (parent)
252                         entry = rb_entry(parent, struct inode_defrag, rb_node);
253                 else
254                         entry = NULL;
255         }
256 out:
257         if (entry)
258                 rb_erase(parent, &fs_info->defrag_inodes);
259         spin_unlock(&fs_info->defrag_inodes_lock);
260         return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265         struct inode_defrag *defrag;
266         struct rb_node *node;
267
268         spin_lock(&fs_info->defrag_inodes_lock);
269         node = rb_first(&fs_info->defrag_inodes);
270         while (node) {
271                 rb_erase(node, &fs_info->defrag_inodes);
272                 defrag = rb_entry(node, struct inode_defrag, rb_node);
273                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275                 if (need_resched()) {
276                         spin_unlock(&fs_info->defrag_inodes_lock);
277                         cond_resched();
278                         spin_lock(&fs_info->defrag_inodes_lock);
279                 }
280
281                 node = rb_first(&fs_info->defrag_inodes);
282         }
283         spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH      1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289                                     struct inode_defrag *defrag)
290 {
291         struct btrfs_root *inode_root;
292         struct inode *inode;
293         struct btrfs_key key;
294         struct btrfs_ioctl_defrag_range_args range;
295         int num_defrag;
296         int index;
297         int ret;
298
299         /* get the inode */
300         key.objectid = defrag->root;
301         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302         key.offset = (u64)-1;
303
304         index = srcu_read_lock(&fs_info->subvol_srcu);
305
306         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307         if (IS_ERR(inode_root)) {
308                 ret = PTR_ERR(inode_root);
309                 goto cleanup;
310         }
311
312         key.objectid = defrag->ino;
313         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314         key.offset = 0;
315         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316         if (IS_ERR(inode)) {
317                 ret = PTR_ERR(inode);
318                 goto cleanup;
319         }
320         srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322         /* do a chunk of defrag */
323         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324         memset(&range, 0, sizeof(range));
325         range.len = (u64)-1;
326         range.start = defrag->last_offset;
327
328         sb_start_write(fs_info->sb);
329         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330                                        BTRFS_DEFRAG_BATCH);
331         sb_end_write(fs_info->sb);
332         /*
333          * if we filled the whole defrag batch, there
334          * must be more work to do.  Queue this defrag
335          * again
336          */
337         if (num_defrag == BTRFS_DEFRAG_BATCH) {
338                 defrag->last_offset = range.start;
339                 btrfs_requeue_inode_defrag(inode, defrag);
340         } else if (defrag->last_offset && !defrag->cycled) {
341                 /*
342                  * we didn't fill our defrag batch, but
343                  * we didn't start at zero.  Make sure we loop
344                  * around to the start of the file.
345                  */
346                 defrag->last_offset = 0;
347                 defrag->cycled = 1;
348                 btrfs_requeue_inode_defrag(inode, defrag);
349         } else {
350                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351         }
352
353         iput(inode);
354         return 0;
355 cleanup:
356         srcu_read_unlock(&fs_info->subvol_srcu, index);
357         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358         return ret;
359 }
360
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367         struct inode_defrag *defrag;
368         u64 first_ino = 0;
369         u64 root_objectid = 0;
370
371         atomic_inc(&fs_info->defrag_running);
372         while (1) {
373                 /* Pause the auto defragger. */
374                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375                              &fs_info->fs_state))
376                         break;
377
378                 if (!__need_auto_defrag(fs_info->tree_root))
379                         break;
380
381                 /* find an inode to defrag */
382                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383                                                  first_ino);
384                 if (!defrag) {
385                         if (root_objectid || first_ino) {
386                                 root_objectid = 0;
387                                 first_ino = 0;
388                                 continue;
389                         } else {
390                                 break;
391                         }
392                 }
393
394                 first_ino = defrag->ino + 1;
395                 root_objectid = defrag->root;
396
397                 __btrfs_run_defrag_inode(fs_info, defrag);
398         }
399         atomic_dec(&fs_info->defrag_running);
400
401         /*
402          * during unmount, we use the transaction_wait queue to
403          * wait for the defragger to stop
404          */
405         wake_up(&fs_info->transaction_wait);
406         return 0;
407 }
408
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413                                          size_t write_bytes,
414                                          struct page **prepared_pages,
415                                          struct iov_iter *i)
416 {
417         size_t copied = 0;
418         size_t total_copied = 0;
419         int pg = 0;
420         int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422         while (write_bytes > 0) {
423                 size_t count = min_t(size_t,
424                                      PAGE_CACHE_SIZE - offset, write_bytes);
425                 struct page *page = prepared_pages[pg];
426                 /*
427                  * Copy data from userspace to the current page
428                  *
429                  * Disable pagefault to avoid recursive lock since
430                  * the pages are already locked
431                  */
432                 pagefault_disable();
433                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
434                 pagefault_enable();
435
436                 /* Flush processor's dcache for this page */
437                 flush_dcache_page(page);
438
439                 /*
440                  * if we get a partial write, we can end up with
441                  * partially up to date pages.  These add
442                  * a lot of complexity, so make sure they don't
443                  * happen by forcing this copy to be retried.
444                  *
445                  * The rest of the btrfs_file_write code will fall
446                  * back to page at a time copies after we return 0.
447                  */
448                 if (!PageUptodate(page) && copied < count)
449                         copied = 0;
450
451                 iov_iter_advance(i, copied);
452                 write_bytes -= copied;
453                 total_copied += copied;
454
455                 /* Return to btrfs_file_aio_write to fault page */
456                 if (unlikely(copied == 0))
457                         break;
458
459                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
460                         offset += copied;
461                 } else {
462                         pg++;
463                         offset = 0;
464                 }
465         }
466         return total_copied;
467 }
468
469 /*
470  * unlocks pages after btrfs_file_write is done with them
471  */
472 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
473 {
474         size_t i;
475         for (i = 0; i < num_pages; i++) {
476                 /* page checked is some magic around finding pages that
477                  * have been modified without going through btrfs_set_page_dirty
478                  * clear it here
479                  */
480                 ClearPageChecked(pages[i]);
481                 unlock_page(pages[i]);
482                 mark_page_accessed(pages[i]);
483                 page_cache_release(pages[i]);
484         }
485 }
486
487 /*
488  * after copy_from_user, pages need to be dirtied and we need to make
489  * sure holes are created between the current EOF and the start of
490  * any next extents (if required).
491  *
492  * this also makes the decision about creating an inline extent vs
493  * doing real data extents, marking pages dirty and delalloc as required.
494  */
495 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
496                              struct page **pages, size_t num_pages,
497                              loff_t pos, size_t write_bytes,
498                              struct extent_state **cached)
499 {
500         int err = 0;
501         int i;
502         u64 num_bytes;
503         u64 start_pos;
504         u64 end_of_last_block;
505         u64 end_pos = pos + write_bytes;
506         loff_t isize = i_size_read(inode);
507
508         start_pos = pos & ~((u64)root->sectorsize - 1);
509         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
510
511         end_of_last_block = start_pos + num_bytes - 1;
512         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
513                                         cached);
514         if (err)
515                 return err;
516
517         for (i = 0; i < num_pages; i++) {
518                 struct page *p = pages[i];
519                 SetPageUptodate(p);
520                 ClearPageChecked(p);
521                 set_page_dirty(p);
522         }
523
524         /*
525          * we've only changed i_size in ram, and we haven't updated
526          * the disk i_size.  There is no need to log the inode
527          * at this time.
528          */
529         if (end_pos > isize)
530                 i_size_write(inode, end_pos);
531         return 0;
532 }
533
534 /*
535  * this drops all the extents in the cache that intersect the range
536  * [start, end].  Existing extents are split as required.
537  */
538 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
539                              int skip_pinned)
540 {
541         struct extent_map *em;
542         struct extent_map *split = NULL;
543         struct extent_map *split2 = NULL;
544         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
545         u64 len = end - start + 1;
546         u64 gen;
547         int ret;
548         int testend = 1;
549         unsigned long flags;
550         int compressed = 0;
551         bool modified;
552
553         WARN_ON(end < start);
554         if (end == (u64)-1) {
555                 len = (u64)-1;
556                 testend = 0;
557         }
558         while (1) {
559                 int no_splits = 0;
560
561                 modified = false;
562                 if (!split)
563                         split = alloc_extent_map();
564                 if (!split2)
565                         split2 = alloc_extent_map();
566                 if (!split || !split2)
567                         no_splits = 1;
568
569                 write_lock(&em_tree->lock);
570                 em = lookup_extent_mapping(em_tree, start, len);
571                 if (!em) {
572                         write_unlock(&em_tree->lock);
573                         break;
574                 }
575                 flags = em->flags;
576                 gen = em->generation;
577                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
578                         if (testend && em->start + em->len >= start + len) {
579                                 free_extent_map(em);
580                                 write_unlock(&em_tree->lock);
581                                 break;
582                         }
583                         start = em->start + em->len;
584                         if (testend)
585                                 len = start + len - (em->start + em->len);
586                         free_extent_map(em);
587                         write_unlock(&em_tree->lock);
588                         continue;
589                 }
590                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
591                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
592                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
593                 modified = !list_empty(&em->list);
594                 if (no_splits)
595                         goto next;
596
597                 if (em->start < start) {
598                         split->start = em->start;
599                         split->len = start - em->start;
600
601                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
602                                 split->orig_start = em->orig_start;
603                                 split->block_start = em->block_start;
604
605                                 if (compressed)
606                                         split->block_len = em->block_len;
607                                 else
608                                         split->block_len = split->len;
609                                 split->orig_block_len = max(split->block_len,
610                                                 em->orig_block_len);
611                                 split->ram_bytes = em->ram_bytes;
612                         } else {
613                                 split->orig_start = split->start;
614                                 split->block_len = 0;
615                                 split->block_start = em->block_start;
616                                 split->orig_block_len = 0;
617                                 split->ram_bytes = split->len;
618                         }
619
620                         split->generation = gen;
621                         split->bdev = em->bdev;
622                         split->flags = flags;
623                         split->compress_type = em->compress_type;
624                         replace_extent_mapping(em_tree, em, split, modified);
625                         free_extent_map(split);
626                         split = split2;
627                         split2 = NULL;
628                 }
629                 if (testend && em->start + em->len > start + len) {
630                         u64 diff = start + len - em->start;
631
632                         split->start = start + len;
633                         split->len = em->start + em->len - (start + len);
634                         split->bdev = em->bdev;
635                         split->flags = flags;
636                         split->compress_type = em->compress_type;
637                         split->generation = gen;
638
639                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
640                                 split->orig_block_len = max(em->block_len,
641                                                     em->orig_block_len);
642
643                                 split->ram_bytes = em->ram_bytes;
644                                 if (compressed) {
645                                         split->block_len = em->block_len;
646                                         split->block_start = em->block_start;
647                                         split->orig_start = em->orig_start;
648                                 } else {
649                                         split->block_len = split->len;
650                                         split->block_start = em->block_start
651                                                 + diff;
652                                         split->orig_start = em->orig_start;
653                                 }
654                         } else {
655                                 split->ram_bytes = split->len;
656                                 split->orig_start = split->start;
657                                 split->block_len = 0;
658                                 split->block_start = em->block_start;
659                                 split->orig_block_len = 0;
660                         }
661
662                         if (extent_map_in_tree(em)) {
663                                 replace_extent_mapping(em_tree, em, split,
664                                                        modified);
665                         } else {
666                                 ret = add_extent_mapping(em_tree, split,
667                                                          modified);
668                                 ASSERT(ret == 0); /* Logic error */
669                         }
670                         free_extent_map(split);
671                         split = NULL;
672                 }
673 next:
674                 if (extent_map_in_tree(em))
675                         remove_extent_mapping(em_tree, em);
676                 write_unlock(&em_tree->lock);
677
678                 /* once for us */
679                 free_extent_map(em);
680                 /* once for the tree*/
681                 free_extent_map(em);
682         }
683         if (split)
684                 free_extent_map(split);
685         if (split2)
686                 free_extent_map(split2);
687 }
688
689 /*
690  * this is very complex, but the basic idea is to drop all extents
691  * in the range start - end.  hint_block is filled in with a block number
692  * that would be a good hint to the block allocator for this file.
693  *
694  * If an extent intersects the range but is not entirely inside the range
695  * it is either truncated or split.  Anything entirely inside the range
696  * is deleted from the tree.
697  */
698 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
699                          struct btrfs_root *root, struct inode *inode,
700                          struct btrfs_path *path, u64 start, u64 end,
701                          u64 *drop_end, int drop_cache,
702                          int replace_extent,
703                          u32 extent_item_size,
704                          int *key_inserted)
705 {
706         struct extent_buffer *leaf;
707         struct btrfs_file_extent_item *fi;
708         struct btrfs_key key;
709         struct btrfs_key new_key;
710         u64 ino = btrfs_ino(inode);
711         u64 search_start = start;
712         u64 disk_bytenr = 0;
713         u64 num_bytes = 0;
714         u64 extent_offset = 0;
715         u64 extent_end = 0;
716         int del_nr = 0;
717         int del_slot = 0;
718         int extent_type;
719         int recow;
720         int ret;
721         int modify_tree = -1;
722         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
723         int found = 0;
724         int leafs_visited = 0;
725
726         if (drop_cache)
727                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
728
729         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
730                 modify_tree = 0;
731
732         while (1) {
733                 recow = 0;
734                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
735                                                search_start, modify_tree);
736                 if (ret < 0)
737                         break;
738                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
739                         leaf = path->nodes[0];
740                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
741                         if (key.objectid == ino &&
742                             key.type == BTRFS_EXTENT_DATA_KEY)
743                                 path->slots[0]--;
744                 }
745                 ret = 0;
746                 leafs_visited++;
747 next_slot:
748                 leaf = path->nodes[0];
749                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
750                         BUG_ON(del_nr > 0);
751                         ret = btrfs_next_leaf(root, path);
752                         if (ret < 0)
753                                 break;
754                         if (ret > 0) {
755                                 ret = 0;
756                                 break;
757                         }
758                         leafs_visited++;
759                         leaf = path->nodes[0];
760                         recow = 1;
761                 }
762
763                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
764                 if (key.objectid > ino ||
765                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
766                         break;
767
768                 fi = btrfs_item_ptr(leaf, path->slots[0],
769                                     struct btrfs_file_extent_item);
770                 extent_type = btrfs_file_extent_type(leaf, fi);
771
772                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
773                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
774                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
775                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
776                         extent_offset = btrfs_file_extent_offset(leaf, fi);
777                         extent_end = key.offset +
778                                 btrfs_file_extent_num_bytes(leaf, fi);
779                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
780                         extent_end = key.offset +
781                                 btrfs_file_extent_inline_len(leaf,
782                                                      path->slots[0], fi);
783                 } else {
784                         WARN_ON(1);
785                         extent_end = search_start;
786                 }
787
788                 if (extent_end <= search_start) {
789                         path->slots[0]++;
790                         goto next_slot;
791                 }
792
793                 found = 1;
794                 search_start = max(key.offset, start);
795                 if (recow || !modify_tree) {
796                         modify_tree = -1;
797                         btrfs_release_path(path);
798                         continue;
799                 }
800
801                 /*
802                  *     | - range to drop - |
803                  *  | -------- extent -------- |
804                  */
805                 if (start > key.offset && end < extent_end) {
806                         BUG_ON(del_nr > 0);
807                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
808                                 ret = -EINVAL;
809                                 break;
810                         }
811
812                         memcpy(&new_key, &key, sizeof(new_key));
813                         new_key.offset = start;
814                         ret = btrfs_duplicate_item(trans, root, path,
815                                                    &new_key);
816                         if (ret == -EAGAIN) {
817                                 btrfs_release_path(path);
818                                 continue;
819                         }
820                         if (ret < 0)
821                                 break;
822
823                         leaf = path->nodes[0];
824                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
825                                             struct btrfs_file_extent_item);
826                         btrfs_set_file_extent_num_bytes(leaf, fi,
827                                                         start - key.offset);
828
829                         fi = btrfs_item_ptr(leaf, path->slots[0],
830                                             struct btrfs_file_extent_item);
831
832                         extent_offset += start - key.offset;
833                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
834                         btrfs_set_file_extent_num_bytes(leaf, fi,
835                                                         extent_end - start);
836                         btrfs_mark_buffer_dirty(leaf);
837
838                         if (update_refs && disk_bytenr > 0) {
839                                 ret = btrfs_inc_extent_ref(trans, root,
840                                                 disk_bytenr, num_bytes, 0,
841                                                 root->root_key.objectid,
842                                                 new_key.objectid,
843                                                 start - extent_offset, 0);
844                                 BUG_ON(ret); /* -ENOMEM */
845                         }
846                         key.offset = start;
847                 }
848                 /*
849                  *  | ---- range to drop ----- |
850                  *      | -------- extent -------- |
851                  */
852                 if (start <= key.offset && end < extent_end) {
853                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
854                                 ret = -EINVAL;
855                                 break;
856                         }
857
858                         memcpy(&new_key, &key, sizeof(new_key));
859                         new_key.offset = end;
860                         btrfs_set_item_key_safe(root, path, &new_key);
861
862                         extent_offset += end - key.offset;
863                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
864                         btrfs_set_file_extent_num_bytes(leaf, fi,
865                                                         extent_end - end);
866                         btrfs_mark_buffer_dirty(leaf);
867                         if (update_refs && disk_bytenr > 0)
868                                 inode_sub_bytes(inode, end - key.offset);
869                         break;
870                 }
871
872                 search_start = extent_end;
873                 /*
874                  *       | ---- range to drop ----- |
875                  *  | -------- extent -------- |
876                  */
877                 if (start > key.offset && end >= extent_end) {
878                         BUG_ON(del_nr > 0);
879                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
880                                 ret = -EINVAL;
881                                 break;
882                         }
883
884                         btrfs_set_file_extent_num_bytes(leaf, fi,
885                                                         start - key.offset);
886                         btrfs_mark_buffer_dirty(leaf);
887                         if (update_refs && disk_bytenr > 0)
888                                 inode_sub_bytes(inode, extent_end - start);
889                         if (end == extent_end)
890                                 break;
891
892                         path->slots[0]++;
893                         goto next_slot;
894                 }
895
896                 /*
897                  *  | ---- range to drop ----- |
898                  *    | ------ extent ------ |
899                  */
900                 if (start <= key.offset && end >= extent_end) {
901                         if (del_nr == 0) {
902                                 del_slot = path->slots[0];
903                                 del_nr = 1;
904                         } else {
905                                 BUG_ON(del_slot + del_nr != path->slots[0]);
906                                 del_nr++;
907                         }
908
909                         if (update_refs &&
910                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
911                                 inode_sub_bytes(inode,
912                                                 extent_end - key.offset);
913                                 extent_end = ALIGN(extent_end,
914                                                    root->sectorsize);
915                         } else if (update_refs && disk_bytenr > 0) {
916                                 ret = btrfs_free_extent(trans, root,
917                                                 disk_bytenr, num_bytes, 0,
918                                                 root->root_key.objectid,
919                                                 key.objectid, key.offset -
920                                                 extent_offset, 0);
921                                 BUG_ON(ret); /* -ENOMEM */
922                                 inode_sub_bytes(inode,
923                                                 extent_end - key.offset);
924                         }
925
926                         if (end == extent_end)
927                                 break;
928
929                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
930                                 path->slots[0]++;
931                                 goto next_slot;
932                         }
933
934                         ret = btrfs_del_items(trans, root, path, del_slot,
935                                               del_nr);
936                         if (ret) {
937                                 btrfs_abort_transaction(trans, root, ret);
938                                 break;
939                         }
940
941                         del_nr = 0;
942                         del_slot = 0;
943
944                         btrfs_release_path(path);
945                         continue;
946                 }
947
948                 BUG_ON(1);
949         }
950
951         if (!ret && del_nr > 0) {
952                 /*
953                  * Set path->slots[0] to first slot, so that after the delete
954                  * if items are move off from our leaf to its immediate left or
955                  * right neighbor leafs, we end up with a correct and adjusted
956                  * path->slots[0] for our insertion (if replace_extent != 0).
957                  */
958                 path->slots[0] = del_slot;
959                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
960                 if (ret)
961                         btrfs_abort_transaction(trans, root, ret);
962         }
963
964         leaf = path->nodes[0];
965         /*
966          * If btrfs_del_items() was called, it might have deleted a leaf, in
967          * which case it unlocked our path, so check path->locks[0] matches a
968          * write lock.
969          */
970         if (!ret && replace_extent && leafs_visited == 1 &&
971             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
972              path->locks[0] == BTRFS_WRITE_LOCK) &&
973             btrfs_leaf_free_space(root, leaf) >=
974             sizeof(struct btrfs_item) + extent_item_size) {
975
976                 key.objectid = ino;
977                 key.type = BTRFS_EXTENT_DATA_KEY;
978                 key.offset = start;
979                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
980                         struct btrfs_key slot_key;
981
982                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
983                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
984                                 path->slots[0]++;
985                 }
986                 setup_items_for_insert(root, path, &key,
987                                        &extent_item_size,
988                                        extent_item_size,
989                                        sizeof(struct btrfs_item) +
990                                        extent_item_size, 1);
991                 *key_inserted = 1;
992         }
993
994         if (!replace_extent || !(*key_inserted))
995                 btrfs_release_path(path);
996         if (drop_end)
997                 *drop_end = found ? min(end, extent_end) : end;
998         return ret;
999 }
1000
1001 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1002                        struct btrfs_root *root, struct inode *inode, u64 start,
1003                        u64 end, int drop_cache)
1004 {
1005         struct btrfs_path *path;
1006         int ret;
1007
1008         path = btrfs_alloc_path();
1009         if (!path)
1010                 return -ENOMEM;
1011         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1012                                    drop_cache, 0, 0, NULL);
1013         btrfs_free_path(path);
1014         return ret;
1015 }
1016
1017 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1018                             u64 objectid, u64 bytenr, u64 orig_offset,
1019                             u64 *start, u64 *end)
1020 {
1021         struct btrfs_file_extent_item *fi;
1022         struct btrfs_key key;
1023         u64 extent_end;
1024
1025         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1026                 return 0;
1027
1028         btrfs_item_key_to_cpu(leaf, &key, slot);
1029         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1030                 return 0;
1031
1032         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1033         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1034             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1035             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1036             btrfs_file_extent_compression(leaf, fi) ||
1037             btrfs_file_extent_encryption(leaf, fi) ||
1038             btrfs_file_extent_other_encoding(leaf, fi))
1039                 return 0;
1040
1041         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1042         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1043                 return 0;
1044
1045         *start = key.offset;
1046         *end = extent_end;
1047         return 1;
1048 }
1049
1050 /*
1051  * Mark extent in the range start - end as written.
1052  *
1053  * This changes extent type from 'pre-allocated' to 'regular'. If only
1054  * part of extent is marked as written, the extent will be split into
1055  * two or three.
1056  */
1057 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1058                               struct inode *inode, u64 start, u64 end)
1059 {
1060         struct btrfs_root *root = BTRFS_I(inode)->root;
1061         struct extent_buffer *leaf;
1062         struct btrfs_path *path;
1063         struct btrfs_file_extent_item *fi;
1064         struct btrfs_key key;
1065         struct btrfs_key new_key;
1066         u64 bytenr;
1067         u64 num_bytes;
1068         u64 extent_end;
1069         u64 orig_offset;
1070         u64 other_start;
1071         u64 other_end;
1072         u64 split;
1073         int del_nr = 0;
1074         int del_slot = 0;
1075         int recow;
1076         int ret;
1077         u64 ino = btrfs_ino(inode);
1078
1079         path = btrfs_alloc_path();
1080         if (!path)
1081                 return -ENOMEM;
1082 again:
1083         recow = 0;
1084         split = start;
1085         key.objectid = ino;
1086         key.type = BTRFS_EXTENT_DATA_KEY;
1087         key.offset = split;
1088
1089         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1090         if (ret < 0)
1091                 goto out;
1092         if (ret > 0 && path->slots[0] > 0)
1093                 path->slots[0]--;
1094
1095         leaf = path->nodes[0];
1096         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1097         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1098         fi = btrfs_item_ptr(leaf, path->slots[0],
1099                             struct btrfs_file_extent_item);
1100         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1101                BTRFS_FILE_EXTENT_PREALLOC);
1102         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1103         BUG_ON(key.offset > start || extent_end < end);
1104
1105         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1107         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1108         memcpy(&new_key, &key, sizeof(new_key));
1109
1110         if (start == key.offset && end < extent_end) {
1111                 other_start = 0;
1112                 other_end = start;
1113                 if (extent_mergeable(leaf, path->slots[0] - 1,
1114                                      ino, bytenr, orig_offset,
1115                                      &other_start, &other_end)) {
1116                         new_key.offset = end;
1117                         btrfs_set_item_key_safe(root, path, &new_key);
1118                         fi = btrfs_item_ptr(leaf, path->slots[0],
1119                                             struct btrfs_file_extent_item);
1120                         btrfs_set_file_extent_generation(leaf, fi,
1121                                                          trans->transid);
1122                         btrfs_set_file_extent_num_bytes(leaf, fi,
1123                                                         extent_end - end);
1124                         btrfs_set_file_extent_offset(leaf, fi,
1125                                                      end - orig_offset);
1126                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1127                                             struct btrfs_file_extent_item);
1128                         btrfs_set_file_extent_generation(leaf, fi,
1129                                                          trans->transid);
1130                         btrfs_set_file_extent_num_bytes(leaf, fi,
1131                                                         end - other_start);
1132                         btrfs_mark_buffer_dirty(leaf);
1133                         goto out;
1134                 }
1135         }
1136
1137         if (start > key.offset && end == extent_end) {
1138                 other_start = end;
1139                 other_end = 0;
1140                 if (extent_mergeable(leaf, path->slots[0] + 1,
1141                                      ino, bytenr, orig_offset,
1142                                      &other_start, &other_end)) {
1143                         fi = btrfs_item_ptr(leaf, path->slots[0],
1144                                             struct btrfs_file_extent_item);
1145                         btrfs_set_file_extent_num_bytes(leaf, fi,
1146                                                         start - key.offset);
1147                         btrfs_set_file_extent_generation(leaf, fi,
1148                                                          trans->transid);
1149                         path->slots[0]++;
1150                         new_key.offset = start;
1151                         btrfs_set_item_key_safe(root, path, &new_key);
1152
1153                         fi = btrfs_item_ptr(leaf, path->slots[0],
1154                                             struct btrfs_file_extent_item);
1155                         btrfs_set_file_extent_generation(leaf, fi,
1156                                                          trans->transid);
1157                         btrfs_set_file_extent_num_bytes(leaf, fi,
1158                                                         other_end - start);
1159                         btrfs_set_file_extent_offset(leaf, fi,
1160                                                      start - orig_offset);
1161                         btrfs_mark_buffer_dirty(leaf);
1162                         goto out;
1163                 }
1164         }
1165
1166         while (start > key.offset || end < extent_end) {
1167                 if (key.offset == start)
1168                         split = end;
1169
1170                 new_key.offset = split;
1171                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1172                 if (ret == -EAGAIN) {
1173                         btrfs_release_path(path);
1174                         goto again;
1175                 }
1176                 if (ret < 0) {
1177                         btrfs_abort_transaction(trans, root, ret);
1178                         goto out;
1179                 }
1180
1181                 leaf = path->nodes[0];
1182                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1183                                     struct btrfs_file_extent_item);
1184                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1185                 btrfs_set_file_extent_num_bytes(leaf, fi,
1186                                                 split - key.offset);
1187
1188                 fi = btrfs_item_ptr(leaf, path->slots[0],
1189                                     struct btrfs_file_extent_item);
1190
1191                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1192                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1193                 btrfs_set_file_extent_num_bytes(leaf, fi,
1194                                                 extent_end - split);
1195                 btrfs_mark_buffer_dirty(leaf);
1196
1197                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1198                                            root->root_key.objectid,
1199                                            ino, orig_offset, 0);
1200                 BUG_ON(ret); /* -ENOMEM */
1201
1202                 if (split == start) {
1203                         key.offset = start;
1204                 } else {
1205                         BUG_ON(start != key.offset);
1206                         path->slots[0]--;
1207                         extent_end = end;
1208                 }
1209                 recow = 1;
1210         }
1211
1212         other_start = end;
1213         other_end = 0;
1214         if (extent_mergeable(leaf, path->slots[0] + 1,
1215                              ino, bytenr, orig_offset,
1216                              &other_start, &other_end)) {
1217                 if (recow) {
1218                         btrfs_release_path(path);
1219                         goto again;
1220                 }
1221                 extent_end = other_end;
1222                 del_slot = path->slots[0] + 1;
1223                 del_nr++;
1224                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1225                                         0, root->root_key.objectid,
1226                                         ino, orig_offset, 0);
1227                 BUG_ON(ret); /* -ENOMEM */
1228         }
1229         other_start = 0;
1230         other_end = start;
1231         if (extent_mergeable(leaf, path->slots[0] - 1,
1232                              ino, bytenr, orig_offset,
1233                              &other_start, &other_end)) {
1234                 if (recow) {
1235                         btrfs_release_path(path);
1236                         goto again;
1237                 }
1238                 key.offset = other_start;
1239                 del_slot = path->slots[0];
1240                 del_nr++;
1241                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1242                                         0, root->root_key.objectid,
1243                                         ino, orig_offset, 0);
1244                 BUG_ON(ret); /* -ENOMEM */
1245         }
1246         if (del_nr == 0) {
1247                 fi = btrfs_item_ptr(leaf, path->slots[0],
1248                            struct btrfs_file_extent_item);
1249                 btrfs_set_file_extent_type(leaf, fi,
1250                                            BTRFS_FILE_EXTENT_REG);
1251                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1252                 btrfs_mark_buffer_dirty(leaf);
1253         } else {
1254                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1255                            struct btrfs_file_extent_item);
1256                 btrfs_set_file_extent_type(leaf, fi,
1257                                            BTRFS_FILE_EXTENT_REG);
1258                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1259                 btrfs_set_file_extent_num_bytes(leaf, fi,
1260                                                 extent_end - key.offset);
1261                 btrfs_mark_buffer_dirty(leaf);
1262
1263                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1264                 if (ret < 0) {
1265                         btrfs_abort_transaction(trans, root, ret);
1266                         goto out;
1267                 }
1268         }
1269 out:
1270         btrfs_free_path(path);
1271         return 0;
1272 }
1273
1274 /*
1275  * on error we return an unlocked page and the error value
1276  * on success we return a locked page and 0
1277  */
1278 static int prepare_uptodate_page(struct page *page, u64 pos,
1279                                  bool force_uptodate)
1280 {
1281         int ret = 0;
1282
1283         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1284             !PageUptodate(page)) {
1285                 ret = btrfs_readpage(NULL, page);
1286                 if (ret)
1287                         return ret;
1288                 lock_page(page);
1289                 if (!PageUptodate(page)) {
1290                         unlock_page(page);
1291                         return -EIO;
1292                 }
1293         }
1294         return 0;
1295 }
1296
1297 /*
1298  * this just gets pages into the page cache and locks them down.
1299  */
1300 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1301                                   size_t num_pages, loff_t pos,
1302                                   size_t write_bytes, bool force_uptodate)
1303 {
1304         int i;
1305         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1306         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1307         int err = 0;
1308         int faili;
1309
1310         for (i = 0; i < num_pages; i++) {
1311                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1312                                                mask | __GFP_WRITE);
1313                 if (!pages[i]) {
1314                         faili = i - 1;
1315                         err = -ENOMEM;
1316                         goto fail;
1317                 }
1318
1319                 if (i == 0)
1320                         err = prepare_uptodate_page(pages[i], pos,
1321                                                     force_uptodate);
1322                 if (i == num_pages - 1)
1323                         err = prepare_uptodate_page(pages[i],
1324                                                     pos + write_bytes, false);
1325                 if (err) {
1326                         page_cache_release(pages[i]);
1327                         faili = i - 1;
1328                         goto fail;
1329                 }
1330                 wait_on_page_writeback(pages[i]);
1331         }
1332
1333         return 0;
1334 fail:
1335         while (faili >= 0) {
1336                 unlock_page(pages[faili]);
1337                 page_cache_release(pages[faili]);
1338                 faili--;
1339         }
1340         return err;
1341
1342 }
1343
1344 /*
1345  * This function locks the extent and properly waits for data=ordered extents
1346  * to finish before allowing the pages to be modified if need.
1347  *
1348  * The return value:
1349  * 1 - the extent is locked
1350  * 0 - the extent is not locked, and everything is OK
1351  * -EAGAIN - need re-prepare the pages
1352  * the other < 0 number - Something wrong happens
1353  */
1354 static noinline int
1355 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1356                                 size_t num_pages, loff_t pos,
1357                                 u64 *lockstart, u64 *lockend,
1358                                 struct extent_state **cached_state)
1359 {
1360         u64 start_pos;
1361         u64 last_pos;
1362         int i;
1363         int ret = 0;
1364
1365         start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1366         last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1367
1368         if (start_pos < inode->i_size) {
1369                 struct btrfs_ordered_extent *ordered;
1370                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1371                                  start_pos, last_pos, 0, cached_state);
1372                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1373                                                      last_pos - start_pos + 1);
1374                 if (ordered &&
1375                     ordered->file_offset + ordered->len > start_pos &&
1376                     ordered->file_offset <= last_pos) {
1377                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1378                                              start_pos, last_pos,
1379                                              cached_state, GFP_NOFS);
1380                         for (i = 0; i < num_pages; i++) {
1381                                 unlock_page(pages[i]);
1382                                 page_cache_release(pages[i]);
1383                         }
1384                         btrfs_start_ordered_extent(inode, ordered, 1);
1385                         btrfs_put_ordered_extent(ordered);
1386                         return -EAGAIN;
1387                 }
1388                 if (ordered)
1389                         btrfs_put_ordered_extent(ordered);
1390
1391                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1392                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1393                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1394                                   0, 0, cached_state, GFP_NOFS);
1395                 *lockstart = start_pos;
1396                 *lockend = last_pos;
1397                 ret = 1;
1398         }
1399
1400         for (i = 0; i < num_pages; i++) {
1401                 if (clear_page_dirty_for_io(pages[i]))
1402                         account_page_redirty(pages[i]);
1403                 set_page_extent_mapped(pages[i]);
1404                 WARN_ON(!PageLocked(pages[i]));
1405         }
1406
1407         return ret;
1408 }
1409
1410 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1411                                     size_t *write_bytes)
1412 {
1413         struct btrfs_root *root = BTRFS_I(inode)->root;
1414         struct btrfs_ordered_extent *ordered;
1415         u64 lockstart, lockend;
1416         u64 num_bytes;
1417         int ret;
1418
1419         ret = btrfs_start_nocow_write(root);
1420         if (!ret)
1421                 return -ENOSPC;
1422
1423         lockstart = round_down(pos, root->sectorsize);
1424         lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1425
1426         while (1) {
1427                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1428                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1429                                                      lockend - lockstart + 1);
1430                 if (!ordered) {
1431                         break;
1432                 }
1433                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1434                 btrfs_start_ordered_extent(inode, ordered, 1);
1435                 btrfs_put_ordered_extent(ordered);
1436         }
1437
1438         num_bytes = lockend - lockstart + 1;
1439         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1440         if (ret <= 0) {
1441                 ret = 0;
1442                 btrfs_end_nocow_write(root);
1443         } else {
1444                 *write_bytes = min_t(size_t, *write_bytes ,
1445                                      num_bytes - pos + lockstart);
1446         }
1447
1448         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1449
1450         return ret;
1451 }
1452
1453 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1454                                                struct iov_iter *i,
1455                                                loff_t pos)
1456 {
1457         struct inode *inode = file_inode(file);
1458         struct btrfs_root *root = BTRFS_I(inode)->root;
1459         struct page **pages = NULL;
1460         struct extent_state *cached_state = NULL;
1461         u64 release_bytes = 0;
1462         u64 lockstart;
1463         u64 lockend;
1464         unsigned long first_index;
1465         size_t num_written = 0;
1466         int nrptrs;
1467         int ret = 0;
1468         bool only_release_metadata = false;
1469         bool force_page_uptodate = false;
1470         bool need_unlock;
1471
1472         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1473                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1474                      (sizeof(struct page *)));
1475         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1476         nrptrs = max(nrptrs, 8);
1477         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1478         if (!pages)
1479                 return -ENOMEM;
1480
1481         first_index = pos >> PAGE_CACHE_SHIFT;
1482
1483         while (iov_iter_count(i) > 0) {
1484                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1485                 size_t write_bytes = min(iov_iter_count(i),
1486                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1487                                          offset);
1488                 size_t num_pages = (write_bytes + offset +
1489                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1490                 size_t reserve_bytes;
1491                 size_t dirty_pages;
1492                 size_t copied;
1493
1494                 WARN_ON(num_pages > nrptrs);
1495
1496                 /*
1497                  * Fault pages before locking them in prepare_pages
1498                  * to avoid recursive lock
1499                  */
1500                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1501                         ret = -EFAULT;
1502                         break;
1503                 }
1504
1505                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1506                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1507                 if (ret == -ENOSPC &&
1508                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1509                                               BTRFS_INODE_PREALLOC))) {
1510                         ret = check_can_nocow(inode, pos, &write_bytes);
1511                         if (ret > 0) {
1512                                 only_release_metadata = true;
1513                                 /*
1514                                  * our prealloc extent may be smaller than
1515                                  * write_bytes, so scale down.
1516                                  */
1517                                 num_pages = (write_bytes + offset +
1518                                              PAGE_CACHE_SIZE - 1) >>
1519                                         PAGE_CACHE_SHIFT;
1520                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1521                                 ret = 0;
1522                         } else {
1523                                 ret = -ENOSPC;
1524                         }
1525                 }
1526
1527                 if (ret)
1528                         break;
1529
1530                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1531                 if (ret) {
1532                         if (!only_release_metadata)
1533                                 btrfs_free_reserved_data_space(inode,
1534                                                                reserve_bytes);
1535                         else
1536                                 btrfs_end_nocow_write(root);
1537                         break;
1538                 }
1539
1540                 release_bytes = reserve_bytes;
1541                 need_unlock = false;
1542 again:
1543                 /*
1544                  * This is going to setup the pages array with the number of
1545                  * pages we want, so we don't really need to worry about the
1546                  * contents of pages from loop to loop
1547                  */
1548                 ret = prepare_pages(inode, pages, num_pages,
1549                                     pos, write_bytes,
1550                                     force_page_uptodate);
1551                 if (ret)
1552                         break;
1553
1554                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1555                                                       pos, &lockstart, &lockend,
1556                                                       &cached_state);
1557                 if (ret < 0) {
1558                         if (ret == -EAGAIN)
1559                                 goto again;
1560                         break;
1561                 } else if (ret > 0) {
1562                         need_unlock = true;
1563                         ret = 0;
1564                 }
1565
1566                 copied = btrfs_copy_from_user(pos, num_pages,
1567                                            write_bytes, pages, i);
1568
1569                 /*
1570                  * if we have trouble faulting in the pages, fall
1571                  * back to one page at a time
1572                  */
1573                 if (copied < write_bytes)
1574                         nrptrs = 1;
1575
1576                 if (copied == 0) {
1577                         force_page_uptodate = true;
1578                         dirty_pages = 0;
1579                 } else {
1580                         force_page_uptodate = false;
1581                         dirty_pages = (copied + offset +
1582                                        PAGE_CACHE_SIZE - 1) >>
1583                                        PAGE_CACHE_SHIFT;
1584                 }
1585
1586                 /*
1587                  * If we had a short copy we need to release the excess delaloc
1588                  * bytes we reserved.  We need to increment outstanding_extents
1589                  * because btrfs_delalloc_release_space will decrement it, but
1590                  * we still have an outstanding extent for the chunk we actually
1591                  * managed to copy.
1592                  */
1593                 if (num_pages > dirty_pages) {
1594                         release_bytes = (num_pages - dirty_pages) <<
1595                                 PAGE_CACHE_SHIFT;
1596                         if (copied > 0) {
1597                                 spin_lock(&BTRFS_I(inode)->lock);
1598                                 BTRFS_I(inode)->outstanding_extents++;
1599                                 spin_unlock(&BTRFS_I(inode)->lock);
1600                         }
1601                         if (only_release_metadata)
1602                                 btrfs_delalloc_release_metadata(inode,
1603                                                                 release_bytes);
1604                         else
1605                                 btrfs_delalloc_release_space(inode,
1606                                                              release_bytes);
1607                 }
1608
1609                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1610
1611                 if (copied > 0)
1612                         ret = btrfs_dirty_pages(root, inode, pages,
1613                                                 dirty_pages, pos, copied,
1614                                                 NULL);
1615                 if (need_unlock)
1616                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1617                                              lockstart, lockend, &cached_state,
1618                                              GFP_NOFS);
1619                 if (ret) {
1620                         btrfs_drop_pages(pages, num_pages);
1621                         break;
1622                 }
1623
1624                 release_bytes = 0;
1625                 if (only_release_metadata)
1626                         btrfs_end_nocow_write(root);
1627
1628                 if (only_release_metadata && copied > 0) {
1629                         u64 lockstart = round_down(pos, root->sectorsize);
1630                         u64 lockend = lockstart +
1631                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1632
1633                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1634                                        lockend, EXTENT_NORESERVE, NULL,
1635                                        NULL, GFP_NOFS);
1636                         only_release_metadata = false;
1637                 }
1638
1639                 btrfs_drop_pages(pages, num_pages);
1640
1641                 cond_resched();
1642
1643                 balance_dirty_pages_ratelimited(inode->i_mapping);
1644                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1645                         btrfs_btree_balance_dirty(root);
1646
1647                 pos += copied;
1648                 num_written += copied;
1649         }
1650
1651         kfree(pages);
1652
1653         if (release_bytes) {
1654                 if (only_release_metadata) {
1655                         btrfs_end_nocow_write(root);
1656                         btrfs_delalloc_release_metadata(inode, release_bytes);
1657                 } else {
1658                         btrfs_delalloc_release_space(inode, release_bytes);
1659                 }
1660         }
1661
1662         return num_written ? num_written : ret;
1663 }
1664
1665 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1666                                     const struct iovec *iov,
1667                                     unsigned long nr_segs, loff_t pos,
1668                                     loff_t *ppos, size_t count, size_t ocount)
1669 {
1670         struct file *file = iocb->ki_filp;
1671         struct iov_iter i;
1672         ssize_t written;
1673         ssize_t written_buffered;
1674         loff_t endbyte;
1675         int err;
1676
1677         written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1678                                             count, ocount);
1679
1680         if (written < 0 || written == count)
1681                 return written;
1682
1683         pos += written;
1684         count -= written;
1685         iov_iter_init(&i, iov, nr_segs, count, written);
1686         written_buffered = __btrfs_buffered_write(file, &i, pos);
1687         if (written_buffered < 0) {
1688                 err = written_buffered;
1689                 goto out;
1690         }
1691         endbyte = pos + written_buffered - 1;
1692         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1693         if (err)
1694                 goto out;
1695         written += written_buffered;
1696         *ppos = pos + written_buffered;
1697         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1698                                  endbyte >> PAGE_CACHE_SHIFT);
1699 out:
1700         return written ? written : err;
1701 }
1702
1703 static void update_time_for_write(struct inode *inode)
1704 {
1705         struct timespec now;
1706
1707         if (IS_NOCMTIME(inode))
1708                 return;
1709
1710         now = current_fs_time(inode->i_sb);
1711         if (!timespec_equal(&inode->i_mtime, &now))
1712                 inode->i_mtime = now;
1713
1714         if (!timespec_equal(&inode->i_ctime, &now))
1715                 inode->i_ctime = now;
1716
1717         if (IS_I_VERSION(inode))
1718                 inode_inc_iversion(inode);
1719 }
1720
1721 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1722                                     const struct iovec *iov,
1723                                     unsigned long nr_segs, loff_t pos)
1724 {
1725         struct file *file = iocb->ki_filp;
1726         struct inode *inode = file_inode(file);
1727         struct btrfs_root *root = BTRFS_I(inode)->root;
1728         loff_t *ppos = &iocb->ki_pos;
1729         u64 start_pos;
1730         u64 end_pos;
1731         ssize_t num_written = 0;
1732         ssize_t err = 0;
1733         size_t count, ocount;
1734         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1735
1736         mutex_lock(&inode->i_mutex);
1737
1738         err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1739         if (err) {
1740                 mutex_unlock(&inode->i_mutex);
1741                 goto out;
1742         }
1743         count = ocount;
1744
1745         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1746         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1747         if (err) {
1748                 mutex_unlock(&inode->i_mutex);
1749                 goto out;
1750         }
1751
1752         if (count == 0) {
1753                 mutex_unlock(&inode->i_mutex);
1754                 goto out;
1755         }
1756
1757         err = file_remove_suid(file);
1758         if (err) {
1759                 mutex_unlock(&inode->i_mutex);
1760                 goto out;
1761         }
1762
1763         /*
1764          * If BTRFS flips readonly due to some impossible error
1765          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1766          * although we have opened a file as writable, we have
1767          * to stop this write operation to ensure FS consistency.
1768          */
1769         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1770                 mutex_unlock(&inode->i_mutex);
1771                 err = -EROFS;
1772                 goto out;
1773         }
1774
1775         /*
1776          * We reserve space for updating the inode when we reserve space for the
1777          * extent we are going to write, so we will enospc out there.  We don't
1778          * need to start yet another transaction to update the inode as we will
1779          * update the inode when we finish writing whatever data we write.
1780          */
1781         update_time_for_write(inode);
1782
1783         start_pos = round_down(pos, root->sectorsize);
1784         if (start_pos > i_size_read(inode)) {
1785                 /* Expand hole size to cover write data, preventing empty gap */
1786                 end_pos = round_up(pos + iov->iov_len, root->sectorsize);
1787                 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1788                 if (err) {
1789                         mutex_unlock(&inode->i_mutex);
1790                         goto out;
1791                 }
1792         }
1793
1794         if (sync)
1795                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1796
1797         if (unlikely(file->f_flags & O_DIRECT)) {
1798                 num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1799                                                    pos, ppos, count, ocount);
1800         } else {
1801                 struct iov_iter i;
1802
1803                 iov_iter_init(&i, iov, nr_segs, count, num_written);
1804
1805                 num_written = __btrfs_buffered_write(file, &i, pos);
1806                 if (num_written > 0)
1807                         *ppos = pos + num_written;
1808         }
1809
1810         mutex_unlock(&inode->i_mutex);
1811
1812         /*
1813          * we want to make sure fsync finds this change
1814          * but we haven't joined a transaction running right now.
1815          *
1816          * Later on, someone is sure to update the inode and get the
1817          * real transid recorded.
1818          *
1819          * We set last_trans now to the fs_info generation + 1,
1820          * this will either be one more than the running transaction
1821          * or the generation used for the next transaction if there isn't
1822          * one running right now.
1823          *
1824          * We also have to set last_sub_trans to the current log transid,
1825          * otherwise subsequent syncs to a file that's been synced in this
1826          * transaction will appear to have already occured.
1827          */
1828         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1829         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1830         if (num_written > 0) {
1831                 err = generic_write_sync(file, pos, num_written);
1832                 if (err < 0)
1833                         num_written = err;
1834         }
1835
1836         if (sync)
1837                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1838 out:
1839         current->backing_dev_info = NULL;
1840         return num_written ? num_written : err;
1841 }
1842
1843 int btrfs_release_file(struct inode *inode, struct file *filp)
1844 {
1845         /*
1846          * ordered_data_close is set by settattr when we are about to truncate
1847          * a file from a non-zero size to a zero size.  This tries to
1848          * flush down new bytes that may have been written if the
1849          * application were using truncate to replace a file in place.
1850          */
1851         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1852                                &BTRFS_I(inode)->runtime_flags)) {
1853                 struct btrfs_trans_handle *trans;
1854                 struct btrfs_root *root = BTRFS_I(inode)->root;
1855
1856                 /*
1857                  * We need to block on a committing transaction to keep us from
1858                  * throwing a ordered operation on to the list and causing
1859                  * something like sync to deadlock trying to flush out this
1860                  * inode.
1861                  */
1862                 trans = btrfs_start_transaction(root, 0);
1863                 if (IS_ERR(trans))
1864                         return PTR_ERR(trans);
1865                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1866                 btrfs_end_transaction(trans, root);
1867                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1868                         filemap_flush(inode->i_mapping);
1869         }
1870         if (filp->private_data)
1871                 btrfs_ioctl_trans_end(filp);
1872         return 0;
1873 }
1874
1875 /*
1876  * fsync call for both files and directories.  This logs the inode into
1877  * the tree log instead of forcing full commits whenever possible.
1878  *
1879  * It needs to call filemap_fdatawait so that all ordered extent updates are
1880  * in the metadata btree are up to date for copying to the log.
1881  *
1882  * It drops the inode mutex before doing the tree log commit.  This is an
1883  * important optimization for directories because holding the mutex prevents
1884  * new operations on the dir while we write to disk.
1885  */
1886 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1887 {
1888         struct dentry *dentry = file->f_path.dentry;
1889         struct inode *inode = dentry->d_inode;
1890         struct btrfs_root *root = BTRFS_I(inode)->root;
1891         struct btrfs_trans_handle *trans;
1892         struct btrfs_log_ctx ctx;
1893         int ret = 0;
1894         bool full_sync = 0;
1895
1896         trace_btrfs_sync_file(file, datasync);
1897
1898         /*
1899          * We write the dirty pages in the range and wait until they complete
1900          * out of the ->i_mutex. If so, we can flush the dirty pages by
1901          * multi-task, and make the performance up.  See
1902          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1903          */
1904         atomic_inc(&BTRFS_I(inode)->sync_writers);
1905         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1906         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1907                              &BTRFS_I(inode)->runtime_flags))
1908                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1909         atomic_dec(&BTRFS_I(inode)->sync_writers);
1910         if (ret)
1911                 return ret;
1912
1913         mutex_lock(&inode->i_mutex);
1914
1915         /*
1916          * We flush the dirty pages again to avoid some dirty pages in the
1917          * range being left.
1918          */
1919         atomic_inc(&root->log_batch);
1920         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1921                              &BTRFS_I(inode)->runtime_flags);
1922         if (full_sync) {
1923                 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1924                 if (ret) {
1925                         mutex_unlock(&inode->i_mutex);
1926                         goto out;
1927                 }
1928         }
1929         atomic_inc(&root->log_batch);
1930
1931         /*
1932          * check the transaction that last modified this inode
1933          * and see if its already been committed
1934          */
1935         if (!BTRFS_I(inode)->last_trans) {
1936                 mutex_unlock(&inode->i_mutex);
1937                 goto out;
1938         }
1939
1940         /*
1941          * if the last transaction that changed this file was before
1942          * the current transaction, we can bail out now without any
1943          * syncing
1944          */
1945         smp_mb();
1946         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1947             BTRFS_I(inode)->last_trans <=
1948             root->fs_info->last_trans_committed) {
1949                 BTRFS_I(inode)->last_trans = 0;
1950
1951                 /*
1952                  * We'v had everything committed since the last time we were
1953                  * modified so clear this flag in case it was set for whatever
1954                  * reason, it's no longer relevant.
1955                  */
1956                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1957                           &BTRFS_I(inode)->runtime_flags);
1958                 mutex_unlock(&inode->i_mutex);
1959                 goto out;
1960         }
1961
1962         /*
1963          * ok we haven't committed the transaction yet, lets do a commit
1964          */
1965         if (file->private_data)
1966                 btrfs_ioctl_trans_end(file);
1967
1968         /*
1969          * We use start here because we will need to wait on the IO to complete
1970          * in btrfs_sync_log, which could require joining a transaction (for
1971          * example checking cross references in the nocow path).  If we use join
1972          * here we could get into a situation where we're waiting on IO to
1973          * happen that is blocked on a transaction trying to commit.  With start
1974          * we inc the extwriter counter, so we wait for all extwriters to exit
1975          * before we start blocking join'ers.  This comment is to keep somebody
1976          * from thinking they are super smart and changing this to
1977          * btrfs_join_transaction *cough*Josef*cough*.
1978          */
1979         trans = btrfs_start_transaction(root, 0);
1980         if (IS_ERR(trans)) {
1981                 ret = PTR_ERR(trans);
1982                 mutex_unlock(&inode->i_mutex);
1983                 goto out;
1984         }
1985         trans->sync = true;
1986
1987         btrfs_init_log_ctx(&ctx);
1988
1989         ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1990         if (ret < 0) {
1991                 /* Fallthrough and commit/free transaction. */
1992                 ret = 1;
1993         }
1994
1995         /* we've logged all the items and now have a consistent
1996          * version of the file in the log.  It is possible that
1997          * someone will come in and modify the file, but that's
1998          * fine because the log is consistent on disk, and we
1999          * have references to all of the file's extents
2000          *
2001          * It is possible that someone will come in and log the
2002          * file again, but that will end up using the synchronization
2003          * inside btrfs_sync_log to keep things safe.
2004          */
2005         mutex_unlock(&inode->i_mutex);
2006
2007         if (ret != BTRFS_NO_LOG_SYNC) {
2008                 if (!ret) {
2009                         ret = btrfs_sync_log(trans, root, &ctx);
2010                         if (!ret) {
2011                                 ret = btrfs_end_transaction(trans, root);
2012                                 goto out;
2013                         }
2014                 }
2015                 if (!full_sync) {
2016                         ret = btrfs_wait_ordered_range(inode, start,
2017                                                        end - start + 1);
2018                         if (ret)
2019                                 goto out;
2020                 }
2021                 ret = btrfs_commit_transaction(trans, root);
2022         } else {
2023                 ret = btrfs_end_transaction(trans, root);
2024         }
2025 out:
2026         return ret > 0 ? -EIO : ret;
2027 }
2028
2029 static const struct vm_operations_struct btrfs_file_vm_ops = {
2030         .fault          = filemap_fault,
2031         .map_pages      = filemap_map_pages,
2032         .page_mkwrite   = btrfs_page_mkwrite,
2033         .remap_pages    = generic_file_remap_pages,
2034 };
2035
2036 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2037 {
2038         struct address_space *mapping = filp->f_mapping;
2039
2040         if (!mapping->a_ops->readpage)
2041                 return -ENOEXEC;
2042
2043         file_accessed(filp);
2044         vma->vm_ops = &btrfs_file_vm_ops;
2045
2046         return 0;
2047 }
2048
2049 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2050                           int slot, u64 start, u64 end)
2051 {
2052         struct btrfs_file_extent_item *fi;
2053         struct btrfs_key key;
2054
2055         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2056                 return 0;
2057
2058         btrfs_item_key_to_cpu(leaf, &key, slot);
2059         if (key.objectid != btrfs_ino(inode) ||
2060             key.type != BTRFS_EXTENT_DATA_KEY)
2061                 return 0;
2062
2063         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2064
2065         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2066                 return 0;
2067
2068         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2069                 return 0;
2070
2071         if (key.offset == end)
2072                 return 1;
2073         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2074                 return 1;
2075         return 0;
2076 }
2077
2078 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2079                       struct btrfs_path *path, u64 offset, u64 end)
2080 {
2081         struct btrfs_root *root = BTRFS_I(inode)->root;
2082         struct extent_buffer *leaf;
2083         struct btrfs_file_extent_item *fi;
2084         struct extent_map *hole_em;
2085         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2086         struct btrfs_key key;
2087         int ret;
2088
2089         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2090                 goto out;
2091
2092         key.objectid = btrfs_ino(inode);
2093         key.type = BTRFS_EXTENT_DATA_KEY;
2094         key.offset = offset;
2095
2096         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2097         if (ret < 0)
2098                 return ret;
2099         BUG_ON(!ret);
2100
2101         leaf = path->nodes[0];
2102         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2103                 u64 num_bytes;
2104
2105                 path->slots[0]--;
2106                 fi = btrfs_item_ptr(leaf, path->slots[0],
2107                                     struct btrfs_file_extent_item);
2108                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2109                         end - offset;
2110                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2111                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2112                 btrfs_set_file_extent_offset(leaf, fi, 0);
2113                 btrfs_mark_buffer_dirty(leaf);
2114                 goto out;
2115         }
2116
2117         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2118                 u64 num_bytes;
2119
2120                 path->slots[0]++;
2121                 key.offset = offset;
2122                 btrfs_set_item_key_safe(root, path, &key);
2123                 fi = btrfs_item_ptr(leaf, path->slots[0],
2124                                     struct btrfs_file_extent_item);
2125                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2126                         offset;
2127                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2128                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2129                 btrfs_set_file_extent_offset(leaf, fi, 0);
2130                 btrfs_mark_buffer_dirty(leaf);
2131                 goto out;
2132         }
2133         btrfs_release_path(path);
2134
2135         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2136                                        0, 0, end - offset, 0, end - offset,
2137                                        0, 0, 0);
2138         if (ret)
2139                 return ret;
2140
2141 out:
2142         btrfs_release_path(path);
2143
2144         hole_em = alloc_extent_map();
2145         if (!hole_em) {
2146                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2147                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2148                         &BTRFS_I(inode)->runtime_flags);
2149         } else {
2150                 hole_em->start = offset;
2151                 hole_em->len = end - offset;
2152                 hole_em->ram_bytes = hole_em->len;
2153                 hole_em->orig_start = offset;
2154
2155                 hole_em->block_start = EXTENT_MAP_HOLE;
2156                 hole_em->block_len = 0;
2157                 hole_em->orig_block_len = 0;
2158                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2159                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2160                 hole_em->generation = trans->transid;
2161
2162                 do {
2163                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2164                         write_lock(&em_tree->lock);
2165                         ret = add_extent_mapping(em_tree, hole_em, 1);
2166                         write_unlock(&em_tree->lock);
2167                 } while (ret == -EEXIST);
2168                 free_extent_map(hole_em);
2169                 if (ret)
2170                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2171                                 &BTRFS_I(inode)->runtime_flags);
2172         }
2173
2174         return 0;
2175 }
2176
2177 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2178 {
2179         struct btrfs_root *root = BTRFS_I(inode)->root;
2180         struct extent_state *cached_state = NULL;
2181         struct btrfs_path *path;
2182         struct btrfs_block_rsv *rsv;
2183         struct btrfs_trans_handle *trans;
2184         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2185         u64 lockend = round_down(offset + len,
2186                                  BTRFS_I(inode)->root->sectorsize) - 1;
2187         u64 cur_offset = lockstart;
2188         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2189         u64 drop_end;
2190         int ret = 0;
2191         int err = 0;
2192         int rsv_count;
2193         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2194                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2195         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2196         u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2197
2198         ret = btrfs_wait_ordered_range(inode, offset, len);
2199         if (ret)
2200                 return ret;
2201
2202         mutex_lock(&inode->i_mutex);
2203         /*
2204          * We needn't truncate any page which is beyond the end of the file
2205          * because we are sure there is no data there.
2206          */
2207         /*
2208          * Only do this if we are in the same page and we aren't doing the
2209          * entire page.
2210          */
2211         if (same_page && len < PAGE_CACHE_SIZE) {
2212                 if (offset < ino_size)
2213                         ret = btrfs_truncate_page(inode, offset, len, 0);
2214                 mutex_unlock(&inode->i_mutex);
2215                 return ret;
2216         }
2217
2218         /* zero back part of the first page */
2219         if (offset < ino_size) {
2220                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2221                 if (ret) {
2222                         mutex_unlock(&inode->i_mutex);
2223                         return ret;
2224                 }
2225         }
2226
2227         /* zero the front end of the last page */
2228         if (offset + len < ino_size) {
2229                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2230                 if (ret) {
2231                         mutex_unlock(&inode->i_mutex);
2232                         return ret;
2233                 }
2234         }
2235
2236         if (lockend < lockstart) {
2237                 mutex_unlock(&inode->i_mutex);
2238                 return 0;
2239         }
2240
2241         while (1) {
2242                 struct btrfs_ordered_extent *ordered;
2243
2244                 truncate_pagecache_range(inode, lockstart, lockend);
2245
2246                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2247                                  0, &cached_state);
2248                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2249
2250                 /*
2251                  * We need to make sure we have no ordered extents in this range
2252                  * and nobody raced in and read a page in this range, if we did
2253                  * we need to try again.
2254                  */
2255                 if ((!ordered ||
2256                     (ordered->file_offset + ordered->len <= lockstart ||
2257                      ordered->file_offset > lockend)) &&
2258                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2259                                      lockend, EXTENT_UPTODATE, 0,
2260                                      cached_state)) {
2261                         if (ordered)
2262                                 btrfs_put_ordered_extent(ordered);
2263                         break;
2264                 }
2265                 if (ordered)
2266                         btrfs_put_ordered_extent(ordered);
2267                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2268                                      lockend, &cached_state, GFP_NOFS);
2269                 ret = btrfs_wait_ordered_range(inode, lockstart,
2270                                                lockend - lockstart + 1);
2271                 if (ret) {
2272                         mutex_unlock(&inode->i_mutex);
2273                         return ret;
2274                 }
2275         }
2276
2277         path = btrfs_alloc_path();
2278         if (!path) {
2279                 ret = -ENOMEM;
2280                 goto out;
2281         }
2282
2283         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2284         if (!rsv) {
2285                 ret = -ENOMEM;
2286                 goto out_free;
2287         }
2288         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2289         rsv->failfast = 1;
2290
2291         /*
2292          * 1 - update the inode
2293          * 1 - removing the extents in the range
2294          * 1 - adding the hole extent if no_holes isn't set
2295          */
2296         rsv_count = no_holes ? 2 : 3;
2297         trans = btrfs_start_transaction(root, rsv_count);
2298         if (IS_ERR(trans)) {
2299                 err = PTR_ERR(trans);
2300                 goto out_free;
2301         }
2302
2303         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2304                                       min_size);
2305         BUG_ON(ret);
2306         trans->block_rsv = rsv;
2307
2308         while (cur_offset < lockend) {
2309                 ret = __btrfs_drop_extents(trans, root, inode, path,
2310                                            cur_offset, lockend + 1,
2311                                            &drop_end, 1, 0, 0, NULL);
2312                 if (ret != -ENOSPC)
2313                         break;
2314
2315                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2316
2317                 if (cur_offset < ino_size) {
2318                         ret = fill_holes(trans, inode, path, cur_offset,
2319                                          drop_end);
2320                         if (ret) {
2321                                 err = ret;
2322                                 break;
2323                         }
2324                 }
2325
2326                 cur_offset = drop_end;
2327
2328                 ret = btrfs_update_inode(trans, root, inode);
2329                 if (ret) {
2330                         err = ret;
2331                         break;
2332                 }
2333
2334                 btrfs_end_transaction(trans, root);
2335                 btrfs_btree_balance_dirty(root);
2336
2337                 trans = btrfs_start_transaction(root, rsv_count);
2338                 if (IS_ERR(trans)) {
2339                         ret = PTR_ERR(trans);
2340                         trans = NULL;
2341                         break;
2342                 }
2343
2344                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2345                                               rsv, min_size);
2346                 BUG_ON(ret);    /* shouldn't happen */
2347                 trans->block_rsv = rsv;
2348         }
2349
2350         if (ret) {
2351                 err = ret;
2352                 goto out_trans;
2353         }
2354
2355         trans->block_rsv = &root->fs_info->trans_block_rsv;
2356         if (cur_offset < ino_size) {
2357                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2358                 if (ret) {
2359                         err = ret;
2360                         goto out_trans;
2361                 }
2362         }
2363
2364 out_trans:
2365         if (!trans)
2366                 goto out_free;
2367
2368         inode_inc_iversion(inode);
2369         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2370
2371         trans->block_rsv = &root->fs_info->trans_block_rsv;
2372         ret = btrfs_update_inode(trans, root, inode);
2373         btrfs_end_transaction(trans, root);
2374         btrfs_btree_balance_dirty(root);
2375 out_free:
2376         btrfs_free_path(path);
2377         btrfs_free_block_rsv(root, rsv);
2378 out:
2379         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2380                              &cached_state, GFP_NOFS);
2381         mutex_unlock(&inode->i_mutex);
2382         if (ret && !err)
2383                 err = ret;
2384         return err;
2385 }
2386
2387 static long btrfs_fallocate(struct file *file, int mode,
2388                             loff_t offset, loff_t len)
2389 {
2390         struct inode *inode = file_inode(file);
2391         struct extent_state *cached_state = NULL;
2392         struct btrfs_root *root = BTRFS_I(inode)->root;
2393         u64 cur_offset;
2394         u64 last_byte;
2395         u64 alloc_start;
2396         u64 alloc_end;
2397         u64 alloc_hint = 0;
2398         u64 locked_end;
2399         struct extent_map *em;
2400         int blocksize = BTRFS_I(inode)->root->sectorsize;
2401         int ret;
2402
2403         alloc_start = round_down(offset, blocksize);
2404         alloc_end = round_up(offset + len, blocksize);
2405
2406         /* Make sure we aren't being give some crap mode */
2407         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2408                 return -EOPNOTSUPP;
2409
2410         if (mode & FALLOC_FL_PUNCH_HOLE)
2411                 return btrfs_punch_hole(inode, offset, len);
2412
2413         /*
2414          * Make sure we have enough space before we do the
2415          * allocation.
2416          */
2417         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2418         if (ret)
2419                 return ret;
2420         if (root->fs_info->quota_enabled) {
2421                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2422                 if (ret)
2423                         goto out_reserve_fail;
2424         }
2425
2426         mutex_lock(&inode->i_mutex);
2427         ret = inode_newsize_ok(inode, alloc_end);
2428         if (ret)
2429                 goto out;
2430
2431         if (alloc_start > inode->i_size) {
2432                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2433                                         alloc_start);
2434                 if (ret)
2435                         goto out;
2436         } else {
2437                 /*
2438                  * If we are fallocating from the end of the file onward we
2439                  * need to zero out the end of the page if i_size lands in the
2440                  * middle of a page.
2441                  */
2442                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2443                 if (ret)
2444                         goto out;
2445         }
2446
2447         /*
2448          * wait for ordered IO before we have any locks.  We'll loop again
2449          * below with the locks held.
2450          */
2451         ret = btrfs_wait_ordered_range(inode, alloc_start,
2452                                        alloc_end - alloc_start);
2453         if (ret)
2454                 goto out;
2455
2456         locked_end = alloc_end - 1;
2457         while (1) {
2458                 struct btrfs_ordered_extent *ordered;
2459
2460                 /* the extent lock is ordered inside the running
2461                  * transaction
2462                  */
2463                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2464                                  locked_end, 0, &cached_state);
2465                 ordered = btrfs_lookup_first_ordered_extent(inode,
2466                                                             alloc_end - 1);
2467                 if (ordered &&
2468                     ordered->file_offset + ordered->len > alloc_start &&
2469                     ordered->file_offset < alloc_end) {
2470                         btrfs_put_ordered_extent(ordered);
2471                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2472                                              alloc_start, locked_end,
2473                                              &cached_state, GFP_NOFS);
2474                         /*
2475                          * we can't wait on the range with the transaction
2476                          * running or with the extent lock held
2477                          */
2478                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2479                                                        alloc_end - alloc_start);
2480                         if (ret)
2481                                 goto out;
2482                 } else {
2483                         if (ordered)
2484                                 btrfs_put_ordered_extent(ordered);
2485                         break;
2486                 }
2487         }
2488
2489         cur_offset = alloc_start;
2490         while (1) {
2491                 u64 actual_end;
2492
2493                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2494                                       alloc_end - cur_offset, 0);
2495                 if (IS_ERR_OR_NULL(em)) {
2496                         if (!em)
2497                                 ret = -ENOMEM;
2498                         else
2499                                 ret = PTR_ERR(em);
2500                         break;
2501                 }
2502                 last_byte = min(extent_map_end(em), alloc_end);
2503                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2504                 last_byte = ALIGN(last_byte, blocksize);
2505
2506                 if (em->block_start == EXTENT_MAP_HOLE ||
2507                     (cur_offset >= inode->i_size &&
2508                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2509                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2510                                                         last_byte - cur_offset,
2511                                                         1 << inode->i_blkbits,
2512                                                         offset + len,
2513                                                         &alloc_hint);
2514
2515                         if (ret < 0) {
2516                                 free_extent_map(em);
2517                                 break;
2518                         }
2519                 } else if (actual_end > inode->i_size &&
2520                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2521                         /*
2522                          * We didn't need to allocate any more space, but we
2523                          * still extended the size of the file so we need to
2524                          * update i_size.
2525                          */
2526                         inode->i_ctime = CURRENT_TIME;
2527                         i_size_write(inode, actual_end);
2528                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2529                 }
2530                 free_extent_map(em);
2531
2532                 cur_offset = last_byte;
2533                 if (cur_offset >= alloc_end) {
2534                         ret = 0;
2535                         break;
2536                 }
2537         }
2538         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2539                              &cached_state, GFP_NOFS);
2540 out:
2541         mutex_unlock(&inode->i_mutex);
2542         if (root->fs_info->quota_enabled)
2543                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2544 out_reserve_fail:
2545         /* Let go of our reservation. */
2546         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2547         return ret;
2548 }
2549
2550 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2551 {
2552         struct btrfs_root *root = BTRFS_I(inode)->root;
2553         struct extent_map *em = NULL;
2554         struct extent_state *cached_state = NULL;
2555         u64 lockstart = *offset;
2556         u64 lockend = i_size_read(inode);
2557         u64 start = *offset;
2558         u64 len = i_size_read(inode);
2559         int ret = 0;
2560
2561         lockend = max_t(u64, root->sectorsize, lockend);
2562         if (lockend <= lockstart)
2563                 lockend = lockstart + root->sectorsize;
2564
2565         lockend--;
2566         len = lockend - lockstart + 1;
2567
2568         len = max_t(u64, len, root->sectorsize);
2569         if (inode->i_size == 0)
2570                 return -ENXIO;
2571
2572         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2573                          &cached_state);
2574
2575         while (start < inode->i_size) {
2576                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2577                 if (IS_ERR(em)) {
2578                         ret = PTR_ERR(em);
2579                         em = NULL;
2580                         break;
2581                 }
2582
2583                 if (whence == SEEK_HOLE &&
2584                     (em->block_start == EXTENT_MAP_HOLE ||
2585                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2586                         break;
2587                 else if (whence == SEEK_DATA &&
2588                            (em->block_start != EXTENT_MAP_HOLE &&
2589                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2590                         break;
2591
2592                 start = em->start + em->len;
2593                 free_extent_map(em);
2594                 em = NULL;
2595                 cond_resched();
2596         }
2597         free_extent_map(em);
2598         if (!ret) {
2599                 if (whence == SEEK_DATA && start >= inode->i_size)
2600                         ret = -ENXIO;
2601                 else
2602                         *offset = min_t(loff_t, start, inode->i_size);
2603         }
2604         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2605                              &cached_state, GFP_NOFS);
2606         return ret;
2607 }
2608
2609 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2610 {
2611         struct inode *inode = file->f_mapping->host;
2612         int ret;
2613
2614         mutex_lock(&inode->i_mutex);
2615         switch (whence) {
2616         case SEEK_END:
2617         case SEEK_CUR:
2618                 offset = generic_file_llseek(file, offset, whence);
2619                 goto out;
2620         case SEEK_DATA:
2621         case SEEK_HOLE:
2622                 if (offset >= i_size_read(inode)) {
2623                         mutex_unlock(&inode->i_mutex);
2624                         return -ENXIO;
2625                 }
2626
2627                 ret = find_desired_extent(inode, &offset, whence);
2628                 if (ret) {
2629                         mutex_unlock(&inode->i_mutex);
2630                         return ret;
2631                 }
2632         }
2633
2634         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2635 out:
2636         mutex_unlock(&inode->i_mutex);
2637         return offset;
2638 }
2639
2640 const struct file_operations btrfs_file_operations = {
2641         .llseek         = btrfs_file_llseek,
2642         .read           = do_sync_read,
2643         .write          = do_sync_write,
2644         .aio_read       = generic_file_aio_read,
2645         .splice_read    = generic_file_splice_read,
2646         .aio_write      = btrfs_file_aio_write,
2647         .mmap           = btrfs_file_mmap,
2648         .open           = generic_file_open,
2649         .release        = btrfs_release_file,
2650         .fsync          = btrfs_sync_file,
2651         .fallocate      = btrfs_fallocate,
2652         .unlocked_ioctl = btrfs_ioctl,
2653 #ifdef CONFIG_COMPAT
2654         .compat_ioctl   = btrfs_ioctl,
2655 #endif
2656 };
2657
2658 void btrfs_auto_defrag_exit(void)
2659 {
2660         if (btrfs_inode_defrag_cachep)
2661                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2662 }
2663
2664 int btrfs_auto_defrag_init(void)
2665 {
2666         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2667                                         sizeof(struct inode_defrag), 0,
2668                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2669                                         NULL);
2670         if (!btrfs_inode_defrag_cachep)
2671                 return -ENOMEM;
2672
2673         return 0;
2674 }