a904a2c80fc83fc5651fe7f26ed37cd40bb37224
[linux.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static struct workqueue_struct *raid5_wq;
68 /*
69  * Stripe cache
70  */
71
72 #define NR_STRIPES              256
73 #define STRIPE_SIZE             PAGE_SIZE
74 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD            1
77 #define BYPASS_THRESHOLD        1
78 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK               (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH        8
81
82 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
83 {
84         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
85         return &conf->stripe_hashtbl[hash];
86 }
87
88 static inline int stripe_hash_locks_hash(sector_t sect)
89 {
90         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
91 }
92
93 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
94 {
95         spin_lock_irq(conf->hash_locks + hash);
96         spin_lock(&conf->device_lock);
97 }
98
99 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
100 {
101         spin_unlock(&conf->device_lock);
102         spin_unlock_irq(conf->hash_locks + hash);
103 }
104
105 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
106 {
107         int i;
108         local_irq_disable();
109         spin_lock(conf->hash_locks);
110         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
111                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
112         spin_lock(&conf->device_lock);
113 }
114
115 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
116 {
117         int i;
118         spin_unlock(&conf->device_lock);
119         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
120                 spin_unlock(conf->hash_locks + i - 1);
121         local_irq_enable();
122 }
123
124 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
125  * order without overlap.  There may be several bio's per stripe+device, and
126  * a bio could span several devices.
127  * When walking this list for a particular stripe+device, we must never proceed
128  * beyond a bio that extends past this device, as the next bio might no longer
129  * be valid.
130  * This function is used to determine the 'next' bio in the list, given the sector
131  * of the current stripe+device
132  */
133 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
134 {
135         int sectors = bio_sectors(bio);
136         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
137                 return bio->bi_next;
138         else
139                 return NULL;
140 }
141
142 /*
143  * We maintain a biased count of active stripes in the bottom 16 bits of
144  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
145  */
146 static inline int raid5_bi_processed_stripes(struct bio *bio)
147 {
148         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
149         return (atomic_read(segments) >> 16) & 0xffff;
150 }
151
152 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
153 {
154         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
155         return atomic_sub_return(1, segments) & 0xffff;
156 }
157
158 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
159 {
160         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
161         atomic_inc(segments);
162 }
163
164 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
165         unsigned int cnt)
166 {
167         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
168         int old, new;
169
170         do {
171                 old = atomic_read(segments);
172                 new = (old & 0xffff) | (cnt << 16);
173         } while (atomic_cmpxchg(segments, old, new) != old);
174 }
175
176 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
177 {
178         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
179         atomic_set(segments, cnt);
180 }
181
182 /* Find first data disk in a raid6 stripe */
183 static inline int raid6_d0(struct stripe_head *sh)
184 {
185         if (sh->ddf_layout)
186                 /* ddf always start from first device */
187                 return 0;
188         /* md starts just after Q block */
189         if (sh->qd_idx == sh->disks - 1)
190                 return 0;
191         else
192                 return sh->qd_idx + 1;
193 }
194 static inline int raid6_next_disk(int disk, int raid_disks)
195 {
196         disk++;
197         return (disk < raid_disks) ? disk : 0;
198 }
199
200 /* When walking through the disks in a raid5, starting at raid6_d0,
201  * We need to map each disk to a 'slot', where the data disks are slot
202  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
203  * is raid_disks-1.  This help does that mapping.
204  */
205 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
206                              int *count, int syndrome_disks)
207 {
208         int slot = *count;
209
210         if (sh->ddf_layout)
211                 (*count)++;
212         if (idx == sh->pd_idx)
213                 return syndrome_disks;
214         if (idx == sh->qd_idx)
215                 return syndrome_disks + 1;
216         if (!sh->ddf_layout)
217                 (*count)++;
218         return slot;
219 }
220
221 static void return_io(struct bio *return_bi)
222 {
223         struct bio *bi = return_bi;
224         while (bi) {
225
226                 return_bi = bi->bi_next;
227                 bi->bi_next = NULL;
228                 bi->bi_iter.bi_size = 0;
229                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
230                                          bi, 0);
231                 bio_endio(bi, 0);
232                 bi = return_bi;
233         }
234 }
235
236 static void print_raid5_conf (struct r5conf *conf);
237
238 static int stripe_operations_active(struct stripe_head *sh)
239 {
240         return sh->check_state || sh->reconstruct_state ||
241                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
242                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
243 }
244
245 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
246 {
247         struct r5conf *conf = sh->raid_conf;
248         struct r5worker_group *group;
249         int thread_cnt;
250         int i, cpu = sh->cpu;
251
252         if (!cpu_online(cpu)) {
253                 cpu = cpumask_any(cpu_online_mask);
254                 sh->cpu = cpu;
255         }
256
257         if (list_empty(&sh->lru)) {
258                 struct r5worker_group *group;
259                 group = conf->worker_groups + cpu_to_group(cpu);
260                 list_add_tail(&sh->lru, &group->handle_list);
261                 group->stripes_cnt++;
262                 sh->group = group;
263         }
264
265         if (conf->worker_cnt_per_group == 0) {
266                 md_wakeup_thread(conf->mddev->thread);
267                 return;
268         }
269
270         group = conf->worker_groups + cpu_to_group(sh->cpu);
271
272         group->workers[0].working = true;
273         /* at least one worker should run to avoid race */
274         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
275
276         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
277         /* wakeup more workers */
278         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
279                 if (group->workers[i].working == false) {
280                         group->workers[i].working = true;
281                         queue_work_on(sh->cpu, raid5_wq,
282                                       &group->workers[i].work);
283                         thread_cnt--;
284                 }
285         }
286 }
287
288 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
289                               struct list_head *temp_inactive_list)
290 {
291         BUG_ON(!list_empty(&sh->lru));
292         BUG_ON(atomic_read(&conf->active_stripes)==0);
293         if (test_bit(STRIPE_HANDLE, &sh->state)) {
294                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
295                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
296                         list_add_tail(&sh->lru, &conf->delayed_list);
297                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
298                            sh->bm_seq - conf->seq_write > 0)
299                         list_add_tail(&sh->lru, &conf->bitmap_list);
300                 else {
301                         clear_bit(STRIPE_DELAYED, &sh->state);
302                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
303                         if (conf->worker_cnt_per_group == 0) {
304                                 list_add_tail(&sh->lru, &conf->handle_list);
305                         } else {
306                                 raid5_wakeup_stripe_thread(sh);
307                                 return;
308                         }
309                 }
310                 md_wakeup_thread(conf->mddev->thread);
311         } else {
312                 BUG_ON(stripe_operations_active(sh));
313                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
314                         if (atomic_dec_return(&conf->preread_active_stripes)
315                             < IO_THRESHOLD)
316                                 md_wakeup_thread(conf->mddev->thread);
317                 atomic_dec(&conf->active_stripes);
318                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
319                         list_add_tail(&sh->lru, temp_inactive_list);
320         }
321 }
322
323 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
324                              struct list_head *temp_inactive_list)
325 {
326         if (atomic_dec_and_test(&sh->count))
327                 do_release_stripe(conf, sh, temp_inactive_list);
328 }
329
330 /*
331  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
332  *
333  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
334  * given time. Adding stripes only takes device lock, while deleting stripes
335  * only takes hash lock.
336  */
337 static void release_inactive_stripe_list(struct r5conf *conf,
338                                          struct list_head *temp_inactive_list,
339                                          int hash)
340 {
341         int size;
342         bool do_wakeup = false;
343         unsigned long flags;
344
345         if (hash == NR_STRIPE_HASH_LOCKS) {
346                 size = NR_STRIPE_HASH_LOCKS;
347                 hash = NR_STRIPE_HASH_LOCKS - 1;
348         } else
349                 size = 1;
350         while (size) {
351                 struct list_head *list = &temp_inactive_list[size - 1];
352
353                 /*
354                  * We don't hold any lock here yet, get_active_stripe() might
355                  * remove stripes from the list
356                  */
357                 if (!list_empty_careful(list)) {
358                         spin_lock_irqsave(conf->hash_locks + hash, flags);
359                         if (list_empty(conf->inactive_list + hash) &&
360                             !list_empty(list))
361                                 atomic_dec(&conf->empty_inactive_list_nr);
362                         list_splice_tail_init(list, conf->inactive_list + hash);
363                         do_wakeup = true;
364                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
365                 }
366                 size--;
367                 hash--;
368         }
369
370         if (do_wakeup) {
371                 wake_up(&conf->wait_for_stripe);
372                 if (conf->retry_read_aligned)
373                         md_wakeup_thread(conf->mddev->thread);
374         }
375 }
376
377 /* should hold conf->device_lock already */
378 static int release_stripe_list(struct r5conf *conf,
379                                struct list_head *temp_inactive_list)
380 {
381         struct stripe_head *sh;
382         int count = 0;
383         struct llist_node *head;
384
385         head = llist_del_all(&conf->released_stripes);
386         head = llist_reverse_order(head);
387         while (head) {
388                 int hash;
389
390                 sh = llist_entry(head, struct stripe_head, release_list);
391                 head = llist_next(head);
392                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
393                 smp_mb();
394                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
395                 /*
396                  * Don't worry the bit is set here, because if the bit is set
397                  * again, the count is always > 1. This is true for
398                  * STRIPE_ON_UNPLUG_LIST bit too.
399                  */
400                 hash = sh->hash_lock_index;
401                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
402                 count++;
403         }
404
405         return count;
406 }
407
408 static void release_stripe(struct stripe_head *sh)
409 {
410         struct r5conf *conf = sh->raid_conf;
411         unsigned long flags;
412         struct list_head list;
413         int hash;
414         bool wakeup;
415
416         if (unlikely(!conf->mddev->thread) ||
417                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
418                 goto slow_path;
419         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
420         if (wakeup)
421                 md_wakeup_thread(conf->mddev->thread);
422         return;
423 slow_path:
424         local_irq_save(flags);
425         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
426         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
427                 INIT_LIST_HEAD(&list);
428                 hash = sh->hash_lock_index;
429                 do_release_stripe(conf, sh, &list);
430                 spin_unlock(&conf->device_lock);
431                 release_inactive_stripe_list(conf, &list, hash);
432         }
433         local_irq_restore(flags);
434 }
435
436 static inline void remove_hash(struct stripe_head *sh)
437 {
438         pr_debug("remove_hash(), stripe %llu\n",
439                 (unsigned long long)sh->sector);
440
441         hlist_del_init(&sh->hash);
442 }
443
444 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
445 {
446         struct hlist_head *hp = stripe_hash(conf, sh->sector);
447
448         pr_debug("insert_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_add_head(&sh->hash, hp);
452 }
453
454
455 /* find an idle stripe, make sure it is unhashed, and return it. */
456 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
457 {
458         struct stripe_head *sh = NULL;
459         struct list_head *first;
460
461         if (list_empty(conf->inactive_list + hash))
462                 goto out;
463         first = (conf->inactive_list + hash)->next;
464         sh = list_entry(first, struct stripe_head, lru);
465         list_del_init(first);
466         remove_hash(sh);
467         atomic_inc(&conf->active_stripes);
468         BUG_ON(hash != sh->hash_lock_index);
469         if (list_empty(conf->inactive_list + hash))
470                 atomic_inc(&conf->empty_inactive_list_nr);
471 out:
472         return sh;
473 }
474
475 static void shrink_buffers(struct stripe_head *sh)
476 {
477         struct page *p;
478         int i;
479         int num = sh->raid_conf->pool_size;
480
481         for (i = 0; i < num ; i++) {
482                 p = sh->dev[i].page;
483                 if (!p)
484                         continue;
485                 sh->dev[i].page = NULL;
486                 put_page(p);
487         }
488 }
489
490 static int grow_buffers(struct stripe_head *sh)
491 {
492         int i;
493         int num = sh->raid_conf->pool_size;
494
495         for (i = 0; i < num; i++) {
496                 struct page *page;
497
498                 if (!(page = alloc_page(GFP_KERNEL))) {
499                         return 1;
500                 }
501                 sh->dev[i].page = page;
502         }
503         return 0;
504 }
505
506 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
507 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
508                             struct stripe_head *sh);
509
510 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
511 {
512         struct r5conf *conf = sh->raid_conf;
513         int i, seq;
514
515         BUG_ON(atomic_read(&sh->count) != 0);
516         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
517         BUG_ON(stripe_operations_active(sh));
518
519         pr_debug("init_stripe called, stripe %llu\n",
520                 (unsigned long long)sh->sector);
521
522         remove_hash(sh);
523 retry:
524         seq = read_seqcount_begin(&conf->gen_lock);
525         sh->generation = conf->generation - previous;
526         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
527         sh->sector = sector;
528         stripe_set_idx(sector, conf, previous, sh);
529         sh->state = 0;
530
531
532         for (i = sh->disks; i--; ) {
533                 struct r5dev *dev = &sh->dev[i];
534
535                 if (dev->toread || dev->read || dev->towrite || dev->written ||
536                     test_bit(R5_LOCKED, &dev->flags)) {
537                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
538                                (unsigned long long)sh->sector, i, dev->toread,
539                                dev->read, dev->towrite, dev->written,
540                                test_bit(R5_LOCKED, &dev->flags));
541                         WARN_ON(1);
542                 }
543                 dev->flags = 0;
544                 raid5_build_block(sh, i, previous);
545         }
546         if (read_seqcount_retry(&conf->gen_lock, seq))
547                 goto retry;
548         insert_hash(conf, sh);
549         sh->cpu = smp_processor_id();
550 }
551
552 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
553                                          short generation)
554 {
555         struct stripe_head *sh;
556
557         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
558         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
559                 if (sh->sector == sector && sh->generation == generation)
560                         return sh;
561         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
562         return NULL;
563 }
564
565 /*
566  * Need to check if array has failed when deciding whether to:
567  *  - start an array
568  *  - remove non-faulty devices
569  *  - add a spare
570  *  - allow a reshape
571  * This determination is simple when no reshape is happening.
572  * However if there is a reshape, we need to carefully check
573  * both the before and after sections.
574  * This is because some failed devices may only affect one
575  * of the two sections, and some non-in_sync devices may
576  * be insync in the section most affected by failed devices.
577  */
578 static int calc_degraded(struct r5conf *conf)
579 {
580         int degraded, degraded2;
581         int i;
582
583         rcu_read_lock();
584         degraded = 0;
585         for (i = 0; i < conf->previous_raid_disks; i++) {
586                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
587                 if (rdev && test_bit(Faulty, &rdev->flags))
588                         rdev = rcu_dereference(conf->disks[i].replacement);
589                 if (!rdev || test_bit(Faulty, &rdev->flags))
590                         degraded++;
591                 else if (test_bit(In_sync, &rdev->flags))
592                         ;
593                 else
594                         /* not in-sync or faulty.
595                          * If the reshape increases the number of devices,
596                          * this is being recovered by the reshape, so
597                          * this 'previous' section is not in_sync.
598                          * If the number of devices is being reduced however,
599                          * the device can only be part of the array if
600                          * we are reverting a reshape, so this section will
601                          * be in-sync.
602                          */
603                         if (conf->raid_disks >= conf->previous_raid_disks)
604                                 degraded++;
605         }
606         rcu_read_unlock();
607         if (conf->raid_disks == conf->previous_raid_disks)
608                 return degraded;
609         rcu_read_lock();
610         degraded2 = 0;
611         for (i = 0; i < conf->raid_disks; i++) {
612                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
613                 if (rdev && test_bit(Faulty, &rdev->flags))
614                         rdev = rcu_dereference(conf->disks[i].replacement);
615                 if (!rdev || test_bit(Faulty, &rdev->flags))
616                         degraded2++;
617                 else if (test_bit(In_sync, &rdev->flags))
618                         ;
619                 else
620                         /* not in-sync or faulty.
621                          * If reshape increases the number of devices, this
622                          * section has already been recovered, else it
623                          * almost certainly hasn't.
624                          */
625                         if (conf->raid_disks <= conf->previous_raid_disks)
626                                 degraded2++;
627         }
628         rcu_read_unlock();
629         if (degraded2 > degraded)
630                 return degraded2;
631         return degraded;
632 }
633
634 static int has_failed(struct r5conf *conf)
635 {
636         int degraded;
637
638         if (conf->mddev->reshape_position == MaxSector)
639                 return conf->mddev->degraded > conf->max_degraded;
640
641         degraded = calc_degraded(conf);
642         if (degraded > conf->max_degraded)
643                 return 1;
644         return 0;
645 }
646
647 static struct stripe_head *
648 get_active_stripe(struct r5conf *conf, sector_t sector,
649                   int previous, int noblock, int noquiesce)
650 {
651         struct stripe_head *sh;
652         int hash = stripe_hash_locks_hash(sector);
653
654         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
655
656         spin_lock_irq(conf->hash_locks + hash);
657
658         do {
659                 wait_event_lock_irq(conf->wait_for_stripe,
660                                     conf->quiesce == 0 || noquiesce,
661                                     *(conf->hash_locks + hash));
662                 sh = __find_stripe(conf, sector, conf->generation - previous);
663                 if (!sh) {
664                         if (!conf->inactive_blocked)
665                                 sh = get_free_stripe(conf, hash);
666                         if (noblock && sh == NULL)
667                                 break;
668                         if (!sh) {
669                                 conf->inactive_blocked = 1;
670                                 wait_event_lock_irq(
671                                         conf->wait_for_stripe,
672                                         !list_empty(conf->inactive_list + hash) &&
673                                         (atomic_read(&conf->active_stripes)
674                                          < (conf->max_nr_stripes * 3 / 4)
675                                          || !conf->inactive_blocked),
676                                         *(conf->hash_locks + hash));
677                                 conf->inactive_blocked = 0;
678                         } else {
679                                 init_stripe(sh, sector, previous);
680                                 atomic_inc(&sh->count);
681                         }
682                 } else {
683                         spin_lock(&conf->device_lock);
684                         if (atomic_read(&sh->count)) {
685                                 BUG_ON(!list_empty(&sh->lru)
686                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
687                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state)
688                                         );
689                         } else {
690                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
691                                         atomic_inc(&conf->active_stripes);
692                                 BUG_ON(list_empty(&sh->lru) &&
693                                        !test_bit(STRIPE_EXPANDING, &sh->state));
694                                 list_del_init(&sh->lru);
695                                 if (sh->group) {
696                                         sh->group->stripes_cnt--;
697                                         sh->group = NULL;
698                                 }
699                         }
700                         atomic_inc(&sh->count);
701                         spin_unlock(&conf->device_lock);
702                 }
703         } while (sh == NULL);
704
705         spin_unlock_irq(conf->hash_locks + hash);
706         return sh;
707 }
708
709 /* Determine if 'data_offset' or 'new_data_offset' should be used
710  * in this stripe_head.
711  */
712 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
713 {
714         sector_t progress = conf->reshape_progress;
715         /* Need a memory barrier to make sure we see the value
716          * of conf->generation, or ->data_offset that was set before
717          * reshape_progress was updated.
718          */
719         smp_rmb();
720         if (progress == MaxSector)
721                 return 0;
722         if (sh->generation == conf->generation - 1)
723                 return 0;
724         /* We are in a reshape, and this is a new-generation stripe,
725          * so use new_data_offset.
726          */
727         return 1;
728 }
729
730 static void
731 raid5_end_read_request(struct bio *bi, int error);
732 static void
733 raid5_end_write_request(struct bio *bi, int error);
734
735 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
736 {
737         struct r5conf *conf = sh->raid_conf;
738         int i, disks = sh->disks;
739
740         might_sleep();
741
742         for (i = disks; i--; ) {
743                 int rw;
744                 int replace_only = 0;
745                 struct bio *bi, *rbi;
746                 struct md_rdev *rdev, *rrdev = NULL;
747                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
748                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
749                                 rw = WRITE_FUA;
750                         else
751                                 rw = WRITE;
752                         if (test_bit(R5_Discard, &sh->dev[i].flags))
753                                 rw |= REQ_DISCARD;
754                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
755                         rw = READ;
756                 else if (test_and_clear_bit(R5_WantReplace,
757                                             &sh->dev[i].flags)) {
758                         rw = WRITE;
759                         replace_only = 1;
760                 } else
761                         continue;
762                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
763                         rw |= REQ_SYNC;
764
765                 bi = &sh->dev[i].req;
766                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
767
768                 rcu_read_lock();
769                 rrdev = rcu_dereference(conf->disks[i].replacement);
770                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
771                 rdev = rcu_dereference(conf->disks[i].rdev);
772                 if (!rdev) {
773                         rdev = rrdev;
774                         rrdev = NULL;
775                 }
776                 if (rw & WRITE) {
777                         if (replace_only)
778                                 rdev = NULL;
779                         if (rdev == rrdev)
780                                 /* We raced and saw duplicates */
781                                 rrdev = NULL;
782                 } else {
783                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
784                                 rdev = rrdev;
785                         rrdev = NULL;
786                 }
787
788                 if (rdev && test_bit(Faulty, &rdev->flags))
789                         rdev = NULL;
790                 if (rdev)
791                         atomic_inc(&rdev->nr_pending);
792                 if (rrdev && test_bit(Faulty, &rrdev->flags))
793                         rrdev = NULL;
794                 if (rrdev)
795                         atomic_inc(&rrdev->nr_pending);
796                 rcu_read_unlock();
797
798                 /* We have already checked bad blocks for reads.  Now
799                  * need to check for writes.  We never accept write errors
800                  * on the replacement, so we don't to check rrdev.
801                  */
802                 while ((rw & WRITE) && rdev &&
803                        test_bit(WriteErrorSeen, &rdev->flags)) {
804                         sector_t first_bad;
805                         int bad_sectors;
806                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
807                                               &first_bad, &bad_sectors);
808                         if (!bad)
809                                 break;
810
811                         if (bad < 0) {
812                                 set_bit(BlockedBadBlocks, &rdev->flags);
813                                 if (!conf->mddev->external &&
814                                     conf->mddev->flags) {
815                                         /* It is very unlikely, but we might
816                                          * still need to write out the
817                                          * bad block log - better give it
818                                          * a chance*/
819                                         md_check_recovery(conf->mddev);
820                                 }
821                                 /*
822                                  * Because md_wait_for_blocked_rdev
823                                  * will dec nr_pending, we must
824                                  * increment it first.
825                                  */
826                                 atomic_inc(&rdev->nr_pending);
827                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
828                         } else {
829                                 /* Acknowledged bad block - skip the write */
830                                 rdev_dec_pending(rdev, conf->mddev);
831                                 rdev = NULL;
832                         }
833                 }
834
835                 if (rdev) {
836                         if (s->syncing || s->expanding || s->expanded
837                             || s->replacing)
838                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
839
840                         set_bit(STRIPE_IO_STARTED, &sh->state);
841
842                         bio_reset(bi);
843                         bi->bi_bdev = rdev->bdev;
844                         bi->bi_rw = rw;
845                         bi->bi_end_io = (rw & WRITE)
846                                 ? raid5_end_write_request
847                                 : raid5_end_read_request;
848                         bi->bi_private = sh;
849
850                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
851                                 __func__, (unsigned long long)sh->sector,
852                                 bi->bi_rw, i);
853                         atomic_inc(&sh->count);
854                         if (use_new_offset(conf, sh))
855                                 bi->bi_iter.bi_sector = (sh->sector
856                                                  + rdev->new_data_offset);
857                         else
858                                 bi->bi_iter.bi_sector = (sh->sector
859                                                  + rdev->data_offset);
860                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
861                                 bi->bi_rw |= REQ_NOMERGE;
862
863                         bi->bi_vcnt = 1;
864                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
865                         bi->bi_io_vec[0].bv_offset = 0;
866                         bi->bi_iter.bi_size = STRIPE_SIZE;
867                         /*
868                          * If this is discard request, set bi_vcnt 0. We don't
869                          * want to confuse SCSI because SCSI will replace payload
870                          */
871                         if (rw & REQ_DISCARD)
872                                 bi->bi_vcnt = 0;
873                         if (rrdev)
874                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
875
876                         if (conf->mddev->gendisk)
877                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
878                                                       bi, disk_devt(conf->mddev->gendisk),
879                                                       sh->dev[i].sector);
880                         generic_make_request(bi);
881                 }
882                 if (rrdev) {
883                         if (s->syncing || s->expanding || s->expanded
884                             || s->replacing)
885                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
886
887                         set_bit(STRIPE_IO_STARTED, &sh->state);
888
889                         bio_reset(rbi);
890                         rbi->bi_bdev = rrdev->bdev;
891                         rbi->bi_rw = rw;
892                         BUG_ON(!(rw & WRITE));
893                         rbi->bi_end_io = raid5_end_write_request;
894                         rbi->bi_private = sh;
895
896                         pr_debug("%s: for %llu schedule op %ld on "
897                                  "replacement disc %d\n",
898                                 __func__, (unsigned long long)sh->sector,
899                                 rbi->bi_rw, i);
900                         atomic_inc(&sh->count);
901                         if (use_new_offset(conf, sh))
902                                 rbi->bi_iter.bi_sector = (sh->sector
903                                                   + rrdev->new_data_offset);
904                         else
905                                 rbi->bi_iter.bi_sector = (sh->sector
906                                                   + rrdev->data_offset);
907                         rbi->bi_vcnt = 1;
908                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
909                         rbi->bi_io_vec[0].bv_offset = 0;
910                         rbi->bi_iter.bi_size = STRIPE_SIZE;
911                         /*
912                          * If this is discard request, set bi_vcnt 0. We don't
913                          * want to confuse SCSI because SCSI will replace payload
914                          */
915                         if (rw & REQ_DISCARD)
916                                 rbi->bi_vcnt = 0;
917                         if (conf->mddev->gendisk)
918                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
919                                                       rbi, disk_devt(conf->mddev->gendisk),
920                                                       sh->dev[i].sector);
921                         generic_make_request(rbi);
922                 }
923                 if (!rdev && !rrdev) {
924                         if (rw & WRITE)
925                                 set_bit(STRIPE_DEGRADED, &sh->state);
926                         pr_debug("skip op %ld on disc %d for sector %llu\n",
927                                 bi->bi_rw, i, (unsigned long long)sh->sector);
928                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
929                         set_bit(STRIPE_HANDLE, &sh->state);
930                 }
931         }
932 }
933
934 static struct dma_async_tx_descriptor *
935 async_copy_data(int frombio, struct bio *bio, struct page *page,
936         sector_t sector, struct dma_async_tx_descriptor *tx)
937 {
938         struct bio_vec bvl;
939         struct bvec_iter iter;
940         struct page *bio_page;
941         int page_offset;
942         struct async_submit_ctl submit;
943         enum async_tx_flags flags = 0;
944
945         if (bio->bi_iter.bi_sector >= sector)
946                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
947         else
948                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
949
950         if (frombio)
951                 flags |= ASYNC_TX_FENCE;
952         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
953
954         bio_for_each_segment(bvl, bio, iter) {
955                 int len = bvl.bv_len;
956                 int clen;
957                 int b_offset = 0;
958
959                 if (page_offset < 0) {
960                         b_offset = -page_offset;
961                         page_offset += b_offset;
962                         len -= b_offset;
963                 }
964
965                 if (len > 0 && page_offset + len > STRIPE_SIZE)
966                         clen = STRIPE_SIZE - page_offset;
967                 else
968                         clen = len;
969
970                 if (clen > 0) {
971                         b_offset += bvl.bv_offset;
972                         bio_page = bvl.bv_page;
973                         if (frombio)
974                                 tx = async_memcpy(page, bio_page, page_offset,
975                                                   b_offset, clen, &submit);
976                         else
977                                 tx = async_memcpy(bio_page, page, b_offset,
978                                                   page_offset, clen, &submit);
979                 }
980                 /* chain the operations */
981                 submit.depend_tx = tx;
982
983                 if (clen < len) /* hit end of page */
984                         break;
985                 page_offset +=  len;
986         }
987
988         return tx;
989 }
990
991 static void ops_complete_biofill(void *stripe_head_ref)
992 {
993         struct stripe_head *sh = stripe_head_ref;
994         struct bio *return_bi = NULL;
995         int i;
996
997         pr_debug("%s: stripe %llu\n", __func__,
998                 (unsigned long long)sh->sector);
999
1000         /* clear completed biofills */
1001         for (i = sh->disks; i--; ) {
1002                 struct r5dev *dev = &sh->dev[i];
1003
1004                 /* acknowledge completion of a biofill operation */
1005                 /* and check if we need to reply to a read request,
1006                  * new R5_Wantfill requests are held off until
1007                  * !STRIPE_BIOFILL_RUN
1008                  */
1009                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1010                         struct bio *rbi, *rbi2;
1011
1012                         BUG_ON(!dev->read);
1013                         rbi = dev->read;
1014                         dev->read = NULL;
1015                         while (rbi && rbi->bi_iter.bi_sector <
1016                                 dev->sector + STRIPE_SECTORS) {
1017                                 rbi2 = r5_next_bio(rbi, dev->sector);
1018                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1019                                         rbi->bi_next = return_bi;
1020                                         return_bi = rbi;
1021                                 }
1022                                 rbi = rbi2;
1023                         }
1024                 }
1025         }
1026         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1027
1028         return_io(return_bi);
1029
1030         set_bit(STRIPE_HANDLE, &sh->state);
1031         release_stripe(sh);
1032 }
1033
1034 static void ops_run_biofill(struct stripe_head *sh)
1035 {
1036         struct dma_async_tx_descriptor *tx = NULL;
1037         struct async_submit_ctl submit;
1038         int i;
1039
1040         pr_debug("%s: stripe %llu\n", __func__,
1041                 (unsigned long long)sh->sector);
1042
1043         for (i = sh->disks; i--; ) {
1044                 struct r5dev *dev = &sh->dev[i];
1045                 if (test_bit(R5_Wantfill, &dev->flags)) {
1046                         struct bio *rbi;
1047                         spin_lock_irq(&sh->stripe_lock);
1048                         dev->read = rbi = dev->toread;
1049                         dev->toread = NULL;
1050                         spin_unlock_irq(&sh->stripe_lock);
1051                         while (rbi && rbi->bi_iter.bi_sector <
1052                                 dev->sector + STRIPE_SECTORS) {
1053                                 tx = async_copy_data(0, rbi, dev->page,
1054                                         dev->sector, tx);
1055                                 rbi = r5_next_bio(rbi, dev->sector);
1056                         }
1057                 }
1058         }
1059
1060         atomic_inc(&sh->count);
1061         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1062         async_trigger_callback(&submit);
1063 }
1064
1065 static void mark_target_uptodate(struct stripe_head *sh, int target)
1066 {
1067         struct r5dev *tgt;
1068
1069         if (target < 0)
1070                 return;
1071
1072         tgt = &sh->dev[target];
1073         set_bit(R5_UPTODATE, &tgt->flags);
1074         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1075         clear_bit(R5_Wantcompute, &tgt->flags);
1076 }
1077
1078 static void ops_complete_compute(void *stripe_head_ref)
1079 {
1080         struct stripe_head *sh = stripe_head_ref;
1081
1082         pr_debug("%s: stripe %llu\n", __func__,
1083                 (unsigned long long)sh->sector);
1084
1085         /* mark the computed target(s) as uptodate */
1086         mark_target_uptodate(sh, sh->ops.target);
1087         mark_target_uptodate(sh, sh->ops.target2);
1088
1089         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1090         if (sh->check_state == check_state_compute_run)
1091                 sh->check_state = check_state_compute_result;
1092         set_bit(STRIPE_HANDLE, &sh->state);
1093         release_stripe(sh);
1094 }
1095
1096 /* return a pointer to the address conversion region of the scribble buffer */
1097 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1098                                  struct raid5_percpu *percpu)
1099 {
1100         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1101 }
1102
1103 static struct dma_async_tx_descriptor *
1104 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1105 {
1106         int disks = sh->disks;
1107         struct page **xor_srcs = percpu->scribble;
1108         int target = sh->ops.target;
1109         struct r5dev *tgt = &sh->dev[target];
1110         struct page *xor_dest = tgt->page;
1111         int count = 0;
1112         struct dma_async_tx_descriptor *tx;
1113         struct async_submit_ctl submit;
1114         int i;
1115
1116         pr_debug("%s: stripe %llu block: %d\n",
1117                 __func__, (unsigned long long)sh->sector, target);
1118         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1119
1120         for (i = disks; i--; )
1121                 if (i != target)
1122                         xor_srcs[count++] = sh->dev[i].page;
1123
1124         atomic_inc(&sh->count);
1125
1126         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1127                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
1128         if (unlikely(count == 1))
1129                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1130         else
1131                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1132
1133         return tx;
1134 }
1135
1136 /* set_syndrome_sources - populate source buffers for gen_syndrome
1137  * @srcs - (struct page *) array of size sh->disks
1138  * @sh - stripe_head to parse
1139  *
1140  * Populates srcs in proper layout order for the stripe and returns the
1141  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1142  * destination buffer is recorded in srcs[count] and the Q destination
1143  * is recorded in srcs[count+1]].
1144  */
1145 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1146 {
1147         int disks = sh->disks;
1148         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1149         int d0_idx = raid6_d0(sh);
1150         int count;
1151         int i;
1152
1153         for (i = 0; i < disks; i++)
1154                 srcs[i] = NULL;
1155
1156         count = 0;
1157         i = d0_idx;
1158         do {
1159                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1160
1161                 srcs[slot] = sh->dev[i].page;
1162                 i = raid6_next_disk(i, disks);
1163         } while (i != d0_idx);
1164
1165         return syndrome_disks;
1166 }
1167
1168 static struct dma_async_tx_descriptor *
1169 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1170 {
1171         int disks = sh->disks;
1172         struct page **blocks = percpu->scribble;
1173         int target;
1174         int qd_idx = sh->qd_idx;
1175         struct dma_async_tx_descriptor *tx;
1176         struct async_submit_ctl submit;
1177         struct r5dev *tgt;
1178         struct page *dest;
1179         int i;
1180         int count;
1181
1182         if (sh->ops.target < 0)
1183                 target = sh->ops.target2;
1184         else if (sh->ops.target2 < 0)
1185                 target = sh->ops.target;
1186         else
1187                 /* we should only have one valid target */
1188                 BUG();
1189         BUG_ON(target < 0);
1190         pr_debug("%s: stripe %llu block: %d\n",
1191                 __func__, (unsigned long long)sh->sector, target);
1192
1193         tgt = &sh->dev[target];
1194         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1195         dest = tgt->page;
1196
1197         atomic_inc(&sh->count);
1198
1199         if (target == qd_idx) {
1200                 count = set_syndrome_sources(blocks, sh);
1201                 blocks[count] = NULL; /* regenerating p is not necessary */
1202                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1203                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1204                                   ops_complete_compute, sh,
1205                                   to_addr_conv(sh, percpu));
1206                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1207         } else {
1208                 /* Compute any data- or p-drive using XOR */
1209                 count = 0;
1210                 for (i = disks; i-- ; ) {
1211                         if (i == target || i == qd_idx)
1212                                 continue;
1213                         blocks[count++] = sh->dev[i].page;
1214                 }
1215
1216                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1217                                   NULL, ops_complete_compute, sh,
1218                                   to_addr_conv(sh, percpu));
1219                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1220         }
1221
1222         return tx;
1223 }
1224
1225 static struct dma_async_tx_descriptor *
1226 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1227 {
1228         int i, count, disks = sh->disks;
1229         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1230         int d0_idx = raid6_d0(sh);
1231         int faila = -1, failb = -1;
1232         int target = sh->ops.target;
1233         int target2 = sh->ops.target2;
1234         struct r5dev *tgt = &sh->dev[target];
1235         struct r5dev *tgt2 = &sh->dev[target2];
1236         struct dma_async_tx_descriptor *tx;
1237         struct page **blocks = percpu->scribble;
1238         struct async_submit_ctl submit;
1239
1240         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1241                  __func__, (unsigned long long)sh->sector, target, target2);
1242         BUG_ON(target < 0 || target2 < 0);
1243         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1245
1246         /* we need to open-code set_syndrome_sources to handle the
1247          * slot number conversion for 'faila' and 'failb'
1248          */
1249         for (i = 0; i < disks ; i++)
1250                 blocks[i] = NULL;
1251         count = 0;
1252         i = d0_idx;
1253         do {
1254                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1255
1256                 blocks[slot] = sh->dev[i].page;
1257
1258                 if (i == target)
1259                         faila = slot;
1260                 if (i == target2)
1261                         failb = slot;
1262                 i = raid6_next_disk(i, disks);
1263         } while (i != d0_idx);
1264
1265         BUG_ON(faila == failb);
1266         if (failb < faila)
1267                 swap(faila, failb);
1268         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1269                  __func__, (unsigned long long)sh->sector, faila, failb);
1270
1271         atomic_inc(&sh->count);
1272
1273         if (failb == syndrome_disks+1) {
1274                 /* Q disk is one of the missing disks */
1275                 if (faila == syndrome_disks) {
1276                         /* Missing P+Q, just recompute */
1277                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1278                                           ops_complete_compute, sh,
1279                                           to_addr_conv(sh, percpu));
1280                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1281                                                   STRIPE_SIZE, &submit);
1282                 } else {
1283                         struct page *dest;
1284                         int data_target;
1285                         int qd_idx = sh->qd_idx;
1286
1287                         /* Missing D+Q: recompute D from P, then recompute Q */
1288                         if (target == qd_idx)
1289                                 data_target = target2;
1290                         else
1291                                 data_target = target;
1292
1293                         count = 0;
1294                         for (i = disks; i-- ; ) {
1295                                 if (i == data_target || i == qd_idx)
1296                                         continue;
1297                                 blocks[count++] = sh->dev[i].page;
1298                         }
1299                         dest = sh->dev[data_target].page;
1300                         init_async_submit(&submit,
1301                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1302                                           NULL, NULL, NULL,
1303                                           to_addr_conv(sh, percpu));
1304                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1305                                        &submit);
1306
1307                         count = set_syndrome_sources(blocks, sh);
1308                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1309                                           ops_complete_compute, sh,
1310                                           to_addr_conv(sh, percpu));
1311                         return async_gen_syndrome(blocks, 0, count+2,
1312                                                   STRIPE_SIZE, &submit);
1313                 }
1314         } else {
1315                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1316                                   ops_complete_compute, sh,
1317                                   to_addr_conv(sh, percpu));
1318                 if (failb == syndrome_disks) {
1319                         /* We're missing D+P. */
1320                         return async_raid6_datap_recov(syndrome_disks+2,
1321                                                        STRIPE_SIZE, faila,
1322                                                        blocks, &submit);
1323                 } else {
1324                         /* We're missing D+D. */
1325                         return async_raid6_2data_recov(syndrome_disks+2,
1326                                                        STRIPE_SIZE, faila, failb,
1327                                                        blocks, &submit);
1328                 }
1329         }
1330 }
1331
1332
1333 static void ops_complete_prexor(void *stripe_head_ref)
1334 {
1335         struct stripe_head *sh = stripe_head_ref;
1336
1337         pr_debug("%s: stripe %llu\n", __func__,
1338                 (unsigned long long)sh->sector);
1339 }
1340
1341 static struct dma_async_tx_descriptor *
1342 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1343                struct dma_async_tx_descriptor *tx)
1344 {
1345         int disks = sh->disks;
1346         struct page **xor_srcs = percpu->scribble;
1347         int count = 0, pd_idx = sh->pd_idx, i;
1348         struct async_submit_ctl submit;
1349
1350         /* existing parity data subtracted */
1351         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1352
1353         pr_debug("%s: stripe %llu\n", __func__,
1354                 (unsigned long long)sh->sector);
1355
1356         for (i = disks; i--; ) {
1357                 struct r5dev *dev = &sh->dev[i];
1358                 /* Only process blocks that are known to be uptodate */
1359                 if (test_bit(R5_Wantdrain, &dev->flags))
1360                         xor_srcs[count++] = dev->page;
1361         }
1362
1363         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1364                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1365         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1366
1367         return tx;
1368 }
1369
1370 static struct dma_async_tx_descriptor *
1371 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1372 {
1373         int disks = sh->disks;
1374         int i;
1375
1376         pr_debug("%s: stripe %llu\n", __func__,
1377                 (unsigned long long)sh->sector);
1378
1379         for (i = disks; i--; ) {
1380                 struct r5dev *dev = &sh->dev[i];
1381                 struct bio *chosen;
1382
1383                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1384                         struct bio *wbi;
1385
1386                         spin_lock_irq(&sh->stripe_lock);
1387                         chosen = dev->towrite;
1388                         dev->towrite = NULL;
1389                         BUG_ON(dev->written);
1390                         wbi = dev->written = chosen;
1391                         spin_unlock_irq(&sh->stripe_lock);
1392
1393                         while (wbi && wbi->bi_iter.bi_sector <
1394                                 dev->sector + STRIPE_SECTORS) {
1395                                 if (wbi->bi_rw & REQ_FUA)
1396                                         set_bit(R5_WantFUA, &dev->flags);
1397                                 if (wbi->bi_rw & REQ_SYNC)
1398                                         set_bit(R5_SyncIO, &dev->flags);
1399                                 if (wbi->bi_rw & REQ_DISCARD)
1400                                         set_bit(R5_Discard, &dev->flags);
1401                                 else
1402                                         tx = async_copy_data(1, wbi, dev->page,
1403                                                 dev->sector, tx);
1404                                 wbi = r5_next_bio(wbi, dev->sector);
1405                         }
1406                 }
1407         }
1408
1409         return tx;
1410 }
1411
1412 static void ops_complete_reconstruct(void *stripe_head_ref)
1413 {
1414         struct stripe_head *sh = stripe_head_ref;
1415         int disks = sh->disks;
1416         int pd_idx = sh->pd_idx;
1417         int qd_idx = sh->qd_idx;
1418         int i;
1419         bool fua = false, sync = false, discard = false;
1420
1421         pr_debug("%s: stripe %llu\n", __func__,
1422                 (unsigned long long)sh->sector);
1423
1424         for (i = disks; i--; ) {
1425                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1426                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1427                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1428         }
1429
1430         for (i = disks; i--; ) {
1431                 struct r5dev *dev = &sh->dev[i];
1432
1433                 if (dev->written || i == pd_idx || i == qd_idx) {
1434                         if (!discard)
1435                                 set_bit(R5_UPTODATE, &dev->flags);
1436                         if (fua)
1437                                 set_bit(R5_WantFUA, &dev->flags);
1438                         if (sync)
1439                                 set_bit(R5_SyncIO, &dev->flags);
1440                 }
1441         }
1442
1443         if (sh->reconstruct_state == reconstruct_state_drain_run)
1444                 sh->reconstruct_state = reconstruct_state_drain_result;
1445         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1446                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1447         else {
1448                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1449                 sh->reconstruct_state = reconstruct_state_result;
1450         }
1451
1452         set_bit(STRIPE_HANDLE, &sh->state);
1453         release_stripe(sh);
1454 }
1455
1456 static void
1457 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1458                      struct dma_async_tx_descriptor *tx)
1459 {
1460         int disks = sh->disks;
1461         struct page **xor_srcs = percpu->scribble;
1462         struct async_submit_ctl submit;
1463         int count = 0, pd_idx = sh->pd_idx, i;
1464         struct page *xor_dest;
1465         int prexor = 0;
1466         unsigned long flags;
1467
1468         pr_debug("%s: stripe %llu\n", __func__,
1469                 (unsigned long long)sh->sector);
1470
1471         for (i = 0; i < sh->disks; i++) {
1472                 if (pd_idx == i)
1473                         continue;
1474                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1475                         break;
1476         }
1477         if (i >= sh->disks) {
1478                 atomic_inc(&sh->count);
1479                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1480                 ops_complete_reconstruct(sh);
1481                 return;
1482         }
1483         /* check if prexor is active which means only process blocks
1484          * that are part of a read-modify-write (written)
1485          */
1486         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1487                 prexor = 1;
1488                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1489                 for (i = disks; i--; ) {
1490                         struct r5dev *dev = &sh->dev[i];
1491                         if (dev->written)
1492                                 xor_srcs[count++] = dev->page;
1493                 }
1494         } else {
1495                 xor_dest = sh->dev[pd_idx].page;
1496                 for (i = disks; i--; ) {
1497                         struct r5dev *dev = &sh->dev[i];
1498                         if (i != pd_idx)
1499                                 xor_srcs[count++] = dev->page;
1500                 }
1501         }
1502
1503         /* 1/ if we prexor'd then the dest is reused as a source
1504          * 2/ if we did not prexor then we are redoing the parity
1505          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1506          * for the synchronous xor case
1507          */
1508         flags = ASYNC_TX_ACK |
1509                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1510
1511         atomic_inc(&sh->count);
1512
1513         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1514                           to_addr_conv(sh, percpu));
1515         if (unlikely(count == 1))
1516                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1517         else
1518                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1519 }
1520
1521 static void
1522 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1523                      struct dma_async_tx_descriptor *tx)
1524 {
1525         struct async_submit_ctl submit;
1526         struct page **blocks = percpu->scribble;
1527         int count, i;
1528
1529         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1530
1531         for (i = 0; i < sh->disks; i++) {
1532                 if (sh->pd_idx == i || sh->qd_idx == i)
1533                         continue;
1534                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1535                         break;
1536         }
1537         if (i >= sh->disks) {
1538                 atomic_inc(&sh->count);
1539                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1540                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1541                 ops_complete_reconstruct(sh);
1542                 return;
1543         }
1544
1545         count = set_syndrome_sources(blocks, sh);
1546
1547         atomic_inc(&sh->count);
1548
1549         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1550                           sh, to_addr_conv(sh, percpu));
1551         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1552 }
1553
1554 static void ops_complete_check(void *stripe_head_ref)
1555 {
1556         struct stripe_head *sh = stripe_head_ref;
1557
1558         pr_debug("%s: stripe %llu\n", __func__,
1559                 (unsigned long long)sh->sector);
1560
1561         sh->check_state = check_state_check_result;
1562         set_bit(STRIPE_HANDLE, &sh->state);
1563         release_stripe(sh);
1564 }
1565
1566 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1567 {
1568         int disks = sh->disks;
1569         int pd_idx = sh->pd_idx;
1570         int qd_idx = sh->qd_idx;
1571         struct page *xor_dest;
1572         struct page **xor_srcs = percpu->scribble;
1573         struct dma_async_tx_descriptor *tx;
1574         struct async_submit_ctl submit;
1575         int count;
1576         int i;
1577
1578         pr_debug("%s: stripe %llu\n", __func__,
1579                 (unsigned long long)sh->sector);
1580
1581         count = 0;
1582         xor_dest = sh->dev[pd_idx].page;
1583         xor_srcs[count++] = xor_dest;
1584         for (i = disks; i--; ) {
1585                 if (i == pd_idx || i == qd_idx)
1586                         continue;
1587                 xor_srcs[count++] = sh->dev[i].page;
1588         }
1589
1590         init_async_submit(&submit, 0, NULL, NULL, NULL,
1591                           to_addr_conv(sh, percpu));
1592         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1593                            &sh->ops.zero_sum_result, &submit);
1594
1595         atomic_inc(&sh->count);
1596         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1597         tx = async_trigger_callback(&submit);
1598 }
1599
1600 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1601 {
1602         struct page **srcs = percpu->scribble;
1603         struct async_submit_ctl submit;
1604         int count;
1605
1606         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1607                 (unsigned long long)sh->sector, checkp);
1608
1609         count = set_syndrome_sources(srcs, sh);
1610         if (!checkp)
1611                 srcs[count] = NULL;
1612
1613         atomic_inc(&sh->count);
1614         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1615                           sh, to_addr_conv(sh, percpu));
1616         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1617                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1618 }
1619
1620 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1621 {
1622         int overlap_clear = 0, i, disks = sh->disks;
1623         struct dma_async_tx_descriptor *tx = NULL;
1624         struct r5conf *conf = sh->raid_conf;
1625         int level = conf->level;
1626         struct raid5_percpu *percpu;
1627         unsigned long cpu;
1628
1629         cpu = get_cpu();
1630         percpu = per_cpu_ptr(conf->percpu, cpu);
1631         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1632                 ops_run_biofill(sh);
1633                 overlap_clear++;
1634         }
1635
1636         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1637                 if (level < 6)
1638                         tx = ops_run_compute5(sh, percpu);
1639                 else {
1640                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1641                                 tx = ops_run_compute6_1(sh, percpu);
1642                         else
1643                                 tx = ops_run_compute6_2(sh, percpu);
1644                 }
1645                 /* terminate the chain if reconstruct is not set to be run */
1646                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1647                         async_tx_ack(tx);
1648         }
1649
1650         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1651                 tx = ops_run_prexor(sh, percpu, tx);
1652
1653         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1654                 tx = ops_run_biodrain(sh, tx);
1655                 overlap_clear++;
1656         }
1657
1658         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1659                 if (level < 6)
1660                         ops_run_reconstruct5(sh, percpu, tx);
1661                 else
1662                         ops_run_reconstruct6(sh, percpu, tx);
1663         }
1664
1665         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1666                 if (sh->check_state == check_state_run)
1667                         ops_run_check_p(sh, percpu);
1668                 else if (sh->check_state == check_state_run_q)
1669                         ops_run_check_pq(sh, percpu, 0);
1670                 else if (sh->check_state == check_state_run_pq)
1671                         ops_run_check_pq(sh, percpu, 1);
1672                 else
1673                         BUG();
1674         }
1675
1676         if (overlap_clear)
1677                 for (i = disks; i--; ) {
1678                         struct r5dev *dev = &sh->dev[i];
1679                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1680                                 wake_up(&sh->raid_conf->wait_for_overlap);
1681                 }
1682         put_cpu();
1683 }
1684
1685 static int grow_one_stripe(struct r5conf *conf, int hash)
1686 {
1687         struct stripe_head *sh;
1688         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1689         if (!sh)
1690                 return 0;
1691
1692         sh->raid_conf = conf;
1693
1694         spin_lock_init(&sh->stripe_lock);
1695
1696         if (grow_buffers(sh)) {
1697                 shrink_buffers(sh);
1698                 kmem_cache_free(conf->slab_cache, sh);
1699                 return 0;
1700         }
1701         sh->hash_lock_index = hash;
1702         /* we just created an active stripe so... */
1703         atomic_set(&sh->count, 1);
1704         atomic_inc(&conf->active_stripes);
1705         INIT_LIST_HEAD(&sh->lru);
1706         release_stripe(sh);
1707         return 1;
1708 }
1709
1710 static int grow_stripes(struct r5conf *conf, int num)
1711 {
1712         struct kmem_cache *sc;
1713         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1714         int hash;
1715
1716         if (conf->mddev->gendisk)
1717                 sprintf(conf->cache_name[0],
1718                         "raid%d-%s", conf->level, mdname(conf->mddev));
1719         else
1720                 sprintf(conf->cache_name[0],
1721                         "raid%d-%p", conf->level, conf->mddev);
1722         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1723
1724         conf->active_name = 0;
1725         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1726                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1727                                0, 0, NULL);
1728         if (!sc)
1729                 return 1;
1730         conf->slab_cache = sc;
1731         conf->pool_size = devs;
1732         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1733         while (num--) {
1734                 if (!grow_one_stripe(conf, hash))
1735                         return 1;
1736                 conf->max_nr_stripes++;
1737                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1738         }
1739         return 0;
1740 }
1741
1742 /**
1743  * scribble_len - return the required size of the scribble region
1744  * @num - total number of disks in the array
1745  *
1746  * The size must be enough to contain:
1747  * 1/ a struct page pointer for each device in the array +2
1748  * 2/ room to convert each entry in (1) to its corresponding dma
1749  *    (dma_map_page()) or page (page_address()) address.
1750  *
1751  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1752  * calculate over all devices (not just the data blocks), using zeros in place
1753  * of the P and Q blocks.
1754  */
1755 static size_t scribble_len(int num)
1756 {
1757         size_t len;
1758
1759         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1760
1761         return len;
1762 }
1763
1764 static int resize_stripes(struct r5conf *conf, int newsize)
1765 {
1766         /* Make all the stripes able to hold 'newsize' devices.
1767          * New slots in each stripe get 'page' set to a new page.
1768          *
1769          * This happens in stages:
1770          * 1/ create a new kmem_cache and allocate the required number of
1771          *    stripe_heads.
1772          * 2/ gather all the old stripe_heads and transfer the pages across
1773          *    to the new stripe_heads.  This will have the side effect of
1774          *    freezing the array as once all stripe_heads have been collected,
1775          *    no IO will be possible.  Old stripe heads are freed once their
1776          *    pages have been transferred over, and the old kmem_cache is
1777          *    freed when all stripes are done.
1778          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1779          *    we simple return a failre status - no need to clean anything up.
1780          * 4/ allocate new pages for the new slots in the new stripe_heads.
1781          *    If this fails, we don't bother trying the shrink the
1782          *    stripe_heads down again, we just leave them as they are.
1783          *    As each stripe_head is processed the new one is released into
1784          *    active service.
1785          *
1786          * Once step2 is started, we cannot afford to wait for a write,
1787          * so we use GFP_NOIO allocations.
1788          */
1789         struct stripe_head *osh, *nsh;
1790         LIST_HEAD(newstripes);
1791         struct disk_info *ndisks;
1792         unsigned long cpu;
1793         int err;
1794         struct kmem_cache *sc;
1795         int i;
1796         int hash, cnt;
1797
1798         if (newsize <= conf->pool_size)
1799                 return 0; /* never bother to shrink */
1800
1801         err = md_allow_write(conf->mddev);
1802         if (err)
1803                 return err;
1804
1805         /* Step 1 */
1806         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1807                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1808                                0, 0, NULL);
1809         if (!sc)
1810                 return -ENOMEM;
1811
1812         for (i = conf->max_nr_stripes; i; i--) {
1813                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1814                 if (!nsh)
1815                         break;
1816
1817                 nsh->raid_conf = conf;
1818                 spin_lock_init(&nsh->stripe_lock);
1819
1820                 list_add(&nsh->lru, &newstripes);
1821         }
1822         if (i) {
1823                 /* didn't get enough, give up */
1824                 while (!list_empty(&newstripes)) {
1825                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1826                         list_del(&nsh->lru);
1827                         kmem_cache_free(sc, nsh);
1828                 }
1829                 kmem_cache_destroy(sc);
1830                 return -ENOMEM;
1831         }
1832         /* Step 2 - Must use GFP_NOIO now.
1833          * OK, we have enough stripes, start collecting inactive
1834          * stripes and copying them over
1835          */
1836         hash = 0;
1837         cnt = 0;
1838         list_for_each_entry(nsh, &newstripes, lru) {
1839                 lock_device_hash_lock(conf, hash);
1840                 wait_event_cmd(conf->wait_for_stripe,
1841                                     !list_empty(conf->inactive_list + hash),
1842                                     unlock_device_hash_lock(conf, hash),
1843                                     lock_device_hash_lock(conf, hash));
1844                 osh = get_free_stripe(conf, hash);
1845                 unlock_device_hash_lock(conf, hash);
1846                 atomic_set(&nsh->count, 1);
1847                 for(i=0; i<conf->pool_size; i++)
1848                         nsh->dev[i].page = osh->dev[i].page;
1849                 for( ; i<newsize; i++)
1850                         nsh->dev[i].page = NULL;
1851                 nsh->hash_lock_index = hash;
1852                 kmem_cache_free(conf->slab_cache, osh);
1853                 cnt++;
1854                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1855                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1856                         hash++;
1857                         cnt = 0;
1858                 }
1859         }
1860         kmem_cache_destroy(conf->slab_cache);
1861
1862         /* Step 3.
1863          * At this point, we are holding all the stripes so the array
1864          * is completely stalled, so now is a good time to resize
1865          * conf->disks and the scribble region
1866          */
1867         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1868         if (ndisks) {
1869                 for (i=0; i<conf->raid_disks; i++)
1870                         ndisks[i] = conf->disks[i];
1871                 kfree(conf->disks);
1872                 conf->disks = ndisks;
1873         } else
1874                 err = -ENOMEM;
1875
1876         get_online_cpus();
1877         conf->scribble_len = scribble_len(newsize);
1878         for_each_present_cpu(cpu) {
1879                 struct raid5_percpu *percpu;
1880                 void *scribble;
1881
1882                 percpu = per_cpu_ptr(conf->percpu, cpu);
1883                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1884
1885                 if (scribble) {
1886                         kfree(percpu->scribble);
1887                         percpu->scribble = scribble;
1888                 } else {
1889                         err = -ENOMEM;
1890                         break;
1891                 }
1892         }
1893         put_online_cpus();
1894
1895         /* Step 4, return new stripes to service */
1896         while(!list_empty(&newstripes)) {
1897                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1898                 list_del_init(&nsh->lru);
1899
1900                 for (i=conf->raid_disks; i < newsize; i++)
1901                         if (nsh->dev[i].page == NULL) {
1902                                 struct page *p = alloc_page(GFP_NOIO);
1903                                 nsh->dev[i].page = p;
1904                                 if (!p)
1905                                         err = -ENOMEM;
1906                         }
1907                 release_stripe(nsh);
1908         }
1909         /* critical section pass, GFP_NOIO no longer needed */
1910
1911         conf->slab_cache = sc;
1912         conf->active_name = 1-conf->active_name;
1913         conf->pool_size = newsize;
1914         return err;
1915 }
1916
1917 static int drop_one_stripe(struct r5conf *conf, int hash)
1918 {
1919         struct stripe_head *sh;
1920
1921         spin_lock_irq(conf->hash_locks + hash);
1922         sh = get_free_stripe(conf, hash);
1923         spin_unlock_irq(conf->hash_locks + hash);
1924         if (!sh)
1925                 return 0;
1926         BUG_ON(atomic_read(&sh->count));
1927         shrink_buffers(sh);
1928         kmem_cache_free(conf->slab_cache, sh);
1929         atomic_dec(&conf->active_stripes);
1930         return 1;
1931 }
1932
1933 static void shrink_stripes(struct r5conf *conf)
1934 {
1935         int hash;
1936         for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1937                 while (drop_one_stripe(conf, hash))
1938                         ;
1939
1940         if (conf->slab_cache)
1941                 kmem_cache_destroy(conf->slab_cache);
1942         conf->slab_cache = NULL;
1943 }
1944
1945 static void raid5_end_read_request(struct bio * bi, int error)
1946 {
1947         struct stripe_head *sh = bi->bi_private;
1948         struct r5conf *conf = sh->raid_conf;
1949         int disks = sh->disks, i;
1950         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1951         char b[BDEVNAME_SIZE];
1952         struct md_rdev *rdev = NULL;
1953         sector_t s;
1954
1955         for (i=0 ; i<disks; i++)
1956                 if (bi == &sh->dev[i].req)
1957                         break;
1958
1959         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1960                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1961                 uptodate);
1962         if (i == disks) {
1963                 BUG();
1964                 return;
1965         }
1966         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1967                 /* If replacement finished while this request was outstanding,
1968                  * 'replacement' might be NULL already.
1969                  * In that case it moved down to 'rdev'.
1970                  * rdev is not removed until all requests are finished.
1971                  */
1972                 rdev = conf->disks[i].replacement;
1973         if (!rdev)
1974                 rdev = conf->disks[i].rdev;
1975
1976         if (use_new_offset(conf, sh))
1977                 s = sh->sector + rdev->new_data_offset;
1978         else
1979                 s = sh->sector + rdev->data_offset;
1980         if (uptodate) {
1981                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1982                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1983                         /* Note that this cannot happen on a
1984                          * replacement device.  We just fail those on
1985                          * any error
1986                          */
1987                         printk_ratelimited(
1988                                 KERN_INFO
1989                                 "md/raid:%s: read error corrected"
1990                                 " (%lu sectors at %llu on %s)\n",
1991                                 mdname(conf->mddev), STRIPE_SECTORS,
1992                                 (unsigned long long)s,
1993                                 bdevname(rdev->bdev, b));
1994                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1995                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1996                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1997                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1998                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1999
2000                 if (atomic_read(&rdev->read_errors))
2001                         atomic_set(&rdev->read_errors, 0);
2002         } else {
2003                 const char *bdn = bdevname(rdev->bdev, b);
2004                 int retry = 0;
2005                 int set_bad = 0;
2006
2007                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2008                 atomic_inc(&rdev->read_errors);
2009                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2010                         printk_ratelimited(
2011                                 KERN_WARNING
2012                                 "md/raid:%s: read error on replacement device "
2013                                 "(sector %llu on %s).\n",
2014                                 mdname(conf->mddev),
2015                                 (unsigned long long)s,
2016                                 bdn);
2017                 else if (conf->mddev->degraded >= conf->max_degraded) {
2018                         set_bad = 1;
2019                         printk_ratelimited(
2020                                 KERN_WARNING
2021                                 "md/raid:%s: read error not correctable "
2022                                 "(sector %llu on %s).\n",
2023                                 mdname(conf->mddev),
2024                                 (unsigned long long)s,
2025                                 bdn);
2026                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2027                         /* Oh, no!!! */
2028                         set_bad = 1;
2029                         printk_ratelimited(
2030                                 KERN_WARNING
2031                                 "md/raid:%s: read error NOT corrected!! "
2032                                 "(sector %llu on %s).\n",
2033                                 mdname(conf->mddev),
2034                                 (unsigned long long)s,
2035                                 bdn);
2036                 } else if (atomic_read(&rdev->read_errors)
2037                          > conf->max_nr_stripes)
2038                         printk(KERN_WARNING
2039                                "md/raid:%s: Too many read errors, failing device %s.\n",
2040                                mdname(conf->mddev), bdn);
2041                 else
2042                         retry = 1;
2043                 if (set_bad && test_bit(In_sync, &rdev->flags)
2044                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2045                         retry = 1;
2046                 if (retry)
2047                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2048                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2049                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2050                         } else
2051                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2052                 else {
2053                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2054                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2055                         if (!(set_bad
2056                               && test_bit(In_sync, &rdev->flags)
2057                               && rdev_set_badblocks(
2058                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2059                                 md_error(conf->mddev, rdev);
2060                 }
2061         }
2062         rdev_dec_pending(rdev, conf->mddev);
2063         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2064         set_bit(STRIPE_HANDLE, &sh->state);
2065         release_stripe(sh);
2066 }
2067
2068 static void raid5_end_write_request(struct bio *bi, int error)
2069 {
2070         struct stripe_head *sh = bi->bi_private;
2071         struct r5conf *conf = sh->raid_conf;
2072         int disks = sh->disks, i;
2073         struct md_rdev *uninitialized_var(rdev);
2074         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2075         sector_t first_bad;
2076         int bad_sectors;
2077         int replacement = 0;
2078
2079         for (i = 0 ; i < disks; i++) {
2080                 if (bi == &sh->dev[i].req) {
2081                         rdev = conf->disks[i].rdev;
2082                         break;
2083                 }
2084                 if (bi == &sh->dev[i].rreq) {
2085                         rdev = conf->disks[i].replacement;
2086                         if (rdev)
2087                                 replacement = 1;
2088                         else
2089                                 /* rdev was removed and 'replacement'
2090                                  * replaced it.  rdev is not removed
2091                                  * until all requests are finished.
2092                                  */
2093                                 rdev = conf->disks[i].rdev;
2094                         break;
2095                 }
2096         }
2097         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2098                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2099                 uptodate);
2100         if (i == disks) {
2101                 BUG();
2102                 return;
2103         }
2104
2105         if (replacement) {
2106                 if (!uptodate)
2107                         md_error(conf->mddev, rdev);
2108                 else if (is_badblock(rdev, sh->sector,
2109                                      STRIPE_SECTORS,
2110                                      &first_bad, &bad_sectors))
2111                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2112         } else {
2113                 if (!uptodate) {
2114                         set_bit(STRIPE_DEGRADED, &sh->state);
2115                         set_bit(WriteErrorSeen, &rdev->flags);
2116                         set_bit(R5_WriteError, &sh->dev[i].flags);
2117                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2118                                 set_bit(MD_RECOVERY_NEEDED,
2119                                         &rdev->mddev->recovery);
2120                 } else if (is_badblock(rdev, sh->sector,
2121                                        STRIPE_SECTORS,
2122                                        &first_bad, &bad_sectors)) {
2123                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2124                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2125                                 /* That was a successful write so make
2126                                  * sure it looks like we already did
2127                                  * a re-write.
2128                                  */
2129                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2130                 }
2131         }
2132         rdev_dec_pending(rdev, conf->mddev);
2133
2134         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2135                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2136         set_bit(STRIPE_HANDLE, &sh->state);
2137         release_stripe(sh);
2138 }
2139
2140 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2141         
2142 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2143 {
2144         struct r5dev *dev = &sh->dev[i];
2145
2146         bio_init(&dev->req);
2147         dev->req.bi_io_vec = &dev->vec;
2148         dev->req.bi_vcnt++;
2149         dev->req.bi_max_vecs++;
2150         dev->req.bi_private = sh;
2151         dev->vec.bv_page = dev->page;
2152
2153         bio_init(&dev->rreq);
2154         dev->rreq.bi_io_vec = &dev->rvec;
2155         dev->rreq.bi_vcnt++;
2156         dev->rreq.bi_max_vecs++;
2157         dev->rreq.bi_private = sh;
2158         dev->rvec.bv_page = dev->page;
2159
2160         dev->flags = 0;
2161         dev->sector = compute_blocknr(sh, i, previous);
2162 }
2163
2164 static void error(struct mddev *mddev, struct md_rdev *rdev)
2165 {
2166         char b[BDEVNAME_SIZE];
2167         struct r5conf *conf = mddev->private;
2168         unsigned long flags;
2169         pr_debug("raid456: error called\n");
2170
2171         spin_lock_irqsave(&conf->device_lock, flags);
2172         clear_bit(In_sync, &rdev->flags);
2173         mddev->degraded = calc_degraded(conf);
2174         spin_unlock_irqrestore(&conf->device_lock, flags);
2175         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2176
2177         set_bit(Blocked, &rdev->flags);
2178         set_bit(Faulty, &rdev->flags);
2179         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2180         printk(KERN_ALERT
2181                "md/raid:%s: Disk failure on %s, disabling device.\n"
2182                "md/raid:%s: Operation continuing on %d devices.\n",
2183                mdname(mddev),
2184                bdevname(rdev->bdev, b),
2185                mdname(mddev),
2186                conf->raid_disks - mddev->degraded);
2187 }
2188
2189 /*
2190  * Input: a 'big' sector number,
2191  * Output: index of the data and parity disk, and the sector # in them.
2192  */
2193 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2194                                      int previous, int *dd_idx,
2195                                      struct stripe_head *sh)
2196 {
2197         sector_t stripe, stripe2;
2198         sector_t chunk_number;
2199         unsigned int chunk_offset;
2200         int pd_idx, qd_idx;
2201         int ddf_layout = 0;
2202         sector_t new_sector;
2203         int algorithm = previous ? conf->prev_algo
2204                                  : conf->algorithm;
2205         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2206                                          : conf->chunk_sectors;
2207         int raid_disks = previous ? conf->previous_raid_disks
2208                                   : conf->raid_disks;
2209         int data_disks = raid_disks - conf->max_degraded;
2210
2211         /* First compute the information on this sector */
2212
2213         /*
2214          * Compute the chunk number and the sector offset inside the chunk
2215          */
2216         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2217         chunk_number = r_sector;
2218
2219         /*
2220          * Compute the stripe number
2221          */
2222         stripe = chunk_number;
2223         *dd_idx = sector_div(stripe, data_disks);
2224         stripe2 = stripe;
2225         /*
2226          * Select the parity disk based on the user selected algorithm.
2227          */
2228         pd_idx = qd_idx = -1;
2229         switch(conf->level) {
2230         case 4:
2231                 pd_idx = data_disks;
2232                 break;
2233         case 5:
2234                 switch (algorithm) {
2235                 case ALGORITHM_LEFT_ASYMMETRIC:
2236                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2237                         if (*dd_idx >= pd_idx)
2238                                 (*dd_idx)++;
2239                         break;
2240                 case ALGORITHM_RIGHT_ASYMMETRIC:
2241                         pd_idx = sector_div(stripe2, raid_disks);
2242                         if (*dd_idx >= pd_idx)
2243                                 (*dd_idx)++;
2244                         break;
2245                 case ALGORITHM_LEFT_SYMMETRIC:
2246                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2247                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2248                         break;
2249                 case ALGORITHM_RIGHT_SYMMETRIC:
2250                         pd_idx = sector_div(stripe2, raid_disks);
2251                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2252                         break;
2253                 case ALGORITHM_PARITY_0:
2254                         pd_idx = 0;
2255                         (*dd_idx)++;
2256                         break;
2257                 case ALGORITHM_PARITY_N:
2258                         pd_idx = data_disks;
2259                         break;
2260                 default:
2261                         BUG();
2262                 }
2263                 break;
2264         case 6:
2265
2266                 switch (algorithm) {
2267                 case ALGORITHM_LEFT_ASYMMETRIC:
2268                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2269                         qd_idx = pd_idx + 1;
2270                         if (pd_idx == raid_disks-1) {
2271                                 (*dd_idx)++;    /* Q D D D P */
2272                                 qd_idx = 0;
2273                         } else if (*dd_idx >= pd_idx)
2274                                 (*dd_idx) += 2; /* D D P Q D */
2275                         break;
2276                 case ALGORITHM_RIGHT_ASYMMETRIC:
2277                         pd_idx = sector_div(stripe2, raid_disks);
2278                         qd_idx = pd_idx + 1;
2279                         if (pd_idx == raid_disks-1) {
2280                                 (*dd_idx)++;    /* Q D D D P */
2281                                 qd_idx = 0;
2282                         } else if (*dd_idx >= pd_idx)
2283                                 (*dd_idx) += 2; /* D D P Q D */
2284                         break;
2285                 case ALGORITHM_LEFT_SYMMETRIC:
2286                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2287                         qd_idx = (pd_idx + 1) % raid_disks;
2288                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2289                         break;
2290                 case ALGORITHM_RIGHT_SYMMETRIC:
2291                         pd_idx = sector_div(stripe2, raid_disks);
2292                         qd_idx = (pd_idx + 1) % raid_disks;
2293                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2294                         break;
2295
2296                 case ALGORITHM_PARITY_0:
2297                         pd_idx = 0;
2298                         qd_idx = 1;
2299                         (*dd_idx) += 2;
2300                         break;
2301                 case ALGORITHM_PARITY_N:
2302                         pd_idx = data_disks;
2303                         qd_idx = data_disks + 1;
2304                         break;
2305
2306                 case ALGORITHM_ROTATING_ZERO_RESTART:
2307                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2308                          * of blocks for computing Q is different.
2309                          */
2310                         pd_idx = sector_div(stripe2, raid_disks);
2311                         qd_idx = pd_idx + 1;
2312                         if (pd_idx == raid_disks-1) {
2313                                 (*dd_idx)++;    /* Q D D D P */
2314                                 qd_idx = 0;
2315                         } else if (*dd_idx >= pd_idx)
2316                                 (*dd_idx) += 2; /* D D P Q D */
2317                         ddf_layout = 1;
2318                         break;
2319
2320                 case ALGORITHM_ROTATING_N_RESTART:
2321                         /* Same a left_asymmetric, by first stripe is
2322                          * D D D P Q  rather than
2323                          * Q D D D P
2324                          */
2325                         stripe2 += 1;
2326                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2327                         qd_idx = pd_idx + 1;
2328                         if (pd_idx == raid_disks-1) {
2329                                 (*dd_idx)++;    /* Q D D D P */
2330                                 qd_idx = 0;
2331                         } else if (*dd_idx >= pd_idx)
2332                                 (*dd_idx) += 2; /* D D P Q D */
2333                         ddf_layout = 1;
2334                         break;
2335
2336                 case ALGORITHM_ROTATING_N_CONTINUE:
2337                         /* Same as left_symmetric but Q is before P */
2338                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2339                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2340                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2341                         ddf_layout = 1;
2342                         break;
2343
2344                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2345                         /* RAID5 left_asymmetric, with Q on last device */
2346                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2347                         if (*dd_idx >= pd_idx)
2348                                 (*dd_idx)++;
2349                         qd_idx = raid_disks - 1;
2350                         break;
2351
2352                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2353                         pd_idx = sector_div(stripe2, raid_disks-1);
2354                         if (*dd_idx >= pd_idx)
2355                                 (*dd_idx)++;
2356                         qd_idx = raid_disks - 1;
2357                         break;
2358
2359                 case ALGORITHM_LEFT_SYMMETRIC_6:
2360                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2361                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2362                         qd_idx = raid_disks - 1;
2363                         break;
2364
2365                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2366                         pd_idx = sector_div(stripe2, raid_disks-1);
2367                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2368                         qd_idx = raid_disks - 1;
2369                         break;
2370
2371                 case ALGORITHM_PARITY_0_6:
2372                         pd_idx = 0;
2373                         (*dd_idx)++;
2374                         qd_idx = raid_disks - 1;
2375                         break;
2376
2377                 default:
2378                         BUG();
2379                 }
2380                 break;
2381         }
2382
2383         if (sh) {
2384                 sh->pd_idx = pd_idx;
2385                 sh->qd_idx = qd_idx;
2386                 sh->ddf_layout = ddf_layout;
2387         }
2388         /*
2389          * Finally, compute the new sector number
2390          */
2391         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2392         return new_sector;
2393 }
2394
2395
2396 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2397 {
2398         struct r5conf *conf = sh->raid_conf;
2399         int raid_disks = sh->disks;
2400         int data_disks = raid_disks - conf->max_degraded;
2401         sector_t new_sector = sh->sector, check;
2402         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2403                                          : conf->chunk_sectors;
2404         int algorithm = previous ? conf->prev_algo
2405                                  : conf->algorithm;
2406         sector_t stripe;
2407         int chunk_offset;
2408         sector_t chunk_number;
2409         int dummy1, dd_idx = i;
2410         sector_t r_sector;
2411         struct stripe_head sh2;
2412
2413
2414         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2415         stripe = new_sector;
2416
2417         if (i == sh->pd_idx)
2418                 return 0;
2419         switch(conf->level) {
2420         case 4: break;
2421         case 5:
2422                 switch (algorithm) {
2423                 case ALGORITHM_LEFT_ASYMMETRIC:
2424                 case ALGORITHM_RIGHT_ASYMMETRIC:
2425                         if (i > sh->pd_idx)
2426                                 i--;
2427                         break;
2428                 case ALGORITHM_LEFT_SYMMETRIC:
2429                 case ALGORITHM_RIGHT_SYMMETRIC:
2430                         if (i < sh->pd_idx)
2431                                 i += raid_disks;
2432                         i -= (sh->pd_idx + 1);
2433                         break;
2434                 case ALGORITHM_PARITY_0:
2435                         i -= 1;
2436                         break;
2437                 case ALGORITHM_PARITY_N:
2438                         break;
2439                 default:
2440                         BUG();
2441                 }
2442                 break;
2443         case 6:
2444                 if (i == sh->qd_idx)
2445                         return 0; /* It is the Q disk */
2446                 switch (algorithm) {
2447                 case ALGORITHM_LEFT_ASYMMETRIC:
2448                 case ALGORITHM_RIGHT_ASYMMETRIC:
2449                 case ALGORITHM_ROTATING_ZERO_RESTART:
2450                 case ALGORITHM_ROTATING_N_RESTART:
2451                         if (sh->pd_idx == raid_disks-1)
2452                                 i--;    /* Q D D D P */
2453                         else if (i > sh->pd_idx)
2454                                 i -= 2; /* D D P Q D */
2455                         break;
2456                 case ALGORITHM_LEFT_SYMMETRIC:
2457                 case ALGORITHM_RIGHT_SYMMETRIC:
2458                         if (sh->pd_idx == raid_disks-1)
2459                                 i--; /* Q D D D P */
2460                         else {
2461                                 /* D D P Q D */
2462                                 if (i < sh->pd_idx)
2463                                         i += raid_disks;
2464                                 i -= (sh->pd_idx + 2);
2465                         }
2466                         break;
2467                 case ALGORITHM_PARITY_0:
2468                         i -= 2;
2469                         break;
2470                 case ALGORITHM_PARITY_N:
2471                         break;
2472                 case ALGORITHM_ROTATING_N_CONTINUE:
2473                         /* Like left_symmetric, but P is before Q */
2474                         if (sh->pd_idx == 0)
2475                                 i--;    /* P D D D Q */
2476                         else {
2477                                 /* D D Q P D */
2478                                 if (i < sh->pd_idx)
2479                                         i += raid_disks;
2480                                 i -= (sh->pd_idx + 1);
2481                         }
2482                         break;
2483                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2484                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2485                         if (i > sh->pd_idx)
2486                                 i--;
2487                         break;
2488                 case ALGORITHM_LEFT_SYMMETRIC_6:
2489                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2490                         if (i < sh->pd_idx)
2491                                 i += data_disks + 1;
2492                         i -= (sh->pd_idx + 1);
2493                         break;
2494                 case ALGORITHM_PARITY_0_6:
2495                         i -= 1;
2496                         break;
2497                 default:
2498                         BUG();
2499                 }
2500                 break;
2501         }
2502
2503         chunk_number = stripe * data_disks + i;
2504         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2505
2506         check = raid5_compute_sector(conf, r_sector,
2507                                      previous, &dummy1, &sh2);
2508         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2509                 || sh2.qd_idx != sh->qd_idx) {
2510                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2511                        mdname(conf->mddev));
2512                 return 0;
2513         }
2514         return r_sector;
2515 }
2516
2517
2518 static void
2519 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2520                          int rcw, int expand)
2521 {
2522         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2523         struct r5conf *conf = sh->raid_conf;
2524         int level = conf->level;
2525
2526         if (rcw) {
2527
2528                 for (i = disks; i--; ) {
2529                         struct r5dev *dev = &sh->dev[i];
2530
2531                         if (dev->towrite) {
2532                                 set_bit(R5_LOCKED, &dev->flags);
2533                                 set_bit(R5_Wantdrain, &dev->flags);
2534                                 if (!expand)
2535                                         clear_bit(R5_UPTODATE, &dev->flags);
2536                                 s->locked++;
2537                         }
2538                 }
2539                 /* if we are not expanding this is a proper write request, and
2540                  * there will be bios with new data to be drained into the
2541                  * stripe cache
2542                  */
2543                 if (!expand) {
2544                         if (!s->locked)
2545                                 /* False alarm, nothing to do */
2546                                 return;
2547                         sh->reconstruct_state = reconstruct_state_drain_run;
2548                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2549                 } else
2550                         sh->reconstruct_state = reconstruct_state_run;
2551
2552                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2553
2554                 if (s->locked + conf->max_degraded == disks)
2555                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2556                                 atomic_inc(&conf->pending_full_writes);
2557         } else {
2558                 BUG_ON(level == 6);
2559                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2560                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2561
2562                 for (i = disks; i--; ) {
2563                         struct r5dev *dev = &sh->dev[i];
2564                         if (i == pd_idx)
2565                                 continue;
2566
2567                         if (dev->towrite &&
2568                             (test_bit(R5_UPTODATE, &dev->flags) ||
2569                              test_bit(R5_Wantcompute, &dev->flags))) {
2570                                 set_bit(R5_Wantdrain, &dev->flags);
2571                                 set_bit(R5_LOCKED, &dev->flags);
2572                                 clear_bit(R5_UPTODATE, &dev->flags);
2573                                 s->locked++;
2574                         }
2575                 }
2576                 if (!s->locked)
2577                         /* False alarm - nothing to do */
2578                         return;
2579                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2580                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2581                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2582                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2583         }
2584
2585         /* keep the parity disk(s) locked while asynchronous operations
2586          * are in flight
2587          */
2588         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2589         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2590         s->locked++;
2591
2592         if (level == 6) {
2593                 int qd_idx = sh->qd_idx;
2594                 struct r5dev *dev = &sh->dev[qd_idx];
2595
2596                 set_bit(R5_LOCKED, &dev->flags);
2597                 clear_bit(R5_UPTODATE, &dev->flags);
2598                 s->locked++;
2599         }
2600
2601         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2602                 __func__, (unsigned long long)sh->sector,
2603                 s->locked, s->ops_request);
2604 }
2605
2606 /*
2607  * Each stripe/dev can have one or more bion attached.
2608  * toread/towrite point to the first in a chain.
2609  * The bi_next chain must be in order.
2610  */
2611 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2612 {
2613         struct bio **bip;
2614         struct r5conf *conf = sh->raid_conf;
2615         int firstwrite=0;
2616
2617         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2618                 (unsigned long long)bi->bi_iter.bi_sector,
2619                 (unsigned long long)sh->sector);
2620
2621         /*
2622          * If several bio share a stripe. The bio bi_phys_segments acts as a
2623          * reference count to avoid race. The reference count should already be
2624          * increased before this function is called (for example, in
2625          * make_request()), so other bio sharing this stripe will not free the
2626          * stripe. If a stripe is owned by one stripe, the stripe lock will
2627          * protect it.
2628          */
2629         spin_lock_irq(&sh->stripe_lock);
2630         if (forwrite) {
2631                 bip = &sh->dev[dd_idx].towrite;
2632                 if (*bip == NULL)
2633                         firstwrite = 1;
2634         } else
2635                 bip = &sh->dev[dd_idx].toread;
2636         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2637                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2638                         goto overlap;
2639                 bip = & (*bip)->bi_next;
2640         }
2641         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2642                 goto overlap;
2643
2644         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2645         if (*bip)
2646                 bi->bi_next = *bip;
2647         *bip = bi;
2648         raid5_inc_bi_active_stripes(bi);
2649
2650         if (forwrite) {
2651                 /* check if page is covered */
2652                 sector_t sector = sh->dev[dd_idx].sector;
2653                 for (bi=sh->dev[dd_idx].towrite;
2654                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2655                              bi && bi->bi_iter.bi_sector <= sector;
2656                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2657                         if (bio_end_sector(bi) >= sector)
2658                                 sector = bio_end_sector(bi);
2659                 }
2660                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2661                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2662         }
2663
2664         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2665                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2666                 (unsigned long long)sh->sector, dd_idx);
2667         spin_unlock_irq(&sh->stripe_lock);
2668
2669         if (conf->mddev->bitmap && firstwrite) {
2670                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2671                                   STRIPE_SECTORS, 0);
2672                 sh->bm_seq = conf->seq_flush+1;
2673                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2674         }
2675         return 1;
2676
2677  overlap:
2678         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2679         spin_unlock_irq(&sh->stripe_lock);
2680         return 0;
2681 }
2682
2683 static void end_reshape(struct r5conf *conf);
2684
2685 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2686                             struct stripe_head *sh)
2687 {
2688         int sectors_per_chunk =
2689                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2690         int dd_idx;
2691         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2692         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2693
2694         raid5_compute_sector(conf,
2695                              stripe * (disks - conf->max_degraded)
2696                              *sectors_per_chunk + chunk_offset,
2697                              previous,
2698                              &dd_idx, sh);
2699 }
2700
2701 static void
2702 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2703                                 struct stripe_head_state *s, int disks,
2704                                 struct bio **return_bi)
2705 {
2706         int i;
2707         for (i = disks; i--; ) {
2708                 struct bio *bi;
2709                 int bitmap_end = 0;
2710
2711                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2712                         struct md_rdev *rdev;
2713                         rcu_read_lock();
2714                         rdev = rcu_dereference(conf->disks[i].rdev);
2715                         if (rdev && test_bit(In_sync, &rdev->flags))
2716                                 atomic_inc(&rdev->nr_pending);
2717                         else
2718                                 rdev = NULL;
2719                         rcu_read_unlock();
2720                         if (rdev) {
2721                                 if (!rdev_set_badblocks(
2722                                             rdev,
2723                                             sh->sector,
2724                                             STRIPE_SECTORS, 0))
2725                                         md_error(conf->mddev, rdev);
2726                                 rdev_dec_pending(rdev, conf->mddev);
2727                         }
2728                 }
2729                 spin_lock_irq(&sh->stripe_lock);
2730                 /* fail all writes first */
2731                 bi = sh->dev[i].towrite;
2732                 sh->dev[i].towrite = NULL;
2733                 spin_unlock_irq(&sh->stripe_lock);
2734                 if (bi)
2735                         bitmap_end = 1;
2736
2737                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2738                         wake_up(&conf->wait_for_overlap);
2739
2740                 while (bi && bi->bi_iter.bi_sector <
2741                         sh->dev[i].sector + STRIPE_SECTORS) {
2742                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2743                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2744                         if (!raid5_dec_bi_active_stripes(bi)) {
2745                                 md_write_end(conf->mddev);
2746                                 bi->bi_next = *return_bi;
2747                                 *return_bi = bi;
2748                         }
2749                         bi = nextbi;
2750                 }
2751                 if (bitmap_end)
2752                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2753                                 STRIPE_SECTORS, 0, 0);
2754                 bitmap_end = 0;
2755                 /* and fail all 'written' */
2756                 bi = sh->dev[i].written;
2757                 sh->dev[i].written = NULL;
2758                 if (bi) bitmap_end = 1;
2759                 while (bi && bi->bi_iter.bi_sector <
2760                        sh->dev[i].sector + STRIPE_SECTORS) {
2761                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2762                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2763                         if (!raid5_dec_bi_active_stripes(bi)) {
2764                                 md_write_end(conf->mddev);
2765                                 bi->bi_next = *return_bi;
2766                                 *return_bi = bi;
2767                         }
2768                         bi = bi2;
2769                 }
2770
2771                 /* fail any reads if this device is non-operational and
2772                  * the data has not reached the cache yet.
2773                  */
2774                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2775                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2776                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2777                         spin_lock_irq(&sh->stripe_lock);
2778                         bi = sh->dev[i].toread;
2779                         sh->dev[i].toread = NULL;
2780                         spin_unlock_irq(&sh->stripe_lock);
2781                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2782                                 wake_up(&conf->wait_for_overlap);
2783                         while (bi && bi->bi_iter.bi_sector <
2784                                sh->dev[i].sector + STRIPE_SECTORS) {
2785                                 struct bio *nextbi =
2786                                         r5_next_bio(bi, sh->dev[i].sector);
2787                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2788                                 if (!raid5_dec_bi_active_stripes(bi)) {
2789                                         bi->bi_next = *return_bi;
2790                                         *return_bi = bi;
2791                                 }
2792                                 bi = nextbi;
2793                         }
2794                 }
2795                 if (bitmap_end)
2796                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2797                                         STRIPE_SECTORS, 0, 0);
2798                 /* If we were in the middle of a write the parity block might
2799                  * still be locked - so just clear all R5_LOCKED flags
2800                  */
2801                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2802         }
2803
2804         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2805                 if (atomic_dec_and_test(&conf->pending_full_writes))
2806                         md_wakeup_thread(conf->mddev->thread);
2807 }
2808
2809 static void
2810 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2811                    struct stripe_head_state *s)
2812 {
2813         int abort = 0;
2814         int i;
2815
2816         clear_bit(STRIPE_SYNCING, &sh->state);
2817         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2818                 wake_up(&conf->wait_for_overlap);
2819         s->syncing = 0;
2820         s->replacing = 0;
2821         /* There is nothing more to do for sync/check/repair.
2822          * Don't even need to abort as that is handled elsewhere
2823          * if needed, and not always wanted e.g. if there is a known
2824          * bad block here.
2825          * For recover/replace we need to record a bad block on all
2826          * non-sync devices, or abort the recovery
2827          */
2828         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2829                 /* During recovery devices cannot be removed, so
2830                  * locking and refcounting of rdevs is not needed
2831                  */
2832                 for (i = 0; i < conf->raid_disks; i++) {
2833                         struct md_rdev *rdev = conf->disks[i].rdev;
2834                         if (rdev
2835                             && !test_bit(Faulty, &rdev->flags)
2836                             && !test_bit(In_sync, &rdev->flags)
2837                             && !rdev_set_badblocks(rdev, sh->sector,
2838                                                    STRIPE_SECTORS, 0))
2839                                 abort = 1;
2840                         rdev = conf->disks[i].replacement;
2841                         if (rdev
2842                             && !test_bit(Faulty, &rdev->flags)
2843                             && !test_bit(In_sync, &rdev->flags)
2844                             && !rdev_set_badblocks(rdev, sh->sector,
2845                                                    STRIPE_SECTORS, 0))
2846                                 abort = 1;
2847                 }
2848                 if (abort)
2849                         conf->recovery_disabled =
2850                                 conf->mddev->recovery_disabled;
2851         }
2852         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2853 }
2854
2855 static int want_replace(struct stripe_head *sh, int disk_idx)
2856 {
2857         struct md_rdev *rdev;
2858         int rv = 0;
2859         /* Doing recovery so rcu locking not required */
2860         rdev = sh->raid_conf->disks[disk_idx].replacement;
2861         if (rdev
2862             && !test_bit(Faulty, &rdev->flags)
2863             && !test_bit(In_sync, &rdev->flags)
2864             && (rdev->recovery_offset <= sh->sector
2865                 || rdev->mddev->recovery_cp <= sh->sector))
2866                 rv = 1;
2867
2868         return rv;
2869 }
2870
2871 /* fetch_block - checks the given member device to see if its data needs
2872  * to be read or computed to satisfy a request.
2873  *
2874  * Returns 1 when no more member devices need to be checked, otherwise returns
2875  * 0 to tell the loop in handle_stripe_fill to continue
2876  */
2877 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2878                        int disk_idx, int disks)
2879 {
2880         struct r5dev *dev = &sh->dev[disk_idx];
2881         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2882                                   &sh->dev[s->failed_num[1]] };
2883
2884         /* is the data in this block needed, and can we get it? */
2885         if (!test_bit(R5_LOCKED, &dev->flags) &&
2886             !test_bit(R5_UPTODATE, &dev->flags) &&
2887             (dev->toread ||
2888              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2889              s->syncing || s->expanding ||
2890              (s->replacing && want_replace(sh, disk_idx)) ||
2891              (s->failed >= 1 && fdev[0]->toread) ||
2892              (s->failed >= 2 && fdev[1]->toread) ||
2893              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2894               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2895              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2896                 /* we would like to get this block, possibly by computing it,
2897                  * otherwise read it if the backing disk is insync
2898                  */
2899                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2900                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2901                 if ((s->uptodate == disks - 1) &&
2902                     (s->failed && (disk_idx == s->failed_num[0] ||
2903                                    disk_idx == s->failed_num[1]))) {
2904                         /* have disk failed, and we're requested to fetch it;
2905                          * do compute it
2906                          */
2907                         pr_debug("Computing stripe %llu block %d\n",
2908                                (unsigned long long)sh->sector, disk_idx);
2909                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2910                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2911                         set_bit(R5_Wantcompute, &dev->flags);
2912                         sh->ops.target = disk_idx;
2913                         sh->ops.target2 = -1; /* no 2nd target */
2914                         s->req_compute = 1;
2915                         /* Careful: from this point on 'uptodate' is in the eye
2916                          * of raid_run_ops which services 'compute' operations
2917                          * before writes. R5_Wantcompute flags a block that will
2918                          * be R5_UPTODATE by the time it is needed for a
2919                          * subsequent operation.
2920                          */
2921                         s->uptodate++;
2922                         return 1;
2923                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2924                         /* Computing 2-failure is *very* expensive; only
2925                          * do it if failed >= 2
2926                          */
2927                         int other;
2928                         for (other = disks; other--; ) {
2929                                 if (other == disk_idx)
2930                                         continue;
2931                                 if (!test_bit(R5_UPTODATE,
2932                                       &sh->dev[other].flags))
2933                                         break;
2934                         }
2935                         BUG_ON(other < 0);
2936                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2937                                (unsigned long long)sh->sector,
2938                                disk_idx, other);
2939                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2940                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2941                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2942                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2943                         sh->ops.target = disk_idx;
2944                         sh->ops.target2 = other;
2945                         s->uptodate += 2;
2946                         s->req_compute = 1;
2947                         return 1;
2948                 } else if (test_bit(R5_Insync, &dev->flags)) {
2949                         set_bit(R5_LOCKED, &dev->flags);
2950                         set_bit(R5_Wantread, &dev->flags);
2951                         s->locked++;
2952                         pr_debug("Reading block %d (sync=%d)\n",
2953                                 disk_idx, s->syncing);
2954                 }
2955         }
2956
2957         return 0;
2958 }
2959
2960 /**
2961  * handle_stripe_fill - read or compute data to satisfy pending requests.
2962  */
2963 static void handle_stripe_fill(struct stripe_head *sh,
2964                                struct stripe_head_state *s,
2965                                int disks)
2966 {
2967         int i;
2968
2969         /* look for blocks to read/compute, skip this if a compute
2970          * is already in flight, or if the stripe contents are in the
2971          * midst of changing due to a write
2972          */
2973         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2974             !sh->reconstruct_state)
2975                 for (i = disks; i--; )
2976                         if (fetch_block(sh, s, i, disks))
2977                                 break;
2978         set_bit(STRIPE_HANDLE, &sh->state);
2979 }
2980
2981
2982 /* handle_stripe_clean_event
2983  * any written block on an uptodate or failed drive can be returned.
2984  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2985  * never LOCKED, so we don't need to test 'failed' directly.
2986  */
2987 static void handle_stripe_clean_event(struct r5conf *conf,
2988         struct stripe_head *sh, int disks, struct bio **return_bi)
2989 {
2990         int i;
2991         struct r5dev *dev;
2992         int discard_pending = 0;
2993
2994         for (i = disks; i--; )
2995                 if (sh->dev[i].written) {
2996                         dev = &sh->dev[i];
2997                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2998                             (test_bit(R5_UPTODATE, &dev->flags) ||
2999                              test_bit(R5_Discard, &dev->flags))) {
3000                                 /* We can return any write requests */
3001                                 struct bio *wbi, *wbi2;
3002                                 pr_debug("Return write for disc %d\n", i);
3003                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3004                                         clear_bit(R5_UPTODATE, &dev->flags);
3005                                 wbi = dev->written;
3006                                 dev->written = NULL;
3007                                 while (wbi && wbi->bi_iter.bi_sector <
3008                                         dev->sector + STRIPE_SECTORS) {
3009                                         wbi2 = r5_next_bio(wbi, dev->sector);
3010                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3011                                                 md_write_end(conf->mddev);
3012                                                 wbi->bi_next = *return_bi;
3013                                                 *return_bi = wbi;
3014                                         }
3015                                         wbi = wbi2;
3016                                 }
3017                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3018                                                 STRIPE_SECTORS,
3019                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3020                                                 0);
3021                         } else if (test_bit(R5_Discard, &dev->flags))
3022                                 discard_pending = 1;
3023                 }
3024         if (!discard_pending &&
3025             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3026                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3027                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3028                 if (sh->qd_idx >= 0) {
3029                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3030                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3031                 }
3032                 /* now that discard is done we can proceed with any sync */
3033                 clear_bit(STRIPE_DISCARD, &sh->state);
3034                 /*
3035                  * SCSI discard will change some bio fields and the stripe has
3036                  * no updated data, so remove it from hash list and the stripe
3037                  * will be reinitialized
3038                  */
3039                 spin_lock_irq(&conf->device_lock);
3040                 remove_hash(sh);
3041                 spin_unlock_irq(&conf->device_lock);
3042                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3043                         set_bit(STRIPE_HANDLE, &sh->state);
3044
3045         }
3046
3047         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3048                 if (atomic_dec_and_test(&conf->pending_full_writes))
3049                         md_wakeup_thread(conf->mddev->thread);
3050 }
3051
3052 static void handle_stripe_dirtying(struct r5conf *conf,
3053                                    struct stripe_head *sh,
3054                                    struct stripe_head_state *s,
3055                                    int disks)
3056 {
3057         int rmw = 0, rcw = 0, i;
3058         sector_t recovery_cp = conf->mddev->recovery_cp;
3059
3060         /* RAID6 requires 'rcw' in current implementation.
3061          * Otherwise, check whether resync is now happening or should start.
3062          * If yes, then the array is dirty (after unclean shutdown or
3063          * initial creation), so parity in some stripes might be inconsistent.
3064          * In this case, we need to always do reconstruct-write, to ensure
3065          * that in case of drive failure or read-error correction, we
3066          * generate correct data from the parity.
3067          */
3068         if (conf->max_degraded == 2 ||
3069             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3070                 /* Calculate the real rcw later - for now make it
3071                  * look like rcw is cheaper
3072                  */
3073                 rcw = 1; rmw = 2;
3074                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3075                          conf->max_degraded, (unsigned long long)recovery_cp,
3076                          (unsigned long long)sh->sector);
3077         } else for (i = disks; i--; ) {
3078                 /* would I have to read this buffer for read_modify_write */
3079                 struct r5dev *dev = &sh->dev[i];
3080                 if ((dev->towrite || i == sh->pd_idx) &&
3081                     !test_bit(R5_LOCKED, &dev->flags) &&
3082                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3083                       test_bit(R5_Wantcompute, &dev->flags))) {
3084                         if (test_bit(R5_Insync, &dev->flags))
3085                                 rmw++;
3086                         else
3087                                 rmw += 2*disks;  /* cannot read it */
3088                 }
3089                 /* Would I have to read this buffer for reconstruct_write */
3090                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3091                     !test_bit(R5_LOCKED, &dev->flags) &&
3092                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3093                     test_bit(R5_Wantcompute, &dev->flags))) {
3094                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
3095                         else
3096                                 rcw += 2*disks;
3097                 }
3098         }
3099         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3100                 (unsigned long long)sh->sector, rmw, rcw);
3101         set_bit(STRIPE_HANDLE, &sh->state);
3102         if (rmw < rcw && rmw > 0) {
3103                 /* prefer read-modify-write, but need to get some data */
3104                 if (conf->mddev->queue)
3105                         blk_add_trace_msg(conf->mddev->queue,
3106                                           "raid5 rmw %llu %d",
3107                                           (unsigned long long)sh->sector, rmw);
3108                 for (i = disks; i--; ) {
3109                         struct r5dev *dev = &sh->dev[i];
3110                         if ((dev->towrite || i == sh->pd_idx) &&
3111                             !test_bit(R5_LOCKED, &dev->flags) &&
3112                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3113                             test_bit(R5_Wantcompute, &dev->flags)) &&
3114                             test_bit(R5_Insync, &dev->flags)) {
3115                                 if (
3116                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3117                                         pr_debug("Read_old block "
3118                                                  "%d for r-m-w\n", i);
3119                                         set_bit(R5_LOCKED, &dev->flags);
3120                                         set_bit(R5_Wantread, &dev->flags);
3121                                         s->locked++;
3122                                 } else {
3123                                         set_bit(STRIPE_DELAYED, &sh->state);
3124                                         set_bit(STRIPE_HANDLE, &sh->state);
3125                                 }
3126                         }
3127                 }
3128         }
3129         if (rcw <= rmw && rcw > 0) {
3130                 /* want reconstruct write, but need to get some data */
3131                 int qread =0;
3132                 rcw = 0;
3133                 for (i = disks; i--; ) {
3134                         struct r5dev *dev = &sh->dev[i];
3135                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3136                             i != sh->pd_idx && i != sh->qd_idx &&
3137                             !test_bit(R5_LOCKED, &dev->flags) &&
3138                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3139                               test_bit(R5_Wantcompute, &dev->flags))) {
3140                                 rcw++;
3141                                 if (!test_bit(R5_Insync, &dev->flags))
3142                                         continue; /* it's a failed drive */
3143                                 if (
3144                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3145                                         pr_debug("Read_old block "
3146                                                 "%d for Reconstruct\n", i);
3147                                         set_bit(R5_LOCKED, &dev->flags);
3148                                         set_bit(R5_Wantread, &dev->flags);
3149                                         s->locked++;
3150                                         qread++;
3151                                 } else {
3152                                         set_bit(STRIPE_DELAYED, &sh->state);
3153                                         set_bit(STRIPE_HANDLE, &sh->state);
3154                                 }
3155                         }
3156                 }
3157                 if (rcw && conf->mddev->queue)
3158                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3159                                           (unsigned long long)sh->sector,
3160                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3161         }
3162         /* now if nothing is locked, and if we have enough data,
3163          * we can start a write request
3164          */
3165         /* since handle_stripe can be called at any time we need to handle the
3166          * case where a compute block operation has been submitted and then a
3167          * subsequent call wants to start a write request.  raid_run_ops only
3168          * handles the case where compute block and reconstruct are requested
3169          * simultaneously.  If this is not the case then new writes need to be
3170          * held off until the compute completes.
3171          */
3172         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3173             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3174             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3175                 schedule_reconstruction(sh, s, rcw == 0, 0);
3176 }
3177
3178 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3179                                 struct stripe_head_state *s, int disks)
3180 {
3181         struct r5dev *dev = NULL;
3182
3183         set_bit(STRIPE_HANDLE, &sh->state);
3184
3185         switch (sh->check_state) {
3186         case check_state_idle:
3187                 /* start a new check operation if there are no failures */
3188                 if (s->failed == 0) {
3189                         BUG_ON(s->uptodate != disks);
3190                         sh->check_state = check_state_run;
3191                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3192                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3193                         s->uptodate--;
3194                         break;
3195                 }
3196                 dev = &sh->dev[s->failed_num[0]];
3197                 /* fall through */
3198         case check_state_compute_result:
3199                 sh->check_state = check_state_idle;
3200                 if (!dev)
3201                         dev = &sh->dev[sh->pd_idx];
3202
3203                 /* check that a write has not made the stripe insync */
3204                 if (test_bit(STRIPE_INSYNC, &sh->state))
3205                         break;
3206
3207                 /* either failed parity check, or recovery is happening */
3208                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3209                 BUG_ON(s->uptodate != disks);
3210
3211                 set_bit(R5_LOCKED, &dev->flags);
3212                 s->locked++;
3213                 set_bit(R5_Wantwrite, &dev->flags);
3214
3215                 clear_bit(STRIPE_DEGRADED, &sh->state);
3216                 set_bit(STRIPE_INSYNC, &sh->state);
3217                 break;
3218         case check_state_run:
3219                 break; /* we will be called again upon completion */
3220         case check_state_check_result:
3221                 sh->check_state = check_state_idle;
3222
3223                 /* if a failure occurred during the check operation, leave
3224                  * STRIPE_INSYNC not set and let the stripe be handled again
3225                  */
3226                 if (s->failed)
3227                         break;
3228
3229                 /* handle a successful check operation, if parity is correct
3230                  * we are done.  Otherwise update the mismatch count and repair
3231                  * parity if !MD_RECOVERY_CHECK
3232                  */
3233                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3234                         /* parity is correct (on disc,
3235                          * not in buffer any more)
3236                          */
3237                         set_bit(STRIPE_INSYNC, &sh->state);
3238                 else {
3239                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3240                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3241                                 /* don't try to repair!! */
3242                                 set_bit(STRIPE_INSYNC, &sh->state);
3243                         else {
3244                                 sh->check_state = check_state_compute_run;
3245                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3246                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3247                                 set_bit(R5_Wantcompute,
3248                                         &sh->dev[sh->pd_idx].flags);
3249                                 sh->ops.target = sh->pd_idx;
3250                                 sh->ops.target2 = -1;
3251                                 s->uptodate++;
3252                         }
3253                 }
3254                 break;
3255         case check_state_compute_run:
3256                 break;
3257         default:
3258                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3259                        __func__, sh->check_state,
3260                        (unsigned long long) sh->sector);
3261                 BUG();
3262         }
3263 }
3264
3265
3266 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3267                                   struct stripe_head_state *s,
3268                                   int disks)
3269 {
3270         int pd_idx = sh->pd_idx;
3271         int qd_idx = sh->qd_idx;
3272         struct r5dev *dev;
3273
3274         set_bit(STRIPE_HANDLE, &sh->state);
3275
3276         BUG_ON(s->failed > 2);
3277
3278         /* Want to check and possibly repair P and Q.
3279          * However there could be one 'failed' device, in which
3280          * case we can only check one of them, possibly using the
3281          * other to generate missing data
3282          */
3283
3284         switch (sh->check_state) {
3285         case check_state_idle:
3286                 /* start a new check operation if there are < 2 failures */
3287                 if (s->failed == s->q_failed) {
3288                         /* The only possible failed device holds Q, so it
3289                          * makes sense to check P (If anything else were failed,
3290                          * we would have used P to recreate it).
3291                          */
3292                         sh->check_state = check_state_run;
3293                 }
3294                 if (!s->q_failed && s->failed < 2) {
3295                         /* Q is not failed, and we didn't use it to generate
3296                          * anything, so it makes sense to check it
3297                          */
3298                         if (sh->check_state == check_state_run)
3299                                 sh->check_state = check_state_run_pq;
3300                         else
3301                                 sh->check_state = check_state_run_q;
3302                 }
3303
3304                 /* discard potentially stale zero_sum_result */
3305                 sh->ops.zero_sum_result = 0;
3306
3307                 if (sh->check_state == check_state_run) {
3308                         /* async_xor_zero_sum destroys the contents of P */
3309                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3310                         s->uptodate--;
3311                 }
3312                 if (sh->check_state >= check_state_run &&
3313                     sh->check_state <= check_state_run_pq) {
3314                         /* async_syndrome_zero_sum preserves P and Q, so
3315                          * no need to mark them !uptodate here
3316                          */
3317                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3318                         break;
3319                 }
3320
3321                 /* we have 2-disk failure */
3322                 BUG_ON(s->failed != 2);
3323                 /* fall through */
3324         case check_state_compute_result:
3325                 sh->check_state = check_state_idle;
3326
3327                 /* check that a write has not made the stripe insync */
3328                 if (test_bit(STRIPE_INSYNC, &sh->state))
3329                         break;
3330
3331                 /* now write out any block on a failed drive,
3332                  * or P or Q if they were recomputed
3333                  */
3334                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3335                 if (s->failed == 2) {
3336                         dev = &sh->dev[s->failed_num[1]];
3337                         s->locked++;
3338                         set_bit(R5_LOCKED, &dev->flags);
3339                         set_bit(R5_Wantwrite, &dev->flags);
3340                 }
3341                 if (s->failed >= 1) {
3342                         dev = &sh->dev[s->failed_num[0]];
3343                         s->locked++;
3344                         set_bit(R5_LOCKED, &dev->flags);
3345                         set_bit(R5_Wantwrite, &dev->flags);
3346                 }
3347                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3348                         dev = &sh->dev[pd_idx];
3349                         s->locked++;
3350                         set_bit(R5_LOCKED, &dev->flags);
3351                         set_bit(R5_Wantwrite, &dev->flags);
3352                 }
3353                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3354                         dev = &sh->dev[qd_idx];
3355                         s->locked++;
3356                         set_bit(R5_LOCKED, &dev->flags);
3357                         set_bit(R5_Wantwrite, &dev->flags);
3358                 }
3359                 clear_bit(STRIPE_DEGRADED, &sh->state);
3360
3361                 set_bit(STRIPE_INSYNC, &sh->state);
3362                 break;
3363         case check_state_run:
3364         case check_state_run_q:
3365         case check_state_run_pq:
3366                 break; /* we will be called again upon completion */
3367         case check_state_check_result:
3368                 sh->check_state = check_state_idle;
3369
3370                 /* handle a successful check operation, if parity is correct
3371                  * we are done.  Otherwise update the mismatch count and repair
3372                  * parity if !MD_RECOVERY_CHECK
3373                  */
3374                 if (sh->ops.zero_sum_result == 0) {
3375                         /* both parities are correct */
3376                         if (!s->failed)
3377                                 set_bit(STRIPE_INSYNC, &sh->state);
3378                         else {
3379                                 /* in contrast to the raid5 case we can validate
3380                                  * parity, but still have a failure to write
3381                                  * back
3382                                  */
3383                                 sh->check_state = check_state_compute_result;
3384                                 /* Returning at this point means that we may go
3385                                  * off and bring p and/or q uptodate again so
3386                                  * we make sure to check zero_sum_result again
3387                                  * to verify if p or q need writeback
3388                                  */
3389                         }
3390                 } else {
3391                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3392                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3393                                 /* don't try to repair!! */
3394                                 set_bit(STRIPE_INSYNC, &sh->state);
3395                         else {
3396                                 int *target = &sh->ops.target;
3397
3398                                 sh->ops.target = -1;
3399                                 sh->ops.target2 = -1;
3400                                 sh->check_state = check_state_compute_run;
3401                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3402                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3403                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3404                                         set_bit(R5_Wantcompute,
3405                                                 &sh->dev[pd_idx].flags);
3406                                         *target = pd_idx;
3407                                         target = &sh->ops.target2;
3408                                         s->uptodate++;
3409                                 }
3410                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3411                                         set_bit(R5_Wantcompute,
3412                                                 &sh->dev[qd_idx].flags);
3413                                         *target = qd_idx;
3414                                         s->uptodate++;
3415                                 }
3416                         }
3417                 }
3418                 break;
3419         case check_state_compute_run:
3420                 break;
3421         default:
3422                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3423                        __func__, sh->check_state,
3424                        (unsigned long long) sh->sector);
3425                 BUG();
3426         }
3427 }
3428
3429 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3430 {
3431         int i;
3432
3433         /* We have read all the blocks in this stripe and now we need to
3434          * copy some of them into a target stripe for expand.
3435          */
3436         struct dma_async_tx_descriptor *tx = NULL;
3437         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3438         for (i = 0; i < sh->disks; i++)
3439                 if (i != sh->pd_idx && i != sh->qd_idx) {
3440                         int dd_idx, j;
3441                         struct stripe_head *sh2;
3442                         struct async_submit_ctl submit;
3443
3444                         sector_t bn = compute_blocknr(sh, i, 1);
3445                         sector_t s = raid5_compute_sector(conf, bn, 0,
3446                                                           &dd_idx, NULL);
3447                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3448                         if (sh2 == NULL)
3449                                 /* so far only the early blocks of this stripe
3450                                  * have been requested.  When later blocks
3451                                  * get requested, we will try again
3452                                  */
3453                                 continue;
3454                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3455                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3456                                 /* must have already done this block */
3457                                 release_stripe(sh2);
3458                                 continue;
3459                         }
3460
3461                         /* place all the copies on one channel */
3462                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3463                         tx = async_memcpy(sh2->dev[dd_idx].page,
3464                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3465                                           &submit);
3466
3467                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3468                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3469                         for (j = 0; j < conf->raid_disks; j++)
3470                                 if (j != sh2->pd_idx &&
3471                                     j != sh2->qd_idx &&
3472                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3473                                         break;
3474                         if (j == conf->raid_disks) {
3475                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3476                                 set_bit(STRIPE_HANDLE, &sh2->state);
3477                         }
3478                         release_stripe(sh2);
3479
3480                 }
3481         /* done submitting copies, wait for them to complete */
3482         async_tx_quiesce(&tx);
3483 }
3484
3485 /*
3486  * handle_stripe - do things to a stripe.
3487  *
3488  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3489  * state of various bits to see what needs to be done.
3490  * Possible results:
3491  *    return some read requests which now have data
3492  *    return some write requests which are safely on storage
3493  *    schedule a read on some buffers
3494  *    schedule a write of some buffers
3495  *    return confirmation of parity correctness
3496  *
3497  */
3498
3499 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3500 {
3501         struct r5conf *conf = sh->raid_conf;
3502         int disks = sh->disks;
3503         struct r5dev *dev;
3504         int i;
3505         int do_recovery = 0;
3506
3507         memset(s, 0, sizeof(*s));
3508
3509         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3510         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3511         s->failed_num[0] = -1;
3512         s->failed_num[1] = -1;
3513
3514         /* Now to look around and see what can be done */
3515         rcu_read_lock();
3516         for (i=disks; i--; ) {
3517                 struct md_rdev *rdev;
3518                 sector_t first_bad;
3519                 int bad_sectors;
3520                 int is_bad = 0;
3521
3522                 dev = &sh->dev[i];
3523
3524                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3525                          i, dev->flags,
3526                          dev->toread, dev->towrite, dev->written);
3527                 /* maybe we can reply to a read
3528                  *
3529                  * new wantfill requests are only permitted while
3530                  * ops_complete_biofill is guaranteed to be inactive
3531                  */
3532                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3533                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3534                         set_bit(R5_Wantfill, &dev->flags);
3535
3536                 /* now count some things */
3537                 if (test_bit(R5_LOCKED, &dev->flags))
3538                         s->locked++;
3539                 if (test_bit(R5_UPTODATE, &dev->flags))
3540                         s->uptodate++;
3541                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3542                         s->compute++;
3543                         BUG_ON(s->compute > 2);
3544                 }
3545
3546                 if (test_bit(R5_Wantfill, &dev->flags))
3547                         s->to_fill++;
3548                 else if (dev->toread)
3549                         s->to_read++;
3550                 if (dev->towrite) {
3551                         s->to_write++;
3552                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3553                                 s->non_overwrite++;
3554                 }
3555                 if (dev->written)
3556                         s->written++;
3557                 /* Prefer to use the replacement for reads, but only
3558                  * if it is recovered enough and has no bad blocks.
3559                  */
3560                 rdev = rcu_dereference(conf->disks[i].replacement);
3561                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3562                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3563                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3564                                  &first_bad, &bad_sectors))
3565                         set_bit(R5_ReadRepl, &dev->flags);
3566                 else {
3567                         if (rdev)
3568                                 set_bit(R5_NeedReplace, &dev->flags);
3569                         rdev = rcu_dereference(conf->disks[i].rdev);
3570                         clear_bit(R5_ReadRepl, &dev->flags);
3571                 }
3572                 if (rdev && test_bit(Faulty, &rdev->flags))
3573                         rdev = NULL;
3574                 if (rdev) {
3575                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3576                                              &first_bad, &bad_sectors);
3577                         if (s->blocked_rdev == NULL
3578                             && (test_bit(Blocked, &rdev->flags)
3579                                 || is_bad < 0)) {
3580                                 if (is_bad < 0)
3581                                         set_bit(BlockedBadBlocks,
3582                                                 &rdev->flags);
3583                                 s->blocked_rdev = rdev;
3584                                 atomic_inc(&rdev->nr_pending);
3585                         }
3586                 }
3587                 clear_bit(R5_Insync, &dev->flags);
3588                 if (!rdev)
3589                         /* Not in-sync */;
3590                 else if (is_bad) {
3591                         /* also not in-sync */
3592                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3593                             test_bit(R5_UPTODATE, &dev->flags)) {
3594                                 /* treat as in-sync, but with a read error
3595                                  * which we can now try to correct
3596                                  */
3597                                 set_bit(R5_Insync, &dev->flags);
3598                                 set_bit(R5_ReadError, &dev->flags);
3599                         }
3600                 } else if (test_bit(In_sync, &rdev->flags))
3601                         set_bit(R5_Insync, &dev->flags);
3602                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3603                         /* in sync if before recovery_offset */
3604                         set_bit(R5_Insync, &dev->flags);
3605                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3606                          test_bit(R5_Expanded, &dev->flags))
3607                         /* If we've reshaped into here, we assume it is Insync.
3608                          * We will shortly update recovery_offset to make
3609                          * it official.
3610                          */
3611                         set_bit(R5_Insync, &dev->flags);
3612
3613                 if (test_bit(R5_WriteError, &dev->flags)) {
3614                         /* This flag does not apply to '.replacement'
3615                          * only to .rdev, so make sure to check that*/
3616                         struct md_rdev *rdev2 = rcu_dereference(
3617                                 conf->disks[i].rdev);
3618                         if (rdev2 == rdev)
3619                                 clear_bit(R5_Insync, &dev->flags);
3620                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3621                                 s->handle_bad_blocks = 1;
3622                                 atomic_inc(&rdev2->nr_pending);
3623                         } else
3624                                 clear_bit(R5_WriteError, &dev->flags);
3625                 }
3626                 if (test_bit(R5_MadeGood, &dev->flags)) {
3627                         /* This flag does not apply to '.replacement'
3628                          * only to .rdev, so make sure to check that*/
3629                         struct md_rdev *rdev2 = rcu_dereference(
3630                                 conf->disks[i].rdev);
3631                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3632                                 s->handle_bad_blocks = 1;
3633                                 atomic_inc(&rdev2->nr_pending);
3634                         } else
3635                                 clear_bit(R5_MadeGood, &dev->flags);
3636                 }
3637                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3638                         struct md_rdev *rdev2 = rcu_dereference(
3639                                 conf->disks[i].replacement);
3640                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3641                                 s->handle_bad_blocks = 1;
3642                                 atomic_inc(&rdev2->nr_pending);
3643                         } else
3644                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3645                 }
3646                 if (!test_bit(R5_Insync, &dev->flags)) {
3647                         /* The ReadError flag will just be confusing now */
3648                         clear_bit(R5_ReadError, &dev->flags);
3649                         clear_bit(R5_ReWrite, &dev->flags);
3650                 }
3651                 if (test_bit(R5_ReadError, &dev->flags))
3652                         clear_bit(R5_Insync, &dev->flags);
3653                 if (!test_bit(R5_Insync, &dev->flags)) {
3654                         if (s->failed < 2)
3655                                 s->failed_num[s->failed] = i;
3656                         s->failed++;
3657                         if (rdev && !test_bit(Faulty, &rdev->flags))
3658                                 do_recovery = 1;
3659                 }
3660         }
3661         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3662                 /* If there is a failed device being replaced,
3663                  *     we must be recovering.
3664                  * else if we are after recovery_cp, we must be syncing
3665                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3666                  * else we can only be replacing
3667                  * sync and recovery both need to read all devices, and so
3668                  * use the same flag.
3669                  */
3670                 if (do_recovery ||
3671                     sh->sector >= conf->mddev->recovery_cp ||
3672                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3673                         s->syncing = 1;
3674                 else
3675                         s->replacing = 1;
3676         }
3677         rcu_read_unlock();
3678 }
3679
3680 static void handle_stripe(struct stripe_head *sh)
3681 {
3682         struct stripe_head_state s;
3683         struct r5conf *conf = sh->raid_conf;
3684         int i;
3685         int prexor;
3686         int disks = sh->disks;
3687         struct r5dev *pdev, *qdev;
3688
3689         clear_bit(STRIPE_HANDLE, &sh->state);
3690         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3691                 /* already being handled, ensure it gets handled
3692                  * again when current action finishes */
3693                 set_bit(STRIPE_HANDLE, &sh->state);
3694                 return;
3695         }
3696
3697         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3698                 spin_lock(&sh->stripe_lock);
3699                 /* Cannot process 'sync' concurrently with 'discard' */
3700                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3701                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3702                         set_bit(STRIPE_SYNCING, &sh->state);
3703                         clear_bit(STRIPE_INSYNC, &sh->state);
3704                         clear_bit(STRIPE_REPLACED, &sh->state);
3705                 }
3706                 spin_unlock(&sh->stripe_lock);
3707         }
3708         clear_bit(STRIPE_DELAYED, &sh->state);
3709
3710         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3711                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3712                (unsigned long long)sh->sector, sh->state,
3713                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3714                sh->check_state, sh->reconstruct_state);
3715
3716         analyse_stripe(sh, &s);
3717
3718         if (s.handle_bad_blocks) {
3719                 set_bit(STRIPE_HANDLE, &sh->state);
3720                 goto finish;
3721         }
3722
3723         if (unlikely(s.blocked_rdev)) {
3724                 if (s.syncing || s.expanding || s.expanded ||
3725                     s.replacing || s.to_write || s.written) {
3726                         set_bit(STRIPE_HANDLE, &sh->state);
3727                         goto finish;
3728                 }
3729                 /* There is nothing for the blocked_rdev to block */
3730                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3731                 s.blocked_rdev = NULL;
3732         }
3733
3734         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3735                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3736                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3737         }
3738
3739         pr_debug("locked=%d uptodate=%d to_read=%d"
3740                " to_write=%d failed=%d failed_num=%d,%d\n",
3741                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3742                s.failed_num[0], s.failed_num[1]);
3743         /* check if the array has lost more than max_degraded devices and,
3744          * if so, some requests might need to be failed.
3745          */
3746         if (s.failed > conf->max_degraded) {
3747                 sh->check_state = 0;
3748                 sh->reconstruct_state = 0;
3749                 if (s.to_read+s.to_write+s.written)
3750                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3751                 if (s.syncing + s.replacing)
3752                         handle_failed_sync(conf, sh, &s);
3753         }
3754
3755         /* Now we check to see if any write operations have recently
3756          * completed
3757          */
3758         prexor = 0;
3759         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3760                 prexor = 1;
3761         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3762             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3763                 sh->reconstruct_state = reconstruct_state_idle;
3764
3765                 /* All the 'written' buffers and the parity block are ready to
3766                  * be written back to disk
3767                  */
3768                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3769                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3770                 BUG_ON(sh->qd_idx >= 0 &&
3771                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3772                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3773                 for (i = disks; i--; ) {
3774                         struct r5dev *dev = &sh->dev[i];
3775                         if (test_bit(R5_LOCKED, &dev->flags) &&
3776                                 (i == sh->pd_idx || i == sh->qd_idx ||
3777                                  dev->written)) {
3778                                 pr_debug("Writing block %d\n", i);
3779                                 set_bit(R5_Wantwrite, &dev->flags);
3780                                 if (prexor)
3781                                         continue;
3782                                 if (!test_bit(R5_Insync, &dev->flags) ||
3783                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3784                                      s.failed == 0))
3785                                         set_bit(STRIPE_INSYNC, &sh->state);
3786                         }
3787                 }
3788                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3789                         s.dec_preread_active = 1;
3790         }
3791
3792         /*
3793          * might be able to return some write requests if the parity blocks
3794          * are safe, or on a failed drive
3795          */
3796         pdev = &sh->dev[sh->pd_idx];
3797         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3798                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3799         qdev = &sh->dev[sh->qd_idx];
3800         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3801                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3802                 || conf->level < 6;
3803
3804         if (s.written &&
3805             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3806                              && !test_bit(R5_LOCKED, &pdev->flags)
3807                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3808                                  test_bit(R5_Discard, &pdev->flags))))) &&
3809             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3810                              && !test_bit(R5_LOCKED, &qdev->flags)
3811                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3812                                  test_bit(R5_Discard, &qdev->flags))))))
3813                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3814
3815         /* Now we might consider reading some blocks, either to check/generate
3816          * parity, or to satisfy requests
3817          * or to load a block that is being partially written.
3818          */
3819         if (s.to_read || s.non_overwrite
3820             || (conf->level == 6 && s.to_write && s.failed)
3821             || (s.syncing && (s.uptodate + s.compute < disks))
3822             || s.replacing
3823             || s.expanding)
3824                 handle_stripe_fill(sh, &s, disks);
3825
3826         /* Now to consider new write requests and what else, if anything
3827          * should be read.  We do not handle new writes when:
3828          * 1/ A 'write' operation (copy+xor) is already in flight.
3829          * 2/ A 'check' operation is in flight, as it may clobber the parity
3830          *    block.
3831          */
3832         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3833                 handle_stripe_dirtying(conf, sh, &s, disks);
3834
3835         /* maybe we need to check and possibly fix the parity for this stripe
3836          * Any reads will already have been scheduled, so we just see if enough
3837          * data is available.  The parity check is held off while parity
3838          * dependent operations are in flight.
3839          */
3840         if (sh->check_state ||
3841             (s.syncing && s.locked == 0 &&
3842              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3843              !test_bit(STRIPE_INSYNC, &sh->state))) {
3844                 if (conf->level == 6)
3845                         handle_parity_checks6(conf, sh, &s, disks);
3846                 else
3847                         handle_parity_checks5(conf, sh, &s, disks);
3848         }
3849
3850         if ((s.replacing || s.syncing) && s.locked == 0
3851             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3852             && !test_bit(STRIPE_REPLACED, &sh->state)) {
3853                 /* Write out to replacement devices where possible */
3854                 for (i = 0; i < conf->raid_disks; i++)
3855                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3856                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3857                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3858                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3859                                 s.locked++;
3860                         }
3861                 if (s.replacing)
3862                         set_bit(STRIPE_INSYNC, &sh->state);
3863                 set_bit(STRIPE_REPLACED, &sh->state);
3864         }
3865         if ((s.syncing || s.replacing) && s.locked == 0 &&
3866             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3867             test_bit(STRIPE_INSYNC, &sh->state)) {
3868                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3869                 clear_bit(STRIPE_SYNCING, &sh->state);
3870                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3871                         wake_up(&conf->wait_for_overlap);
3872         }
3873
3874         /* If the failed drives are just a ReadError, then we might need
3875          * to progress the repair/check process
3876          */
3877         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3878                 for (i = 0; i < s.failed; i++) {
3879                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3880                         if (test_bit(R5_ReadError, &dev->flags)
3881                             && !test_bit(R5_LOCKED, &dev->flags)
3882                             && test_bit(R5_UPTODATE, &dev->flags)
3883                                 ) {
3884                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3885                                         set_bit(R5_Wantwrite, &dev->flags);
3886                                         set_bit(R5_ReWrite, &dev->flags);
3887                                         set_bit(R5_LOCKED, &dev->flags);
3888                                         s.locked++;
3889                                 } else {
3890                                         /* let's read it back */
3891                                         set_bit(R5_Wantread, &dev->flags);
3892                                         set_bit(R5_LOCKED, &dev->flags);
3893                                         s.locked++;
3894                                 }
3895                         }
3896                 }
3897
3898
3899         /* Finish reconstruct operations initiated by the expansion process */
3900         if (sh->reconstruct_state == reconstruct_state_result) {
3901                 struct stripe_head *sh_src
3902                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3903                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3904                         /* sh cannot be written until sh_src has been read.
3905                          * so arrange for sh to be delayed a little
3906                          */
3907                         set_bit(STRIPE_DELAYED, &sh->state);
3908                         set_bit(STRIPE_HANDLE, &sh->state);
3909                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3910                                               &sh_src->state))
3911                                 atomic_inc(&conf->preread_active_stripes);
3912                         release_stripe(sh_src);
3913                         goto finish;
3914                 }
3915                 if (sh_src)
3916                         release_stripe(sh_src);
3917
3918                 sh->reconstruct_state = reconstruct_state_idle;
3919                 clear_bit(STRIPE_EXPANDING, &sh->state);
3920                 for (i = conf->raid_disks; i--; ) {
3921                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3922                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3923                         s.locked++;
3924                 }
3925         }
3926
3927         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3928             !sh->reconstruct_state) {
3929                 /* Need to write out all blocks after computing parity */
3930                 sh->disks = conf->raid_disks;
3931                 stripe_set_idx(sh->sector, conf, 0, sh);
3932                 schedule_reconstruction(sh, &s, 1, 1);
3933         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3934                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3935                 atomic_dec(&conf->reshape_stripes);
3936                 wake_up(&conf->wait_for_overlap);
3937                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3938         }
3939
3940         if (s.expanding && s.locked == 0 &&
3941             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3942                 handle_stripe_expansion(conf, sh);
3943
3944 finish:
3945         /* wait for this device to become unblocked */
3946         if (unlikely(s.blocked_rdev)) {
3947                 if (conf->mddev->external)
3948                         md_wait_for_blocked_rdev(s.blocked_rdev,
3949                                                  conf->mddev);
3950                 else
3951                         /* Internal metadata will immediately
3952                          * be written by raid5d, so we don't
3953                          * need to wait here.
3954                          */
3955                         rdev_dec_pending(s.blocked_rdev,
3956                                          conf->mddev);
3957         }
3958
3959         if (s.handle_bad_blocks)
3960                 for (i = disks; i--; ) {
3961                         struct md_rdev *rdev;
3962                         struct r5dev *dev = &sh->dev[i];
3963                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3964                                 /* We own a safe reference to the rdev */
3965                                 rdev = conf->disks[i].rdev;
3966                                 if (!rdev_set_badblocks(rdev, sh->sector,
3967                                                         STRIPE_SECTORS, 0))
3968                                         md_error(conf->mddev, rdev);
3969                                 rdev_dec_pending(rdev, conf->mddev);
3970                         }
3971                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3972                                 rdev = conf->disks[i].rdev;
3973                                 rdev_clear_badblocks(rdev, sh->sector,
3974                                                      STRIPE_SECTORS, 0);
3975                                 rdev_dec_pending(rdev, conf->mddev);
3976                         }
3977                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3978                                 rdev = conf->disks[i].replacement;
3979                                 if (!rdev)
3980                                         /* rdev have been moved down */
3981                                         rdev = conf->disks[i].rdev;
3982                                 rdev_clear_badblocks(rdev, sh->sector,
3983                                                      STRIPE_SECTORS, 0);
3984                                 rdev_dec_pending(rdev, conf->mddev);
3985                         }
3986                 }
3987
3988         if (s.ops_request)
3989                 raid_run_ops(sh, s.ops_request);
3990
3991         ops_run_io(sh, &s);
3992
3993         if (s.dec_preread_active) {
3994                 /* We delay this until after ops_run_io so that if make_request
3995                  * is waiting on a flush, it won't continue until the writes
3996                  * have actually been submitted.
3997                  */
3998                 atomic_dec(&conf->preread_active_stripes);
3999                 if (atomic_read(&conf->preread_active_stripes) <
4000                     IO_THRESHOLD)
4001                         md_wakeup_thread(conf->mddev->thread);
4002         }
4003
4004         return_io(s.return_bi);
4005
4006         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4007 }
4008
4009 static void raid5_activate_delayed(struct r5conf *conf)
4010 {
4011         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4012                 while (!list_empty(&conf->delayed_list)) {
4013                         struct list_head *l = conf->delayed_list.next;
4014                         struct stripe_head *sh;
4015                         sh = list_entry(l, struct stripe_head, lru);
4016                         list_del_init(l);
4017                         clear_bit(STRIPE_DELAYED, &sh->state);
4018                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4019                                 atomic_inc(&conf->preread_active_stripes);
4020                         list_add_tail(&sh->lru, &conf->hold_list);
4021                         raid5_wakeup_stripe_thread(sh);
4022                 }
4023         }
4024 }
4025
4026 static void activate_bit_delay(struct r5conf *conf,
4027         struct list_head *temp_inactive_list)
4028 {
4029         /* device_lock is held */
4030         struct list_head head;
4031         list_add(&head, &conf->bitmap_list);
4032         list_del_init(&conf->bitmap_list);
4033         while (!list_empty(&head)) {
4034                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4035                 int hash;
4036                 list_del_init(&sh->lru);
4037                 atomic_inc(&sh->count);
4038                 hash = sh->hash_lock_index;
4039                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4040         }
4041 }
4042
4043 int md_raid5_congested(struct mddev *mddev, int bits)
4044 {
4045         struct r5conf *conf = mddev->private;
4046
4047         /* No difference between reads and writes.  Just check
4048          * how busy the stripe_cache is
4049          */
4050
4051         if (conf->inactive_blocked)
4052                 return 1;
4053         if (conf->quiesce)
4054                 return 1;
4055         if (atomic_read(&conf->empty_inactive_list_nr))
4056                 return 1;
4057
4058         return 0;
4059 }
4060 EXPORT_SYMBOL_GPL(md_raid5_congested);
4061
4062 static int raid5_congested(void *data, int bits)
4063 {
4064         struct mddev *mddev = data;
4065
4066         return mddev_congested(mddev, bits) ||
4067                 md_raid5_congested(mddev, bits);
4068 }
4069
4070 /* We want read requests to align with chunks where possible,
4071  * but write requests don't need to.
4072  */
4073 static int raid5_mergeable_bvec(struct request_queue *q,
4074                                 struct bvec_merge_data *bvm,
4075                                 struct bio_vec *biovec)
4076 {
4077         struct mddev *mddev = q->queuedata;
4078         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4079         int max;
4080         unsigned int chunk_sectors = mddev->chunk_sectors;
4081         unsigned int bio_sectors = bvm->bi_size >> 9;
4082
4083         if ((bvm->bi_rw & 1) == WRITE)
4084                 return biovec->bv_len; /* always allow writes to be mergeable */
4085
4086         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4087                 chunk_sectors = mddev->new_chunk_sectors;
4088         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4089         if (max < 0) max = 0;
4090         if (max <= biovec->bv_len && bio_sectors == 0)
4091                 return biovec->bv_len;
4092         else
4093                 return max;
4094 }
4095
4096
4097 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4098 {
4099         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4100         unsigned int chunk_sectors = mddev->chunk_sectors;
4101         unsigned int bio_sectors = bio_sectors(bio);
4102
4103         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4104                 chunk_sectors = mddev->new_chunk_sectors;
4105         return  chunk_sectors >=
4106                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4107 }
4108
4109 /*
4110  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4111  *  later sampled by raid5d.
4112  */
4113 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4114 {
4115         unsigned long flags;
4116
4117         spin_lock_irqsave(&conf->device_lock, flags);
4118
4119         bi->bi_next = conf->retry_read_aligned_list;
4120         conf->retry_read_aligned_list = bi;
4121
4122         spin_unlock_irqrestore(&conf->device_lock, flags);
4123         md_wakeup_thread(conf->mddev->thread);
4124 }
4125
4126
4127 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4128 {
4129         struct bio *bi;
4130
4131         bi = conf->retry_read_aligned;
4132         if (bi) {
4133                 conf->retry_read_aligned = NULL;
4134                 return bi;
4135         }
4136         bi = conf->retry_read_aligned_list;
4137         if(bi) {
4138                 conf->retry_read_aligned_list = bi->bi_next;
4139                 bi->bi_next = NULL;
4140                 /*
4141                  * this sets the active strip count to 1 and the processed
4142                  * strip count to zero (upper 8 bits)
4143                  */
4144                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4145         }
4146
4147         return bi;
4148 }
4149
4150
4151 /*
4152  *  The "raid5_align_endio" should check if the read succeeded and if it
4153  *  did, call bio_endio on the original bio (having bio_put the new bio
4154  *  first).
4155  *  If the read failed..
4156  */
4157 static void raid5_align_endio(struct bio *bi, int error)
4158 {
4159         struct bio* raid_bi  = bi->bi_private;
4160         struct mddev *mddev;
4161         struct r5conf *conf;
4162         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4163         struct md_rdev *rdev;
4164
4165         bio_put(bi);
4166
4167         rdev = (void*)raid_bi->bi_next;
4168         raid_bi->bi_next = NULL;
4169         mddev = rdev->mddev;
4170         conf = mddev->private;
4171
4172         rdev_dec_pending(rdev, conf->mddev);
4173
4174         if (!error && uptodate) {
4175                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4176                                          raid_bi, 0);
4177                 bio_endio(raid_bi, 0);
4178                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4179                         wake_up(&conf->wait_for_stripe);
4180                 return;
4181         }
4182
4183
4184         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4185
4186         add_bio_to_retry(raid_bi, conf);
4187 }
4188
4189 static int bio_fits_rdev(struct bio *bi)
4190 {
4191         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4192
4193         if (bio_sectors(bi) > queue_max_sectors(q))
4194                 return 0;
4195         blk_recount_segments(q, bi);
4196         if (bi->bi_phys_segments > queue_max_segments(q))
4197                 return 0;
4198
4199         if (q->merge_bvec_fn)
4200                 /* it's too hard to apply the merge_bvec_fn at this stage,
4201                  * just just give up
4202                  */
4203                 return 0;
4204
4205         return 1;
4206 }
4207
4208
4209 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4210 {
4211         struct r5conf *conf = mddev->private;
4212         int dd_idx;
4213         struct bio* align_bi;
4214         struct md_rdev *rdev;
4215         sector_t end_sector;
4216
4217         if (!in_chunk_boundary(mddev, raid_bio)) {
4218                 pr_debug("chunk_aligned_read : non aligned\n");
4219                 return 0;
4220         }
4221         /*
4222          * use bio_clone_mddev to make a copy of the bio
4223          */
4224         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4225         if (!align_bi)
4226                 return 0;
4227         /*
4228          *   set bi_end_io to a new function, and set bi_private to the
4229          *     original bio.
4230          */
4231         align_bi->bi_end_io  = raid5_align_endio;
4232         align_bi->bi_private = raid_bio;
4233         /*
4234          *      compute position
4235          */
4236         align_bi->bi_iter.bi_sector =
4237                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4238                                      0, &dd_idx, NULL);
4239
4240         end_sector = bio_end_sector(align_bi);
4241         rcu_read_lock();
4242         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4243         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4244             rdev->recovery_offset < end_sector) {
4245                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4246                 if (rdev &&
4247                     (test_bit(Faulty, &rdev->flags) ||
4248                     !(test_bit(In_sync, &rdev->flags) ||
4249                       rdev->recovery_offset >= end_sector)))
4250                         rdev = NULL;
4251         }
4252         if (rdev) {
4253                 sector_t first_bad;
4254                 int bad_sectors;
4255
4256                 atomic_inc(&rdev->nr_pending);
4257                 rcu_read_unlock();
4258                 raid_bio->bi_next = (void*)rdev;
4259                 align_bi->bi_bdev =  rdev->bdev;
4260                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4261
4262                 if (!bio_fits_rdev(align_bi) ||
4263                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4264                                 bio_sectors(align_bi),
4265                                 &first_bad, &bad_sectors)) {
4266                         /* too big in some way, or has a known bad block */
4267                         bio_put(align_bi);
4268                         rdev_dec_pending(rdev, mddev);
4269                         return 0;
4270                 }
4271
4272                 /* No reshape active, so we can trust rdev->data_offset */
4273                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4274
4275                 spin_lock_irq(&conf->device_lock);
4276                 wait_event_lock_irq(conf->wait_for_stripe,
4277                                     conf->quiesce == 0,
4278                                     conf->device_lock);
4279                 atomic_inc(&conf->active_aligned_reads);
4280                 spin_unlock_irq(&conf->device_lock);
4281
4282                 if (mddev->gendisk)
4283                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4284                                               align_bi, disk_devt(mddev->gendisk),
4285                                               raid_bio->bi_iter.bi_sector);
4286                 generic_make_request(align_bi);
4287                 return 1;
4288         } else {
4289                 rcu_read_unlock();
4290                 bio_put(align_bi);
4291                 return 0;
4292         }
4293 }
4294
4295 /* __get_priority_stripe - get the next stripe to process
4296  *
4297  * Full stripe writes are allowed to pass preread active stripes up until
4298  * the bypass_threshold is exceeded.  In general the bypass_count
4299  * increments when the handle_list is handled before the hold_list; however, it
4300  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4301  * stripe with in flight i/o.  The bypass_count will be reset when the
4302  * head of the hold_list has changed, i.e. the head was promoted to the
4303  * handle_list.
4304  */
4305 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4306 {
4307         struct stripe_head *sh = NULL, *tmp;
4308         struct list_head *handle_list = NULL;
4309         struct r5worker_group *wg = NULL;
4310
4311         if (conf->worker_cnt_per_group == 0) {
4312                 handle_list = &conf->handle_list;
4313         } else if (group != ANY_GROUP) {
4314                 handle_list = &conf->worker_groups[group].handle_list;
4315                 wg = &conf->worker_groups[group];
4316         } else {
4317                 int i;
4318                 for (i = 0; i < conf->group_cnt; i++) {
4319                         handle_list = &conf->worker_groups[i].handle_list;
4320                         wg = &conf->worker_groups[i];
4321                         if (!list_empty(handle_list))
4322                                 break;
4323                 }
4324         }
4325
4326         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4327                   __func__,
4328                   list_empty(handle_list) ? "empty" : "busy",
4329                   list_empty(&conf->hold_list) ? "empty" : "busy",
4330                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4331
4332         if (!list_empty(handle_list)) {
4333                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4334
4335                 if (list_empty(&conf->hold_list))
4336                         conf->bypass_count = 0;
4337                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4338                         if (conf->hold_list.next == conf->last_hold)
4339                                 conf->bypass_count++;
4340                         else {
4341                                 conf->last_hold = conf->hold_list.next;
4342                                 conf->bypass_count -= conf->bypass_threshold;
4343                                 if (conf->bypass_count < 0)
4344                                         conf->bypass_count = 0;
4345                         }
4346                 }
4347         } else if (!list_empty(&conf->hold_list) &&
4348                    ((conf->bypass_threshold &&
4349                      conf->bypass_count > conf->bypass_threshold) ||
4350                     atomic_read(&conf->pending_full_writes) == 0)) {
4351
4352                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4353                         if (conf->worker_cnt_per_group == 0 ||
4354                             group == ANY_GROUP ||
4355                             !cpu_online(tmp->cpu) ||
4356                             cpu_to_group(tmp->cpu) == group) {
4357                                 sh = tmp;
4358                                 break;
4359                         }
4360                 }
4361
4362                 if (sh) {
4363                         conf->bypass_count -= conf->bypass_threshold;
4364                         if (conf->bypass_count < 0)
4365                                 conf->bypass_count = 0;
4366                 }
4367                 wg = NULL;
4368         }
4369
4370         if (!sh)
4371                 return NULL;
4372
4373         if (wg) {
4374                 wg->stripes_cnt--;
4375                 sh->group = NULL;
4376         }
4377         list_del_init(&sh->lru);
4378         atomic_inc(&sh->count);
4379         BUG_ON(atomic_read(&sh->count) != 1);
4380         return sh;
4381 }
4382
4383 struct raid5_plug_cb {
4384         struct blk_plug_cb      cb;
4385         struct list_head        list;
4386         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4387 };
4388
4389 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4390 {
4391         struct raid5_plug_cb *cb = container_of(
4392                 blk_cb, struct raid5_plug_cb, cb);
4393         struct stripe_head *sh;
4394         struct mddev *mddev = cb->cb.data;
4395         struct r5conf *conf = mddev->private;
4396         int cnt = 0;
4397         int hash;
4398
4399         if (cb->list.next && !list_empty(&cb->list)) {
4400                 spin_lock_irq(&conf->device_lock);
4401                 while (!list_empty(&cb->list)) {
4402                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4403                         list_del_init(&sh->lru);
4404                         /*
4405                          * avoid race release_stripe_plug() sees
4406                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4407                          * is still in our list
4408                          */
4409                         smp_mb__before_clear_bit();
4410                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4411                         /*
4412                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4413                          * case, the count is always > 1 here
4414                          */
4415                         hash = sh->hash_lock_index;
4416                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4417                         cnt++;
4418                 }
4419                 spin_unlock_irq(&conf->device_lock);
4420         }
4421         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4422                                      NR_STRIPE_HASH_LOCKS);
4423         if (mddev->queue)
4424                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4425         kfree(cb);
4426 }
4427
4428 static void release_stripe_plug(struct mddev *mddev,
4429                                 struct stripe_head *sh)
4430 {
4431         struct blk_plug_cb *blk_cb = blk_check_plugged(
4432                 raid5_unplug, mddev,
4433                 sizeof(struct raid5_plug_cb));
4434         struct raid5_plug_cb *cb;
4435
4436         if (!blk_cb) {
4437                 release_stripe(sh);
4438                 return;
4439         }
4440
4441         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4442
4443         if (cb->list.next == NULL) {
4444                 int i;
4445                 INIT_LIST_HEAD(&cb->list);
4446                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4447                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
4448         }
4449
4450         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4451                 list_add_tail(&sh->lru, &cb->list);
4452         else
4453                 release_stripe(sh);
4454 }
4455
4456 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4457 {
4458         struct r5conf *conf = mddev->private;
4459         sector_t logical_sector, last_sector;
4460         struct stripe_head *sh;
4461         int remaining;
4462         int stripe_sectors;
4463
4464         if (mddev->reshape_position != MaxSector)
4465                 /* Skip discard while reshape is happening */
4466                 return;
4467
4468         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4469         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4470
4471         bi->bi_next = NULL;
4472         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4473
4474         stripe_sectors = conf->chunk_sectors *
4475                 (conf->raid_disks - conf->max_degraded);
4476         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4477                                                stripe_sectors);
4478         sector_div(last_sector, stripe_sectors);
4479
4480         logical_sector *= conf->chunk_sectors;
4481         last_sector *= conf->chunk_sectors;
4482
4483         for (; logical_sector < last_sector;
4484              logical_sector += STRIPE_SECTORS) {
4485                 DEFINE_WAIT(w);
4486                 int d;
4487         again:
4488                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4489                 prepare_to_wait(&conf->wait_for_overlap, &w,
4490                                 TASK_UNINTERRUPTIBLE);
4491                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4492                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4493                         release_stripe(sh);
4494                         schedule();
4495                         goto again;
4496                 }
4497                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4498                 spin_lock_irq(&sh->stripe_lock);
4499                 for (d = 0; d < conf->raid_disks; d++) {
4500                         if (d == sh->pd_idx || d == sh->qd_idx)
4501                                 continue;
4502                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4503                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4504                                 spin_unlock_irq(&sh->stripe_lock);
4505                                 release_stripe(sh);
4506                                 schedule();
4507                                 goto again;
4508                         }
4509                 }
4510                 set_bit(STRIPE_DISCARD, &sh->state);
4511                 finish_wait(&conf->wait_for_overlap, &w);
4512                 for (d = 0; d < conf->raid_disks; d++) {
4513                         if (d == sh->pd_idx || d == sh->qd_idx)
4514                                 continue;
4515                         sh->dev[d].towrite = bi;
4516                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4517                         raid5_inc_bi_active_stripes(bi);
4518                 }
4519                 spin_unlock_irq(&sh->stripe_lock);
4520                 if (conf->mddev->bitmap) {
4521                         for (d = 0;
4522                              d < conf->raid_disks - conf->max_degraded;
4523                              d++)
4524                                 bitmap_startwrite(mddev->bitmap,
4525                                                   sh->sector,
4526                                                   STRIPE_SECTORS,
4527                                                   0);
4528                         sh->bm_seq = conf->seq_flush + 1;
4529                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4530                 }
4531
4532                 set_bit(STRIPE_HANDLE, &sh->state);
4533                 clear_bit(STRIPE_DELAYED, &sh->state);
4534                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4535                         atomic_inc(&conf->preread_active_stripes);
4536                 release_stripe_plug(mddev, sh);
4537         }
4538
4539         remaining = raid5_dec_bi_active_stripes(bi);
4540         if (remaining == 0) {
4541                 md_write_end(mddev);
4542                 bio_endio(bi, 0);
4543         }
4544 }
4545
4546 static void make_request(struct mddev *mddev, struct bio * bi)
4547 {
4548         struct r5conf *conf = mddev->private;
4549         int dd_idx;
4550         sector_t new_sector;
4551         sector_t logical_sector, last_sector;
4552         struct stripe_head *sh;
4553         const int rw = bio_data_dir(bi);
4554         int remaining;
4555         DEFINE_WAIT(w);
4556         bool do_prepare;
4557
4558         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4559                 md_flush_request(mddev, bi);
4560                 return;
4561         }
4562
4563         md_write_start(mddev, bi);
4564
4565         if (rw == READ &&
4566              mddev->reshape_position == MaxSector &&
4567              chunk_aligned_read(mddev,bi))
4568                 return;
4569
4570         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4571                 make_discard_request(mddev, bi);
4572                 return;
4573         }
4574
4575         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4576         last_sector = bio_end_sector(bi);
4577         bi->bi_next = NULL;
4578         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4579
4580         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4581         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4582                 int previous;
4583                 int seq;
4584
4585                 do_prepare = false;
4586         retry:
4587                 seq = read_seqcount_begin(&conf->gen_lock);
4588                 previous = 0;
4589                 if (do_prepare)
4590                         prepare_to_wait(&conf->wait_for_overlap, &w,
4591                                 TASK_UNINTERRUPTIBLE);
4592                 if (unlikely(conf->reshape_progress != MaxSector)) {
4593                         /* spinlock is needed as reshape_progress may be
4594                          * 64bit on a 32bit platform, and so it might be
4595                          * possible to see a half-updated value
4596                          * Of course reshape_progress could change after
4597                          * the lock is dropped, so once we get a reference
4598                          * to the stripe that we think it is, we will have
4599                          * to check again.
4600                          */
4601                         spin_lock_irq(&conf->device_lock);
4602                         if (mddev->reshape_backwards
4603                             ? logical_sector < conf->reshape_progress
4604                             : logical_sector >= conf->reshape_progress) {
4605                                 previous = 1;
4606                         } else {
4607                                 if (mddev->reshape_backwards
4608                                     ? logical_sector < conf->reshape_safe
4609                                     : logical_sector >= conf->reshape_safe) {
4610                                         spin_unlock_irq(&conf->device_lock);
4611                                         schedule();
4612                                         do_prepare = true;
4613                                         goto retry;
4614                                 }
4615                         }
4616                         spin_unlock_irq(&conf->device_lock);
4617                 }
4618
4619                 new_sector = raid5_compute_sector(conf, logical_sector,
4620                                                   previous,
4621                                                   &dd_idx, NULL);
4622                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4623                         (unsigned long long)new_sector,
4624                         (unsigned long long)logical_sector);
4625
4626                 sh = get_active_stripe(conf, new_sector, previous,
4627                                        (bi->bi_rw&RWA_MASK), 0);
4628                 if (sh) {
4629                         if (unlikely(previous)) {
4630                                 /* expansion might have moved on while waiting for a
4631                                  * stripe, so we must do the range check again.
4632                                  * Expansion could still move past after this
4633                                  * test, but as we are holding a reference to
4634                                  * 'sh', we know that if that happens,
4635                                  *  STRIPE_EXPANDING will get set and the expansion
4636                                  * won't proceed until we finish with the stripe.
4637                                  */
4638                                 int must_retry = 0;
4639                                 spin_lock_irq(&conf->device_lock);
4640                                 if (mddev->reshape_backwards
4641                                     ? logical_sector >= conf->reshape_progress
4642                                     : logical_sector < conf->reshape_progress)
4643                                         /* mismatch, need to try again */
4644                                         must_retry = 1;
4645                                 spin_unlock_irq(&conf->device_lock);
4646                                 if (must_retry) {
4647                                         release_stripe(sh);
4648                                         schedule();
4649                                         do_prepare = true;
4650                                         goto retry;
4651                                 }
4652                         }
4653                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
4654                                 /* Might have got the wrong stripe_head
4655                                  * by accident
4656                                  */
4657                                 release_stripe(sh);
4658                                 goto retry;
4659                         }
4660
4661                         if (rw == WRITE &&
4662                             logical_sector >= mddev->suspend_lo &&
4663                             logical_sector < mddev->suspend_hi) {
4664                                 release_stripe(sh);
4665                                 /* As the suspend_* range is controlled by
4666                                  * userspace, we want an interruptible
4667                                  * wait.
4668                                  */
4669                                 flush_signals(current);
4670                                 prepare_to_wait(&conf->wait_for_overlap,
4671                                                 &w, TASK_INTERRUPTIBLE);
4672                                 if (logical_sector >= mddev->suspend_lo &&
4673                                     logical_sector < mddev->suspend_hi) {
4674                                         schedule();
4675                                         do_prepare = true;
4676                                 }
4677                                 goto retry;
4678                         }
4679
4680                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4681                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4682                                 /* Stripe is busy expanding or
4683                                  * add failed due to overlap.  Flush everything
4684                                  * and wait a while
4685                                  */
4686                                 md_wakeup_thread(mddev->thread);
4687                                 release_stripe(sh);
4688                                 schedule();
4689                                 do_prepare = true;
4690                                 goto retry;
4691                         }
4692                         set_bit(STRIPE_HANDLE, &sh->state);
4693                         clear_bit(STRIPE_DELAYED, &sh->state);
4694                         if ((bi->bi_rw & REQ_SYNC) &&
4695                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4696                                 atomic_inc(&conf->preread_active_stripes);
4697                         release_stripe_plug(mddev, sh);
4698                 } else {
4699                         /* cannot get stripe for read-ahead, just give-up */
4700                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4701                         break;
4702                 }
4703         }
4704         finish_wait(&conf->wait_for_overlap, &w);
4705
4706         remaining = raid5_dec_bi_active_stripes(bi);
4707         if (remaining == 0) {
4708
4709                 if ( rw == WRITE )
4710                         md_write_end(mddev);
4711
4712                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4713                                          bi, 0);
4714                 bio_endio(bi, 0);
4715         }
4716 }
4717
4718 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4719
4720 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4721 {
4722         /* reshaping is quite different to recovery/resync so it is
4723          * handled quite separately ... here.
4724          *
4725          * On each call to sync_request, we gather one chunk worth of
4726          * destination stripes and flag them as expanding.
4727          * Then we find all the source stripes and request reads.
4728          * As the reads complete, handle_stripe will copy the data
4729          * into the destination stripe and release that stripe.
4730          */
4731         struct r5conf *conf = mddev->private;
4732         struct stripe_head *sh;
4733         sector_t first_sector, last_sector;
4734         int raid_disks = conf->previous_raid_disks;
4735         int data_disks = raid_disks - conf->max_degraded;
4736         int new_data_disks = conf->raid_disks - conf->max_degraded;
4737         int i;
4738         int dd_idx;
4739         sector_t writepos, readpos, safepos;
4740         sector_t stripe_addr;
4741         int reshape_sectors;
4742         struct list_head stripes;
4743
4744         if (sector_nr == 0) {
4745                 /* If restarting in the middle, skip the initial sectors */
4746                 if (mddev->reshape_backwards &&
4747                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4748                         sector_nr = raid5_size(mddev, 0, 0)
4749                                 - conf->reshape_progress;
4750                 } else if (!mddev->reshape_backwards &&
4751                            conf->reshape_progress > 0)
4752                         sector_nr = conf->reshape_progress;
4753                 sector_div(sector_nr, new_data_disks);
4754                 if (sector_nr) {
4755                         mddev->curr_resync_completed = sector_nr;
4756                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4757                         *skipped = 1;
4758                         return sector_nr;
4759                 }
4760         }
4761
4762         /* We need to process a full chunk at a time.
4763          * If old and new chunk sizes differ, we need to process the
4764          * largest of these
4765          */
4766         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4767                 reshape_sectors = mddev->new_chunk_sectors;
4768         else
4769                 reshape_sectors = mddev->chunk_sectors;
4770
4771         /* We update the metadata at least every 10 seconds, or when
4772          * the data about to be copied would over-write the source of
4773          * the data at the front of the range.  i.e. one new_stripe
4774          * along from reshape_progress new_maps to after where
4775          * reshape_safe old_maps to
4776          */
4777         writepos = conf->reshape_progress;
4778         sector_div(writepos, new_data_disks);
4779         readpos = conf->reshape_progress;
4780         sector_div(readpos, data_disks);
4781         safepos = conf->reshape_safe;
4782         sector_div(safepos, data_disks);
4783         if (mddev->reshape_backwards) {
4784                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4785                 readpos += reshape_sectors;
4786                 safepos += reshape_sectors;
4787         } else {
4788                 writepos += reshape_sectors;
4789                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4790                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4791         }
4792
4793         /* Having calculated the 'writepos' possibly use it
4794          * to set 'stripe_addr' which is where we will write to.
4795          */
4796         if (mddev->reshape_backwards) {
4797                 BUG_ON(conf->reshape_progress == 0);
4798                 stripe_addr = writepos;
4799                 BUG_ON((mddev->dev_sectors &
4800                         ~((sector_t)reshape_sectors - 1))
4801                        - reshape_sectors - stripe_addr
4802                        != sector_nr);
4803         } else {
4804                 BUG_ON(writepos != sector_nr + reshape_sectors);
4805                 stripe_addr = sector_nr;
4806         }
4807
4808         /* 'writepos' is the most advanced device address we might write.
4809          * 'readpos' is the least advanced device address we might read.
4810          * 'safepos' is the least address recorded in the metadata as having
4811          *     been reshaped.
4812          * If there is a min_offset_diff, these are adjusted either by
4813          * increasing the safepos/readpos if diff is negative, or
4814          * increasing writepos if diff is positive.
4815          * If 'readpos' is then behind 'writepos', there is no way that we can
4816          * ensure safety in the face of a crash - that must be done by userspace
4817          * making a backup of the data.  So in that case there is no particular
4818          * rush to update metadata.
4819          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4820          * update the metadata to advance 'safepos' to match 'readpos' so that
4821          * we can be safe in the event of a crash.
4822          * So we insist on updating metadata if safepos is behind writepos and
4823          * readpos is beyond writepos.
4824          * In any case, update the metadata every 10 seconds.
4825          * Maybe that number should be configurable, but I'm not sure it is
4826          * worth it.... maybe it could be a multiple of safemode_delay???
4827          */
4828         if (conf->min_offset_diff < 0) {
4829                 safepos += -conf->min_offset_diff;
4830                 readpos += -conf->min_offset_diff;
4831         } else
4832                 writepos += conf->min_offset_diff;
4833
4834         if ((mddev->reshape_backwards
4835              ? (safepos > writepos && readpos < writepos)
4836              : (safepos < writepos && readpos > writepos)) ||
4837             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4838                 /* Cannot proceed until we've updated the superblock... */
4839                 wait_event(conf->wait_for_overlap,
4840                            atomic_read(&conf->reshape_stripes)==0
4841                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4842                 if (atomic_read(&conf->reshape_stripes) != 0)
4843                         return 0;
4844                 mddev->reshape_position = conf->reshape_progress;
4845                 mddev->curr_resync_completed = sector_nr;
4846                 conf->reshape_checkpoint = jiffies;
4847                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4848                 md_wakeup_thread(mddev->thread);
4849                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4850                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4851                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4852                         return 0;
4853                 spin_lock_irq(&conf->device_lock);
4854                 conf->reshape_safe = mddev->reshape_position;
4855                 spin_unlock_irq(&conf->device_lock);
4856                 wake_up(&conf->wait_for_overlap);
4857                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4858         }
4859
4860         INIT_LIST_HEAD(&stripes);
4861         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4862                 int j;
4863                 int skipped_disk = 0;
4864                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4865                 set_bit(STRIPE_EXPANDING, &sh->state);
4866                 atomic_inc(&conf->reshape_stripes);
4867                 /* If any of this stripe is beyond the end of the old
4868                  * array, then we need to zero those blocks
4869                  */
4870                 for (j=sh->disks; j--;) {
4871                         sector_t s;
4872                         if (j == sh->pd_idx)
4873                                 continue;
4874                         if (conf->level == 6 &&
4875                             j == sh->qd_idx)
4876                                 continue;
4877                         s = compute_blocknr(sh, j, 0);
4878                         if (s < raid5_size(mddev, 0, 0)) {
4879                                 skipped_disk = 1;
4880                                 continue;
4881                         }
4882                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4883                         set_bit(R5_Expanded, &sh->dev[j].flags);
4884                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4885                 }
4886                 if (!skipped_disk) {
4887                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4888                         set_bit(STRIPE_HANDLE, &sh->state);
4889                 }
4890                 list_add(&sh->lru, &stripes);
4891         }
4892         spin_lock_irq(&conf->device_lock);
4893         if (mddev->reshape_backwards)
4894                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4895         else
4896                 conf->reshape_progress += reshape_sectors * new_data_disks;
4897         spin_unlock_irq(&conf->device_lock);
4898         /* Ok, those stripe are ready. We can start scheduling
4899          * reads on the source stripes.
4900          * The source stripes are determined by mapping the first and last
4901          * block on the destination stripes.
4902          */
4903         first_sector =
4904                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4905                                      1, &dd_idx, NULL);
4906         last_sector =
4907                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4908                                             * new_data_disks - 1),
4909                                      1, &dd_idx, NULL);
4910         if (last_sector >= mddev->dev_sectors)
4911                 last_sector = mddev->dev_sectors - 1;
4912         while (first_sector <= last_sector) {
4913                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4914                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4915                 set_bit(STRIPE_HANDLE, &sh->state);
4916                 release_stripe(sh);
4917                 first_sector += STRIPE_SECTORS;
4918         }
4919         /* Now that the sources are clearly marked, we can release
4920          * the destination stripes
4921          */
4922         while (!list_empty(&stripes)) {
4923                 sh = list_entry(stripes.next, struct stripe_head, lru);
4924                 list_del_init(&sh->lru);
4925                 release_stripe(sh);
4926         }
4927         /* If this takes us to the resync_max point where we have to pause,
4928          * then we need to write out the superblock.
4929          */
4930         sector_nr += reshape_sectors;
4931         if ((sector_nr - mddev->curr_resync_completed) * 2
4932             >= mddev->resync_max - mddev->curr_resync_completed) {
4933                 /* Cannot proceed until we've updated the superblock... */
4934                 wait_event(conf->wait_for_overlap,
4935                            atomic_read(&conf->reshape_stripes) == 0
4936                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4937                 if (atomic_read(&conf->reshape_stripes) != 0)
4938                         goto ret;
4939                 mddev->reshape_position = conf->reshape_progress;
4940                 mddev->curr_resync_completed = sector_nr;
4941                 conf->reshape_checkpoint = jiffies;
4942                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4943                 md_wakeup_thread(mddev->thread);
4944                 wait_event(mddev->sb_wait,
4945                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4946                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4947                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4948                         goto ret;
4949                 spin_lock_irq(&conf->device_lock);
4950                 conf->reshape_safe = mddev->reshape_position;
4951                 spin_unlock_irq(&conf->device_lock);
4952                 wake_up(&conf->wait_for_overlap);
4953                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4954         }
4955 ret:
4956         return reshape_sectors;
4957 }
4958
4959 /* FIXME go_faster isn't used */
4960 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4961 {
4962         struct r5conf *conf = mddev->private;
4963         struct stripe_head *sh;
4964         sector_t max_sector = mddev->dev_sectors;
4965         sector_t sync_blocks;
4966         int still_degraded = 0;
4967         int i;
4968
4969         if (sector_nr >= max_sector) {
4970                 /* just being told to finish up .. nothing much to do */
4971
4972                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4973                         end_reshape(conf);
4974                         return 0;
4975                 }
4976
4977                 if (mddev->curr_resync < max_sector) /* aborted */
4978                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4979                                         &sync_blocks, 1);
4980                 else /* completed sync */
4981                         conf->fullsync = 0;
4982                 bitmap_close_sync(mddev->bitmap);
4983
4984                 return 0;
4985         }
4986
4987         /* Allow raid5_quiesce to complete */
4988         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4989
4990         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4991                 return reshape_request(mddev, sector_nr, skipped);
4992
4993         /* No need to check resync_max as we never do more than one
4994          * stripe, and as resync_max will always be on a chunk boundary,
4995          * if the check in md_do_sync didn't fire, there is no chance
4996          * of overstepping resync_max here
4997          */
4998
4999         /* if there is too many failed drives and we are trying
5000          * to resync, then assert that we are finished, because there is
5001          * nothing we can do.
5002          */
5003         if (mddev->degraded >= conf->max_degraded &&
5004             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5005                 sector_t rv = mddev->dev_sectors - sector_nr;
5006                 *skipped = 1;
5007                 return rv;
5008         }
5009         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5010             !conf->fullsync &&
5011             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5012             sync_blocks >= STRIPE_SECTORS) {
5013                 /* we can skip this block, and probably more */
5014                 sync_blocks /= STRIPE_SECTORS;
5015                 *skipped = 1;
5016                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5017         }
5018
5019         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5020
5021         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5022         if (sh == NULL) {
5023                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5024                 /* make sure we don't swamp the stripe cache if someone else
5025                  * is trying to get access
5026                  */
5027                 schedule_timeout_uninterruptible(1);
5028         }
5029         /* Need to check if array will still be degraded after recovery/resync
5030          * We don't need to check the 'failed' flag as when that gets set,
5031          * recovery aborts.
5032          */
5033         for (i = 0; i < conf->raid_disks; i++)
5034                 if (conf->disks[i].rdev == NULL)
5035                         still_degraded = 1;
5036
5037         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5038
5039         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5040
5041         handle_stripe(sh);
5042         release_stripe(sh);
5043
5044         return STRIPE_SECTORS;
5045 }
5046
5047 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5048 {
5049         /* We may not be able to submit a whole bio at once as there
5050          * may not be enough stripe_heads available.
5051          * We cannot pre-allocate enough stripe_heads as we may need
5052          * more than exist in the cache (if we allow ever large chunks).
5053          * So we do one stripe head at a time and record in
5054          * ->bi_hw_segments how many have been done.
5055          *
5056          * We *know* that this entire raid_bio is in one chunk, so
5057          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5058          */
5059         struct stripe_head *sh;
5060         int dd_idx;
5061         sector_t sector, logical_sector, last_sector;
5062         int scnt = 0;
5063         int remaining;
5064         int handled = 0;
5065
5066         logical_sector = raid_bio->bi_iter.bi_sector &
5067                 ~((sector_t)STRIPE_SECTORS-1);
5068         sector = raid5_compute_sector(conf, logical_sector,
5069                                       0, &dd_idx, NULL);
5070         last_sector = bio_end_sector(raid_bio);
5071
5072         for (; logical_sector < last_sector;
5073              logical_sector += STRIPE_SECTORS,
5074                      sector += STRIPE_SECTORS,
5075                      scnt++) {
5076
5077                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5078                         /* already done this stripe */
5079                         continue;
5080
5081                 sh = get_active_stripe(conf, sector, 0, 1, 0);
5082
5083                 if (!sh) {
5084                         /* failed to get a stripe - must wait */
5085                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5086                         conf->retry_read_aligned = raid_bio;
5087                         return handled;
5088                 }
5089
5090                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5091                         release_stripe(sh);
5092                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5093                         conf->retry_read_aligned = raid_bio;
5094                         return handled;
5095                 }
5096
5097                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5098                 handle_stripe(sh);
5099                 release_stripe(sh);
5100                 handled++;
5101         }
5102         remaining = raid5_dec_bi_active_stripes(raid_bio);
5103         if (remaining == 0) {
5104                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5105                                          raid_bio, 0);
5106                 bio_endio(raid_bio, 0);
5107         }
5108         if (atomic_dec_and_test(&conf->active_aligned_reads))
5109                 wake_up(&conf->wait_for_stripe);
5110         return handled;
5111 }
5112
5113 static int handle_active_stripes(struct r5conf *conf, int group,
5114                                  struct r5worker *worker,
5115                                  struct list_head *temp_inactive_list)
5116 {
5117         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5118         int i, batch_size = 0, hash;
5119         bool release_inactive = false;
5120
5121         while (batch_size < MAX_STRIPE_BATCH &&
5122                         (sh = __get_priority_stripe(conf, group)) != NULL)
5123                 batch[batch_size++] = sh;
5124
5125         if (batch_size == 0) {
5126                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5127                         if (!list_empty(temp_inactive_list + i))
5128                                 break;
5129                 if (i == NR_STRIPE_HASH_LOCKS)
5130                         return batch_size;
5131                 release_inactive = true;
5132         }
5133         spin_unlock_irq(&conf->device_lock);
5134
5135         release_inactive_stripe_list(conf, temp_inactive_list,
5136                                      NR_STRIPE_HASH_LOCKS);
5137
5138         if (release_inactive) {
5139                 spin_lock_irq(&conf->device_lock);
5140                 return 0;
5141         }
5142
5143         for (i = 0; i < batch_size; i++)
5144                 handle_stripe(batch[i]);
5145
5146         cond_resched();
5147
5148         spin_lock_irq(&conf->device_lock);
5149         for (i = 0; i < batch_size; i++) {
5150                 hash = batch[i]->hash_lock_index;
5151                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5152         }
5153         return batch_size;
5154 }
5155
5156 static void raid5_do_work(struct work_struct *work)
5157 {
5158         struct r5worker *worker = container_of(work, struct r5worker, work);
5159         struct r5worker_group *group = worker->group;
5160         struct r5conf *conf = group->conf;
5161         int group_id = group - conf->worker_groups;
5162         int handled;
5163         struct blk_plug plug;
5164
5165         pr_debug("+++ raid5worker active\n");
5166
5167         blk_start_plug(&plug);
5168         handled = 0;
5169         spin_lock_irq(&conf->device_lock);
5170         while (1) {
5171                 int batch_size, released;
5172
5173                 released = release_stripe_list(conf, worker->temp_inactive_list);
5174
5175                 batch_size = handle_active_stripes(conf, group_id, worker,
5176                                                    worker->temp_inactive_list);
5177                 worker->working = false;
5178                 if (!batch_size && !released)
5179                         break;
5180                 handled += batch_size;
5181         }
5182         pr_debug("%d stripes handled\n", handled);
5183
5184         spin_unlock_irq(&conf->device_lock);
5185         blk_finish_plug(&plug);
5186
5187         pr_debug("--- raid5worker inactive\n");
5188 }
5189
5190 /*
5191  * This is our raid5 kernel thread.
5192  *
5193  * We scan the hash table for stripes which can be handled now.
5194  * During the scan, completed stripes are saved for us by the interrupt
5195  * handler, so that they will not have to wait for our next wakeup.
5196  */
5197 static void raid5d(struct md_thread *thread)
5198 {
5199         struct mddev *mddev = thread->mddev;
5200         struct r5conf *conf = mddev->private;
5201         int handled;
5202         struct blk_plug plug;
5203
5204         pr_debug("+++ raid5d active\n");
5205
5206         md_check_recovery(mddev);
5207
5208         blk_start_plug(&plug);
5209         handled = 0;
5210         spin_lock_irq(&conf->device_lock);
5211         while (1) {
5212                 struct bio *bio;
5213                 int batch_size, released;
5214
5215                 released = release_stripe_list(conf, conf->temp_inactive_list);
5216
5217                 if (
5218                     !list_empty(&conf->bitmap_list)) {
5219                         /* Now is a good time to flush some bitmap updates */
5220                         conf->seq_flush++;
5221                         spin_unlock_irq(&conf->device_lock);
5222                         bitmap_unplug(mddev->bitmap);
5223                         spin_lock_irq(&conf->device_lock);
5224                         conf->seq_write = conf->seq_flush;
5225                         activate_bit_delay(conf, conf->temp_inactive_list);
5226                 }
5227                 raid5_activate_delayed(conf);
5228
5229                 while ((bio = remove_bio_from_retry(conf))) {
5230                         int ok;
5231                         spin_unlock_irq(&conf->device_lock);
5232                         ok = retry_aligned_read(conf, bio);
5233                         spin_lock_irq(&conf->device_lock);
5234                         if (!ok)
5235                                 break;
5236                         handled++;
5237                 }
5238
5239                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5240                                                    conf->temp_inactive_list);
5241                 if (!batch_size && !released)
5242                         break;
5243                 handled += batch_size;
5244
5245                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5246                         spin_unlock_irq(&conf->device_lock);
5247                         md_check_recovery(mddev);
5248                         spin_lock_irq(&conf->device_lock);
5249                 }
5250         }
5251         pr_debug("%d stripes handled\n", handled);
5252
5253         spin_unlock_irq(&conf->device_lock);
5254
5255         async_tx_issue_pending_all();
5256         blk_finish_plug(&plug);
5257
5258         pr_debug("--- raid5d inactive\n");
5259 }
5260
5261 static ssize_t
5262 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5263 {
5264         struct r5conf *conf = mddev->private;
5265         if (conf)
5266                 return sprintf(page, "%d\n", conf->max_nr_stripes);
5267         else
5268                 return 0;
5269 }
5270
5271 int
5272 raid5_set_cache_size(struct mddev *mddev, int size)
5273 {
5274         struct r5conf *conf = mddev->private;
5275         int err;
5276         int hash;
5277
5278         if (size <= 16 || size > 32768)
5279                 return -EINVAL;
5280         hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5281         while (size < conf->max_nr_stripes) {
5282                 if (drop_one_stripe(conf, hash))
5283                         conf->max_nr_stripes--;
5284                 else
5285                         break;
5286                 hash--;
5287                 if (hash < 0)
5288                         hash = NR_STRIPE_HASH_LOCKS - 1;
5289         }
5290         err = md_allow_write(mddev);
5291         if (err)
5292                 return err;
5293         hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5294         while (size > conf->max_nr_stripes) {
5295                 if (grow_one_stripe(conf, hash))
5296                         conf->max_nr_stripes++;
5297                 else break;
5298                 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5299         }
5300         return 0;
5301 }
5302 EXPORT_SYMBOL(raid5_set_cache_size);
5303
5304 static ssize_t
5305 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5306 {
5307         struct r5conf *conf = mddev->private;
5308         unsigned long new;
5309         int err;
5310
5311         if (len >= PAGE_SIZE)
5312                 return -EINVAL;
5313         if (!conf)
5314                 return -ENODEV;
5315
5316         if (kstrtoul(page, 10, &new))
5317                 return -EINVAL;
5318         err = raid5_set_cache_size(mddev, new);
5319         if (err)
5320                 return err;
5321         return len;
5322 }
5323
5324 static struct md_sysfs_entry
5325 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5326                                 raid5_show_stripe_cache_size,
5327                                 raid5_store_stripe_cache_size);
5328
5329 static ssize_t
5330 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5331 {
5332         struct r5conf *conf = mddev->private;
5333         if (conf)
5334                 return sprintf(page, "%d\n", conf->bypass_threshold);
5335         else
5336                 return 0;
5337 }
5338
5339 static ssize_t
5340 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5341 {
5342         struct r5conf *conf = mddev->private;
5343         unsigned long new;
5344         if (len >= PAGE_SIZE)
5345                 return -EINVAL;
5346         if (!conf)
5347                 return -ENODEV;
5348
5349         if (kstrtoul(page, 10, &new))
5350                 return -EINVAL;
5351         if (new > conf->max_nr_stripes)
5352                 return -EINVAL;
5353         conf->bypass_threshold = new;
5354         return len;
5355 }
5356
5357 static struct md_sysfs_entry
5358 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5359                                         S_IRUGO | S_IWUSR,
5360                                         raid5_show_preread_threshold,
5361                                         raid5_store_preread_threshold);
5362
5363 static ssize_t
5364 stripe_cache_active_show(struct mddev *mddev, char *page)
5365 {
5366         struct r5conf *conf = mddev->private;
5367         if (conf)
5368                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5369         else
5370                 return 0;
5371 }
5372
5373 static struct md_sysfs_entry
5374 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5375
5376 static ssize_t
5377 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5378 {
5379         struct r5conf *conf = mddev->private;
5380         if (conf)
5381                 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5382         else
5383                 return 0;
5384 }
5385
5386 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5387                                int *group_cnt,
5388                                int *worker_cnt_per_group,
5389                                struct r5worker_group **worker_groups);
5390 static ssize_t
5391 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5392 {
5393         struct r5conf *conf = mddev->private;
5394         unsigned long new;
5395         int err;
5396         struct r5worker_group *new_groups, *old_groups;
5397         int group_cnt, worker_cnt_per_group;
5398
5399         if (len >= PAGE_SIZE)
5400                 return -EINVAL;
5401         if (!conf)
5402                 return -ENODEV;
5403
5404         if (kstrtoul(page, 10, &new))
5405                 return -EINVAL;
5406
5407         if (new == conf->worker_cnt_per_group)
5408                 return len;
5409
5410         mddev_suspend(mddev);
5411
5412         old_groups = conf->worker_groups;
5413         if (old_groups)
5414                 flush_workqueue(raid5_wq);
5415
5416         err = alloc_thread_groups(conf, new,
5417                                   &group_cnt, &worker_cnt_per_group,
5418                                   &new_groups);
5419         if (!err) {
5420                 spin_lock_irq(&conf->device_lock);
5421                 conf->group_cnt = group_cnt;
5422                 conf->worker_cnt_per_group = worker_cnt_per_group;
5423                 conf->worker_groups = new_groups;
5424                 spin_unlock_irq(&conf->device_lock);
5425
5426                 if (old_groups)
5427                         kfree(old_groups[0].workers);
5428                 kfree(old_groups);
5429         }
5430
5431         mddev_resume(mddev);
5432
5433         if (err)
5434                 return err;
5435         return len;
5436 }
5437
5438 static struct md_sysfs_entry
5439 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5440                                 raid5_show_group_thread_cnt,
5441                                 raid5_store_group_thread_cnt);
5442
5443 static struct attribute *raid5_attrs[] =  {
5444         &raid5_stripecache_size.attr,
5445         &raid5_stripecache_active.attr,
5446         &raid5_preread_bypass_threshold.attr,
5447         &raid5_group_thread_cnt.attr,
5448         NULL,
5449 };
5450 static struct attribute_group raid5_attrs_group = {
5451         .name = NULL,
5452         .attrs = raid5_attrs,
5453 };
5454
5455 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5456                                int *group_cnt,
5457                                int *worker_cnt_per_group,
5458                                struct r5worker_group **worker_groups)
5459 {
5460         int i, j, k;
5461         ssize_t size;
5462         struct r5worker *workers;
5463
5464         *worker_cnt_per_group = cnt;
5465         if (cnt == 0) {
5466                 *group_cnt = 0;
5467                 *worker_groups = NULL;
5468                 return 0;
5469         }
5470         *group_cnt = num_possible_nodes();
5471         size = sizeof(struct r5worker) * cnt;
5472         workers = kzalloc(size * *group_cnt, GFP_NOIO);
5473         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5474                                 *group_cnt, GFP_NOIO);
5475         if (!*worker_groups || !workers) {
5476                 kfree(workers);
5477                 kfree(*worker_groups);
5478                 return -ENOMEM;
5479         }
5480
5481         for (i = 0; i < *group_cnt; i++) {
5482                 struct r5worker_group *group;
5483
5484                 group = &(*worker_groups)[i];
5485                 INIT_LIST_HEAD(&group->handle_list);
5486                 group->conf = conf;
5487                 group->workers = workers + i * cnt;
5488
5489                 for (j = 0; j < cnt; j++) {
5490                         struct r5worker *worker = group->workers + j;
5491                         worker->group = group;
5492                         INIT_WORK(&worker->work, raid5_do_work);
5493
5494                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5495                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5496                 }
5497         }
5498
5499         return 0;
5500 }
5501
5502 static void free_thread_groups(struct r5conf *conf)
5503 {
5504         if (conf->worker_groups)
5505                 kfree(conf->worker_groups[0].workers);
5506         kfree(conf->worker_groups);
5507         conf->worker_groups = NULL;
5508 }
5509
5510 static sector_t
5511 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5512 {
5513         struct r5conf *conf = mddev->private;
5514
5515         if (!sectors)
5516                 sectors = mddev->dev_sectors;
5517         if (!raid_disks)
5518                 /* size is defined by the smallest of previous and new size */
5519                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5520
5521         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5522         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5523         return sectors * (raid_disks - conf->max_degraded);
5524 }
5525
5526 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5527 {
5528         safe_put_page(percpu->spare_page);
5529         kfree(percpu->scribble);
5530         percpu->spare_page = NULL;
5531         percpu->scribble = NULL;
5532 }
5533
5534 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5535 {
5536         if (conf->level == 6 && !percpu->spare_page)
5537                 percpu->spare_page = alloc_page(GFP_KERNEL);
5538         if (!percpu->scribble)
5539                 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5540
5541         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5542                 free_scratch_buffer(conf, percpu);
5543                 return -ENOMEM;
5544         }
5545
5546         return 0;
5547 }
5548
5549 static void raid5_free_percpu(struct r5conf *conf)
5550 {
5551         unsigned long cpu;
5552
5553         if (!conf->percpu)
5554                 return;
5555
5556 #ifdef CONFIG_HOTPLUG_CPU
5557         unregister_cpu_notifier(&conf->cpu_notify);
5558 #endif
5559
5560         get_online_cpus();
5561         for_each_possible_cpu(cpu)
5562                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5563         put_online_cpus();
5564
5565         free_percpu(conf->percpu);
5566 }
5567
5568 static void free_conf(struct r5conf *conf)
5569 {
5570         free_thread_groups(conf);
5571         shrink_stripes(conf);
5572         raid5_free_percpu(conf);
5573         kfree(conf->disks);
5574         kfree(conf->stripe_hashtbl);
5575         kfree(conf);
5576 }
5577
5578 #ifdef CONFIG_HOTPLUG_CPU
5579 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5580                               void *hcpu)
5581 {
5582         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5583         long cpu = (long)hcpu;
5584         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5585
5586         switch (action) {
5587         case CPU_UP_PREPARE:
5588         case CPU_UP_PREPARE_FROZEN:
5589                 if (alloc_scratch_buffer(conf, percpu)) {
5590                         pr_err("%s: failed memory allocation for cpu%ld\n",
5591                                __func__, cpu);
5592                         return notifier_from_errno(-ENOMEM);
5593                 }
5594                 break;
5595         case CPU_DEAD:
5596         case CPU_DEAD_FROZEN:
5597                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5598                 break;
5599         default:
5600                 break;
5601         }
5602         return NOTIFY_OK;
5603 }
5604 #endif
5605
5606 static int raid5_alloc_percpu(struct r5conf *conf)
5607 {
5608         unsigned long cpu;
5609         int err = 0;
5610
5611         conf->percpu = alloc_percpu(struct raid5_percpu);
5612         if (!conf->percpu)
5613                 return -ENOMEM;
5614
5615 #ifdef CONFIG_HOTPLUG_CPU
5616         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5617         conf->cpu_notify.priority = 0;
5618         err = register_cpu_notifier(&conf->cpu_notify);
5619         if (err)
5620                 return err;
5621 #endif
5622
5623         get_online_cpus();
5624         for_each_present_cpu(cpu) {
5625                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5626                 if (err) {
5627                         pr_err("%s: failed memory allocation for cpu%ld\n",
5628                                __func__, cpu);
5629                         break;
5630                 }
5631         }
5632         put_online_cpus();
5633
5634         return err;
5635 }
5636
5637 static struct r5conf *setup_conf(struct mddev *mddev)
5638 {
5639         struct r5conf *conf;
5640         int raid_disk, memory, max_disks;
5641         struct md_rdev *rdev;
5642         struct disk_info *disk;
5643         char pers_name[6];
5644         int i;
5645         int group_cnt, worker_cnt_per_group;
5646         struct r5worker_group *new_group;
5647
5648         if (mddev->new_level != 5
5649             && mddev->new_level != 4
5650             && mddev->new_level != 6) {
5651                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5652                        mdname(mddev), mddev->new_level);
5653                 return ERR_PTR(-EIO);
5654         }
5655         if ((mddev->new_level == 5
5656              && !algorithm_valid_raid5(mddev->new_layout)) ||
5657             (mddev->new_level == 6
5658              && !algorithm_valid_raid6(mddev->new_layout))) {
5659                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5660                        mdname(mddev), mddev->new_layout);
5661                 return ERR_PTR(-EIO);
5662         }
5663         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5664                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5665                        mdname(mddev), mddev->raid_disks);
5666                 return ERR_PTR(-EINVAL);
5667         }
5668
5669         if (!mddev->new_chunk_sectors ||
5670             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5671             !is_power_of_2(mddev->new_chunk_sectors)) {
5672                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5673                        mdname(mddev), mddev->new_chunk_sectors << 9);
5674                 return ERR_PTR(-EINVAL);
5675         }
5676
5677         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5678         if (conf == NULL)
5679                 goto abort;
5680         /* Don't enable multi-threading by default*/
5681         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5682                                  &new_group)) {
5683                 conf->group_cnt = group_cnt;
5684                 conf->worker_cnt_per_group = worker_cnt_per_group;
5685                 conf->worker_groups = new_group;
5686         } else
5687                 goto abort;
5688         spin_lock_init(&conf->device_lock);
5689         seqcount_init(&conf->gen_lock);
5690         init_waitqueue_head(&conf->wait_for_stripe);
5691         init_waitqueue_head(&conf->wait_for_overlap);
5692         INIT_LIST_HEAD(&conf->handle_list);
5693         INIT_LIST_HEAD(&conf->hold_list);
5694         INIT_LIST_HEAD(&conf->delayed_list);
5695         INIT_LIST_HEAD(&conf->bitmap_list);
5696         init_llist_head(&conf->released_stripes);
5697         atomic_set(&conf->active_stripes, 0);
5698         atomic_set(&conf->preread_active_stripes, 0);
5699         atomic_set(&conf->active_aligned_reads, 0);
5700         conf->bypass_threshold = BYPASS_THRESHOLD;
5701         conf->recovery_disabled = mddev->recovery_disabled - 1;
5702
5703         conf->raid_disks = mddev->raid_disks;
5704         if (mddev->reshape_position == MaxSector)
5705                 conf->previous_raid_disks = mddev->raid_disks;
5706         else
5707                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5708         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5709         conf->scribble_len = scribble_len(max_disks);
5710
5711         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5712                               GFP_KERNEL);
5713         if (!conf->disks)
5714                 goto abort;
5715
5716         conf->mddev = mddev;
5717
5718         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5719                 goto abort;
5720
5721         /* We init hash_locks[0] separately to that it can be used
5722          * as the reference lock in the spin_lock_nest_lock() call
5723          * in lock_all_device_hash_locks_irq in order to convince
5724          * lockdep that we know what we are doing.
5725          */
5726         spin_lock_init(conf->hash_locks);
5727         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5728                 spin_lock_init(conf->hash_locks + i);
5729
5730         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5731                 INIT_LIST_HEAD(conf->inactive_list + i);
5732
5733         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5734                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5735
5736         conf->level = mddev->new_level;
5737         if (raid5_alloc_percpu(conf) != 0)
5738                 goto abort;
5739
5740         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5741
5742         rdev_for_each(rdev, mddev) {
5743                 raid_disk = rdev->raid_disk;
5744                 if (raid_disk >= max_disks
5745                     || raid_disk < 0)
5746                         continue;
5747                 disk = conf->disks + raid_disk;
5748
5749                 if (test_bit(Replacement, &rdev->flags)) {
5750                         if (disk->replacement)
5751                                 goto abort;
5752                         disk->replacement = rdev;
5753                 } else {
5754                         if (disk->rdev)
5755                                 goto abort;
5756                         disk->rdev = rdev;
5757                 }
5758
5759                 if (test_bit(In_sync, &rdev->flags)) {
5760                         char b[BDEVNAME_SIZE];
5761                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5762                                " disk %d\n",
5763                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5764                 } else if (rdev->saved_raid_disk != raid_disk)
5765                         /* Cannot rely on bitmap to complete recovery */
5766                         conf->fullsync = 1;
5767         }
5768
5769         conf->chunk_sectors = mddev->new_chunk_sectors;
5770         conf->level = mddev->new_level;
5771         if (conf->level == 6)
5772                 conf->max_degraded = 2;
5773         else
5774                 conf->max_degraded = 1;
5775         conf->algorithm = mddev->new_layout;
5776         conf->reshape_progress = mddev->reshape_position;
5777         if (conf->reshape_progress != MaxSector) {
5778                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5779                 conf->prev_algo = mddev->layout;
5780         }
5781
5782         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5783                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5784         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5785         if (grow_stripes(conf, NR_STRIPES)) {
5786                 printk(KERN_ERR
5787                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5788                        mdname(mddev), memory);
5789                 goto abort;
5790         } else
5791                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5792                        mdname(mddev), memory);
5793
5794         sprintf(pers_name, "raid%d", mddev->new_level);
5795         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5796         if (!conf->thread) {
5797                 printk(KERN_ERR
5798                        "md/raid:%s: couldn't allocate thread.\n",
5799                        mdname(mddev));
5800                 goto abort;
5801         }
5802
5803         return conf;
5804
5805  abort:
5806         if (conf) {
5807                 free_conf(conf);
5808                 return ERR_PTR(-EIO);
5809         } else
5810                 return ERR_PTR(-ENOMEM);
5811 }
5812
5813
5814 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5815 {
5816         switch (algo) {
5817         case ALGORITHM_PARITY_0:
5818                 if (raid_disk < max_degraded)
5819                         return 1;
5820                 break;
5821         case ALGORITHM_PARITY_N:
5822                 if (raid_disk >= raid_disks - max_degraded)
5823                         return 1;
5824                 break;
5825         case ALGORITHM_PARITY_0_6:
5826                 if (raid_disk == 0 || 
5827                     raid_disk == raid_disks - 1)
5828                         return 1;
5829                 break;
5830         case ALGORITHM_LEFT_ASYMMETRIC_6:
5831         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5832         case ALGORITHM_LEFT_SYMMETRIC_6:
5833         case ALGORITHM_RIGHT_SYMMETRIC_6:
5834                 if (raid_disk == raid_disks - 1)
5835                         return 1;
5836         }
5837         return 0;
5838 }
5839
5840 static int run(struct mddev *mddev)
5841 {
5842         struct r5conf *conf;
5843         int working_disks = 0;
5844         int dirty_parity_disks = 0;
5845         struct md_rdev *rdev;
5846         sector_t reshape_offset = 0;
5847         int i;
5848         long long min_offset_diff = 0;
5849         int first = 1;
5850
5851         if (mddev->recovery_cp != MaxSector)
5852                 printk(KERN_NOTICE "md/raid:%s: not clean"
5853                        " -- starting background reconstruction\n",
5854                        mdname(mddev));
5855
5856         rdev_for_each(rdev, mddev) {
5857                 long long diff;
5858                 if (rdev->raid_disk < 0)
5859                         continue;
5860                 diff = (rdev->new_data_offset - rdev->data_offset);
5861                 if (first) {
5862                         min_offset_diff = diff;
5863                         first = 0;
5864                 } else if (mddev->reshape_backwards &&
5865                          diff < min_offset_diff)
5866                         min_offset_diff = diff;
5867                 else if (!mddev->reshape_backwards &&
5868                          diff > min_offset_diff)
5869                         min_offset_diff = diff;
5870         }
5871
5872         if (mddev->reshape_position != MaxSector) {
5873                 /* Check that we can continue the reshape.
5874                  * Difficulties arise if the stripe we would write to
5875                  * next is at or after the stripe we would read from next.
5876                  * For a reshape that changes the number of devices, this
5877                  * is only possible for a very short time, and mdadm makes
5878                  * sure that time appears to have past before assembling
5879                  * the array.  So we fail if that time hasn't passed.
5880                  * For a reshape that keeps the number of devices the same
5881                  * mdadm must be monitoring the reshape can keeping the
5882                  * critical areas read-only and backed up.  It will start
5883                  * the array in read-only mode, so we check for that.
5884                  */
5885                 sector_t here_new, here_old;
5886                 int old_disks;
5887                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5888
5889                 if (mddev->new_level != mddev->level) {
5890                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5891                                "required - aborting.\n",
5892                                mdname(mddev));
5893                         return -EINVAL;
5894                 }
5895                 old_disks = mddev->raid_disks - mddev->delta_disks;
5896                 /* reshape_position must be on a new-stripe boundary, and one
5897                  * further up in new geometry must map after here in old
5898                  * geometry.
5899                  */
5900                 here_new = mddev->reshape_position;
5901                 if (sector_div(here_new, mddev->new_chunk_sectors *
5902                                (mddev->raid_disks - max_degraded))) {
5903                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5904                                "on a stripe boundary\n", mdname(mddev));
5905                         return -EINVAL;
5906                 }
5907                 reshape_offset = here_new * mddev->new_chunk_sectors;
5908                 /* here_new is the stripe we will write to */
5909                 here_old = mddev->reshape_position;
5910                 sector_div(here_old, mddev->chunk_sectors *
5911                            (old_disks-max_degraded));
5912                 /* here_old is the first stripe that we might need to read
5913                  * from */
5914                 if (mddev->delta_disks == 0) {
5915                         if ((here_new * mddev->new_chunk_sectors !=
5916                              here_old * mddev->chunk_sectors)) {
5917                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5918                                        " confused - aborting\n", mdname(mddev));
5919                                 return -EINVAL;
5920                         }
5921                         /* We cannot be sure it is safe to start an in-place
5922                          * reshape.  It is only safe if user-space is monitoring
5923                          * and taking constant backups.
5924                          * mdadm always starts a situation like this in
5925                          * readonly mode so it can take control before
5926                          * allowing any writes.  So just check for that.
5927                          */
5928                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5929                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5930                                 /* not really in-place - so OK */;
5931                         else if (mddev->ro == 0) {
5932                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5933                                        "must be started in read-only mode "
5934                                        "- aborting\n",
5935                                        mdname(mddev));
5936                                 return -EINVAL;
5937                         }
5938                 } else if (mddev->reshape_backwards
5939                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5940                        here_old * mddev->chunk_sectors)
5941                     : (here_new * mddev->new_chunk_sectors >=
5942                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5943                         /* Reading from the same stripe as writing to - bad */
5944                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5945                                "auto-recovery - aborting.\n",
5946                                mdname(mddev));
5947                         return -EINVAL;
5948                 }
5949                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5950                        mdname(mddev));
5951                 /* OK, we should be able to continue; */
5952         } else {
5953                 BUG_ON(mddev->level != mddev->new_level);
5954                 BUG_ON(mddev->layout != mddev->new_layout);
5955                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5956                 BUG_ON(mddev->delta_disks != 0);
5957         }
5958
5959         if (mddev->private == NULL)
5960                 conf = setup_conf(mddev);
5961         else
5962                 conf = mddev->private;
5963
5964         if (IS_ERR(conf))
5965                 return PTR_ERR(conf);
5966
5967         conf->min_offset_diff = min_offset_diff;
5968         mddev->thread = conf->thread;
5969         conf->thread = NULL;
5970         mddev->private = conf;
5971
5972         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5973              i++) {
5974                 rdev = conf->disks[i].rdev;
5975                 if (!rdev && conf->disks[i].replacement) {
5976                         /* The replacement is all we have yet */
5977                         rdev = conf->disks[i].replacement;
5978                         conf->disks[i].replacement = NULL;
5979                         clear_bit(Replacement, &rdev->flags);
5980                         conf->disks[i].rdev = rdev;
5981                 }
5982                 if (!rdev)
5983                         continue;
5984                 if (conf->disks[i].replacement &&
5985                     conf->reshape_progress != MaxSector) {
5986                         /* replacements and reshape simply do not mix. */
5987                         printk(KERN_ERR "md: cannot handle concurrent "
5988                                "replacement and reshape.\n");
5989                         goto abort;
5990                 }
5991                 if (test_bit(In_sync, &rdev->flags)) {
5992                         working_disks++;
5993                         continue;
5994                 }
5995                 /* This disc is not fully in-sync.  However if it
5996                  * just stored parity (beyond the recovery_offset),
5997                  * when we don't need to be concerned about the
5998                  * array being dirty.
5999                  * When reshape goes 'backwards', we never have
6000                  * partially completed devices, so we only need
6001                  * to worry about reshape going forwards.
6002                  */
6003                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6004                 if (mddev->major_version == 0 &&
6005                     mddev->minor_version > 90)
6006                         rdev->recovery_offset = reshape_offset;
6007
6008                 if (rdev->recovery_offset < reshape_offset) {
6009                         /* We need to check old and new layout */
6010                         if (!only_parity(rdev->raid_disk,
6011                                          conf->algorithm,
6012                                          conf->raid_disks,
6013                                          conf->max_degraded))
6014                                 continue;
6015                 }
6016                 if (!only_parity(rdev->raid_disk,
6017                                  conf->prev_algo,
6018                                  conf->previous_raid_disks,
6019                                  conf->max_degraded))
6020                         continue;
6021                 dirty_parity_disks++;
6022         }
6023
6024         /*
6025          * 0 for a fully functional array, 1 or 2 for a degraded array.
6026          */
6027         mddev->degraded = calc_degraded(conf);
6028
6029         if (has_failed(conf)) {
6030                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6031                         " (%d/%d failed)\n",
6032                         mdname(mddev), mddev->degraded, conf->raid_disks);
6033                 goto abort;
6034         }
6035
6036         /* device size must be a multiple of chunk size */
6037         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6038         mddev->resync_max_sectors = mddev->dev_sectors;
6039
6040         if (mddev->degraded > dirty_parity_disks &&
6041             mddev->recovery_cp != MaxSector) {
6042                 if (mddev->ok_start_degraded)
6043                         printk(KERN_WARNING
6044                                "md/raid:%s: starting dirty degraded array"
6045                                " - data corruption possible.\n",
6046                                mdname(mddev));
6047                 else {
6048                         printk(KERN_ERR
6049                                "md/raid:%s: cannot start dirty degraded array.\n",
6050                                mdname(mddev));
6051                         goto abort;
6052                 }
6053         }
6054
6055         if (mddev->degraded == 0)
6056                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6057                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6058                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6059                        mddev->new_layout);
6060         else
6061                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6062                        " out of %d devices, algorithm %d\n",
6063                        mdname(mddev), conf->level,
6064                        mddev->raid_disks - mddev->degraded,
6065                        mddev->raid_disks, mddev->new_layout);
6066
6067         print_raid5_conf(conf);
6068
6069         if (conf->reshape_progress != MaxSector) {
6070                 conf->reshape_safe = conf->reshape_progress;
6071                 atomic_set(&conf->reshape_stripes, 0);
6072                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6073                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6074                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6075                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6076                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6077                                                         "reshape");
6078         }
6079
6080
6081         /* Ok, everything is just fine now */
6082         if (mddev->to_remove == &raid5_attrs_group)
6083                 mddev->to_remove = NULL;
6084         else if (mddev->kobj.sd &&
6085             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6086                 printk(KERN_WARNING
6087                        "raid5: failed to create sysfs attributes for %s\n",
6088                        mdname(mddev));
6089         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6090
6091         if (mddev->queue) {
6092                 int chunk_size;
6093                 bool discard_supported = true;
6094                 /* read-ahead size must cover two whole stripes, which
6095                  * is 2 * (datadisks) * chunksize where 'n' is the
6096                  * number of raid devices
6097                  */
6098                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6099                 int stripe = data_disks *
6100                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6101                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6102                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6103
6104                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6105
6106                 mddev->queue->backing_dev_info.congested_data = mddev;
6107                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6108
6109                 chunk_size = mddev->chunk_sectors << 9;
6110                 blk_queue_io_min(mddev->queue, chunk_size);
6111                 blk_queue_io_opt(mddev->queue, chunk_size *
6112                                  (conf->raid_disks - conf->max_degraded));
6113                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6114                 /*
6115                  * We can only discard a whole stripe. It doesn't make sense to
6116                  * discard data disk but write parity disk
6117                  */
6118                 stripe = stripe * PAGE_SIZE;
6119                 /* Round up to power of 2, as discard handling
6120                  * currently assumes that */
6121                 while ((stripe-1) & stripe)
6122                         stripe = (stripe | (stripe-1)) + 1;
6123                 mddev->queue->limits.discard_alignment = stripe;
6124                 mddev->queue->limits.discard_granularity = stripe;
6125                 /*
6126                  * unaligned part of discard request will be ignored, so can't
6127                  * guarantee discard_zerors_data
6128                  */
6129                 mddev->queue->limits.discard_zeroes_data = 0;
6130
6131                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6132
6133                 rdev_for_each(rdev, mddev) {
6134                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6135                                           rdev->data_offset << 9);
6136                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6137                                           rdev->new_data_offset << 9);
6138                         /*
6139                          * discard_zeroes_data is required, otherwise data
6140                          * could be lost. Consider a scenario: discard a stripe
6141                          * (the stripe could be inconsistent if
6142                          * discard_zeroes_data is 0); write one disk of the
6143                          * stripe (the stripe could be inconsistent again
6144                          * depending on which disks are used to calculate
6145                          * parity); the disk is broken; The stripe data of this
6146                          * disk is lost.
6147                          */
6148                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6149                             !bdev_get_queue(rdev->bdev)->
6150                                                 limits.discard_zeroes_data)
6151                                 discard_supported = false;
6152                 }
6153
6154                 if (discard_supported &&
6155                    mddev->queue->limits.max_discard_sectors >= stripe &&
6156                    mddev->queue->limits.discard_granularity >= stripe)
6157                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6158                                                 mddev->queue);
6159                 else
6160                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6161                                                 mddev->queue);
6162         }
6163
6164         return 0;
6165 abort:
6166         md_unregister_thread(&mddev->thread);
6167         print_raid5_conf(conf);
6168         free_conf(conf);
6169         mddev->private = NULL;
6170         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6171         return -EIO;
6172 }
6173
6174 static int stop(struct mddev *mddev)
6175 {
6176         struct r5conf *conf = mddev->private;
6177
6178         md_unregister_thread(&mddev->thread);
6179         if (mddev->queue)
6180                 mddev->queue->backing_dev_info.congested_fn = NULL;
6181         free_conf(conf);
6182         mddev->private = NULL;
6183         mddev->to_remove = &raid5_attrs_group;
6184         return 0;
6185 }
6186
6187 static void status(struct seq_file *seq, struct mddev *mddev)
6188 {
6189         struct r5conf *conf = mddev->private;
6190         int i;
6191
6192         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6193                 mddev->chunk_sectors / 2, mddev->layout);
6194         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6195         for (i = 0; i < conf->raid_disks; i++)
6196                 seq_printf (seq, "%s",
6197                                conf->disks[i].rdev &&
6198                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6199         seq_printf (seq, "]");
6200 }
6201
6202 static void print_raid5_conf (struct r5conf *conf)
6203 {
6204         int i;
6205         struct disk_info *tmp;
6206
6207         printk(KERN_DEBUG "RAID conf printout:\n");
6208         if (!conf) {
6209                 printk("(conf==NULL)\n");
6210                 return;
6211         }
6212         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6213                conf->raid_disks,
6214                conf->raid_disks - conf->mddev->degraded);
6215
6216         for (i = 0; i < conf->raid_disks; i++) {
6217                 char b[BDEVNAME_SIZE];
6218                 tmp = conf->disks + i;
6219                 if (tmp->rdev)
6220                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6221                                i, !test_bit(Faulty, &tmp->rdev->flags),
6222                                bdevname(tmp->rdev->bdev, b));
6223         }
6224 }
6225
6226 static int raid5_spare_active(struct mddev *mddev)
6227 {
6228         int i;
6229         struct r5conf *conf = mddev->private;
6230         struct disk_info *tmp;
6231         int count = 0;
6232         unsigned long flags;
6233
6234         for (i = 0; i < conf->raid_disks; i++) {
6235                 tmp = conf->disks + i;
6236                 if (tmp->replacement
6237                     && tmp->replacement->recovery_offset == MaxSector
6238                     && !test_bit(Faulty, &tmp->replacement->flags)
6239                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6240                         /* Replacement has just become active. */
6241                         if (!tmp->rdev
6242                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6243                                 count++;
6244                         if (tmp->rdev) {
6245                                 /* Replaced device not technically faulty,
6246                                  * but we need to be sure it gets removed
6247                                  * and never re-added.
6248                                  */
6249                                 set_bit(Faulty, &tmp->rdev->flags);
6250                                 sysfs_notify_dirent_safe(
6251                                         tmp->rdev->sysfs_state);
6252                         }
6253                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6254                 } else if (tmp->rdev
6255                     && tmp->rdev->recovery_offset == MaxSector
6256                     && !test_bit(Faulty, &tmp->rdev->flags)
6257                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6258                         count++;
6259                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6260                 }
6261         }
6262         spin_lock_irqsave(&conf->device_lock, flags);
6263         mddev->degraded = calc_degraded(conf);
6264         spin_unlock_irqrestore(&conf->device_lock, flags);
6265         print_raid5_conf(conf);
6266         return count;
6267 }
6268
6269 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6270 {
6271         struct r5conf *conf = mddev->private;
6272         int err = 0;
6273         int number = rdev->raid_disk;
6274         struct md_rdev **rdevp;
6275         struct disk_info *p = conf->disks + number;
6276
6277         print_raid5_conf(conf);
6278         if (rdev == p->rdev)
6279                 rdevp = &p->rdev;
6280         else if (rdev == p->replacement)
6281                 rdevp = &p->replacement;
6282         else
6283                 return 0;
6284
6285         if (number >= conf->raid_disks &&
6286             conf->reshape_progress == MaxSector)
6287                 clear_bit(In_sync, &rdev->flags);
6288
6289         if (test_bit(In_sync, &rdev->flags) ||
6290             atomic_read(&rdev->nr_pending)) {
6291                 err = -EBUSY;
6292                 goto abort;
6293         }
6294         /* Only remove non-faulty devices if recovery
6295          * isn't possible.
6296          */
6297         if (!test_bit(Faulty, &rdev->flags) &&
6298             mddev->recovery_disabled != conf->recovery_disabled &&
6299             !has_failed(conf) &&
6300             (!p->replacement || p->replacement == rdev) &&
6301             number < conf->raid_disks) {
6302                 err = -EBUSY;
6303                 goto abort;
6304         }
6305         *rdevp = NULL;
6306         synchronize_rcu();
6307         if (atomic_read(&rdev->nr_pending)) {
6308                 /* lost the race, try later */
6309                 err = -EBUSY;
6310                 *rdevp = rdev;
6311         } else if (p->replacement) {
6312                 /* We must have just cleared 'rdev' */
6313                 p->rdev = p->replacement;
6314                 clear_bit(Replacement, &p->replacement->flags);
6315                 smp_mb(); /* Make sure other CPUs may see both as identical
6316                            * but will never see neither - if they are careful
6317                            */
6318                 p->replacement = NULL;
6319                 clear_bit(WantReplacement, &rdev->flags);
6320         } else
6321                 /* We might have just removed the Replacement as faulty-
6322                  * clear the bit just in case
6323                  */
6324                 clear_bit(WantReplacement, &rdev->flags);
6325 abort:
6326
6327         print_raid5_conf(conf);
6328         return err;
6329 }
6330
6331 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6332 {
6333         struct r5conf *conf = mddev->private;
6334         int err = -EEXIST;
6335         int disk;
6336         struct disk_info *p;
6337         int first = 0;
6338         int last = conf->raid_disks - 1;
6339
6340         if (mddev->recovery_disabled == conf->recovery_disabled)
6341                 return -EBUSY;
6342
6343         if (rdev->saved_raid_disk < 0 && has_failed(conf))
6344                 /* no point adding a device */
6345                 return -EINVAL;
6346
6347         if (rdev->raid_disk >= 0)
6348                 first = last = rdev->raid_disk;
6349
6350         /*
6351          * find the disk ... but prefer rdev->saved_raid_disk
6352          * if possible.
6353          */
6354         if (rdev->saved_raid_disk >= 0 &&
6355             rdev->saved_raid_disk >= first &&
6356             conf->disks[rdev->saved_raid_disk].rdev == NULL)
6357                 first = rdev->saved_raid_disk;
6358
6359         for (disk = first; disk <= last; disk++) {
6360                 p = conf->disks + disk;
6361                 if (p->rdev == NULL) {
6362                         clear_bit(In_sync, &rdev->flags);
6363                         rdev->raid_disk = disk;
6364                         err = 0;
6365                         if (rdev->saved_raid_disk != disk)
6366                                 conf->fullsync = 1;
6367                         rcu_assign_pointer(p->rdev, rdev);
6368                         goto out;
6369                 }
6370         }
6371         for (disk = first; disk <= last; disk++) {
6372                 p = conf->disks + disk;
6373                 if (test_bit(WantReplacement, &p->rdev->flags) &&
6374                     p->replacement == NULL) {
6375                         clear_bit(In_sync, &rdev->flags);
6376                         set_bit(Replacement, &rdev->flags);
6377                         rdev->raid_disk = disk;
6378                         err = 0;
6379                         conf->fullsync = 1;
6380                         rcu_assign_pointer(p->replacement, rdev);
6381                         break;
6382                 }
6383         }
6384 out:
6385         print_raid5_conf(conf);
6386         return err;
6387 }
6388
6389 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6390 {
6391         /* no resync is happening, and there is enough space
6392          * on all devices, so we can resize.
6393          * We need to make sure resync covers any new space.
6394          * If the array is shrinking we should possibly wait until
6395          * any io in the removed space completes, but it hardly seems
6396          * worth it.
6397          */
6398         sector_t newsize;
6399         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6400         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6401         if (mddev->external_size &&
6402             mddev->array_sectors > newsize)
6403                 return -EINVAL;
6404         if (mddev->bitmap) {
6405                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6406                 if (ret)
6407                         return ret;
6408         }
6409         md_set_array_sectors(mddev, newsize);
6410         set_capacity(mddev->gendisk, mddev->array_sectors);
6411         revalidate_disk(mddev->gendisk);
6412         if (sectors > mddev->dev_sectors &&
6413             mddev->recovery_cp > mddev->dev_sectors) {
6414                 mddev->recovery_cp = mddev->dev_sectors;
6415                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6416         }
6417         mddev->dev_sectors = sectors;
6418         mddev->resync_max_sectors = sectors;
6419         return 0;
6420 }
6421
6422 static int check_stripe_cache(struct mddev *mddev)
6423 {
6424         /* Can only proceed if there are plenty of stripe_heads.
6425          * We need a minimum of one full stripe,, and for sensible progress
6426          * it is best to have about 4 times that.
6427          * If we require 4 times, then the default 256 4K stripe_heads will
6428          * allow for chunk sizes up to 256K, which is probably OK.
6429          * If the chunk size is greater, user-space should request more
6430          * stripe_heads first.
6431          */
6432         struct r5conf *conf = mddev->private;
6433         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6434             > conf->max_nr_stripes ||
6435             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6436             > conf->max_nr_stripes) {
6437                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
6438                        mdname(mddev),
6439                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6440                         / STRIPE_SIZE)*4);
6441                 return 0;
6442         }
6443         return 1;
6444 }
6445
6446 static int check_reshape(struct mddev *mddev)
6447 {
6448         struct r5conf *conf = mddev->private;
6449
6450         if (mddev->delta_disks == 0 &&
6451             mddev->new_layout == mddev->layout &&
6452             mddev->new_chunk_sectors == mddev->chunk_sectors)
6453                 return 0; /* nothing to do */
6454         if (has_failed(conf))
6455                 return -EINVAL;
6456         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6457                 /* We might be able to shrink, but the devices must
6458                  * be made bigger first.
6459                  * For raid6, 4 is the minimum size.
6460                  * Otherwise 2 is the minimum
6461                  */
6462                 int min = 2;
6463                 if (mddev->level == 6)
6464                         min = 4;
6465                 if (mddev->raid_disks + mddev->delta_disks < min)
6466                         return -EINVAL;
6467         }
6468
6469         if (!check_stripe_cache(mddev))
6470                 return -ENOSPC;
6471
6472         return resize_stripes(conf, (conf->previous_raid_disks
6473                                      + mddev->delta_disks));
6474 }
6475
6476 static int raid5_start_reshape(struct mddev *mddev)
6477 {
6478         struct r5conf *conf = mddev->private;
6479         struct md_rdev *rdev;
6480         int spares = 0;
6481         unsigned long flags;
6482
6483         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6484                 return -EBUSY;
6485
6486         if (!check_stripe_cache(mddev))
6487                 return -ENOSPC;
6488
6489         if (has_failed(conf))
6490                 return -EINVAL;
6491
6492         rdev_for_each(rdev, mddev) {
6493                 if (!test_bit(In_sync, &rdev->flags)
6494                     && !test_bit(Faulty, &rdev->flags))
6495                         spares++;
6496         }
6497
6498         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6499                 /* Not enough devices even to make a degraded array
6500                  * of that size
6501                  */
6502                 return -EINVAL;
6503
6504         /* Refuse to reduce size of the array.  Any reductions in
6505          * array size must be through explicit setting of array_size
6506          * attribute.
6507          */
6508         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6509             < mddev->array_sectors) {
6510                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6511                        "before number of disks\n", mdname(mddev));
6512                 return -EINVAL;
6513         }
6514
6515         atomic_set(&conf->reshape_stripes, 0);
6516         spin_lock_irq(&conf->device_lock);
6517         write_seqcount_begin(&conf->gen_lock);
6518         conf->previous_raid_disks = conf->raid_disks;
6519         conf->raid_disks += mddev->delta_disks;
6520         conf->prev_chunk_sectors = conf->chunk_sectors;
6521         conf->chunk_sectors = mddev->new_chunk_sectors;
6522         conf->prev_algo = conf->algorithm;
6523         conf->algorithm = mddev->new_layout;
6524         conf->generation++;
6525         /* Code that selects data_offset needs to see the generation update
6526          * if reshape_progress has been set - so a memory barrier needed.
6527          */
6528         smp_mb();
6529         if (mddev->reshape_backwards)
6530                 conf->reshape_progress = raid5_size(mddev, 0, 0);
6531         else
6532                 conf->reshape_progress = 0;
6533         conf->reshape_safe = conf->reshape_progress;
6534         write_seqcount_end(&conf->gen_lock);
6535         spin_unlock_irq(&conf->device_lock);
6536
6537         /* Now make sure any requests that proceeded on the assumption
6538          * the reshape wasn't running - like Discard or Read - have
6539          * completed.
6540          */
6541         mddev_suspend(mddev);
6542         mddev_resume(mddev);
6543
6544         /* Add some new drives, as many as will fit.
6545          * We know there are enough to make the newly sized array work.
6546          * Don't add devices if we are reducing the number of
6547          * devices in the array.  This is because it is not possible
6548          * to correctly record the "partially reconstructed" state of
6549          * such devices during the reshape and confusion could result.
6550          */
6551         if (mddev->delta_disks >= 0) {
6552                 rdev_for_each(rdev, mddev)
6553                         if (rdev->raid_disk < 0 &&
6554                             !test_bit(Faulty, &rdev->flags)) {
6555                                 if (raid5_add_disk(mddev, rdev) == 0) {
6556                                         if (rdev->raid_disk
6557                                             >= conf->previous_raid_disks)
6558                                                 set_bit(In_sync, &rdev->flags);
6559                                         else
6560                                                 rdev->recovery_offset = 0;
6561
6562                                         if (sysfs_link_rdev(mddev, rdev))
6563                                                 /* Failure here is OK */;
6564                                 }
6565                         } else if (rdev->raid_disk >= conf->previous_raid_disks
6566                                    && !test_bit(Faulty, &rdev->flags)) {
6567                                 /* This is a spare that was manually added */
6568                                 set_bit(In_sync, &rdev->flags);
6569                         }
6570
6571                 /* When a reshape changes the number of devices,
6572                  * ->degraded is measured against the larger of the
6573                  * pre and post number of devices.
6574                  */
6575                 spin_lock_irqsave(&conf->device_lock, flags);
6576                 mddev->degraded = calc_degraded(conf);
6577                 spin_unlock_irqrestore(&conf->device_lock, flags);
6578         }
6579         mddev->raid_disks = conf->raid_disks;
6580         mddev->reshape_position = conf->reshape_progress;
6581         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6582
6583         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6584         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6585         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6586         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6587         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6588                                                 "reshape");
6589         if (!mddev->sync_thread) {
6590                 mddev->recovery = 0;
6591                 spin_lock_irq(&conf->device_lock);
6592                 write_seqcount_begin(&conf->gen_lock);
6593                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6594                 mddev->new_chunk_sectors =
6595                         conf->chunk_sectors = conf->prev_chunk_sectors;
6596                 mddev->new_layout = conf->algorithm = conf->prev_algo;
6597                 rdev_for_each(rdev, mddev)
6598                         rdev->new_data_offset = rdev->data_offset;
6599                 smp_wmb();
6600                 conf->generation --;
6601                 conf->reshape_progress = MaxSector;
6602                 mddev->reshape_position = MaxSector;
6603                 write_seqcount_end(&conf->gen_lock);
6604                 spin_unlock_irq(&conf->device_lock);
6605                 return -EAGAIN;
6606         }
6607         conf->reshape_checkpoint = jiffies;
6608         md_wakeup_thread(mddev->sync_thread);
6609         md_new_event(mddev);
6610         return 0;
6611 }
6612
6613 /* This is called from the reshape thread and should make any
6614  * changes needed in 'conf'
6615  */
6616 static void end_reshape(struct r5conf *conf)
6617 {
6618
6619         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6620                 struct md_rdev *rdev;
6621
6622                 spin_lock_irq(&conf->device_lock);
6623                 conf->previous_raid_disks = conf->raid_disks;
6624                 rdev_for_each(rdev, conf->mddev)
6625                         rdev->data_offset = rdev->new_data_offset;
6626                 smp_wmb();
6627                 conf->reshape_progress = MaxSector;
6628                 spin_unlock_irq(&conf->device_lock);
6629                 wake_up(&conf->wait_for_overlap);
6630
6631                 /* read-ahead size must cover two whole stripes, which is
6632                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6633                  */
6634                 if (conf->mddev->queue) {
6635                         int data_disks = conf->raid_disks - conf->max_degraded;
6636                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6637                                                    / PAGE_SIZE);
6638                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6639                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6640                 }
6641         }
6642 }
6643
6644 /* This is called from the raid5d thread with mddev_lock held.
6645  * It makes config changes to the device.
6646  */
6647 static void raid5_finish_reshape(struct mddev *mddev)
6648 {
6649         struct r5conf *conf = mddev->private;
6650
6651         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6652
6653                 if (mddev->delta_disks > 0) {
6654                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6655                         set_capacity(mddev->gendisk, mddev->array_sectors);
6656                         revalidate_disk(mddev->gendisk);
6657                 } else {
6658                         int d;
6659                         spin_lock_irq(&conf->device_lock);
6660                         mddev->degraded = calc_degraded(conf);
6661                         spin_unlock_irq(&conf->device_lock);
6662                         for (d = conf->raid_disks ;
6663                              d < conf->raid_disks - mddev->delta_disks;
6664                              d++) {
6665                                 struct md_rdev *rdev = conf->disks[d].rdev;
6666                                 if (rdev)
6667                                         clear_bit(In_sync, &rdev->flags);
6668                                 rdev = conf->disks[d].replacement;
6669                                 if (rdev)
6670                                         clear_bit(In_sync, &rdev->flags);
6671                         }
6672                 }
6673                 mddev->layout = conf->algorithm;
6674                 mddev->chunk_sectors = conf->chunk_sectors;
6675                 mddev->reshape_position = MaxSector;
6676                 mddev->delta_disks = 0;
6677                 mddev->reshape_backwards = 0;
6678         }
6679 }
6680
6681 static void raid5_quiesce(struct mddev *mddev, int state)
6682 {
6683         struct r5conf *conf = mddev->private;
6684
6685         switch(state) {
6686         case 2: /* resume for a suspend */
6687                 wake_up(&conf->wait_for_overlap);
6688                 break;
6689
6690         case 1: /* stop all writes */
6691                 lock_all_device_hash_locks_irq(conf);
6692                 /* '2' tells resync/reshape to pause so that all
6693                  * active stripes can drain
6694                  */
6695                 conf->quiesce = 2;
6696                 wait_event_cmd(conf->wait_for_stripe,
6697                                     atomic_read(&conf->active_stripes) == 0 &&
6698                                     atomic_read(&conf->active_aligned_reads) == 0,
6699                                     unlock_all_device_hash_locks_irq(conf),
6700                                     lock_all_device_hash_locks_irq(conf));
6701                 conf->quiesce = 1;
6702                 unlock_all_device_hash_locks_irq(conf);
6703                 /* allow reshape to continue */
6704                 wake_up(&conf->wait_for_overlap);
6705                 break;
6706
6707         case 0: /* re-enable writes */
6708                 lock_all_device_hash_locks_irq(conf);
6709                 conf->quiesce = 0;
6710                 wake_up(&conf->wait_for_stripe);
6711                 wake_up(&conf->wait_for_overlap);
6712                 unlock_all_device_hash_locks_irq(conf);
6713                 break;
6714         }
6715 }
6716
6717
6718 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6719 {
6720         struct r0conf *raid0_conf = mddev->private;
6721         sector_t sectors;
6722
6723         /* for raid0 takeover only one zone is supported */
6724         if (raid0_conf->nr_strip_zones > 1) {
6725                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6726                        mdname(mddev));
6727                 return ERR_PTR(-EINVAL);
6728         }
6729
6730         sectors = raid0_conf->strip_zone[0].zone_end;
6731         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6732         mddev->dev_sectors = sectors;
6733         mddev->new_level = level;
6734         mddev->new_layout = ALGORITHM_PARITY_N;
6735         mddev->new_chunk_sectors = mddev->chunk_sectors;
6736         mddev->raid_disks += 1;
6737         mddev->delta_disks = 1;
6738         /* make sure it will be not marked as dirty */
6739         mddev->recovery_cp = MaxSector;
6740
6741         return setup_conf(mddev);
6742 }
6743
6744
6745 static void *raid5_takeover_raid1(struct mddev *mddev)
6746 {
6747         int chunksect;
6748
6749         if (mddev->raid_disks != 2 ||
6750             mddev->degraded > 1)
6751                 return ERR_PTR(-EINVAL);
6752
6753         /* Should check if there are write-behind devices? */
6754
6755         chunksect = 64*2; /* 64K by default */
6756
6757         /* The array must be an exact multiple of chunksize */
6758         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6759                 chunksect >>= 1;
6760
6761         if ((chunksect<<9) < STRIPE_SIZE)
6762                 /* array size does not allow a suitable chunk size */
6763                 return ERR_PTR(-EINVAL);
6764
6765         mddev->new_level = 5;
6766         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6767         mddev->new_chunk_sectors = chunksect;
6768
6769         return setup_conf(mddev);
6770 }
6771
6772 static void *raid5_takeover_raid6(struct mddev *mddev)
6773 {
6774         int new_layout;
6775
6776         switch (mddev->layout) {
6777         case ALGORITHM_LEFT_ASYMMETRIC_6:
6778                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6779                 break;
6780         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6781                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6782                 break;
6783         case ALGORITHM_LEFT_SYMMETRIC_6:
6784                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6785                 break;
6786         case ALGORITHM_RIGHT_SYMMETRIC_6:
6787                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6788                 break;
6789         case ALGORITHM_PARITY_0_6:
6790                 new_layout = ALGORITHM_PARITY_0;
6791                 break;
6792         case ALGORITHM_PARITY_N:
6793                 new_layout = ALGORITHM_PARITY_N;
6794                 break;
6795         default:
6796                 return ERR_PTR(-EINVAL);
6797         }
6798         mddev->new_level = 5;
6799         mddev->new_layout = new_layout;
6800         mddev->delta_disks = -1;
6801         mddev->raid_disks -= 1;
6802         return setup_conf(mddev);
6803 }
6804
6805
6806 static int raid5_check_reshape(struct mddev *mddev)
6807 {
6808         /* For a 2-drive array, the layout and chunk size can be changed
6809          * immediately as not restriping is needed.
6810          * For larger arrays we record the new value - after validation
6811          * to be used by a reshape pass.
6812          */
6813         struct r5conf *conf = mddev->private;
6814         int new_chunk = mddev->new_chunk_sectors;
6815
6816         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6817                 return -EINVAL;
6818         if (new_chunk > 0) {
6819                 if (!is_power_of_2(new_chunk))
6820                         return -EINVAL;
6821                 if (new_chunk < (PAGE_SIZE>>9))
6822                         return -EINVAL;
6823                 if (mddev->array_sectors & (new_chunk-1))
6824                         /* not factor of array size */
6825                         return -EINVAL;
6826         }
6827
6828         /* They look valid */
6829
6830         if (mddev->raid_disks == 2) {
6831                 /* can make the change immediately */
6832                 if (mddev->new_layout >= 0) {
6833                         conf->algorithm = mddev->new_layout;
6834                         mddev->layout = mddev->new_layout;
6835                 }
6836                 if (new_chunk > 0) {
6837                         conf->chunk_sectors = new_chunk ;
6838                         mddev->chunk_sectors = new_chunk;
6839                 }
6840                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6841                 md_wakeup_thread(mddev->thread);
6842         }
6843         return check_reshape(mddev);
6844 }
6845
6846 static int raid6_check_reshape(struct mddev *mddev)
6847 {
6848         int new_chunk = mddev->new_chunk_sectors;
6849
6850         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6851                 return -EINVAL;
6852         if (new_chunk > 0) {
6853                 if (!is_power_of_2(new_chunk))
6854                         return -EINVAL;
6855                 if (new_chunk < (PAGE_SIZE >> 9))
6856                         return -EINVAL;
6857                 if (mddev->array_sectors & (new_chunk-1))
6858                         /* not factor of array size */
6859                         return -EINVAL;
6860         }
6861
6862         /* They look valid */
6863         return check_reshape(mddev);
6864 }
6865
6866 static void *raid5_takeover(struct mddev *mddev)
6867 {
6868         /* raid5 can take over:
6869          *  raid0 - if there is only one strip zone - make it a raid4 layout
6870          *  raid1 - if there are two drives.  We need to know the chunk size
6871          *  raid4 - trivial - just use a raid4 layout.
6872          *  raid6 - Providing it is a *_6 layout
6873          */
6874         if (mddev->level == 0)
6875                 return raid45_takeover_raid0(mddev, 5);
6876         if (mddev->level == 1)
6877                 return raid5_takeover_raid1(mddev);
6878         if (mddev->level == 4) {
6879                 mddev->new_layout = ALGORITHM_PARITY_N;
6880                 mddev->new_level = 5;
6881                 return setup_conf(mddev);
6882         }
6883         if (mddev->level == 6)
6884                 return raid5_takeover_raid6(mddev);
6885
6886         return ERR_PTR(-EINVAL);
6887 }
6888
6889 static void *raid4_takeover(struct mddev *mddev)
6890 {
6891         /* raid4 can take over:
6892          *  raid0 - if there is only one strip zone
6893          *  raid5 - if layout is right
6894          */
6895         if (mddev->level == 0)
6896                 return raid45_takeover_raid0(mddev, 4);
6897         if (mddev->level == 5 &&
6898             mddev->layout == ALGORITHM_PARITY_N) {
6899                 mddev->new_layout = 0;
6900                 mddev->new_level = 4;
6901                 return setup_conf(mddev);
6902         }
6903         return ERR_PTR(-EINVAL);
6904 }
6905
6906 static struct md_personality raid5_personality;
6907
6908 static void *raid6_takeover(struct mddev *mddev)
6909 {
6910         /* Currently can only take over a raid5.  We map the
6911          * personality to an equivalent raid6 personality
6912          * with the Q block at the end.
6913          */
6914         int new_layout;
6915
6916         if (mddev->pers != &raid5_personality)
6917                 return ERR_PTR(-EINVAL);
6918         if (mddev->degraded > 1)
6919                 return ERR_PTR(-EINVAL);
6920         if (mddev->raid_disks > 253)
6921                 return ERR_PTR(-EINVAL);
6922         if (mddev->raid_disks < 3)
6923                 return ERR_PTR(-EINVAL);
6924
6925         switch (mddev->layout) {
6926         case ALGORITHM_LEFT_ASYMMETRIC:
6927                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6928                 break;
6929         case ALGORITHM_RIGHT_ASYMMETRIC:
6930                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6931                 break;
6932         case ALGORITHM_LEFT_SYMMETRIC:
6933                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6934                 break;
6935         case ALGORITHM_RIGHT_SYMMETRIC:
6936                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6937                 break;
6938         case ALGORITHM_PARITY_0:
6939                 new_layout = ALGORITHM_PARITY_0_6;
6940                 break;
6941         case ALGORITHM_PARITY_N:
6942                 new_layout = ALGORITHM_PARITY_N;
6943                 break;
6944         default:
6945                 return ERR_PTR(-EINVAL);
6946         }
6947         mddev->new_level = 6;
6948         mddev->new_layout = new_layout;
6949         mddev->delta_disks = 1;
6950         mddev->raid_disks += 1;
6951         return setup_conf(mddev);
6952 }
6953
6954
6955 static struct md_personality raid6_personality =
6956 {
6957         .name           = "raid6",
6958         .level          = 6,
6959         .owner          = THIS_MODULE,
6960         .make_request   = make_request,
6961         .run            = run,
6962         .stop           = stop,
6963         .status         = status,
6964         .error_handler  = error,
6965         .hot_add_disk   = raid5_add_disk,
6966         .hot_remove_disk= raid5_remove_disk,
6967         .spare_active   = raid5_spare_active,
6968         .sync_request   = sync_request,
6969         .resize         = raid5_resize,
6970         .size           = raid5_size,
6971         .check_reshape  = raid6_check_reshape,
6972         .start_reshape  = raid5_start_reshape,
6973         .finish_reshape = raid5_finish_reshape,
6974         .quiesce        = raid5_quiesce,
6975         .takeover       = raid6_takeover,
6976 };
6977 static struct md_personality raid5_personality =
6978 {
6979         .name           = "raid5",
6980         .level          = 5,
6981         .owner          = THIS_MODULE,
6982         .make_request   = make_request,
6983         .run            = run,
6984         .stop           = stop,
6985         .status         = status,
6986         .error_handler  = error,
6987         .hot_add_disk   = raid5_add_disk,
6988         .hot_remove_disk= raid5_remove_disk,
6989         .spare_active   = raid5_spare_active,
6990         .sync_request   = sync_request,
6991         .resize         = raid5_resize,
6992         .size           = raid5_size,
6993         .check_reshape  = raid5_check_reshape,
6994         .start_reshape  = raid5_start_reshape,
6995         .finish_reshape = raid5_finish_reshape,
6996         .quiesce        = raid5_quiesce,
6997         .takeover       = raid5_takeover,
6998 };
6999
7000 static struct md_personality raid4_personality =
7001 {
7002         .name           = "raid4",
7003         .level          = 4,
7004         .owner          = THIS_MODULE,
7005         .make_request   = make_request,
7006         .run            = run,
7007         .stop           = stop,
7008         .status         = status,
7009         .error_handler  = error,
7010         .hot_add_disk   = raid5_add_disk,
7011         .hot_remove_disk= raid5_remove_disk,
7012         .spare_active   = raid5_spare_active,
7013         .sync_request   = sync_request,
7014         .resize         = raid5_resize,
7015         .size           = raid5_size,
7016         .check_reshape  = raid5_check_reshape,
7017         .start_reshape  = raid5_start_reshape,
7018         .finish_reshape = raid5_finish_reshape,
7019         .quiesce        = raid5_quiesce,
7020         .takeover       = raid4_takeover,
7021 };
7022
7023 static int __init raid5_init(void)
7024 {
7025         raid5_wq = alloc_workqueue("raid5wq",
7026                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7027         if (!raid5_wq)
7028                 return -ENOMEM;
7029         register_md_personality(&raid6_personality);
7030         register_md_personality(&raid5_personality);
7031         register_md_personality(&raid4_personality);
7032         return 0;
7033 }
7034
7035 static void raid5_exit(void)
7036 {
7037         unregister_md_personality(&raid6_personality);
7038         unregister_md_personality(&raid5_personality);
7039         unregister_md_personality(&raid4_personality);
7040         destroy_workqueue(raid5_wq);
7041 }
7042
7043 module_init(raid5_init);
7044 module_exit(raid5_exit);
7045 MODULE_LICENSE("GPL");
7046 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7047 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7048 MODULE_ALIAS("md-raid5");
7049 MODULE_ALIAS("md-raid4");
7050 MODULE_ALIAS("md-level-5");
7051 MODULE_ALIAS("md-level-4");
7052 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7053 MODULE_ALIAS("md-raid6");
7054 MODULE_ALIAS("md-level-6");
7055
7056 /* This used to be two separate modules, they were: */
7057 MODULE_ALIAS("raid5");
7058 MODULE_ALIAS("raid6");