ib_srpt: Use correct ib_sg_dma primitives
[linux.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
1 /*
2  * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3  * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  */
34
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/err.h>
39 #include <linux/ctype.h>
40 #include <linux/kthread.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/atomic.h>
44 #include <scsi/scsi_tcq.h>
45 #include <target/configfs_macros.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_fabric_configfs.h>
48 #include <target/target_core_fabric.h>
49 #include <target/target_core_configfs.h>
50 #include "ib_srpt.h"
51
52 /* Name of this kernel module. */
53 #define DRV_NAME                "ib_srpt"
54 #define DRV_VERSION             "2.0.0"
55 #define DRV_RELDATE             "2011-02-14"
56
57 #define SRPT_ID_STRING  "Linux SRP target"
58
59 #undef pr_fmt
60 #define pr_fmt(fmt) DRV_NAME " " fmt
61
62 MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63 MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64                    "v" DRV_VERSION " (" DRV_RELDATE ")");
65 MODULE_LICENSE("Dual BSD/GPL");
66
67 /*
68  * Global Variables
69  */
70
71 static u64 srpt_service_guid;
72 static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
73 static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
74
75 static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76 module_param(srp_max_req_size, int, 0444);
77 MODULE_PARM_DESC(srp_max_req_size,
78                  "Maximum size of SRP request messages in bytes.");
79
80 static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81 module_param(srpt_srq_size, int, 0444);
82 MODULE_PARM_DESC(srpt_srq_size,
83                  "Shared receive queue (SRQ) size.");
84
85 static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86 {
87         return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88 }
89 module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90                   0444);
91 MODULE_PARM_DESC(srpt_service_guid,
92                  "Using this value for ioc_guid, id_ext, and cm_listen_id"
93                  " instead of using the node_guid of the first HCA.");
94
95 static struct ib_client srpt_client;
96 static struct target_fabric_configfs *srpt_target;
97 static void srpt_release_channel(struct srpt_rdma_ch *ch);
98 static int srpt_queue_status(struct se_cmd *cmd);
99
100 /**
101  * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102  */
103 static inline
104 enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105 {
106         switch (dir) {
107         case DMA_TO_DEVICE:     return DMA_FROM_DEVICE;
108         case DMA_FROM_DEVICE:   return DMA_TO_DEVICE;
109         default:                return dir;
110         }
111 }
112
113 /**
114  * srpt_sdev_name() - Return the name associated with the HCA.
115  *
116  * Examples are ib0, ib1, ...
117  */
118 static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119 {
120         return sdev->device->name;
121 }
122
123 static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124 {
125         unsigned long flags;
126         enum rdma_ch_state state;
127
128         spin_lock_irqsave(&ch->spinlock, flags);
129         state = ch->state;
130         spin_unlock_irqrestore(&ch->spinlock, flags);
131         return state;
132 }
133
134 static enum rdma_ch_state
135 srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136 {
137         unsigned long flags;
138         enum rdma_ch_state prev;
139
140         spin_lock_irqsave(&ch->spinlock, flags);
141         prev = ch->state;
142         ch->state = new_state;
143         spin_unlock_irqrestore(&ch->spinlock, flags);
144         return prev;
145 }
146
147 /**
148  * srpt_test_and_set_ch_state() - Test and set the channel state.
149  *
150  * Returns true if and only if the channel state has been set to the new state.
151  */
152 static bool
153 srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154                            enum rdma_ch_state new)
155 {
156         unsigned long flags;
157         enum rdma_ch_state prev;
158
159         spin_lock_irqsave(&ch->spinlock, flags);
160         prev = ch->state;
161         if (prev == old)
162                 ch->state = new;
163         spin_unlock_irqrestore(&ch->spinlock, flags);
164         return prev == old;
165 }
166
167 /**
168  * srpt_event_handler() - Asynchronous IB event callback function.
169  *
170  * Callback function called by the InfiniBand core when an asynchronous IB
171  * event occurs. This callback may occur in interrupt context. See also
172  * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173  * Architecture Specification.
174  */
175 static void srpt_event_handler(struct ib_event_handler *handler,
176                                struct ib_event *event)
177 {
178         struct srpt_device *sdev;
179         struct srpt_port *sport;
180
181         sdev = ib_get_client_data(event->device, &srpt_client);
182         if (!sdev || sdev->device != event->device)
183                 return;
184
185         pr_debug("ASYNC event= %d on device= %s\n", event->event,
186                  srpt_sdev_name(sdev));
187
188         switch (event->event) {
189         case IB_EVENT_PORT_ERR:
190                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191                         sport = &sdev->port[event->element.port_num - 1];
192                         sport->lid = 0;
193                         sport->sm_lid = 0;
194                 }
195                 break;
196         case IB_EVENT_PORT_ACTIVE:
197         case IB_EVENT_LID_CHANGE:
198         case IB_EVENT_PKEY_CHANGE:
199         case IB_EVENT_SM_CHANGE:
200         case IB_EVENT_CLIENT_REREGISTER:
201                 /* Refresh port data asynchronously. */
202                 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203                         sport = &sdev->port[event->element.port_num - 1];
204                         if (!sport->lid && !sport->sm_lid)
205                                 schedule_work(&sport->work);
206                 }
207                 break;
208         default:
209                 printk(KERN_ERR "received unrecognized IB event %d\n",
210                        event->event);
211                 break;
212         }
213 }
214
215 /**
216  * srpt_srq_event() - SRQ event callback function.
217  */
218 static void srpt_srq_event(struct ib_event *event, void *ctx)
219 {
220         printk(KERN_INFO "SRQ event %d\n", event->event);
221 }
222
223 /**
224  * srpt_qp_event() - QP event callback function.
225  */
226 static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227 {
228         pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229                  event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231         switch (event->event) {
232         case IB_EVENT_COMM_EST:
233                 ib_cm_notify(ch->cm_id, event->event);
234                 break;
235         case IB_EVENT_QP_LAST_WQE_REACHED:
236                 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237                                                CH_RELEASING))
238                         srpt_release_channel(ch);
239                 else
240                         pr_debug("%s: state %d - ignored LAST_WQE.\n",
241                                  ch->sess_name, srpt_get_ch_state(ch));
242                 break;
243         default:
244                 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245                        event->event);
246                 break;
247         }
248 }
249
250 /**
251  * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252  *
253  * @slot: one-based slot number.
254  * @value: four-bit value.
255  *
256  * Copies the lowest four bits of value in element slot of the array of four
257  * bit elements called c_list (controller list). The index slot is one-based.
258  */
259 static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260 {
261         u16 id;
262         u8 tmp;
263
264         id = (slot - 1) / 2;
265         if (slot & 0x1) {
266                 tmp = c_list[id] & 0xf;
267                 c_list[id] = (value << 4) | tmp;
268         } else {
269                 tmp = c_list[id] & 0xf0;
270                 c_list[id] = (value & 0xf) | tmp;
271         }
272 }
273
274 /**
275  * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276  *
277  * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278  * Specification.
279  */
280 static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281 {
282         struct ib_class_port_info *cif;
283
284         cif = (struct ib_class_port_info *)mad->data;
285         memset(cif, 0, sizeof *cif);
286         cif->base_version = 1;
287         cif->class_version = 1;
288         cif->resp_time_value = 20;
289
290         mad->mad_hdr.status = 0;
291 }
292
293 /**
294  * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295  *
296  * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297  * Specification. See also section B.7, table B.6 in the SRP r16a document.
298  */
299 static void srpt_get_iou(struct ib_dm_mad *mad)
300 {
301         struct ib_dm_iou_info *ioui;
302         u8 slot;
303         int i;
304
305         ioui = (struct ib_dm_iou_info *)mad->data;
306         ioui->change_id = __constant_cpu_to_be16(1);
307         ioui->max_controllers = 16;
308
309         /* set present for slot 1 and empty for the rest */
310         srpt_set_ioc(ioui->controller_list, 1, 1);
311         for (i = 1, slot = 2; i < 16; i++, slot++)
312                 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314         mad->mad_hdr.status = 0;
315 }
316
317 /**
318  * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319  *
320  * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321  * Architecture Specification. See also section B.7, table B.7 in the SRP
322  * r16a document.
323  */
324 static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325                          struct ib_dm_mad *mad)
326 {
327         struct srpt_device *sdev = sport->sdev;
328         struct ib_dm_ioc_profile *iocp;
329
330         iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332         if (!slot || slot > 16) {
333                 mad->mad_hdr.status
334                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335                 return;
336         }
337
338         if (slot > 2) {
339                 mad->mad_hdr.status
340                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341                 return;
342         }
343
344         memset(iocp, 0, sizeof *iocp);
345         strcpy(iocp->id_string, SRPT_ID_STRING);
346         iocp->guid = cpu_to_be64(srpt_service_guid);
347         iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348         iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349         iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350         iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351         iocp->subsys_device_id = 0x0;
352         iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353         iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354         iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355         iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356         iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357         iocp->rdma_read_depth = 4;
358         iocp->send_size = cpu_to_be32(srp_max_req_size);
359         iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360                                           1U << 24));
361         iocp->num_svc_entries = 1;
362         iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363                 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365         mad->mad_hdr.status = 0;
366 }
367
368 /**
369  * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370  *
371  * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372  * Specification. See also section B.7, table B.8 in the SRP r16a document.
373  */
374 static void srpt_get_svc_entries(u64 ioc_guid,
375                                  u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376 {
377         struct ib_dm_svc_entries *svc_entries;
378
379         WARN_ON(!ioc_guid);
380
381         if (!slot || slot > 16) {
382                 mad->mad_hdr.status
383                         = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384                 return;
385         }
386
387         if (slot > 2 || lo > hi || hi > 1) {
388                 mad->mad_hdr.status
389                         = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390                 return;
391         }
392
393         svc_entries = (struct ib_dm_svc_entries *)mad->data;
394         memset(svc_entries, 0, sizeof *svc_entries);
395         svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396         snprintf(svc_entries->service_entries[0].name,
397                  sizeof(svc_entries->service_entries[0].name),
398                  "%s%016llx",
399                  SRP_SERVICE_NAME_PREFIX,
400                  ioc_guid);
401
402         mad->mad_hdr.status = 0;
403 }
404
405 /**
406  * srpt_mgmt_method_get() - Process a received management datagram.
407  * @sp:      source port through which the MAD has been received.
408  * @rq_mad:  received MAD.
409  * @rsp_mad: response MAD.
410  */
411 static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412                                  struct ib_dm_mad *rsp_mad)
413 {
414         u16 attr_id;
415         u32 slot;
416         u8 hi, lo;
417
418         attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419         switch (attr_id) {
420         case DM_ATTR_CLASS_PORT_INFO:
421                 srpt_get_class_port_info(rsp_mad);
422                 break;
423         case DM_ATTR_IOU_INFO:
424                 srpt_get_iou(rsp_mad);
425                 break;
426         case DM_ATTR_IOC_PROFILE:
427                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428                 srpt_get_ioc(sp, slot, rsp_mad);
429                 break;
430         case DM_ATTR_SVC_ENTRIES:
431                 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432                 hi = (u8) ((slot >> 8) & 0xff);
433                 lo = (u8) (slot & 0xff);
434                 slot = (u16) ((slot >> 16) & 0xffff);
435                 srpt_get_svc_entries(srpt_service_guid,
436                                      slot, hi, lo, rsp_mad);
437                 break;
438         default:
439                 rsp_mad->mad_hdr.status =
440                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441                 break;
442         }
443 }
444
445 /**
446  * srpt_mad_send_handler() - Post MAD-send callback function.
447  */
448 static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449                                   struct ib_mad_send_wc *mad_wc)
450 {
451         ib_destroy_ah(mad_wc->send_buf->ah);
452         ib_free_send_mad(mad_wc->send_buf);
453 }
454
455 /**
456  * srpt_mad_recv_handler() - MAD reception callback function.
457  */
458 static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459                                   struct ib_mad_recv_wc *mad_wc)
460 {
461         struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462         struct ib_ah *ah;
463         struct ib_mad_send_buf *rsp;
464         struct ib_dm_mad *dm_mad;
465
466         if (!mad_wc || !mad_wc->recv_buf.mad)
467                 return;
468
469         ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470                                   mad_wc->recv_buf.grh, mad_agent->port_num);
471         if (IS_ERR(ah))
472                 goto err;
473
474         BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476         rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477                                  mad_wc->wc->pkey_index, 0,
478                                  IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479                                  GFP_KERNEL);
480         if (IS_ERR(rsp))
481                 goto err_rsp;
482
483         rsp->ah = ah;
484
485         dm_mad = rsp->mad;
486         memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487         dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488         dm_mad->mad_hdr.status = 0;
489
490         switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491         case IB_MGMT_METHOD_GET:
492                 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493                 break;
494         case IB_MGMT_METHOD_SET:
495                 dm_mad->mad_hdr.status =
496                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497                 break;
498         default:
499                 dm_mad->mad_hdr.status =
500                     __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501                 break;
502         }
503
504         if (!ib_post_send_mad(rsp, NULL)) {
505                 ib_free_recv_mad(mad_wc);
506                 /* will destroy_ah & free_send_mad in send completion */
507                 return;
508         }
509
510         ib_free_send_mad(rsp);
511
512 err_rsp:
513         ib_destroy_ah(ah);
514 err:
515         ib_free_recv_mad(mad_wc);
516 }
517
518 /**
519  * srpt_refresh_port() - Configure a HCA port.
520  *
521  * Enable InfiniBand management datagram processing, update the cached sm_lid,
522  * lid and gid values, and register a callback function for processing MADs
523  * on the specified port.
524  *
525  * Note: It is safe to call this function more than once for the same port.
526  */
527 static int srpt_refresh_port(struct srpt_port *sport)
528 {
529         struct ib_mad_reg_req reg_req;
530         struct ib_port_modify port_modify;
531         struct ib_port_attr port_attr;
532         int ret;
533
534         memset(&port_modify, 0, sizeof port_modify);
535         port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536         port_modify.clr_port_cap_mask = 0;
537
538         ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539         if (ret)
540                 goto err_mod_port;
541
542         ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543         if (ret)
544                 goto err_query_port;
545
546         sport->sm_lid = port_attr.sm_lid;
547         sport->lid = port_attr.lid;
548
549         ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550         if (ret)
551                 goto err_query_port;
552
553         if (!sport->mad_agent) {
554                 memset(&reg_req, 0, sizeof reg_req);
555                 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556                 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557                 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558                 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560                 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561                                                          sport->port,
562                                                          IB_QPT_GSI,
563                                                          &reg_req, 0,
564                                                          srpt_mad_send_handler,
565                                                          srpt_mad_recv_handler,
566                                                          sport);
567                 if (IS_ERR(sport->mad_agent)) {
568                         ret = PTR_ERR(sport->mad_agent);
569                         sport->mad_agent = NULL;
570                         goto err_query_port;
571                 }
572         }
573
574         return 0;
575
576 err_query_port:
577
578         port_modify.set_port_cap_mask = 0;
579         port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580         ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582 err_mod_port:
583
584         return ret;
585 }
586
587 /**
588  * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589  *
590  * Note: It is safe to call this function more than once for the same device.
591  */
592 static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593 {
594         struct ib_port_modify port_modify = {
595                 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596         };
597         struct srpt_port *sport;
598         int i;
599
600         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601                 sport = &sdev->port[i - 1];
602                 WARN_ON(sport->port != i);
603                 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604                         printk(KERN_ERR "disabling MAD processing failed.\n");
605                 if (sport->mad_agent) {
606                         ib_unregister_mad_agent(sport->mad_agent);
607                         sport->mad_agent = NULL;
608                 }
609         }
610 }
611
612 /**
613  * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614  */
615 static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616                                            int ioctx_size, int dma_size,
617                                            enum dma_data_direction dir)
618 {
619         struct srpt_ioctx *ioctx;
620
621         ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622         if (!ioctx)
623                 goto err;
624
625         ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626         if (!ioctx->buf)
627                 goto err_free_ioctx;
628
629         ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630         if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631                 goto err_free_buf;
632
633         return ioctx;
634
635 err_free_buf:
636         kfree(ioctx->buf);
637 err_free_ioctx:
638         kfree(ioctx);
639 err:
640         return NULL;
641 }
642
643 /**
644  * srpt_free_ioctx() - Free an SRPT I/O context structure.
645  */
646 static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647                             int dma_size, enum dma_data_direction dir)
648 {
649         if (!ioctx)
650                 return;
651
652         ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653         kfree(ioctx->buf);
654         kfree(ioctx);
655 }
656
657 /**
658  * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659  * @sdev:       Device to allocate the I/O context ring for.
660  * @ring_size:  Number of elements in the I/O context ring.
661  * @ioctx_size: I/O context size.
662  * @dma_size:   DMA buffer size.
663  * @dir:        DMA data direction.
664  */
665 static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666                                 int ring_size, int ioctx_size,
667                                 int dma_size, enum dma_data_direction dir)
668 {
669         struct srpt_ioctx **ring;
670         int i;
671
672         WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673                 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675         ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676         if (!ring)
677                 goto out;
678         for (i = 0; i < ring_size; ++i) {
679                 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680                 if (!ring[i])
681                         goto err;
682                 ring[i]->index = i;
683         }
684         goto out;
685
686 err:
687         while (--i >= 0)
688                 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689         kfree(ring);
690         ring = NULL;
691 out:
692         return ring;
693 }
694
695 /**
696  * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697  */
698 static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699                                  struct srpt_device *sdev, int ring_size,
700                                  int dma_size, enum dma_data_direction dir)
701 {
702         int i;
703
704         for (i = 0; i < ring_size; ++i)
705                 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706         kfree(ioctx_ring);
707 }
708
709 /**
710  * srpt_get_cmd_state() - Get the state of a SCSI command.
711  */
712 static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713 {
714         enum srpt_command_state state;
715         unsigned long flags;
716
717         BUG_ON(!ioctx);
718
719         spin_lock_irqsave(&ioctx->spinlock, flags);
720         state = ioctx->state;
721         spin_unlock_irqrestore(&ioctx->spinlock, flags);
722         return state;
723 }
724
725 /**
726  * srpt_set_cmd_state() - Set the state of a SCSI command.
727  *
728  * Does not modify the state of aborted commands. Returns the previous command
729  * state.
730  */
731 static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732                                                   enum srpt_command_state new)
733 {
734         enum srpt_command_state previous;
735         unsigned long flags;
736
737         BUG_ON(!ioctx);
738
739         spin_lock_irqsave(&ioctx->spinlock, flags);
740         previous = ioctx->state;
741         if (previous != SRPT_STATE_DONE)
742                 ioctx->state = new;
743         spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745         return previous;
746 }
747
748 /**
749  * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750  *
751  * Returns true if and only if the previous command state was equal to 'old'.
752  */
753 static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754                                         enum srpt_command_state old,
755                                         enum srpt_command_state new)
756 {
757         enum srpt_command_state previous;
758         unsigned long flags;
759
760         WARN_ON(!ioctx);
761         WARN_ON(old == SRPT_STATE_DONE);
762         WARN_ON(new == SRPT_STATE_NEW);
763
764         spin_lock_irqsave(&ioctx->spinlock, flags);
765         previous = ioctx->state;
766         if (previous == old)
767                 ioctx->state = new;
768         spin_unlock_irqrestore(&ioctx->spinlock, flags);
769         return previous == old;
770 }
771
772 /**
773  * srpt_post_recv() - Post an IB receive request.
774  */
775 static int srpt_post_recv(struct srpt_device *sdev,
776                           struct srpt_recv_ioctx *ioctx)
777 {
778         struct ib_sge list;
779         struct ib_recv_wr wr, *bad_wr;
780
781         BUG_ON(!sdev);
782         wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784         list.addr = ioctx->ioctx.dma;
785         list.length = srp_max_req_size;
786         list.lkey = sdev->mr->lkey;
787
788         wr.next = NULL;
789         wr.sg_list = &list;
790         wr.num_sge = 1;
791
792         return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793 }
794
795 /**
796  * srpt_post_send() - Post an IB send request.
797  *
798  * Returns zero upon success and a non-zero value upon failure.
799  */
800 static int srpt_post_send(struct srpt_rdma_ch *ch,
801                           struct srpt_send_ioctx *ioctx, int len)
802 {
803         struct ib_sge list;
804         struct ib_send_wr wr, *bad_wr;
805         struct srpt_device *sdev = ch->sport->sdev;
806         int ret;
807
808         atomic_inc(&ch->req_lim);
809
810         ret = -ENOMEM;
811         if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812                 printk(KERN_WARNING "IB send queue full (needed 1)\n");
813                 goto out;
814         }
815
816         ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817                                       DMA_TO_DEVICE);
818
819         list.addr = ioctx->ioctx.dma;
820         list.length = len;
821         list.lkey = sdev->mr->lkey;
822
823         wr.next = NULL;
824         wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825         wr.sg_list = &list;
826         wr.num_sge = 1;
827         wr.opcode = IB_WR_SEND;
828         wr.send_flags = IB_SEND_SIGNALED;
829
830         ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832 out:
833         if (ret < 0) {
834                 atomic_inc(&ch->sq_wr_avail);
835                 atomic_dec(&ch->req_lim);
836         }
837         return ret;
838 }
839
840 /**
841  * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842  * @ioctx: Pointer to the I/O context associated with the request.
843  * @srp_cmd: Pointer to the SRP_CMD request data.
844  * @dir: Pointer to the variable to which the transfer direction will be
845  *   written.
846  * @data_len: Pointer to the variable to which the total data length of all
847  *   descriptors in the SRP_CMD request will be written.
848  *
849  * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850  *
851  * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852  * -ENOMEM when memory allocation fails and zero upon success.
853  */
854 static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855                              struct srp_cmd *srp_cmd,
856                              enum dma_data_direction *dir, u64 *data_len)
857 {
858         struct srp_indirect_buf *idb;
859         struct srp_direct_buf *db;
860         unsigned add_cdb_offset;
861         int ret;
862
863         /*
864          * The pointer computations below will only be compiled correctly
865          * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866          * whether srp_cmd::add_data has been declared as a byte pointer.
867          */
868         BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869                      && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871         BUG_ON(!dir);
872         BUG_ON(!data_len);
873
874         ret = 0;
875         *data_len = 0;
876
877         /*
878          * The lower four bits of the buffer format field contain the DATA-IN
879          * buffer descriptor format, and the highest four bits contain the
880          * DATA-OUT buffer descriptor format.
881          */
882         *dir = DMA_NONE;
883         if (srp_cmd->buf_fmt & 0xf)
884                 /* DATA-IN: transfer data from target to initiator (read). */
885                 *dir = DMA_FROM_DEVICE;
886         else if (srp_cmd->buf_fmt >> 4)
887                 /* DATA-OUT: transfer data from initiator to target (write). */
888                 *dir = DMA_TO_DEVICE;
889
890         /*
891          * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892          * CDB LENGTH' field are reserved and the size in bytes of this field
893          * is four times the value specified in bits 3..7. Hence the "& ~3".
894          */
895         add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896         if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897             ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898                 ioctx->n_rbuf = 1;
899                 ioctx->rbufs = &ioctx->single_rbuf;
900
901                 db = (struct srp_direct_buf *)(srp_cmd->add_data
902                                                + add_cdb_offset);
903                 memcpy(ioctx->rbufs, db, sizeof *db);
904                 *data_len = be32_to_cpu(db->len);
905         } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906                    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907                 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908                                                   + add_cdb_offset);
909
910                 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912                 if (ioctx->n_rbuf >
913                     (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914                         printk(KERN_ERR "received unsupported SRP_CMD request"
915                                " type (%u out + %u in != %u / %zu)\n",
916                                srp_cmd->data_out_desc_cnt,
917                                srp_cmd->data_in_desc_cnt,
918                                be32_to_cpu(idb->table_desc.len),
919                                sizeof(*db));
920                         ioctx->n_rbuf = 0;
921                         ret = -EINVAL;
922                         goto out;
923                 }
924
925                 if (ioctx->n_rbuf == 1)
926                         ioctx->rbufs = &ioctx->single_rbuf;
927                 else {
928                         ioctx->rbufs =
929                                 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930                         if (!ioctx->rbufs) {
931                                 ioctx->n_rbuf = 0;
932                                 ret = -ENOMEM;
933                                 goto out;
934                         }
935                 }
936
937                 db = idb->desc_list;
938                 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939                 *data_len = be32_to_cpu(idb->len);
940         }
941 out:
942         return ret;
943 }
944
945 /**
946  * srpt_init_ch_qp() - Initialize queue pair attributes.
947  *
948  * Initialized the attributes of queue pair 'qp' by allowing local write,
949  * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950  */
951 static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952 {
953         struct ib_qp_attr *attr;
954         int ret;
955
956         attr = kzalloc(sizeof *attr, GFP_KERNEL);
957         if (!attr)
958                 return -ENOMEM;
959
960         attr->qp_state = IB_QPS_INIT;
961         attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962             IB_ACCESS_REMOTE_WRITE;
963         attr->port_num = ch->sport->port;
964         attr->pkey_index = 0;
965
966         ret = ib_modify_qp(qp, attr,
967                            IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968                            IB_QP_PKEY_INDEX);
969
970         kfree(attr);
971         return ret;
972 }
973
974 /**
975  * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976  * @ch: channel of the queue pair.
977  * @qp: queue pair to change the state of.
978  *
979  * Returns zero upon success and a negative value upon failure.
980  *
981  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982  * If this structure ever becomes larger, it might be necessary to allocate
983  * it dynamically instead of on the stack.
984  */
985 static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986 {
987         struct ib_qp_attr qp_attr;
988         int attr_mask;
989         int ret;
990
991         qp_attr.qp_state = IB_QPS_RTR;
992         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993         if (ret)
994                 goto out;
995
996         qp_attr.max_dest_rd_atomic = 4;
997
998         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000 out:
1001         return ret;
1002 }
1003
1004 /**
1005  * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006  * @ch: channel of the queue pair.
1007  * @qp: queue pair to change the state of.
1008  *
1009  * Returns zero upon success and a negative value upon failure.
1010  *
1011  * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012  * If this structure ever becomes larger, it might be necessary to allocate
1013  * it dynamically instead of on the stack.
1014  */
1015 static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016 {
1017         struct ib_qp_attr qp_attr;
1018         int attr_mask;
1019         int ret;
1020
1021         qp_attr.qp_state = IB_QPS_RTS;
1022         ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023         if (ret)
1024                 goto out;
1025
1026         qp_attr.max_rd_atomic = 4;
1027
1028         ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030 out:
1031         return ret;
1032 }
1033
1034 /**
1035  * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036  */
1037 static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038 {
1039         struct ib_qp_attr qp_attr;
1040
1041         qp_attr.qp_state = IB_QPS_ERR;
1042         return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043 }
1044
1045 /**
1046  * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047  */
1048 static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049                                     struct srpt_send_ioctx *ioctx)
1050 {
1051         struct scatterlist *sg;
1052         enum dma_data_direction dir;
1053
1054         BUG_ON(!ch);
1055         BUG_ON(!ioctx);
1056         BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058         while (ioctx->n_rdma)
1059                 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061         kfree(ioctx->rdma_ius);
1062         ioctx->rdma_ius = NULL;
1063
1064         if (ioctx->mapped_sg_count) {
1065                 sg = ioctx->sg;
1066                 WARN_ON(!sg);
1067                 dir = ioctx->cmd.data_direction;
1068                 BUG_ON(dir == DMA_NONE);
1069                 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070                                 opposite_dma_dir(dir));
1071                 ioctx->mapped_sg_count = 0;
1072         }
1073 }
1074
1075 /**
1076  * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077  */
1078 static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079                                  struct srpt_send_ioctx *ioctx)
1080 {
1081         struct ib_device *dev = ch->sport->sdev->device;
1082         struct se_cmd *cmd;
1083         struct scatterlist *sg, *sg_orig;
1084         int sg_cnt;
1085         enum dma_data_direction dir;
1086         struct rdma_iu *riu;
1087         struct srp_direct_buf *db;
1088         dma_addr_t dma_addr;
1089         struct ib_sge *sge;
1090         u64 raddr;
1091         u32 rsize;
1092         u32 tsize;
1093         u32 dma_len;
1094         int count, nrdma;
1095         int i, j, k;
1096
1097         BUG_ON(!ch);
1098         BUG_ON(!ioctx);
1099         cmd = &ioctx->cmd;
1100         dir = cmd->data_direction;
1101         BUG_ON(dir == DMA_NONE);
1102
1103         ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104         ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106         count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107                               opposite_dma_dir(dir));
1108         if (unlikely(!count))
1109                 return -EAGAIN;
1110
1111         ioctx->mapped_sg_count = count;
1112
1113         if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114                 nrdma = ioctx->n_rdma_ius;
1115         else {
1116                 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117                         + ioctx->n_rbuf;
1118
1119                 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120                 if (!ioctx->rdma_ius)
1121                         goto free_mem;
1122
1123                 ioctx->n_rdma_ius = nrdma;
1124         }
1125
1126         db = ioctx->rbufs;
1127         tsize = cmd->data_length;
1128         dma_len = ib_sg_dma_len(dev, &sg[0]);
1129         riu = ioctx->rdma_ius;
1130
1131         /*
1132          * For each remote desc - calculate the #ib_sge.
1133          * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134          *      each remote desc rdma_iu is required a rdma wr;
1135          * else
1136          *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1137          *      another rdma wr
1138          */
1139         for (i = 0, j = 0;
1140              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141                 rsize = be32_to_cpu(db->len);
1142                 raddr = be64_to_cpu(db->va);
1143                 riu->raddr = raddr;
1144                 riu->rkey = be32_to_cpu(db->key);
1145                 riu->sge_cnt = 0;
1146
1147                 /* calculate how many sge required for this remote_buf */
1148                 while (rsize > 0 && tsize > 0) {
1149
1150                         if (rsize >= dma_len) {
1151                                 tsize -= dma_len;
1152                                 rsize -= dma_len;
1153                                 raddr += dma_len;
1154
1155                                 if (tsize > 0) {
1156                                         ++j;
1157                                         if (j < count) {
1158                                                 sg = sg_next(sg);
1159                                                 dma_len = ib_sg_dma_len(
1160                                                                 dev, sg);
1161                                         }
1162                                 }
1163                         } else {
1164                                 tsize -= rsize;
1165                                 dma_len -= rsize;
1166                                 rsize = 0;
1167                         }
1168
1169                         ++riu->sge_cnt;
1170
1171                         if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172                                 ++ioctx->n_rdma;
1173                                 riu->sge =
1174                                     kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175                                             GFP_KERNEL);
1176                                 if (!riu->sge)
1177                                         goto free_mem;
1178
1179                                 ++riu;
1180                                 riu->sge_cnt = 0;
1181                                 riu->raddr = raddr;
1182                                 riu->rkey = be32_to_cpu(db->key);
1183                         }
1184                 }
1185
1186                 ++ioctx->n_rdma;
1187                 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188                                    GFP_KERNEL);
1189                 if (!riu->sge)
1190                         goto free_mem;
1191         }
1192
1193         db = ioctx->rbufs;
1194         tsize = cmd->data_length;
1195         riu = ioctx->rdma_ius;
1196         sg = sg_orig;
1197         dma_len = ib_sg_dma_len(dev, &sg[0]);
1198         dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200         /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201         for (i = 0, j = 0;
1202              j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203                 rsize = be32_to_cpu(db->len);
1204                 sge = riu->sge;
1205                 k = 0;
1206
1207                 while (rsize > 0 && tsize > 0) {
1208                         sge->addr = dma_addr;
1209                         sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211                         if (rsize >= dma_len) {
1212                                 sge->length =
1213                                         (tsize < dma_len) ? tsize : dma_len;
1214                                 tsize -= dma_len;
1215                                 rsize -= dma_len;
1216
1217                                 if (tsize > 0) {
1218                                         ++j;
1219                                         if (j < count) {
1220                                                 sg = sg_next(sg);
1221                                                 dma_len = ib_sg_dma_len(
1222                                                                 dev, sg);
1223                                                 dma_addr = ib_sg_dma_address(
1224                                                                 dev, sg);
1225                                         }
1226                                 }
1227                         } else {
1228                                 sge->length = (tsize < rsize) ? tsize : rsize;
1229                                 tsize -= rsize;
1230                                 dma_len -= rsize;
1231                                 dma_addr += rsize;
1232                                 rsize = 0;
1233                         }
1234
1235                         ++k;
1236                         if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237                                 ++riu;
1238                                 sge = riu->sge;
1239                                 k = 0;
1240                         } else if (rsize > 0 && tsize > 0)
1241                                 ++sge;
1242                 }
1243         }
1244
1245         return 0;
1246
1247 free_mem:
1248         srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250         return -ENOMEM;
1251 }
1252
1253 /**
1254  * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255  */
1256 static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257 {
1258         struct srpt_send_ioctx *ioctx;
1259         unsigned long flags;
1260
1261         BUG_ON(!ch);
1262
1263         ioctx = NULL;
1264         spin_lock_irqsave(&ch->spinlock, flags);
1265         if (!list_empty(&ch->free_list)) {
1266                 ioctx = list_first_entry(&ch->free_list,
1267                                          struct srpt_send_ioctx, free_list);
1268                 list_del(&ioctx->free_list);
1269         }
1270         spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272         if (!ioctx)
1273                 return ioctx;
1274
1275         BUG_ON(ioctx->ch != ch);
1276         spin_lock_init(&ioctx->spinlock);
1277         ioctx->state = SRPT_STATE_NEW;
1278         ioctx->n_rbuf = 0;
1279         ioctx->rbufs = NULL;
1280         ioctx->n_rdma = 0;
1281         ioctx->n_rdma_ius = 0;
1282         ioctx->rdma_ius = NULL;
1283         ioctx->mapped_sg_count = 0;
1284         init_completion(&ioctx->tx_done);
1285         ioctx->queue_status_only = false;
1286         /*
1287          * transport_init_se_cmd() does not initialize all fields, so do it
1288          * here.
1289          */
1290         memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291         memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293         return ioctx;
1294 }
1295
1296 /**
1297  * srpt_abort_cmd() - Abort a SCSI command.
1298  * @ioctx:   I/O context associated with the SCSI command.
1299  * @context: Preferred execution context.
1300  */
1301 static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302 {
1303         enum srpt_command_state state;
1304         unsigned long flags;
1305
1306         BUG_ON(!ioctx);
1307
1308         /*
1309          * If the command is in a state where the target core is waiting for
1310          * the ib_srpt driver, change the state to the next state. Changing
1311          * the state of the command from SRPT_STATE_NEED_DATA to
1312          * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313          * function a second time.
1314          */
1315
1316         spin_lock_irqsave(&ioctx->spinlock, flags);
1317         state = ioctx->state;
1318         switch (state) {
1319         case SRPT_STATE_NEED_DATA:
1320                 ioctx->state = SRPT_STATE_DATA_IN;
1321                 break;
1322         case SRPT_STATE_DATA_IN:
1323         case SRPT_STATE_CMD_RSP_SENT:
1324         case SRPT_STATE_MGMT_RSP_SENT:
1325                 ioctx->state = SRPT_STATE_DONE;
1326                 break;
1327         default:
1328                 break;
1329         }
1330         spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332         if (state == SRPT_STATE_DONE) {
1333                 struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335                 BUG_ON(ch->sess == NULL);
1336
1337                 target_put_sess_cmd(ch->sess, &ioctx->cmd);
1338                 goto out;
1339         }
1340
1341         pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342                  ioctx->tag);
1343
1344         switch (state) {
1345         case SRPT_STATE_NEW:
1346         case SRPT_STATE_DATA_IN:
1347         case SRPT_STATE_MGMT:
1348                 /*
1349                  * Do nothing - defer abort processing until
1350                  * srpt_queue_response() is invoked.
1351                  */
1352                 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353                 break;
1354         case SRPT_STATE_NEED_DATA:
1355                 /* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357                 /* XXX(hch): this is a horrible layering violation.. */
1358                 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359                 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360                 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361                 break;
1362         case SRPT_STATE_CMD_RSP_SENT:
1363                 /*
1364                  * SRP_RSP sending failed or the SRP_RSP send completion has
1365                  * not been received in time.
1366                  */
1367                 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1369                 break;
1370         case SRPT_STATE_MGMT_RSP_SENT:
1371                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1373                 break;
1374         default:
1375                 WARN(1, "Unexpected command state (%d)", state);
1376                 break;
1377         }
1378
1379 out:
1380         return state;
1381 }
1382
1383 /**
1384  * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385  */
1386 static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387 {
1388         struct srpt_send_ioctx *ioctx;
1389         enum srpt_command_state state;
1390         struct se_cmd *cmd;
1391         u32 index;
1392
1393         atomic_inc(&ch->sq_wr_avail);
1394
1395         index = idx_from_wr_id(wr_id);
1396         ioctx = ch->ioctx_ring[index];
1397         state = srpt_get_cmd_state(ioctx);
1398         cmd = &ioctx->cmd;
1399
1400         WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1401                 && state != SRPT_STATE_MGMT_RSP_SENT
1402                 && state != SRPT_STATE_NEED_DATA
1403                 && state != SRPT_STATE_DONE);
1404
1405         /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1406         if (state == SRPT_STATE_CMD_RSP_SENT
1407             || state == SRPT_STATE_MGMT_RSP_SENT)
1408                 atomic_dec(&ch->req_lim);
1409
1410         srpt_abort_cmd(ioctx);
1411 }
1412
1413 /**
1414  * srpt_handle_send_comp() - Process an IB send completion notification.
1415  */
1416 static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1417                                   struct srpt_send_ioctx *ioctx)
1418 {
1419         enum srpt_command_state state;
1420
1421         atomic_inc(&ch->sq_wr_avail);
1422
1423         state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1424
1425         if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1426                     && state != SRPT_STATE_MGMT_RSP_SENT
1427                     && state != SRPT_STATE_DONE))
1428                 pr_debug("state = %d\n", state);
1429
1430         if (state != SRPT_STATE_DONE) {
1431                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1432                 transport_generic_free_cmd(&ioctx->cmd, 0);
1433         } else {
1434                 printk(KERN_ERR "IB completion has been received too late for"
1435                        " wr_id = %u.\n", ioctx->ioctx.index);
1436         }
1437 }
1438
1439 /**
1440  * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1441  *
1442  * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1443  * the data that has been transferred via IB RDMA had to be postponed until the
1444  * check_stop_free() callback.  None of this is necessary anymore and needs to
1445  * be cleaned up.
1446  */
1447 static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1448                                   struct srpt_send_ioctx *ioctx,
1449                                   enum srpt_opcode opcode)
1450 {
1451         WARN_ON(ioctx->n_rdma <= 0);
1452         atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1453
1454         if (opcode == SRPT_RDMA_READ_LAST) {
1455                 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1456                                                 SRPT_STATE_DATA_IN))
1457                         target_execute_cmd(&ioctx->cmd);
1458                 else
1459                         printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1460                                __LINE__, srpt_get_cmd_state(ioctx));
1461         } else if (opcode == SRPT_RDMA_ABORT) {
1462                 ioctx->rdma_aborted = true;
1463         } else {
1464                 WARN(true, "unexpected opcode %d\n", opcode);
1465         }
1466 }
1467
1468 /**
1469  * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1470  */
1471 static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1472                                       struct srpt_send_ioctx *ioctx,
1473                                       enum srpt_opcode opcode)
1474 {
1475         struct se_cmd *cmd;
1476         enum srpt_command_state state;
1477
1478         cmd = &ioctx->cmd;
1479         state = srpt_get_cmd_state(ioctx);
1480         switch (opcode) {
1481         case SRPT_RDMA_READ_LAST:
1482                 if (ioctx->n_rdma <= 0) {
1483                         printk(KERN_ERR "Received invalid RDMA read"
1484                                " error completion with idx %d\n",
1485                                ioctx->ioctx.index);
1486                         break;
1487                 }
1488                 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1489                 if (state == SRPT_STATE_NEED_DATA)
1490                         srpt_abort_cmd(ioctx);
1491                 else
1492                         printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1493                                __func__, __LINE__, state);
1494                 break;
1495         case SRPT_RDMA_WRITE_LAST:
1496                 break;
1497         default:
1498                 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1499                        __LINE__, opcode);
1500                 break;
1501         }
1502 }
1503
1504 /**
1505  * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1506  * @ch: RDMA channel through which the request has been received.
1507  * @ioctx: I/O context associated with the SRP_CMD request. The response will
1508  *   be built in the buffer ioctx->buf points at and hence this function will
1509  *   overwrite the request data.
1510  * @tag: tag of the request for which this response is being generated.
1511  * @status: value for the STATUS field of the SRP_RSP information unit.
1512  *
1513  * Returns the size in bytes of the SRP_RSP response.
1514  *
1515  * An SRP_RSP response contains a SCSI status or service response. See also
1516  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1517  * response. See also SPC-2 for more information about sense data.
1518  */
1519 static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1520                               struct srpt_send_ioctx *ioctx, u64 tag,
1521                               int status)
1522 {
1523         struct srp_rsp *srp_rsp;
1524         const u8 *sense_data;
1525         int sense_data_len, max_sense_len;
1526
1527         /*
1528          * The lowest bit of all SAM-3 status codes is zero (see also
1529          * paragraph 5.3 in SAM-3).
1530          */
1531         WARN_ON(status & 1);
1532
1533         srp_rsp = ioctx->ioctx.buf;
1534         BUG_ON(!srp_rsp);
1535
1536         sense_data = ioctx->sense_data;
1537         sense_data_len = ioctx->cmd.scsi_sense_length;
1538         WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1539
1540         memset(srp_rsp, 0, sizeof *srp_rsp);
1541         srp_rsp->opcode = SRP_RSP;
1542         srp_rsp->req_lim_delta =
1543                 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1544         srp_rsp->tag = tag;
1545         srp_rsp->status = status;
1546
1547         if (sense_data_len) {
1548                 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1549                 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1550                 if (sense_data_len > max_sense_len) {
1551                         printk(KERN_WARNING "truncated sense data from %d to %d"
1552                                " bytes\n", sense_data_len, max_sense_len);
1553                         sense_data_len = max_sense_len;
1554                 }
1555
1556                 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1557                 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1558                 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1559         }
1560
1561         return sizeof(*srp_rsp) + sense_data_len;
1562 }
1563
1564 /**
1565  * srpt_build_tskmgmt_rsp() - Build a task management response.
1566  * @ch:       RDMA channel through which the request has been received.
1567  * @ioctx:    I/O context in which the SRP_RSP response will be built.
1568  * @rsp_code: RSP_CODE that will be stored in the response.
1569  * @tag:      Tag of the request for which this response is being generated.
1570  *
1571  * Returns the size in bytes of the SRP_RSP response.
1572  *
1573  * An SRP_RSP response contains a SCSI status or service response. See also
1574  * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1575  * response.
1576  */
1577 static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1578                                   struct srpt_send_ioctx *ioctx,
1579                                   u8 rsp_code, u64 tag)
1580 {
1581         struct srp_rsp *srp_rsp;
1582         int resp_data_len;
1583         int resp_len;
1584
1585         resp_data_len = 4;
1586         resp_len = sizeof(*srp_rsp) + resp_data_len;
1587
1588         srp_rsp = ioctx->ioctx.buf;
1589         BUG_ON(!srp_rsp);
1590         memset(srp_rsp, 0, sizeof *srp_rsp);
1591
1592         srp_rsp->opcode = SRP_RSP;
1593         srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1594                                     + atomic_xchg(&ch->req_lim_delta, 0));
1595         srp_rsp->tag = tag;
1596
1597         srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1598         srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1599         srp_rsp->data[3] = rsp_code;
1600
1601         return resp_len;
1602 }
1603
1604 #define NO_SUCH_LUN ((uint64_t)-1LL)
1605
1606 /*
1607  * SCSI LUN addressing method. See also SAM-2 and the section about
1608  * eight byte LUNs.
1609  */
1610 enum scsi_lun_addr_method {
1611         SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1612         SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1613         SCSI_LUN_ADDR_METHOD_LUN          = 2,
1614         SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1615 };
1616
1617 /*
1618  * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1619  *
1620  * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1621  * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1622  * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1623  */
1624 static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1625 {
1626         uint64_t res = NO_SUCH_LUN;
1627         int addressing_method;
1628
1629         if (unlikely(len < 2)) {
1630                 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1631                        "more", len);
1632                 goto out;
1633         }
1634
1635         switch (len) {
1636         case 8:
1637                 if ((*((__be64 *)lun) &
1638                      __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1639                         goto out_err;
1640                 break;
1641         case 4:
1642                 if (*((__be16 *)&lun[2]) != 0)
1643                         goto out_err;
1644                 break;
1645         case 6:
1646                 if (*((__be32 *)&lun[2]) != 0)
1647                         goto out_err;
1648                 break;
1649         case 2:
1650                 break;
1651         default:
1652                 goto out_err;
1653         }
1654
1655         addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1656         switch (addressing_method) {
1657         case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1658         case SCSI_LUN_ADDR_METHOD_FLAT:
1659         case SCSI_LUN_ADDR_METHOD_LUN:
1660                 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1661                 break;
1662
1663         case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1664         default:
1665                 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1666                        addressing_method);
1667                 break;
1668         }
1669
1670 out:
1671         return res;
1672
1673 out_err:
1674         printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1675                " implemented");
1676         goto out;
1677 }
1678
1679 static int srpt_check_stop_free(struct se_cmd *cmd)
1680 {
1681         struct srpt_send_ioctx *ioctx = container_of(cmd,
1682                                 struct srpt_send_ioctx, cmd);
1683
1684         return target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
1685 }
1686
1687 /**
1688  * srpt_handle_cmd() - Process SRP_CMD.
1689  */
1690 static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1691                            struct srpt_recv_ioctx *recv_ioctx,
1692                            struct srpt_send_ioctx *send_ioctx)
1693 {
1694         struct se_cmd *cmd;
1695         struct srp_cmd *srp_cmd;
1696         uint64_t unpacked_lun;
1697         u64 data_len;
1698         enum dma_data_direction dir;
1699         sense_reason_t ret;
1700         int rc;
1701
1702         BUG_ON(!send_ioctx);
1703
1704         srp_cmd = recv_ioctx->ioctx.buf;
1705         cmd = &send_ioctx->cmd;
1706         send_ioctx->tag = srp_cmd->tag;
1707
1708         switch (srp_cmd->task_attr) {
1709         case SRP_CMD_SIMPLE_Q:
1710                 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1711                 break;
1712         case SRP_CMD_ORDERED_Q:
1713         default:
1714                 cmd->sam_task_attr = MSG_ORDERED_TAG;
1715                 break;
1716         case SRP_CMD_HEAD_OF_Q:
1717                 cmd->sam_task_attr = MSG_HEAD_TAG;
1718                 break;
1719         case SRP_CMD_ACA:
1720                 cmd->sam_task_attr = MSG_ACA_TAG;
1721                 break;
1722         }
1723
1724         if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1725                 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1726                        srp_cmd->tag);
1727                 ret = TCM_INVALID_CDB_FIELD;
1728                 goto send_sense;
1729         }
1730
1731         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1732                                        sizeof(srp_cmd->lun));
1733         rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1734                         &send_ioctx->sense_data[0], unpacked_lun, data_len,
1735                         MSG_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1736         if (rc != 0) {
1737                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1738                 goto send_sense;
1739         }
1740         return 0;
1741
1742 send_sense:
1743         transport_send_check_condition_and_sense(cmd, ret, 0);
1744         return -1;
1745 }
1746
1747 /**
1748  * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1749  * @ch: RDMA channel of the task management request.
1750  * @fn: Task management function to perform.
1751  * @req_tag: Tag of the SRP task management request.
1752  * @mgmt_ioctx: I/O context of the task management request.
1753  *
1754  * Returns zero if the target core will process the task management
1755  * request asynchronously.
1756  *
1757  * Note: It is assumed that the initiator serializes tag-based task management
1758  * requests.
1759  */
1760 static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1761 {
1762         struct srpt_device *sdev;
1763         struct srpt_rdma_ch *ch;
1764         struct srpt_send_ioctx *target;
1765         int ret, i;
1766
1767         ret = -EINVAL;
1768         ch = ioctx->ch;
1769         BUG_ON(!ch);
1770         BUG_ON(!ch->sport);
1771         sdev = ch->sport->sdev;
1772         BUG_ON(!sdev);
1773         spin_lock_irq(&sdev->spinlock);
1774         for (i = 0; i < ch->rq_size; ++i) {
1775                 target = ch->ioctx_ring[i];
1776                 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1777                     target->tag == tag &&
1778                     srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1779                         ret = 0;
1780                         /* now let the target core abort &target->cmd; */
1781                         break;
1782                 }
1783         }
1784         spin_unlock_irq(&sdev->spinlock);
1785         return ret;
1786 }
1787
1788 static int srp_tmr_to_tcm(int fn)
1789 {
1790         switch (fn) {
1791         case SRP_TSK_ABORT_TASK:
1792                 return TMR_ABORT_TASK;
1793         case SRP_TSK_ABORT_TASK_SET:
1794                 return TMR_ABORT_TASK_SET;
1795         case SRP_TSK_CLEAR_TASK_SET:
1796                 return TMR_CLEAR_TASK_SET;
1797         case SRP_TSK_LUN_RESET:
1798                 return TMR_LUN_RESET;
1799         case SRP_TSK_CLEAR_ACA:
1800                 return TMR_CLEAR_ACA;
1801         default:
1802                 return -1;
1803         }
1804 }
1805
1806 /**
1807  * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1808  *
1809  * Returns 0 if and only if the request will be processed by the target core.
1810  *
1811  * For more information about SRP_TSK_MGMT information units, see also section
1812  * 6.7 in the SRP r16a document.
1813  */
1814 static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1815                                  struct srpt_recv_ioctx *recv_ioctx,
1816                                  struct srpt_send_ioctx *send_ioctx)
1817 {
1818         struct srp_tsk_mgmt *srp_tsk;
1819         struct se_cmd *cmd;
1820         struct se_session *sess = ch->sess;
1821         uint64_t unpacked_lun;
1822         uint32_t tag = 0;
1823         int tcm_tmr;
1824         int rc;
1825
1826         BUG_ON(!send_ioctx);
1827
1828         srp_tsk = recv_ioctx->ioctx.buf;
1829         cmd = &send_ioctx->cmd;
1830
1831         pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1832                  " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1833                  srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1834
1835         srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1836         send_ioctx->tag = srp_tsk->tag;
1837         tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1838         if (tcm_tmr < 0) {
1839                 send_ioctx->cmd.se_tmr_req->response =
1840                         TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1841                 goto fail;
1842         }
1843         unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1844                                        sizeof(srp_tsk->lun));
1845
1846         if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1847                 rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1848                 if (rc < 0) {
1849                         send_ioctx->cmd.se_tmr_req->response =
1850                                         TMR_TASK_DOES_NOT_EXIST;
1851                         goto fail;
1852                 }
1853                 tag = srp_tsk->task_tag;
1854         }
1855         rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1856                                 srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1857                                 TARGET_SCF_ACK_KREF);
1858         if (rc != 0) {
1859                 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1860                 goto fail;
1861         }
1862         return;
1863 fail:
1864         transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1865 }
1866
1867 /**
1868  * srpt_handle_new_iu() - Process a newly received information unit.
1869  * @ch:    RDMA channel through which the information unit has been received.
1870  * @ioctx: SRPT I/O context associated with the information unit.
1871  */
1872 static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1873                                struct srpt_recv_ioctx *recv_ioctx,
1874                                struct srpt_send_ioctx *send_ioctx)
1875 {
1876         struct srp_cmd *srp_cmd;
1877         enum rdma_ch_state ch_state;
1878
1879         BUG_ON(!ch);
1880         BUG_ON(!recv_ioctx);
1881
1882         ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1883                                    recv_ioctx->ioctx.dma, srp_max_req_size,
1884                                    DMA_FROM_DEVICE);
1885
1886         ch_state = srpt_get_ch_state(ch);
1887         if (unlikely(ch_state == CH_CONNECTING)) {
1888                 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1889                 goto out;
1890         }
1891
1892         if (unlikely(ch_state != CH_LIVE))
1893                 goto out;
1894
1895         srp_cmd = recv_ioctx->ioctx.buf;
1896         if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1897                 if (!send_ioctx)
1898                         send_ioctx = srpt_get_send_ioctx(ch);
1899                 if (unlikely(!send_ioctx)) {
1900                         list_add_tail(&recv_ioctx->wait_list,
1901                                       &ch->cmd_wait_list);
1902                         goto out;
1903                 }
1904         }
1905
1906         switch (srp_cmd->opcode) {
1907         case SRP_CMD:
1908                 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1909                 break;
1910         case SRP_TSK_MGMT:
1911                 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1912                 break;
1913         case SRP_I_LOGOUT:
1914                 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1915                 break;
1916         case SRP_CRED_RSP:
1917                 pr_debug("received SRP_CRED_RSP\n");
1918                 break;
1919         case SRP_AER_RSP:
1920                 pr_debug("received SRP_AER_RSP\n");
1921                 break;
1922         case SRP_RSP:
1923                 printk(KERN_ERR "Received SRP_RSP\n");
1924                 break;
1925         default:
1926                 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1927                        srp_cmd->opcode);
1928                 break;
1929         }
1930
1931         srpt_post_recv(ch->sport->sdev, recv_ioctx);
1932 out:
1933         return;
1934 }
1935
1936 static void srpt_process_rcv_completion(struct ib_cq *cq,
1937                                         struct srpt_rdma_ch *ch,
1938                                         struct ib_wc *wc)
1939 {
1940         struct srpt_device *sdev = ch->sport->sdev;
1941         struct srpt_recv_ioctx *ioctx;
1942         u32 index;
1943
1944         index = idx_from_wr_id(wc->wr_id);
1945         if (wc->status == IB_WC_SUCCESS) {
1946                 int req_lim;
1947
1948                 req_lim = atomic_dec_return(&ch->req_lim);
1949                 if (unlikely(req_lim < 0))
1950                         printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1951                 ioctx = sdev->ioctx_ring[index];
1952                 srpt_handle_new_iu(ch, ioctx, NULL);
1953         } else {
1954                 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1955                        index, wc->status);
1956         }
1957 }
1958
1959 /**
1960  * srpt_process_send_completion() - Process an IB send completion.
1961  *
1962  * Note: Although this has not yet been observed during tests, at least in
1963  * theory it is possible that the srpt_get_send_ioctx() call invoked by
1964  * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1965  * value in each response is set to one, and it is possible that this response
1966  * makes the initiator send a new request before the send completion for that
1967  * response has been processed. This could e.g. happen if the call to
1968  * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1969  * if IB retransmission causes generation of the send completion to be
1970  * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1971  * are queued on cmd_wait_list. The code below processes these delayed
1972  * requests one at a time.
1973  */
1974 static void srpt_process_send_completion(struct ib_cq *cq,
1975                                          struct srpt_rdma_ch *ch,
1976                                          struct ib_wc *wc)
1977 {
1978         struct srpt_send_ioctx *send_ioctx;
1979         uint32_t index;
1980         enum srpt_opcode opcode;
1981
1982         index = idx_from_wr_id(wc->wr_id);
1983         opcode = opcode_from_wr_id(wc->wr_id);
1984         send_ioctx = ch->ioctx_ring[index];
1985         if (wc->status == IB_WC_SUCCESS) {
1986                 if (opcode == SRPT_SEND)
1987                         srpt_handle_send_comp(ch, send_ioctx);
1988                 else {
1989                         WARN_ON(opcode != SRPT_RDMA_ABORT &&
1990                                 wc->opcode != IB_WC_RDMA_READ);
1991                         srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1992                 }
1993         } else {
1994                 if (opcode == SRPT_SEND) {
1995                         printk(KERN_INFO "sending response for idx %u failed"
1996                                " with status %d\n", index, wc->status);
1997                         srpt_handle_send_err_comp(ch, wc->wr_id);
1998                 } else if (opcode != SRPT_RDMA_MID) {
1999                         printk(KERN_INFO "RDMA t %d for idx %u failed with"
2000                                 " status %d", opcode, index, wc->status);
2001                         srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2002                 }
2003         }
2004
2005         while (unlikely(opcode == SRPT_SEND
2006                         && !list_empty(&ch->cmd_wait_list)
2007                         && srpt_get_ch_state(ch) == CH_LIVE
2008                         && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2009                 struct srpt_recv_ioctx *recv_ioctx;
2010
2011                 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2012                                               struct srpt_recv_ioctx,
2013                                               wait_list);
2014                 list_del(&recv_ioctx->wait_list);
2015                 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2016         }
2017 }
2018
2019 static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2020 {
2021         struct ib_wc *const wc = ch->wc;
2022         int i, n;
2023
2024         WARN_ON(cq != ch->cq);
2025
2026         ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2027         while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2028                 for (i = 0; i < n; i++) {
2029                         if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2030                                 srpt_process_rcv_completion(cq, ch, &wc[i]);
2031                         else
2032                                 srpt_process_send_completion(cq, ch, &wc[i]);
2033                 }
2034         }
2035 }
2036
2037 /**
2038  * srpt_completion() - IB completion queue callback function.
2039  *
2040  * Notes:
2041  * - It is guaranteed that a completion handler will never be invoked
2042  *   concurrently on two different CPUs for the same completion queue. See also
2043  *   Documentation/infiniband/core_locking.txt and the implementation of
2044  *   handle_edge_irq() in kernel/irq/chip.c.
2045  * - When threaded IRQs are enabled, completion handlers are invoked in thread
2046  *   context instead of interrupt context.
2047  */
2048 static void srpt_completion(struct ib_cq *cq, void *ctx)
2049 {
2050         struct srpt_rdma_ch *ch = ctx;
2051
2052         wake_up_interruptible(&ch->wait_queue);
2053 }
2054
2055 static int srpt_compl_thread(void *arg)
2056 {
2057         struct srpt_rdma_ch *ch;
2058
2059         /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2060         current->flags |= PF_NOFREEZE;
2061
2062         ch = arg;
2063         BUG_ON(!ch);
2064         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2065                ch->sess_name, ch->thread->comm, current->pid);
2066         while (!kthread_should_stop()) {
2067                 wait_event_interruptible(ch->wait_queue,
2068                         (srpt_process_completion(ch->cq, ch),
2069                          kthread_should_stop()));
2070         }
2071         printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2072                ch->sess_name, ch->thread->comm, current->pid);
2073         return 0;
2074 }
2075
2076 /**
2077  * srpt_create_ch_ib() - Create receive and send completion queues.
2078  */
2079 static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2080 {
2081         struct ib_qp_init_attr *qp_init;
2082         struct srpt_port *sport = ch->sport;
2083         struct srpt_device *sdev = sport->sdev;
2084         u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2085         int ret;
2086
2087         WARN_ON(ch->rq_size < 1);
2088
2089         ret = -ENOMEM;
2090         qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2091         if (!qp_init)
2092                 goto out;
2093
2094         ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2095                               ch->rq_size + srp_sq_size, 0);
2096         if (IS_ERR(ch->cq)) {
2097                 ret = PTR_ERR(ch->cq);
2098                 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2099                        ch->rq_size + srp_sq_size, ret);
2100                 goto out;
2101         }
2102
2103         qp_init->qp_context = (void *)ch;
2104         qp_init->event_handler
2105                 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2106         qp_init->send_cq = ch->cq;
2107         qp_init->recv_cq = ch->cq;
2108         qp_init->srq = sdev->srq;
2109         qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2110         qp_init->qp_type = IB_QPT_RC;
2111         qp_init->cap.max_send_wr = srp_sq_size;
2112         qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2113
2114         ch->qp = ib_create_qp(sdev->pd, qp_init);
2115         if (IS_ERR(ch->qp)) {
2116                 ret = PTR_ERR(ch->qp);
2117                 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2118                 goto err_destroy_cq;
2119         }
2120
2121         atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2122
2123         pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2124                  __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2125                  qp_init->cap.max_send_wr, ch->cm_id);
2126
2127         ret = srpt_init_ch_qp(ch, ch->qp);
2128         if (ret)
2129                 goto err_destroy_qp;
2130
2131         init_waitqueue_head(&ch->wait_queue);
2132
2133         pr_debug("creating thread for session %s\n", ch->sess_name);
2134
2135         ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2136         if (IS_ERR(ch->thread)) {
2137                 printk(KERN_ERR "failed to create kernel thread %ld\n",
2138                        PTR_ERR(ch->thread));
2139                 ch->thread = NULL;
2140                 goto err_destroy_qp;
2141         }
2142
2143 out:
2144         kfree(qp_init);
2145         return ret;
2146
2147 err_destroy_qp:
2148         ib_destroy_qp(ch->qp);
2149 err_destroy_cq:
2150         ib_destroy_cq(ch->cq);
2151         goto out;
2152 }
2153
2154 static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2155 {
2156         if (ch->thread)
2157                 kthread_stop(ch->thread);
2158
2159         ib_destroy_qp(ch->qp);
2160         ib_destroy_cq(ch->cq);
2161 }
2162
2163 /**
2164  * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2165  *
2166  * Reset the QP and make sure all resources associated with the channel will
2167  * be deallocated at an appropriate time.
2168  *
2169  * Note: The caller must hold ch->sport->sdev->spinlock.
2170  */
2171 static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2172 {
2173         struct srpt_device *sdev;
2174         enum rdma_ch_state prev_state;
2175         unsigned long flags;
2176
2177         sdev = ch->sport->sdev;
2178
2179         spin_lock_irqsave(&ch->spinlock, flags);
2180         prev_state = ch->state;
2181         switch (prev_state) {
2182         case CH_CONNECTING:
2183         case CH_LIVE:
2184                 ch->state = CH_DISCONNECTING;
2185                 break;
2186         default:
2187                 break;
2188         }
2189         spin_unlock_irqrestore(&ch->spinlock, flags);
2190
2191         switch (prev_state) {
2192         case CH_CONNECTING:
2193                 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2194                                NULL, 0);
2195                 /* fall through */
2196         case CH_LIVE:
2197                 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2198                         printk(KERN_ERR "sending CM DREQ failed.\n");
2199                 break;
2200         case CH_DISCONNECTING:
2201                 break;
2202         case CH_DRAINING:
2203         case CH_RELEASING:
2204                 break;
2205         }
2206 }
2207
2208 /**
2209  * srpt_close_ch() - Close an RDMA channel.
2210  */
2211 static void srpt_close_ch(struct srpt_rdma_ch *ch)
2212 {
2213         struct srpt_device *sdev;
2214
2215         sdev = ch->sport->sdev;
2216         spin_lock_irq(&sdev->spinlock);
2217         __srpt_close_ch(ch);
2218         spin_unlock_irq(&sdev->spinlock);
2219 }
2220
2221 /**
2222  * srpt_shutdown_session() - Whether or not a session may be shut down.
2223  */
2224 static int srpt_shutdown_session(struct se_session *se_sess)
2225 {
2226         struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2227         unsigned long flags;
2228
2229         spin_lock_irqsave(&ch->spinlock, flags);
2230         if (ch->in_shutdown) {
2231                 spin_unlock_irqrestore(&ch->spinlock, flags);
2232                 return true;
2233         }
2234
2235         ch->in_shutdown = true;
2236         target_sess_cmd_list_set_waiting(se_sess);
2237         spin_unlock_irqrestore(&ch->spinlock, flags);
2238
2239         return true;
2240 }
2241
2242 /**
2243  * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2244  * @cm_id: Pointer to the CM ID of the channel to be drained.
2245  *
2246  * Note: Must be called from inside srpt_cm_handler to avoid a race between
2247  * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2248  * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2249  * waits until all target sessions for the associated IB device have been
2250  * unregistered and target session registration involves a call to
2251  * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2252  * this function has finished).
2253  */
2254 static void srpt_drain_channel(struct ib_cm_id *cm_id)
2255 {
2256         struct srpt_device *sdev;
2257         struct srpt_rdma_ch *ch;
2258         int ret;
2259         bool do_reset = false;
2260
2261         WARN_ON_ONCE(irqs_disabled());
2262
2263         sdev = cm_id->context;
2264         BUG_ON(!sdev);
2265         spin_lock_irq(&sdev->spinlock);
2266         list_for_each_entry(ch, &sdev->rch_list, list) {
2267                 if (ch->cm_id == cm_id) {
2268                         do_reset = srpt_test_and_set_ch_state(ch,
2269                                         CH_CONNECTING, CH_DRAINING) ||
2270                                    srpt_test_and_set_ch_state(ch,
2271                                         CH_LIVE, CH_DRAINING) ||
2272                                    srpt_test_and_set_ch_state(ch,
2273                                         CH_DISCONNECTING, CH_DRAINING);
2274                         break;
2275                 }
2276         }
2277         spin_unlock_irq(&sdev->spinlock);
2278
2279         if (do_reset) {
2280                 if (ch->sess)
2281                         srpt_shutdown_session(ch->sess);
2282
2283                 ret = srpt_ch_qp_err(ch);
2284                 if (ret < 0)
2285                         printk(KERN_ERR "Setting queue pair in error state"
2286                                " failed: %d\n", ret);
2287         }
2288 }
2289
2290 /**
2291  * srpt_find_channel() - Look up an RDMA channel.
2292  * @cm_id: Pointer to the CM ID of the channel to be looked up.
2293  *
2294  * Return NULL if no matching RDMA channel has been found.
2295  */
2296 static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2297                                               struct ib_cm_id *cm_id)
2298 {
2299         struct srpt_rdma_ch *ch;
2300         bool found;
2301
2302         WARN_ON_ONCE(irqs_disabled());
2303         BUG_ON(!sdev);
2304
2305         found = false;
2306         spin_lock_irq(&sdev->spinlock);
2307         list_for_each_entry(ch, &sdev->rch_list, list) {
2308                 if (ch->cm_id == cm_id) {
2309                         found = true;
2310                         break;
2311                 }
2312         }
2313         spin_unlock_irq(&sdev->spinlock);
2314
2315         return found ? ch : NULL;
2316 }
2317
2318 /**
2319  * srpt_release_channel() - Release channel resources.
2320  *
2321  * Schedules the actual release because:
2322  * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2323  *   trigger a deadlock.
2324  * - It is not safe to call TCM transport_* functions from interrupt context.
2325  */
2326 static void srpt_release_channel(struct srpt_rdma_ch *ch)
2327 {
2328         schedule_work(&ch->release_work);
2329 }
2330
2331 static void srpt_release_channel_work(struct work_struct *w)
2332 {
2333         struct srpt_rdma_ch *ch;
2334         struct srpt_device *sdev;
2335         struct se_session *se_sess;
2336
2337         ch = container_of(w, struct srpt_rdma_ch, release_work);
2338         pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2339                  ch->release_done);
2340
2341         sdev = ch->sport->sdev;
2342         BUG_ON(!sdev);
2343
2344         se_sess = ch->sess;
2345         BUG_ON(!se_sess);
2346
2347         target_wait_for_sess_cmds(se_sess);
2348
2349         transport_deregister_session_configfs(se_sess);
2350         transport_deregister_session(se_sess);
2351         ch->sess = NULL;
2352
2353         ib_destroy_cm_id(ch->cm_id);
2354
2355         srpt_destroy_ch_ib(ch);
2356
2357         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2358                              ch->sport->sdev, ch->rq_size,
2359                              ch->rsp_size, DMA_TO_DEVICE);
2360
2361         spin_lock_irq(&sdev->spinlock);
2362         list_del(&ch->list);
2363         spin_unlock_irq(&sdev->spinlock);
2364
2365         if (ch->release_done)
2366                 complete(ch->release_done);
2367
2368         wake_up(&sdev->ch_releaseQ);
2369
2370         kfree(ch);
2371 }
2372
2373 static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2374                                                u8 i_port_id[16])
2375 {
2376         struct srpt_node_acl *nacl;
2377
2378         list_for_each_entry(nacl, &sport->port_acl_list, list)
2379                 if (memcmp(nacl->i_port_id, i_port_id,
2380                            sizeof(nacl->i_port_id)) == 0)
2381                         return nacl;
2382
2383         return NULL;
2384 }
2385
2386 static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2387                                              u8 i_port_id[16])
2388 {
2389         struct srpt_node_acl *nacl;
2390
2391         spin_lock_irq(&sport->port_acl_lock);
2392         nacl = __srpt_lookup_acl(sport, i_port_id);
2393         spin_unlock_irq(&sport->port_acl_lock);
2394
2395         return nacl;
2396 }
2397
2398 /**
2399  * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2400  *
2401  * Ownership of the cm_id is transferred to the target session if this
2402  * functions returns zero. Otherwise the caller remains the owner of cm_id.
2403  */
2404 static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2405                             struct ib_cm_req_event_param *param,
2406                             void *private_data)
2407 {
2408         struct srpt_device *sdev = cm_id->context;
2409         struct srpt_port *sport = &sdev->port[param->port - 1];
2410         struct srp_login_req *req;
2411         struct srp_login_rsp *rsp;
2412         struct srp_login_rej *rej;
2413         struct ib_cm_rep_param *rep_param;
2414         struct srpt_rdma_ch *ch, *tmp_ch;
2415         struct srpt_node_acl *nacl;
2416         u32 it_iu_len;
2417         int i;
2418         int ret = 0;
2419
2420         WARN_ON_ONCE(irqs_disabled());
2421
2422         if (WARN_ON(!sdev || !private_data))
2423                 return -EINVAL;
2424
2425         req = (struct srp_login_req *)private_data;
2426
2427         it_iu_len = be32_to_cpu(req->req_it_iu_len);
2428
2429         printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2430                " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2431                " (guid=0x%llx:0x%llx)\n",
2432                be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2433                be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2434                be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2435                be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2436                it_iu_len,
2437                param->port,
2438                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2439                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2440
2441         rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2442         rej = kzalloc(sizeof *rej, GFP_KERNEL);
2443         rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2444
2445         if (!rsp || !rej || !rep_param) {
2446                 ret = -ENOMEM;
2447                 goto out;
2448         }
2449
2450         if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2451                 rej->reason = __constant_cpu_to_be32(
2452                                 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2453                 ret = -EINVAL;
2454                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2455                        " length (%d bytes) is out of range (%d .. %d)\n",
2456                        it_iu_len, 64, srp_max_req_size);
2457                 goto reject;
2458         }
2459
2460         if (!sport->enabled) {
2461                 rej->reason = __constant_cpu_to_be32(
2462                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2463                 ret = -EINVAL;
2464                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2465                        " has not yet been enabled\n");
2466                 goto reject;
2467         }
2468
2469         if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2470                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2471
2472                 spin_lock_irq(&sdev->spinlock);
2473
2474                 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2475                         if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2476                             && !memcmp(ch->t_port_id, req->target_port_id, 16)
2477                             && param->port == ch->sport->port
2478                             && param->listen_id == ch->sport->sdev->cm_id
2479                             && ch->cm_id) {
2480                                 enum rdma_ch_state ch_state;
2481
2482                                 ch_state = srpt_get_ch_state(ch);
2483                                 if (ch_state != CH_CONNECTING
2484                                     && ch_state != CH_LIVE)
2485                                         continue;
2486
2487                                 /* found an existing channel */
2488                                 pr_debug("Found existing channel %s"
2489                                          " cm_id= %p state= %d\n",
2490                                          ch->sess_name, ch->cm_id, ch_state);
2491
2492                                 __srpt_close_ch(ch);
2493
2494                                 rsp->rsp_flags =
2495                                         SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2496                         }
2497                 }
2498
2499                 spin_unlock_irq(&sdev->spinlock);
2500
2501         } else
2502                 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2503
2504         if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2505             || *(__be64 *)(req->target_port_id + 8) !=
2506                cpu_to_be64(srpt_service_guid)) {
2507                 rej->reason = __constant_cpu_to_be32(
2508                                 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2509                 ret = -ENOMEM;
2510                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2511                        " has an invalid target port identifier.\n");
2512                 goto reject;
2513         }
2514
2515         ch = kzalloc(sizeof *ch, GFP_KERNEL);
2516         if (!ch) {
2517                 rej->reason = __constant_cpu_to_be32(
2518                                         SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2519                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2520                 ret = -ENOMEM;
2521                 goto reject;
2522         }
2523
2524         INIT_WORK(&ch->release_work, srpt_release_channel_work);
2525         memcpy(ch->i_port_id, req->initiator_port_id, 16);
2526         memcpy(ch->t_port_id, req->target_port_id, 16);
2527         ch->sport = &sdev->port[param->port - 1];
2528         ch->cm_id = cm_id;
2529         /*
2530          * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2531          * for the SRP protocol to the command queue size.
2532          */
2533         ch->rq_size = SRPT_RQ_SIZE;
2534         spin_lock_init(&ch->spinlock);
2535         ch->state = CH_CONNECTING;
2536         INIT_LIST_HEAD(&ch->cmd_wait_list);
2537         ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2538
2539         ch->ioctx_ring = (struct srpt_send_ioctx **)
2540                 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2541                                       sizeof(*ch->ioctx_ring[0]),
2542                                       ch->rsp_size, DMA_TO_DEVICE);
2543         if (!ch->ioctx_ring)
2544                 goto free_ch;
2545
2546         INIT_LIST_HEAD(&ch->free_list);
2547         for (i = 0; i < ch->rq_size; i++) {
2548                 ch->ioctx_ring[i]->ch = ch;
2549                 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2550         }
2551
2552         ret = srpt_create_ch_ib(ch);
2553         if (ret) {
2554                 rej->reason = __constant_cpu_to_be32(
2555                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2556                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2557                        " a new RDMA channel failed.\n");
2558                 goto free_ring;
2559         }
2560
2561         ret = srpt_ch_qp_rtr(ch, ch->qp);
2562         if (ret) {
2563                 rej->reason = __constant_cpu_to_be32(
2564                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2565                 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2566                        " RTR failed (error code = %d)\n", ret);
2567                 goto destroy_ib;
2568         }
2569         /*
2570          * Use the initator port identifier as the session name.
2571          */
2572         snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2573                         be64_to_cpu(*(__be64 *)ch->i_port_id),
2574                         be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2575
2576         pr_debug("registering session %s\n", ch->sess_name);
2577
2578         nacl = srpt_lookup_acl(sport, ch->i_port_id);
2579         if (!nacl) {
2580                 printk(KERN_INFO "Rejected login because no ACL has been"
2581                        " configured yet for initiator %s.\n", ch->sess_name);
2582                 rej->reason = __constant_cpu_to_be32(
2583                                 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2584                 goto destroy_ib;
2585         }
2586
2587         ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2588         if (IS_ERR(ch->sess)) {
2589                 rej->reason = __constant_cpu_to_be32(
2590                                 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2591                 pr_debug("Failed to create session\n");
2592                 goto deregister_session;
2593         }
2594         ch->sess->se_node_acl = &nacl->nacl;
2595         transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2596
2597         pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2598                  ch->sess_name, ch->cm_id);
2599
2600         /* create srp_login_response */
2601         rsp->opcode = SRP_LOGIN_RSP;
2602         rsp->tag = req->tag;
2603         rsp->max_it_iu_len = req->req_it_iu_len;
2604         rsp->max_ti_iu_len = req->req_it_iu_len;
2605         ch->max_ti_iu_len = it_iu_len;
2606         rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2607                                               | SRP_BUF_FORMAT_INDIRECT);
2608         rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2609         atomic_set(&ch->req_lim, ch->rq_size);
2610         atomic_set(&ch->req_lim_delta, 0);
2611
2612         /* create cm reply */
2613         rep_param->qp_num = ch->qp->qp_num;
2614         rep_param->private_data = (void *)rsp;
2615         rep_param->private_data_len = sizeof *rsp;
2616         rep_param->rnr_retry_count = 7;
2617         rep_param->flow_control = 1;
2618         rep_param->failover_accepted = 0;
2619         rep_param->srq = 1;
2620         rep_param->responder_resources = 4;
2621         rep_param->initiator_depth = 4;
2622
2623         ret = ib_send_cm_rep(cm_id, rep_param);
2624         if (ret) {
2625                 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2626                        " (error code = %d)\n", ret);
2627                 goto release_channel;
2628         }
2629
2630         spin_lock_irq(&sdev->spinlock);
2631         list_add_tail(&ch->list, &sdev->rch_list);
2632         spin_unlock_irq(&sdev->spinlock);
2633
2634         goto out;
2635
2636 release_channel:
2637         srpt_set_ch_state(ch, CH_RELEASING);
2638         transport_deregister_session_configfs(ch->sess);
2639
2640 deregister_session:
2641         transport_deregister_session(ch->sess);
2642         ch->sess = NULL;
2643
2644 destroy_ib:
2645         srpt_destroy_ch_ib(ch);
2646
2647 free_ring:
2648         srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2649                              ch->sport->sdev, ch->rq_size,
2650                              ch->rsp_size, DMA_TO_DEVICE);
2651 free_ch:
2652         kfree(ch);
2653
2654 reject:
2655         rej->opcode = SRP_LOGIN_REJ;
2656         rej->tag = req->tag;
2657         rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2658                                               | SRP_BUF_FORMAT_INDIRECT);
2659
2660         ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2661                              (void *)rej, sizeof *rej);
2662
2663 out:
2664         kfree(rep_param);
2665         kfree(rsp);
2666         kfree(rej);
2667
2668         return ret;
2669 }
2670
2671 static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2672 {
2673         printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2674         srpt_drain_channel(cm_id);
2675 }
2676
2677 /**
2678  * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2679  *
2680  * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2681  * and that the recipient may begin transmitting (RTU = ready to use).
2682  */
2683 static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2684 {
2685         struct srpt_rdma_ch *ch;
2686         int ret;
2687
2688         ch = srpt_find_channel(cm_id->context, cm_id);
2689         BUG_ON(!ch);
2690
2691         if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2692                 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2693
2694                 ret = srpt_ch_qp_rts(ch, ch->qp);
2695
2696                 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2697                                          wait_list) {
2698                         list_del(&ioctx->wait_list);
2699                         srpt_handle_new_iu(ch, ioctx, NULL);
2700                 }
2701                 if (ret)
2702                         srpt_close_ch(ch);
2703         }
2704 }
2705
2706 static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2707 {
2708         printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2709         srpt_drain_channel(cm_id);
2710 }
2711
2712 static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2713 {
2714         printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2715         srpt_drain_channel(cm_id);
2716 }
2717
2718 /**
2719  * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2720  */
2721 static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2722 {
2723         struct srpt_rdma_ch *ch;
2724         unsigned long flags;
2725         bool send_drep = false;
2726
2727         ch = srpt_find_channel(cm_id->context, cm_id);
2728         BUG_ON(!ch);
2729
2730         pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2731
2732         spin_lock_irqsave(&ch->spinlock, flags);
2733         switch (ch->state) {
2734         case CH_CONNECTING:
2735         case CH_LIVE:
2736                 send_drep = true;
2737                 ch->state = CH_DISCONNECTING;
2738                 break;
2739         case CH_DISCONNECTING:
2740         case CH_DRAINING:
2741         case CH_RELEASING:
2742                 WARN(true, "unexpected channel state %d\n", ch->state);
2743                 break;
2744         }
2745         spin_unlock_irqrestore(&ch->spinlock, flags);
2746
2747         if (send_drep) {
2748                 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2749                         printk(KERN_ERR "Sending IB DREP failed.\n");
2750                 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2751                        ch->sess_name);
2752         }
2753 }
2754
2755 /**
2756  * srpt_cm_drep_recv() - Process reception of a DREP message.
2757  */
2758 static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2759 {
2760         printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2761                cm_id);
2762         srpt_drain_channel(cm_id);
2763 }
2764
2765 /**
2766  * srpt_cm_handler() - IB connection manager callback function.
2767  *
2768  * A non-zero return value will cause the caller destroy the CM ID.
2769  *
2770  * Note: srpt_cm_handler() must only return a non-zero value when transferring
2771  * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2772  * a non-zero value in any other case will trigger a race with the
2773  * ib_destroy_cm_id() call in srpt_release_channel().
2774  */
2775 static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2776 {
2777         int ret;
2778
2779         ret = 0;
2780         switch (event->event) {
2781         case IB_CM_REQ_RECEIVED:
2782                 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2783                                        event->private_data);
2784                 break;
2785         case IB_CM_REJ_RECEIVED:
2786                 srpt_cm_rej_recv(cm_id);
2787                 break;
2788         case IB_CM_RTU_RECEIVED:
2789         case IB_CM_USER_ESTABLISHED:
2790                 srpt_cm_rtu_recv(cm_id);
2791                 break;
2792         case IB_CM_DREQ_RECEIVED:
2793                 srpt_cm_dreq_recv(cm_id);
2794                 break;
2795         case IB_CM_DREP_RECEIVED:
2796                 srpt_cm_drep_recv(cm_id);
2797                 break;
2798         case IB_CM_TIMEWAIT_EXIT:
2799                 srpt_cm_timewait_exit(cm_id);
2800                 break;
2801         case IB_CM_REP_ERROR:
2802                 srpt_cm_rep_error(cm_id);
2803                 break;
2804         case IB_CM_DREQ_ERROR:
2805                 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2806                 break;
2807         case IB_CM_MRA_RECEIVED:
2808                 printk(KERN_INFO "Received IB MRA event\n");
2809                 break;
2810         default:
2811                 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2812                        event->event);
2813                 break;
2814         }
2815
2816         return ret;
2817 }
2818
2819 /**
2820  * srpt_perform_rdmas() - Perform IB RDMA.
2821  *
2822  * Returns zero upon success or a negative number upon failure.
2823  */
2824 static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2825                               struct srpt_send_ioctx *ioctx)
2826 {
2827         struct ib_send_wr wr;
2828         struct ib_send_wr *bad_wr;
2829         struct rdma_iu *riu;
2830         int i;
2831         int ret;
2832         int sq_wr_avail;
2833         enum dma_data_direction dir;
2834         const int n_rdma = ioctx->n_rdma;
2835
2836         dir = ioctx->cmd.data_direction;
2837         if (dir == DMA_TO_DEVICE) {
2838                 /* write */
2839                 ret = -ENOMEM;
2840                 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2841                 if (sq_wr_avail < 0) {
2842                         printk(KERN_WARNING "IB send queue full (needed %d)\n",
2843                                n_rdma);
2844                         goto out;
2845                 }
2846         }
2847
2848         ioctx->rdma_aborted = false;
2849         ret = 0;
2850         riu = ioctx->rdma_ius;
2851         memset(&wr, 0, sizeof wr);
2852
2853         for (i = 0; i < n_rdma; ++i, ++riu) {
2854                 if (dir == DMA_FROM_DEVICE) {
2855                         wr.opcode = IB_WR_RDMA_WRITE;
2856                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2857                                                 SRPT_RDMA_WRITE_LAST :
2858                                                 SRPT_RDMA_MID,
2859                                                 ioctx->ioctx.index);
2860                 } else {
2861                         wr.opcode = IB_WR_RDMA_READ;
2862                         wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2863                                                 SRPT_RDMA_READ_LAST :
2864                                                 SRPT_RDMA_MID,
2865                                                 ioctx->ioctx.index);
2866                 }
2867                 wr.next = NULL;
2868                 wr.wr.rdma.remote_addr = riu->raddr;
2869                 wr.wr.rdma.rkey = riu->rkey;
2870                 wr.num_sge = riu->sge_cnt;
2871                 wr.sg_list = riu->sge;
2872
2873                 /* only get completion event for the last rdma write */
2874                 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2875                         wr.send_flags = IB_SEND_SIGNALED;
2876
2877                 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2878                 if (ret)
2879                         break;
2880         }
2881
2882         if (ret)
2883                 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2884                                  __func__, __LINE__, ret, i, n_rdma);
2885         if (ret && i > 0) {
2886                 wr.num_sge = 0;
2887                 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2888                 wr.send_flags = IB_SEND_SIGNALED;
2889                 while (ch->state == CH_LIVE &&
2890                         ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2891                         printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2892                                 ioctx->ioctx.index);
2893                         msleep(1000);
2894                 }
2895                 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2896                         printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2897                                 ioctx->ioctx.index);
2898                         msleep(1000);
2899                 }
2900         }
2901 out:
2902         if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2903                 atomic_add(n_rdma, &ch->sq_wr_avail);
2904         return ret;
2905 }
2906
2907 /**
2908  * srpt_xfer_data() - Start data transfer from initiator to target.
2909  */
2910 static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2911                           struct srpt_send_ioctx *ioctx)
2912 {
2913         int ret;
2914
2915         ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2916         if (ret) {
2917                 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2918                 goto out;
2919         }
2920
2921         ret = srpt_perform_rdmas(ch, ioctx);
2922         if (ret) {
2923                 if (ret == -EAGAIN || ret == -ENOMEM)
2924                         printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2925                                    __func__, __LINE__, ret);
2926                 else
2927                         printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2928                                __func__, __LINE__, ret);
2929                 goto out_unmap;
2930         }
2931
2932 out:
2933         return ret;
2934 out_unmap:
2935         srpt_unmap_sg_to_ib_sge(ch, ioctx);
2936         goto out;
2937 }
2938
2939 static int srpt_write_pending_status(struct se_cmd *se_cmd)
2940 {
2941         struct srpt_send_ioctx *ioctx;
2942
2943         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2944         return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2945 }
2946
2947 /*
2948  * srpt_write_pending() - Start data transfer from initiator to target (write).
2949  */
2950 static int srpt_write_pending(struct se_cmd *se_cmd)
2951 {
2952         struct srpt_rdma_ch *ch;
2953         struct srpt_send_ioctx *ioctx;
2954         enum srpt_command_state new_state;
2955         enum rdma_ch_state ch_state;
2956         int ret;
2957
2958         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2959
2960         new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2961         WARN_ON(new_state == SRPT_STATE_DONE);
2962
2963         ch = ioctx->ch;
2964         BUG_ON(!ch);
2965
2966         ch_state = srpt_get_ch_state(ch);
2967         switch (ch_state) {
2968         case CH_CONNECTING:
2969                 WARN(true, "unexpected channel state %d\n", ch_state);
2970                 ret = -EINVAL;
2971                 goto out;
2972         case CH_LIVE:
2973                 break;
2974         case CH_DISCONNECTING:
2975         case CH_DRAINING:
2976         case CH_RELEASING:
2977                 pr_debug("cmd with tag %lld: channel disconnecting\n",
2978                          ioctx->tag);
2979                 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2980                 ret = -EINVAL;
2981                 goto out;
2982         }
2983         ret = srpt_xfer_data(ch, ioctx);
2984
2985 out:
2986         return ret;
2987 }
2988
2989 static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2990 {
2991         switch (tcm_mgmt_status) {
2992         case TMR_FUNCTION_COMPLETE:
2993                 return SRP_TSK_MGMT_SUCCESS;
2994         case TMR_FUNCTION_REJECTED:
2995                 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2996         }
2997         return SRP_TSK_MGMT_FAILED;
2998 }
2999
3000 /**
3001  * srpt_queue_response() - Transmits the response to a SCSI command.
3002  *
3003  * Callback function called by the TCM core. Must not block since it can be
3004  * invoked on the context of the IB completion handler.
3005  */
3006 static void srpt_queue_response(struct se_cmd *cmd)
3007 {
3008         struct srpt_rdma_ch *ch;
3009         struct srpt_send_ioctx *ioctx;
3010         enum srpt_command_state state;
3011         unsigned long flags;
3012         int ret;
3013         enum dma_data_direction dir;
3014         int resp_len;
3015         u8 srp_tm_status;
3016
3017         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3018         ch = ioctx->ch;
3019         BUG_ON(!ch);
3020
3021         spin_lock_irqsave(&ioctx->spinlock, flags);
3022         state = ioctx->state;
3023         switch (state) {
3024         case SRPT_STATE_NEW:
3025         case SRPT_STATE_DATA_IN:
3026                 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3027                 break;
3028         case SRPT_STATE_MGMT:
3029                 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3030                 break;
3031         default:
3032                 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3033                         ch, ioctx->ioctx.index, ioctx->state);
3034                 break;
3035         }
3036         spin_unlock_irqrestore(&ioctx->spinlock, flags);
3037
3038         if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3039                      || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3040                 atomic_inc(&ch->req_lim_delta);
3041                 srpt_abort_cmd(ioctx);
3042                 return;
3043         }
3044
3045         dir = ioctx->cmd.data_direction;
3046
3047         /* For read commands, transfer the data to the initiator. */
3048         if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3049             !ioctx->queue_status_only) {
3050                 ret = srpt_xfer_data(ch, ioctx);
3051                 if (ret) {
3052                         printk(KERN_ERR "xfer_data failed for tag %llu\n",
3053                                ioctx->tag);
3054                         return;
3055                 }
3056         }
3057
3058         if (state != SRPT_STATE_MGMT)
3059                 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3060                                               cmd->scsi_status);
3061         else {
3062                 srp_tm_status
3063                         = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3064                 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3065                                                  ioctx->tag);
3066         }
3067         ret = srpt_post_send(ch, ioctx, resp_len);
3068         if (ret) {
3069                 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3070                        ioctx->tag);
3071                 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3072                 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3073                 target_put_sess_cmd(ioctx->ch->sess, &ioctx->cmd);
3074         }
3075 }
3076
3077 static int srpt_queue_data_in(struct se_cmd *cmd)
3078 {
3079         srpt_queue_response(cmd);
3080         return 0;
3081 }
3082
3083 static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3084 {
3085         srpt_queue_response(cmd);
3086 }
3087
3088 static void srpt_aborted_task(struct se_cmd *cmd)
3089 {
3090         struct srpt_send_ioctx *ioctx = container_of(cmd,
3091                                 struct srpt_send_ioctx, cmd);
3092
3093         srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3094 }
3095
3096 static int srpt_queue_status(struct se_cmd *cmd)
3097 {
3098         struct srpt_send_ioctx *ioctx;
3099
3100         ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3101         BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3102         if (cmd->se_cmd_flags &
3103             (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3104                 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3105         ioctx->queue_status_only = true;
3106         srpt_queue_response(cmd);
3107         return 0;
3108 }
3109
3110 static void srpt_refresh_port_work(struct work_struct *work)
3111 {
3112         struct srpt_port *sport = container_of(work, struct srpt_port, work);
3113
3114         srpt_refresh_port(sport);
3115 }
3116
3117 static int srpt_ch_list_empty(struct srpt_device *sdev)
3118 {
3119         int res;
3120
3121         spin_lock_irq(&sdev->spinlock);
3122         res = list_empty(&sdev->rch_list);
3123         spin_unlock_irq(&sdev->spinlock);
3124
3125         return res;
3126 }
3127
3128 /**
3129  * srpt_release_sdev() - Free the channel resources associated with a target.
3130  */
3131 static int srpt_release_sdev(struct srpt_device *sdev)
3132 {
3133         struct srpt_rdma_ch *ch, *tmp_ch;
3134         int res;
3135
3136         WARN_ON_ONCE(irqs_disabled());
3137
3138         BUG_ON(!sdev);
3139
3140         spin_lock_irq(&sdev->spinlock);
3141         list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3142                 __srpt_close_ch(ch);
3143         spin_unlock_irq(&sdev->spinlock);
3144
3145         res = wait_event_interruptible(sdev->ch_releaseQ,
3146                                        srpt_ch_list_empty(sdev));
3147         if (res)
3148                 printk(KERN_ERR "%s: interrupted.\n", __func__);
3149
3150         return 0;
3151 }
3152
3153 static struct srpt_port *__srpt_lookup_port(const char *name)
3154 {
3155         struct ib_device *dev;
3156         struct srpt_device *sdev;
3157         struct srpt_port *sport;
3158         int i;
3159
3160         list_for_each_entry(sdev, &srpt_dev_list, list) {
3161                 dev = sdev->device;
3162                 if (!dev)
3163                         continue;
3164
3165                 for (i = 0; i < dev->phys_port_cnt; i++) {
3166                         sport = &sdev->port[i];
3167
3168                         if (!strcmp(sport->port_guid, name))
3169                                 return sport;
3170                 }
3171         }
3172
3173         return NULL;
3174 }
3175
3176 static struct srpt_port *srpt_lookup_port(const char *name)
3177 {
3178         struct srpt_port *sport;
3179
3180         spin_lock(&srpt_dev_lock);
3181         sport = __srpt_lookup_port(name);
3182         spin_unlock(&srpt_dev_lock);
3183
3184         return sport;
3185 }
3186
3187 /**
3188  * srpt_add_one() - Infiniband device addition callback function.
3189  */
3190 static void srpt_add_one(struct ib_device *device)
3191 {
3192         struct srpt_device *sdev;
3193         struct srpt_port *sport;
3194         struct ib_srq_init_attr srq_attr;
3195         int i;
3196
3197         pr_debug("device = %p, device->dma_ops = %p\n", device,
3198                  device->dma_ops);
3199
3200         sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3201         if (!sdev)
3202                 goto err;
3203
3204         sdev->device = device;
3205         INIT_LIST_HEAD(&sdev->rch_list);
3206         init_waitqueue_head(&sdev->ch_releaseQ);
3207         spin_lock_init(&sdev->spinlock);
3208
3209         if (ib_query_device(device, &sdev->dev_attr))
3210                 goto free_dev;
3211
3212         sdev->pd = ib_alloc_pd(device);
3213         if (IS_ERR(sdev->pd))
3214                 goto free_dev;
3215
3216         sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3217         if (IS_ERR(sdev->mr))
3218                 goto err_pd;
3219
3220         sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3221
3222         srq_attr.event_handler = srpt_srq_event;
3223         srq_attr.srq_context = (void *)sdev;
3224         srq_attr.attr.max_wr = sdev->srq_size;
3225         srq_attr.attr.max_sge = 1;
3226         srq_attr.attr.srq_limit = 0;
3227         srq_attr.srq_type = IB_SRQT_BASIC;
3228
3229         sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3230         if (IS_ERR(sdev->srq))
3231                 goto err_mr;
3232
3233         pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3234                  __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3235                  device->name);
3236
3237         if (!srpt_service_guid)
3238                 srpt_service_guid = be64_to_cpu(device->node_guid);
3239
3240         sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3241         if (IS_ERR(sdev->cm_id))
3242                 goto err_srq;
3243
3244         /* print out target login information */
3245         pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3246                  "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3247                  srpt_service_guid, srpt_service_guid);
3248
3249         /*
3250          * We do not have a consistent service_id (ie. also id_ext of target_id)
3251          * to identify this target. We currently use the guid of the first HCA
3252          * in the system as service_id; therefore, the target_id will change
3253          * if this HCA is gone bad and replaced by different HCA
3254          */
3255         if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3256                 goto err_cm;
3257
3258         INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3259                               srpt_event_handler);
3260         if (ib_register_event_handler(&sdev->event_handler))
3261                 goto err_cm;
3262
3263         sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3264                 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3265                                       sizeof(*sdev->ioctx_ring[0]),
3266                                       srp_max_req_size, DMA_FROM_DEVICE);
3267         if (!sdev->ioctx_ring)
3268                 goto err_event;
3269
3270         for (i = 0; i < sdev->srq_size; ++i)
3271                 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3272
3273         WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3274
3275         for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3276                 sport = &sdev->port[i - 1];
3277                 sport->sdev = sdev;
3278                 sport->port = i;
3279                 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3280                 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3281                 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3282                 INIT_WORK(&sport->work, srpt_refresh_port_work);
3283                 INIT_LIST_HEAD(&sport->port_acl_list);
3284                 spin_lock_init(&sport->port_acl_lock);
3285
3286                 if (srpt_refresh_port(sport)) {
3287                         printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3288                                srpt_sdev_name(sdev), i);
3289                         goto err_ring;
3290                 }
3291                 snprintf(sport->port_guid, sizeof(sport->port_guid),
3292                         "0x%016llx%016llx",
3293                         be64_to_cpu(sport->gid.global.subnet_prefix),
3294                         be64_to_cpu(sport->gid.global.interface_id));
3295         }
3296
3297         spin_lock(&srpt_dev_lock);
3298         list_add_tail(&sdev->list, &srpt_dev_list);
3299         spin_unlock(&srpt_dev_lock);
3300
3301 out:
3302         ib_set_client_data(device, &srpt_client, sdev);
3303         pr_debug("added %s.\n", device->name);
3304         return;
3305
3306 err_ring:
3307         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3308                              sdev->srq_size, srp_max_req_size,
3309                              DMA_FROM_DEVICE);
3310 err_event:
3311         ib_unregister_event_handler(&sdev->event_handler);
3312 err_cm:
3313         ib_destroy_cm_id(sdev->cm_id);
3314 err_srq:
3315         ib_destroy_srq(sdev->srq);
3316 err_mr:
3317         ib_dereg_mr(sdev->mr);
3318 err_pd:
3319         ib_dealloc_pd(sdev->pd);
3320 free_dev:
3321         kfree(sdev);
3322 err:
3323         sdev = NULL;
3324         printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3325         goto out;
3326 }
3327
3328 /**
3329  * srpt_remove_one() - InfiniBand device removal callback function.
3330  */
3331 static void srpt_remove_one(struct ib_device *device)
3332 {
3333         struct srpt_device *sdev;
3334         int i;
3335
3336         sdev = ib_get_client_data(device, &srpt_client);
3337         if (!sdev) {
3338                 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3339                        device->name);
3340                 return;
3341         }
3342
3343         srpt_unregister_mad_agent(sdev);
3344
3345         ib_unregister_event_handler(&sdev->event_handler);
3346
3347         /* Cancel any work queued by the just unregistered IB event handler. */
3348         for (i = 0; i < sdev->device->phys_port_cnt; i++)
3349                 cancel_work_sync(&sdev->port[i].work);
3350
3351         ib_destroy_cm_id(sdev->cm_id);
3352
3353         /*
3354          * Unregistering a target must happen after destroying sdev->cm_id
3355          * such that no new SRP_LOGIN_REQ information units can arrive while
3356          * destroying the target.
3357          */
3358         spin_lock(&srpt_dev_lock);
3359         list_del(&sdev->list);
3360         spin_unlock(&srpt_dev_lock);
3361         srpt_release_sdev(sdev);
3362
3363         ib_destroy_srq(sdev->srq);
3364         ib_dereg_mr(sdev->mr);
3365         ib_dealloc_pd(sdev->pd);
3366
3367         srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3368                              sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3369         sdev->ioctx_ring = NULL;
3370         kfree(sdev);
3371 }
3372
3373 static struct ib_client srpt_client = {
3374         .name = DRV_NAME,
3375         .add = srpt_add_one,
3376         .remove = srpt_remove_one
3377 };
3378
3379 static int srpt_check_true(struct se_portal_group *se_tpg)
3380 {
3381         return 1;
3382 }
3383
3384 static int srpt_check_false(struct se_portal_group *se_tpg)
3385 {
3386         return 0;
3387 }
3388
3389 static char *srpt_get_fabric_name(void)
3390 {
3391         return "srpt";
3392 }
3393
3394 static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3395 {
3396         return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3397 }
3398
3399 static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3400 {
3401         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3402
3403         return sport->port_guid;
3404 }
3405
3406 static u16 srpt_get_tag(struct se_portal_group *tpg)
3407 {
3408         return 1;
3409 }
3410
3411 static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3412 {
3413         return 1;
3414 }
3415
3416 static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3417                                     struct se_node_acl *se_nacl,
3418                                     struct t10_pr_registration *pr_reg,
3419                                     int *format_code, unsigned char *buf)
3420 {
3421         struct srpt_node_acl *nacl;
3422         struct spc_rdma_transport_id *tr_id;
3423
3424         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3425         tr_id = (void *)buf;
3426         tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3427         memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3428         return sizeof(*tr_id);
3429 }
3430
3431 static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3432                                         struct se_node_acl *se_nacl,
3433                                         struct t10_pr_registration *pr_reg,
3434                                         int *format_code)
3435 {
3436         *format_code = 0;
3437         return sizeof(struct spc_rdma_transport_id);
3438 }
3439
3440 static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3441                                             const char *buf, u32 *out_tid_len,
3442                                             char **port_nexus_ptr)
3443 {
3444         struct spc_rdma_transport_id *tr_id;
3445
3446         *port_nexus_ptr = NULL;
3447         *out_tid_len = sizeof(struct spc_rdma_transport_id);
3448         tr_id = (void *)buf;
3449         return (char *)tr_id->i_port_id;
3450 }
3451
3452 static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3453 {
3454         struct srpt_node_acl *nacl;
3455
3456         nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3457         if (!nacl) {
3458                 printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n");
3459                 return NULL;
3460         }
3461
3462         return &nacl->nacl;
3463 }
3464
3465 static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3466                                     struct se_node_acl *se_nacl)
3467 {
3468         struct srpt_node_acl *nacl;
3469
3470         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3471         kfree(nacl);
3472 }
3473
3474 static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3475 {
3476         return 1;
3477 }
3478
3479 static void srpt_release_cmd(struct se_cmd *se_cmd)
3480 {
3481         struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3482                                 struct srpt_send_ioctx, cmd);
3483         struct srpt_rdma_ch *ch = ioctx->ch;
3484         unsigned long flags;
3485
3486         WARN_ON(ioctx->state != SRPT_STATE_DONE);
3487         WARN_ON(ioctx->mapped_sg_count != 0);
3488
3489         if (ioctx->n_rbuf > 1) {
3490                 kfree(ioctx->rbufs);
3491                 ioctx->rbufs = NULL;
3492                 ioctx->n_rbuf = 0;
3493         }
3494
3495         spin_lock_irqsave(&ch->spinlock, flags);
3496         list_add(&ioctx->free_list, &ch->free_list);
3497         spin_unlock_irqrestore(&ch->spinlock, flags);
3498 }
3499
3500 /**
3501  * srpt_close_session() - Forcibly close a session.
3502  *
3503  * Callback function invoked by the TCM core to clean up sessions associated
3504  * with a node ACL when the user invokes
3505  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3506  */
3507 static void srpt_close_session(struct se_session *se_sess)
3508 {
3509         DECLARE_COMPLETION_ONSTACK(release_done);
3510         struct srpt_rdma_ch *ch;
3511         struct srpt_device *sdev;
3512         int res;
3513
3514         ch = se_sess->fabric_sess_ptr;
3515         WARN_ON(ch->sess != se_sess);
3516
3517         pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3518
3519         sdev = ch->sport->sdev;
3520         spin_lock_irq(&sdev->spinlock);
3521         BUG_ON(ch->release_done);
3522         ch->release_done = &release_done;
3523         __srpt_close_ch(ch);
3524         spin_unlock_irq(&sdev->spinlock);
3525
3526         res = wait_for_completion_timeout(&release_done, 60 * HZ);
3527         WARN_ON(res <= 0);
3528 }
3529
3530 /**
3531  * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3532  *
3533  * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3534  * This object represents an arbitrary integer used to uniquely identify a
3535  * particular attached remote initiator port to a particular SCSI target port
3536  * within a particular SCSI target device within a particular SCSI instance.
3537  */
3538 static u32 srpt_sess_get_index(struct se_session *se_sess)
3539 {
3540         return 0;
3541 }
3542
3543 static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3544 {
3545 }
3546
3547 static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3548 {
3549         struct srpt_send_ioctx *ioctx;
3550
3551         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3552         return ioctx->tag;
3553 }
3554
3555 /* Note: only used from inside debug printk's by the TCM core. */
3556 static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3557 {
3558         struct srpt_send_ioctx *ioctx;
3559
3560         ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3561         return srpt_get_cmd_state(ioctx);
3562 }
3563
3564 /**
3565  * srpt_parse_i_port_id() - Parse an initiator port ID.
3566  * @name: ASCII representation of a 128-bit initiator port ID.
3567  * @i_port_id: Binary 128-bit port ID.
3568  */
3569 static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3570 {
3571         const char *p;
3572         unsigned len, count, leading_zero_bytes;
3573         int ret, rc;
3574
3575         p = name;
3576         if (strnicmp(p, "0x", 2) == 0)
3577                 p += 2;
3578         ret = -EINVAL;
3579         len = strlen(p);
3580         if (len % 2)
3581                 goto out;
3582         count = min(len / 2, 16U);
3583         leading_zero_bytes = 16 - count;
3584         memset(i_port_id, 0, leading_zero_bytes);
3585         rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3586         if (rc < 0)
3587                 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3588         ret = 0;
3589 out:
3590         return ret;
3591 }
3592
3593 /*
3594  * configfs callback function invoked for
3595  * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3596  */
3597 static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3598                                              struct config_group *group,
3599                                              const char *name)
3600 {
3601         struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3602         struct se_node_acl *se_nacl, *se_nacl_new;
3603         struct srpt_node_acl *nacl;
3604         int ret = 0;
3605         u32 nexus_depth = 1;
3606         u8 i_port_id[16];
3607
3608         if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3609                 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3610                 ret = -EINVAL;
3611                 goto err;
3612         }
3613
3614         se_nacl_new = srpt_alloc_fabric_acl(tpg);
3615         if (!se_nacl_new) {
3616                 ret = -ENOMEM;
3617                 goto err;
3618         }
3619         /*
3620          * nacl_new may be released by core_tpg_add_initiator_node_acl()
3621          * when converting a node ACL from demo mode to explict
3622          */
3623         se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3624                                                   nexus_depth);
3625         if (IS_ERR(se_nacl)) {
3626                 ret = PTR_ERR(se_nacl);
3627                 goto err;
3628         }
3629         /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3630         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3631         memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3632         nacl->sport = sport;
3633
3634         spin_lock_irq(&sport->port_acl_lock);
3635         list_add_tail(&nacl->list, &sport->port_acl_list);
3636         spin_unlock_irq(&sport->port_acl_lock);
3637
3638         return se_nacl;
3639 err:
3640         return ERR_PTR(ret);
3641 }
3642
3643 /*
3644  * configfs callback function invoked for
3645  * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3646  */
3647 static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3648 {
3649         struct srpt_node_acl *nacl;
3650         struct srpt_device *sdev;
3651         struct srpt_port *sport;
3652
3653         nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3654         sport = nacl->sport;
3655         sdev = sport->sdev;
3656         spin_lock_irq(&sport->port_acl_lock);
3657         list_del(&nacl->list);
3658         spin_unlock_irq(&sport->port_acl_lock);
3659         core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3660         srpt_release_fabric_acl(NULL, se_nacl);
3661 }
3662
3663 static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3664         struct se_portal_group *se_tpg,
3665         char *page)
3666 {
3667         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3668
3669         return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3670 }
3671
3672 static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3673         struct se_portal_group *se_tpg,
3674         const char *page,
3675         size_t count)
3676 {
3677         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3678         unsigned long val;
3679         int ret;
3680
3681         ret = kstrtoul(page, 0, &val);
3682         if (ret < 0) {
3683                 pr_err("kstrtoul() failed with ret: %d\n", ret);
3684                 return -EINVAL;
3685         }
3686         if (val > MAX_SRPT_RDMA_SIZE) {
3687                 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3688                         MAX_SRPT_RDMA_SIZE);
3689                 return -EINVAL;
3690         }
3691         if (val < DEFAULT_MAX_RDMA_SIZE) {
3692                 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3693                         val, DEFAULT_MAX_RDMA_SIZE);
3694                 return -EINVAL;
3695         }
3696         sport->port_attrib.srp_max_rdma_size = val;
3697
3698         return count;
3699 }
3700
3701 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3702
3703 static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3704         struct se_portal_group *se_tpg,
3705         char *page)
3706 {
3707         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3708
3709         return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3710 }
3711
3712 static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3713         struct se_portal_group *se_tpg,
3714         const char *page,
3715         size_t count)
3716 {
3717         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3718         unsigned long val;
3719         int ret;
3720
3721         ret = kstrtoul(page, 0, &val);
3722         if (ret < 0) {
3723                 pr_err("kstrtoul() failed with ret: %d\n", ret);
3724                 return -EINVAL;
3725         }
3726         if (val > MAX_SRPT_RSP_SIZE) {
3727                 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3728                         MAX_SRPT_RSP_SIZE);
3729                 return -EINVAL;
3730         }
3731         if (val < MIN_MAX_RSP_SIZE) {
3732                 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3733                         MIN_MAX_RSP_SIZE);
3734                 return -EINVAL;
3735         }
3736         sport->port_attrib.srp_max_rsp_size = val;
3737
3738         return count;
3739 }
3740
3741 TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3742
3743 static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3744         struct se_portal_group *se_tpg,
3745         char *page)
3746 {
3747         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3748
3749         return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3750 }
3751
3752 static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3753         struct se_portal_group *se_tpg,
3754         const char *page,
3755         size_t count)
3756 {
3757         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3758         unsigned long val;
3759         int ret;
3760
3761         ret = kstrtoul(page, 0, &val);
3762         if (ret < 0) {
3763                 pr_err("kstrtoul() failed with ret: %d\n", ret);
3764                 return -EINVAL;
3765         }
3766         if (val > MAX_SRPT_SRQ_SIZE) {
3767                 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3768                         MAX_SRPT_SRQ_SIZE);
3769                 return -EINVAL;
3770         }
3771         if (val < MIN_SRPT_SRQ_SIZE) {
3772                 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3773                         MIN_SRPT_SRQ_SIZE);
3774                 return -EINVAL;
3775         }
3776         sport->port_attrib.srp_sq_size = val;
3777
3778         return count;
3779 }
3780
3781 TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3782
3783 static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3784         &srpt_tpg_attrib_srp_max_rdma_size.attr,
3785         &srpt_tpg_attrib_srp_max_rsp_size.attr,
3786         &srpt_tpg_attrib_srp_sq_size.attr,
3787         NULL,
3788 };
3789
3790 static ssize_t srpt_tpg_show_enable(
3791         struct se_portal_group *se_tpg,
3792         char *page)
3793 {
3794         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3795
3796         return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3797 }
3798
3799 static ssize_t srpt_tpg_store_enable(
3800         struct se_portal_group *se_tpg,
3801         const char *page,
3802         size_t count)
3803 {
3804         struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3805         unsigned long tmp;
3806         int ret;
3807
3808         ret = kstrtoul(page, 0, &tmp);
3809         if (ret < 0) {
3810                 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3811                 return -EINVAL;
3812         }
3813
3814         if ((tmp != 0) && (tmp != 1)) {
3815                 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3816                 return -EINVAL;
3817         }
3818         if (tmp == 1)
3819                 sport->enabled = true;
3820         else
3821                 sport->enabled = false;
3822
3823         return count;
3824 }
3825
3826 TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3827
3828 static struct configfs_attribute *srpt_tpg_attrs[] = {
3829         &srpt_tpg_enable.attr,
3830         NULL,
3831 };
3832
3833 /**
3834  * configfs callback invoked for
3835  * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3836  */
3837 static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3838                                              struct config_group *group,
3839                                              const char *name)
3840 {
3841         struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3842         int res;
3843
3844         /* Initialize sport->port_wwn and sport->port_tpg_1 */
3845         res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3846                         &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3847         if (res)
3848                 return ERR_PTR(res);
3849
3850         return &sport->port_tpg_1;
3851 }
3852
3853 /**
3854  * configfs callback invoked for
3855  * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3856  */
3857 static void srpt_drop_tpg(struct se_portal_group *tpg)
3858 {
3859         struct srpt_port *sport = container_of(tpg,
3860                                 struct srpt_port, port_tpg_1);
3861
3862         sport->enabled = false;
3863         core_tpg_deregister(&sport->port_tpg_1);
3864 }
3865
3866 /**
3867  * configfs callback invoked for
3868  * mkdir /sys/kernel/config/target/$driver/$port
3869  */
3870 static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3871                                       struct config_group *group,
3872                                       const char *name)
3873 {
3874         struct srpt_port *sport;
3875         int ret;
3876
3877         sport = srpt_lookup_port(name);
3878         pr_debug("make_tport(%s)\n", name);
3879         ret = -EINVAL;
3880         if (!sport)
3881                 goto err;
3882
3883         return &sport->port_wwn;
3884
3885 err:
3886         return ERR_PTR(ret);
3887 }
3888
3889 /**
3890  * configfs callback invoked for
3891  * rmdir /sys/kernel/config/target/$driver/$port
3892  */
3893 static void srpt_drop_tport(struct se_wwn *wwn)
3894 {
3895         struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3896
3897         pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3898 }
3899
3900 static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3901                                               char *buf)
3902 {
3903         return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3904 }
3905
3906 TF_WWN_ATTR_RO(srpt, version);
3907
3908 static struct configfs_attribute *srpt_wwn_attrs[] = {
3909         &srpt_wwn_version.attr,
3910         NULL,
3911 };
3912
3913 static struct target_core_fabric_ops srpt_template = {
3914         .get_fabric_name                = srpt_get_fabric_name,
3915         .get_fabric_proto_ident         = srpt_get_fabric_proto_ident,
3916         .tpg_get_wwn                    = srpt_get_fabric_wwn,
3917         .tpg_get_tag                    = srpt_get_tag,
3918         .tpg_get_default_depth          = srpt_get_default_depth,
3919         .tpg_get_pr_transport_id        = srpt_get_pr_transport_id,
3920         .tpg_get_pr_transport_id_len    = srpt_get_pr_transport_id_len,
3921         .tpg_parse_pr_out_transport_id  = srpt_parse_pr_out_transport_id,
3922         .tpg_check_demo_mode            = srpt_check_false,
3923         .tpg_check_demo_mode_cache      = srpt_check_true,
3924         .tpg_check_demo_mode_write_protect = srpt_check_true,
3925         .tpg_check_prod_mode_write_protect = srpt_check_false,
3926         .tpg_alloc_fabric_acl           = srpt_alloc_fabric_acl,
3927         .tpg_release_fabric_acl         = srpt_release_fabric_acl,
3928         .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3929         .release_cmd                    = srpt_release_cmd,
3930         .check_stop_free                = srpt_check_stop_free,
3931         .shutdown_session               = srpt_shutdown_session,
3932         .close_session                  = srpt_close_session,
3933         .sess_get_index                 = srpt_sess_get_index,
3934         .sess_get_initiator_sid         = NULL,
3935         .write_pending                  = srpt_write_pending,
3936         .write_pending_status           = srpt_write_pending_status,
3937         .set_default_node_attributes    = srpt_set_default_node_attrs,
3938         .get_task_tag                   = srpt_get_task_tag,
3939         .get_cmd_state                  = srpt_get_tcm_cmd_state,
3940         .queue_data_in                  = srpt_queue_data_in,
3941         .queue_status                   = srpt_queue_status,
3942         .queue_tm_rsp                   = srpt_queue_tm_rsp,
3943         .aborted_task                   = srpt_aborted_task,
3944         /*
3945          * Setup function pointers for generic logic in
3946          * target_core_fabric_configfs.c
3947          */
3948         .fabric_make_wwn                = srpt_make_tport,
3949         .fabric_drop_wwn                = srpt_drop_tport,
3950         .fabric_make_tpg                = srpt_make_tpg,
3951         .fabric_drop_tpg                = srpt_drop_tpg,
3952         .fabric_post_link               = NULL,
3953         .fabric_pre_unlink              = NULL,
3954         .fabric_make_np                 = NULL,
3955         .fabric_drop_np                 = NULL,
3956         .fabric_make_nodeacl            = srpt_make_nodeacl,
3957         .fabric_drop_nodeacl            = srpt_drop_nodeacl,
3958 };
3959
3960 /**
3961  * srpt_init_module() - Kernel module initialization.
3962  *
3963  * Note: Since ib_register_client() registers callback functions, and since at
3964  * least one of these callback functions (srpt_add_one()) calls target core
3965  * functions, this driver must be registered with the target core before
3966  * ib_register_client() is called.
3967  */
3968 static int __init srpt_init_module(void)
3969 {
3970         int ret;
3971
3972         ret = -EINVAL;
3973         if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3974                 printk(KERN_ERR "invalid value %d for kernel module parameter"
3975                        " srp_max_req_size -- must be at least %d.\n",
3976                        srp_max_req_size, MIN_MAX_REQ_SIZE);
3977                 goto out;
3978         }
3979
3980         if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3981             || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3982                 printk(KERN_ERR "invalid value %d for kernel module parameter"
3983                        " srpt_srq_size -- must be in the range [%d..%d].\n",
3984                        srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3985                 goto out;
3986         }
3987
3988         srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
3989         if (IS_ERR(srpt_target)) {
3990                 printk(KERN_ERR "couldn't register\n");
3991                 ret = PTR_ERR(srpt_target);
3992                 goto out;
3993         }
3994
3995         srpt_target->tf_ops = srpt_template;
3996
3997         /*
3998          * Set up default attribute lists.
3999          */
4000         srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4001         srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4002         srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4003         srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4004         srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4005         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4006         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4007         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4008         srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4009
4010         ret = target_fabric_configfs_register(srpt_target);
4011         if (ret < 0) {
4012                 printk(KERN_ERR "couldn't register\n");
4013                 goto out_free_target;
4014         }
4015
4016         ret = ib_register_client(&srpt_client);
4017         if (ret) {
4018                 printk(KERN_ERR "couldn't register IB client\n");
4019                 goto out_unregister_target;
4020         }
4021
4022         return 0;
4023
4024 out_unregister_target:
4025         target_fabric_configfs_deregister(srpt_target);
4026         srpt_target = NULL;
4027 out_free_target:
4028         if (srpt_target)
4029                 target_fabric_configfs_free(srpt_target);
4030 out:
4031         return ret;
4032 }
4033
4034 static void __exit srpt_cleanup_module(void)
4035 {
4036         ib_unregister_client(&srpt_client);
4037         target_fabric_configfs_deregister(srpt_target);
4038         srpt_target = NULL;
4039 }
4040
4041 module_init(srpt_init_module);
4042 module_exit(srpt_cleanup_module);