Merge branch 'async-scsi-resume' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / arch / arm / kernel / kprobes.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/stringify.h>
28 #include <asm/traps.h>
29 #include <asm/opcodes.h>
30 #include <asm/cacheflush.h>
31 #include <linux/percpu.h>
32 #include <linux/bug.h>
33
34 #include "kprobes.h"
35 #include "probes-arm.h"
36 #include "probes-thumb.h"
37 #include "patch.h"
38
39 #define MIN_STACK_SIZE(addr)                            \
40         min((unsigned long)MAX_STACK_SIZE,              \
41             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
42
43 #define flush_insns(addr, size)                         \
44         flush_icache_range((unsigned long)(addr),       \
45                            (unsigned long)(addr) +      \
46                            (size))
47
48 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
49 #define JPROBE_MAGIC_ADDR               0xffffffff
50
51 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
52 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
53
54
55 int __kprobes arch_prepare_kprobe(struct kprobe *p)
56 {
57         kprobe_opcode_t insn;
58         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
59         unsigned long addr = (unsigned long)p->addr;
60         bool thumb;
61         kprobe_decode_insn_t *decode_insn;
62         const union decode_action *actions;
63         int is;
64
65         if (in_exception_text(addr))
66                 return -EINVAL;
67
68 #ifdef CONFIG_THUMB2_KERNEL
69         thumb = true;
70         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
71         insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
72         if (is_wide_instruction(insn)) {
73                 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
74                 insn = __opcode_thumb32_compose(insn, inst2);
75                 decode_insn = thumb32_probes_decode_insn;
76                 actions = kprobes_t32_actions;
77         } else {
78                 decode_insn = thumb16_probes_decode_insn;
79                 actions = kprobes_t16_actions;
80         }
81 #else /* !CONFIG_THUMB2_KERNEL */
82         thumb = false;
83         if (addr & 0x3)
84                 return -EINVAL;
85         insn = __mem_to_opcode_arm(*p->addr);
86         decode_insn = arm_probes_decode_insn;
87         actions = kprobes_arm_actions;
88 #endif
89
90         p->opcode = insn;
91         p->ainsn.insn = tmp_insn;
92
93         switch ((*decode_insn)(insn, &p->ainsn, true, actions)) {
94         case INSN_REJECTED:     /* not supported */
95                 return -EINVAL;
96
97         case INSN_GOOD:         /* instruction uses slot */
98                 p->ainsn.insn = get_insn_slot();
99                 if (!p->ainsn.insn)
100                         return -ENOMEM;
101                 for (is = 0; is < MAX_INSN_SIZE; ++is)
102                         p->ainsn.insn[is] = tmp_insn[is];
103                 flush_insns(p->ainsn.insn,
104                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
105                 p->ainsn.insn_fn = (probes_insn_fn_t *)
106                                         ((uintptr_t)p->ainsn.insn | thumb);
107                 break;
108
109         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
110                 p->ainsn.insn = NULL;
111                 break;
112         }
113
114         return 0;
115 }
116
117 void __kprobes arch_arm_kprobe(struct kprobe *p)
118 {
119         unsigned int brkp;
120         void *addr;
121
122         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
123                 /* Remove any Thumb flag */
124                 addr = (void *)((uintptr_t)p->addr & ~1);
125
126                 if (is_wide_instruction(p->opcode))
127                         brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
128                 else
129                         brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
130         } else {
131                 kprobe_opcode_t insn = p->opcode;
132
133                 addr = p->addr;
134                 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
135
136                 if (insn >= 0xe0000000)
137                         brkp |= 0xe0000000;  /* Unconditional instruction */
138                 else
139                         brkp |= insn & 0xf0000000;  /* Copy condition from insn */
140         }
141
142         patch_text(addr, brkp);
143 }
144
145 /*
146  * The actual disarming is done here on each CPU and synchronized using
147  * stop_machine. This synchronization is necessary on SMP to avoid removing
148  * a probe between the moment the 'Undefined Instruction' exception is raised
149  * and the moment the exception handler reads the faulting instruction from
150  * memory. It is also needed to atomically set the two half-words of a 32-bit
151  * Thumb breakpoint.
152  */
153 int __kprobes __arch_disarm_kprobe(void *p)
154 {
155         struct kprobe *kp = p;
156         void *addr = (void *)((uintptr_t)kp->addr & ~1);
157
158         __patch_text(addr, kp->opcode);
159
160         return 0;
161 }
162
163 void __kprobes arch_disarm_kprobe(struct kprobe *p)
164 {
165         stop_machine(__arch_disarm_kprobe, p, cpu_online_mask);
166 }
167
168 void __kprobes arch_remove_kprobe(struct kprobe *p)
169 {
170         if (p->ainsn.insn) {
171                 free_insn_slot(p->ainsn.insn, 0);
172                 p->ainsn.insn = NULL;
173         }
174 }
175
176 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
177 {
178         kcb->prev_kprobe.kp = kprobe_running();
179         kcb->prev_kprobe.status = kcb->kprobe_status;
180 }
181
182 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
183 {
184         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
185         kcb->kprobe_status = kcb->prev_kprobe.status;
186 }
187
188 static void __kprobes set_current_kprobe(struct kprobe *p)
189 {
190         __this_cpu_write(current_kprobe, p);
191 }
192
193 static void __kprobes
194 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
195 {
196 #ifdef CONFIG_THUMB2_KERNEL
197         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
198         if (is_wide_instruction(p->opcode))
199                 regs->ARM_pc += 4;
200         else
201                 regs->ARM_pc += 2;
202 #else
203         regs->ARM_pc += 4;
204 #endif
205 }
206
207 static inline void __kprobes
208 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
209 {
210         p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
211 }
212
213 /*
214  * Called with IRQs disabled. IRQs must remain disabled from that point
215  * all the way until processing this kprobe is complete.  The current
216  * kprobes implementation cannot process more than one nested level of
217  * kprobe, and that level is reserved for user kprobe handlers, so we can't
218  * risk encountering a new kprobe in an interrupt handler.
219  */
220 void __kprobes kprobe_handler(struct pt_regs *regs)
221 {
222         struct kprobe *p, *cur;
223         struct kprobe_ctlblk *kcb;
224
225         kcb = get_kprobe_ctlblk();
226         cur = kprobe_running();
227
228 #ifdef CONFIG_THUMB2_KERNEL
229         /*
230          * First look for a probe which was registered using an address with
231          * bit 0 set, this is the usual situation for pointers to Thumb code.
232          * If not found, fallback to looking for one with bit 0 clear.
233          */
234         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
235         if (!p)
236                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
237
238 #else /* ! CONFIG_THUMB2_KERNEL */
239         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
240 #endif
241
242         if (p) {
243                 if (cur) {
244                         /* Kprobe is pending, so we're recursing. */
245                         switch (kcb->kprobe_status) {
246                         case KPROBE_HIT_ACTIVE:
247                         case KPROBE_HIT_SSDONE:
248                                 /* A pre- or post-handler probe got us here. */
249                                 kprobes_inc_nmissed_count(p);
250                                 save_previous_kprobe(kcb);
251                                 set_current_kprobe(p);
252                                 kcb->kprobe_status = KPROBE_REENTER;
253                                 singlestep(p, regs, kcb);
254                                 restore_previous_kprobe(kcb);
255                                 break;
256                         default:
257                                 /* impossible cases */
258                                 BUG();
259                         }
260                 } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
261                         /* Probe hit and conditional execution check ok. */
262                         set_current_kprobe(p);
263                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
264
265                         /*
266                          * If we have no pre-handler or it returned 0, we
267                          * continue with normal processing.  If we have a
268                          * pre-handler and it returned non-zero, it prepped
269                          * for calling the break_handler below on re-entry,
270                          * so get out doing nothing more here.
271                          */
272                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
273                                 kcb->kprobe_status = KPROBE_HIT_SS;
274                                 singlestep(p, regs, kcb);
275                                 if (p->post_handler) {
276                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
277                                         p->post_handler(p, regs, 0);
278                                 }
279                                 reset_current_kprobe();
280                         }
281                 } else {
282                         /*
283                          * Probe hit but conditional execution check failed,
284                          * so just skip the instruction and continue as if
285                          * nothing had happened.
286                          */
287                         singlestep_skip(p, regs);
288                 }
289         } else if (cur) {
290                 /* We probably hit a jprobe.  Call its break handler. */
291                 if (cur->break_handler && cur->break_handler(cur, regs)) {
292                         kcb->kprobe_status = KPROBE_HIT_SS;
293                         singlestep(cur, regs, kcb);
294                         if (cur->post_handler) {
295                                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
296                                 cur->post_handler(cur, regs, 0);
297                         }
298                 }
299                 reset_current_kprobe();
300         } else {
301                 /*
302                  * The probe was removed and a race is in progress.
303                  * There is nothing we can do about it.  Let's restart
304                  * the instruction.  By the time we can restart, the
305                  * real instruction will be there.
306                  */
307         }
308 }
309
310 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
311 {
312         unsigned long flags;
313         local_irq_save(flags);
314         kprobe_handler(regs);
315         local_irq_restore(flags);
316         return 0;
317 }
318
319 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
320 {
321         struct kprobe *cur = kprobe_running();
322         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
323
324         switch (kcb->kprobe_status) {
325         case KPROBE_HIT_SS:
326         case KPROBE_REENTER:
327                 /*
328                  * We are here because the instruction being single
329                  * stepped caused a page fault. We reset the current
330                  * kprobe and the PC to point back to the probe address
331                  * and allow the page fault handler to continue as a
332                  * normal page fault.
333                  */
334                 regs->ARM_pc = (long)cur->addr;
335                 if (kcb->kprobe_status == KPROBE_REENTER) {
336                         restore_previous_kprobe(kcb);
337                 } else {
338                         reset_current_kprobe();
339                 }
340                 break;
341
342         case KPROBE_HIT_ACTIVE:
343         case KPROBE_HIT_SSDONE:
344                 /*
345                  * We increment the nmissed count for accounting,
346                  * we can also use npre/npostfault count for accounting
347                  * these specific fault cases.
348                  */
349                 kprobes_inc_nmissed_count(cur);
350
351                 /*
352                  * We come here because instructions in the pre/post
353                  * handler caused the page_fault, this could happen
354                  * if handler tries to access user space by
355                  * copy_from_user(), get_user() etc. Let the
356                  * user-specified handler try to fix it.
357                  */
358                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
359                         return 1;
360                 break;
361
362         default:
363                 break;
364         }
365
366         return 0;
367 }
368
369 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
370                                        unsigned long val, void *data)
371 {
372         /*
373          * notify_die() is currently never called on ARM,
374          * so this callback is currently empty.
375          */
376         return NOTIFY_DONE;
377 }
378
379 /*
380  * When a retprobed function returns, trampoline_handler() is called,
381  * calling the kretprobe's handler. We construct a struct pt_regs to
382  * give a view of registers r0-r11 to the user return-handler.  This is
383  * not a complete pt_regs structure, but that should be plenty sufficient
384  * for kretprobe handlers which should normally be interested in r0 only
385  * anyway.
386  */
387 void __naked __kprobes kretprobe_trampoline(void)
388 {
389         __asm__ __volatile__ (
390                 "stmdb  sp!, {r0 - r11}         \n\t"
391                 "mov    r0, sp                  \n\t"
392                 "bl     trampoline_handler      \n\t"
393                 "mov    lr, r0                  \n\t"
394                 "ldmia  sp!, {r0 - r11}         \n\t"
395 #ifdef CONFIG_THUMB2_KERNEL
396                 "bx     lr                      \n\t"
397 #else
398                 "mov    pc, lr                  \n\t"
399 #endif
400                 : : : "memory");
401 }
402
403 /* Called from kretprobe_trampoline */
404 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
405 {
406         struct kretprobe_instance *ri = NULL;
407         struct hlist_head *head, empty_rp;
408         struct hlist_node *tmp;
409         unsigned long flags, orig_ret_address = 0;
410         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
411
412         INIT_HLIST_HEAD(&empty_rp);
413         kretprobe_hash_lock(current, &head, &flags);
414
415         /*
416          * It is possible to have multiple instances associated with a given
417          * task either because multiple functions in the call path have
418          * a return probe installed on them, and/or more than one return
419          * probe was registered for a target function.
420          *
421          * We can handle this because:
422          *     - instances are always inserted at the head of the list
423          *     - when multiple return probes are registered for the same
424          *       function, the first instance's ret_addr will point to the
425          *       real return address, and all the rest will point to
426          *       kretprobe_trampoline
427          */
428         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
429                 if (ri->task != current)
430                         /* another task is sharing our hash bucket */
431                         continue;
432
433                 if (ri->rp && ri->rp->handler) {
434                         __this_cpu_write(current_kprobe, &ri->rp->kp);
435                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
436                         ri->rp->handler(ri, regs);
437                         __this_cpu_write(current_kprobe, NULL);
438                 }
439
440                 orig_ret_address = (unsigned long)ri->ret_addr;
441                 recycle_rp_inst(ri, &empty_rp);
442
443                 if (orig_ret_address != trampoline_address)
444                         /*
445                          * This is the real return address. Any other
446                          * instances associated with this task are for
447                          * other calls deeper on the call stack
448                          */
449                         break;
450         }
451
452         kretprobe_assert(ri, orig_ret_address, trampoline_address);
453         kretprobe_hash_unlock(current, &flags);
454
455         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
456                 hlist_del(&ri->hlist);
457                 kfree(ri);
458         }
459
460         return (void *)orig_ret_address;
461 }
462
463 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
464                                       struct pt_regs *regs)
465 {
466         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
467
468         /* Replace the return addr with trampoline addr. */
469         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
470 }
471
472 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
473 {
474         struct jprobe *jp = container_of(p, struct jprobe, kp);
475         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476         long sp_addr = regs->ARM_sp;
477         long cpsr;
478
479         kcb->jprobe_saved_regs = *regs;
480         memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
481         regs->ARM_pc = (long)jp->entry;
482
483         cpsr = regs->ARM_cpsr | PSR_I_BIT;
484 #ifdef CONFIG_THUMB2_KERNEL
485         /* Set correct Thumb state in cpsr */
486         if (regs->ARM_pc & 1)
487                 cpsr |= PSR_T_BIT;
488         else
489                 cpsr &= ~PSR_T_BIT;
490 #endif
491         regs->ARM_cpsr = cpsr;
492
493         preempt_disable();
494         return 1;
495 }
496
497 void __kprobes jprobe_return(void)
498 {
499         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
500
501         __asm__ __volatile__ (
502                 /*
503                  * Setup an empty pt_regs. Fill SP and PC fields as
504                  * they're needed by longjmp_break_handler.
505                  *
506                  * We allocate some slack between the original SP and start of
507                  * our fabricated regs. To be precise we want to have worst case
508                  * covered which is STMFD with all 16 regs so we allocate 2 *
509                  * sizeof(struct_pt_regs)).
510                  *
511                  * This is to prevent any simulated instruction from writing
512                  * over the regs when they are accessing the stack.
513                  */
514 #ifdef CONFIG_THUMB2_KERNEL
515                 "sub    r0, %0, %1              \n\t"
516                 "mov    sp, r0                  \n\t"
517 #else
518                 "sub    sp, %0, %1              \n\t"
519 #endif
520                 "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
521                 "str    %0, [sp, %2]            \n\t"
522                 "str    r0, [sp, %3]            \n\t"
523                 "mov    r0, sp                  \n\t"
524                 "bl     kprobe_handler          \n\t"
525
526                 /*
527                  * Return to the context saved by setjmp_pre_handler
528                  * and restored by longjmp_break_handler.
529                  */
530 #ifdef CONFIG_THUMB2_KERNEL
531                 "ldr    lr, [sp, %2]            \n\t" /* lr = saved sp */
532                 "ldrd   r0, r1, [sp, %5]        \n\t" /* r0,r1 = saved lr,pc */
533                 "ldr    r2, [sp, %4]            \n\t" /* r2 = saved psr */
534                 "stmdb  lr!, {r0, r1, r2}       \n\t" /* push saved lr and */
535                                                       /* rfe context */
536                 "ldmia  sp, {r0 - r12}          \n\t"
537                 "mov    sp, lr                  \n\t"
538                 "ldr    lr, [sp], #4            \n\t"
539                 "rfeia  sp!                     \n\t"
540 #else
541                 "ldr    r0, [sp, %4]            \n\t"
542                 "msr    cpsr_cxsf, r0           \n\t"
543                 "ldmia  sp, {r0 - pc}           \n\t"
544 #endif
545                 :
546                 : "r" (kcb->jprobe_saved_regs.ARM_sp),
547                   "I" (sizeof(struct pt_regs) * 2),
548                   "J" (offsetof(struct pt_regs, ARM_sp)),
549                   "J" (offsetof(struct pt_regs, ARM_pc)),
550                   "J" (offsetof(struct pt_regs, ARM_cpsr)),
551                   "J" (offsetof(struct pt_regs, ARM_lr))
552                 : "memory", "cc");
553 }
554
555 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
556 {
557         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
558         long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
559         long orig_sp = regs->ARM_sp;
560         struct jprobe *jp = container_of(p, struct jprobe, kp);
561
562         if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
563                 if (orig_sp != stack_addr) {
564                         struct pt_regs *saved_regs =
565                                 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
566                         printk("current sp %lx does not match saved sp %lx\n",
567                                orig_sp, stack_addr);
568                         printk("Saved registers for jprobe %p\n", jp);
569                         show_regs(saved_regs);
570                         printk("Current registers\n");
571                         show_regs(regs);
572                         BUG();
573                 }
574                 *regs = kcb->jprobe_saved_regs;
575                 memcpy((void *)stack_addr, kcb->jprobes_stack,
576                        MIN_STACK_SIZE(stack_addr));
577                 preempt_enable_no_resched();
578                 return 1;
579         }
580         return 0;
581 }
582
583 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
584 {
585         return 0;
586 }
587
588 #ifdef CONFIG_THUMB2_KERNEL
589
590 static struct undef_hook kprobes_thumb16_break_hook = {
591         .instr_mask     = 0xffff,
592         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
593         .cpsr_mask      = MODE_MASK,
594         .cpsr_val       = SVC_MODE,
595         .fn             = kprobe_trap_handler,
596 };
597
598 static struct undef_hook kprobes_thumb32_break_hook = {
599         .instr_mask     = 0xffffffff,
600         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
601         .cpsr_mask      = MODE_MASK,
602         .cpsr_val       = SVC_MODE,
603         .fn             = kprobe_trap_handler,
604 };
605
606 #else  /* !CONFIG_THUMB2_KERNEL */
607
608 static struct undef_hook kprobes_arm_break_hook = {
609         .instr_mask     = 0x0fffffff,
610         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
611         .cpsr_mask      = MODE_MASK,
612         .cpsr_val       = SVC_MODE,
613         .fn             = kprobe_trap_handler,
614 };
615
616 #endif /* !CONFIG_THUMB2_KERNEL */
617
618 int __init arch_init_kprobes()
619 {
620         arm_probes_decode_init();
621 #ifdef CONFIG_THUMB2_KERNEL
622         register_undef_hook(&kprobes_thumb16_break_hook);
623         register_undef_hook(&kprobes_thumb32_break_hook);
624 #else
625         register_undef_hook(&kprobes_arm_break_hook);
626 #endif
627         return 0;
628 }