/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Quick'n'dirty IP checksum ... * * Copyright (C) 1998, 1999 Ralf Baechle * Copyright (C) 1999 Silicon Graphics, Inc. */ #include #include #include #include #ifdef CONFIG_64BIT /* * As we are sharing code base with the mips32 tree (which use the o32 ABI * register definitions). We need to redefine the register definitions from * the n64 ABI register naming to the o32 ABI register naming. */ #undef t0 #undef t1 #undef t2 #undef t3 #define t0 $8 #define t1 $9 #define t2 $10 #define t3 $11 #define t4 $12 #define t5 $13 #define t6 $14 #define t7 $15 #define USE_DOUBLE #endif #ifdef USE_DOUBLE #define LOAD ld #define ADD daddu #define NBYTES 8 #else #define LOAD lw #define ADD addu #define NBYTES 4 #endif /* USE_DOUBLE */ #define UNIT(unit) ((unit)*NBYTES) #define ADDC(sum,reg) \ ADD sum, reg; \ sltu v1, sum, reg; \ ADD sum, v1 #define CSUM_BIGCHUNK1(src, offset, sum, _t0, _t1, _t2, _t3) \ LOAD _t0, (offset + UNIT(0))(src); \ LOAD _t1, (offset + UNIT(1))(src); \ LOAD _t2, (offset + UNIT(2))(src); \ LOAD _t3, (offset + UNIT(3))(src); \ ADDC(sum, _t0); \ ADDC(sum, _t1); \ ADDC(sum, _t2); \ ADDC(sum, _t3) #ifdef USE_DOUBLE #define CSUM_BIGCHUNK(src, offset, sum, _t0, _t1, _t2, _t3) \ CSUM_BIGCHUNK1(src, offset, sum, _t0, _t1, _t2, _t3) #else #define CSUM_BIGCHUNK(src, offset, sum, _t0, _t1, _t2, _t3) \ CSUM_BIGCHUNK1(src, offset, sum, _t0, _t1, _t2, _t3); \ CSUM_BIGCHUNK1(src, offset + 0x10, sum, _t0, _t1, _t2, _t3) #endif /* * a0: source address * a1: length of the area to checksum * a2: partial checksum */ #define src a0 #define sum v0 .text .set noreorder .align 5 LEAF(csum_partial) move sum, zero move t7, zero sltiu t8, a1, 0x8 bnez t8, small_csumcpy /* < 8 bytes to copy */ move t2, a1 andi t7, src, 0x1 /* odd buffer? */ hword_align: beqz t7, word_align andi t8, src, 0x2 lbu t0, (src) LONG_SUBU a1, a1, 0x1 #ifdef __MIPSEL__ sll t0, t0, 8 #endif ADDC(sum, t0) PTR_ADDU src, src, 0x1 andi t8, src, 0x2 word_align: beqz t8, dword_align sltiu t8, a1, 56 lhu t0, (src) LONG_SUBU a1, a1, 0x2 ADDC(sum, t0) sltiu t8, a1, 56 PTR_ADDU src, src, 0x2 dword_align: bnez t8, do_end_words move t8, a1 andi t8, src, 0x4 beqz t8, qword_align andi t8, src, 0x8 lw t0, 0x00(src) LONG_SUBU a1, a1, 0x4 ADDC(sum, t0) PTR_ADDU src, src, 0x4 andi t8, src, 0x8 qword_align: beqz t8, oword_align andi t8, src, 0x10 #ifdef USE_DOUBLE ld t0, 0x00(src) LONG_SUBU a1, a1, 0x8 ADDC(sum, t0) #else lw t0, 0x00(src) lw t1, 0x04(src) LONG_SUBU a1, a1, 0x8 ADDC(sum, t0) ADDC(sum, t1) #endif PTR_ADDU src, src, 0x8 andi t8, src, 0x10 oword_align: beqz t8, begin_movement LONG_SRL t8, a1, 0x7 #ifdef USE_DOUBLE ld t0, 0x00(src) ld t1, 0x08(src) ADDC(sum, t0) ADDC(sum, t1) #else CSUM_BIGCHUNK1(src, 0x00, sum, t0, t1, t3, t4) #endif LONG_SUBU a1, a1, 0x10 PTR_ADDU src, src, 0x10 LONG_SRL t8, a1, 0x7 begin_movement: beqz t8, 1f andi t2, a1, 0x40 move_128bytes: CSUM_BIGCHUNK(src, 0x00, sum, t0, t1, t3, t4) CSUM_BIGCHUNK(src, 0x20, sum, t0, t1, t3, t4) CSUM_BIGCHUNK(src, 0x40, sum, t0, t1, t3, t4) CSUM_BIGCHUNK(src, 0x60, sum, t0, t1, t3, t4) LONG_SUBU t8, t8, 0x01 bnez t8, move_128bytes PTR_ADDU src, src, 0x80 1: beqz t2, 1f andi t2, a1, 0x20 move_64bytes: CSUM_BIGCHUNK(src, 0x00, sum, t0, t1, t3, t4) CSUM_BIGCHUNK(src, 0x20, sum, t0, t1, t3, t4) PTR_ADDU src, src, 0x40 1: beqz t2, do_end_words andi t8, a1, 0x1c move_32bytes: CSUM_BIGCHUNK(src, 0x00, sum, t0, t1, t3, t4) andi t8, a1, 0x1c PTR_ADDU src, src, 0x20 do_end_words: beqz t8, small_csumcpy andi t2, a1, 0x3 LONG_SRL t8, t8, 0x2 end_words: lw t0, (src) LONG_SUBU t8, t8, 0x1 ADDC(sum, t0) bnez t8, end_words PTR_ADDU src, src, 0x4 /* unknown src alignment and < 8 bytes to go */ small_csumcpy: move a1, t2 andi t0, a1, 4 beqz t0, 1f andi t0, a1, 2 /* Still a full word to go */ ulw t1, (src) PTR_ADDIU src, 4 ADDC(sum, t1) 1: move t1, zero beqz t0, 1f andi t0, a1, 1 /* Still a halfword to go */ ulhu t1, (src) PTR_ADDIU src, 2 1: beqz t0, 1f sll t1, t1, 16 lbu t2, (src) nop #ifdef __MIPSEB__ sll t2, t2, 8 #endif or t1, t2 1: ADDC(sum, t1) /* fold checksum */ #ifdef USE_DOUBLE dsll32 v1, sum, 0 daddu sum, v1 sltu v1, sum, v1 dsra32 sum, sum, 0 addu sum, v1 #endif sll v1, sum, 16 addu sum, v1 sltu v1, sum, v1 srl sum, sum, 16 addu sum, v1 /* odd buffer alignment? */ beqz t7, 1f nop sll v1, sum, 8 srl sum, sum, 8 or sum, v1 andi sum, 0xffff 1: .set reorder /* Add the passed partial csum. */ ADDC(sum, a2) jr ra .set noreorder END(csum_partial) /* * checksum and copy routines based on memcpy.S * * csum_partial_copy_nocheck(src, dst, len, sum) * __csum_partial_copy_user(src, dst, len, sum, errp) * * See "Spec" in memcpy.S for details. Unlike __copy_user, all * function in this file use the standard calling convention. */ #define src a0 #define dst a1 #define len a2 #define psum a3 #define sum v0 #define odd t8 #define errptr t9 /* * The exception handler for loads requires that: * 1- AT contain the address of the byte just past the end of the source * of the copy, * 2- src_entry <= src < AT, and * 3- (dst - src) == (dst_entry - src_entry), * The _entry suffix denotes values when __copy_user was called. * * (1) is set up up by __csum_partial_copy_from_user and maintained by * not writing AT in __csum_partial_copy * (2) is met by incrementing src by the number of bytes copied * (3) is met by not doing loads between a pair of increments of dst and src * * The exception handlers for stores stores -EFAULT to errptr and return. * These handlers do not need to overwrite any data. */ #define EXC(inst_reg,addr,handler) \ 9: inst_reg, addr; \ .section __ex_table,"a"; \ PTR 9b, handler; \ .previous #ifdef USE_DOUBLE #define LOAD ld #define LOADL ldl #define LOADR ldr #define STOREL sdl #define STORER sdr #define STORE sd #define ADD daddu #define SUB dsubu #define SRL dsrl #define SLL dsll #define SLLV dsllv #define SRLV dsrlv #define NBYTES 8 #define LOG_NBYTES 3 #else #define LOAD lw #define LOADL lwl #define LOADR lwr #define STOREL swl #define STORER swr #define STORE sw #define ADD addu #define SUB subu #define SRL srl #define SLL sll #define SLLV sllv #define SRLV srlv #define NBYTES 4 #define LOG_NBYTES 2 #endif /* USE_DOUBLE */ #ifdef CONFIG_CPU_LITTLE_ENDIAN #define LDFIRST LOADR #define LDREST LOADL #define STFIRST STORER #define STREST STOREL #define SHIFT_DISCARD SLLV #define SHIFT_DISCARD_REVERT SRLV #else #define LDFIRST LOADL #define LDREST LOADR #define STFIRST STOREL #define STREST STORER #define SHIFT_DISCARD SRLV #define SHIFT_DISCARD_REVERT SLLV #endif #define FIRST(unit) ((unit)*NBYTES) #define REST(unit) (FIRST(unit)+NBYTES-1) #define ADDRMASK (NBYTES-1) .set noat LEAF(__csum_partial_copy_user) PTR_ADDU AT, src, len /* See (1) above. */ #ifdef CONFIG_64BIT move errptr, a4 #else lw errptr, 16(sp) #endif FEXPORT(csum_partial_copy_nocheck) move sum, zero move odd, zero /* * Note: dst & src may be unaligned, len may be 0 * Temps */ /* * The "issue break"s below are very approximate. * Issue delays for dcache fills will perturb the schedule, as will * load queue full replay traps, etc. * * If len < NBYTES use byte operations. */ sltu t2, len, NBYTES and t1, dst, ADDRMASK bnez t2, copy_bytes_checklen and t0, src, ADDRMASK andi odd, dst, 0x1 /* odd buffer? */ bnez t1, dst_unaligned nop bnez t0, src_unaligned_dst_aligned /* * use delay slot for fall-through * src and dst are aligned; need to compute rem */ both_aligned: SRL t0, len, LOG_NBYTES+3 # +3 for 8 units/iter beqz t0, cleanup_both_aligned # len < 8*NBYTES nop SUB len, 8*NBYTES # subtract here for bgez loop .align 4 1: EXC( LOAD t0, UNIT(0)(src), l_exc) EXC( LOAD t1, UNIT(1)(src), l_exc_copy) EXC( LOAD t2, UNIT(2)(src), l_exc_copy) EXC( LOAD t3, UNIT(3)(src), l_exc_copy) EXC( LOAD t4, UNIT(4)(src), l_exc_copy) EXC( LOAD t5, UNIT(5)(src), l_exc_copy) EXC( LOAD t6, UNIT(6)(src), l_exc_copy) EXC( LOAD t7, UNIT(7)(src), l_exc_copy) SUB len, len, 8*NBYTES ADD src, src, 8*NBYTES EXC( STORE t0, UNIT(0)(dst), s_exc) ADDC(sum, t0) EXC( STORE t1, UNIT(1)(dst), s_exc) ADDC(sum, t1) EXC( STORE t2, UNIT(2)(dst), s_exc) ADDC(sum, t2) EXC( STORE t3, UNIT(3)(dst), s_exc) ADDC(sum, t3) EXC( STORE t4, UNIT(4)(dst), s_exc) ADDC(sum, t4) EXC( STORE t5, UNIT(5)(dst), s_exc) ADDC(sum, t5) EXC( STORE t6, UNIT(6)(dst), s_exc) ADDC(sum, t6) EXC( STORE t7, UNIT(7)(dst), s_exc) ADDC(sum, t7) bgez len, 1b ADD dst, dst, 8*NBYTES ADD len, 8*NBYTES # revert len (see above) /* * len == the number of bytes left to copy < 8*NBYTES */ cleanup_both_aligned: #define rem t7 beqz len, done sltu t0, len, 4*NBYTES bnez t0, less_than_4units and rem, len, (NBYTES-1) # rem = len % NBYTES /* * len >= 4*NBYTES */ EXC( LOAD t0, UNIT(0)(src), l_exc) EXC( LOAD t1, UNIT(1)(src), l_exc_copy) EXC( LOAD t2, UNIT(2)(src), l_exc_copy) EXC( LOAD t3, UNIT(3)(src), l_exc_copy) SUB len, len, 4*NBYTES ADD src, src, 4*NBYTES EXC( STORE t0, UNIT(0)(dst), s_exc) ADDC(sum, t0) EXC( STORE t1, UNIT(1)(dst), s_exc) ADDC(sum, t1) EXC( STORE t2, UNIT(2)(dst), s_exc) ADDC(sum, t2) EXC( STORE t3, UNIT(3)(dst), s_exc) ADDC(sum, t3) beqz len, done ADD dst, dst, 4*NBYTES less_than_4units: /* * rem = len % NBYTES */ beq rem, len, copy_bytes nop 1: EXC( LOAD t0, 0(src), l_exc) ADD src, src, NBYTES SUB len, len, NBYTES EXC( STORE t0, 0(dst), s_exc) ADDC(sum, t0) bne rem, len, 1b ADD dst, dst, NBYTES /* * src and dst are aligned, need to copy rem bytes (rem < NBYTES) * A loop would do only a byte at a time with possible branch * mispredicts. Can't do an explicit LOAD dst,mask,or,STORE * because can't assume read-access to dst. Instead, use * STREST dst, which doesn't require read access to dst. * * This code should perform better than a simple loop on modern, * wide-issue mips processors because the code has fewer branches and * more instruction-level parallelism. */ #define bits t2 beqz len, done ADD t1, dst, len # t1 is just past last byte of dst li bits, 8*NBYTES SLL rem, len, 3 # rem = number of bits to keep EXC( LOAD t0, 0(src), l_exc) SUB bits, bits, rem # bits = number of bits to discard SHIFT_DISCARD t0, t0, bits EXC( STREST t0, -1(t1), s_exc) SHIFT_DISCARD_REVERT t0, t0, bits .set reorder ADDC(sum, t0) b done .set noreorder dst_unaligned: /* * dst is unaligned * t0 = src & ADDRMASK * t1 = dst & ADDRMASK; T1 > 0 * len >= NBYTES * * Copy enough bytes to align dst * Set match = (src and dst have same alignment) */ #define match rem EXC( LDFIRST t3, FIRST(0)(src), l_exc) ADD t2, zero, NBYTES EXC( LDREST t3, REST(0)(src), l_exc_copy) SUB t2, t2, t1 # t2 = number of bytes copied xor match, t0, t1 EXC( STFIRST t3, FIRST(0)(dst), s_exc) SLL t4, t1, 3 # t4 = number of bits to discard SHIFT_DISCARD t3, t3, t4 /* no SHIFT_DISCARD_REVERT to handle odd buffer properly */ ADDC(sum, t3) beq len, t2, done SUB len, len, t2 ADD dst, dst, t2 beqz match, both_aligned ADD src, src, t2 src_unaligned_dst_aligned: SRL t0, len, LOG_NBYTES+2 # +2 for 4 units/iter beqz t0, cleanup_src_unaligned and rem, len, (4*NBYTES-1) # rem = len % 4*NBYTES 1: /* * Avoid consecutive LD*'s to the same register since some mips * implementations can't issue them in the same cycle. * It's OK to load FIRST(N+1) before REST(N) because the two addresses * are to the same unit (unless src is aligned, but it's not). */ EXC( LDFIRST t0, FIRST(0)(src), l_exc) EXC( LDFIRST t1, FIRST(1)(src), l_exc_copy) SUB len, len, 4*NBYTES EXC( LDREST t0, REST(0)(src), l_exc_copy) EXC( LDREST t1, REST(1)(src), l_exc_copy) EXC( LDFIRST t2, FIRST(2)(src), l_exc_copy) EXC( LDFIRST t3, FIRST(3)(src), l_exc_copy) EXC( LDREST t2, REST(2)(src), l_exc_copy) EXC( LDREST t3, REST(3)(src), l_exc_copy) ADD src, src, 4*NBYTES #ifdef CONFIG_CPU_SB1 nop # improves slotting #endif EXC( STORE t0, UNIT(0)(dst), s_exc) ADDC(sum, t0) EXC( STORE t1, UNIT(1)(dst), s_exc) ADDC(sum, t1) EXC( STORE t2, UNIT(2)(dst), s_exc) ADDC(sum, t2) EXC( STORE t3, UNIT(3)(dst), s_exc) ADDC(sum, t3) bne len, rem, 1b ADD dst, dst, 4*NBYTES cleanup_src_unaligned: beqz len, done and rem, len, NBYTES-1 # rem = len % NBYTES beq rem, len, copy_bytes nop 1: EXC( LDFIRST t0, FIRST(0)(src), l_exc) EXC( LDREST t0, REST(0)(src), l_exc_copy) ADD src, src, NBYTES SUB len, len, NBYTES EXC( STORE t0, 0(dst), s_exc) ADDC(sum, t0) bne len, rem, 1b ADD dst, dst, NBYTES copy_bytes_checklen: beqz len, done nop copy_bytes: /* 0 < len < NBYTES */ #ifdef CONFIG_CPU_LITTLE_ENDIAN #define SHIFT_START 0 #define SHIFT_INC 8 #else #define SHIFT_START 8*(NBYTES-1) #define SHIFT_INC -8 #endif move t2, zero # partial word li t3, SHIFT_START # shift /* use l_exc_copy here to return correct sum on fault */ #define COPY_BYTE(N) \ EXC( lbu t0, N(src), l_exc_copy); \ SUB len, len, 1; \ EXC( sb t0, N(dst), s_exc); \ SLLV t0, t0, t3; \ addu t3, SHIFT_INC; \ beqz len, copy_bytes_done; \ or t2, t0 COPY_BYTE(0) COPY_BYTE(1) #ifdef USE_DOUBLE COPY_BYTE(2) COPY_BYTE(3) COPY_BYTE(4) COPY_BYTE(5) #endif EXC( lbu t0, NBYTES-2(src), l_exc_copy) SUB len, len, 1 EXC( sb t0, NBYTES-2(dst), s_exc) SLLV t0, t0, t3 or t2, t0 copy_bytes_done: ADDC(sum, t2) done: /* fold checksum */ #ifdef USE_DOUBLE dsll32 v1, sum, 0 daddu sum, v1 sltu v1, sum, v1 dsra32 sum, sum, 0 addu sum, v1 #endif sll v1, sum, 16 addu sum, v1 sltu v1, sum, v1 srl sum, sum, 16 addu sum, v1 /* odd buffer alignment? */ beqz odd, 1f nop sll v1, sum, 8 srl sum, sum, 8 or sum, v1 andi sum, 0xffff 1: .set reorder ADDC(sum, psum) jr ra .set noreorder l_exc_copy: /* * Copy bytes from src until faulting load address (or until a * lb faults) * * When reached by a faulting LDFIRST/LDREST, THREAD_BUADDR($28) * may be more than a byte beyond the last address. * Hence, the lb below may get an exception. * * Assumes src < THREAD_BUADDR($28) */ LOAD t0, TI_TASK($28) li t2, SHIFT_START LOAD t0, THREAD_BUADDR(t0) 1: EXC( lbu t1, 0(src), l_exc) ADD src, src, 1 sb t1, 0(dst) # can't fault -- we're copy_from_user SLLV t1, t1, t2 addu t2, SHIFT_INC ADDC(sum, t1) bne src, t0, 1b ADD dst, dst, 1 l_exc: LOAD t0, TI_TASK($28) nop LOAD t0, THREAD_BUADDR(t0) # t0 is just past last good address nop SUB len, AT, t0 # len number of uncopied bytes /* * Here's where we rely on src and dst being incremented in tandem, * See (3) above. * dst += (fault addr - src) to put dst at first byte to clear */ ADD dst, t0 # compute start address in a1 SUB dst, src /* * Clear len bytes starting at dst. Can't call __bzero because it * might modify len. An inefficient loop for these rare times... */ beqz len, done SUB src, len, 1 1: sb zero, 0(dst) ADD dst, dst, 1 bnez src, 1b SUB src, src, 1 li v1, -EFAULT b done sw v1, (errptr) s_exc: li v0, -1 /* invalid checksum */ li v1, -EFAULT jr ra sw v1, (errptr) END(__csum_partial_copy_user)