Merge branch 'acpi-ec'
[linux-drm-fsl-dcu.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/debugfs.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <sys/resource.h>
17 #include "asm/bug.h"
18 #include "callchain.h"
19 #include "cgroup.h"
20 #include "evsel.h"
21 #include "evlist.h"
22 #include "util.h"
23 #include "cpumap.h"
24 #include "thread_map.h"
25 #include "target.h"
26 #include "perf_regs.h"
27 #include "debug.h"
28 #include "trace-event.h"
29
30 static struct {
31         bool sample_id_all;
32         bool exclude_guest;
33         bool mmap2;
34         bool cloexec;
35 } perf_missing_features;
36
37 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
38 {
39         return 0;
40 }
41
42 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
43 {
44 }
45
46 static struct {
47         size_t  size;
48         int     (*init)(struct perf_evsel *evsel);
49         void    (*fini)(struct perf_evsel *evsel);
50 } perf_evsel__object = {
51         .size = sizeof(struct perf_evsel),
52         .init = perf_evsel__no_extra_init,
53         .fini = perf_evsel__no_extra_fini,
54 };
55
56 int perf_evsel__object_config(size_t object_size,
57                               int (*init)(struct perf_evsel *evsel),
58                               void (*fini)(struct perf_evsel *evsel))
59 {
60
61         if (object_size == 0)
62                 goto set_methods;
63
64         if (perf_evsel__object.size > object_size)
65                 return -EINVAL;
66
67         perf_evsel__object.size = object_size;
68
69 set_methods:
70         if (init != NULL)
71                 perf_evsel__object.init = init;
72
73         if (fini != NULL)
74                 perf_evsel__object.fini = fini;
75
76         return 0;
77 }
78
79 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
80
81 int __perf_evsel__sample_size(u64 sample_type)
82 {
83         u64 mask = sample_type & PERF_SAMPLE_MASK;
84         int size = 0;
85         int i;
86
87         for (i = 0; i < 64; i++) {
88                 if (mask & (1ULL << i))
89                         size++;
90         }
91
92         size *= sizeof(u64);
93
94         return size;
95 }
96
97 /**
98  * __perf_evsel__calc_id_pos - calculate id_pos.
99  * @sample_type: sample type
100  *
101  * This function returns the position of the event id (PERF_SAMPLE_ID or
102  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
103  * sample_event.
104  */
105 static int __perf_evsel__calc_id_pos(u64 sample_type)
106 {
107         int idx = 0;
108
109         if (sample_type & PERF_SAMPLE_IDENTIFIER)
110                 return 0;
111
112         if (!(sample_type & PERF_SAMPLE_ID))
113                 return -1;
114
115         if (sample_type & PERF_SAMPLE_IP)
116                 idx += 1;
117
118         if (sample_type & PERF_SAMPLE_TID)
119                 idx += 1;
120
121         if (sample_type & PERF_SAMPLE_TIME)
122                 idx += 1;
123
124         if (sample_type & PERF_SAMPLE_ADDR)
125                 idx += 1;
126
127         return idx;
128 }
129
130 /**
131  * __perf_evsel__calc_is_pos - calculate is_pos.
132  * @sample_type: sample type
133  *
134  * This function returns the position (counting backwards) of the event id
135  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
136  * sample_id_all is used there is an id sample appended to non-sample events.
137  */
138 static int __perf_evsel__calc_is_pos(u64 sample_type)
139 {
140         int idx = 1;
141
142         if (sample_type & PERF_SAMPLE_IDENTIFIER)
143                 return 1;
144
145         if (!(sample_type & PERF_SAMPLE_ID))
146                 return -1;
147
148         if (sample_type & PERF_SAMPLE_CPU)
149                 idx += 1;
150
151         if (sample_type & PERF_SAMPLE_STREAM_ID)
152                 idx += 1;
153
154         return idx;
155 }
156
157 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
158 {
159         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
160         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
161 }
162
163 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
164                                   enum perf_event_sample_format bit)
165 {
166         if (!(evsel->attr.sample_type & bit)) {
167                 evsel->attr.sample_type |= bit;
168                 evsel->sample_size += sizeof(u64);
169                 perf_evsel__calc_id_pos(evsel);
170         }
171 }
172
173 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
174                                     enum perf_event_sample_format bit)
175 {
176         if (evsel->attr.sample_type & bit) {
177                 evsel->attr.sample_type &= ~bit;
178                 evsel->sample_size -= sizeof(u64);
179                 perf_evsel__calc_id_pos(evsel);
180         }
181 }
182
183 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
184                                bool can_sample_identifier)
185 {
186         if (can_sample_identifier) {
187                 perf_evsel__reset_sample_bit(evsel, ID);
188                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
189         } else {
190                 perf_evsel__set_sample_bit(evsel, ID);
191         }
192         evsel->attr.read_format |= PERF_FORMAT_ID;
193 }
194
195 void perf_evsel__init(struct perf_evsel *evsel,
196                       struct perf_event_attr *attr, int idx)
197 {
198         evsel->idx         = idx;
199         evsel->tracking    = !idx;
200         evsel->attr        = *attr;
201         evsel->leader      = evsel;
202         evsel->unit        = "";
203         evsel->scale       = 1.0;
204         INIT_LIST_HEAD(&evsel->node);
205         perf_evsel__object.init(evsel);
206         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
207         perf_evsel__calc_id_pos(evsel);
208 }
209
210 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
211 {
212         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
213
214         if (evsel != NULL)
215                 perf_evsel__init(evsel, attr, idx);
216
217         return evsel;
218 }
219
220 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
221 {
222         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
223
224         if (evsel != NULL) {
225                 struct perf_event_attr attr = {
226                         .type          = PERF_TYPE_TRACEPOINT,
227                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
228                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
229                 };
230
231                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
232                         goto out_free;
233
234                 evsel->tp_format = trace_event__tp_format(sys, name);
235                 if (evsel->tp_format == NULL)
236                         goto out_free;
237
238                 event_attr_init(&attr);
239                 attr.config = evsel->tp_format->id;
240                 attr.sample_period = 1;
241                 perf_evsel__init(evsel, &attr, idx);
242         }
243
244         return evsel;
245
246 out_free:
247         zfree(&evsel->name);
248         free(evsel);
249         return NULL;
250 }
251
252 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
253         "cycles",
254         "instructions",
255         "cache-references",
256         "cache-misses",
257         "branches",
258         "branch-misses",
259         "bus-cycles",
260         "stalled-cycles-frontend",
261         "stalled-cycles-backend",
262         "ref-cycles",
263 };
264
265 static const char *__perf_evsel__hw_name(u64 config)
266 {
267         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
268                 return perf_evsel__hw_names[config];
269
270         return "unknown-hardware";
271 }
272
273 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
274 {
275         int colon = 0, r = 0;
276         struct perf_event_attr *attr = &evsel->attr;
277         bool exclude_guest_default = false;
278
279 #define MOD_PRINT(context, mod) do {                                    \
280                 if (!attr->exclude_##context) {                         \
281                         if (!colon) colon = ++r;                        \
282                         r += scnprintf(bf + r, size - r, "%c", mod);    \
283                 } } while(0)
284
285         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
286                 MOD_PRINT(kernel, 'k');
287                 MOD_PRINT(user, 'u');
288                 MOD_PRINT(hv, 'h');
289                 exclude_guest_default = true;
290         }
291
292         if (attr->precise_ip) {
293                 if (!colon)
294                         colon = ++r;
295                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
296                 exclude_guest_default = true;
297         }
298
299         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
300                 MOD_PRINT(host, 'H');
301                 MOD_PRINT(guest, 'G');
302         }
303 #undef MOD_PRINT
304         if (colon)
305                 bf[colon - 1] = ':';
306         return r;
307 }
308
309 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
310 {
311         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
312         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
313 }
314
315 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
316         "cpu-clock",
317         "task-clock",
318         "page-faults",
319         "context-switches",
320         "cpu-migrations",
321         "minor-faults",
322         "major-faults",
323         "alignment-faults",
324         "emulation-faults",
325         "dummy",
326 };
327
328 static const char *__perf_evsel__sw_name(u64 config)
329 {
330         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
331                 return perf_evsel__sw_names[config];
332         return "unknown-software";
333 }
334
335 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
336 {
337         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
338         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
339 }
340
341 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
342 {
343         int r;
344
345         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
346
347         if (type & HW_BREAKPOINT_R)
348                 r += scnprintf(bf + r, size - r, "r");
349
350         if (type & HW_BREAKPOINT_W)
351                 r += scnprintf(bf + r, size - r, "w");
352
353         if (type & HW_BREAKPOINT_X)
354                 r += scnprintf(bf + r, size - r, "x");
355
356         return r;
357 }
358
359 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
360 {
361         struct perf_event_attr *attr = &evsel->attr;
362         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
363         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
364 }
365
366 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
367                                 [PERF_EVSEL__MAX_ALIASES] = {
368  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
369  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
370  { "LLC",       "L2",                                                   },
371  { "dTLB",      "d-tlb",        "Data-TLB",                             },
372  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
373  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
374  { "node",                                                              },
375 };
376
377 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
378                                    [PERF_EVSEL__MAX_ALIASES] = {
379  { "load",      "loads",        "read",                                 },
380  { "store",     "stores",       "write",                                },
381  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
382 };
383
384 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
385                                        [PERF_EVSEL__MAX_ALIASES] = {
386  { "refs",      "Reference",    "ops",          "access",               },
387  { "misses",    "miss",                                                 },
388 };
389
390 #define C(x)            PERF_COUNT_HW_CACHE_##x
391 #define CACHE_READ      (1 << C(OP_READ))
392 #define CACHE_WRITE     (1 << C(OP_WRITE))
393 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
394 #define COP(x)          (1 << x)
395
396 /*
397  * cache operartion stat
398  * L1I : Read and prefetch only
399  * ITLB and BPU : Read-only
400  */
401 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
402  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
403  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
404  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
405  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
406  [C(ITLB)]      = (CACHE_READ),
407  [C(BPU)]       = (CACHE_READ),
408  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
409 };
410
411 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
412 {
413         if (perf_evsel__hw_cache_stat[type] & COP(op))
414                 return true;    /* valid */
415         else
416                 return false;   /* invalid */
417 }
418
419 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
420                                             char *bf, size_t size)
421 {
422         if (result) {
423                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
424                                  perf_evsel__hw_cache_op[op][0],
425                                  perf_evsel__hw_cache_result[result][0]);
426         }
427
428         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
429                          perf_evsel__hw_cache_op[op][1]);
430 }
431
432 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
433 {
434         u8 op, result, type = (config >>  0) & 0xff;
435         const char *err = "unknown-ext-hardware-cache-type";
436
437         if (type > PERF_COUNT_HW_CACHE_MAX)
438                 goto out_err;
439
440         op = (config >>  8) & 0xff;
441         err = "unknown-ext-hardware-cache-op";
442         if (op > PERF_COUNT_HW_CACHE_OP_MAX)
443                 goto out_err;
444
445         result = (config >> 16) & 0xff;
446         err = "unknown-ext-hardware-cache-result";
447         if (result > PERF_COUNT_HW_CACHE_RESULT_MAX)
448                 goto out_err;
449
450         err = "invalid-cache";
451         if (!perf_evsel__is_cache_op_valid(type, op))
452                 goto out_err;
453
454         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
455 out_err:
456         return scnprintf(bf, size, "%s", err);
457 }
458
459 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
460 {
461         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
462         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
463 }
464
465 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
466 {
467         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
468         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
469 }
470
471 const char *perf_evsel__name(struct perf_evsel *evsel)
472 {
473         char bf[128];
474
475         if (evsel->name)
476                 return evsel->name;
477
478         switch (evsel->attr.type) {
479         case PERF_TYPE_RAW:
480                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
481                 break;
482
483         case PERF_TYPE_HARDWARE:
484                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
485                 break;
486
487         case PERF_TYPE_HW_CACHE:
488                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
489                 break;
490
491         case PERF_TYPE_SOFTWARE:
492                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
493                 break;
494
495         case PERF_TYPE_TRACEPOINT:
496                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
497                 break;
498
499         case PERF_TYPE_BREAKPOINT:
500                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
501                 break;
502
503         default:
504                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
505                           evsel->attr.type);
506                 break;
507         }
508
509         evsel->name = strdup(bf);
510
511         return evsel->name ?: "unknown";
512 }
513
514 const char *perf_evsel__group_name(struct perf_evsel *evsel)
515 {
516         return evsel->group_name ?: "anon group";
517 }
518
519 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
520 {
521         int ret;
522         struct perf_evsel *pos;
523         const char *group_name = perf_evsel__group_name(evsel);
524
525         ret = scnprintf(buf, size, "%s", group_name);
526
527         ret += scnprintf(buf + ret, size - ret, " { %s",
528                          perf_evsel__name(evsel));
529
530         for_each_group_member(pos, evsel)
531                 ret += scnprintf(buf + ret, size - ret, ", %s",
532                                  perf_evsel__name(pos));
533
534         ret += scnprintf(buf + ret, size - ret, " }");
535
536         return ret;
537 }
538
539 static void
540 perf_evsel__config_callgraph(struct perf_evsel *evsel)
541 {
542         bool function = perf_evsel__is_function_event(evsel);
543         struct perf_event_attr *attr = &evsel->attr;
544
545         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
546
547         if (callchain_param.record_mode == CALLCHAIN_DWARF) {
548                 if (!function) {
549                         perf_evsel__set_sample_bit(evsel, REGS_USER);
550                         perf_evsel__set_sample_bit(evsel, STACK_USER);
551                         attr->sample_regs_user = PERF_REGS_MASK;
552                         attr->sample_stack_user = callchain_param.dump_size;
553                         attr->exclude_callchain_user = 1;
554                 } else {
555                         pr_info("Cannot use DWARF unwind for function trace event,"
556                                 " falling back to framepointers.\n");
557                 }
558         }
559
560         if (function) {
561                 pr_info("Disabling user space callchains for function trace event.\n");
562                 attr->exclude_callchain_user = 1;
563         }
564 }
565
566 /*
567  * The enable_on_exec/disabled value strategy:
568  *
569  *  1) For any type of traced program:
570  *    - all independent events and group leaders are disabled
571  *    - all group members are enabled
572  *
573  *     Group members are ruled by group leaders. They need to
574  *     be enabled, because the group scheduling relies on that.
575  *
576  *  2) For traced programs executed by perf:
577  *     - all independent events and group leaders have
578  *       enable_on_exec set
579  *     - we don't specifically enable or disable any event during
580  *       the record command
581  *
582  *     Independent events and group leaders are initially disabled
583  *     and get enabled by exec. Group members are ruled by group
584  *     leaders as stated in 1).
585  *
586  *  3) For traced programs attached by perf (pid/tid):
587  *     - we specifically enable or disable all events during
588  *       the record command
589  *
590  *     When attaching events to already running traced we
591  *     enable/disable events specifically, as there's no
592  *     initial traced exec call.
593  */
594 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts)
595 {
596         struct perf_evsel *leader = evsel->leader;
597         struct perf_event_attr *attr = &evsel->attr;
598         int track = evsel->tracking;
599         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
600
601         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
602         attr->inherit       = !opts->no_inherit;
603
604         perf_evsel__set_sample_bit(evsel, IP);
605         perf_evsel__set_sample_bit(evsel, TID);
606
607         if (evsel->sample_read) {
608                 perf_evsel__set_sample_bit(evsel, READ);
609
610                 /*
611                  * We need ID even in case of single event, because
612                  * PERF_SAMPLE_READ process ID specific data.
613                  */
614                 perf_evsel__set_sample_id(evsel, false);
615
616                 /*
617                  * Apply group format only if we belong to group
618                  * with more than one members.
619                  */
620                 if (leader->nr_members > 1) {
621                         attr->read_format |= PERF_FORMAT_GROUP;
622                         attr->inherit = 0;
623                 }
624         }
625
626         /*
627          * We default some events to have a default interval. But keep
628          * it a weak assumption overridable by the user.
629          */
630         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
631                                      opts->user_interval != ULLONG_MAX)) {
632                 if (opts->freq) {
633                         perf_evsel__set_sample_bit(evsel, PERIOD);
634                         attr->freq              = 1;
635                         attr->sample_freq       = opts->freq;
636                 } else {
637                         attr->sample_period = opts->default_interval;
638                 }
639         }
640
641         /*
642          * Disable sampling for all group members other
643          * than leader in case leader 'leads' the sampling.
644          */
645         if ((leader != evsel) && leader->sample_read) {
646                 attr->sample_freq   = 0;
647                 attr->sample_period = 0;
648         }
649
650         if (opts->no_samples)
651                 attr->sample_freq = 0;
652
653         if (opts->inherit_stat)
654                 attr->inherit_stat = 1;
655
656         if (opts->sample_address) {
657                 perf_evsel__set_sample_bit(evsel, ADDR);
658                 attr->mmap_data = track;
659         }
660
661         /*
662          * We don't allow user space callchains for  function trace
663          * event, due to issues with page faults while tracing page
664          * fault handler and its overall trickiness nature.
665          */
666         if (perf_evsel__is_function_event(evsel))
667                 evsel->attr.exclude_callchain_user = 1;
668
669         if (callchain_param.enabled && !evsel->no_aux_samples)
670                 perf_evsel__config_callgraph(evsel);
671
672         if (opts->sample_intr_regs) {
673                 attr->sample_regs_intr = PERF_REGS_MASK;
674                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
675         }
676
677         if (target__has_cpu(&opts->target))
678                 perf_evsel__set_sample_bit(evsel, CPU);
679
680         if (opts->period)
681                 perf_evsel__set_sample_bit(evsel, PERIOD);
682
683         /*
684          * When the user explicitely disabled time don't force it here.
685          */
686         if (opts->sample_time &&
687             (!perf_missing_features.sample_id_all &&
688             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu)))
689                 perf_evsel__set_sample_bit(evsel, TIME);
690
691         if (opts->raw_samples && !evsel->no_aux_samples) {
692                 perf_evsel__set_sample_bit(evsel, TIME);
693                 perf_evsel__set_sample_bit(evsel, RAW);
694                 perf_evsel__set_sample_bit(evsel, CPU);
695         }
696
697         if (opts->sample_address)
698                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
699
700         if (opts->no_buffering) {
701                 attr->watermark = 0;
702                 attr->wakeup_events = 1;
703         }
704         if (opts->branch_stack && !evsel->no_aux_samples) {
705                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
706                 attr->branch_sample_type = opts->branch_stack;
707         }
708
709         if (opts->sample_weight)
710                 perf_evsel__set_sample_bit(evsel, WEIGHT);
711
712         attr->task  = track;
713         attr->mmap  = track;
714         attr->mmap2 = track && !perf_missing_features.mmap2;
715         attr->comm  = track;
716
717         if (opts->sample_transaction)
718                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
719
720         /*
721          * XXX see the function comment above
722          *
723          * Disabling only independent events or group leaders,
724          * keeping group members enabled.
725          */
726         if (perf_evsel__is_group_leader(evsel))
727                 attr->disabled = 1;
728
729         /*
730          * Setting enable_on_exec for independent events and
731          * group leaders for traced executed by perf.
732          */
733         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
734                 !opts->initial_delay)
735                 attr->enable_on_exec = 1;
736
737         if (evsel->immediate) {
738                 attr->disabled = 0;
739                 attr->enable_on_exec = 0;
740         }
741 }
742
743 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
744 {
745         int cpu, thread;
746
747         if (evsel->system_wide)
748                 nthreads = 1;
749
750         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
751
752         if (evsel->fd) {
753                 for (cpu = 0; cpu < ncpus; cpu++) {
754                         for (thread = 0; thread < nthreads; thread++) {
755                                 FD(evsel, cpu, thread) = -1;
756                         }
757                 }
758         }
759
760         return evsel->fd != NULL ? 0 : -ENOMEM;
761 }
762
763 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
764                           int ioc,  void *arg)
765 {
766         int cpu, thread;
767
768         if (evsel->system_wide)
769                 nthreads = 1;
770
771         for (cpu = 0; cpu < ncpus; cpu++) {
772                 for (thread = 0; thread < nthreads; thread++) {
773                         int fd = FD(evsel, cpu, thread),
774                             err = ioctl(fd, ioc, arg);
775
776                         if (err)
777                                 return err;
778                 }
779         }
780
781         return 0;
782 }
783
784 int perf_evsel__set_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
785                            const char *filter)
786 {
787         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
788                                      PERF_EVENT_IOC_SET_FILTER,
789                                      (void *)filter);
790 }
791
792 int perf_evsel__enable(struct perf_evsel *evsel, int ncpus, int nthreads)
793 {
794         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
795                                      PERF_EVENT_IOC_ENABLE,
796                                      0);
797 }
798
799 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
800 {
801         if (ncpus == 0 || nthreads == 0)
802                 return 0;
803
804         if (evsel->system_wide)
805                 nthreads = 1;
806
807         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
808         if (evsel->sample_id == NULL)
809                 return -ENOMEM;
810
811         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
812         if (evsel->id == NULL) {
813                 xyarray__delete(evsel->sample_id);
814                 evsel->sample_id = NULL;
815                 return -ENOMEM;
816         }
817
818         return 0;
819 }
820
821 void perf_evsel__reset_counts(struct perf_evsel *evsel, int ncpus)
822 {
823         memset(evsel->counts, 0, (sizeof(*evsel->counts) +
824                                  (ncpus * sizeof(struct perf_counts_values))));
825 }
826
827 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
828 {
829         evsel->counts = zalloc((sizeof(*evsel->counts) +
830                                 (ncpus * sizeof(struct perf_counts_values))));
831         return evsel->counts != NULL ? 0 : -ENOMEM;
832 }
833
834 static void perf_evsel__free_fd(struct perf_evsel *evsel)
835 {
836         xyarray__delete(evsel->fd);
837         evsel->fd = NULL;
838 }
839
840 static void perf_evsel__free_id(struct perf_evsel *evsel)
841 {
842         xyarray__delete(evsel->sample_id);
843         evsel->sample_id = NULL;
844         zfree(&evsel->id);
845 }
846
847 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
848 {
849         int cpu, thread;
850
851         if (evsel->system_wide)
852                 nthreads = 1;
853
854         for (cpu = 0; cpu < ncpus; cpu++)
855                 for (thread = 0; thread < nthreads; ++thread) {
856                         close(FD(evsel, cpu, thread));
857                         FD(evsel, cpu, thread) = -1;
858                 }
859 }
860
861 void perf_evsel__free_counts(struct perf_evsel *evsel)
862 {
863         zfree(&evsel->counts);
864 }
865
866 void perf_evsel__exit(struct perf_evsel *evsel)
867 {
868         assert(list_empty(&evsel->node));
869         perf_evsel__free_fd(evsel);
870         perf_evsel__free_id(evsel);
871         close_cgroup(evsel->cgrp);
872         zfree(&evsel->group_name);
873         zfree(&evsel->name);
874         perf_evsel__object.fini(evsel);
875 }
876
877 void perf_evsel__delete(struct perf_evsel *evsel)
878 {
879         perf_evsel__exit(evsel);
880         free(evsel);
881 }
882
883 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu,
884                                 struct perf_counts_values *count)
885 {
886         struct perf_counts_values tmp;
887
888         if (!evsel->prev_raw_counts)
889                 return;
890
891         if (cpu == -1) {
892                 tmp = evsel->prev_raw_counts->aggr;
893                 evsel->prev_raw_counts->aggr = *count;
894         } else {
895                 tmp = evsel->prev_raw_counts->cpu[cpu];
896                 evsel->prev_raw_counts->cpu[cpu] = *count;
897         }
898
899         count->val = count->val - tmp.val;
900         count->ena = count->ena - tmp.ena;
901         count->run = count->run - tmp.run;
902 }
903
904 void perf_counts_values__scale(struct perf_counts_values *count,
905                                bool scale, s8 *pscaled)
906 {
907         s8 scaled = 0;
908
909         if (scale) {
910                 if (count->run == 0) {
911                         scaled = -1;
912                         count->val = 0;
913                 } else if (count->run < count->ena) {
914                         scaled = 1;
915                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
916                 }
917         } else
918                 count->ena = count->run = 0;
919
920         if (pscaled)
921                 *pscaled = scaled;
922 }
923
924 int perf_evsel__read_cb(struct perf_evsel *evsel, int cpu, int thread,
925                         perf_evsel__read_cb_t cb)
926 {
927         struct perf_counts_values count;
928
929         memset(&count, 0, sizeof(count));
930
931         if (FD(evsel, cpu, thread) < 0)
932                 return -EINVAL;
933
934         if (readn(FD(evsel, cpu, thread), &count, sizeof(count)) < 0)
935                 return -errno;
936
937         return cb(evsel, cpu, thread, &count);
938 }
939
940 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
941                               int cpu, int thread, bool scale)
942 {
943         struct perf_counts_values count;
944         size_t nv = scale ? 3 : 1;
945
946         if (FD(evsel, cpu, thread) < 0)
947                 return -EINVAL;
948
949         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
950                 return -ENOMEM;
951
952         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
953                 return -errno;
954
955         perf_evsel__compute_deltas(evsel, cpu, &count);
956         perf_counts_values__scale(&count, scale, NULL);
957         evsel->counts->cpu[cpu] = count;
958         return 0;
959 }
960
961 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
962 {
963         struct perf_evsel *leader = evsel->leader;
964         int fd;
965
966         if (perf_evsel__is_group_leader(evsel))
967                 return -1;
968
969         /*
970          * Leader must be already processed/open,
971          * if not it's a bug.
972          */
973         BUG_ON(!leader->fd);
974
975         fd = FD(leader, cpu, thread);
976         BUG_ON(fd == -1);
977
978         return fd;
979 }
980
981 #define __PRINT_ATTR(fmt, cast, field)  \
982         fprintf(fp, "  %-19s "fmt"\n", #field, cast attr->field)
983
984 #define PRINT_ATTR_U32(field)  __PRINT_ATTR("%u" , , field)
985 #define PRINT_ATTR_X32(field)  __PRINT_ATTR("%#x", , field)
986 #define PRINT_ATTR_U64(field)  __PRINT_ATTR("%" PRIu64, (uint64_t), field)
987 #define PRINT_ATTR_X64(field)  __PRINT_ATTR("%#"PRIx64, (uint64_t), field)
988
989 #define PRINT_ATTR2N(name1, field1, name2, field2)      \
990         fprintf(fp, "  %-19s %u    %-19s %u\n",         \
991         name1, attr->field1, name2, attr->field2)
992
993 #define PRINT_ATTR2(field1, field2) \
994         PRINT_ATTR2N(#field1, field1, #field2, field2)
995
996 static size_t perf_event_attr__fprintf(struct perf_event_attr *attr, FILE *fp)
997 {
998         size_t ret = 0;
999
1000         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1001         ret += fprintf(fp, "perf_event_attr:\n");
1002
1003         ret += PRINT_ATTR_U32(type);
1004         ret += PRINT_ATTR_U32(size);
1005         ret += PRINT_ATTR_X64(config);
1006         ret += PRINT_ATTR_U64(sample_period);
1007         ret += PRINT_ATTR_U64(sample_freq);
1008         ret += PRINT_ATTR_X64(sample_type);
1009         ret += PRINT_ATTR_X64(read_format);
1010
1011         ret += PRINT_ATTR2(disabled, inherit);
1012         ret += PRINT_ATTR2(pinned, exclusive);
1013         ret += PRINT_ATTR2(exclude_user, exclude_kernel);
1014         ret += PRINT_ATTR2(exclude_hv, exclude_idle);
1015         ret += PRINT_ATTR2(mmap, comm);
1016         ret += PRINT_ATTR2(mmap2, comm_exec);
1017         ret += PRINT_ATTR2(freq, inherit_stat);
1018         ret += PRINT_ATTR2(enable_on_exec, task);
1019         ret += PRINT_ATTR2(watermark, precise_ip);
1020         ret += PRINT_ATTR2(mmap_data, sample_id_all);
1021         ret += PRINT_ATTR2(exclude_host, exclude_guest);
1022         ret += PRINT_ATTR2N("excl.callchain_kern", exclude_callchain_kernel,
1023                             "excl.callchain_user", exclude_callchain_user);
1024
1025         ret += PRINT_ATTR_U32(wakeup_events);
1026         ret += PRINT_ATTR_U32(wakeup_watermark);
1027         ret += PRINT_ATTR_X32(bp_type);
1028         ret += PRINT_ATTR_X64(bp_addr);
1029         ret += PRINT_ATTR_X64(config1);
1030         ret += PRINT_ATTR_U64(bp_len);
1031         ret += PRINT_ATTR_X64(config2);
1032         ret += PRINT_ATTR_X64(branch_sample_type);
1033         ret += PRINT_ATTR_X64(sample_regs_user);
1034         ret += PRINT_ATTR_U32(sample_stack_user);
1035         ret += PRINT_ATTR_X64(sample_regs_intr);
1036
1037         ret += fprintf(fp, "%.60s\n", graph_dotted_line);
1038
1039         return ret;
1040 }
1041
1042 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1043                               struct thread_map *threads)
1044 {
1045         int cpu, thread, nthreads;
1046         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1047         int pid = -1, err;
1048         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1049
1050         if (evsel->system_wide)
1051                 nthreads = 1;
1052         else
1053                 nthreads = threads->nr;
1054
1055         if (evsel->fd == NULL &&
1056             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1057                 return -ENOMEM;
1058
1059         if (evsel->cgrp) {
1060                 flags |= PERF_FLAG_PID_CGROUP;
1061                 pid = evsel->cgrp->fd;
1062         }
1063
1064 fallback_missing_features:
1065         if (perf_missing_features.cloexec)
1066                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1067         if (perf_missing_features.mmap2)
1068                 evsel->attr.mmap2 = 0;
1069         if (perf_missing_features.exclude_guest)
1070                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1071 retry_sample_id:
1072         if (perf_missing_features.sample_id_all)
1073                 evsel->attr.sample_id_all = 0;
1074
1075         if (verbose >= 2)
1076                 perf_event_attr__fprintf(&evsel->attr, stderr);
1077
1078         for (cpu = 0; cpu < cpus->nr; cpu++) {
1079
1080                 for (thread = 0; thread < nthreads; thread++) {
1081                         int group_fd;
1082
1083                         if (!evsel->cgrp && !evsel->system_wide)
1084                                 pid = threads->map[thread];
1085
1086                         group_fd = get_group_fd(evsel, cpu, thread);
1087 retry_open:
1088                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx\n",
1089                                   pid, cpus->map[cpu], group_fd, flags);
1090
1091                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
1092                                                                      pid,
1093                                                                      cpus->map[cpu],
1094                                                                      group_fd, flags);
1095                         if (FD(evsel, cpu, thread) < 0) {
1096                                 err = -errno;
1097                                 pr_debug2("sys_perf_event_open failed, error %d\n",
1098                                           err);
1099                                 goto try_fallback;
1100                         }
1101                         set_rlimit = NO_CHANGE;
1102                 }
1103         }
1104
1105         return 0;
1106
1107 try_fallback:
1108         /*
1109          * perf stat needs between 5 and 22 fds per CPU. When we run out
1110          * of them try to increase the limits.
1111          */
1112         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1113                 struct rlimit l;
1114                 int old_errno = errno;
1115
1116                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1117                         if (set_rlimit == NO_CHANGE)
1118                                 l.rlim_cur = l.rlim_max;
1119                         else {
1120                                 l.rlim_cur = l.rlim_max + 1000;
1121                                 l.rlim_max = l.rlim_cur;
1122                         }
1123                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1124                                 set_rlimit++;
1125                                 errno = old_errno;
1126                                 goto retry_open;
1127                         }
1128                 }
1129                 errno = old_errno;
1130         }
1131
1132         if (err != -EINVAL || cpu > 0 || thread > 0)
1133                 goto out_close;
1134
1135         if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1136                 perf_missing_features.cloexec = true;
1137                 goto fallback_missing_features;
1138         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1139                 perf_missing_features.mmap2 = true;
1140                 goto fallback_missing_features;
1141         } else if (!perf_missing_features.exclude_guest &&
1142                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1143                 perf_missing_features.exclude_guest = true;
1144                 goto fallback_missing_features;
1145         } else if (!perf_missing_features.sample_id_all) {
1146                 perf_missing_features.sample_id_all = true;
1147                 goto retry_sample_id;
1148         }
1149
1150 out_close:
1151         do {
1152                 while (--thread >= 0) {
1153                         close(FD(evsel, cpu, thread));
1154                         FD(evsel, cpu, thread) = -1;
1155                 }
1156                 thread = nthreads;
1157         } while (--cpu >= 0);
1158         return err;
1159 }
1160
1161 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1162 {
1163         if (evsel->fd == NULL)
1164                 return;
1165
1166         perf_evsel__close_fd(evsel, ncpus, nthreads);
1167         perf_evsel__free_fd(evsel);
1168 }
1169
1170 static struct {
1171         struct cpu_map map;
1172         int cpus[1];
1173 } empty_cpu_map = {
1174         .map.nr = 1,
1175         .cpus   = { -1, },
1176 };
1177
1178 static struct {
1179         struct thread_map map;
1180         int threads[1];
1181 } empty_thread_map = {
1182         .map.nr  = 1,
1183         .threads = { -1, },
1184 };
1185
1186 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1187                      struct thread_map *threads)
1188 {
1189         if (cpus == NULL) {
1190                 /* Work around old compiler warnings about strict aliasing */
1191                 cpus = &empty_cpu_map.map;
1192         }
1193
1194         if (threads == NULL)
1195                 threads = &empty_thread_map.map;
1196
1197         return __perf_evsel__open(evsel, cpus, threads);
1198 }
1199
1200 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1201                              struct cpu_map *cpus)
1202 {
1203         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1204 }
1205
1206 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1207                                 struct thread_map *threads)
1208 {
1209         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1210 }
1211
1212 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1213                                        const union perf_event *event,
1214                                        struct perf_sample *sample)
1215 {
1216         u64 type = evsel->attr.sample_type;
1217         const u64 *array = event->sample.array;
1218         bool swapped = evsel->needs_swap;
1219         union u64_swap u;
1220
1221         array += ((event->header.size -
1222                    sizeof(event->header)) / sizeof(u64)) - 1;
1223
1224         if (type & PERF_SAMPLE_IDENTIFIER) {
1225                 sample->id = *array;
1226                 array--;
1227         }
1228
1229         if (type & PERF_SAMPLE_CPU) {
1230                 u.val64 = *array;
1231                 if (swapped) {
1232                         /* undo swap of u64, then swap on individual u32s */
1233                         u.val64 = bswap_64(u.val64);
1234                         u.val32[0] = bswap_32(u.val32[0]);
1235                 }
1236
1237                 sample->cpu = u.val32[0];
1238                 array--;
1239         }
1240
1241         if (type & PERF_SAMPLE_STREAM_ID) {
1242                 sample->stream_id = *array;
1243                 array--;
1244         }
1245
1246         if (type & PERF_SAMPLE_ID) {
1247                 sample->id = *array;
1248                 array--;
1249         }
1250
1251         if (type & PERF_SAMPLE_TIME) {
1252                 sample->time = *array;
1253                 array--;
1254         }
1255
1256         if (type & PERF_SAMPLE_TID) {
1257                 u.val64 = *array;
1258                 if (swapped) {
1259                         /* undo swap of u64, then swap on individual u32s */
1260                         u.val64 = bswap_64(u.val64);
1261                         u.val32[0] = bswap_32(u.val32[0]);
1262                         u.val32[1] = bswap_32(u.val32[1]);
1263                 }
1264
1265                 sample->pid = u.val32[0];
1266                 sample->tid = u.val32[1];
1267                 array--;
1268         }
1269
1270         return 0;
1271 }
1272
1273 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1274                             u64 size)
1275 {
1276         return size > max_size || offset + size > endp;
1277 }
1278
1279 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1280         do {                                                            \
1281                 if (overflow(endp, (max_size), (offset), (size)))       \
1282                         return -EFAULT;                                 \
1283         } while (0)
1284
1285 #define OVERFLOW_CHECK_u64(offset) \
1286         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1287
1288 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1289                              struct perf_sample *data)
1290 {
1291         u64 type = evsel->attr.sample_type;
1292         bool swapped = evsel->needs_swap;
1293         const u64 *array;
1294         u16 max_size = event->header.size;
1295         const void *endp = (void *)event + max_size;
1296         u64 sz;
1297
1298         /*
1299          * used for cross-endian analysis. See git commit 65014ab3
1300          * for why this goofiness is needed.
1301          */
1302         union u64_swap u;
1303
1304         memset(data, 0, sizeof(*data));
1305         data->cpu = data->pid = data->tid = -1;
1306         data->stream_id = data->id = data->time = -1ULL;
1307         data->period = evsel->attr.sample_period;
1308         data->weight = 0;
1309
1310         if (event->header.type != PERF_RECORD_SAMPLE) {
1311                 if (!evsel->attr.sample_id_all)
1312                         return 0;
1313                 return perf_evsel__parse_id_sample(evsel, event, data);
1314         }
1315
1316         array = event->sample.array;
1317
1318         /*
1319          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1320          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1321          * check the format does not go past the end of the event.
1322          */
1323         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1324                 return -EFAULT;
1325
1326         data->id = -1ULL;
1327         if (type & PERF_SAMPLE_IDENTIFIER) {
1328                 data->id = *array;
1329                 array++;
1330         }
1331
1332         if (type & PERF_SAMPLE_IP) {
1333                 data->ip = *array;
1334                 array++;
1335         }
1336
1337         if (type & PERF_SAMPLE_TID) {
1338                 u.val64 = *array;
1339                 if (swapped) {
1340                         /* undo swap of u64, then swap on individual u32s */
1341                         u.val64 = bswap_64(u.val64);
1342                         u.val32[0] = bswap_32(u.val32[0]);
1343                         u.val32[1] = bswap_32(u.val32[1]);
1344                 }
1345
1346                 data->pid = u.val32[0];
1347                 data->tid = u.val32[1];
1348                 array++;
1349         }
1350
1351         if (type & PERF_SAMPLE_TIME) {
1352                 data->time = *array;
1353                 array++;
1354         }
1355
1356         data->addr = 0;
1357         if (type & PERF_SAMPLE_ADDR) {
1358                 data->addr = *array;
1359                 array++;
1360         }
1361
1362         if (type & PERF_SAMPLE_ID) {
1363                 data->id = *array;
1364                 array++;
1365         }
1366
1367         if (type & PERF_SAMPLE_STREAM_ID) {
1368                 data->stream_id = *array;
1369                 array++;
1370         }
1371
1372         if (type & PERF_SAMPLE_CPU) {
1373
1374                 u.val64 = *array;
1375                 if (swapped) {
1376                         /* undo swap of u64, then swap on individual u32s */
1377                         u.val64 = bswap_64(u.val64);
1378                         u.val32[0] = bswap_32(u.val32[0]);
1379                 }
1380
1381                 data->cpu = u.val32[0];
1382                 array++;
1383         }
1384
1385         if (type & PERF_SAMPLE_PERIOD) {
1386                 data->period = *array;
1387                 array++;
1388         }
1389
1390         if (type & PERF_SAMPLE_READ) {
1391                 u64 read_format = evsel->attr.read_format;
1392
1393                 OVERFLOW_CHECK_u64(array);
1394                 if (read_format & PERF_FORMAT_GROUP)
1395                         data->read.group.nr = *array;
1396                 else
1397                         data->read.one.value = *array;
1398
1399                 array++;
1400
1401                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1402                         OVERFLOW_CHECK_u64(array);
1403                         data->read.time_enabled = *array;
1404                         array++;
1405                 }
1406
1407                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1408                         OVERFLOW_CHECK_u64(array);
1409                         data->read.time_running = *array;
1410                         array++;
1411                 }
1412
1413                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1414                 if (read_format & PERF_FORMAT_GROUP) {
1415                         const u64 max_group_nr = UINT64_MAX /
1416                                         sizeof(struct sample_read_value);
1417
1418                         if (data->read.group.nr > max_group_nr)
1419                                 return -EFAULT;
1420                         sz = data->read.group.nr *
1421                              sizeof(struct sample_read_value);
1422                         OVERFLOW_CHECK(array, sz, max_size);
1423                         data->read.group.values =
1424                                         (struct sample_read_value *)array;
1425                         array = (void *)array + sz;
1426                 } else {
1427                         OVERFLOW_CHECK_u64(array);
1428                         data->read.one.id = *array;
1429                         array++;
1430                 }
1431         }
1432
1433         if (type & PERF_SAMPLE_CALLCHAIN) {
1434                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1435
1436                 OVERFLOW_CHECK_u64(array);
1437                 data->callchain = (struct ip_callchain *)array++;
1438                 if (data->callchain->nr > max_callchain_nr)
1439                         return -EFAULT;
1440                 sz = data->callchain->nr * sizeof(u64);
1441                 OVERFLOW_CHECK(array, sz, max_size);
1442                 array = (void *)array + sz;
1443         }
1444
1445         if (type & PERF_SAMPLE_RAW) {
1446                 OVERFLOW_CHECK_u64(array);
1447                 u.val64 = *array;
1448                 if (WARN_ONCE(swapped,
1449                               "Endianness of raw data not corrected!\n")) {
1450                         /* undo swap of u64, then swap on individual u32s */
1451                         u.val64 = bswap_64(u.val64);
1452                         u.val32[0] = bswap_32(u.val32[0]);
1453                         u.val32[1] = bswap_32(u.val32[1]);
1454                 }
1455                 data->raw_size = u.val32[0];
1456                 array = (void *)array + sizeof(u32);
1457
1458                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1459                 data->raw_data = (void *)array;
1460                 array = (void *)array + data->raw_size;
1461         }
1462
1463         if (type & PERF_SAMPLE_BRANCH_STACK) {
1464                 const u64 max_branch_nr = UINT64_MAX /
1465                                           sizeof(struct branch_entry);
1466
1467                 OVERFLOW_CHECK_u64(array);
1468                 data->branch_stack = (struct branch_stack *)array++;
1469
1470                 if (data->branch_stack->nr > max_branch_nr)
1471                         return -EFAULT;
1472                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1473                 OVERFLOW_CHECK(array, sz, max_size);
1474                 array = (void *)array + sz;
1475         }
1476
1477         if (type & PERF_SAMPLE_REGS_USER) {
1478                 OVERFLOW_CHECK_u64(array);
1479                 data->user_regs.abi = *array;
1480                 array++;
1481
1482                 if (data->user_regs.abi) {
1483                         u64 mask = evsel->attr.sample_regs_user;
1484
1485                         sz = hweight_long(mask) * sizeof(u64);
1486                         OVERFLOW_CHECK(array, sz, max_size);
1487                         data->user_regs.mask = mask;
1488                         data->user_regs.regs = (u64 *)array;
1489                         array = (void *)array + sz;
1490                 }
1491         }
1492
1493         if (type & PERF_SAMPLE_STACK_USER) {
1494                 OVERFLOW_CHECK_u64(array);
1495                 sz = *array++;
1496
1497                 data->user_stack.offset = ((char *)(array - 1)
1498                                           - (char *) event);
1499
1500                 if (!sz) {
1501                         data->user_stack.size = 0;
1502                 } else {
1503                         OVERFLOW_CHECK(array, sz, max_size);
1504                         data->user_stack.data = (char *)array;
1505                         array = (void *)array + sz;
1506                         OVERFLOW_CHECK_u64(array);
1507                         data->user_stack.size = *array++;
1508                         if (WARN_ONCE(data->user_stack.size > sz,
1509                                       "user stack dump failure\n"))
1510                                 return -EFAULT;
1511                 }
1512         }
1513
1514         data->weight = 0;
1515         if (type & PERF_SAMPLE_WEIGHT) {
1516                 OVERFLOW_CHECK_u64(array);
1517                 data->weight = *array;
1518                 array++;
1519         }
1520
1521         data->data_src = PERF_MEM_DATA_SRC_NONE;
1522         if (type & PERF_SAMPLE_DATA_SRC) {
1523                 OVERFLOW_CHECK_u64(array);
1524                 data->data_src = *array;
1525                 array++;
1526         }
1527
1528         data->transaction = 0;
1529         if (type & PERF_SAMPLE_TRANSACTION) {
1530                 OVERFLOW_CHECK_u64(array);
1531                 data->transaction = *array;
1532                 array++;
1533         }
1534
1535         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
1536         if (type & PERF_SAMPLE_REGS_INTR) {
1537                 OVERFLOW_CHECK_u64(array);
1538                 data->intr_regs.abi = *array;
1539                 array++;
1540
1541                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
1542                         u64 mask = evsel->attr.sample_regs_intr;
1543
1544                         sz = hweight_long(mask) * sizeof(u64);
1545                         OVERFLOW_CHECK(array, sz, max_size);
1546                         data->intr_regs.mask = mask;
1547                         data->intr_regs.regs = (u64 *)array;
1548                         array = (void *)array + sz;
1549                 }
1550         }
1551
1552         return 0;
1553 }
1554
1555 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
1556                                      u64 read_format)
1557 {
1558         size_t sz, result = sizeof(struct sample_event);
1559
1560         if (type & PERF_SAMPLE_IDENTIFIER)
1561                 result += sizeof(u64);
1562
1563         if (type & PERF_SAMPLE_IP)
1564                 result += sizeof(u64);
1565
1566         if (type & PERF_SAMPLE_TID)
1567                 result += sizeof(u64);
1568
1569         if (type & PERF_SAMPLE_TIME)
1570                 result += sizeof(u64);
1571
1572         if (type & PERF_SAMPLE_ADDR)
1573                 result += sizeof(u64);
1574
1575         if (type & PERF_SAMPLE_ID)
1576                 result += sizeof(u64);
1577
1578         if (type & PERF_SAMPLE_STREAM_ID)
1579                 result += sizeof(u64);
1580
1581         if (type & PERF_SAMPLE_CPU)
1582                 result += sizeof(u64);
1583
1584         if (type & PERF_SAMPLE_PERIOD)
1585                 result += sizeof(u64);
1586
1587         if (type & PERF_SAMPLE_READ) {
1588                 result += sizeof(u64);
1589                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1590                         result += sizeof(u64);
1591                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1592                         result += sizeof(u64);
1593                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1594                 if (read_format & PERF_FORMAT_GROUP) {
1595                         sz = sample->read.group.nr *
1596                              sizeof(struct sample_read_value);
1597                         result += sz;
1598                 } else {
1599                         result += sizeof(u64);
1600                 }
1601         }
1602
1603         if (type & PERF_SAMPLE_CALLCHAIN) {
1604                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1605                 result += sz;
1606         }
1607
1608         if (type & PERF_SAMPLE_RAW) {
1609                 result += sizeof(u32);
1610                 result += sample->raw_size;
1611         }
1612
1613         if (type & PERF_SAMPLE_BRANCH_STACK) {
1614                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1615                 sz += sizeof(u64);
1616                 result += sz;
1617         }
1618
1619         if (type & PERF_SAMPLE_REGS_USER) {
1620                 if (sample->user_regs.abi) {
1621                         result += sizeof(u64);
1622                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1623                         result += sz;
1624                 } else {
1625                         result += sizeof(u64);
1626                 }
1627         }
1628
1629         if (type & PERF_SAMPLE_STACK_USER) {
1630                 sz = sample->user_stack.size;
1631                 result += sizeof(u64);
1632                 if (sz) {
1633                         result += sz;
1634                         result += sizeof(u64);
1635                 }
1636         }
1637
1638         if (type & PERF_SAMPLE_WEIGHT)
1639                 result += sizeof(u64);
1640
1641         if (type & PERF_SAMPLE_DATA_SRC)
1642                 result += sizeof(u64);
1643
1644         if (type & PERF_SAMPLE_TRANSACTION)
1645                 result += sizeof(u64);
1646
1647         if (type & PERF_SAMPLE_REGS_INTR) {
1648                 if (sample->intr_regs.abi) {
1649                         result += sizeof(u64);
1650                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1651                         result += sz;
1652                 } else {
1653                         result += sizeof(u64);
1654                 }
1655         }
1656
1657         return result;
1658 }
1659
1660 int perf_event__synthesize_sample(union perf_event *event, u64 type,
1661                                   u64 read_format,
1662                                   const struct perf_sample *sample,
1663                                   bool swapped)
1664 {
1665         u64 *array;
1666         size_t sz;
1667         /*
1668          * used for cross-endian analysis. See git commit 65014ab3
1669          * for why this goofiness is needed.
1670          */
1671         union u64_swap u;
1672
1673         array = event->sample.array;
1674
1675         if (type & PERF_SAMPLE_IDENTIFIER) {
1676                 *array = sample->id;
1677                 array++;
1678         }
1679
1680         if (type & PERF_SAMPLE_IP) {
1681                 *array = sample->ip;
1682                 array++;
1683         }
1684
1685         if (type & PERF_SAMPLE_TID) {
1686                 u.val32[0] = sample->pid;
1687                 u.val32[1] = sample->tid;
1688                 if (swapped) {
1689                         /*
1690                          * Inverse of what is done in perf_evsel__parse_sample
1691                          */
1692                         u.val32[0] = bswap_32(u.val32[0]);
1693                         u.val32[1] = bswap_32(u.val32[1]);
1694                         u.val64 = bswap_64(u.val64);
1695                 }
1696
1697                 *array = u.val64;
1698                 array++;
1699         }
1700
1701         if (type & PERF_SAMPLE_TIME) {
1702                 *array = sample->time;
1703                 array++;
1704         }
1705
1706         if (type & PERF_SAMPLE_ADDR) {
1707                 *array = sample->addr;
1708                 array++;
1709         }
1710
1711         if (type & PERF_SAMPLE_ID) {
1712                 *array = sample->id;
1713                 array++;
1714         }
1715
1716         if (type & PERF_SAMPLE_STREAM_ID) {
1717                 *array = sample->stream_id;
1718                 array++;
1719         }
1720
1721         if (type & PERF_SAMPLE_CPU) {
1722                 u.val32[0] = sample->cpu;
1723                 if (swapped) {
1724                         /*
1725                          * Inverse of what is done in perf_evsel__parse_sample
1726                          */
1727                         u.val32[0] = bswap_32(u.val32[0]);
1728                         u.val64 = bswap_64(u.val64);
1729                 }
1730                 *array = u.val64;
1731                 array++;
1732         }
1733
1734         if (type & PERF_SAMPLE_PERIOD) {
1735                 *array = sample->period;
1736                 array++;
1737         }
1738
1739         if (type & PERF_SAMPLE_READ) {
1740                 if (read_format & PERF_FORMAT_GROUP)
1741                         *array = sample->read.group.nr;
1742                 else
1743                         *array = sample->read.one.value;
1744                 array++;
1745
1746                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1747                         *array = sample->read.time_enabled;
1748                         array++;
1749                 }
1750
1751                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1752                         *array = sample->read.time_running;
1753                         array++;
1754                 }
1755
1756                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1757                 if (read_format & PERF_FORMAT_GROUP) {
1758                         sz = sample->read.group.nr *
1759                              sizeof(struct sample_read_value);
1760                         memcpy(array, sample->read.group.values, sz);
1761                         array = (void *)array + sz;
1762                 } else {
1763                         *array = sample->read.one.id;
1764                         array++;
1765                 }
1766         }
1767
1768         if (type & PERF_SAMPLE_CALLCHAIN) {
1769                 sz = (sample->callchain->nr + 1) * sizeof(u64);
1770                 memcpy(array, sample->callchain, sz);
1771                 array = (void *)array + sz;
1772         }
1773
1774         if (type & PERF_SAMPLE_RAW) {
1775                 u.val32[0] = sample->raw_size;
1776                 if (WARN_ONCE(swapped,
1777                               "Endianness of raw data not corrected!\n")) {
1778                         /*
1779                          * Inverse of what is done in perf_evsel__parse_sample
1780                          */
1781                         u.val32[0] = bswap_32(u.val32[0]);
1782                         u.val32[1] = bswap_32(u.val32[1]);
1783                         u.val64 = bswap_64(u.val64);
1784                 }
1785                 *array = u.val64;
1786                 array = (void *)array + sizeof(u32);
1787
1788                 memcpy(array, sample->raw_data, sample->raw_size);
1789                 array = (void *)array + sample->raw_size;
1790         }
1791
1792         if (type & PERF_SAMPLE_BRANCH_STACK) {
1793                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
1794                 sz += sizeof(u64);
1795                 memcpy(array, sample->branch_stack, sz);
1796                 array = (void *)array + sz;
1797         }
1798
1799         if (type & PERF_SAMPLE_REGS_USER) {
1800                 if (sample->user_regs.abi) {
1801                         *array++ = sample->user_regs.abi;
1802                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
1803                         memcpy(array, sample->user_regs.regs, sz);
1804                         array = (void *)array + sz;
1805                 } else {
1806                         *array++ = 0;
1807                 }
1808         }
1809
1810         if (type & PERF_SAMPLE_STACK_USER) {
1811                 sz = sample->user_stack.size;
1812                 *array++ = sz;
1813                 if (sz) {
1814                         memcpy(array, sample->user_stack.data, sz);
1815                         array = (void *)array + sz;
1816                         *array++ = sz;
1817                 }
1818         }
1819
1820         if (type & PERF_SAMPLE_WEIGHT) {
1821                 *array = sample->weight;
1822                 array++;
1823         }
1824
1825         if (type & PERF_SAMPLE_DATA_SRC) {
1826                 *array = sample->data_src;
1827                 array++;
1828         }
1829
1830         if (type & PERF_SAMPLE_TRANSACTION) {
1831                 *array = sample->transaction;
1832                 array++;
1833         }
1834
1835         if (type & PERF_SAMPLE_REGS_INTR) {
1836                 if (sample->intr_regs.abi) {
1837                         *array++ = sample->intr_regs.abi;
1838                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
1839                         memcpy(array, sample->intr_regs.regs, sz);
1840                         array = (void *)array + sz;
1841                 } else {
1842                         *array++ = 0;
1843                 }
1844         }
1845
1846         return 0;
1847 }
1848
1849 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
1850 {
1851         return pevent_find_field(evsel->tp_format, name);
1852 }
1853
1854 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
1855                          const char *name)
1856 {
1857         struct format_field *field = perf_evsel__field(evsel, name);
1858         int offset;
1859
1860         if (!field)
1861                 return NULL;
1862
1863         offset = field->offset;
1864
1865         if (field->flags & FIELD_IS_DYNAMIC) {
1866                 offset = *(int *)(sample->raw_data + field->offset);
1867                 offset &= 0xffff;
1868         }
1869
1870         return sample->raw_data + offset;
1871 }
1872
1873 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
1874                        const char *name)
1875 {
1876         struct format_field *field = perf_evsel__field(evsel, name);
1877         void *ptr;
1878         u64 value;
1879
1880         if (!field)
1881                 return 0;
1882
1883         ptr = sample->raw_data + field->offset;
1884
1885         switch (field->size) {
1886         case 1:
1887                 return *(u8 *)ptr;
1888         case 2:
1889                 value = *(u16 *)ptr;
1890                 break;
1891         case 4:
1892                 value = *(u32 *)ptr;
1893                 break;
1894         case 8:
1895                 value = *(u64 *)ptr;
1896                 break;
1897         default:
1898                 return 0;
1899         }
1900
1901         if (!evsel->needs_swap)
1902                 return value;
1903
1904         switch (field->size) {
1905         case 2:
1906                 return bswap_16(value);
1907         case 4:
1908                 return bswap_32(value);
1909         case 8:
1910                 return bswap_64(value);
1911         default:
1912                 return 0;
1913         }
1914
1915         return 0;
1916 }
1917
1918 static int comma_fprintf(FILE *fp, bool *first, const char *fmt, ...)
1919 {
1920         va_list args;
1921         int ret = 0;
1922
1923         if (!*first) {
1924                 ret += fprintf(fp, ",");
1925         } else {
1926                 ret += fprintf(fp, ":");
1927                 *first = false;
1928         }
1929
1930         va_start(args, fmt);
1931         ret += vfprintf(fp, fmt, args);
1932         va_end(args);
1933         return ret;
1934 }
1935
1936 static int __if_fprintf(FILE *fp, bool *first, const char *field, u64 value)
1937 {
1938         if (value == 0)
1939                 return 0;
1940
1941         return comma_fprintf(fp, first, " %s: %" PRIu64, field, value);
1942 }
1943
1944 #define if_print(field) printed += __if_fprintf(fp, &first, #field, evsel->attr.field)
1945
1946 struct bit_names {
1947         int bit;
1948         const char *name;
1949 };
1950
1951 static int bits__fprintf(FILE *fp, const char *field, u64 value,
1952                          struct bit_names *bits, bool *first)
1953 {
1954         int i = 0, printed = comma_fprintf(fp, first, " %s: ", field);
1955         bool first_bit = true;
1956
1957         do {
1958                 if (value & bits[i].bit) {
1959                         printed += fprintf(fp, "%s%s", first_bit ? "" : "|", bits[i].name);
1960                         first_bit = false;
1961                 }
1962         } while (bits[++i].name != NULL);
1963
1964         return printed;
1965 }
1966
1967 static int sample_type__fprintf(FILE *fp, bool *first, u64 value)
1968 {
1969 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1970         struct bit_names bits[] = {
1971                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1972                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1973                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1974                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1975                 bit_name(IDENTIFIER), bit_name(REGS_INTR),
1976                 { .name = NULL, }
1977         };
1978 #undef bit_name
1979         return bits__fprintf(fp, "sample_type", value, bits, first);
1980 }
1981
1982 static int read_format__fprintf(FILE *fp, bool *first, u64 value)
1983 {
1984 #define bit_name(n) { PERF_FORMAT_##n, #n }
1985         struct bit_names bits[] = {
1986                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1987                 bit_name(ID), bit_name(GROUP),
1988                 { .name = NULL, }
1989         };
1990 #undef bit_name
1991         return bits__fprintf(fp, "read_format", value, bits, first);
1992 }
1993
1994 int perf_evsel__fprintf(struct perf_evsel *evsel,
1995                         struct perf_attr_details *details, FILE *fp)
1996 {
1997         bool first = true;
1998         int printed = 0;
1999
2000         if (details->event_group) {
2001                 struct perf_evsel *pos;
2002
2003                 if (!perf_evsel__is_group_leader(evsel))
2004                         return 0;
2005
2006                 if (evsel->nr_members > 1)
2007                         printed += fprintf(fp, "%s{", evsel->group_name ?: "");
2008
2009                 printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2010                 for_each_group_member(pos, evsel)
2011                         printed += fprintf(fp, ",%s", perf_evsel__name(pos));
2012
2013                 if (evsel->nr_members > 1)
2014                         printed += fprintf(fp, "}");
2015                 goto out;
2016         }
2017
2018         printed += fprintf(fp, "%s", perf_evsel__name(evsel));
2019
2020         if (details->verbose || details->freq) {
2021                 printed += comma_fprintf(fp, &first, " sample_freq=%" PRIu64,
2022                                          (u64)evsel->attr.sample_freq);
2023         }
2024
2025         if (details->verbose) {
2026                 if_print(type);
2027                 if_print(config);
2028                 if_print(config1);
2029                 if_print(config2);
2030                 if_print(size);
2031                 printed += sample_type__fprintf(fp, &first, evsel->attr.sample_type);
2032                 if (evsel->attr.read_format)
2033                         printed += read_format__fprintf(fp, &first, evsel->attr.read_format);
2034                 if_print(disabled);
2035                 if_print(inherit);
2036                 if_print(pinned);
2037                 if_print(exclusive);
2038                 if_print(exclude_user);
2039                 if_print(exclude_kernel);
2040                 if_print(exclude_hv);
2041                 if_print(exclude_idle);
2042                 if_print(mmap);
2043                 if_print(mmap2);
2044                 if_print(comm);
2045                 if_print(comm_exec);
2046                 if_print(freq);
2047                 if_print(inherit_stat);
2048                 if_print(enable_on_exec);
2049                 if_print(task);
2050                 if_print(watermark);
2051                 if_print(precise_ip);
2052                 if_print(mmap_data);
2053                 if_print(sample_id_all);
2054                 if_print(exclude_host);
2055                 if_print(exclude_guest);
2056                 if_print(__reserved_1);
2057                 if_print(wakeup_events);
2058                 if_print(bp_type);
2059                 if_print(branch_sample_type);
2060         }
2061 out:
2062         fputc('\n', fp);
2063         return ++printed;
2064 }
2065
2066 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2067                           char *msg, size_t msgsize)
2068 {
2069         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2070             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2071             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2072                 /*
2073                  * If it's cycles then fall back to hrtimer based
2074                  * cpu-clock-tick sw counter, which is always available even if
2075                  * no PMU support.
2076                  *
2077                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2078                  * b0a873e).
2079                  */
2080                 scnprintf(msg, msgsize, "%s",
2081 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2082
2083                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2084                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2085
2086                 zfree(&evsel->name);
2087                 return true;
2088         }
2089
2090         return false;
2091 }
2092
2093 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2094                               int err, char *msg, size_t size)
2095 {
2096         char sbuf[STRERR_BUFSIZE];
2097
2098         switch (err) {
2099         case EPERM:
2100         case EACCES:
2101                 return scnprintf(msg, size,
2102                  "You may not have permission to collect %sstats.\n"
2103                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid:\n"
2104                  " -1 - Not paranoid at all\n"
2105                  "  0 - Disallow raw tracepoint access for unpriv\n"
2106                  "  1 - Disallow cpu events for unpriv\n"
2107                  "  2 - Disallow kernel profiling for unpriv",
2108                                  target->system_wide ? "system-wide " : "");
2109         case ENOENT:
2110                 return scnprintf(msg, size, "The %s event is not supported.",
2111                                  perf_evsel__name(evsel));
2112         case EMFILE:
2113                 return scnprintf(msg, size, "%s",
2114                          "Too many events are opened.\n"
2115                          "Try again after reducing the number of events.");
2116         case ENODEV:
2117                 if (target->cpu_list)
2118                         return scnprintf(msg, size, "%s",
2119          "No such device - did you specify an out-of-range profile CPU?\n");
2120                 break;
2121         case EOPNOTSUPP:
2122                 if (evsel->attr.precise_ip)
2123                         return scnprintf(msg, size, "%s",
2124         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2125 #if defined(__i386__) || defined(__x86_64__)
2126                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2127                         return scnprintf(msg, size, "%s",
2128         "No hardware sampling interrupt available.\n"
2129         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2130 #endif
2131                 break;
2132         case EBUSY:
2133                 if (find_process("oprofiled"))
2134                         return scnprintf(msg, size,
2135         "The PMU counters are busy/taken by another profiler.\n"
2136         "We found oprofile daemon running, please stop it and try again.");
2137                 break;
2138         default:
2139                 break;
2140         }
2141
2142         return scnprintf(msg, size,
2143         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2144         "/bin/dmesg may provide additional information.\n"
2145         "No CONFIG_PERF_EVENTS=y kernel support configured?\n",
2146                          err, strerror_r(err, sbuf, sizeof(sbuf)),
2147                          perf_evsel__name(evsel));
2148 }