Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         mutex_init(&isec->lock);
189         INIT_LIST_HEAD(&isec->list);
190         isec->inode = inode;
191         isec->sid = SECINITSID_UNLABELED;
192         isec->sclass = SECCLASS_FILE;
193         isec->task_sid = tsec->sid;
194         inode->i_security = isec;
195
196         return 0;
197 }
198
199 static void inode_free_security(struct inode *inode)
200 {
201         struct inode_security_struct *isec = inode->i_security;
202         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
203
204         spin_lock(&sbsec->isec_lock);
205         if (!list_empty(&isec->list))
206                 list_del_init(&isec->list);
207         spin_unlock(&sbsec->isec_lock);
208
209         inode->i_security = NULL;
210         kmem_cache_free(sel_inode_cache, isec);
211 }
212
213 static int file_alloc_security(struct file *file)
214 {
215         struct task_security_struct *tsec = current->security;
216         struct file_security_struct *fsec;
217
218         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
219         if (!fsec)
220                 return -ENOMEM;
221
222         fsec->file = file;
223         fsec->sid = tsec->sid;
224         fsec->fown_sid = tsec->sid;
225         file->f_security = fsec;
226
227         return 0;
228 }
229
230 static void file_free_security(struct file *file)
231 {
232         struct file_security_struct *fsec = file->f_security;
233         file->f_security = NULL;
234         kfree(fsec);
235 }
236
237 static int superblock_alloc_security(struct super_block *sb)
238 {
239         struct superblock_security_struct *sbsec;
240
241         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
242         if (!sbsec)
243                 return -ENOMEM;
244
245         mutex_init(&sbsec->lock);
246         INIT_LIST_HEAD(&sbsec->list);
247         INIT_LIST_HEAD(&sbsec->isec_head);
248         spin_lock_init(&sbsec->isec_lock);
249         sbsec->sb = sb;
250         sbsec->sid = SECINITSID_UNLABELED;
251         sbsec->def_sid = SECINITSID_FILE;
252         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
253         sb->s_security = sbsec;
254
255         return 0;
256 }
257
258 static void superblock_free_security(struct super_block *sb)
259 {
260         struct superblock_security_struct *sbsec = sb->s_security;
261
262         spin_lock(&sb_security_lock);
263         if (!list_empty(&sbsec->list))
264                 list_del_init(&sbsec->list);
265         spin_unlock(&sb_security_lock);
266
267         sb->s_security = NULL;
268         kfree(sbsec);
269 }
270
271 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
272 {
273         struct sk_security_struct *ssec;
274
275         ssec = kzalloc(sizeof(*ssec), priority);
276         if (!ssec)
277                 return -ENOMEM;
278
279         ssec->sk = sk;
280         ssec->peer_sid = SECINITSID_UNLABELED;
281         ssec->sid = SECINITSID_UNLABELED;
282         sk->sk_security = ssec;
283
284         selinux_netlbl_sk_security_init(ssec, family);
285
286         return 0;
287 }
288
289 static void sk_free_security(struct sock *sk)
290 {
291         struct sk_security_struct *ssec = sk->sk_security;
292
293         sk->sk_security = NULL;
294         kfree(ssec);
295 }
296
297 /* The security server must be initialized before
298    any labeling or access decisions can be provided. */
299 extern int ss_initialized;
300
301 /* The file system's label must be initialized prior to use. */
302
303 static char *labeling_behaviors[6] = {
304         "uses xattr",
305         "uses transition SIDs",
306         "uses task SIDs",
307         "uses genfs_contexts",
308         "not configured for labeling",
309         "uses mountpoint labeling",
310 };
311
312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
313
314 static inline int inode_doinit(struct inode *inode)
315 {
316         return inode_doinit_with_dentry(inode, NULL);
317 }
318
319 enum {
320         Opt_context = 1,
321         Opt_fscontext = 2,
322         Opt_defcontext = 4,
323         Opt_rootcontext = 8,
324 };
325
326 static match_table_t tokens = {
327         {Opt_context, "context=%s"},
328         {Opt_fscontext, "fscontext=%s"},
329         {Opt_defcontext, "defcontext=%s"},
330         {Opt_rootcontext, "rootcontext=%s"},
331 };
332
333 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
334
335 static int may_context_mount_sb_relabel(u32 sid,
336                         struct superblock_security_struct *sbsec,
337                         struct task_security_struct *tsec)
338 {
339         int rc;
340
341         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
342                           FILESYSTEM__RELABELFROM, NULL);
343         if (rc)
344                 return rc;
345
346         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
347                           FILESYSTEM__RELABELTO, NULL);
348         return rc;
349 }
350
351 static int may_context_mount_inode_relabel(u32 sid,
352                         struct superblock_security_struct *sbsec,
353                         struct task_security_struct *tsec)
354 {
355         int rc;
356         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
357                           FILESYSTEM__RELABELFROM, NULL);
358         if (rc)
359                 return rc;
360
361         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
362                           FILESYSTEM__ASSOCIATE, NULL);
363         return rc;
364 }
365
366 static int try_context_mount(struct super_block *sb, void *data)
367 {
368         char *context = NULL, *defcontext = NULL;
369         char *fscontext = NULL, *rootcontext = NULL;
370         const char *name;
371         u32 sid;
372         int alloc = 0, rc = 0, seen = 0;
373         struct task_security_struct *tsec = current->security;
374         struct superblock_security_struct *sbsec = sb->s_security;
375
376         if (!data)
377                 goto out;
378
379         name = sb->s_type->name;
380
381         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
382
383                 /* NFS we understand. */
384                 if (!strcmp(name, "nfs")) {
385                         struct nfs_mount_data *d = data;
386
387                         if (d->version <  NFS_MOUNT_VERSION)
388                                 goto out;
389
390                         if (d->context[0]) {
391                                 context = d->context;
392                                 seen |= Opt_context;
393                         }
394                 } else
395                         goto out;
396
397         } else {
398                 /* Standard string-based options. */
399                 char *p, *options = data;
400
401                 while ((p = strsep(&options, "|")) != NULL) {
402                         int token;
403                         substring_t args[MAX_OPT_ARGS];
404
405                         if (!*p)
406                                 continue;
407
408                         token = match_token(p, tokens, args);
409
410                         switch (token) {
411                         case Opt_context:
412                                 if (seen & (Opt_context|Opt_defcontext)) {
413                                         rc = -EINVAL;
414                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
415                                         goto out_free;
416                                 }
417                                 context = match_strdup(&args[0]);
418                                 if (!context) {
419                                         rc = -ENOMEM;
420                                         goto out_free;
421                                 }
422                                 if (!alloc)
423                                         alloc = 1;
424                                 seen |= Opt_context;
425                                 break;
426
427                         case Opt_fscontext:
428                                 if (seen & Opt_fscontext) {
429                                         rc = -EINVAL;
430                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
431                                         goto out_free;
432                                 }
433                                 fscontext = match_strdup(&args[0]);
434                                 if (!fscontext) {
435                                         rc = -ENOMEM;
436                                         goto out_free;
437                                 }
438                                 if (!alloc)
439                                         alloc = 1;
440                                 seen |= Opt_fscontext;
441                                 break;
442
443                         case Opt_rootcontext:
444                                 if (seen & Opt_rootcontext) {
445                                         rc = -EINVAL;
446                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
447                                         goto out_free;
448                                 }
449                                 rootcontext = match_strdup(&args[0]);
450                                 if (!rootcontext) {
451                                         rc = -ENOMEM;
452                                         goto out_free;
453                                 }
454                                 if (!alloc)
455                                         alloc = 1;
456                                 seen |= Opt_rootcontext;
457                                 break;
458
459                         case Opt_defcontext:
460                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
461                                         rc = -EINVAL;
462                                         printk(KERN_WARNING "SELinux:  "
463                                                "defcontext option is invalid "
464                                                "for this filesystem type\n");
465                                         goto out_free;
466                                 }
467                                 if (seen & (Opt_context|Opt_defcontext)) {
468                                         rc = -EINVAL;
469                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
470                                         goto out_free;
471                                 }
472                                 defcontext = match_strdup(&args[0]);
473                                 if (!defcontext) {
474                                         rc = -ENOMEM;
475                                         goto out_free;
476                                 }
477                                 if (!alloc)
478                                         alloc = 1;
479                                 seen |= Opt_defcontext;
480                                 break;
481
482                         default:
483                                 rc = -EINVAL;
484                                 printk(KERN_WARNING "SELinux:  unknown mount "
485                                        "option\n");
486                                 goto out_free;
487
488                         }
489                 }
490         }
491
492         if (!seen)
493                 goto out;
494
495         /* sets the context of the superblock for the fs being mounted. */
496         if (fscontext) {
497                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
498                 if (rc) {
499                         printk(KERN_WARNING "SELinux: security_context_to_sid"
500                                "(%s) failed for (dev %s, type %s) errno=%d\n",
501                                fscontext, sb->s_id, name, rc);
502                         goto out_free;
503                 }
504
505                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
506                 if (rc)
507                         goto out_free;
508
509                 sbsec->sid = sid;
510         }
511
512         /*
513          * Switch to using mount point labeling behavior.
514          * sets the label used on all file below the mountpoint, and will set
515          * the superblock context if not already set.
516          */
517         if (context) {
518                 rc = security_context_to_sid(context, strlen(context), &sid);
519                 if (rc) {
520                         printk(KERN_WARNING "SELinux: security_context_to_sid"
521                                "(%s) failed for (dev %s, type %s) errno=%d\n",
522                                context, sb->s_id, name, rc);
523                         goto out_free;
524                 }
525
526                 if (!fscontext) {
527                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
528                         if (rc)
529                                 goto out_free;
530                         sbsec->sid = sid;
531                 } else {
532                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
533                         if (rc)
534                                 goto out_free;
535                 }
536                 sbsec->mntpoint_sid = sid;
537
538                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
539         }
540
541         if (rootcontext) {
542                 struct inode *inode = sb->s_root->d_inode;
543                 struct inode_security_struct *isec = inode->i_security;
544                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
545                 if (rc) {
546                         printk(KERN_WARNING "SELinux: security_context_to_sid"
547                                "(%s) failed for (dev %s, type %s) errno=%d\n",
548                                rootcontext, sb->s_id, name, rc);
549                         goto out_free;
550                 }
551
552                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
553                 if (rc)
554                         goto out_free;
555
556                 isec->sid = sid;
557                 isec->initialized = 1;
558         }
559
560         if (defcontext) {
561                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
562                 if (rc) {
563                         printk(KERN_WARNING "SELinux: security_context_to_sid"
564                                "(%s) failed for (dev %s, type %s) errno=%d\n",
565                                defcontext, sb->s_id, name, rc);
566                         goto out_free;
567                 }
568
569                 if (sid == sbsec->def_sid)
570                         goto out_free;
571
572                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
573                 if (rc)
574                         goto out_free;
575
576                 sbsec->def_sid = sid;
577         }
578
579 out_free:
580         if (alloc) {
581                 kfree(context);
582                 kfree(defcontext);
583                 kfree(fscontext);
584                 kfree(rootcontext);
585         }
586 out:
587         return rc;
588 }
589
590 static int superblock_doinit(struct super_block *sb, void *data)
591 {
592         struct superblock_security_struct *sbsec = sb->s_security;
593         struct dentry *root = sb->s_root;
594         struct inode *inode = root->d_inode;
595         int rc = 0;
596
597         mutex_lock(&sbsec->lock);
598         if (sbsec->initialized)
599                 goto out;
600
601         if (!ss_initialized) {
602                 /* Defer initialization until selinux_complete_init,
603                    after the initial policy is loaded and the security
604                    server is ready to handle calls. */
605                 spin_lock(&sb_security_lock);
606                 if (list_empty(&sbsec->list))
607                         list_add(&sbsec->list, &superblock_security_head);
608                 spin_unlock(&sb_security_lock);
609                 goto out;
610         }
611
612         /* Determine the labeling behavior to use for this filesystem type. */
613         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
614         if (rc) {
615                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
616                        __FUNCTION__, sb->s_type->name, rc);
617                 goto out;
618         }
619
620         rc = try_context_mount(sb, data);
621         if (rc)
622                 goto out;
623
624         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
625                 /* Make sure that the xattr handler exists and that no
626                    error other than -ENODATA is returned by getxattr on
627                    the root directory.  -ENODATA is ok, as this may be
628                    the first boot of the SELinux kernel before we have
629                    assigned xattr values to the filesystem. */
630                 if (!inode->i_op->getxattr) {
631                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
632                                "xattr support\n", sb->s_id, sb->s_type->name);
633                         rc = -EOPNOTSUPP;
634                         goto out;
635                 }
636                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
637                 if (rc < 0 && rc != -ENODATA) {
638                         if (rc == -EOPNOTSUPP)
639                                 printk(KERN_WARNING "SELinux: (dev %s, type "
640                                        "%s) has no security xattr handler\n",
641                                        sb->s_id, sb->s_type->name);
642                         else
643                                 printk(KERN_WARNING "SELinux: (dev %s, type "
644                                        "%s) getxattr errno %d\n", sb->s_id,
645                                        sb->s_type->name, -rc);
646                         goto out;
647                 }
648         }
649
650         if (strcmp(sb->s_type->name, "proc") == 0)
651                 sbsec->proc = 1;
652
653         sbsec->initialized = 1;
654
655         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
656                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
657                        sb->s_id, sb->s_type->name);
658         }
659         else {
660                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
661                        sb->s_id, sb->s_type->name,
662                        labeling_behaviors[sbsec->behavior-1]);
663         }
664
665         /* Initialize the root inode. */
666         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
667
668         /* Initialize any other inodes associated with the superblock, e.g.
669            inodes created prior to initial policy load or inodes created
670            during get_sb by a pseudo filesystem that directly
671            populates itself. */
672         spin_lock(&sbsec->isec_lock);
673 next_inode:
674         if (!list_empty(&sbsec->isec_head)) {
675                 struct inode_security_struct *isec =
676                                 list_entry(sbsec->isec_head.next,
677                                            struct inode_security_struct, list);
678                 struct inode *inode = isec->inode;
679                 spin_unlock(&sbsec->isec_lock);
680                 inode = igrab(inode);
681                 if (inode) {
682                         if (!IS_PRIVATE (inode))
683                                 inode_doinit(inode);
684                         iput(inode);
685                 }
686                 spin_lock(&sbsec->isec_lock);
687                 list_del_init(&isec->list);
688                 goto next_inode;
689         }
690         spin_unlock(&sbsec->isec_lock);
691 out:
692         mutex_unlock(&sbsec->lock);
693         return rc;
694 }
695
696 static inline u16 inode_mode_to_security_class(umode_t mode)
697 {
698         switch (mode & S_IFMT) {
699         case S_IFSOCK:
700                 return SECCLASS_SOCK_FILE;
701         case S_IFLNK:
702                 return SECCLASS_LNK_FILE;
703         case S_IFREG:
704                 return SECCLASS_FILE;
705         case S_IFBLK:
706                 return SECCLASS_BLK_FILE;
707         case S_IFDIR:
708                 return SECCLASS_DIR;
709         case S_IFCHR:
710                 return SECCLASS_CHR_FILE;
711         case S_IFIFO:
712                 return SECCLASS_FIFO_FILE;
713
714         }
715
716         return SECCLASS_FILE;
717 }
718
719 static inline int default_protocol_stream(int protocol)
720 {
721         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
722 }
723
724 static inline int default_protocol_dgram(int protocol)
725 {
726         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
727 }
728
729 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
730 {
731         switch (family) {
732         case PF_UNIX:
733                 switch (type) {
734                 case SOCK_STREAM:
735                 case SOCK_SEQPACKET:
736                         return SECCLASS_UNIX_STREAM_SOCKET;
737                 case SOCK_DGRAM:
738                         return SECCLASS_UNIX_DGRAM_SOCKET;
739                 }
740                 break;
741         case PF_INET:
742         case PF_INET6:
743                 switch (type) {
744                 case SOCK_STREAM:
745                         if (default_protocol_stream(protocol))
746                                 return SECCLASS_TCP_SOCKET;
747                         else
748                                 return SECCLASS_RAWIP_SOCKET;
749                 case SOCK_DGRAM:
750                         if (default_protocol_dgram(protocol))
751                                 return SECCLASS_UDP_SOCKET;
752                         else
753                                 return SECCLASS_RAWIP_SOCKET;
754                 case SOCK_DCCP:
755                         return SECCLASS_DCCP_SOCKET;
756                 default:
757                         return SECCLASS_RAWIP_SOCKET;
758                 }
759                 break;
760         case PF_NETLINK:
761                 switch (protocol) {
762                 case NETLINK_ROUTE:
763                         return SECCLASS_NETLINK_ROUTE_SOCKET;
764                 case NETLINK_FIREWALL:
765                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
766                 case NETLINK_INET_DIAG:
767                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
768                 case NETLINK_NFLOG:
769                         return SECCLASS_NETLINK_NFLOG_SOCKET;
770                 case NETLINK_XFRM:
771                         return SECCLASS_NETLINK_XFRM_SOCKET;
772                 case NETLINK_SELINUX:
773                         return SECCLASS_NETLINK_SELINUX_SOCKET;
774                 case NETLINK_AUDIT:
775                         return SECCLASS_NETLINK_AUDIT_SOCKET;
776                 case NETLINK_IP6_FW:
777                         return SECCLASS_NETLINK_IP6FW_SOCKET;
778                 case NETLINK_DNRTMSG:
779                         return SECCLASS_NETLINK_DNRT_SOCKET;
780                 case NETLINK_KOBJECT_UEVENT:
781                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
782                 default:
783                         return SECCLASS_NETLINK_SOCKET;
784                 }
785         case PF_PACKET:
786                 return SECCLASS_PACKET_SOCKET;
787         case PF_KEY:
788                 return SECCLASS_KEY_SOCKET;
789         case PF_APPLETALK:
790                 return SECCLASS_APPLETALK_SOCKET;
791         }
792
793         return SECCLASS_SOCKET;
794 }
795
796 #ifdef CONFIG_PROC_FS
797 static int selinux_proc_get_sid(struct proc_dir_entry *de,
798                                 u16 tclass,
799                                 u32 *sid)
800 {
801         int buflen, rc;
802         char *buffer, *path, *end;
803
804         buffer = (char*)__get_free_page(GFP_KERNEL);
805         if (!buffer)
806                 return -ENOMEM;
807
808         buflen = PAGE_SIZE;
809         end = buffer+buflen;
810         *--end = '\0';
811         buflen--;
812         path = end-1;
813         *path = '/';
814         while (de && de != de->parent) {
815                 buflen -= de->namelen + 1;
816                 if (buflen < 0)
817                         break;
818                 end -= de->namelen;
819                 memcpy(end, de->name, de->namelen);
820                 *--end = '/';
821                 path = end;
822                 de = de->parent;
823         }
824         rc = security_genfs_sid("proc", path, tclass, sid);
825         free_page((unsigned long)buffer);
826         return rc;
827 }
828 #else
829 static int selinux_proc_get_sid(struct proc_dir_entry *de,
830                                 u16 tclass,
831                                 u32 *sid)
832 {
833         return -EINVAL;
834 }
835 #endif
836
837 /* The inode's security attributes must be initialized before first use. */
838 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
839 {
840         struct superblock_security_struct *sbsec = NULL;
841         struct inode_security_struct *isec = inode->i_security;
842         u32 sid;
843         struct dentry *dentry;
844 #define INITCONTEXTLEN 255
845         char *context = NULL;
846         unsigned len = 0;
847         int rc = 0;
848
849         if (isec->initialized)
850                 goto out;
851
852         mutex_lock(&isec->lock);
853         if (isec->initialized)
854                 goto out_unlock;
855
856         sbsec = inode->i_sb->s_security;
857         if (!sbsec->initialized) {
858                 /* Defer initialization until selinux_complete_init,
859                    after the initial policy is loaded and the security
860                    server is ready to handle calls. */
861                 spin_lock(&sbsec->isec_lock);
862                 if (list_empty(&isec->list))
863                         list_add(&isec->list, &sbsec->isec_head);
864                 spin_unlock(&sbsec->isec_lock);
865                 goto out_unlock;
866         }
867
868         switch (sbsec->behavior) {
869         case SECURITY_FS_USE_XATTR:
870                 if (!inode->i_op->getxattr) {
871                         isec->sid = sbsec->def_sid;
872                         break;
873                 }
874
875                 /* Need a dentry, since the xattr API requires one.
876                    Life would be simpler if we could just pass the inode. */
877                 if (opt_dentry) {
878                         /* Called from d_instantiate or d_splice_alias. */
879                         dentry = dget(opt_dentry);
880                 } else {
881                         /* Called from selinux_complete_init, try to find a dentry. */
882                         dentry = d_find_alias(inode);
883                 }
884                 if (!dentry) {
885                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
886                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
887                                inode->i_ino);
888                         goto out_unlock;
889                 }
890
891                 len = INITCONTEXTLEN;
892                 context = kmalloc(len, GFP_KERNEL);
893                 if (!context) {
894                         rc = -ENOMEM;
895                         dput(dentry);
896                         goto out_unlock;
897                 }
898                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
899                                            context, len);
900                 if (rc == -ERANGE) {
901                         /* Need a larger buffer.  Query for the right size. */
902                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
903                                                    NULL, 0);
904                         if (rc < 0) {
905                                 dput(dentry);
906                                 goto out_unlock;
907                         }
908                         kfree(context);
909                         len = rc;
910                         context = kmalloc(len, GFP_KERNEL);
911                         if (!context) {
912                                 rc = -ENOMEM;
913                                 dput(dentry);
914                                 goto out_unlock;
915                         }
916                         rc = inode->i_op->getxattr(dentry,
917                                                    XATTR_NAME_SELINUX,
918                                                    context, len);
919                 }
920                 dput(dentry);
921                 if (rc < 0) {
922                         if (rc != -ENODATA) {
923                                 printk(KERN_WARNING "%s:  getxattr returned "
924                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
925                                        -rc, inode->i_sb->s_id, inode->i_ino);
926                                 kfree(context);
927                                 goto out_unlock;
928                         }
929                         /* Map ENODATA to the default file SID */
930                         sid = sbsec->def_sid;
931                         rc = 0;
932                 } else {
933                         rc = security_context_to_sid_default(context, rc, &sid,
934                                                              sbsec->def_sid);
935                         if (rc) {
936                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
937                                        "returned %d for dev=%s ino=%ld\n",
938                                        __FUNCTION__, context, -rc,
939                                        inode->i_sb->s_id, inode->i_ino);
940                                 kfree(context);
941                                 /* Leave with the unlabeled SID */
942                                 rc = 0;
943                                 break;
944                         }
945                 }
946                 kfree(context);
947                 isec->sid = sid;
948                 break;
949         case SECURITY_FS_USE_TASK:
950                 isec->sid = isec->task_sid;
951                 break;
952         case SECURITY_FS_USE_TRANS:
953                 /* Default to the fs SID. */
954                 isec->sid = sbsec->sid;
955
956                 /* Try to obtain a transition SID. */
957                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
958                 rc = security_transition_sid(isec->task_sid,
959                                              sbsec->sid,
960                                              isec->sclass,
961                                              &sid);
962                 if (rc)
963                         goto out_unlock;
964                 isec->sid = sid;
965                 break;
966         case SECURITY_FS_USE_MNTPOINT:
967                 isec->sid = sbsec->mntpoint_sid;
968                 break;
969         default:
970                 /* Default to the fs superblock SID. */
971                 isec->sid = sbsec->sid;
972
973                 if (sbsec->proc) {
974                         struct proc_inode *proci = PROC_I(inode);
975                         if (proci->pde) {
976                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
977                                 rc = selinux_proc_get_sid(proci->pde,
978                                                           isec->sclass,
979                                                           &sid);
980                                 if (rc)
981                                         goto out_unlock;
982                                 isec->sid = sid;
983                         }
984                 }
985                 break;
986         }
987
988         isec->initialized = 1;
989
990 out_unlock:
991         mutex_unlock(&isec->lock);
992 out:
993         if (isec->sclass == SECCLASS_FILE)
994                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
995         return rc;
996 }
997
998 /* Convert a Linux signal to an access vector. */
999 static inline u32 signal_to_av(int sig)
1000 {
1001         u32 perm = 0;
1002
1003         switch (sig) {
1004         case SIGCHLD:
1005                 /* Commonly granted from child to parent. */
1006                 perm = PROCESS__SIGCHLD;
1007                 break;
1008         case SIGKILL:
1009                 /* Cannot be caught or ignored */
1010                 perm = PROCESS__SIGKILL;
1011                 break;
1012         case SIGSTOP:
1013                 /* Cannot be caught or ignored */
1014                 perm = PROCESS__SIGSTOP;
1015                 break;
1016         default:
1017                 /* All other signals. */
1018                 perm = PROCESS__SIGNAL;
1019                 break;
1020         }
1021
1022         return perm;
1023 }
1024
1025 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1026    fork check, ptrace check, etc. */
1027 static int task_has_perm(struct task_struct *tsk1,
1028                          struct task_struct *tsk2,
1029                          u32 perms)
1030 {
1031         struct task_security_struct *tsec1, *tsec2;
1032
1033         tsec1 = tsk1->security;
1034         tsec2 = tsk2->security;
1035         return avc_has_perm(tsec1->sid, tsec2->sid,
1036                             SECCLASS_PROCESS, perms, NULL);
1037 }
1038
1039 /* Check whether a task is allowed to use a capability. */
1040 static int task_has_capability(struct task_struct *tsk,
1041                                int cap)
1042 {
1043         struct task_security_struct *tsec;
1044         struct avc_audit_data ad;
1045
1046         tsec = tsk->security;
1047
1048         AVC_AUDIT_DATA_INIT(&ad,CAP);
1049         ad.tsk = tsk;
1050         ad.u.cap = cap;
1051
1052         return avc_has_perm(tsec->sid, tsec->sid,
1053                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1054 }
1055
1056 /* Check whether a task is allowed to use a system operation. */
1057 static int task_has_system(struct task_struct *tsk,
1058                            u32 perms)
1059 {
1060         struct task_security_struct *tsec;
1061
1062         tsec = tsk->security;
1063
1064         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1065                             SECCLASS_SYSTEM, perms, NULL);
1066 }
1067
1068 /* Check whether a task has a particular permission to an inode.
1069    The 'adp' parameter is optional and allows other audit
1070    data to be passed (e.g. the dentry). */
1071 static int inode_has_perm(struct task_struct *tsk,
1072                           struct inode *inode,
1073                           u32 perms,
1074                           struct avc_audit_data *adp)
1075 {
1076         struct task_security_struct *tsec;
1077         struct inode_security_struct *isec;
1078         struct avc_audit_data ad;
1079
1080         tsec = tsk->security;
1081         isec = inode->i_security;
1082
1083         if (!adp) {
1084                 adp = &ad;
1085                 AVC_AUDIT_DATA_INIT(&ad, FS);
1086                 ad.u.fs.inode = inode;
1087         }
1088
1089         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1090 }
1091
1092 /* Same as inode_has_perm, but pass explicit audit data containing
1093    the dentry to help the auditing code to more easily generate the
1094    pathname if needed. */
1095 static inline int dentry_has_perm(struct task_struct *tsk,
1096                                   struct vfsmount *mnt,
1097                                   struct dentry *dentry,
1098                                   u32 av)
1099 {
1100         struct inode *inode = dentry->d_inode;
1101         struct avc_audit_data ad;
1102         AVC_AUDIT_DATA_INIT(&ad,FS);
1103         ad.u.fs.mnt = mnt;
1104         ad.u.fs.dentry = dentry;
1105         return inode_has_perm(tsk, inode, av, &ad);
1106 }
1107
1108 /* Check whether a task can use an open file descriptor to
1109    access an inode in a given way.  Check access to the
1110    descriptor itself, and then use dentry_has_perm to
1111    check a particular permission to the file.
1112    Access to the descriptor is implicitly granted if it
1113    has the same SID as the process.  If av is zero, then
1114    access to the file is not checked, e.g. for cases
1115    where only the descriptor is affected like seek. */
1116 static int file_has_perm(struct task_struct *tsk,
1117                                 struct file *file,
1118                                 u32 av)
1119 {
1120         struct task_security_struct *tsec = tsk->security;
1121         struct file_security_struct *fsec = file->f_security;
1122         struct vfsmount *mnt = file->f_path.mnt;
1123         struct dentry *dentry = file->f_path.dentry;
1124         struct inode *inode = dentry->d_inode;
1125         struct avc_audit_data ad;
1126         int rc;
1127
1128         AVC_AUDIT_DATA_INIT(&ad, FS);
1129         ad.u.fs.mnt = mnt;
1130         ad.u.fs.dentry = dentry;
1131
1132         if (tsec->sid != fsec->sid) {
1133                 rc = avc_has_perm(tsec->sid, fsec->sid,
1134                                   SECCLASS_FD,
1135                                   FD__USE,
1136                                   &ad);
1137                 if (rc)
1138                         return rc;
1139         }
1140
1141         /* av is zero if only checking access to the descriptor. */
1142         if (av)
1143                 return inode_has_perm(tsk, inode, av, &ad);
1144
1145         return 0;
1146 }
1147
1148 /* Check whether a task can create a file. */
1149 static int may_create(struct inode *dir,
1150                       struct dentry *dentry,
1151                       u16 tclass)
1152 {
1153         struct task_security_struct *tsec;
1154         struct inode_security_struct *dsec;
1155         struct superblock_security_struct *sbsec;
1156         u32 newsid;
1157         struct avc_audit_data ad;
1158         int rc;
1159
1160         tsec = current->security;
1161         dsec = dir->i_security;
1162         sbsec = dir->i_sb->s_security;
1163
1164         AVC_AUDIT_DATA_INIT(&ad, FS);
1165         ad.u.fs.dentry = dentry;
1166
1167         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1168                           DIR__ADD_NAME | DIR__SEARCH,
1169                           &ad);
1170         if (rc)
1171                 return rc;
1172
1173         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1174                 newsid = tsec->create_sid;
1175         } else {
1176                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1177                                              &newsid);
1178                 if (rc)
1179                         return rc;
1180         }
1181
1182         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1183         if (rc)
1184                 return rc;
1185
1186         return avc_has_perm(newsid, sbsec->sid,
1187                             SECCLASS_FILESYSTEM,
1188                             FILESYSTEM__ASSOCIATE, &ad);
1189 }
1190
1191 /* Check whether a task can create a key. */
1192 static int may_create_key(u32 ksid,
1193                           struct task_struct *ctx)
1194 {
1195         struct task_security_struct *tsec;
1196
1197         tsec = ctx->security;
1198
1199         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1200 }
1201
1202 #define MAY_LINK   0
1203 #define MAY_UNLINK 1
1204 #define MAY_RMDIR  2
1205
1206 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1207 static int may_link(struct inode *dir,
1208                     struct dentry *dentry,
1209                     int kind)
1210
1211 {
1212         struct task_security_struct *tsec;
1213         struct inode_security_struct *dsec, *isec;
1214         struct avc_audit_data ad;
1215         u32 av;
1216         int rc;
1217
1218         tsec = current->security;
1219         dsec = dir->i_security;
1220         isec = dentry->d_inode->i_security;
1221
1222         AVC_AUDIT_DATA_INIT(&ad, FS);
1223         ad.u.fs.dentry = dentry;
1224
1225         av = DIR__SEARCH;
1226         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1227         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1228         if (rc)
1229                 return rc;
1230
1231         switch (kind) {
1232         case MAY_LINK:
1233                 av = FILE__LINK;
1234                 break;
1235         case MAY_UNLINK:
1236                 av = FILE__UNLINK;
1237                 break;
1238         case MAY_RMDIR:
1239                 av = DIR__RMDIR;
1240                 break;
1241         default:
1242                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1243                 return 0;
1244         }
1245
1246         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1247         return rc;
1248 }
1249
1250 static inline int may_rename(struct inode *old_dir,
1251                              struct dentry *old_dentry,
1252                              struct inode *new_dir,
1253                              struct dentry *new_dentry)
1254 {
1255         struct task_security_struct *tsec;
1256         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1257         struct avc_audit_data ad;
1258         u32 av;
1259         int old_is_dir, new_is_dir;
1260         int rc;
1261
1262         tsec = current->security;
1263         old_dsec = old_dir->i_security;
1264         old_isec = old_dentry->d_inode->i_security;
1265         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1266         new_dsec = new_dir->i_security;
1267
1268         AVC_AUDIT_DATA_INIT(&ad, FS);
1269
1270         ad.u.fs.dentry = old_dentry;
1271         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1272                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1273         if (rc)
1274                 return rc;
1275         rc = avc_has_perm(tsec->sid, old_isec->sid,
1276                           old_isec->sclass, FILE__RENAME, &ad);
1277         if (rc)
1278                 return rc;
1279         if (old_is_dir && new_dir != old_dir) {
1280                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1281                                   old_isec->sclass, DIR__REPARENT, &ad);
1282                 if (rc)
1283                         return rc;
1284         }
1285
1286         ad.u.fs.dentry = new_dentry;
1287         av = DIR__ADD_NAME | DIR__SEARCH;
1288         if (new_dentry->d_inode)
1289                 av |= DIR__REMOVE_NAME;
1290         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1291         if (rc)
1292                 return rc;
1293         if (new_dentry->d_inode) {
1294                 new_isec = new_dentry->d_inode->i_security;
1295                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1296                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1297                                   new_isec->sclass,
1298                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1299                 if (rc)
1300                         return rc;
1301         }
1302
1303         return 0;
1304 }
1305
1306 /* Check whether a task can perform a filesystem operation. */
1307 static int superblock_has_perm(struct task_struct *tsk,
1308                                struct super_block *sb,
1309                                u32 perms,
1310                                struct avc_audit_data *ad)
1311 {
1312         struct task_security_struct *tsec;
1313         struct superblock_security_struct *sbsec;
1314
1315         tsec = tsk->security;
1316         sbsec = sb->s_security;
1317         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1318                             perms, ad);
1319 }
1320
1321 /* Convert a Linux mode and permission mask to an access vector. */
1322 static inline u32 file_mask_to_av(int mode, int mask)
1323 {
1324         u32 av = 0;
1325
1326         if ((mode & S_IFMT) != S_IFDIR) {
1327                 if (mask & MAY_EXEC)
1328                         av |= FILE__EXECUTE;
1329                 if (mask & MAY_READ)
1330                         av |= FILE__READ;
1331
1332                 if (mask & MAY_APPEND)
1333                         av |= FILE__APPEND;
1334                 else if (mask & MAY_WRITE)
1335                         av |= FILE__WRITE;
1336
1337         } else {
1338                 if (mask & MAY_EXEC)
1339                         av |= DIR__SEARCH;
1340                 if (mask & MAY_WRITE)
1341                         av |= DIR__WRITE;
1342                 if (mask & MAY_READ)
1343                         av |= DIR__READ;
1344         }
1345
1346         return av;
1347 }
1348
1349 /* Convert a Linux file to an access vector. */
1350 static inline u32 file_to_av(struct file *file)
1351 {
1352         u32 av = 0;
1353
1354         if (file->f_mode & FMODE_READ)
1355                 av |= FILE__READ;
1356         if (file->f_mode & FMODE_WRITE) {
1357                 if (file->f_flags & O_APPEND)
1358                         av |= FILE__APPEND;
1359                 else
1360                         av |= FILE__WRITE;
1361         }
1362
1363         return av;
1364 }
1365
1366 /* Hook functions begin here. */
1367
1368 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1369 {
1370         struct task_security_struct *psec = parent->security;
1371         struct task_security_struct *csec = child->security;
1372         int rc;
1373
1374         rc = secondary_ops->ptrace(parent,child);
1375         if (rc)
1376                 return rc;
1377
1378         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1379         /* Save the SID of the tracing process for later use in apply_creds. */
1380         if (!(child->ptrace & PT_PTRACED) && !rc)
1381                 csec->ptrace_sid = psec->sid;
1382         return rc;
1383 }
1384
1385 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1386                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1387 {
1388         int error;
1389
1390         error = task_has_perm(current, target, PROCESS__GETCAP);
1391         if (error)
1392                 return error;
1393
1394         return secondary_ops->capget(target, effective, inheritable, permitted);
1395 }
1396
1397 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1398                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1399 {
1400         int error;
1401
1402         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1403         if (error)
1404                 return error;
1405
1406         return task_has_perm(current, target, PROCESS__SETCAP);
1407 }
1408
1409 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1410                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1411 {
1412         secondary_ops->capset_set(target, effective, inheritable, permitted);
1413 }
1414
1415 static int selinux_capable(struct task_struct *tsk, int cap)
1416 {
1417         int rc;
1418
1419         rc = secondary_ops->capable(tsk, cap);
1420         if (rc)
1421                 return rc;
1422
1423         return task_has_capability(tsk,cap);
1424 }
1425
1426 static int selinux_sysctl(ctl_table *table, int op)
1427 {
1428         int error = 0;
1429         u32 av;
1430         struct task_security_struct *tsec;
1431         u32 tsid;
1432         int rc;
1433
1434         rc = secondary_ops->sysctl(table, op);
1435         if (rc)
1436                 return rc;
1437
1438         tsec = current->security;
1439
1440         rc = selinux_proc_get_sid(table->de, (op == 001) ?
1441                                   SECCLASS_DIR : SECCLASS_FILE, &tsid);
1442         if (rc) {
1443                 /* Default to the well-defined sysctl SID. */
1444                 tsid = SECINITSID_SYSCTL;
1445         }
1446
1447         /* The op values are "defined" in sysctl.c, thereby creating
1448          * a bad coupling between this module and sysctl.c */
1449         if(op == 001) {
1450                 error = avc_has_perm(tsec->sid, tsid,
1451                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1452         } else {
1453                 av = 0;
1454                 if (op & 004)
1455                         av |= FILE__READ;
1456                 if (op & 002)
1457                         av |= FILE__WRITE;
1458                 if (av)
1459                         error = avc_has_perm(tsec->sid, tsid,
1460                                              SECCLASS_FILE, av, NULL);
1461         }
1462
1463         return error;
1464 }
1465
1466 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1467 {
1468         int rc = 0;
1469
1470         if (!sb)
1471                 return 0;
1472
1473         switch (cmds) {
1474                 case Q_SYNC:
1475                 case Q_QUOTAON:
1476                 case Q_QUOTAOFF:
1477                 case Q_SETINFO:
1478                 case Q_SETQUOTA:
1479                         rc = superblock_has_perm(current,
1480                                                  sb,
1481                                                  FILESYSTEM__QUOTAMOD, NULL);
1482                         break;
1483                 case Q_GETFMT:
1484                 case Q_GETINFO:
1485                 case Q_GETQUOTA:
1486                         rc = superblock_has_perm(current,
1487                                                  sb,
1488                                                  FILESYSTEM__QUOTAGET, NULL);
1489                         break;
1490                 default:
1491                         rc = 0;  /* let the kernel handle invalid cmds */
1492                         break;
1493         }
1494         return rc;
1495 }
1496
1497 static int selinux_quota_on(struct dentry *dentry)
1498 {
1499         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1500 }
1501
1502 static int selinux_syslog(int type)
1503 {
1504         int rc;
1505
1506         rc = secondary_ops->syslog(type);
1507         if (rc)
1508                 return rc;
1509
1510         switch (type) {
1511                 case 3:         /* Read last kernel messages */
1512                 case 10:        /* Return size of the log buffer */
1513                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1514                         break;
1515                 case 6:         /* Disable logging to console */
1516                 case 7:         /* Enable logging to console */
1517                 case 8:         /* Set level of messages printed to console */
1518                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1519                         break;
1520                 case 0:         /* Close log */
1521                 case 1:         /* Open log */
1522                 case 2:         /* Read from log */
1523                 case 4:         /* Read/clear last kernel messages */
1524                 case 5:         /* Clear ring buffer */
1525                 default:
1526                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1527                         break;
1528         }
1529         return rc;
1530 }
1531
1532 /*
1533  * Check that a process has enough memory to allocate a new virtual
1534  * mapping. 0 means there is enough memory for the allocation to
1535  * succeed and -ENOMEM implies there is not.
1536  *
1537  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1538  * if the capability is granted, but __vm_enough_memory requires 1 if
1539  * the capability is granted.
1540  *
1541  * Do not audit the selinux permission check, as this is applied to all
1542  * processes that allocate mappings.
1543  */
1544 static int selinux_vm_enough_memory(long pages)
1545 {
1546         int rc, cap_sys_admin = 0;
1547         struct task_security_struct *tsec = current->security;
1548
1549         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1550         if (rc == 0)
1551                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1552                                         SECCLASS_CAPABILITY,
1553                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1554                                         NULL);
1555
1556         if (rc == 0)
1557                 cap_sys_admin = 1;
1558
1559         return __vm_enough_memory(pages, cap_sys_admin);
1560 }
1561
1562 /* binprm security operations */
1563
1564 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1565 {
1566         struct bprm_security_struct *bsec;
1567
1568         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1569         if (!bsec)
1570                 return -ENOMEM;
1571
1572         bsec->bprm = bprm;
1573         bsec->sid = SECINITSID_UNLABELED;
1574         bsec->set = 0;
1575
1576         bprm->security = bsec;
1577         return 0;
1578 }
1579
1580 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1581 {
1582         struct task_security_struct *tsec;
1583         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1584         struct inode_security_struct *isec;
1585         struct bprm_security_struct *bsec;
1586         u32 newsid;
1587         struct avc_audit_data ad;
1588         int rc;
1589
1590         rc = secondary_ops->bprm_set_security(bprm);
1591         if (rc)
1592                 return rc;
1593
1594         bsec = bprm->security;
1595
1596         if (bsec->set)
1597                 return 0;
1598
1599         tsec = current->security;
1600         isec = inode->i_security;
1601
1602         /* Default to the current task SID. */
1603         bsec->sid = tsec->sid;
1604
1605         /* Reset fs, key, and sock SIDs on execve. */
1606         tsec->create_sid = 0;
1607         tsec->keycreate_sid = 0;
1608         tsec->sockcreate_sid = 0;
1609
1610         if (tsec->exec_sid) {
1611                 newsid = tsec->exec_sid;
1612                 /* Reset exec SID on execve. */
1613                 tsec->exec_sid = 0;
1614         } else {
1615                 /* Check for a default transition on this program. */
1616                 rc = security_transition_sid(tsec->sid, isec->sid,
1617                                              SECCLASS_PROCESS, &newsid);
1618                 if (rc)
1619                         return rc;
1620         }
1621
1622         AVC_AUDIT_DATA_INIT(&ad, FS);
1623         ad.u.fs.mnt = bprm->file->f_path.mnt;
1624         ad.u.fs.dentry = bprm->file->f_path.dentry;
1625
1626         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1627                 newsid = tsec->sid;
1628
1629         if (tsec->sid == newsid) {
1630                 rc = avc_has_perm(tsec->sid, isec->sid,
1631                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1632                 if (rc)
1633                         return rc;
1634         } else {
1635                 /* Check permissions for the transition. */
1636                 rc = avc_has_perm(tsec->sid, newsid,
1637                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1638                 if (rc)
1639                         return rc;
1640
1641                 rc = avc_has_perm(newsid, isec->sid,
1642                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1643                 if (rc)
1644                         return rc;
1645
1646                 /* Clear any possibly unsafe personality bits on exec: */
1647                 current->personality &= ~PER_CLEAR_ON_SETID;
1648
1649                 /* Set the security field to the new SID. */
1650                 bsec->sid = newsid;
1651         }
1652
1653         bsec->set = 1;
1654         return 0;
1655 }
1656
1657 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1658 {
1659         return secondary_ops->bprm_check_security(bprm);
1660 }
1661
1662
1663 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1664 {
1665         struct task_security_struct *tsec = current->security;
1666         int atsecure = 0;
1667
1668         if (tsec->osid != tsec->sid) {
1669                 /* Enable secure mode for SIDs transitions unless
1670                    the noatsecure permission is granted between
1671                    the two SIDs, i.e. ahp returns 0. */
1672                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1673                                          SECCLASS_PROCESS,
1674                                          PROCESS__NOATSECURE, NULL);
1675         }
1676
1677         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1678 }
1679
1680 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1681 {
1682         kfree(bprm->security);
1683         bprm->security = NULL;
1684 }
1685
1686 extern struct vfsmount *selinuxfs_mount;
1687 extern struct dentry *selinux_null;
1688
1689 /* Derived from fs/exec.c:flush_old_files. */
1690 static inline void flush_unauthorized_files(struct files_struct * files)
1691 {
1692         struct avc_audit_data ad;
1693         struct file *file, *devnull = NULL;
1694         struct tty_struct *tty;
1695         struct fdtable *fdt;
1696         long j = -1;
1697         int drop_tty = 0;
1698
1699         mutex_lock(&tty_mutex);
1700         tty = get_current_tty();
1701         if (tty) {
1702                 file_list_lock();
1703                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1704                 if (file) {
1705                         /* Revalidate access to controlling tty.
1706                            Use inode_has_perm on the tty inode directly rather
1707                            than using file_has_perm, as this particular open
1708                            file may belong to another process and we are only
1709                            interested in the inode-based check here. */
1710                         struct inode *inode = file->f_path.dentry->d_inode;
1711                         if (inode_has_perm(current, inode,
1712                                            FILE__READ | FILE__WRITE, NULL)) {
1713                                 drop_tty = 1;
1714                         }
1715                 }
1716                 file_list_unlock();
1717
1718                 /* Reset controlling tty. */
1719                 if (drop_tty)
1720                         proc_set_tty(current, NULL);
1721         }
1722         mutex_unlock(&tty_mutex);
1723
1724         /* Revalidate access to inherited open files. */
1725
1726         AVC_AUDIT_DATA_INIT(&ad,FS);
1727
1728         spin_lock(&files->file_lock);
1729         for (;;) {
1730                 unsigned long set, i;
1731                 int fd;
1732
1733                 j++;
1734                 i = j * __NFDBITS;
1735                 fdt = files_fdtable(files);
1736                 if (i >= fdt->max_fds)
1737                         break;
1738                 set = fdt->open_fds->fds_bits[j];
1739                 if (!set)
1740                         continue;
1741                 spin_unlock(&files->file_lock);
1742                 for ( ; set ; i++,set >>= 1) {
1743                         if (set & 1) {
1744                                 file = fget(i);
1745                                 if (!file)
1746                                         continue;
1747                                 if (file_has_perm(current,
1748                                                   file,
1749                                                   file_to_av(file))) {
1750                                         sys_close(i);
1751                                         fd = get_unused_fd();
1752                                         if (fd != i) {
1753                                                 if (fd >= 0)
1754                                                         put_unused_fd(fd);
1755                                                 fput(file);
1756                                                 continue;
1757                                         }
1758                                         if (devnull) {
1759                                                 get_file(devnull);
1760                                         } else {
1761                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1762                                                 if (IS_ERR(devnull)) {
1763                                                         devnull = NULL;
1764                                                         put_unused_fd(fd);
1765                                                         fput(file);
1766                                                         continue;
1767                                                 }
1768                                         }
1769                                         fd_install(fd, devnull);
1770                                 }
1771                                 fput(file);
1772                         }
1773                 }
1774                 spin_lock(&files->file_lock);
1775
1776         }
1777         spin_unlock(&files->file_lock);
1778 }
1779
1780 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1781 {
1782         struct task_security_struct *tsec;
1783         struct bprm_security_struct *bsec;
1784         u32 sid;
1785         int rc;
1786
1787         secondary_ops->bprm_apply_creds(bprm, unsafe);
1788
1789         tsec = current->security;
1790
1791         bsec = bprm->security;
1792         sid = bsec->sid;
1793
1794         tsec->osid = tsec->sid;
1795         bsec->unsafe = 0;
1796         if (tsec->sid != sid) {
1797                 /* Check for shared state.  If not ok, leave SID
1798                    unchanged and kill. */
1799                 if (unsafe & LSM_UNSAFE_SHARE) {
1800                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1801                                         PROCESS__SHARE, NULL);
1802                         if (rc) {
1803                                 bsec->unsafe = 1;
1804                                 return;
1805                         }
1806                 }
1807
1808                 /* Check for ptracing, and update the task SID if ok.
1809                    Otherwise, leave SID unchanged and kill. */
1810                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1811                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1812                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1813                                           NULL);
1814                         if (rc) {
1815                                 bsec->unsafe = 1;
1816                                 return;
1817                         }
1818                 }
1819                 tsec->sid = sid;
1820         }
1821 }
1822
1823 /*
1824  * called after apply_creds without the task lock held
1825  */
1826 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1827 {
1828         struct task_security_struct *tsec;
1829         struct rlimit *rlim, *initrlim;
1830         struct itimerval itimer;
1831         struct bprm_security_struct *bsec;
1832         int rc, i;
1833
1834         tsec = current->security;
1835         bsec = bprm->security;
1836
1837         if (bsec->unsafe) {
1838                 force_sig_specific(SIGKILL, current);
1839                 return;
1840         }
1841         if (tsec->osid == tsec->sid)
1842                 return;
1843
1844         /* Close files for which the new task SID is not authorized. */
1845         flush_unauthorized_files(current->files);
1846
1847         /* Check whether the new SID can inherit signal state
1848            from the old SID.  If not, clear itimers to avoid
1849            subsequent signal generation and flush and unblock
1850            signals. This must occur _after_ the task SID has
1851           been updated so that any kill done after the flush
1852           will be checked against the new SID. */
1853         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1854                           PROCESS__SIGINH, NULL);
1855         if (rc) {
1856                 memset(&itimer, 0, sizeof itimer);
1857                 for (i = 0; i < 3; i++)
1858                         do_setitimer(i, &itimer, NULL);
1859                 flush_signals(current);
1860                 spin_lock_irq(&current->sighand->siglock);
1861                 flush_signal_handlers(current, 1);
1862                 sigemptyset(&current->blocked);
1863                 recalc_sigpending();
1864                 spin_unlock_irq(&current->sighand->siglock);
1865         }
1866
1867         /* Check whether the new SID can inherit resource limits
1868            from the old SID.  If not, reset all soft limits to
1869            the lower of the current task's hard limit and the init
1870            task's soft limit.  Note that the setting of hard limits
1871            (even to lower them) can be controlled by the setrlimit
1872            check. The inclusion of the init task's soft limit into
1873            the computation is to avoid resetting soft limits higher
1874            than the default soft limit for cases where the default
1875            is lower than the hard limit, e.g. RLIMIT_CORE or
1876            RLIMIT_STACK.*/
1877         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1878                           PROCESS__RLIMITINH, NULL);
1879         if (rc) {
1880                 for (i = 0; i < RLIM_NLIMITS; i++) {
1881                         rlim = current->signal->rlim + i;
1882                         initrlim = init_task.signal->rlim+i;
1883                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1884                 }
1885                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1886                         /*
1887                          * This will cause RLIMIT_CPU calculations
1888                          * to be refigured.
1889                          */
1890                         current->it_prof_expires = jiffies_to_cputime(1);
1891                 }
1892         }
1893
1894         /* Wake up the parent if it is waiting so that it can
1895            recheck wait permission to the new task SID. */
1896         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1897 }
1898
1899 /* superblock security operations */
1900
1901 static int selinux_sb_alloc_security(struct super_block *sb)
1902 {
1903         return superblock_alloc_security(sb);
1904 }
1905
1906 static void selinux_sb_free_security(struct super_block *sb)
1907 {
1908         superblock_free_security(sb);
1909 }
1910
1911 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1912 {
1913         if (plen > olen)
1914                 return 0;
1915
1916         return !memcmp(prefix, option, plen);
1917 }
1918
1919 static inline int selinux_option(char *option, int len)
1920 {
1921         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1922                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1923                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1924                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1925 }
1926
1927 static inline void take_option(char **to, char *from, int *first, int len)
1928 {
1929         if (!*first) {
1930                 **to = ',';
1931                 *to += 1;
1932         } else
1933                 *first = 0;
1934         memcpy(*to, from, len);
1935         *to += len;
1936 }
1937
1938 static inline void take_selinux_option(char **to, char *from, int *first, 
1939                                        int len)
1940 {
1941         int current_size = 0;
1942
1943         if (!*first) {
1944                 **to = '|';
1945                 *to += 1;
1946         }
1947         else
1948                 *first = 0;
1949
1950         while (current_size < len) {
1951                 if (*from != '"') {
1952                         **to = *from;
1953                         *to += 1;
1954                 }
1955                 from += 1;
1956                 current_size += 1;
1957         }
1958 }
1959
1960 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1961 {
1962         int fnosec, fsec, rc = 0;
1963         char *in_save, *in_curr, *in_end;
1964         char *sec_curr, *nosec_save, *nosec;
1965         int open_quote = 0;
1966
1967         in_curr = orig;
1968         sec_curr = copy;
1969
1970         /* Binary mount data: just copy */
1971         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1972                 copy_page(sec_curr, in_curr);
1973                 goto out;
1974         }
1975
1976         nosec = (char *)get_zeroed_page(GFP_KERNEL);
1977         if (!nosec) {
1978                 rc = -ENOMEM;
1979                 goto out;
1980         }
1981
1982         nosec_save = nosec;
1983         fnosec = fsec = 1;
1984         in_save = in_end = orig;
1985
1986         do {
1987                 if (*in_end == '"')
1988                         open_quote = !open_quote;
1989                 if ((*in_end == ',' && open_quote == 0) ||
1990                                 *in_end == '\0') {
1991                         int len = in_end - in_curr;
1992
1993                         if (selinux_option(in_curr, len))
1994                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
1995                         else
1996                                 take_option(&nosec, in_curr, &fnosec, len);
1997
1998                         in_curr = in_end + 1;
1999                 }
2000         } while (*in_end++);
2001
2002         strcpy(in_save, nosec_save);
2003         free_page((unsigned long)nosec_save);
2004 out:
2005         return rc;
2006 }
2007
2008 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2009 {
2010         struct avc_audit_data ad;
2011         int rc;
2012
2013         rc = superblock_doinit(sb, data);
2014         if (rc)
2015                 return rc;
2016
2017         AVC_AUDIT_DATA_INIT(&ad,FS);
2018         ad.u.fs.dentry = sb->s_root;
2019         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2020 }
2021
2022 static int selinux_sb_statfs(struct dentry *dentry)
2023 {
2024         struct avc_audit_data ad;
2025
2026         AVC_AUDIT_DATA_INIT(&ad,FS);
2027         ad.u.fs.dentry = dentry->d_sb->s_root;
2028         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2029 }
2030
2031 static int selinux_mount(char * dev_name,
2032                          struct nameidata *nd,
2033                          char * type,
2034                          unsigned long flags,
2035                          void * data)
2036 {
2037         int rc;
2038
2039         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2040         if (rc)
2041                 return rc;
2042
2043         if (flags & MS_REMOUNT)
2044                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2045                                            FILESYSTEM__REMOUNT, NULL);
2046         else
2047                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2048                                        FILE__MOUNTON);
2049 }
2050
2051 static int selinux_umount(struct vfsmount *mnt, int flags)
2052 {
2053         int rc;
2054
2055         rc = secondary_ops->sb_umount(mnt, flags);
2056         if (rc)
2057                 return rc;
2058
2059         return superblock_has_perm(current,mnt->mnt_sb,
2060                                    FILESYSTEM__UNMOUNT,NULL);
2061 }
2062
2063 /* inode security operations */
2064
2065 static int selinux_inode_alloc_security(struct inode *inode)
2066 {
2067         return inode_alloc_security(inode);
2068 }
2069
2070 static void selinux_inode_free_security(struct inode *inode)
2071 {
2072         inode_free_security(inode);
2073 }
2074
2075 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2076                                        char **name, void **value,
2077                                        size_t *len)
2078 {
2079         struct task_security_struct *tsec;
2080         struct inode_security_struct *dsec;
2081         struct superblock_security_struct *sbsec;
2082         u32 newsid, clen;
2083         int rc;
2084         char *namep = NULL, *context;
2085
2086         tsec = current->security;
2087         dsec = dir->i_security;
2088         sbsec = dir->i_sb->s_security;
2089
2090         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2091                 newsid = tsec->create_sid;
2092         } else {
2093                 rc = security_transition_sid(tsec->sid, dsec->sid,
2094                                              inode_mode_to_security_class(inode->i_mode),
2095                                              &newsid);
2096                 if (rc) {
2097                         printk(KERN_WARNING "%s:  "
2098                                "security_transition_sid failed, rc=%d (dev=%s "
2099                                "ino=%ld)\n",
2100                                __FUNCTION__,
2101                                -rc, inode->i_sb->s_id, inode->i_ino);
2102                         return rc;
2103                 }
2104         }
2105
2106         /* Possibly defer initialization to selinux_complete_init. */
2107         if (sbsec->initialized) {
2108                 struct inode_security_struct *isec = inode->i_security;
2109                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2110                 isec->sid = newsid;
2111                 isec->initialized = 1;
2112         }
2113
2114         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2115                 return -EOPNOTSUPP;
2116
2117         if (name) {
2118                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2119                 if (!namep)
2120                         return -ENOMEM;
2121                 *name = namep;
2122         }
2123
2124         if (value && len) {
2125                 rc = security_sid_to_context(newsid, &context, &clen);
2126                 if (rc) {
2127                         kfree(namep);
2128                         return rc;
2129                 }
2130                 *value = context;
2131                 *len = clen;
2132         }
2133
2134         return 0;
2135 }
2136
2137 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2138 {
2139         return may_create(dir, dentry, SECCLASS_FILE);
2140 }
2141
2142 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2143 {
2144         int rc;
2145
2146         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2147         if (rc)
2148                 return rc;
2149         return may_link(dir, old_dentry, MAY_LINK);
2150 }
2151
2152 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2153 {
2154         int rc;
2155
2156         rc = secondary_ops->inode_unlink(dir, dentry);
2157         if (rc)
2158                 return rc;
2159         return may_link(dir, dentry, MAY_UNLINK);
2160 }
2161
2162 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2163 {
2164         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2165 }
2166
2167 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2168 {
2169         return may_create(dir, dentry, SECCLASS_DIR);
2170 }
2171
2172 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2173 {
2174         return may_link(dir, dentry, MAY_RMDIR);
2175 }
2176
2177 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2178 {
2179         int rc;
2180
2181         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2182         if (rc)
2183                 return rc;
2184
2185         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2186 }
2187
2188 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2189                                 struct inode *new_inode, struct dentry *new_dentry)
2190 {
2191         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2192 }
2193
2194 static int selinux_inode_readlink(struct dentry *dentry)
2195 {
2196         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2197 }
2198
2199 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2200 {
2201         int rc;
2202
2203         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2204         if (rc)
2205                 return rc;
2206         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2207 }
2208
2209 static int selinux_inode_permission(struct inode *inode, int mask,
2210                                     struct nameidata *nd)
2211 {
2212         int rc;
2213
2214         rc = secondary_ops->inode_permission(inode, mask, nd);
2215         if (rc)
2216                 return rc;
2217
2218         if (!mask) {
2219                 /* No permission to check.  Existence test. */
2220                 return 0;
2221         }
2222
2223         return inode_has_perm(current, inode,
2224                                file_mask_to_av(inode->i_mode, mask), NULL);
2225 }
2226
2227 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2228 {
2229         int rc;
2230
2231         rc = secondary_ops->inode_setattr(dentry, iattr);
2232         if (rc)
2233                 return rc;
2234
2235         if (iattr->ia_valid & ATTR_FORCE)
2236                 return 0;
2237
2238         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2239                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2240                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2241
2242         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2243 }
2244
2245 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2246 {
2247         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2248 }
2249
2250 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2251 {
2252         struct task_security_struct *tsec = current->security;
2253         struct inode *inode = dentry->d_inode;
2254         struct inode_security_struct *isec = inode->i_security;
2255         struct superblock_security_struct *sbsec;
2256         struct avc_audit_data ad;
2257         u32 newsid;
2258         int rc = 0;
2259
2260         if (strcmp(name, XATTR_NAME_SELINUX)) {
2261                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2262                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2263                     !capable(CAP_SYS_ADMIN)) {
2264                         /* A different attribute in the security namespace.
2265                            Restrict to administrator. */
2266                         return -EPERM;
2267                 }
2268
2269                 /* Not an attribute we recognize, so just check the
2270                    ordinary setattr permission. */
2271                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2272         }
2273
2274         sbsec = inode->i_sb->s_security;
2275         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2276                 return -EOPNOTSUPP;
2277
2278         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2279                 return -EPERM;
2280
2281         AVC_AUDIT_DATA_INIT(&ad,FS);
2282         ad.u.fs.dentry = dentry;
2283
2284         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2285                           FILE__RELABELFROM, &ad);
2286         if (rc)
2287                 return rc;
2288
2289         rc = security_context_to_sid(value, size, &newsid);
2290         if (rc)
2291                 return rc;
2292
2293         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2294                           FILE__RELABELTO, &ad);
2295         if (rc)
2296                 return rc;
2297
2298         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2299                                           isec->sclass);
2300         if (rc)
2301                 return rc;
2302
2303         return avc_has_perm(newsid,
2304                             sbsec->sid,
2305                             SECCLASS_FILESYSTEM,
2306                             FILESYSTEM__ASSOCIATE,
2307                             &ad);
2308 }
2309
2310 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2311                                         void *value, size_t size, int flags)
2312 {
2313         struct inode *inode = dentry->d_inode;
2314         struct inode_security_struct *isec = inode->i_security;
2315         u32 newsid;
2316         int rc;
2317
2318         if (strcmp(name, XATTR_NAME_SELINUX)) {
2319                 /* Not an attribute we recognize, so nothing to do. */
2320                 return;
2321         }
2322
2323         rc = security_context_to_sid(value, size, &newsid);
2324         if (rc) {
2325                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2326                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2327                 return;
2328         }
2329
2330         isec->sid = newsid;
2331         return;
2332 }
2333
2334 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2335 {
2336         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2337 }
2338
2339 static int selinux_inode_listxattr (struct dentry *dentry)
2340 {
2341         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2342 }
2343
2344 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2345 {
2346         if (strcmp(name, XATTR_NAME_SELINUX)) {
2347                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2348                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2349                     !capable(CAP_SYS_ADMIN)) {
2350                         /* A different attribute in the security namespace.
2351                            Restrict to administrator. */
2352                         return -EPERM;
2353                 }
2354
2355                 /* Not an attribute we recognize, so just check the
2356                    ordinary setattr permission. Might want a separate
2357                    permission for removexattr. */
2358                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2359         }
2360
2361         /* No one is allowed to remove a SELinux security label.
2362            You can change the label, but all data must be labeled. */
2363         return -EACCES;
2364 }
2365
2366 static const char *selinux_inode_xattr_getsuffix(void)
2367 {
2368       return XATTR_SELINUX_SUFFIX;
2369 }
2370
2371 /*
2372  * Copy the in-core inode security context value to the user.  If the
2373  * getxattr() prior to this succeeded, check to see if we need to
2374  * canonicalize the value to be finally returned to the user.
2375  *
2376  * Permission check is handled by selinux_inode_getxattr hook.
2377  */
2378 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2379 {
2380         struct inode_security_struct *isec = inode->i_security;
2381
2382         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2383                 return -EOPNOTSUPP;
2384
2385         return selinux_getsecurity(isec->sid, buffer, size);
2386 }
2387
2388 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2389                                      const void *value, size_t size, int flags)
2390 {
2391         struct inode_security_struct *isec = inode->i_security;
2392         u32 newsid;
2393         int rc;
2394
2395         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2396                 return -EOPNOTSUPP;
2397
2398         if (!value || !size)
2399                 return -EACCES;
2400
2401         rc = security_context_to_sid((void*)value, size, &newsid);
2402         if (rc)
2403                 return rc;
2404
2405         isec->sid = newsid;
2406         return 0;
2407 }
2408
2409 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2410 {
2411         const int len = sizeof(XATTR_NAME_SELINUX);
2412         if (buffer && len <= buffer_size)
2413                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2414         return len;
2415 }
2416
2417 /* file security operations */
2418
2419 static int selinux_file_permission(struct file *file, int mask)
2420 {
2421         int rc;
2422         struct inode *inode = file->f_path.dentry->d_inode;
2423
2424         if (!mask) {
2425                 /* No permission to check.  Existence test. */
2426                 return 0;
2427         }
2428
2429         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2430         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2431                 mask |= MAY_APPEND;
2432
2433         rc = file_has_perm(current, file,
2434                            file_mask_to_av(inode->i_mode, mask));
2435         if (rc)
2436                 return rc;
2437
2438         return selinux_netlbl_inode_permission(inode, mask);
2439 }
2440
2441 static int selinux_file_alloc_security(struct file *file)
2442 {
2443         return file_alloc_security(file);
2444 }
2445
2446 static void selinux_file_free_security(struct file *file)
2447 {
2448         file_free_security(file);
2449 }
2450
2451 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2452                               unsigned long arg)
2453 {
2454         int error = 0;
2455
2456         switch (cmd) {
2457                 case FIONREAD:
2458                 /* fall through */
2459                 case FIBMAP:
2460                 /* fall through */
2461                 case FIGETBSZ:
2462                 /* fall through */
2463                 case EXT2_IOC_GETFLAGS:
2464                 /* fall through */
2465                 case EXT2_IOC_GETVERSION:
2466                         error = file_has_perm(current, file, FILE__GETATTR);
2467                         break;
2468
2469                 case EXT2_IOC_SETFLAGS:
2470                 /* fall through */
2471                 case EXT2_IOC_SETVERSION:
2472                         error = file_has_perm(current, file, FILE__SETATTR);
2473                         break;
2474
2475                 /* sys_ioctl() checks */
2476                 case FIONBIO:
2477                 /* fall through */
2478                 case FIOASYNC:
2479                         error = file_has_perm(current, file, 0);
2480                         break;
2481
2482                 case KDSKBENT:
2483                 case KDSKBSENT:
2484                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2485                         break;
2486
2487                 /* default case assumes that the command will go
2488                  * to the file's ioctl() function.
2489                  */
2490                 default:
2491                         error = file_has_perm(current, file, FILE__IOCTL);
2492
2493         }
2494         return error;
2495 }
2496
2497 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2498 {
2499 #ifndef CONFIG_PPC32
2500         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2501                 /*
2502                  * We are making executable an anonymous mapping or a
2503                  * private file mapping that will also be writable.
2504                  * This has an additional check.
2505                  */
2506                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2507                 if (rc)
2508                         return rc;
2509         }
2510 #endif
2511
2512         if (file) {
2513                 /* read access is always possible with a mapping */
2514                 u32 av = FILE__READ;
2515
2516                 /* write access only matters if the mapping is shared */
2517                 if (shared && (prot & PROT_WRITE))
2518                         av |= FILE__WRITE;
2519
2520                 if (prot & PROT_EXEC)
2521                         av |= FILE__EXECUTE;
2522
2523                 return file_has_perm(current, file, av);
2524         }
2525         return 0;
2526 }
2527
2528 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2529                              unsigned long prot, unsigned long flags)
2530 {
2531         int rc;
2532
2533         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2534         if (rc)
2535                 return rc;
2536
2537         if (selinux_checkreqprot)
2538                 prot = reqprot;
2539
2540         return file_map_prot_check(file, prot,
2541                                    (flags & MAP_TYPE) == MAP_SHARED);
2542 }
2543
2544 static int selinux_file_mprotect(struct vm_area_struct *vma,
2545                                  unsigned long reqprot,
2546                                  unsigned long prot)
2547 {
2548         int rc;
2549
2550         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2551         if (rc)
2552                 return rc;
2553
2554         if (selinux_checkreqprot)
2555                 prot = reqprot;
2556
2557 #ifndef CONFIG_PPC32
2558         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2559                 rc = 0;
2560                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2561                     vma->vm_end <= vma->vm_mm->brk) {
2562                         rc = task_has_perm(current, current,
2563                                            PROCESS__EXECHEAP);
2564                 } else if (!vma->vm_file &&
2565                            vma->vm_start <= vma->vm_mm->start_stack &&
2566                            vma->vm_end >= vma->vm_mm->start_stack) {
2567                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2568                 } else if (vma->vm_file && vma->anon_vma) {
2569                         /*
2570                          * We are making executable a file mapping that has
2571                          * had some COW done. Since pages might have been
2572                          * written, check ability to execute the possibly
2573                          * modified content.  This typically should only
2574                          * occur for text relocations.
2575                          */
2576                         rc = file_has_perm(current, vma->vm_file,
2577                                            FILE__EXECMOD);
2578                 }
2579                 if (rc)
2580                         return rc;
2581         }
2582 #endif
2583
2584         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2585 }
2586
2587 static int selinux_file_lock(struct file *file, unsigned int cmd)
2588 {
2589         return file_has_perm(current, file, FILE__LOCK);
2590 }
2591
2592 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2593                               unsigned long arg)
2594 {
2595         int err = 0;
2596
2597         switch (cmd) {
2598                 case F_SETFL:
2599                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2600                                 err = -EINVAL;
2601                                 break;
2602                         }
2603
2604                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2605                                 err = file_has_perm(current, file,FILE__WRITE);
2606                                 break;
2607                         }
2608                         /* fall through */
2609                 case F_SETOWN:
2610                 case F_SETSIG:
2611                 case F_GETFL:
2612                 case F_GETOWN:
2613                 case F_GETSIG:
2614                         /* Just check FD__USE permission */
2615                         err = file_has_perm(current, file, 0);
2616                         break;
2617                 case F_GETLK:
2618                 case F_SETLK:
2619                 case F_SETLKW:
2620 #if BITS_PER_LONG == 32
2621                 case F_GETLK64:
2622                 case F_SETLK64:
2623                 case F_SETLKW64:
2624 #endif
2625                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2626                                 err = -EINVAL;
2627                                 break;
2628                         }
2629                         err = file_has_perm(current, file, FILE__LOCK);
2630                         break;
2631         }
2632
2633         return err;
2634 }
2635
2636 static int selinux_file_set_fowner(struct file *file)
2637 {
2638         struct task_security_struct *tsec;
2639         struct file_security_struct *fsec;
2640
2641         tsec = current->security;
2642         fsec = file->f_security;
2643         fsec->fown_sid = tsec->sid;
2644
2645         return 0;
2646 }
2647
2648 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2649                                        struct fown_struct *fown, int signum)
2650 {
2651         struct file *file;
2652         u32 perm;
2653         struct task_security_struct *tsec;
2654         struct file_security_struct *fsec;
2655
2656         /* struct fown_struct is never outside the context of a struct file */
2657         file = container_of(fown, struct file, f_owner);
2658
2659         tsec = tsk->security;
2660         fsec = file->f_security;
2661
2662         if (!signum)
2663                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2664         else
2665                 perm = signal_to_av(signum);
2666
2667         return avc_has_perm(fsec->fown_sid, tsec->sid,
2668                             SECCLASS_PROCESS, perm, NULL);
2669 }
2670
2671 static int selinux_file_receive(struct file *file)
2672 {
2673         return file_has_perm(current, file, file_to_av(file));
2674 }
2675
2676 /* task security operations */
2677
2678 static int selinux_task_create(unsigned long clone_flags)
2679 {
2680         int rc;
2681
2682         rc = secondary_ops->task_create(clone_flags);
2683         if (rc)
2684                 return rc;
2685
2686         return task_has_perm(current, current, PROCESS__FORK);
2687 }
2688
2689 static int selinux_task_alloc_security(struct task_struct *tsk)
2690 {
2691         struct task_security_struct *tsec1, *tsec2;
2692         int rc;
2693
2694         tsec1 = current->security;
2695
2696         rc = task_alloc_security(tsk);
2697         if (rc)
2698                 return rc;
2699         tsec2 = tsk->security;
2700
2701         tsec2->osid = tsec1->osid;
2702         tsec2->sid = tsec1->sid;
2703
2704         /* Retain the exec, fs, key, and sock SIDs across fork */
2705         tsec2->exec_sid = tsec1->exec_sid;
2706         tsec2->create_sid = tsec1->create_sid;
2707         tsec2->keycreate_sid = tsec1->keycreate_sid;
2708         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2709
2710         /* Retain ptracer SID across fork, if any.
2711            This will be reset by the ptrace hook upon any
2712            subsequent ptrace_attach operations. */
2713         tsec2->ptrace_sid = tsec1->ptrace_sid;
2714
2715         return 0;
2716 }
2717
2718 static void selinux_task_free_security(struct task_struct *tsk)
2719 {
2720         task_free_security(tsk);
2721 }
2722
2723 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2724 {
2725         /* Since setuid only affects the current process, and
2726            since the SELinux controls are not based on the Linux
2727            identity attributes, SELinux does not need to control
2728            this operation.  However, SELinux does control the use
2729            of the CAP_SETUID and CAP_SETGID capabilities using the
2730            capable hook. */
2731         return 0;
2732 }
2733
2734 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2735 {
2736         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2737 }
2738
2739 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2740 {
2741         /* See the comment for setuid above. */
2742         return 0;
2743 }
2744
2745 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2746 {
2747         return task_has_perm(current, p, PROCESS__SETPGID);
2748 }
2749
2750 static int selinux_task_getpgid(struct task_struct *p)
2751 {
2752         return task_has_perm(current, p, PROCESS__GETPGID);
2753 }
2754
2755 static int selinux_task_getsid(struct task_struct *p)
2756 {
2757         return task_has_perm(current, p, PROCESS__GETSESSION);
2758 }
2759
2760 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2761 {
2762         selinux_get_task_sid(p, secid);
2763 }
2764
2765 static int selinux_task_setgroups(struct group_info *group_info)
2766 {
2767         /* See the comment for setuid above. */
2768         return 0;
2769 }
2770
2771 static int selinux_task_setnice(struct task_struct *p, int nice)
2772 {
2773         int rc;
2774
2775         rc = secondary_ops->task_setnice(p, nice);
2776         if (rc)
2777                 return rc;
2778
2779         return task_has_perm(current,p, PROCESS__SETSCHED);
2780 }
2781
2782 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2783 {
2784         return task_has_perm(current, p, PROCESS__SETSCHED);
2785 }
2786
2787 static int selinux_task_getioprio(struct task_struct *p)
2788 {
2789         return task_has_perm(current, p, PROCESS__GETSCHED);
2790 }
2791
2792 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2793 {
2794         struct rlimit *old_rlim = current->signal->rlim + resource;
2795         int rc;
2796
2797         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2798         if (rc)
2799                 return rc;
2800
2801         /* Control the ability to change the hard limit (whether
2802            lowering or raising it), so that the hard limit can
2803            later be used as a safe reset point for the soft limit
2804            upon context transitions. See selinux_bprm_apply_creds. */
2805         if (old_rlim->rlim_max != new_rlim->rlim_max)
2806                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2807
2808         return 0;
2809 }
2810
2811 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2812 {
2813         return task_has_perm(current, p, PROCESS__SETSCHED);
2814 }
2815
2816 static int selinux_task_getscheduler(struct task_struct *p)
2817 {
2818         return task_has_perm(current, p, PROCESS__GETSCHED);
2819 }
2820
2821 static int selinux_task_movememory(struct task_struct *p)
2822 {
2823         return task_has_perm(current, p, PROCESS__SETSCHED);
2824 }
2825
2826 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2827                                 int sig, u32 secid)
2828 {
2829         u32 perm;
2830         int rc;
2831         struct task_security_struct *tsec;
2832
2833         rc = secondary_ops->task_kill(p, info, sig, secid);
2834         if (rc)
2835                 return rc;
2836
2837         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2838                 return 0;
2839
2840         if (!sig)
2841                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2842         else
2843                 perm = signal_to_av(sig);
2844         tsec = p->security;
2845         if (secid)
2846                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2847         else
2848                 rc = task_has_perm(current, p, perm);
2849         return rc;
2850 }
2851
2852 static int selinux_task_prctl(int option,
2853                               unsigned long arg2,
2854                               unsigned long arg3,
2855                               unsigned long arg4,
2856                               unsigned long arg5)
2857 {
2858         /* The current prctl operations do not appear to require
2859            any SELinux controls since they merely observe or modify
2860            the state of the current process. */
2861         return 0;
2862 }
2863
2864 static int selinux_task_wait(struct task_struct *p)
2865 {
2866         u32 perm;
2867
2868         perm = signal_to_av(p->exit_signal);
2869
2870         return task_has_perm(p, current, perm);
2871 }
2872
2873 static void selinux_task_reparent_to_init(struct task_struct *p)
2874 {
2875         struct task_security_struct *tsec;
2876
2877         secondary_ops->task_reparent_to_init(p);
2878
2879         tsec = p->security;
2880         tsec->osid = tsec->sid;
2881         tsec->sid = SECINITSID_KERNEL;
2882         return;
2883 }
2884
2885 static void selinux_task_to_inode(struct task_struct *p,
2886                                   struct inode *inode)
2887 {
2888         struct task_security_struct *tsec = p->security;
2889         struct inode_security_struct *isec = inode->i_security;
2890
2891         isec->sid = tsec->sid;
2892         isec->initialized = 1;
2893         return;
2894 }
2895
2896 /* Returns error only if unable to parse addresses */
2897 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2898                         struct avc_audit_data *ad, u8 *proto)
2899 {
2900         int offset, ihlen, ret = -EINVAL;
2901         struct iphdr _iph, *ih;
2902
2903         offset = skb->nh.raw - skb->data;
2904         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2905         if (ih == NULL)
2906                 goto out;
2907
2908         ihlen = ih->ihl * 4;
2909         if (ihlen < sizeof(_iph))
2910                 goto out;
2911
2912         ad->u.net.v4info.saddr = ih->saddr;
2913         ad->u.net.v4info.daddr = ih->daddr;
2914         ret = 0;
2915
2916         if (proto)
2917                 *proto = ih->protocol;
2918
2919         switch (ih->protocol) {
2920         case IPPROTO_TCP: {
2921                 struct tcphdr _tcph, *th;
2922
2923                 if (ntohs(ih->frag_off) & IP_OFFSET)
2924                         break;
2925
2926                 offset += ihlen;
2927                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2928                 if (th == NULL)
2929                         break;
2930
2931                 ad->u.net.sport = th->source;
2932                 ad->u.net.dport = th->dest;
2933                 break;
2934         }
2935         
2936         case IPPROTO_UDP: {
2937                 struct udphdr _udph, *uh;
2938                 
2939                 if (ntohs(ih->frag_off) & IP_OFFSET)
2940                         break;
2941                         
2942                 offset += ihlen;
2943                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2944                 if (uh == NULL)
2945                         break;  
2946
2947                 ad->u.net.sport = uh->source;
2948                 ad->u.net.dport = uh->dest;
2949                 break;
2950         }
2951
2952         case IPPROTO_DCCP: {
2953                 struct dccp_hdr _dccph, *dh;
2954
2955                 if (ntohs(ih->frag_off) & IP_OFFSET)
2956                         break;
2957
2958                 offset += ihlen;
2959                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2960                 if (dh == NULL)
2961                         break;
2962
2963                 ad->u.net.sport = dh->dccph_sport;
2964                 ad->u.net.dport = dh->dccph_dport;
2965                 break;
2966         }
2967
2968         default:
2969                 break;
2970         }
2971 out:
2972         return ret;
2973 }
2974
2975 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2976
2977 /* Returns error only if unable to parse addresses */
2978 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2979                         struct avc_audit_data *ad, u8 *proto)
2980 {
2981         u8 nexthdr;
2982         int ret = -EINVAL, offset;
2983         struct ipv6hdr _ipv6h, *ip6;
2984
2985         offset = skb->nh.raw - skb->data;
2986         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2987         if (ip6 == NULL)
2988                 goto out;
2989
2990         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2991         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2992         ret = 0;
2993
2994         nexthdr = ip6->nexthdr;
2995         offset += sizeof(_ipv6h);
2996         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2997         if (offset < 0)
2998                 goto out;
2999
3000         if (proto)
3001                 *proto = nexthdr;
3002
3003         switch (nexthdr) {
3004         case IPPROTO_TCP: {
3005                 struct tcphdr _tcph, *th;
3006
3007                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3008                 if (th == NULL)
3009                         break;
3010
3011                 ad->u.net.sport = th->source;
3012                 ad->u.net.dport = th->dest;
3013                 break;
3014         }
3015
3016         case IPPROTO_UDP: {
3017                 struct udphdr _udph, *uh;
3018
3019                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3020                 if (uh == NULL)
3021                         break;
3022
3023                 ad->u.net.sport = uh->source;
3024                 ad->u.net.dport = uh->dest;
3025                 break;
3026         }
3027
3028         case IPPROTO_DCCP: {
3029                 struct dccp_hdr _dccph, *dh;
3030
3031                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3032                 if (dh == NULL)
3033                         break;
3034
3035                 ad->u.net.sport = dh->dccph_sport;
3036                 ad->u.net.dport = dh->dccph_dport;
3037                 break;
3038         }
3039
3040         /* includes fragments */
3041         default:
3042                 break;
3043         }
3044 out:
3045         return ret;
3046 }
3047
3048 #endif /* IPV6 */
3049
3050 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3051                              char **addrp, int *len, int src, u8 *proto)
3052 {
3053         int ret = 0;
3054
3055         switch (ad->u.net.family) {
3056         case PF_INET:
3057                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3058                 if (ret || !addrp)
3059                         break;
3060                 *len = 4;
3061                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3062                                         &ad->u.net.v4info.daddr);
3063                 break;
3064
3065 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3066         case PF_INET6:
3067                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3068                 if (ret || !addrp)
3069                         break;
3070                 *len = 16;
3071                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3072                                         &ad->u.net.v6info.daddr);
3073                 break;
3074 #endif  /* IPV6 */
3075         default:
3076                 break;
3077         }
3078
3079         return ret;
3080 }
3081
3082 /* socket security operations */
3083 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3084                            u32 perms)
3085 {
3086         struct inode_security_struct *isec;
3087         struct task_security_struct *tsec;
3088         struct avc_audit_data ad;
3089         int err = 0;
3090
3091         tsec = task->security;
3092         isec = SOCK_INODE(sock)->i_security;
3093
3094         if (isec->sid == SECINITSID_KERNEL)
3095                 goto out;
3096
3097         AVC_AUDIT_DATA_INIT(&ad,NET);
3098         ad.u.net.sk = sock->sk;
3099         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3100
3101 out:
3102         return err;
3103 }
3104
3105 static int selinux_socket_create(int family, int type,
3106                                  int protocol, int kern)
3107 {
3108         int err = 0;
3109         struct task_security_struct *tsec;
3110         u32 newsid;
3111
3112         if (kern)
3113                 goto out;
3114
3115         tsec = current->security;
3116         newsid = tsec->sockcreate_sid ? : tsec->sid;
3117         err = avc_has_perm(tsec->sid, newsid,
3118                            socket_type_to_security_class(family, type,
3119                            protocol), SOCKET__CREATE, NULL);
3120
3121 out:
3122         return err;
3123 }
3124
3125 static int selinux_socket_post_create(struct socket *sock, int family,
3126                                       int type, int protocol, int kern)
3127 {
3128         int err = 0;
3129         struct inode_security_struct *isec;
3130         struct task_security_struct *tsec;
3131         struct sk_security_struct *sksec;
3132         u32 newsid;
3133
3134         isec = SOCK_INODE(sock)->i_security;
3135
3136         tsec = current->security;
3137         newsid = tsec->sockcreate_sid ? : tsec->sid;
3138         isec->sclass = socket_type_to_security_class(family, type, protocol);
3139         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3140         isec->initialized = 1;
3141
3142         if (sock->sk) {
3143                 sksec = sock->sk->sk_security;
3144                 sksec->sid = isec->sid;
3145                 err = selinux_netlbl_socket_post_create(sock);
3146         }
3147
3148         return err;
3149 }
3150
3151 /* Range of port numbers used to automatically bind.
3152    Need to determine whether we should perform a name_bind
3153    permission check between the socket and the port number. */
3154 #define ip_local_port_range_0 sysctl_local_port_range[0]
3155 #define ip_local_port_range_1 sysctl_local_port_range[1]
3156
3157 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3158 {
3159         u16 family;
3160         int err;
3161
3162         err = socket_has_perm(current, sock, SOCKET__BIND);
3163         if (err)
3164                 goto out;
3165
3166         /*
3167          * If PF_INET or PF_INET6, check name_bind permission for the port.
3168          * Multiple address binding for SCTP is not supported yet: we just
3169          * check the first address now.
3170          */
3171         family = sock->sk->sk_family;
3172         if (family == PF_INET || family == PF_INET6) {
3173                 char *addrp;
3174                 struct inode_security_struct *isec;
3175                 struct task_security_struct *tsec;
3176                 struct avc_audit_data ad;
3177                 struct sockaddr_in *addr4 = NULL;
3178                 struct sockaddr_in6 *addr6 = NULL;
3179                 unsigned short snum;
3180                 struct sock *sk = sock->sk;
3181                 u32 sid, node_perm, addrlen;
3182
3183                 tsec = current->security;
3184                 isec = SOCK_INODE(sock)->i_security;
3185
3186                 if (family == PF_INET) {
3187                         addr4 = (struct sockaddr_in *)address;
3188                         snum = ntohs(addr4->sin_port);
3189                         addrlen = sizeof(addr4->sin_addr.s_addr);
3190                         addrp = (char *)&addr4->sin_addr.s_addr;
3191                 } else {
3192                         addr6 = (struct sockaddr_in6 *)address;
3193                         snum = ntohs(addr6->sin6_port);
3194                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3195                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3196                 }
3197
3198                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3199                            snum > ip_local_port_range_1)) {
3200                         err = security_port_sid(sk->sk_family, sk->sk_type,
3201                                                 sk->sk_protocol, snum, &sid);
3202                         if (err)
3203                                 goto out;
3204                         AVC_AUDIT_DATA_INIT(&ad,NET);
3205                         ad.u.net.sport = htons(snum);
3206                         ad.u.net.family = family;
3207                         err = avc_has_perm(isec->sid, sid,
3208                                            isec->sclass,
3209                                            SOCKET__NAME_BIND, &ad);
3210                         if (err)
3211                                 goto out;
3212                 }
3213                 
3214                 switch(isec->sclass) {
3215                 case SECCLASS_TCP_SOCKET:
3216                         node_perm = TCP_SOCKET__NODE_BIND;
3217                         break;
3218                         
3219                 case SECCLASS_UDP_SOCKET:
3220                         node_perm = UDP_SOCKET__NODE_BIND;
3221                         break;
3222
3223                 case SECCLASS_DCCP_SOCKET:
3224                         node_perm = DCCP_SOCKET__NODE_BIND;
3225                         break;
3226
3227                 default:
3228                         node_perm = RAWIP_SOCKET__NODE_BIND;
3229                         break;
3230                 }
3231                 
3232                 err = security_node_sid(family, addrp, addrlen, &sid);
3233                 if (err)
3234                         goto out;
3235                 
3236                 AVC_AUDIT_DATA_INIT(&ad,NET);
3237                 ad.u.net.sport = htons(snum);
3238                 ad.u.net.family = family;
3239
3240                 if (family == PF_INET)
3241                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3242                 else
3243                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3244
3245                 err = avc_has_perm(isec->sid, sid,
3246                                    isec->sclass, node_perm, &ad);
3247                 if (err)
3248                         goto out;
3249         }
3250 out:
3251         return err;
3252 }
3253
3254 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3255 {
3256         struct inode_security_struct *isec;
3257         int err;
3258
3259         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3260         if (err)
3261                 return err;
3262
3263         /*
3264          * If a TCP or DCCP socket, check name_connect permission for the port.
3265          */
3266         isec = SOCK_INODE(sock)->i_security;
3267         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3268             isec->sclass == SECCLASS_DCCP_SOCKET) {
3269                 struct sock *sk = sock->sk;
3270                 struct avc_audit_data ad;
3271                 struct sockaddr_in *addr4 = NULL;
3272                 struct sockaddr_in6 *addr6 = NULL;
3273                 unsigned short snum;
3274                 u32 sid, perm;
3275
3276                 if (sk->sk_family == PF_INET) {
3277                         addr4 = (struct sockaddr_in *)address;
3278                         if (addrlen < sizeof(struct sockaddr_in))
3279                                 return -EINVAL;
3280                         snum = ntohs(addr4->sin_port);
3281                 } else {
3282                         addr6 = (struct sockaddr_in6 *)address;
3283                         if (addrlen < SIN6_LEN_RFC2133)
3284                                 return -EINVAL;
3285                         snum = ntohs(addr6->sin6_port);
3286                 }
3287
3288                 err = security_port_sid(sk->sk_family, sk->sk_type,
3289                                         sk->sk_protocol, snum, &sid);
3290                 if (err)
3291                         goto out;
3292
3293                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3294                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3295
3296                 AVC_AUDIT_DATA_INIT(&ad,NET);
3297                 ad.u.net.dport = htons(snum);
3298                 ad.u.net.family = sk->sk_family;
3299                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3300                 if (err)
3301                         goto out;
3302         }
3303
3304 out:
3305         return err;
3306 }
3307
3308 static int selinux_socket_listen(struct socket *sock, int backlog)
3309 {
3310         return socket_has_perm(current, sock, SOCKET__LISTEN);
3311 }
3312
3313 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3314 {
3315         int err;
3316         struct inode_security_struct *isec;
3317         struct inode_security_struct *newisec;
3318
3319         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3320         if (err)
3321                 return err;
3322
3323         newisec = SOCK_INODE(newsock)->i_security;
3324
3325         isec = SOCK_INODE(sock)->i_security;
3326         newisec->sclass = isec->sclass;
3327         newisec->sid = isec->sid;
3328         newisec->initialized = 1;
3329
3330         return 0;
3331 }
3332
3333 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3334                                   int size)
3335 {
3336         int rc;
3337
3338         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3339         if (rc)
3340                 return rc;
3341
3342         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3343 }
3344
3345 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3346                                   int size, int flags)
3347 {
3348         return socket_has_perm(current, sock, SOCKET__READ);
3349 }
3350
3351 static int selinux_socket_getsockname(struct socket *sock)
3352 {
3353         return socket_has_perm(current, sock, SOCKET__GETATTR);
3354 }
3355
3356 static int selinux_socket_getpeername(struct socket *sock)
3357 {
3358         return socket_has_perm(current, sock, SOCKET__GETATTR);
3359 }
3360
3361 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3362 {
3363         int err;
3364
3365         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3366         if (err)
3367                 return err;
3368
3369         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3370 }
3371
3372 static int selinux_socket_getsockopt(struct socket *sock, int level,
3373                                      int optname)
3374 {
3375         return socket_has_perm(current, sock, SOCKET__GETOPT);
3376 }
3377
3378 static int selinux_socket_shutdown(struct socket *sock, int how)
3379 {
3380         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3381 }
3382
3383 static int selinux_socket_unix_stream_connect(struct socket *sock,
3384                                               struct socket *other,
3385                                               struct sock *newsk)
3386 {
3387         struct sk_security_struct *ssec;
3388         struct inode_security_struct *isec;
3389         struct inode_security_struct *other_isec;
3390         struct avc_audit_data ad;
3391         int err;
3392
3393         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3394         if (err)
3395                 return err;
3396
3397         isec = SOCK_INODE(sock)->i_security;
3398         other_isec = SOCK_INODE(other)->i_security;
3399
3400         AVC_AUDIT_DATA_INIT(&ad,NET);
3401         ad.u.net.sk = other->sk;
3402
3403         err = avc_has_perm(isec->sid, other_isec->sid,
3404                            isec->sclass,
3405                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3406         if (err)
3407                 return err;
3408
3409         /* connecting socket */
3410         ssec = sock->sk->sk_security;
3411         ssec->peer_sid = other_isec->sid;
3412         
3413         /* server child socket */
3414         ssec = newsk->sk_security;
3415         ssec->peer_sid = isec->sid;
3416         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3417
3418         return err;
3419 }
3420
3421 static int selinux_socket_unix_may_send(struct socket *sock,
3422                                         struct socket *other)
3423 {
3424         struct inode_security_struct *isec;
3425         struct inode_security_struct *other_isec;
3426         struct avc_audit_data ad;
3427         int err;
3428
3429         isec = SOCK_INODE(sock)->i_security;
3430         other_isec = SOCK_INODE(other)->i_security;
3431
3432         AVC_AUDIT_DATA_INIT(&ad,NET);
3433         ad.u.net.sk = other->sk;
3434
3435         err = avc_has_perm(isec->sid, other_isec->sid,
3436                            isec->sclass, SOCKET__SENDTO, &ad);
3437         if (err)
3438                 return err;
3439
3440         return 0;
3441 }
3442
3443 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3444                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3445 {
3446         int err = 0;
3447         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3448         struct socket *sock;
3449         u16 sock_class = 0;
3450         u32 sock_sid = 0;
3451
3452         read_lock_bh(&sk->sk_callback_lock);
3453         sock = sk->sk_socket;
3454         if (sock) {
3455                 struct inode *inode;
3456                 inode = SOCK_INODE(sock);
3457                 if (inode) {
3458                         struct inode_security_struct *isec;
3459                         isec = inode->i_security;
3460                         sock_sid = isec->sid;
3461                         sock_class = isec->sclass;
3462                 }
3463         }
3464         read_unlock_bh(&sk->sk_callback_lock);
3465         if (!sock_sid)
3466                 goto out;
3467
3468         if (!skb->dev)
3469                 goto out;
3470
3471         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3472         if (err)
3473                 goto out;
3474
3475         switch (sock_class) {
3476         case SECCLASS_UDP_SOCKET:
3477                 netif_perm = NETIF__UDP_RECV;
3478                 node_perm = NODE__UDP_RECV;
3479                 recv_perm = UDP_SOCKET__RECV_MSG;
3480                 break;
3481         
3482         case SECCLASS_TCP_SOCKET:
3483                 netif_perm = NETIF__TCP_RECV;
3484                 node_perm = NODE__TCP_RECV;
3485                 recv_perm = TCP_SOCKET__RECV_MSG;
3486                 break;
3487
3488         case SECCLASS_DCCP_SOCKET:
3489                 netif_perm = NETIF__DCCP_RECV;
3490                 node_perm = NODE__DCCP_RECV;
3491                 recv_perm = DCCP_SOCKET__RECV_MSG;
3492                 break;
3493
3494         default:
3495                 netif_perm = NETIF__RAWIP_RECV;
3496                 node_perm = NODE__RAWIP_RECV;
3497                 break;
3498         }
3499
3500         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3501         if (err)
3502                 goto out;
3503         
3504         err = security_node_sid(family, addrp, len, &node_sid);
3505         if (err)
3506                 goto out;
3507         
3508         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3509         if (err)
3510                 goto out;
3511
3512         if (recv_perm) {
3513                 u32 port_sid;
3514
3515                 err = security_port_sid(sk->sk_family, sk->sk_type,
3516                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3517                                         &port_sid);
3518                 if (err)
3519                         goto out;
3520
3521                 err = avc_has_perm(sock_sid, port_sid,
3522                                    sock_class, recv_perm, ad);
3523         }
3524
3525 out:
3526         return err;
3527 }
3528
3529 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3530 {
3531         u16 family;
3532         char *addrp;
3533         int len, err = 0;
3534         struct avc_audit_data ad;
3535         struct sk_security_struct *sksec = sk->sk_security;
3536
3537         family = sk->sk_family;
3538         if (family != PF_INET && family != PF_INET6)
3539                 goto out;
3540
3541         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3542         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3543                 family = PF_INET;
3544
3545         AVC_AUDIT_DATA_INIT(&ad, NET);
3546         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3547         ad.u.net.family = family;
3548
3549         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3550         if (err)
3551                 goto out;
3552
3553         if (selinux_compat_net)
3554                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3555                                                   addrp, len);
3556         else
3557                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3558                                    PACKET__RECV, &ad);
3559         if (err)
3560                 goto out;
3561
3562         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3563         if (err)
3564                 goto out;
3565
3566         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3567 out:    
3568         return err;
3569 }
3570
3571 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3572                                             int __user *optlen, unsigned len)
3573 {
3574         int err = 0;
3575         char *scontext;
3576         u32 scontext_len;
3577         struct sk_security_struct *ssec;
3578         struct inode_security_struct *isec;
3579         u32 peer_sid = SECSID_NULL;
3580
3581         isec = SOCK_INODE(sock)->i_security;
3582
3583         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3584             isec->sclass == SECCLASS_TCP_SOCKET) {
3585                 ssec = sock->sk->sk_security;
3586                 peer_sid = ssec->peer_sid;
3587         }
3588         if (peer_sid == SECSID_NULL) {
3589                 err = -ENOPROTOOPT;
3590                 goto out;
3591         }
3592
3593         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3594
3595         if (err)
3596                 goto out;
3597
3598         if (scontext_len > len) {
3599                 err = -ERANGE;
3600                 goto out_len;
3601         }
3602
3603         if (copy_to_user(optval, scontext, scontext_len))
3604                 err = -EFAULT;
3605
3606 out_len:
3607         if (put_user(scontext_len, optlen))
3608                 err = -EFAULT;
3609
3610         kfree(scontext);
3611 out:    
3612         return err;
3613 }
3614
3615 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3616 {
3617         u32 peer_secid = SECSID_NULL;
3618         int err = 0;
3619
3620         if (sock && sock->sk->sk_family == PF_UNIX)
3621                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3622         else if (skb)
3623                 security_skb_extlbl_sid(skb,
3624                                         SECINITSID_UNLABELED,
3625                                         &peer_secid);
3626
3627         if (peer_secid == SECSID_NULL)
3628                 err = -EINVAL;
3629         *secid = peer_secid;
3630
3631         return err;
3632 }
3633
3634 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3635 {
3636         return sk_alloc_security(sk, family, priority);
3637 }
3638
3639 static void selinux_sk_free_security(struct sock *sk)
3640 {
3641         sk_free_security(sk);
3642 }
3643
3644 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3645 {
3646         struct sk_security_struct *ssec = sk->sk_security;
3647         struct sk_security_struct *newssec = newsk->sk_security;
3648
3649         newssec->sid = ssec->sid;
3650         newssec->peer_sid = ssec->peer_sid;
3651
3652         selinux_netlbl_sk_security_clone(ssec, newssec);
3653 }
3654
3655 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3656 {
3657         if (!sk)
3658                 *secid = SECINITSID_ANY_SOCKET;
3659         else {
3660                 struct sk_security_struct *sksec = sk->sk_security;
3661
3662                 *secid = sksec->sid;
3663         }
3664 }
3665
3666 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3667 {
3668         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3669         struct sk_security_struct *sksec = sk->sk_security;
3670
3671         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3672             sk->sk_family == PF_UNIX)
3673                 isec->sid = sksec->sid;
3674
3675         selinux_netlbl_sock_graft(sk, parent);
3676 }
3677
3678 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3679                                      struct request_sock *req)
3680 {
3681         struct sk_security_struct *sksec = sk->sk_security;
3682         int err;
3683         u32 newsid;
3684         u32 peersid;
3685
3686         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3687         if (peersid == SECSID_NULL) {
3688                 req->secid = sksec->sid;
3689                 req->peer_secid = SECSID_NULL;
3690                 return 0;
3691         }
3692
3693         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3694         if (err)
3695                 return err;
3696
3697         req->secid = newsid;
3698         req->peer_secid = peersid;
3699         return 0;
3700 }
3701
3702 static void selinux_inet_csk_clone(struct sock *newsk,
3703                                    const struct request_sock *req)
3704 {
3705         struct sk_security_struct *newsksec = newsk->sk_security;
3706
3707         newsksec->sid = req->secid;
3708         newsksec->peer_sid = req->peer_secid;
3709         /* NOTE: Ideally, we should also get the isec->sid for the
3710            new socket in sync, but we don't have the isec available yet.
3711            So we will wait until sock_graft to do it, by which
3712            time it will have been created and available. */
3713
3714         /* We don't need to take any sort of lock here as we are the only
3715          * thread with access to newsksec */
3716         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3717 }
3718
3719 static void selinux_inet_conn_established(struct sock *sk,
3720                                 struct sk_buff *skb)
3721 {
3722         struct sk_security_struct *sksec = sk->sk_security;
3723
3724         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3725 }
3726
3727 static void selinux_req_classify_flow(const struct request_sock *req,
3728                                       struct flowi *fl)
3729 {
3730         fl->secid = req->secid;
3731 }
3732
3733 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3734 {
3735         int err = 0;
3736         u32 perm;
3737         struct nlmsghdr *nlh;
3738         struct socket *sock = sk->sk_socket;
3739         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3740         
3741         if (skb->len < NLMSG_SPACE(0)) {
3742                 err = -EINVAL;
3743                 goto out;
3744         }
3745         nlh = (struct nlmsghdr *)skb->data;
3746         
3747         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3748         if (err) {
3749                 if (err == -EINVAL) {
3750                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3751                                   "SELinux:  unrecognized netlink message"
3752                                   " type=%hu for sclass=%hu\n",
3753                                   nlh->nlmsg_type, isec->sclass);
3754                         if (!selinux_enforcing)
3755                                 err = 0;
3756                 }
3757
3758                 /* Ignore */
3759                 if (err == -ENOENT)
3760                         err = 0;
3761                 goto out;
3762         }
3763
3764         err = socket_has_perm(current, sock, perm);
3765 out:
3766         return err;
3767 }
3768
3769 #ifdef CONFIG_NETFILTER
3770
3771 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3772                                             struct avc_audit_data *ad,
3773                                             u16 family, char *addrp, int len)
3774 {
3775         int err = 0;
3776         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3777         struct socket *sock;
3778         struct inode *inode;
3779         struct inode_security_struct *isec;
3780
3781         sock = sk->sk_socket;
3782         if (!sock)
3783                 goto out;
3784
3785         inode = SOCK_INODE(sock);
3786         if (!inode)
3787                 goto out;
3788
3789         isec = inode->i_security;
3790         
3791         err = sel_netif_sids(dev, &if_sid, NULL);
3792         if (err)
3793                 goto out;
3794
3795         switch (isec->sclass) {
3796         case SECCLASS_UDP_SOCKET:
3797                 netif_perm = NETIF__UDP_SEND;
3798                 node_perm = NODE__UDP_SEND;
3799                 send_perm = UDP_SOCKET__SEND_MSG;
3800                 break;
3801         
3802         case SECCLASS_TCP_SOCKET:
3803                 netif_perm = NETIF__TCP_SEND;
3804                 node_perm = NODE__TCP_SEND;
3805                 send_perm = TCP_SOCKET__SEND_MSG;
3806                 break;
3807
3808         case SECCLASS_DCCP_SOCKET:
3809                 netif_perm = NETIF__DCCP_SEND;
3810                 node_perm = NODE__DCCP_SEND;
3811                 send_perm = DCCP_SOCKET__SEND_MSG;
3812                 break;
3813
3814         default:
3815                 netif_perm = NETIF__RAWIP_SEND;
3816                 node_perm = NODE__RAWIP_SEND;
3817                 break;
3818         }
3819
3820         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3821         if (err)
3822                 goto out;
3823                 
3824         err = security_node_sid(family, addrp, len, &node_sid);
3825         if (err)
3826                 goto out;
3827         
3828         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3829         if (err)
3830                 goto out;
3831
3832         if (send_perm) {
3833                 u32 port_sid;
3834                 
3835                 err = security_port_sid(sk->sk_family,
3836                                         sk->sk_type,
3837                                         sk->sk_protocol,
3838                                         ntohs(ad->u.net.dport),
3839                                         &port_sid);
3840                 if (err)
3841                         goto out;
3842
3843                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3844                                    send_perm, ad);
3845         }
3846 out:
3847         return err;
3848 }
3849
3850 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3851                                               struct sk_buff **pskb,
3852                                               const struct net_device *in,
3853                                               const struct net_device *out,
3854                                               int (*okfn)(struct sk_buff *),
3855                                               u16 family)
3856 {
3857         char *addrp;
3858         int len, err = 0;
3859         struct sock *sk;
3860         struct sk_buff *skb = *pskb;
3861         struct avc_audit_data ad;
3862         struct net_device *dev = (struct net_device *)out;
3863         struct sk_security_struct *sksec;
3864         u8 proto;
3865
3866         sk = skb->sk;
3867         if (!sk)
3868                 goto out;
3869
3870         sksec = sk->sk_security;
3871
3872         AVC_AUDIT_DATA_INIT(&ad, NET);
3873         ad.u.net.netif = dev->name;
3874         ad.u.net.family = family;
3875
3876         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3877         if (err)
3878                 goto out;
3879
3880         if (selinux_compat_net)
3881                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3882                                                        family, addrp, len);
3883         else
3884                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3885                                    PACKET__SEND, &ad);
3886
3887         if (err)
3888                 goto out;
3889
3890         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3891 out:
3892         return err ? NF_DROP : NF_ACCEPT;
3893 }
3894
3895 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3896                                                 struct sk_buff **pskb,
3897                                                 const struct net_device *in,
3898                                                 const struct net_device *out,
3899                                                 int (*okfn)(struct sk_buff *))
3900 {
3901         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3902 }
3903
3904 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3905
3906 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3907                                                 struct sk_buff **pskb,
3908                                                 const struct net_device *in,
3909                                                 const struct net_device *out,
3910                                                 int (*okfn)(struct sk_buff *))
3911 {
3912         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3913 }
3914
3915 #endif  /* IPV6 */
3916
3917 #endif  /* CONFIG_NETFILTER */
3918
3919 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3920 {
3921         int err;
3922
3923         err = secondary_ops->netlink_send(sk, skb);
3924         if (err)
3925                 return err;
3926
3927         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3928                 err = selinux_nlmsg_perm(sk, skb);
3929
3930         return err;
3931 }
3932
3933 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3934 {
3935         int err;
3936         struct avc_audit_data ad;
3937
3938         err = secondary_ops->netlink_recv(skb, capability);
3939         if (err)
3940                 return err;
3941
3942         AVC_AUDIT_DATA_INIT(&ad, CAP);
3943         ad.u.cap = capability;
3944
3945         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3946                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3947 }
3948
3949 static int ipc_alloc_security(struct task_struct *task,
3950                               struct kern_ipc_perm *perm,
3951                               u16 sclass)
3952 {
3953         struct task_security_struct *tsec = task->security;
3954         struct ipc_security_struct *isec;
3955
3956         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3957         if (!isec)
3958                 return -ENOMEM;
3959
3960         isec->sclass = sclass;
3961         isec->ipc_perm = perm;
3962         isec->sid = tsec->sid;
3963         perm->security = isec;
3964
3965         return 0;
3966 }
3967
3968 static void ipc_free_security(struct kern_ipc_perm *perm)
3969 {
3970         struct ipc_security_struct *isec = perm->security;
3971         perm->security = NULL;
3972         kfree(isec);
3973 }
3974
3975 static int msg_msg_alloc_security(struct msg_msg *msg)
3976 {
3977         struct msg_security_struct *msec;
3978
3979         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3980         if (!msec)
3981                 return -ENOMEM;
3982
3983         msec->msg = msg;
3984         msec->sid = SECINITSID_UNLABELED;
3985         msg->security = msec;
3986
3987         return 0;
3988 }
3989
3990 static void msg_msg_free_security(struct msg_msg *msg)
3991 {
3992         struct msg_security_struct *msec = msg->security;
3993
3994         msg->security = NULL;
3995         kfree(msec);
3996 }
3997
3998 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
3999                         u32 perms)
4000 {
4001         struct task_security_struct *tsec;
4002         struct ipc_security_struct *isec;
4003         struct avc_audit_data ad;
4004
4005         tsec = current->security;
4006         isec = ipc_perms->security;
4007
4008         AVC_AUDIT_DATA_INIT(&ad, IPC);
4009         ad.u.ipc_id = ipc_perms->key;
4010
4011         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4012 }
4013
4014 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4015 {
4016         return msg_msg_alloc_security(msg);
4017 }
4018
4019 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4020 {
4021         msg_msg_free_security(msg);
4022 }
4023
4024 /* message queue security operations */
4025 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4026 {
4027         struct task_security_struct *tsec;
4028         struct ipc_security_struct *isec;
4029         struct avc_audit_data ad;
4030         int rc;
4031
4032         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4033         if (rc)
4034                 return rc;
4035
4036         tsec = current->security;
4037         isec = msq->q_perm.security;
4038
4039         AVC_AUDIT_DATA_INIT(&ad, IPC);
4040         ad.u.ipc_id = msq->q_perm.key;
4041
4042         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4043                           MSGQ__CREATE, &ad);
4044         if (rc) {
4045                 ipc_free_security(&msq->q_perm);
4046                 return rc;
4047         }
4048         return 0;
4049 }
4050
4051 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4052 {
4053         ipc_free_security(&msq->q_perm);
4054 }
4055
4056 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4057 {
4058         struct task_security_struct *tsec;
4059         struct ipc_security_struct *isec;
4060         struct avc_audit_data ad;
4061
4062         tsec = current->security;
4063         isec = msq->q_perm.security;
4064
4065         AVC_AUDIT_DATA_INIT(&ad, IPC);
4066         ad.u.ipc_id = msq->q_perm.key;
4067
4068         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4069                             MSGQ__ASSOCIATE, &ad);
4070 }
4071
4072 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4073 {
4074         int err;
4075         int perms;
4076
4077         switch(cmd) {
4078         case IPC_INFO:
4079         case MSG_INFO:
4080                 /* No specific object, just general system-wide information. */
4081                 return task_has_system(current, SYSTEM__IPC_INFO);
4082         case IPC_STAT:
4083         case MSG_STAT:
4084                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4085                 break;
4086         case IPC_SET:
4087                 perms = MSGQ__SETATTR;
4088                 break;
4089         case IPC_RMID:
4090                 perms = MSGQ__DESTROY;
4091                 break;
4092         default:
4093                 return 0;
4094         }
4095
4096         err = ipc_has_perm(&msq->q_perm, perms);
4097         return err;
4098 }
4099
4100 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4101 {
4102         struct task_security_struct *tsec;
4103         struct ipc_security_struct *isec;
4104         struct msg_security_struct *msec;
4105         struct avc_audit_data ad;
4106         int rc;
4107
4108         tsec = current->security;
4109         isec = msq->q_perm.security;
4110         msec = msg->security;
4111
4112         /*
4113          * First time through, need to assign label to the message
4114          */
4115         if (msec->sid == SECINITSID_UNLABELED) {
4116                 /*
4117                  * Compute new sid based on current process and
4118                  * message queue this message will be stored in
4119                  */
4120                 rc = security_transition_sid(tsec->sid,
4121                                              isec->sid,
4122                                              SECCLASS_MSG,
4123                                              &msec->sid);
4124                 if (rc)
4125                         return rc;
4126         }
4127
4128         AVC_AUDIT_DATA_INIT(&ad, IPC);
4129         ad.u.ipc_id = msq->q_perm.key;
4130
4131         /* Can this process write to the queue? */
4132         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4133                           MSGQ__WRITE, &ad);
4134         if (!rc)
4135                 /* Can this process send the message */
4136                 rc = avc_has_perm(tsec->sid, msec->sid,
4137                                   SECCLASS_MSG, MSG__SEND, &ad);
4138         if (!rc)
4139                 /* Can the message be put in the queue? */
4140                 rc = avc_has_perm(msec->sid, isec->sid,
4141                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4142
4143         return rc;
4144 }
4145
4146 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4147                                     struct task_struct *target,
4148                                     long type, int mode)
4149 {
4150         struct task_security_struct *tsec;
4151         struct ipc_security_struct *isec;
4152         struct msg_security_struct *msec;
4153         struct avc_audit_data ad;
4154         int rc;
4155
4156         tsec = target->security;
4157         isec = msq->q_perm.security;
4158         msec = msg->security;
4159
4160         AVC_AUDIT_DATA_INIT(&ad, IPC);
4161         ad.u.ipc_id = msq->q_perm.key;
4162
4163         rc = avc_has_perm(tsec->sid, isec->sid,
4164                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4165         if (!rc)
4166                 rc = avc_has_perm(tsec->sid, msec->sid,
4167                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4168         return rc;
4169 }
4170
4171 /* Shared Memory security operations */
4172 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4173 {
4174         struct task_security_struct *tsec;
4175         struct ipc_security_struct *isec;
4176         struct avc_audit_data ad;
4177         int rc;
4178
4179         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4180         if (rc)
4181                 return rc;
4182
4183         tsec = current->security;
4184         isec = shp->shm_perm.security;
4185
4186         AVC_AUDIT_DATA_INIT(&ad, IPC);
4187         ad.u.ipc_id = shp->shm_perm.key;
4188
4189         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4190                           SHM__CREATE, &ad);
4191         if (rc) {
4192                 ipc_free_security(&shp->shm_perm);
4193                 return rc;
4194         }
4195         return 0;
4196 }
4197
4198 static void selinux_shm_free_security(struct shmid_kernel *shp)
4199 {
4200         ipc_free_security(&shp->shm_perm);
4201 }
4202
4203 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4204 {
4205         struct task_security_struct *tsec;
4206         struct ipc_security_struct *isec;
4207         struct avc_audit_data ad;
4208
4209         tsec = current->security;
4210         isec = shp->shm_perm.security;
4211
4212         AVC_AUDIT_DATA_INIT(&ad, IPC);
4213         ad.u.ipc_id = shp->shm_perm.key;
4214
4215         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4216                             SHM__ASSOCIATE, &ad);
4217 }
4218
4219 /* Note, at this point, shp is locked down */
4220 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4221 {
4222         int perms;
4223         int err;
4224
4225         switch(cmd) {
4226         case IPC_INFO:
4227         case SHM_INFO:
4228                 /* No specific object, just general system-wide information. */
4229                 return task_has_system(current, SYSTEM__IPC_INFO);
4230         case IPC_STAT:
4231         case SHM_STAT:
4232                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4233                 break;
4234         case IPC_SET:
4235                 perms = SHM__SETATTR;
4236                 break;
4237         case SHM_LOCK:
4238         case SHM_UNLOCK:
4239                 perms = SHM__LOCK;
4240                 break;
4241         case IPC_RMID:
4242                 perms = SHM__DESTROY;
4243                 break;
4244         default:
4245                 return 0;
4246         }
4247
4248         err = ipc_has_perm(&shp->shm_perm, perms);
4249         return err;
4250 }
4251
4252 static int selinux_shm_shmat(struct shmid_kernel *shp,
4253                              char __user *shmaddr, int shmflg)
4254 {
4255         u32 perms;
4256         int rc;
4257
4258         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4259         if (rc)
4260                 return rc;
4261
4262         if (shmflg & SHM_RDONLY)
4263                 perms = SHM__READ;
4264         else
4265                 perms = SHM__READ | SHM__WRITE;
4266
4267         return ipc_has_perm(&shp->shm_perm, perms);
4268 }
4269
4270 /* Semaphore security operations */
4271 static int selinux_sem_alloc_security(struct sem_array *sma)
4272 {
4273         struct task_security_struct *tsec;
4274         struct ipc_security_struct *isec;
4275         struct avc_audit_data ad;
4276         int rc;
4277
4278         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4279         if (rc)
4280                 return rc;
4281
4282         tsec = current->security;
4283         isec = sma->sem_perm.security;
4284
4285         AVC_AUDIT_DATA_INIT(&ad, IPC);
4286         ad.u.ipc_id = sma->sem_perm.key;
4287
4288         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4289                           SEM__CREATE, &ad);
4290         if (rc) {
4291                 ipc_free_security(&sma->sem_perm);
4292                 return rc;
4293         }
4294         return 0;
4295 }
4296
4297 static void selinux_sem_free_security(struct sem_array *sma)
4298 {
4299         ipc_free_security(&sma->sem_perm);
4300 }
4301
4302 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4303 {
4304         struct task_security_struct *tsec;
4305         struct ipc_security_struct *isec;
4306         struct avc_audit_data ad;
4307
4308         tsec = current->security;
4309         isec = sma->sem_perm.security;
4310
4311         AVC_AUDIT_DATA_INIT(&ad, IPC);
4312         ad.u.ipc_id = sma->sem_perm.key;
4313
4314         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4315                             SEM__ASSOCIATE, &ad);
4316 }
4317
4318 /* Note, at this point, sma is locked down */
4319 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4320 {
4321         int err;
4322         u32 perms;
4323
4324         switch(cmd) {
4325         case IPC_INFO:
4326         case SEM_INFO:
4327                 /* No specific object, just general system-wide information. */
4328                 return task_has_system(current, SYSTEM__IPC_INFO);
4329         case GETPID:
4330         case GETNCNT:
4331         case GETZCNT:
4332                 perms = SEM__GETATTR;
4333                 break;
4334         case GETVAL:
4335         case GETALL:
4336                 perms = SEM__READ;
4337                 break;
4338         case SETVAL:
4339         case SETALL:
4340                 perms = SEM__WRITE;
4341                 break;
4342         case IPC_RMID:
4343                 perms = SEM__DESTROY;
4344                 break;
4345         case IPC_SET:
4346                 perms = SEM__SETATTR;
4347                 break;
4348         case IPC_STAT:
4349         case SEM_STAT:
4350                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4351                 break;
4352         default:
4353                 return 0;
4354         }
4355
4356         err = ipc_has_perm(&sma->sem_perm, perms);
4357         return err;
4358 }
4359
4360 static int selinux_sem_semop(struct sem_array *sma,
4361                              struct sembuf *sops, unsigned nsops, int alter)
4362 {
4363         u32 perms;
4364
4365         if (alter)
4366                 perms = SEM__READ | SEM__WRITE;
4367         else
4368                 perms = SEM__READ;
4369
4370         return ipc_has_perm(&sma->sem_perm, perms);
4371 }
4372
4373 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4374 {
4375         u32 av = 0;
4376
4377         av = 0;
4378         if (flag & S_IRUGO)
4379                 av |= IPC__UNIX_READ;
4380         if (flag & S_IWUGO)
4381                 av |= IPC__UNIX_WRITE;
4382
4383         if (av == 0)
4384                 return 0;
4385
4386         return ipc_has_perm(ipcp, av);
4387 }
4388
4389 /* module stacking operations */
4390 static int selinux_register_security (const char *name, struct security_operations *ops)
4391 {
4392         if (secondary_ops != original_ops) {
4393                 printk(KERN_INFO "%s:  There is already a secondary security "
4394                        "module registered.\n", __FUNCTION__);
4395                 return -EINVAL;
4396         }
4397
4398         secondary_ops = ops;
4399
4400         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4401                __FUNCTION__,
4402                name);
4403
4404         return 0;
4405 }
4406
4407 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4408 {
4409         if (ops != secondary_ops) {
4410                 printk (KERN_INFO "%s:  trying to unregister a security module "
4411                         "that is not registered.\n", __FUNCTION__);
4412                 return -EINVAL;
4413         }
4414
4415         secondary_ops = original_ops;
4416
4417         return 0;
4418 }
4419
4420 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4421 {
4422         if (inode)
4423                 inode_doinit_with_dentry(inode, dentry);
4424 }
4425
4426 static int selinux_getprocattr(struct task_struct *p,
4427                                char *name, void *value, size_t size)
4428 {
4429         struct task_security_struct *tsec;
4430         u32 sid;
4431         int error;
4432
4433         if (current != p) {
4434                 error = task_has_perm(current, p, PROCESS__GETATTR);
4435                 if (error)
4436                         return error;
4437         }
4438
4439         tsec = p->security;
4440
4441         if (!strcmp(name, "current"))
4442                 sid = tsec->sid;
4443         else if (!strcmp(name, "prev"))
4444                 sid = tsec->osid;
4445         else if (!strcmp(name, "exec"))
4446                 sid = tsec->exec_sid;
4447         else if (!strcmp(name, "fscreate"))
4448                 sid = tsec->create_sid;
4449         else if (!strcmp(name, "keycreate"))
4450                 sid = tsec->keycreate_sid;
4451         else if (!strcmp(name, "sockcreate"))
4452                 sid = tsec->sockcreate_sid;
4453         else
4454                 return -EINVAL;
4455
4456         if (!sid)
4457                 return 0;
4458
4459         return selinux_getsecurity(sid, value, size);
4460 }
4461
4462 static int selinux_setprocattr(struct task_struct *p,
4463                                char *name, void *value, size_t size)
4464 {
4465         struct task_security_struct *tsec;
4466         u32 sid = 0;
4467         int error;
4468         char *str = value;
4469
4470         if (current != p) {
4471                 /* SELinux only allows a process to change its own
4472                    security attributes. */
4473                 return -EACCES;
4474         }
4475
4476         /*
4477          * Basic control over ability to set these attributes at all.
4478          * current == p, but we'll pass them separately in case the
4479          * above restriction is ever removed.
4480          */
4481         if (!strcmp(name, "exec"))
4482                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4483         else if (!strcmp(name, "fscreate"))
4484                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4485         else if (!strcmp(name, "keycreate"))
4486                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4487         else if (!strcmp(name, "sockcreate"))
4488                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4489         else if (!strcmp(name, "current"))
4490                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4491         else
4492                 error = -EINVAL;
4493         if (error)
4494                 return error;
4495
4496         /* Obtain a SID for the context, if one was specified. */
4497         if (size && str[1] && str[1] != '\n') {
4498                 if (str[size-1] == '\n') {
4499                         str[size-1] = 0;
4500                         size--;
4501                 }
4502                 error = security_context_to_sid(value, size, &sid);
4503                 if (error)
4504                         return error;
4505         }
4506
4507         /* Permission checking based on the specified context is
4508            performed during the actual operation (execve,
4509            open/mkdir/...), when we know the full context of the
4510            operation.  See selinux_bprm_set_security for the execve
4511            checks and may_create for the file creation checks. The
4512            operation will then fail if the context is not permitted. */
4513         tsec = p->security;
4514         if (!strcmp(name, "exec"))
4515                 tsec->exec_sid = sid;
4516         else if (!strcmp(name, "fscreate"))
4517                 tsec->create_sid = sid;
4518         else if (!strcmp(name, "keycreate")) {
4519                 error = may_create_key(sid, p);
4520                 if (error)
4521                         return error;
4522                 tsec->keycreate_sid = sid;
4523         } else if (!strcmp(name, "sockcreate"))
4524                 tsec->sockcreate_sid = sid;
4525         else if (!strcmp(name, "current")) {
4526                 struct av_decision avd;
4527
4528                 if (sid == 0)
4529                         return -EINVAL;
4530
4531                 /* Only allow single threaded processes to change context */
4532                 if (atomic_read(&p->mm->mm_users) != 1) {
4533                         struct task_struct *g, *t;
4534                         struct mm_struct *mm = p->mm;
4535                         read_lock(&tasklist_lock);
4536                         do_each_thread(g, t)
4537                                 if (t->mm == mm && t != p) {
4538                                         read_unlock(&tasklist_lock);
4539                                         return -EPERM;
4540                                 }
4541                         while_each_thread(g, t);
4542                         read_unlock(&tasklist_lock);
4543                 }
4544
4545                 /* Check permissions for the transition. */
4546                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4547                                      PROCESS__DYNTRANSITION, NULL);
4548                 if (error)
4549                         return error;
4550
4551                 /* Check for ptracing, and update the task SID if ok.
4552                    Otherwise, leave SID unchanged and fail. */
4553                 task_lock(p);
4554                 if (p->ptrace & PT_PTRACED) {
4555                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4556                                                      SECCLASS_PROCESS,
4557                                                      PROCESS__PTRACE, &avd);
4558                         if (!error)
4559                                 tsec->sid = sid;
4560                         task_unlock(p);
4561                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4562                                   PROCESS__PTRACE, &avd, error, NULL);
4563                         if (error)
4564                                 return error;
4565                 } else {
4566                         tsec->sid = sid;
4567                         task_unlock(p);
4568                 }
4569         }
4570         else
4571                 return -EINVAL;
4572
4573         return size;
4574 }
4575
4576 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4577 {
4578         return security_sid_to_context(secid, secdata, seclen);
4579 }
4580
4581 static void selinux_release_secctx(char *secdata, u32 seclen)
4582 {
4583         if (secdata)
4584                 kfree(secdata);
4585 }
4586
4587 #ifdef CONFIG_KEYS
4588
4589 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4590                              unsigned long flags)
4591 {
4592         struct task_security_struct *tsec = tsk->security;
4593         struct key_security_struct *ksec;
4594
4595         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4596         if (!ksec)
4597                 return -ENOMEM;
4598
4599         ksec->obj = k;
4600         if (tsec->keycreate_sid)
4601                 ksec->sid = tsec->keycreate_sid;
4602         else
4603                 ksec->sid = tsec->sid;
4604         k->security = ksec;
4605
4606         return 0;
4607 }
4608
4609 static void selinux_key_free(struct key *k)
4610 {
4611         struct key_security_struct *ksec = k->security;
4612
4613         k->security = NULL;
4614         kfree(ksec);
4615 }
4616
4617 static int selinux_key_permission(key_ref_t key_ref,
4618                             struct task_struct *ctx,
4619                             key_perm_t perm)
4620 {
4621         struct key *key;
4622         struct task_security_struct *tsec;
4623         struct key_security_struct *ksec;
4624
4625         key = key_ref_to_ptr(key_ref);
4626
4627         tsec = ctx->security;
4628         ksec = key->security;
4629
4630         /* if no specific permissions are requested, we skip the
4631            permission check. No serious, additional covert channels
4632            appear to be created. */
4633         if (perm == 0)
4634                 return 0;
4635
4636         return avc_has_perm(tsec->sid, ksec->sid,
4637                             SECCLASS_KEY, perm, NULL);
4638 }
4639
4640 #endif
4641
4642 static struct security_operations selinux_ops = {
4643         .ptrace =                       selinux_ptrace,
4644         .capget =                       selinux_capget,
4645         .capset_check =                 selinux_capset_check,
4646         .capset_set =                   selinux_capset_set,
4647         .sysctl =                       selinux_sysctl,
4648         .capable =                      selinux_capable,
4649         .quotactl =                     selinux_quotactl,
4650         .quota_on =                     selinux_quota_on,
4651         .syslog =                       selinux_syslog,
4652         .vm_enough_memory =             selinux_vm_enough_memory,
4653
4654         .netlink_send =                 selinux_netlink_send,
4655         .netlink_recv =                 selinux_netlink_recv,
4656
4657         .bprm_alloc_security =          selinux_bprm_alloc_security,
4658         .bprm_free_security =           selinux_bprm_free_security,
4659         .bprm_apply_creds =             selinux_bprm_apply_creds,
4660         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4661         .bprm_set_security =            selinux_bprm_set_security,
4662         .bprm_check_security =          selinux_bprm_check_security,
4663         .bprm_secureexec =              selinux_bprm_secureexec,
4664
4665         .sb_alloc_security =            selinux_sb_alloc_security,
4666         .sb_free_security =             selinux_sb_free_security,
4667         .sb_copy_data =                 selinux_sb_copy_data,
4668         .sb_kern_mount =                selinux_sb_kern_mount,
4669         .sb_statfs =                    selinux_sb_statfs,
4670         .sb_mount =                     selinux_mount,
4671         .sb_umount =                    selinux_umount,
4672
4673         .inode_alloc_security =         selinux_inode_alloc_security,
4674         .inode_free_security =          selinux_inode_free_security,
4675         .inode_init_security =          selinux_inode_init_security,
4676         .inode_create =                 selinux_inode_create,
4677         .inode_link =                   selinux_inode_link,
4678         .inode_unlink =                 selinux_inode_unlink,
4679         .inode_symlink =                selinux_inode_symlink,
4680         .inode_mkdir =                  selinux_inode_mkdir,
4681         .inode_rmdir =                  selinux_inode_rmdir,
4682         .inode_mknod =                  selinux_inode_mknod,
4683         .inode_rename =                 selinux_inode_rename,
4684         .inode_readlink =               selinux_inode_readlink,
4685         .inode_follow_link =            selinux_inode_follow_link,
4686         .inode_permission =             selinux_inode_permission,
4687         .inode_setattr =                selinux_inode_setattr,
4688         .inode_getattr =                selinux_inode_getattr,
4689         .inode_setxattr =               selinux_inode_setxattr,
4690         .inode_post_setxattr =          selinux_inode_post_setxattr,
4691         .inode_getxattr =               selinux_inode_getxattr,
4692         .inode_listxattr =              selinux_inode_listxattr,
4693         .inode_removexattr =            selinux_inode_removexattr,
4694         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4695         .inode_getsecurity =            selinux_inode_getsecurity,
4696         .inode_setsecurity =            selinux_inode_setsecurity,
4697         .inode_listsecurity =           selinux_inode_listsecurity,
4698
4699         .file_permission =              selinux_file_permission,
4700         .file_alloc_security =          selinux_file_alloc_security,
4701         .file_free_security =           selinux_file_free_security,
4702         .file_ioctl =                   selinux_file_ioctl,
4703         .file_mmap =                    selinux_file_mmap,
4704         .file_mprotect =                selinux_file_mprotect,
4705         .file_lock =                    selinux_file_lock,
4706         .file_fcntl =                   selinux_file_fcntl,
4707         .file_set_fowner =              selinux_file_set_fowner,
4708         .file_send_sigiotask =          selinux_file_send_sigiotask,
4709         .file_receive =                 selinux_file_receive,
4710
4711         .task_create =                  selinux_task_create,
4712         .task_alloc_security =          selinux_task_alloc_security,
4713         .task_free_security =           selinux_task_free_security,
4714         .task_setuid =                  selinux_task_setuid,
4715         .task_post_setuid =             selinux_task_post_setuid,
4716         .task_setgid =                  selinux_task_setgid,
4717         .task_setpgid =                 selinux_task_setpgid,
4718         .task_getpgid =                 selinux_task_getpgid,
4719         .task_getsid =                  selinux_task_getsid,
4720         .task_getsecid =                selinux_task_getsecid,
4721         .task_setgroups =               selinux_task_setgroups,
4722         .task_setnice =                 selinux_task_setnice,
4723         .task_setioprio =               selinux_task_setioprio,
4724         .task_getioprio =               selinux_task_getioprio,
4725         .task_setrlimit =               selinux_task_setrlimit,
4726         .task_setscheduler =            selinux_task_setscheduler,
4727         .task_getscheduler =            selinux_task_getscheduler,
4728         .task_movememory =              selinux_task_movememory,
4729         .task_kill =                    selinux_task_kill,
4730         .task_wait =                    selinux_task_wait,
4731         .task_prctl =                   selinux_task_prctl,
4732         .task_reparent_to_init =        selinux_task_reparent_to_init,
4733         .task_to_inode =                selinux_task_to_inode,
4734
4735         .ipc_permission =               selinux_ipc_permission,
4736
4737         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4738         .msg_msg_free_security =        selinux_msg_msg_free_security,
4739
4740         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4741         .msg_queue_free_security =      selinux_msg_queue_free_security,
4742         .msg_queue_associate =          selinux_msg_queue_associate,
4743         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4744         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4745         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4746
4747         .shm_alloc_security =           selinux_shm_alloc_security,
4748         .shm_free_security =            selinux_shm_free_security,
4749         .shm_associate =                selinux_shm_associate,
4750         .shm_shmctl =                   selinux_shm_shmctl,
4751         .shm_shmat =                    selinux_shm_shmat,
4752
4753         .sem_alloc_security =           selinux_sem_alloc_security,
4754         .sem_free_security =            selinux_sem_free_security,
4755         .sem_associate =                selinux_sem_associate,
4756         .sem_semctl =                   selinux_sem_semctl,
4757         .sem_semop =                    selinux_sem_semop,
4758
4759         .register_security =            selinux_register_security,
4760         .unregister_security =          selinux_unregister_security,
4761
4762         .d_instantiate =                selinux_d_instantiate,
4763
4764         .getprocattr =                  selinux_getprocattr,
4765         .setprocattr =                  selinux_setprocattr,
4766
4767         .secid_to_secctx =              selinux_secid_to_secctx,
4768         .release_secctx =               selinux_release_secctx,
4769
4770         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4771         .unix_may_send =                selinux_socket_unix_may_send,
4772
4773         .socket_create =                selinux_socket_create,
4774         .socket_post_create =           selinux_socket_post_create,
4775         .socket_bind =                  selinux_socket_bind,
4776         .socket_connect =               selinux_socket_connect,
4777         .socket_listen =                selinux_socket_listen,
4778         .socket_accept =                selinux_socket_accept,
4779         .socket_sendmsg =               selinux_socket_sendmsg,
4780         .socket_recvmsg =               selinux_socket_recvmsg,
4781         .socket_getsockname =           selinux_socket_getsockname,
4782         .socket_getpeername =           selinux_socket_getpeername,
4783         .socket_getsockopt =            selinux_socket_getsockopt,
4784         .socket_setsockopt =            selinux_socket_setsockopt,
4785         .socket_shutdown =              selinux_socket_shutdown,
4786         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4787         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4788         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4789         .sk_alloc_security =            selinux_sk_alloc_security,
4790         .sk_free_security =             selinux_sk_free_security,
4791         .sk_clone_security =            selinux_sk_clone_security,
4792         .sk_getsecid =                  selinux_sk_getsecid,
4793         .sock_graft =                   selinux_sock_graft,
4794         .inet_conn_request =            selinux_inet_conn_request,
4795         .inet_csk_clone =               selinux_inet_csk_clone,
4796         .inet_conn_established =        selinux_inet_conn_established,
4797         .req_classify_flow =            selinux_req_classify_flow,
4798
4799 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4800         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4801         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4802         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4803         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4804         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4805         .xfrm_state_free_security =     selinux_xfrm_state_free,
4806         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4807         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4808         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4809         .xfrm_decode_session =          selinux_xfrm_decode_session,
4810 #endif
4811
4812 #ifdef CONFIG_KEYS
4813         .key_alloc =                    selinux_key_alloc,
4814         .key_free =                     selinux_key_free,
4815         .key_permission =               selinux_key_permission,
4816 #endif
4817 };
4818
4819 static __init int selinux_init(void)
4820 {
4821         struct task_security_struct *tsec;
4822
4823         if (!selinux_enabled) {
4824                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4825                 return 0;
4826         }
4827
4828         printk(KERN_INFO "SELinux:  Initializing.\n");
4829
4830         /* Set the security state for the initial task. */
4831         if (task_alloc_security(current))
4832                 panic("SELinux:  Failed to initialize initial task.\n");
4833         tsec = current->security;
4834         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4835
4836         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4837                                             sizeof(struct inode_security_struct),
4838                                             0, SLAB_PANIC, NULL, NULL);
4839         avc_init();
4840
4841         original_ops = secondary_ops = security_ops;
4842         if (!secondary_ops)
4843                 panic ("SELinux: No initial security operations\n");
4844         if (register_security (&selinux_ops))
4845                 panic("SELinux: Unable to register with kernel.\n");
4846
4847         if (selinux_enforcing) {
4848                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4849         } else {
4850                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4851         }
4852
4853 #ifdef CONFIG_KEYS
4854         /* Add security information to initial keyrings */
4855         selinux_key_alloc(&root_user_keyring, current,
4856                           KEY_ALLOC_NOT_IN_QUOTA);
4857         selinux_key_alloc(&root_session_keyring, current,
4858                           KEY_ALLOC_NOT_IN_QUOTA);
4859 #endif
4860
4861         return 0;
4862 }
4863
4864 void selinux_complete_init(void)
4865 {
4866         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4867
4868         /* Set up any superblocks initialized prior to the policy load. */
4869         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4870         spin_lock(&sb_lock);
4871         spin_lock(&sb_security_lock);
4872 next_sb:
4873         if (!list_empty(&superblock_security_head)) {
4874                 struct superblock_security_struct *sbsec =
4875                                 list_entry(superblock_security_head.next,
4876                                            struct superblock_security_struct,
4877                                            list);
4878                 struct super_block *sb = sbsec->sb;
4879                 sb->s_count++;
4880                 spin_unlock(&sb_security_lock);
4881                 spin_unlock(&sb_lock);
4882                 down_read(&sb->s_umount);
4883                 if (sb->s_root)
4884                         superblock_doinit(sb, NULL);
4885                 drop_super(sb);
4886                 spin_lock(&sb_lock);
4887                 spin_lock(&sb_security_lock);
4888                 list_del_init(&sbsec->list);
4889                 goto next_sb;
4890         }
4891         spin_unlock(&sb_security_lock);
4892         spin_unlock(&sb_lock);
4893 }
4894
4895 /* SELinux requires early initialization in order to label
4896    all processes and objects when they are created. */
4897 security_initcall(selinux_init);
4898
4899 #if defined(CONFIG_NETFILTER)
4900
4901 static struct nf_hook_ops selinux_ipv4_op = {
4902         .hook =         selinux_ipv4_postroute_last,
4903         .owner =        THIS_MODULE,
4904         .pf =           PF_INET,
4905         .hooknum =      NF_IP_POST_ROUTING,
4906         .priority =     NF_IP_PRI_SELINUX_LAST,
4907 };
4908
4909 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4910
4911 static struct nf_hook_ops selinux_ipv6_op = {
4912         .hook =         selinux_ipv6_postroute_last,
4913         .owner =        THIS_MODULE,
4914         .pf =           PF_INET6,
4915         .hooknum =      NF_IP6_POST_ROUTING,
4916         .priority =     NF_IP6_PRI_SELINUX_LAST,
4917 };
4918
4919 #endif  /* IPV6 */
4920
4921 static int __init selinux_nf_ip_init(void)
4922 {
4923         int err = 0;
4924
4925         if (!selinux_enabled)
4926                 goto out;
4927                 
4928         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4929         
4930         err = nf_register_hook(&selinux_ipv4_op);
4931         if (err)
4932                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4933
4934 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4935
4936         err = nf_register_hook(&selinux_ipv6_op);
4937         if (err)
4938                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4939
4940 #endif  /* IPV6 */
4941
4942 out:
4943         return err;
4944 }
4945
4946 __initcall(selinux_nf_ip_init);
4947
4948 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4949 static void selinux_nf_ip_exit(void)
4950 {
4951         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4952
4953         nf_unregister_hook(&selinux_ipv4_op);
4954 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4955         nf_unregister_hook(&selinux_ipv6_op);
4956 #endif  /* IPV6 */
4957 }
4958 #endif
4959
4960 #else /* CONFIG_NETFILTER */
4961
4962 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4963 #define selinux_nf_ip_exit()
4964 #endif
4965
4966 #endif /* CONFIG_NETFILTER */
4967
4968 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4969 int selinux_disable(void)
4970 {
4971         extern void exit_sel_fs(void);
4972         static int selinux_disabled = 0;
4973
4974         if (ss_initialized) {
4975                 /* Not permitted after initial policy load. */
4976                 return -EINVAL;
4977         }
4978
4979         if (selinux_disabled) {
4980                 /* Only do this once. */
4981                 return -EINVAL;
4982         }
4983
4984         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4985
4986         selinux_disabled = 1;
4987         selinux_enabled = 0;
4988
4989         /* Reset security_ops to the secondary module, dummy or capability. */
4990         security_ops = secondary_ops;
4991
4992         /* Unregister netfilter hooks. */
4993         selinux_nf_ip_exit();
4994
4995         /* Unregister selinuxfs. */
4996         exit_sel_fs();
4997
4998         return 0;
4999 }
5000 #endif
5001
5002