Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-drm-fsl-dcu.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #ifdef RPC_DEBUG
26 #define RPCDBG_FACILITY         RPCDBG_SCHED
27 #define RPC_TASK_MAGIC_ID       0xf00baa
28 static int                      rpc_task_id;
29 #endif
30
31 /*
32  * RPC slabs and memory pools
33  */
34 #define RPC_BUFFER_MAXSIZE      (2048)
35 #define RPC_BUFFER_POOLSIZE     (8)
36 #define RPC_TASK_POOLSIZE       (8)
37 static struct kmem_cache        *rpc_task_slabp __read_mostly;
38 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
39 static mempool_t        *rpc_task_mempool __read_mostly;
40 static mempool_t        *rpc_buffer_mempool __read_mostly;
41
42 static void                     __rpc_default_timer(struct rpc_task *task);
43 static void                     rpciod_killall(void);
44 static void                     rpc_async_schedule(struct work_struct *);
45 static void                      rpc_release_task(struct rpc_task *task);
46
47 /*
48  * RPC tasks sit here while waiting for conditions to improve.
49  */
50 static RPC_WAITQ(delay_queue, "delayq");
51
52 /*
53  * All RPC tasks are linked into this list
54  */
55 static LIST_HEAD(all_tasks);
56
57 /*
58  * rpciod-related stuff
59  */
60 static DEFINE_MUTEX(rpciod_mutex);
61 static unsigned int             rpciod_users;
62 struct workqueue_struct *rpciod_workqueue;
63
64 /*
65  * Spinlock for other critical sections of code.
66  */
67 static DEFINE_SPINLOCK(rpc_sched_lock);
68
69 /*
70  * Disable the timer for a given RPC task. Should be called with
71  * queue->lock and bh_disabled in order to avoid races within
72  * rpc_run_timer().
73  */
74 static inline void
75 __rpc_disable_timer(struct rpc_task *task)
76 {
77         dprintk("RPC: %4d disabling timer\n", task->tk_pid);
78         task->tk_timeout_fn = NULL;
79         task->tk_timeout = 0;
80 }
81
82 /*
83  * Run a timeout function.
84  * We use the callback in order to allow __rpc_wake_up_task()
85  * and friends to disable the timer synchronously on SMP systems
86  * without calling del_timer_sync(). The latter could cause a
87  * deadlock if called while we're holding spinlocks...
88  */
89 static void rpc_run_timer(struct rpc_task *task)
90 {
91         void (*callback)(struct rpc_task *);
92
93         callback = task->tk_timeout_fn;
94         task->tk_timeout_fn = NULL;
95         if (callback && RPC_IS_QUEUED(task)) {
96                 dprintk("RPC: %4d running timer\n", task->tk_pid);
97                 callback(task);
98         }
99         smp_mb__before_clear_bit();
100         clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
101         smp_mb__after_clear_bit();
102 }
103
104 /*
105  * Set up a timer for the current task.
106  */
107 static inline void
108 __rpc_add_timer(struct rpc_task *task, rpc_action timer)
109 {
110         if (!task->tk_timeout)
111                 return;
112
113         dprintk("RPC: %4d setting alarm for %lu ms\n",
114                         task->tk_pid, task->tk_timeout * 1000 / HZ);
115
116         if (timer)
117                 task->tk_timeout_fn = timer;
118         else
119                 task->tk_timeout_fn = __rpc_default_timer;
120         set_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate);
121         mod_timer(&task->tk_timer, jiffies + task->tk_timeout);
122 }
123
124 /*
125  * Delete any timer for the current task. Because we use del_timer_sync(),
126  * this function should never be called while holding queue->lock.
127  */
128 static void
129 rpc_delete_timer(struct rpc_task *task)
130 {
131         if (RPC_IS_QUEUED(task))
132                 return;
133         if (test_and_clear_bit(RPC_TASK_HAS_TIMER, &task->tk_runstate)) {
134                 del_singleshot_timer_sync(&task->tk_timer);
135                 dprintk("RPC: %4d deleting timer\n", task->tk_pid);
136         }
137 }
138
139 /*
140  * Add new request to a priority queue.
141  */
142 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
143 {
144         struct list_head *q;
145         struct rpc_task *t;
146
147         INIT_LIST_HEAD(&task->u.tk_wait.links);
148         q = &queue->tasks[task->tk_priority];
149         if (unlikely(task->tk_priority > queue->maxpriority))
150                 q = &queue->tasks[queue->maxpriority];
151         list_for_each_entry(t, q, u.tk_wait.list) {
152                 if (t->tk_cookie == task->tk_cookie) {
153                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
154                         return;
155                 }
156         }
157         list_add_tail(&task->u.tk_wait.list, q);
158 }
159
160 /*
161  * Add new request to wait queue.
162  *
163  * Swapper tasks always get inserted at the head of the queue.
164  * This should avoid many nasty memory deadlocks and hopefully
165  * improve overall performance.
166  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
167  */
168 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
169 {
170         BUG_ON (RPC_IS_QUEUED(task));
171
172         if (RPC_IS_PRIORITY(queue))
173                 __rpc_add_wait_queue_priority(queue, task);
174         else if (RPC_IS_SWAPPER(task))
175                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
176         else
177                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
178         task->u.tk_wait.rpc_waitq = queue;
179         queue->qlen++;
180         rpc_set_queued(task);
181
182         dprintk("RPC: %4d added to queue %p \"%s\"\n",
183                                 task->tk_pid, queue, rpc_qname(queue));
184 }
185
186 /*
187  * Remove request from a priority queue.
188  */
189 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
190 {
191         struct rpc_task *t;
192
193         if (!list_empty(&task->u.tk_wait.links)) {
194                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
195                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
196                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
197         }
198         list_del(&task->u.tk_wait.list);
199 }
200
201 /*
202  * Remove request from queue.
203  * Note: must be called with spin lock held.
204  */
205 static void __rpc_remove_wait_queue(struct rpc_task *task)
206 {
207         struct rpc_wait_queue *queue;
208         queue = task->u.tk_wait.rpc_waitq;
209
210         if (RPC_IS_PRIORITY(queue))
211                 __rpc_remove_wait_queue_priority(task);
212         else
213                 list_del(&task->u.tk_wait.list);
214         queue->qlen--;
215         dprintk("RPC: %4d removed from queue %p \"%s\"\n",
216                                 task->tk_pid, queue, rpc_qname(queue));
217 }
218
219 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
220 {
221         queue->priority = priority;
222         queue->count = 1 << (priority * 2);
223 }
224
225 static inline void rpc_set_waitqueue_cookie(struct rpc_wait_queue *queue, unsigned long cookie)
226 {
227         queue->cookie = cookie;
228         queue->nr = RPC_BATCH_COUNT;
229 }
230
231 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
232 {
233         rpc_set_waitqueue_priority(queue, queue->maxpriority);
234         rpc_set_waitqueue_cookie(queue, 0);
235 }
236
237 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, int maxprio)
238 {
239         int i;
240
241         spin_lock_init(&queue->lock);
242         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
243                 INIT_LIST_HEAD(&queue->tasks[i]);
244         queue->maxpriority = maxprio;
245         rpc_reset_waitqueue_priority(queue);
246 #ifdef RPC_DEBUG
247         queue->name = qname;
248 #endif
249 }
250
251 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 {
253         __rpc_init_priority_wait_queue(queue, qname, RPC_PRIORITY_HIGH);
254 }
255
256 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
257 {
258         __rpc_init_priority_wait_queue(queue, qname, 0);
259 }
260 EXPORT_SYMBOL(rpc_init_wait_queue);
261
262 static int rpc_wait_bit_interruptible(void *word)
263 {
264         if (signal_pending(current))
265                 return -ERESTARTSYS;
266         schedule();
267         return 0;
268 }
269
270 static void rpc_set_active(struct rpc_task *task)
271 {
272         if (test_and_set_bit(RPC_TASK_ACTIVE, &task->tk_runstate) != 0)
273                 return;
274         spin_lock(&rpc_sched_lock);
275 #ifdef RPC_DEBUG
276         task->tk_magic = RPC_TASK_MAGIC_ID;
277         task->tk_pid = rpc_task_id++;
278 #endif
279         /* Add to global list of all tasks */
280         list_add_tail(&task->tk_task, &all_tasks);
281         spin_unlock(&rpc_sched_lock);
282 }
283
284 /*
285  * Mark an RPC call as having completed by clearing the 'active' bit
286  */
287 static void rpc_mark_complete_task(struct rpc_task *task)
288 {
289         smp_mb__before_clear_bit();
290         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
291         smp_mb__after_clear_bit();
292         wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
293 }
294
295 /*
296  * Allow callers to wait for completion of an RPC call
297  */
298 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
299 {
300         if (action == NULL)
301                 action = rpc_wait_bit_interruptible;
302         return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
303                         action, TASK_INTERRUPTIBLE);
304 }
305 EXPORT_SYMBOL(__rpc_wait_for_completion_task);
306
307 /*
308  * Make an RPC task runnable.
309  *
310  * Note: If the task is ASYNC, this must be called with
311  * the spinlock held to protect the wait queue operation.
312  */
313 static void rpc_make_runnable(struct rpc_task *task)
314 {
315         BUG_ON(task->tk_timeout_fn);
316         rpc_clear_queued(task);
317         if (rpc_test_and_set_running(task))
318                 return;
319         /* We might have raced */
320         if (RPC_IS_QUEUED(task)) {
321                 rpc_clear_running(task);
322                 return;
323         }
324         if (RPC_IS_ASYNC(task)) {
325                 int status;
326
327                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
328                 status = queue_work(task->tk_workqueue, &task->u.tk_work);
329                 if (status < 0) {
330                         printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
331                         task->tk_status = status;
332                         return;
333                 }
334         } else
335                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
336 }
337
338 /*
339  * Prepare for sleeping on a wait queue.
340  * By always appending tasks to the list we ensure FIFO behavior.
341  * NB: An RPC task will only receive interrupt-driven events as long
342  * as it's on a wait queue.
343  */
344 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345                         rpc_action action, rpc_action timer)
346 {
347         dprintk("RPC: %4d sleep_on(queue \"%s\" time %ld)\n", task->tk_pid,
348                                 rpc_qname(q), jiffies);
349
350         if (!RPC_IS_ASYNC(task) && !RPC_IS_ACTIVATED(task)) {
351                 printk(KERN_ERR "RPC: Inactive synchronous task put to sleep!\n");
352                 return;
353         }
354
355         __rpc_add_wait_queue(q, task);
356
357         BUG_ON(task->tk_callback != NULL);
358         task->tk_callback = action;
359         __rpc_add_timer(task, timer);
360 }
361
362 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
363                                 rpc_action action, rpc_action timer)
364 {
365         /* Mark the task as being activated if so needed */
366         rpc_set_active(task);
367
368         /*
369          * Protect the queue operations.
370          */
371         spin_lock_bh(&q->lock);
372         __rpc_sleep_on(q, task, action, timer);
373         spin_unlock_bh(&q->lock);
374 }
375
376 /**
377  * __rpc_do_wake_up_task - wake up a single rpc_task
378  * @task: task to be woken up
379  *
380  * Caller must hold queue->lock, and have cleared the task queued flag.
381  */
382 static void __rpc_do_wake_up_task(struct rpc_task *task)
383 {
384         dprintk("RPC: %4d __rpc_wake_up_task (now %ld)\n", task->tk_pid, jiffies);
385
386 #ifdef RPC_DEBUG
387         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
388 #endif
389         /* Has the task been executed yet? If not, we cannot wake it up! */
390         if (!RPC_IS_ACTIVATED(task)) {
391                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
392                 return;
393         }
394
395         __rpc_disable_timer(task);
396         __rpc_remove_wait_queue(task);
397
398         rpc_make_runnable(task);
399
400         dprintk("RPC:      __rpc_wake_up_task done\n");
401 }
402
403 /*
404  * Wake up the specified task
405  */
406 static void __rpc_wake_up_task(struct rpc_task *task)
407 {
408         if (rpc_start_wakeup(task)) {
409                 if (RPC_IS_QUEUED(task))
410                         __rpc_do_wake_up_task(task);
411                 rpc_finish_wakeup(task);
412         }
413 }
414
415 /*
416  * Default timeout handler if none specified by user
417  */
418 static void
419 __rpc_default_timer(struct rpc_task *task)
420 {
421         dprintk("RPC: %d timeout (default timer)\n", task->tk_pid);
422         task->tk_status = -ETIMEDOUT;
423         rpc_wake_up_task(task);
424 }
425
426 /*
427  * Wake up the specified task
428  */
429 void rpc_wake_up_task(struct rpc_task *task)
430 {
431         rcu_read_lock_bh();
432         if (rpc_start_wakeup(task)) {
433                 if (RPC_IS_QUEUED(task)) {
434                         struct rpc_wait_queue *queue = task->u.tk_wait.rpc_waitq;
435
436                         /* Note: we're already in a bh-safe context */
437                         spin_lock(&queue->lock);
438                         __rpc_do_wake_up_task(task);
439                         spin_unlock(&queue->lock);
440                 }
441                 rpc_finish_wakeup(task);
442         }
443         rcu_read_unlock_bh();
444 }
445
446 /*
447  * Wake up the next task on a priority queue.
448  */
449 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
450 {
451         struct list_head *q;
452         struct rpc_task *task;
453
454         /*
455          * Service a batch of tasks from a single cookie.
456          */
457         q = &queue->tasks[queue->priority];
458         if (!list_empty(q)) {
459                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
460                 if (queue->cookie == task->tk_cookie) {
461                         if (--queue->nr)
462                                 goto out;
463                         list_move_tail(&task->u.tk_wait.list, q);
464                 }
465                 /*
466                  * Check if we need to switch queues.
467                  */
468                 if (--queue->count)
469                         goto new_cookie;
470         }
471
472         /*
473          * Service the next queue.
474          */
475         do {
476                 if (q == &queue->tasks[0])
477                         q = &queue->tasks[queue->maxpriority];
478                 else
479                         q = q - 1;
480                 if (!list_empty(q)) {
481                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
482                         goto new_queue;
483                 }
484         } while (q != &queue->tasks[queue->priority]);
485
486         rpc_reset_waitqueue_priority(queue);
487         return NULL;
488
489 new_queue:
490         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
491 new_cookie:
492         rpc_set_waitqueue_cookie(queue, task->tk_cookie);
493 out:
494         __rpc_wake_up_task(task);
495         return task;
496 }
497
498 /*
499  * Wake up the next task on the wait queue.
500  */
501 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
502 {
503         struct rpc_task *task = NULL;
504
505         dprintk("RPC:      wake_up_next(%p \"%s\")\n", queue, rpc_qname(queue));
506         rcu_read_lock_bh();
507         spin_lock(&queue->lock);
508         if (RPC_IS_PRIORITY(queue))
509                 task = __rpc_wake_up_next_priority(queue);
510         else {
511                 task_for_first(task, &queue->tasks[0])
512                         __rpc_wake_up_task(task);
513         }
514         spin_unlock(&queue->lock);
515         rcu_read_unlock_bh();
516
517         return task;
518 }
519
520 /**
521  * rpc_wake_up - wake up all rpc_tasks
522  * @queue: rpc_wait_queue on which the tasks are sleeping
523  *
524  * Grabs queue->lock
525  */
526 void rpc_wake_up(struct rpc_wait_queue *queue)
527 {
528         struct rpc_task *task, *next;
529         struct list_head *head;
530
531         rcu_read_lock_bh();
532         spin_lock(&queue->lock);
533         head = &queue->tasks[queue->maxpriority];
534         for (;;) {
535                 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
536                         __rpc_wake_up_task(task);
537                 if (head == &queue->tasks[0])
538                         break;
539                 head--;
540         }
541         spin_unlock(&queue->lock);
542         rcu_read_unlock_bh();
543 }
544
545 /**
546  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
547  * @queue: rpc_wait_queue on which the tasks are sleeping
548  * @status: status value to set
549  *
550  * Grabs queue->lock
551  */
552 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
553 {
554         struct rpc_task *task, *next;
555         struct list_head *head;
556
557         rcu_read_lock_bh();
558         spin_lock(&queue->lock);
559         head = &queue->tasks[queue->maxpriority];
560         for (;;) {
561                 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
562                         task->tk_status = status;
563                         __rpc_wake_up_task(task);
564                 }
565                 if (head == &queue->tasks[0])
566                         break;
567                 head--;
568         }
569         spin_unlock(&queue->lock);
570         rcu_read_unlock_bh();
571 }
572
573 static void __rpc_atrun(struct rpc_task *task)
574 {
575         rpc_wake_up_task(task);
576 }
577
578 /*
579  * Run a task at a later time
580  */
581 void rpc_delay(struct rpc_task *task, unsigned long delay)
582 {
583         task->tk_timeout = delay;
584         rpc_sleep_on(&delay_queue, task, NULL, __rpc_atrun);
585 }
586
587 /*
588  * Helper to call task->tk_ops->rpc_call_prepare
589  */
590 static void rpc_prepare_task(struct rpc_task *task)
591 {
592         lock_kernel();
593         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
594         unlock_kernel();
595 }
596
597 /*
598  * Helper that calls task->tk_ops->rpc_call_done if it exists
599  */
600 void rpc_exit_task(struct rpc_task *task)
601 {
602         task->tk_action = NULL;
603         if (task->tk_ops->rpc_call_done != NULL) {
604                 lock_kernel();
605                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
606                 unlock_kernel();
607                 if (task->tk_action != NULL) {
608                         WARN_ON(RPC_ASSASSINATED(task));
609                         /* Always release the RPC slot and buffer memory */
610                         xprt_release(task);
611                 }
612         }
613 }
614 EXPORT_SYMBOL(rpc_exit_task);
615
616 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
617 {
618         if (ops->rpc_release != NULL) {
619                 lock_kernel();
620                 ops->rpc_release(calldata);
621                 unlock_kernel();
622         }
623 }
624
625 /*
626  * This is the RPC `scheduler' (or rather, the finite state machine).
627  */
628 static int __rpc_execute(struct rpc_task *task)
629 {
630         int             status = 0;
631
632         dprintk("RPC: %4d rpc_execute flgs %x\n",
633                                 task->tk_pid, task->tk_flags);
634
635         BUG_ON(RPC_IS_QUEUED(task));
636
637         for (;;) {
638                 /*
639                  * Garbage collection of pending timers...
640                  */
641                 rpc_delete_timer(task);
642
643                 /*
644                  * Execute any pending callback.
645                  */
646                 if (RPC_DO_CALLBACK(task)) {
647                         /* Define a callback save pointer */
648                         void (*save_callback)(struct rpc_task *);
649
650                         /*
651                          * If a callback exists, save it, reset it,
652                          * call it.
653                          * The save is needed to stop from resetting
654                          * another callback set within the callback handler
655                          * - Dave
656                          */
657                         save_callback=task->tk_callback;
658                         task->tk_callback=NULL;
659                         save_callback(task);
660                 }
661
662                 /*
663                  * Perform the next FSM step.
664                  * tk_action may be NULL when the task has been killed
665                  * by someone else.
666                  */
667                 if (!RPC_IS_QUEUED(task)) {
668                         if (task->tk_action == NULL)
669                                 break;
670                         task->tk_action(task);
671                 }
672
673                 /*
674                  * Lockless check for whether task is sleeping or not.
675                  */
676                 if (!RPC_IS_QUEUED(task))
677                         continue;
678                 rpc_clear_running(task);
679                 if (RPC_IS_ASYNC(task)) {
680                         /* Careful! we may have raced... */
681                         if (RPC_IS_QUEUED(task))
682                                 return 0;
683                         if (rpc_test_and_set_running(task))
684                                 return 0;
685                         continue;
686                 }
687
688                 /* sync task: sleep here */
689                 dprintk("RPC: %4d sync task going to sleep\n", task->tk_pid);
690                 /* Note: Caller should be using rpc_clnt_sigmask() */
691                 status = out_of_line_wait_on_bit(&task->tk_runstate,
692                                 RPC_TASK_QUEUED, rpc_wait_bit_interruptible,
693                                 TASK_INTERRUPTIBLE);
694                 if (status == -ERESTARTSYS) {
695                         /*
696                          * When a sync task receives a signal, it exits with
697                          * -ERESTARTSYS. In order to catch any callbacks that
698                          * clean up after sleeping on some queue, we don't
699                          * break the loop here, but go around once more.
700                          */
701                         dprintk("RPC: %4d got signal\n", task->tk_pid);
702                         task->tk_flags |= RPC_TASK_KILLED;
703                         rpc_exit(task, -ERESTARTSYS);
704                         rpc_wake_up_task(task);
705                 }
706                 rpc_set_running(task);
707                 dprintk("RPC: %4d sync task resuming\n", task->tk_pid);
708         }
709
710         dprintk("RPC: %4d, return %d, status %d\n", task->tk_pid, status, task->tk_status);
711         /* Release all resources associated with the task */
712         rpc_release_task(task);
713         return status;
714 }
715
716 /*
717  * User-visible entry point to the scheduler.
718  *
719  * This may be called recursively if e.g. an async NFS task updates
720  * the attributes and finds that dirty pages must be flushed.
721  * NOTE: Upon exit of this function the task is guaranteed to be
722  *       released. In particular note that tk_release() will have
723  *       been called, so your task memory may have been freed.
724  */
725 int
726 rpc_execute(struct rpc_task *task)
727 {
728         rpc_set_active(task);
729         rpc_set_running(task);
730         return __rpc_execute(task);
731 }
732
733 static void rpc_async_schedule(struct work_struct *work)
734 {
735         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
736 }
737
738 /**
739  * rpc_malloc - allocate an RPC buffer
740  * @task: RPC task that will use this buffer
741  * @size: requested byte size
742  *
743  * We try to ensure that some NFS reads and writes can always proceed
744  * by using a mempool when allocating 'small' buffers.
745  * In order to avoid memory starvation triggering more writebacks of
746  * NFS requests, we use GFP_NOFS rather than GFP_KERNEL.
747  */
748 void * rpc_malloc(struct rpc_task *task, size_t size)
749 {
750         struct rpc_rqst *req = task->tk_rqstp;
751         gfp_t   gfp;
752
753         if (task->tk_flags & RPC_TASK_SWAPPER)
754                 gfp = GFP_ATOMIC;
755         else
756                 gfp = GFP_NOFS;
757
758         if (size > RPC_BUFFER_MAXSIZE) {
759                 req->rq_buffer = kmalloc(size, gfp);
760                 if (req->rq_buffer)
761                         req->rq_bufsize = size;
762         } else {
763                 req->rq_buffer = mempool_alloc(rpc_buffer_mempool, gfp);
764                 if (req->rq_buffer)
765                         req->rq_bufsize = RPC_BUFFER_MAXSIZE;
766         }
767         return req->rq_buffer;
768 }
769
770 /**
771  * rpc_free - free buffer allocated via rpc_malloc
772  * @task: RPC task with a buffer to be freed
773  *
774  */
775 void rpc_free(struct rpc_task *task)
776 {
777         struct rpc_rqst *req = task->tk_rqstp;
778
779         if (req->rq_buffer) {
780                 if (req->rq_bufsize == RPC_BUFFER_MAXSIZE)
781                         mempool_free(req->rq_buffer, rpc_buffer_mempool);
782                 else
783                         kfree(req->rq_buffer);
784                 req->rq_buffer = NULL;
785                 req->rq_bufsize = 0;
786         }
787 }
788
789 /*
790  * Creation and deletion of RPC task structures
791  */
792 void rpc_init_task(struct rpc_task *task, struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
793 {
794         memset(task, 0, sizeof(*task));
795         init_timer(&task->tk_timer);
796         task->tk_timer.data     = (unsigned long) task;
797         task->tk_timer.function = (void (*)(unsigned long)) rpc_run_timer;
798         atomic_set(&task->tk_count, 1);
799         task->tk_client = clnt;
800         task->tk_flags  = flags;
801         task->tk_ops = tk_ops;
802         if (tk_ops->rpc_call_prepare != NULL)
803                 task->tk_action = rpc_prepare_task;
804         task->tk_calldata = calldata;
805
806         /* Initialize retry counters */
807         task->tk_garb_retry = 2;
808         task->tk_cred_retry = 2;
809
810         task->tk_priority = RPC_PRIORITY_NORMAL;
811         task->tk_cookie = (unsigned long)current;
812
813         /* Initialize workqueue for async tasks */
814         task->tk_workqueue = rpciod_workqueue;
815
816         if (clnt) {
817                 atomic_inc(&clnt->cl_users);
818                 if (clnt->cl_softrtry)
819                         task->tk_flags |= RPC_TASK_SOFT;
820                 if (!clnt->cl_intr)
821                         task->tk_flags |= RPC_TASK_NOINTR;
822         }
823
824         BUG_ON(task->tk_ops == NULL);
825
826         /* starting timestamp */
827         task->tk_start = jiffies;
828
829         dprintk("RPC: %4d new task procpid %d\n", task->tk_pid,
830                                 current->pid);
831 }
832
833 static struct rpc_task *
834 rpc_alloc_task(void)
835 {
836         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
837 }
838
839 static void rpc_free_task(struct rcu_head *rcu)
840 {
841         struct rpc_task *task = container_of(rcu, struct rpc_task, u.tk_rcu);
842         dprintk("RPC: %4d freeing task\n", task->tk_pid);
843         mempool_free(task, rpc_task_mempool);
844 }
845
846 /*
847  * Create a new task for the specified client.  We have to
848  * clean up after an allocation failure, as the client may
849  * have specified "oneshot".
850  */
851 struct rpc_task *rpc_new_task(struct rpc_clnt *clnt, int flags, const struct rpc_call_ops *tk_ops, void *calldata)
852 {
853         struct rpc_task *task;
854
855         task = rpc_alloc_task();
856         if (!task)
857                 goto cleanup;
858
859         rpc_init_task(task, clnt, flags, tk_ops, calldata);
860
861         dprintk("RPC: %4d allocated task\n", task->tk_pid);
862         task->tk_flags |= RPC_TASK_DYNAMIC;
863 out:
864         return task;
865
866 cleanup:
867         /* Check whether to release the client */
868         if (clnt) {
869                 printk("rpc_new_task: failed, users=%d, oneshot=%d\n",
870                         atomic_read(&clnt->cl_users), clnt->cl_oneshot);
871                 atomic_inc(&clnt->cl_users); /* pretend we were used ... */
872                 rpc_release_client(clnt);
873         }
874         goto out;
875 }
876
877
878 void rpc_put_task(struct rpc_task *task)
879 {
880         const struct rpc_call_ops *tk_ops = task->tk_ops;
881         void *calldata = task->tk_calldata;
882
883         if (!atomic_dec_and_test(&task->tk_count))
884                 return;
885         /* Release resources */
886         if (task->tk_rqstp)
887                 xprt_release(task);
888         if (task->tk_msg.rpc_cred)
889                 rpcauth_unbindcred(task);
890         if (task->tk_client) {
891                 rpc_release_client(task->tk_client);
892                 task->tk_client = NULL;
893         }
894         if (task->tk_flags & RPC_TASK_DYNAMIC)
895                 call_rcu_bh(&task->u.tk_rcu, rpc_free_task);
896         rpc_release_calldata(tk_ops, calldata);
897 }
898 EXPORT_SYMBOL(rpc_put_task);
899
900 static void rpc_release_task(struct rpc_task *task)
901 {
902 #ifdef RPC_DEBUG
903         BUG_ON(task->tk_magic != RPC_TASK_MAGIC_ID);
904 #endif
905         dprintk("RPC: %4d release task\n", task->tk_pid);
906
907         /* Remove from global task list */
908         spin_lock(&rpc_sched_lock);
909         list_del(&task->tk_task);
910         spin_unlock(&rpc_sched_lock);
911
912         BUG_ON (RPC_IS_QUEUED(task));
913
914         /* Synchronously delete any running timer */
915         rpc_delete_timer(task);
916
917 #ifdef RPC_DEBUG
918         task->tk_magic = 0;
919 #endif
920         /* Wake up anyone who is waiting for task completion */
921         rpc_mark_complete_task(task);
922
923         rpc_put_task(task);
924 }
925
926 /**
927  * rpc_run_task - Allocate a new RPC task, then run rpc_execute against it
928  * @clnt: pointer to RPC client
929  * @flags: RPC flags
930  * @ops: RPC call ops
931  * @data: user call data
932  */
933 struct rpc_task *rpc_run_task(struct rpc_clnt *clnt, int flags,
934                                         const struct rpc_call_ops *ops,
935                                         void *data)
936 {
937         struct rpc_task *task;
938         task = rpc_new_task(clnt, flags, ops, data);
939         if (task == NULL) {
940                 rpc_release_calldata(ops, data);
941                 return ERR_PTR(-ENOMEM);
942         }
943         atomic_inc(&task->tk_count);
944         rpc_execute(task);
945         return task;
946 }
947 EXPORT_SYMBOL(rpc_run_task);
948
949 /*
950  * Kill all tasks for the given client.
951  * XXX: kill their descendants as well?
952  */
953 void rpc_killall_tasks(struct rpc_clnt *clnt)
954 {
955         struct rpc_task *rovr;
956         struct list_head *le;
957
958         dprintk("RPC:      killing all tasks for client %p\n", clnt);
959
960         /*
961          * Spin lock all_tasks to prevent changes...
962          */
963         spin_lock(&rpc_sched_lock);
964         alltask_for_each(rovr, le, &all_tasks) {
965                 if (! RPC_IS_ACTIVATED(rovr))
966                         continue;
967                 if (!clnt || rovr->tk_client == clnt) {
968                         rovr->tk_flags |= RPC_TASK_KILLED;
969                         rpc_exit(rovr, -EIO);
970                         rpc_wake_up_task(rovr);
971                 }
972         }
973         spin_unlock(&rpc_sched_lock);
974 }
975
976 static DECLARE_MUTEX_LOCKED(rpciod_running);
977
978 static void rpciod_killall(void)
979 {
980         unsigned long flags;
981
982         while (!list_empty(&all_tasks)) {
983                 clear_thread_flag(TIF_SIGPENDING);
984                 rpc_killall_tasks(NULL);
985                 flush_workqueue(rpciod_workqueue);
986                 if (!list_empty(&all_tasks)) {
987                         dprintk("rpciod_killall: waiting for tasks to exit\n");
988                         yield();
989                 }
990         }
991
992         spin_lock_irqsave(&current->sighand->siglock, flags);
993         recalc_sigpending();
994         spin_unlock_irqrestore(&current->sighand->siglock, flags);
995 }
996
997 /*
998  * Start up the rpciod process if it's not already running.
999  */
1000 int
1001 rpciod_up(void)
1002 {
1003         struct workqueue_struct *wq;
1004         int error = 0;
1005
1006         mutex_lock(&rpciod_mutex);
1007         dprintk("rpciod_up: users %d\n", rpciod_users);
1008         rpciod_users++;
1009         if (rpciod_workqueue)
1010                 goto out;
1011         /*
1012          * If there's no pid, we should be the first user.
1013          */
1014         if (rpciod_users > 1)
1015                 printk(KERN_WARNING "rpciod_up: no workqueue, %d users??\n", rpciod_users);
1016         /*
1017          * Create the rpciod thread and wait for it to start.
1018          */
1019         error = -ENOMEM;
1020         wq = create_workqueue("rpciod");
1021         if (wq == NULL) {
1022                 printk(KERN_WARNING "rpciod_up: create workqueue failed, error=%d\n", error);
1023                 rpciod_users--;
1024                 goto out;
1025         }
1026         rpciod_workqueue = wq;
1027         error = 0;
1028 out:
1029         mutex_unlock(&rpciod_mutex);
1030         return error;
1031 }
1032
1033 void
1034 rpciod_down(void)
1035 {
1036         mutex_lock(&rpciod_mutex);
1037         dprintk("rpciod_down sema %d\n", rpciod_users);
1038         if (rpciod_users) {
1039                 if (--rpciod_users)
1040                         goto out;
1041         } else
1042                 printk(KERN_WARNING "rpciod_down: no users??\n");
1043
1044         if (!rpciod_workqueue) {
1045                 dprintk("rpciod_down: Nothing to do!\n");
1046                 goto out;
1047         }
1048         rpciod_killall();
1049
1050         destroy_workqueue(rpciod_workqueue);
1051         rpciod_workqueue = NULL;
1052  out:
1053         mutex_unlock(&rpciod_mutex);
1054 }
1055
1056 #ifdef RPC_DEBUG
1057 void rpc_show_tasks(void)
1058 {
1059         struct list_head *le;
1060         struct rpc_task *t;
1061
1062         spin_lock(&rpc_sched_lock);
1063         if (list_empty(&all_tasks)) {
1064                 spin_unlock(&rpc_sched_lock);
1065                 return;
1066         }
1067         printk("-pid- proc flgs status -client- -prog- --rqstp- -timeout "
1068                 "-rpcwait -action- ---ops--\n");
1069         alltask_for_each(t, le, &all_tasks) {
1070                 const char *rpc_waitq = "none";
1071
1072                 if (RPC_IS_QUEUED(t))
1073                         rpc_waitq = rpc_qname(t->u.tk_wait.rpc_waitq);
1074
1075                 printk("%05d %04d %04x %06d %8p %6d %8p %08ld %8s %8p %8p\n",
1076                         t->tk_pid,
1077                         (t->tk_msg.rpc_proc ? t->tk_msg.rpc_proc->p_proc : -1),
1078                         t->tk_flags, t->tk_status,
1079                         t->tk_client,
1080                         (t->tk_client ? t->tk_client->cl_prog : 0),
1081                         t->tk_rqstp, t->tk_timeout,
1082                         rpc_waitq,
1083                         t->tk_action, t->tk_ops);
1084         }
1085         spin_unlock(&rpc_sched_lock);
1086 }
1087 #endif
1088
1089 void
1090 rpc_destroy_mempool(void)
1091 {
1092         if (rpc_buffer_mempool)
1093                 mempool_destroy(rpc_buffer_mempool);
1094         if (rpc_task_mempool)
1095                 mempool_destroy(rpc_task_mempool);
1096         if (rpc_task_slabp)
1097                 kmem_cache_destroy(rpc_task_slabp);
1098         if (rpc_buffer_slabp)
1099                 kmem_cache_destroy(rpc_buffer_slabp);
1100 }
1101
1102 int
1103 rpc_init_mempool(void)
1104 {
1105         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1106                                              sizeof(struct rpc_task),
1107                                              0, SLAB_HWCACHE_ALIGN,
1108                                              NULL, NULL);
1109         if (!rpc_task_slabp)
1110                 goto err_nomem;
1111         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1112                                              RPC_BUFFER_MAXSIZE,
1113                                              0, SLAB_HWCACHE_ALIGN,
1114                                              NULL, NULL);
1115         if (!rpc_buffer_slabp)
1116                 goto err_nomem;
1117         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1118                                                     rpc_task_slabp);
1119         if (!rpc_task_mempool)
1120                 goto err_nomem;
1121         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1122                                                       rpc_buffer_slabp);
1123         if (!rpc_buffer_mempool)
1124                 goto err_nomem;
1125         return 0;
1126 err_nomem:
1127         rpc_destroy_mempool();
1128         return -ENOMEM;
1129 }