Merge branch '4.3-fixes' into mips-for-linux-next
[linux-drm-fsl-dcu.git] / net / socket.c
1 /*
2  * NET          An implementation of the SOCKET network access protocol.
3  *
4  * Version:     @(#)socket.c    1.1.93  18/02/95
5  *
6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
7  *              Ross Biro
8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
12  *                                      shutdown()
13  *              Alan Cox        :       verify_area() fixes
14  *              Alan Cox        :       Removed DDI
15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
16  *              Alan Cox        :       Moved a load of checks to the very
17  *                                      top level.
18  *              Alan Cox        :       Move address structures to/from user
19  *                                      mode above the protocol layers.
20  *              Rob Janssen     :       Allow 0 length sends.
21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
22  *                                      tty drivers).
23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
24  *              Jeff Uphoff     :       Made max number of sockets command-line
25  *                                      configurable.
26  *              Matti Aarnio    :       Made the number of sockets dynamic,
27  *                                      to be allocated when needed, and mr.
28  *                                      Uphoff's max is used as max to be
29  *                                      allowed to allocate.
30  *              Linus           :       Argh. removed all the socket allocation
31  *                                      altogether: it's in the inode now.
32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
33  *                                      for NetROM and future kernel nfsd type
34  *                                      stuff.
35  *              Alan Cox        :       sendmsg/recvmsg basics.
36  *              Tom Dyas        :       Export net symbols.
37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
38  *              Alan Cox        :       Added thread locking to sys_* calls
39  *                                      for sockets. May have errors at the
40  *                                      moment.
41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
42  *              Andi Kleen      :       Some small cleanups, optimizations,
43  *                                      and fixed a copy_from_user() bug.
44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
46  *                                      protocol-independent
47  *
48  *
49  *              This program is free software; you can redistribute it and/or
50  *              modify it under the terms of the GNU General Public License
51  *              as published by the Free Software Foundation; either version
52  *              2 of the License, or (at your option) any later version.
53  *
54  *
55  *      This module is effectively the top level interface to the BSD socket
56  *      paradigm.
57  *
58  *      Based upon Swansea University Computer Society NET3.039
59  */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122                               struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126                               unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130                              int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132                                 struct pipe_inode_info *pipe, size_t len,
133                                 unsigned int flags);
134
135 /*
136  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *      in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139
140 static const struct file_operations socket_file_ops = {
141         .owner =        THIS_MODULE,
142         .llseek =       no_llseek,
143         .read_iter =    sock_read_iter,
144         .write_iter =   sock_write_iter,
145         .poll =         sock_poll,
146         .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148         .compat_ioctl = compat_sock_ioctl,
149 #endif
150         .mmap =         sock_mmap,
151         .release =      sock_close,
152         .fasync =       sock_fasync,
153         .sendpage =     sock_sendpage,
154         .splice_write = generic_splice_sendpage,
155         .splice_read =  sock_splice_read,
156 };
157
158 /*
159  *      The protocol list. Each protocol is registered in here.
160  */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166  *      Statistics counters of the socket lists
167  */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172  * Support routines.
173  * Move socket addresses back and forth across the kernel/user
174  * divide and look after the messy bits.
175  */
176
177 /**
178  *      move_addr_to_kernel     -       copy a socket address into kernel space
179  *      @uaddr: Address in user space
180  *      @kaddr: Address in kernel space
181  *      @ulen: Length in user space
182  *
183  *      The address is copied into kernel space. If the provided address is
184  *      too long an error code of -EINVAL is returned. If the copy gives
185  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
186  */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191                 return -EINVAL;
192         if (ulen == 0)
193                 return 0;
194         if (copy_from_user(kaddr, uaddr, ulen))
195                 return -EFAULT;
196         return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200  *      move_addr_to_user       -       copy an address to user space
201  *      @kaddr: kernel space address
202  *      @klen: length of address in kernel
203  *      @uaddr: user space address
204  *      @ulen: pointer to user length field
205  *
206  *      The value pointed to by ulen on entry is the buffer length available.
207  *      This is overwritten with the buffer space used. -EINVAL is returned
208  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
209  *      is returned if either the buffer or the length field are not
210  *      accessible.
211  *      After copying the data up to the limit the user specifies, the true
212  *      length of the data is written over the length limit the user
213  *      specified. Zero is returned for a success.
214  */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217                              void __user *uaddr, int __user *ulen)
218 {
219         int err;
220         int len;
221
222         BUG_ON(klen > sizeof(struct sockaddr_storage));
223         err = get_user(len, ulen);
224         if (err)
225                 return err;
226         if (len > klen)
227                 len = klen;
228         if (len < 0)
229                 return -EINVAL;
230         if (len) {
231                 if (audit_sockaddr(klen, kaddr))
232                         return -ENOMEM;
233                 if (copy_to_user(uaddr, kaddr, len))
234                         return -EFAULT;
235         }
236         /*
237          *      "fromlen shall refer to the value before truncation.."
238          *                      1003.1g
239          */
240         return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247         struct socket_alloc *ei;
248         struct socket_wq *wq;
249
250         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251         if (!ei)
252                 return NULL;
253         wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254         if (!wq) {
255                 kmem_cache_free(sock_inode_cachep, ei);
256                 return NULL;
257         }
258         init_waitqueue_head(&wq->wait);
259         wq->fasync_list = NULL;
260         RCU_INIT_POINTER(ei->socket.wq, wq);
261
262         ei->socket.state = SS_UNCONNECTED;
263         ei->socket.flags = 0;
264         ei->socket.ops = NULL;
265         ei->socket.sk = NULL;
266         ei->socket.file = NULL;
267
268         return &ei->vfs_inode;
269 }
270
271 static void sock_destroy_inode(struct inode *inode)
272 {
273         struct socket_alloc *ei;
274         struct socket_wq *wq;
275
276         ei = container_of(inode, struct socket_alloc, vfs_inode);
277         wq = rcu_dereference_protected(ei->socket.wq, 1);
278         kfree_rcu(wq, rcu);
279         kmem_cache_free(sock_inode_cachep, ei);
280 }
281
282 static void init_once(void *foo)
283 {
284         struct socket_alloc *ei = (struct socket_alloc *)foo;
285
286         inode_init_once(&ei->vfs_inode);
287 }
288
289 static int init_inodecache(void)
290 {
291         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
292                                               sizeof(struct socket_alloc),
293                                               0,
294                                               (SLAB_HWCACHE_ALIGN |
295                                                SLAB_RECLAIM_ACCOUNT |
296                                                SLAB_MEM_SPREAD),
297                                               init_once);
298         if (sock_inode_cachep == NULL)
299                 return -ENOMEM;
300         return 0;
301 }
302
303 static const struct super_operations sockfs_ops = {
304         .alloc_inode    = sock_alloc_inode,
305         .destroy_inode  = sock_destroy_inode,
306         .statfs         = simple_statfs,
307 };
308
309 /*
310  * sockfs_dname() is called from d_path().
311  */
312 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 {
314         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
315                                 d_inode(dentry)->i_ino);
316 }
317
318 static const struct dentry_operations sockfs_dentry_operations = {
319         .d_dname  = sockfs_dname,
320 };
321
322 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
323                          int flags, const char *dev_name, void *data)
324 {
325         return mount_pseudo(fs_type, "socket:", &sockfs_ops,
326                 &sockfs_dentry_operations, SOCKFS_MAGIC);
327 }
328
329 static struct vfsmount *sock_mnt __read_mostly;
330
331 static struct file_system_type sock_fs_type = {
332         .name =         "sockfs",
333         .mount =        sockfs_mount,
334         .kill_sb =      kill_anon_super,
335 };
336
337 /*
338  *      Obtains the first available file descriptor and sets it up for use.
339  *
340  *      These functions create file structures and maps them to fd space
341  *      of the current process. On success it returns file descriptor
342  *      and file struct implicitly stored in sock->file.
343  *      Note that another thread may close file descriptor before we return
344  *      from this function. We use the fact that now we do not refer
345  *      to socket after mapping. If one day we will need it, this
346  *      function will increment ref. count on file by 1.
347  *
348  *      In any case returned fd MAY BE not valid!
349  *      This race condition is unavoidable
350  *      with shared fd spaces, we cannot solve it inside kernel,
351  *      but we take care of internal coherence yet.
352  */
353
354 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
355 {
356         struct qstr name = { .name = "" };
357         struct path path;
358         struct file *file;
359
360         if (dname) {
361                 name.name = dname;
362                 name.len = strlen(name.name);
363         } else if (sock->sk) {
364                 name.name = sock->sk->sk_prot_creator->name;
365                 name.len = strlen(name.name);
366         }
367         path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
368         if (unlikely(!path.dentry))
369                 return ERR_PTR(-ENOMEM);
370         path.mnt = mntget(sock_mnt);
371
372         d_instantiate(path.dentry, SOCK_INODE(sock));
373
374         file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
375                   &socket_file_ops);
376         if (unlikely(IS_ERR(file))) {
377                 /* drop dentry, keep inode */
378                 ihold(d_inode(path.dentry));
379                 path_put(&path);
380                 return file;
381         }
382
383         sock->file = file;
384         file->f_flags = O_RDWR | (flags & O_NONBLOCK);
385         file->private_data = sock;
386         return file;
387 }
388 EXPORT_SYMBOL(sock_alloc_file);
389
390 static int sock_map_fd(struct socket *sock, int flags)
391 {
392         struct file *newfile;
393         int fd = get_unused_fd_flags(flags);
394         if (unlikely(fd < 0))
395                 return fd;
396
397         newfile = sock_alloc_file(sock, flags, NULL);
398         if (likely(!IS_ERR(newfile))) {
399                 fd_install(fd, newfile);
400                 return fd;
401         }
402
403         put_unused_fd(fd);
404         return PTR_ERR(newfile);
405 }
406
407 struct socket *sock_from_file(struct file *file, int *err)
408 {
409         if (file->f_op == &socket_file_ops)
410                 return file->private_data;      /* set in sock_map_fd */
411
412         *err = -ENOTSOCK;
413         return NULL;
414 }
415 EXPORT_SYMBOL(sock_from_file);
416
417 /**
418  *      sockfd_lookup - Go from a file number to its socket slot
419  *      @fd: file handle
420  *      @err: pointer to an error code return
421  *
422  *      The file handle passed in is locked and the socket it is bound
423  *      too is returned. If an error occurs the err pointer is overwritten
424  *      with a negative errno code and NULL is returned. The function checks
425  *      for both invalid handles and passing a handle which is not a socket.
426  *
427  *      On a success the socket object pointer is returned.
428  */
429
430 struct socket *sockfd_lookup(int fd, int *err)
431 {
432         struct file *file;
433         struct socket *sock;
434
435         file = fget(fd);
436         if (!file) {
437                 *err = -EBADF;
438                 return NULL;
439         }
440
441         sock = sock_from_file(file, err);
442         if (!sock)
443                 fput(file);
444         return sock;
445 }
446 EXPORT_SYMBOL(sockfd_lookup);
447
448 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
449 {
450         struct fd f = fdget(fd);
451         struct socket *sock;
452
453         *err = -EBADF;
454         if (f.file) {
455                 sock = sock_from_file(f.file, err);
456                 if (likely(sock)) {
457                         *fput_needed = f.flags;
458                         return sock;
459                 }
460                 fdput(f);
461         }
462         return NULL;
463 }
464
465 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
466 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
467 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
468 static ssize_t sockfs_getxattr(struct dentry *dentry,
469                                const char *name, void *value, size_t size)
470 {
471         const char *proto_name;
472         size_t proto_size;
473         int error;
474
475         error = -ENODATA;
476         if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
477                 proto_name = dentry->d_name.name;
478                 proto_size = strlen(proto_name);
479
480                 if (value) {
481                         error = -ERANGE;
482                         if (proto_size + 1 > size)
483                                 goto out;
484
485                         strncpy(value, proto_name, proto_size + 1);
486                 }
487                 error = proto_size + 1;
488         }
489
490 out:
491         return error;
492 }
493
494 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
495                                 size_t size)
496 {
497         ssize_t len;
498         ssize_t used = 0;
499
500         len = security_inode_listsecurity(d_inode(dentry), buffer, size);
501         if (len < 0)
502                 return len;
503         used += len;
504         if (buffer) {
505                 if (size < used)
506                         return -ERANGE;
507                 buffer += len;
508         }
509
510         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511         used += len;
512         if (buffer) {
513                 if (size < used)
514                         return -ERANGE;
515                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
516                 buffer += len;
517         }
518
519         return used;
520 }
521
522 static const struct inode_operations sockfs_inode_ops = {
523         .getxattr = sockfs_getxattr,
524         .listxattr = sockfs_listxattr,
525 };
526
527 /**
528  *      sock_alloc      -       allocate a socket
529  *
530  *      Allocate a new inode and socket object. The two are bound together
531  *      and initialised. The socket is then returned. If we are out of inodes
532  *      NULL is returned.
533  */
534
535 static struct socket *sock_alloc(void)
536 {
537         struct inode *inode;
538         struct socket *sock;
539
540         inode = new_inode_pseudo(sock_mnt->mnt_sb);
541         if (!inode)
542                 return NULL;
543
544         sock = SOCKET_I(inode);
545
546         kmemcheck_annotate_bitfield(sock, type);
547         inode->i_ino = get_next_ino();
548         inode->i_mode = S_IFSOCK | S_IRWXUGO;
549         inode->i_uid = current_fsuid();
550         inode->i_gid = current_fsgid();
551         inode->i_op = &sockfs_inode_ops;
552
553         this_cpu_add(sockets_in_use, 1);
554         return sock;
555 }
556
557 /**
558  *      sock_release    -       close a socket
559  *      @sock: socket to close
560  *
561  *      The socket is released from the protocol stack if it has a release
562  *      callback, and the inode is then released if the socket is bound to
563  *      an inode not a file.
564  */
565
566 void sock_release(struct socket *sock)
567 {
568         if (sock->ops) {
569                 struct module *owner = sock->ops->owner;
570
571                 sock->ops->release(sock);
572                 sock->ops = NULL;
573                 module_put(owner);
574         }
575
576         if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
577                 pr_err("%s: fasync list not empty!\n", __func__);
578
579         this_cpu_sub(sockets_in_use, 1);
580         if (!sock->file) {
581                 iput(SOCK_INODE(sock));
582                 return;
583         }
584         sock->file = NULL;
585 }
586 EXPORT_SYMBOL(sock_release);
587
588 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
589 {
590         u8 flags = *tx_flags;
591
592         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
593                 flags |= SKBTX_HW_TSTAMP;
594
595         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
596                 flags |= SKBTX_SW_TSTAMP;
597
598         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
599                 flags |= SKBTX_SCHED_TSTAMP;
600
601         if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
602                 flags |= SKBTX_ACK_TSTAMP;
603
604         *tx_flags = flags;
605 }
606 EXPORT_SYMBOL(__sock_tx_timestamp);
607
608 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
609 {
610         int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
611         BUG_ON(ret == -EIOCBQUEUED);
612         return ret;
613 }
614
615 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
616 {
617         int err = security_socket_sendmsg(sock, msg,
618                                           msg_data_left(msg));
619
620         return err ?: sock_sendmsg_nosec(sock, msg);
621 }
622 EXPORT_SYMBOL(sock_sendmsg);
623
624 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
625                    struct kvec *vec, size_t num, size_t size)
626 {
627         iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
628         return sock_sendmsg(sock, msg);
629 }
630 EXPORT_SYMBOL(kernel_sendmsg);
631
632 /*
633  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
634  */
635 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
636         struct sk_buff *skb)
637 {
638         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
639         struct scm_timestamping tss;
640         int empty = 1;
641         struct skb_shared_hwtstamps *shhwtstamps =
642                 skb_hwtstamps(skb);
643
644         /* Race occurred between timestamp enabling and packet
645            receiving.  Fill in the current time for now. */
646         if (need_software_tstamp && skb->tstamp.tv64 == 0)
647                 __net_timestamp(skb);
648
649         if (need_software_tstamp) {
650                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
651                         struct timeval tv;
652                         skb_get_timestamp(skb, &tv);
653                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
654                                  sizeof(tv), &tv);
655                 } else {
656                         struct timespec ts;
657                         skb_get_timestampns(skb, &ts);
658                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
659                                  sizeof(ts), &ts);
660                 }
661         }
662
663         memset(&tss, 0, sizeof(tss));
664         if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
665             ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
666                 empty = 0;
667         if (shhwtstamps &&
668             (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
669             ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
670                 empty = 0;
671         if (!empty)
672                 put_cmsg(msg, SOL_SOCKET,
673                          SCM_TIMESTAMPING, sizeof(tss), &tss);
674 }
675 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
676
677 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
678         struct sk_buff *skb)
679 {
680         int ack;
681
682         if (!sock_flag(sk, SOCK_WIFI_STATUS))
683                 return;
684         if (!skb->wifi_acked_valid)
685                 return;
686
687         ack = skb->wifi_acked;
688
689         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
690 }
691 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
692
693 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
694                                    struct sk_buff *skb)
695 {
696         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
697                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
698                         sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
699 }
700
701 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
702         struct sk_buff *skb)
703 {
704         sock_recv_timestamp(msg, sk, skb);
705         sock_recv_drops(msg, sk, skb);
706 }
707 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
708
709 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
710                                      size_t size, int flags)
711 {
712         return sock->ops->recvmsg(sock, msg, size, flags);
713 }
714
715 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
716                  int flags)
717 {
718         int err = security_socket_recvmsg(sock, msg, size, flags);
719
720         return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
721 }
722 EXPORT_SYMBOL(sock_recvmsg);
723
724 /**
725  * kernel_recvmsg - Receive a message from a socket (kernel space)
726  * @sock:       The socket to receive the message from
727  * @msg:        Received message
728  * @vec:        Input s/g array for message data
729  * @num:        Size of input s/g array
730  * @size:       Number of bytes to read
731  * @flags:      Message flags (MSG_DONTWAIT, etc...)
732  *
733  * On return the msg structure contains the scatter/gather array passed in the
734  * vec argument. The array is modified so that it consists of the unfilled
735  * portion of the original array.
736  *
737  * The returned value is the total number of bytes received, or an error.
738  */
739 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
740                    struct kvec *vec, size_t num, size_t size, int flags)
741 {
742         mm_segment_t oldfs = get_fs();
743         int result;
744
745         iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
746         set_fs(KERNEL_DS);
747         result = sock_recvmsg(sock, msg, size, flags);
748         set_fs(oldfs);
749         return result;
750 }
751 EXPORT_SYMBOL(kernel_recvmsg);
752
753 static ssize_t sock_sendpage(struct file *file, struct page *page,
754                              int offset, size_t size, loff_t *ppos, int more)
755 {
756         struct socket *sock;
757         int flags;
758
759         sock = file->private_data;
760
761         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
762         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
763         flags |= more;
764
765         return kernel_sendpage(sock, page, offset, size, flags);
766 }
767
768 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
769                                 struct pipe_inode_info *pipe, size_t len,
770                                 unsigned int flags)
771 {
772         struct socket *sock = file->private_data;
773
774         if (unlikely(!sock->ops->splice_read))
775                 return -EINVAL;
776
777         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
778 }
779
780 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
781 {
782         struct file *file = iocb->ki_filp;
783         struct socket *sock = file->private_data;
784         struct msghdr msg = {.msg_iter = *to,
785                              .msg_iocb = iocb};
786         ssize_t res;
787
788         if (file->f_flags & O_NONBLOCK)
789                 msg.msg_flags = MSG_DONTWAIT;
790
791         if (iocb->ki_pos != 0)
792                 return -ESPIPE;
793
794         if (!iov_iter_count(to))        /* Match SYS5 behaviour */
795                 return 0;
796
797         res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
798         *to = msg.msg_iter;
799         return res;
800 }
801
802 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
803 {
804         struct file *file = iocb->ki_filp;
805         struct socket *sock = file->private_data;
806         struct msghdr msg = {.msg_iter = *from,
807                              .msg_iocb = iocb};
808         ssize_t res;
809
810         if (iocb->ki_pos != 0)
811                 return -ESPIPE;
812
813         if (file->f_flags & O_NONBLOCK)
814                 msg.msg_flags = MSG_DONTWAIT;
815
816         if (sock->type == SOCK_SEQPACKET)
817                 msg.msg_flags |= MSG_EOR;
818
819         res = sock_sendmsg(sock, &msg);
820         *from = msg.msg_iter;
821         return res;
822 }
823
824 /*
825  * Atomic setting of ioctl hooks to avoid race
826  * with module unload.
827  */
828
829 static DEFINE_MUTEX(br_ioctl_mutex);
830 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
831
832 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
833 {
834         mutex_lock(&br_ioctl_mutex);
835         br_ioctl_hook = hook;
836         mutex_unlock(&br_ioctl_mutex);
837 }
838 EXPORT_SYMBOL(brioctl_set);
839
840 static DEFINE_MUTEX(vlan_ioctl_mutex);
841 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
842
843 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
844 {
845         mutex_lock(&vlan_ioctl_mutex);
846         vlan_ioctl_hook = hook;
847         mutex_unlock(&vlan_ioctl_mutex);
848 }
849 EXPORT_SYMBOL(vlan_ioctl_set);
850
851 static DEFINE_MUTEX(dlci_ioctl_mutex);
852 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
853
854 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
855 {
856         mutex_lock(&dlci_ioctl_mutex);
857         dlci_ioctl_hook = hook;
858         mutex_unlock(&dlci_ioctl_mutex);
859 }
860 EXPORT_SYMBOL(dlci_ioctl_set);
861
862 static long sock_do_ioctl(struct net *net, struct socket *sock,
863                                  unsigned int cmd, unsigned long arg)
864 {
865         int err;
866         void __user *argp = (void __user *)arg;
867
868         err = sock->ops->ioctl(sock, cmd, arg);
869
870         /*
871          * If this ioctl is unknown try to hand it down
872          * to the NIC driver.
873          */
874         if (err == -ENOIOCTLCMD)
875                 err = dev_ioctl(net, cmd, argp);
876
877         return err;
878 }
879
880 /*
881  *      With an ioctl, arg may well be a user mode pointer, but we don't know
882  *      what to do with it - that's up to the protocol still.
883  */
884
885 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
886 {
887         struct socket *sock;
888         struct sock *sk;
889         void __user *argp = (void __user *)arg;
890         int pid, err;
891         struct net *net;
892
893         sock = file->private_data;
894         sk = sock->sk;
895         net = sock_net(sk);
896         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
897                 err = dev_ioctl(net, cmd, argp);
898         } else
899 #ifdef CONFIG_WEXT_CORE
900         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
901                 err = dev_ioctl(net, cmd, argp);
902         } else
903 #endif
904                 switch (cmd) {
905                 case FIOSETOWN:
906                 case SIOCSPGRP:
907                         err = -EFAULT;
908                         if (get_user(pid, (int __user *)argp))
909                                 break;
910                         f_setown(sock->file, pid, 1);
911                         err = 0;
912                         break;
913                 case FIOGETOWN:
914                 case SIOCGPGRP:
915                         err = put_user(f_getown(sock->file),
916                                        (int __user *)argp);
917                         break;
918                 case SIOCGIFBR:
919                 case SIOCSIFBR:
920                 case SIOCBRADDBR:
921                 case SIOCBRDELBR:
922                         err = -ENOPKG;
923                         if (!br_ioctl_hook)
924                                 request_module("bridge");
925
926                         mutex_lock(&br_ioctl_mutex);
927                         if (br_ioctl_hook)
928                                 err = br_ioctl_hook(net, cmd, argp);
929                         mutex_unlock(&br_ioctl_mutex);
930                         break;
931                 case SIOCGIFVLAN:
932                 case SIOCSIFVLAN:
933                         err = -ENOPKG;
934                         if (!vlan_ioctl_hook)
935                                 request_module("8021q");
936
937                         mutex_lock(&vlan_ioctl_mutex);
938                         if (vlan_ioctl_hook)
939                                 err = vlan_ioctl_hook(net, argp);
940                         mutex_unlock(&vlan_ioctl_mutex);
941                         break;
942                 case SIOCADDDLCI:
943                 case SIOCDELDLCI:
944                         err = -ENOPKG;
945                         if (!dlci_ioctl_hook)
946                                 request_module("dlci");
947
948                         mutex_lock(&dlci_ioctl_mutex);
949                         if (dlci_ioctl_hook)
950                                 err = dlci_ioctl_hook(cmd, argp);
951                         mutex_unlock(&dlci_ioctl_mutex);
952                         break;
953                 default:
954                         err = sock_do_ioctl(net, sock, cmd, arg);
955                         break;
956                 }
957         return err;
958 }
959
960 int sock_create_lite(int family, int type, int protocol, struct socket **res)
961 {
962         int err;
963         struct socket *sock = NULL;
964
965         err = security_socket_create(family, type, protocol, 1);
966         if (err)
967                 goto out;
968
969         sock = sock_alloc();
970         if (!sock) {
971                 err = -ENOMEM;
972                 goto out;
973         }
974
975         sock->type = type;
976         err = security_socket_post_create(sock, family, type, protocol, 1);
977         if (err)
978                 goto out_release;
979
980 out:
981         *res = sock;
982         return err;
983 out_release:
984         sock_release(sock);
985         sock = NULL;
986         goto out;
987 }
988 EXPORT_SYMBOL(sock_create_lite);
989
990 /* No kernel lock held - perfect */
991 static unsigned int sock_poll(struct file *file, poll_table *wait)
992 {
993         unsigned int busy_flag = 0;
994         struct socket *sock;
995
996         /*
997          *      We can't return errors to poll, so it's either yes or no.
998          */
999         sock = file->private_data;
1000
1001         if (sk_can_busy_loop(sock->sk)) {
1002                 /* this socket can poll_ll so tell the system call */
1003                 busy_flag = POLL_BUSY_LOOP;
1004
1005                 /* once, only if requested by syscall */
1006                 if (wait && (wait->_key & POLL_BUSY_LOOP))
1007                         sk_busy_loop(sock->sk, 1);
1008         }
1009
1010         return busy_flag | sock->ops->poll(file, sock, wait);
1011 }
1012
1013 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1014 {
1015         struct socket *sock = file->private_data;
1016
1017         return sock->ops->mmap(file, sock, vma);
1018 }
1019
1020 static int sock_close(struct inode *inode, struct file *filp)
1021 {
1022         sock_release(SOCKET_I(inode));
1023         return 0;
1024 }
1025
1026 /*
1027  *      Update the socket async list
1028  *
1029  *      Fasync_list locking strategy.
1030  *
1031  *      1. fasync_list is modified only under process context socket lock
1032  *         i.e. under semaphore.
1033  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1034  *         or under socket lock
1035  */
1036
1037 static int sock_fasync(int fd, struct file *filp, int on)
1038 {
1039         struct socket *sock = filp->private_data;
1040         struct sock *sk = sock->sk;
1041         struct socket_wq *wq;
1042
1043         if (sk == NULL)
1044                 return -EINVAL;
1045
1046         lock_sock(sk);
1047         wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1048         fasync_helper(fd, filp, on, &wq->fasync_list);
1049
1050         if (!wq->fasync_list)
1051                 sock_reset_flag(sk, SOCK_FASYNC);
1052         else
1053                 sock_set_flag(sk, SOCK_FASYNC);
1054
1055         release_sock(sk);
1056         return 0;
1057 }
1058
1059 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1060
1061 int sock_wake_async(struct socket *sock, int how, int band)
1062 {
1063         struct socket_wq *wq;
1064
1065         if (!sock)
1066                 return -1;
1067         rcu_read_lock();
1068         wq = rcu_dereference(sock->wq);
1069         if (!wq || !wq->fasync_list) {
1070                 rcu_read_unlock();
1071                 return -1;
1072         }
1073         switch (how) {
1074         case SOCK_WAKE_WAITD:
1075                 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1076                         break;
1077                 goto call_kill;
1078         case SOCK_WAKE_SPACE:
1079                 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1080                         break;
1081                 /* fall through */
1082         case SOCK_WAKE_IO:
1083 call_kill:
1084                 kill_fasync(&wq->fasync_list, SIGIO, band);
1085                 break;
1086         case SOCK_WAKE_URG:
1087                 kill_fasync(&wq->fasync_list, SIGURG, band);
1088         }
1089         rcu_read_unlock();
1090         return 0;
1091 }
1092 EXPORT_SYMBOL(sock_wake_async);
1093
1094 int __sock_create(struct net *net, int family, int type, int protocol,
1095                          struct socket **res, int kern)
1096 {
1097         int err;
1098         struct socket *sock;
1099         const struct net_proto_family *pf;
1100
1101         /*
1102          *      Check protocol is in range
1103          */
1104         if (family < 0 || family >= NPROTO)
1105                 return -EAFNOSUPPORT;
1106         if (type < 0 || type >= SOCK_MAX)
1107                 return -EINVAL;
1108
1109         /* Compatibility.
1110
1111            This uglymoron is moved from INET layer to here to avoid
1112            deadlock in module load.
1113          */
1114         if (family == PF_INET && type == SOCK_PACKET) {
1115                 static int warned;
1116                 if (!warned) {
1117                         warned = 1;
1118                         pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119                                 current->comm);
1120                 }
1121                 family = PF_PACKET;
1122         }
1123
1124         err = security_socket_create(family, type, protocol, kern);
1125         if (err)
1126                 return err;
1127
1128         /*
1129          *      Allocate the socket and allow the family to set things up. if
1130          *      the protocol is 0, the family is instructed to select an appropriate
1131          *      default.
1132          */
1133         sock = sock_alloc();
1134         if (!sock) {
1135                 net_warn_ratelimited("socket: no more sockets\n");
1136                 return -ENFILE; /* Not exactly a match, but its the
1137                                    closest posix thing */
1138         }
1139
1140         sock->type = type;
1141
1142 #ifdef CONFIG_MODULES
1143         /* Attempt to load a protocol module if the find failed.
1144          *
1145          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1146          * requested real, full-featured networking support upon configuration.
1147          * Otherwise module support will break!
1148          */
1149         if (rcu_access_pointer(net_families[family]) == NULL)
1150                 request_module("net-pf-%d", family);
1151 #endif
1152
1153         rcu_read_lock();
1154         pf = rcu_dereference(net_families[family]);
1155         err = -EAFNOSUPPORT;
1156         if (!pf)
1157                 goto out_release;
1158
1159         /*
1160          * We will call the ->create function, that possibly is in a loadable
1161          * module, so we have to bump that loadable module refcnt first.
1162          */
1163         if (!try_module_get(pf->owner))
1164                 goto out_release;
1165
1166         /* Now protected by module ref count */
1167         rcu_read_unlock();
1168
1169         err = pf->create(net, sock, protocol, kern);
1170         if (err < 0)
1171                 goto out_module_put;
1172
1173         /*
1174          * Now to bump the refcnt of the [loadable] module that owns this
1175          * socket at sock_release time we decrement its refcnt.
1176          */
1177         if (!try_module_get(sock->ops->owner))
1178                 goto out_module_busy;
1179
1180         /*
1181          * Now that we're done with the ->create function, the [loadable]
1182          * module can have its refcnt decremented
1183          */
1184         module_put(pf->owner);
1185         err = security_socket_post_create(sock, family, type, protocol, kern);
1186         if (err)
1187                 goto out_sock_release;
1188         *res = sock;
1189
1190         return 0;
1191
1192 out_module_busy:
1193         err = -EAFNOSUPPORT;
1194 out_module_put:
1195         sock->ops = NULL;
1196         module_put(pf->owner);
1197 out_sock_release:
1198         sock_release(sock);
1199         return err;
1200
1201 out_release:
1202         rcu_read_unlock();
1203         goto out_sock_release;
1204 }
1205 EXPORT_SYMBOL(__sock_create);
1206
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211 EXPORT_SYMBOL(sock_create);
1212
1213 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1214 {
1215         return __sock_create(net, family, type, protocol, res, 1);
1216 }
1217 EXPORT_SYMBOL(sock_create_kern);
1218
1219 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1220 {
1221         int retval;
1222         struct socket *sock;
1223         int flags;
1224
1225         /* Check the SOCK_* constants for consistency.  */
1226         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1227         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1228         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1229         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1230
1231         flags = type & ~SOCK_TYPE_MASK;
1232         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1233                 return -EINVAL;
1234         type &= SOCK_TYPE_MASK;
1235
1236         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1237                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1238
1239         retval = sock_create(family, type, protocol, &sock);
1240         if (retval < 0)
1241                 goto out;
1242
1243         retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1244         if (retval < 0)
1245                 goto out_release;
1246
1247 out:
1248         /* It may be already another descriptor 8) Not kernel problem. */
1249         return retval;
1250
1251 out_release:
1252         sock_release(sock);
1253         return retval;
1254 }
1255
1256 /*
1257  *      Create a pair of connected sockets.
1258  */
1259
1260 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1261                 int __user *, usockvec)
1262 {
1263         struct socket *sock1, *sock2;
1264         int fd1, fd2, err;
1265         struct file *newfile1, *newfile2;
1266         int flags;
1267
1268         flags = type & ~SOCK_TYPE_MASK;
1269         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1270                 return -EINVAL;
1271         type &= SOCK_TYPE_MASK;
1272
1273         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1274                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1275
1276         /*
1277          * Obtain the first socket and check if the underlying protocol
1278          * supports the socketpair call.
1279          */
1280
1281         err = sock_create(family, type, protocol, &sock1);
1282         if (err < 0)
1283                 goto out;
1284
1285         err = sock_create(family, type, protocol, &sock2);
1286         if (err < 0)
1287                 goto out_release_1;
1288
1289         err = sock1->ops->socketpair(sock1, sock2);
1290         if (err < 0)
1291                 goto out_release_both;
1292
1293         fd1 = get_unused_fd_flags(flags);
1294         if (unlikely(fd1 < 0)) {
1295                 err = fd1;
1296                 goto out_release_both;
1297         }
1298
1299         fd2 = get_unused_fd_flags(flags);
1300         if (unlikely(fd2 < 0)) {
1301                 err = fd2;
1302                 goto out_put_unused_1;
1303         }
1304
1305         newfile1 = sock_alloc_file(sock1, flags, NULL);
1306         if (unlikely(IS_ERR(newfile1))) {
1307                 err = PTR_ERR(newfile1);
1308                 goto out_put_unused_both;
1309         }
1310
1311         newfile2 = sock_alloc_file(sock2, flags, NULL);
1312         if (IS_ERR(newfile2)) {
1313                 err = PTR_ERR(newfile2);
1314                 goto out_fput_1;
1315         }
1316
1317         err = put_user(fd1, &usockvec[0]);
1318         if (err)
1319                 goto out_fput_both;
1320
1321         err = put_user(fd2, &usockvec[1]);
1322         if (err)
1323                 goto out_fput_both;
1324
1325         audit_fd_pair(fd1, fd2);
1326
1327         fd_install(fd1, newfile1);
1328         fd_install(fd2, newfile2);
1329         /* fd1 and fd2 may be already another descriptors.
1330          * Not kernel problem.
1331          */
1332
1333         return 0;
1334
1335 out_fput_both:
1336         fput(newfile2);
1337         fput(newfile1);
1338         put_unused_fd(fd2);
1339         put_unused_fd(fd1);
1340         goto out;
1341
1342 out_fput_1:
1343         fput(newfile1);
1344         put_unused_fd(fd2);
1345         put_unused_fd(fd1);
1346         sock_release(sock2);
1347         goto out;
1348
1349 out_put_unused_both:
1350         put_unused_fd(fd2);
1351 out_put_unused_1:
1352         put_unused_fd(fd1);
1353 out_release_both:
1354         sock_release(sock2);
1355 out_release_1:
1356         sock_release(sock1);
1357 out:
1358         return err;
1359 }
1360
1361 /*
1362  *      Bind a name to a socket. Nothing much to do here since it's
1363  *      the protocol's responsibility to handle the local address.
1364  *
1365  *      We move the socket address to kernel space before we call
1366  *      the protocol layer (having also checked the address is ok).
1367  */
1368
1369 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1370 {
1371         struct socket *sock;
1372         struct sockaddr_storage address;
1373         int err, fput_needed;
1374
1375         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1376         if (sock) {
1377                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1378                 if (err >= 0) {
1379                         err = security_socket_bind(sock,
1380                                                    (struct sockaddr *)&address,
1381                                                    addrlen);
1382                         if (!err)
1383                                 err = sock->ops->bind(sock,
1384                                                       (struct sockaddr *)
1385                                                       &address, addrlen);
1386                 }
1387                 fput_light(sock->file, fput_needed);
1388         }
1389         return err;
1390 }
1391
1392 /*
1393  *      Perform a listen. Basically, we allow the protocol to do anything
1394  *      necessary for a listen, and if that works, we mark the socket as
1395  *      ready for listening.
1396  */
1397
1398 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1399 {
1400         struct socket *sock;
1401         int err, fput_needed;
1402         int somaxconn;
1403
1404         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1405         if (sock) {
1406                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1407                 if ((unsigned int)backlog > somaxconn)
1408                         backlog = somaxconn;
1409
1410                 err = security_socket_listen(sock, backlog);
1411                 if (!err)
1412                         err = sock->ops->listen(sock, backlog);
1413
1414                 fput_light(sock->file, fput_needed);
1415         }
1416         return err;
1417 }
1418
1419 /*
1420  *      For accept, we attempt to create a new socket, set up the link
1421  *      with the client, wake up the client, then return the new
1422  *      connected fd. We collect the address of the connector in kernel
1423  *      space and move it to user at the very end. This is unclean because
1424  *      we open the socket then return an error.
1425  *
1426  *      1003.1g adds the ability to recvmsg() to query connection pending
1427  *      status to recvmsg. We need to add that support in a way thats
1428  *      clean when we restucture accept also.
1429  */
1430
1431 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1432                 int __user *, upeer_addrlen, int, flags)
1433 {
1434         struct socket *sock, *newsock;
1435         struct file *newfile;
1436         int err, len, newfd, fput_needed;
1437         struct sockaddr_storage address;
1438
1439         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1440                 return -EINVAL;
1441
1442         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1443                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1444
1445         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1446         if (!sock)
1447                 goto out;
1448
1449         err = -ENFILE;
1450         newsock = sock_alloc();
1451         if (!newsock)
1452                 goto out_put;
1453
1454         newsock->type = sock->type;
1455         newsock->ops = sock->ops;
1456
1457         /*
1458          * We don't need try_module_get here, as the listening socket (sock)
1459          * has the protocol module (sock->ops->owner) held.
1460          */
1461         __module_get(newsock->ops->owner);
1462
1463         newfd = get_unused_fd_flags(flags);
1464         if (unlikely(newfd < 0)) {
1465                 err = newfd;
1466                 sock_release(newsock);
1467                 goto out_put;
1468         }
1469         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1470         if (unlikely(IS_ERR(newfile))) {
1471                 err = PTR_ERR(newfile);
1472                 put_unused_fd(newfd);
1473                 sock_release(newsock);
1474                 goto out_put;
1475         }
1476
1477         err = security_socket_accept(sock, newsock);
1478         if (err)
1479                 goto out_fd;
1480
1481         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1482         if (err < 0)
1483                 goto out_fd;
1484
1485         if (upeer_sockaddr) {
1486                 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1487                                           &len, 2) < 0) {
1488                         err = -ECONNABORTED;
1489                         goto out_fd;
1490                 }
1491                 err = move_addr_to_user(&address,
1492                                         len, upeer_sockaddr, upeer_addrlen);
1493                 if (err < 0)
1494                         goto out_fd;
1495         }
1496
1497         /* File flags are not inherited via accept() unlike another OSes. */
1498
1499         fd_install(newfd, newfile);
1500         err = newfd;
1501
1502 out_put:
1503         fput_light(sock->file, fput_needed);
1504 out:
1505         return err;
1506 out_fd:
1507         fput(newfile);
1508         put_unused_fd(newfd);
1509         goto out_put;
1510 }
1511
1512 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1513                 int __user *, upeer_addrlen)
1514 {
1515         return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1516 }
1517
1518 /*
1519  *      Attempt to connect to a socket with the server address.  The address
1520  *      is in user space so we verify it is OK and move it to kernel space.
1521  *
1522  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1523  *      break bindings
1524  *
1525  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1526  *      other SEQPACKET protocols that take time to connect() as it doesn't
1527  *      include the -EINPROGRESS status for such sockets.
1528  */
1529
1530 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1531                 int, addrlen)
1532 {
1533         struct socket *sock;
1534         struct sockaddr_storage address;
1535         int err, fput_needed;
1536
1537         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538         if (!sock)
1539                 goto out;
1540         err = move_addr_to_kernel(uservaddr, addrlen, &address);
1541         if (err < 0)
1542                 goto out_put;
1543
1544         err =
1545             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1546         if (err)
1547                 goto out_put;
1548
1549         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1550                                  sock->file->f_flags);
1551 out_put:
1552         fput_light(sock->file, fput_needed);
1553 out:
1554         return err;
1555 }
1556
1557 /*
1558  *      Get the local address ('name') of a socket object. Move the obtained
1559  *      name to user space.
1560  */
1561
1562 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1563                 int __user *, usockaddr_len)
1564 {
1565         struct socket *sock;
1566         struct sockaddr_storage address;
1567         int len, err, fput_needed;
1568
1569         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1570         if (!sock)
1571                 goto out;
1572
1573         err = security_socket_getsockname(sock);
1574         if (err)
1575                 goto out_put;
1576
1577         err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1578         if (err)
1579                 goto out_put;
1580         err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1581
1582 out_put:
1583         fput_light(sock->file, fput_needed);
1584 out:
1585         return err;
1586 }
1587
1588 /*
1589  *      Get the remote address ('name') of a socket object. Move the obtained
1590  *      name to user space.
1591  */
1592
1593 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1594                 int __user *, usockaddr_len)
1595 {
1596         struct socket *sock;
1597         struct sockaddr_storage address;
1598         int len, err, fput_needed;
1599
1600         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601         if (sock != NULL) {
1602                 err = security_socket_getpeername(sock);
1603                 if (err) {
1604                         fput_light(sock->file, fput_needed);
1605                         return err;
1606                 }
1607
1608                 err =
1609                     sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1610                                        1);
1611                 if (!err)
1612                         err = move_addr_to_user(&address, len, usockaddr,
1613                                                 usockaddr_len);
1614                 fput_light(sock->file, fput_needed);
1615         }
1616         return err;
1617 }
1618
1619 /*
1620  *      Send a datagram to a given address. We move the address into kernel
1621  *      space and check the user space data area is readable before invoking
1622  *      the protocol.
1623  */
1624
1625 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1626                 unsigned int, flags, struct sockaddr __user *, addr,
1627                 int, addr_len)
1628 {
1629         struct socket *sock;
1630         struct sockaddr_storage address;
1631         int err;
1632         struct msghdr msg;
1633         struct iovec iov;
1634         int fput_needed;
1635
1636         err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1637         if (unlikely(err))
1638                 return err;
1639         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640         if (!sock)
1641                 goto out;
1642
1643         msg.msg_name = NULL;
1644         msg.msg_control = NULL;
1645         msg.msg_controllen = 0;
1646         msg.msg_namelen = 0;
1647         if (addr) {
1648                 err = move_addr_to_kernel(addr, addr_len, &address);
1649                 if (err < 0)
1650                         goto out_put;
1651                 msg.msg_name = (struct sockaddr *)&address;
1652                 msg.msg_namelen = addr_len;
1653         }
1654         if (sock->file->f_flags & O_NONBLOCK)
1655                 flags |= MSG_DONTWAIT;
1656         msg.msg_flags = flags;
1657         err = sock_sendmsg(sock, &msg);
1658
1659 out_put:
1660         fput_light(sock->file, fput_needed);
1661 out:
1662         return err;
1663 }
1664
1665 /*
1666  *      Send a datagram down a socket.
1667  */
1668
1669 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1670                 unsigned int, flags)
1671 {
1672         return sys_sendto(fd, buff, len, flags, NULL, 0);
1673 }
1674
1675 /*
1676  *      Receive a frame from the socket and optionally record the address of the
1677  *      sender. We verify the buffers are writable and if needed move the
1678  *      sender address from kernel to user space.
1679  */
1680
1681 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1682                 unsigned int, flags, struct sockaddr __user *, addr,
1683                 int __user *, addr_len)
1684 {
1685         struct socket *sock;
1686         struct iovec iov;
1687         struct msghdr msg;
1688         struct sockaddr_storage address;
1689         int err, err2;
1690         int fput_needed;
1691
1692         err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1693         if (unlikely(err))
1694                 return err;
1695         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1696         if (!sock)
1697                 goto out;
1698
1699         msg.msg_control = NULL;
1700         msg.msg_controllen = 0;
1701         /* Save some cycles and don't copy the address if not needed */
1702         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1703         /* We assume all kernel code knows the size of sockaddr_storage */
1704         msg.msg_namelen = 0;
1705         if (sock->file->f_flags & O_NONBLOCK)
1706                 flags |= MSG_DONTWAIT;
1707         err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1708
1709         if (err >= 0 && addr != NULL) {
1710                 err2 = move_addr_to_user(&address,
1711                                          msg.msg_namelen, addr, addr_len);
1712                 if (err2 < 0)
1713                         err = err2;
1714         }
1715
1716         fput_light(sock->file, fput_needed);
1717 out:
1718         return err;
1719 }
1720
1721 /*
1722  *      Receive a datagram from a socket.
1723  */
1724
1725 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1726                 unsigned int, flags)
1727 {
1728         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1729 }
1730
1731 /*
1732  *      Set a socket option. Because we don't know the option lengths we have
1733  *      to pass the user mode parameter for the protocols to sort out.
1734  */
1735
1736 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1737                 char __user *, optval, int, optlen)
1738 {
1739         int err, fput_needed;
1740         struct socket *sock;
1741
1742         if (optlen < 0)
1743                 return -EINVAL;
1744
1745         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1746         if (sock != NULL) {
1747                 err = security_socket_setsockopt(sock, level, optname);
1748                 if (err)
1749                         goto out_put;
1750
1751                 if (level == SOL_SOCKET)
1752                         err =
1753                             sock_setsockopt(sock, level, optname, optval,
1754                                             optlen);
1755                 else
1756                         err =
1757                             sock->ops->setsockopt(sock, level, optname, optval,
1758                                                   optlen);
1759 out_put:
1760                 fput_light(sock->file, fput_needed);
1761         }
1762         return err;
1763 }
1764
1765 /*
1766  *      Get a socket option. Because we don't know the option lengths we have
1767  *      to pass a user mode parameter for the protocols to sort out.
1768  */
1769
1770 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1771                 char __user *, optval, int __user *, optlen)
1772 {
1773         int err, fput_needed;
1774         struct socket *sock;
1775
1776         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1777         if (sock != NULL) {
1778                 err = security_socket_getsockopt(sock, level, optname);
1779                 if (err)
1780                         goto out_put;
1781
1782                 if (level == SOL_SOCKET)
1783                         err =
1784                             sock_getsockopt(sock, level, optname, optval,
1785                                             optlen);
1786                 else
1787                         err =
1788                             sock->ops->getsockopt(sock, level, optname, optval,
1789                                                   optlen);
1790 out_put:
1791                 fput_light(sock->file, fput_needed);
1792         }
1793         return err;
1794 }
1795
1796 /*
1797  *      Shutdown a socket.
1798  */
1799
1800 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1801 {
1802         int err, fput_needed;
1803         struct socket *sock;
1804
1805         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806         if (sock != NULL) {
1807                 err = security_socket_shutdown(sock, how);
1808                 if (!err)
1809                         err = sock->ops->shutdown(sock, how);
1810                 fput_light(sock->file, fput_needed);
1811         }
1812         return err;
1813 }
1814
1815 /* A couple of helpful macros for getting the address of the 32/64 bit
1816  * fields which are the same type (int / unsigned) on our platforms.
1817  */
1818 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1819 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1820 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1821
1822 struct used_address {
1823         struct sockaddr_storage name;
1824         unsigned int name_len;
1825 };
1826
1827 static int copy_msghdr_from_user(struct msghdr *kmsg,
1828                                  struct user_msghdr __user *umsg,
1829                                  struct sockaddr __user **save_addr,
1830                                  struct iovec **iov)
1831 {
1832         struct sockaddr __user *uaddr;
1833         struct iovec __user *uiov;
1834         size_t nr_segs;
1835         ssize_t err;
1836
1837         if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1838             __get_user(uaddr, &umsg->msg_name) ||
1839             __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1840             __get_user(uiov, &umsg->msg_iov) ||
1841             __get_user(nr_segs, &umsg->msg_iovlen) ||
1842             __get_user(kmsg->msg_control, &umsg->msg_control) ||
1843             __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1844             __get_user(kmsg->msg_flags, &umsg->msg_flags))
1845                 return -EFAULT;
1846
1847         if (!uaddr)
1848                 kmsg->msg_namelen = 0;
1849
1850         if (kmsg->msg_namelen < 0)
1851                 return -EINVAL;
1852
1853         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1854                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1855
1856         if (save_addr)
1857                 *save_addr = uaddr;
1858
1859         if (uaddr && kmsg->msg_namelen) {
1860                 if (!save_addr) {
1861                         err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1862                                                   kmsg->msg_name);
1863                         if (err < 0)
1864                                 return err;
1865                 }
1866         } else {
1867                 kmsg->msg_name = NULL;
1868                 kmsg->msg_namelen = 0;
1869         }
1870
1871         if (nr_segs > UIO_MAXIOV)
1872                 return -EMSGSIZE;
1873
1874         kmsg->msg_iocb = NULL;
1875
1876         return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1877                             UIO_FASTIOV, iov, &kmsg->msg_iter);
1878 }
1879
1880 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1881                          struct msghdr *msg_sys, unsigned int flags,
1882                          struct used_address *used_address)
1883 {
1884         struct compat_msghdr __user *msg_compat =
1885             (struct compat_msghdr __user *)msg;
1886         struct sockaddr_storage address;
1887         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1888         unsigned char ctl[sizeof(struct cmsghdr) + 20]
1889             __attribute__ ((aligned(sizeof(__kernel_size_t))));
1890         /* 20 is size of ipv6_pktinfo */
1891         unsigned char *ctl_buf = ctl;
1892         int ctl_len;
1893         ssize_t err;
1894
1895         msg_sys->msg_name = &address;
1896
1897         if (MSG_CMSG_COMPAT & flags)
1898                 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1899         else
1900                 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1901         if (err < 0)
1902                 return err;
1903
1904         err = -ENOBUFS;
1905
1906         if (msg_sys->msg_controllen > INT_MAX)
1907                 goto out_freeiov;
1908         ctl_len = msg_sys->msg_controllen;
1909         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1910                 err =
1911                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1912                                                      sizeof(ctl));
1913                 if (err)
1914                         goto out_freeiov;
1915                 ctl_buf = msg_sys->msg_control;
1916                 ctl_len = msg_sys->msg_controllen;
1917         } else if (ctl_len) {
1918                 if (ctl_len > sizeof(ctl)) {
1919                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1920                         if (ctl_buf == NULL)
1921                                 goto out_freeiov;
1922                 }
1923                 err = -EFAULT;
1924                 /*
1925                  * Careful! Before this, msg_sys->msg_control contains a user pointer.
1926                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1927                  * checking falls down on this.
1928                  */
1929                 if (copy_from_user(ctl_buf,
1930                                    (void __user __force *)msg_sys->msg_control,
1931                                    ctl_len))
1932                         goto out_freectl;
1933                 msg_sys->msg_control = ctl_buf;
1934         }
1935         msg_sys->msg_flags = flags;
1936
1937         if (sock->file->f_flags & O_NONBLOCK)
1938                 msg_sys->msg_flags |= MSG_DONTWAIT;
1939         /*
1940          * If this is sendmmsg() and current destination address is same as
1941          * previously succeeded address, omit asking LSM's decision.
1942          * used_address->name_len is initialized to UINT_MAX so that the first
1943          * destination address never matches.
1944          */
1945         if (used_address && msg_sys->msg_name &&
1946             used_address->name_len == msg_sys->msg_namelen &&
1947             !memcmp(&used_address->name, msg_sys->msg_name,
1948                     used_address->name_len)) {
1949                 err = sock_sendmsg_nosec(sock, msg_sys);
1950                 goto out_freectl;
1951         }
1952         err = sock_sendmsg(sock, msg_sys);
1953         /*
1954          * If this is sendmmsg() and sending to current destination address was
1955          * successful, remember it.
1956          */
1957         if (used_address && err >= 0) {
1958                 used_address->name_len = msg_sys->msg_namelen;
1959                 if (msg_sys->msg_name)
1960                         memcpy(&used_address->name, msg_sys->msg_name,
1961                                used_address->name_len);
1962         }
1963
1964 out_freectl:
1965         if (ctl_buf != ctl)
1966                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1967 out_freeiov:
1968         kfree(iov);
1969         return err;
1970 }
1971
1972 /*
1973  *      BSD sendmsg interface
1974  */
1975
1976 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1977 {
1978         int fput_needed, err;
1979         struct msghdr msg_sys;
1980         struct socket *sock;
1981
1982         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1983         if (!sock)
1984                 goto out;
1985
1986         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1987
1988         fput_light(sock->file, fput_needed);
1989 out:
1990         return err;
1991 }
1992
1993 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1994 {
1995         if (flags & MSG_CMSG_COMPAT)
1996                 return -EINVAL;
1997         return __sys_sendmsg(fd, msg, flags);
1998 }
1999
2000 /*
2001  *      Linux sendmmsg interface
2002  */
2003
2004 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2005                    unsigned int flags)
2006 {
2007         int fput_needed, err, datagrams;
2008         struct socket *sock;
2009         struct mmsghdr __user *entry;
2010         struct compat_mmsghdr __user *compat_entry;
2011         struct msghdr msg_sys;
2012         struct used_address used_address;
2013
2014         if (vlen > UIO_MAXIOV)
2015                 vlen = UIO_MAXIOV;
2016
2017         datagrams = 0;
2018
2019         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2020         if (!sock)
2021                 return err;
2022
2023         used_address.name_len = UINT_MAX;
2024         entry = mmsg;
2025         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2026         err = 0;
2027
2028         while (datagrams < vlen) {
2029                 if (MSG_CMSG_COMPAT & flags) {
2030                         err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2031                                              &msg_sys, flags, &used_address);
2032                         if (err < 0)
2033                                 break;
2034                         err = __put_user(err, &compat_entry->msg_len);
2035                         ++compat_entry;
2036                 } else {
2037                         err = ___sys_sendmsg(sock,
2038                                              (struct user_msghdr __user *)entry,
2039                                              &msg_sys, flags, &used_address);
2040                         if (err < 0)
2041                                 break;
2042                         err = put_user(err, &entry->msg_len);
2043                         ++entry;
2044                 }
2045
2046                 if (err)
2047                         break;
2048                 ++datagrams;
2049         }
2050
2051         fput_light(sock->file, fput_needed);
2052
2053         /* We only return an error if no datagrams were able to be sent */
2054         if (datagrams != 0)
2055                 return datagrams;
2056
2057         return err;
2058 }
2059
2060 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2061                 unsigned int, vlen, unsigned int, flags)
2062 {
2063         if (flags & MSG_CMSG_COMPAT)
2064                 return -EINVAL;
2065         return __sys_sendmmsg(fd, mmsg, vlen, flags);
2066 }
2067
2068 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2069                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2070 {
2071         struct compat_msghdr __user *msg_compat =
2072             (struct compat_msghdr __user *)msg;
2073         struct iovec iovstack[UIO_FASTIOV];
2074         struct iovec *iov = iovstack;
2075         unsigned long cmsg_ptr;
2076         int total_len, len;
2077         ssize_t err;
2078
2079         /* kernel mode address */
2080         struct sockaddr_storage addr;
2081
2082         /* user mode address pointers */
2083         struct sockaddr __user *uaddr;
2084         int __user *uaddr_len = COMPAT_NAMELEN(msg);
2085
2086         msg_sys->msg_name = &addr;
2087
2088         if (MSG_CMSG_COMPAT & flags)
2089                 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2090         else
2091                 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2092         if (err < 0)
2093                 return err;
2094         total_len = iov_iter_count(&msg_sys->msg_iter);
2095
2096         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2097         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2098
2099         /* We assume all kernel code knows the size of sockaddr_storage */
2100         msg_sys->msg_namelen = 0;
2101
2102         if (sock->file->f_flags & O_NONBLOCK)
2103                 flags |= MSG_DONTWAIT;
2104         err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2105                                                           total_len, flags);
2106         if (err < 0)
2107                 goto out_freeiov;
2108         len = err;
2109
2110         if (uaddr != NULL) {
2111                 err = move_addr_to_user(&addr,
2112                                         msg_sys->msg_namelen, uaddr,
2113                                         uaddr_len);
2114                 if (err < 0)
2115                         goto out_freeiov;
2116         }
2117         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2118                          COMPAT_FLAGS(msg));
2119         if (err)
2120                 goto out_freeiov;
2121         if (MSG_CMSG_COMPAT & flags)
2122                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2123                                  &msg_compat->msg_controllen);
2124         else
2125                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2126                                  &msg->msg_controllen);
2127         if (err)
2128                 goto out_freeiov;
2129         err = len;
2130
2131 out_freeiov:
2132         kfree(iov);
2133         return err;
2134 }
2135
2136 /*
2137  *      BSD recvmsg interface
2138  */
2139
2140 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2141 {
2142         int fput_needed, err;
2143         struct msghdr msg_sys;
2144         struct socket *sock;
2145
2146         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2147         if (!sock)
2148                 goto out;
2149
2150         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2151
2152         fput_light(sock->file, fput_needed);
2153 out:
2154         return err;
2155 }
2156
2157 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2158                 unsigned int, flags)
2159 {
2160         if (flags & MSG_CMSG_COMPAT)
2161                 return -EINVAL;
2162         return __sys_recvmsg(fd, msg, flags);
2163 }
2164
2165 /*
2166  *     Linux recvmmsg interface
2167  */
2168
2169 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2170                    unsigned int flags, struct timespec *timeout)
2171 {
2172         int fput_needed, err, datagrams;
2173         struct socket *sock;
2174         struct mmsghdr __user *entry;
2175         struct compat_mmsghdr __user *compat_entry;
2176         struct msghdr msg_sys;
2177         struct timespec end_time;
2178
2179         if (timeout &&
2180             poll_select_set_timeout(&end_time, timeout->tv_sec,
2181                                     timeout->tv_nsec))
2182                 return -EINVAL;
2183
2184         datagrams = 0;
2185
2186         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187         if (!sock)
2188                 return err;
2189
2190         err = sock_error(sock->sk);
2191         if (err)
2192                 goto out_put;
2193
2194         entry = mmsg;
2195         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2196
2197         while (datagrams < vlen) {
2198                 /*
2199                  * No need to ask LSM for more than the first datagram.
2200                  */
2201                 if (MSG_CMSG_COMPAT & flags) {
2202                         err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2203                                              &msg_sys, flags & ~MSG_WAITFORONE,
2204                                              datagrams);
2205                         if (err < 0)
2206                                 break;
2207                         err = __put_user(err, &compat_entry->msg_len);
2208                         ++compat_entry;
2209                 } else {
2210                         err = ___sys_recvmsg(sock,
2211                                              (struct user_msghdr __user *)entry,
2212                                              &msg_sys, flags & ~MSG_WAITFORONE,
2213                                              datagrams);
2214                         if (err < 0)
2215                                 break;
2216                         err = put_user(err, &entry->msg_len);
2217                         ++entry;
2218                 }
2219
2220                 if (err)
2221                         break;
2222                 ++datagrams;
2223
2224                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2225                 if (flags & MSG_WAITFORONE)
2226                         flags |= MSG_DONTWAIT;
2227
2228                 if (timeout) {
2229                         ktime_get_ts(timeout);
2230                         *timeout = timespec_sub(end_time, *timeout);
2231                         if (timeout->tv_sec < 0) {
2232                                 timeout->tv_sec = timeout->tv_nsec = 0;
2233                                 break;
2234                         }
2235
2236                         /* Timeout, return less than vlen datagrams */
2237                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2238                                 break;
2239                 }
2240
2241                 /* Out of band data, return right away */
2242                 if (msg_sys.msg_flags & MSG_OOB)
2243                         break;
2244         }
2245
2246 out_put:
2247         fput_light(sock->file, fput_needed);
2248
2249         if (err == 0)
2250                 return datagrams;
2251
2252         if (datagrams != 0) {
2253                 /*
2254                  * We may return less entries than requested (vlen) if the
2255                  * sock is non block and there aren't enough datagrams...
2256                  */
2257                 if (err != -EAGAIN) {
2258                         /*
2259                          * ... or  if recvmsg returns an error after we
2260                          * received some datagrams, where we record the
2261                          * error to return on the next call or if the
2262                          * app asks about it using getsockopt(SO_ERROR).
2263                          */
2264                         sock->sk->sk_err = -err;
2265                 }
2266
2267                 return datagrams;
2268         }
2269
2270         return err;
2271 }
2272
2273 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2274                 unsigned int, vlen, unsigned int, flags,
2275                 struct timespec __user *, timeout)
2276 {
2277         int datagrams;
2278         struct timespec timeout_sys;
2279
2280         if (flags & MSG_CMSG_COMPAT)
2281                 return -EINVAL;
2282
2283         if (!timeout)
2284                 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2285
2286         if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2287                 return -EFAULT;
2288
2289         datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2290
2291         if (datagrams > 0 &&
2292             copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2293                 datagrams = -EFAULT;
2294
2295         return datagrams;
2296 }
2297
2298 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2299 /* Argument list sizes for sys_socketcall */
2300 #define AL(x) ((x) * sizeof(unsigned long))
2301 static const unsigned char nargs[21] = {
2302         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2303         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2304         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2305         AL(4), AL(5), AL(4)
2306 };
2307
2308 #undef AL
2309
2310 /*
2311  *      System call vectors.
2312  *
2313  *      Argument checking cleaned up. Saved 20% in size.
2314  *  This function doesn't need to set the kernel lock because
2315  *  it is set by the callees.
2316  */
2317
2318 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2319 {
2320         unsigned long a[AUDITSC_ARGS];
2321         unsigned long a0, a1;
2322         int err;
2323         unsigned int len;
2324
2325         if (call < 1 || call > SYS_SENDMMSG)
2326                 return -EINVAL;
2327
2328         len = nargs[call];
2329         if (len > sizeof(a))
2330                 return -EINVAL;
2331
2332         /* copy_from_user should be SMP safe. */
2333         if (copy_from_user(a, args, len))
2334                 return -EFAULT;
2335
2336         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2337         if (err)
2338                 return err;
2339
2340         a0 = a[0];
2341         a1 = a[1];
2342
2343         switch (call) {
2344         case SYS_SOCKET:
2345                 err = sys_socket(a0, a1, a[2]);
2346                 break;
2347         case SYS_BIND:
2348                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2349                 break;
2350         case SYS_CONNECT:
2351                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2352                 break;
2353         case SYS_LISTEN:
2354                 err = sys_listen(a0, a1);
2355                 break;
2356         case SYS_ACCEPT:
2357                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2358                                   (int __user *)a[2], 0);
2359                 break;
2360         case SYS_GETSOCKNAME:
2361                 err =
2362                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2363                                     (int __user *)a[2]);
2364                 break;
2365         case SYS_GETPEERNAME:
2366                 err =
2367                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2368                                     (int __user *)a[2]);
2369                 break;
2370         case SYS_SOCKETPAIR:
2371                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2372                 break;
2373         case SYS_SEND:
2374                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2375                 break;
2376         case SYS_SENDTO:
2377                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2378                                  (struct sockaddr __user *)a[4], a[5]);
2379                 break;
2380         case SYS_RECV:
2381                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2382                 break;
2383         case SYS_RECVFROM:
2384                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2385                                    (struct sockaddr __user *)a[4],
2386                                    (int __user *)a[5]);
2387                 break;
2388         case SYS_SHUTDOWN:
2389                 err = sys_shutdown(a0, a1);
2390                 break;
2391         case SYS_SETSOCKOPT:
2392                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2393                 break;
2394         case SYS_GETSOCKOPT:
2395                 err =
2396                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2397                                    (int __user *)a[4]);
2398                 break;
2399         case SYS_SENDMSG:
2400                 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2401                 break;
2402         case SYS_SENDMMSG:
2403                 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2404                 break;
2405         case SYS_RECVMSG:
2406                 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2407                 break;
2408         case SYS_RECVMMSG:
2409                 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2410                                    (struct timespec __user *)a[4]);
2411                 break;
2412         case SYS_ACCEPT4:
2413                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2414                                   (int __user *)a[2], a[3]);
2415                 break;
2416         default:
2417                 err = -EINVAL;
2418                 break;
2419         }
2420         return err;
2421 }
2422
2423 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2424
2425 /**
2426  *      sock_register - add a socket protocol handler
2427  *      @ops: description of protocol
2428  *
2429  *      This function is called by a protocol handler that wants to
2430  *      advertise its address family, and have it linked into the
2431  *      socket interface. The value ops->family corresponds to the
2432  *      socket system call protocol family.
2433  */
2434 int sock_register(const struct net_proto_family *ops)
2435 {
2436         int err;
2437
2438         if (ops->family >= NPROTO) {
2439                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2440                 return -ENOBUFS;
2441         }
2442
2443         spin_lock(&net_family_lock);
2444         if (rcu_dereference_protected(net_families[ops->family],
2445                                       lockdep_is_held(&net_family_lock)))
2446                 err = -EEXIST;
2447         else {
2448                 rcu_assign_pointer(net_families[ops->family], ops);
2449                 err = 0;
2450         }
2451         spin_unlock(&net_family_lock);
2452
2453         pr_info("NET: Registered protocol family %d\n", ops->family);
2454         return err;
2455 }
2456 EXPORT_SYMBOL(sock_register);
2457
2458 /**
2459  *      sock_unregister - remove a protocol handler
2460  *      @family: protocol family to remove
2461  *
2462  *      This function is called by a protocol handler that wants to
2463  *      remove its address family, and have it unlinked from the
2464  *      new socket creation.
2465  *
2466  *      If protocol handler is a module, then it can use module reference
2467  *      counts to protect against new references. If protocol handler is not
2468  *      a module then it needs to provide its own protection in
2469  *      the ops->create routine.
2470  */
2471 void sock_unregister(int family)
2472 {
2473         BUG_ON(family < 0 || family >= NPROTO);
2474
2475         spin_lock(&net_family_lock);
2476         RCU_INIT_POINTER(net_families[family], NULL);
2477         spin_unlock(&net_family_lock);
2478
2479         synchronize_rcu();
2480
2481         pr_info("NET: Unregistered protocol family %d\n", family);
2482 }
2483 EXPORT_SYMBOL(sock_unregister);
2484
2485 static int __init sock_init(void)
2486 {
2487         int err;
2488         /*
2489          *      Initialize the network sysctl infrastructure.
2490          */
2491         err = net_sysctl_init();
2492         if (err)
2493                 goto out;
2494
2495         /*
2496          *      Initialize skbuff SLAB cache
2497          */
2498         skb_init();
2499
2500         /*
2501          *      Initialize the protocols module.
2502          */
2503
2504         init_inodecache();
2505
2506         err = register_filesystem(&sock_fs_type);
2507         if (err)
2508                 goto out_fs;
2509         sock_mnt = kern_mount(&sock_fs_type);
2510         if (IS_ERR(sock_mnt)) {
2511                 err = PTR_ERR(sock_mnt);
2512                 goto out_mount;
2513         }
2514
2515         /* The real protocol initialization is performed in later initcalls.
2516          */
2517
2518 #ifdef CONFIG_NETFILTER
2519         err = netfilter_init();
2520         if (err)
2521                 goto out;
2522 #endif
2523
2524         ptp_classifier_init();
2525
2526 out:
2527         return err;
2528
2529 out_mount:
2530         unregister_filesystem(&sock_fs_type);
2531 out_fs:
2532         goto out;
2533 }
2534
2535 core_initcall(sock_init);       /* early initcall */
2536
2537 #ifdef CONFIG_PROC_FS
2538 void socket_seq_show(struct seq_file *seq)
2539 {
2540         int cpu;
2541         int counter = 0;
2542
2543         for_each_possible_cpu(cpu)
2544             counter += per_cpu(sockets_in_use, cpu);
2545
2546         /* It can be negative, by the way. 8) */
2547         if (counter < 0)
2548                 counter = 0;
2549
2550         seq_printf(seq, "sockets: used %d\n", counter);
2551 }
2552 #endif                          /* CONFIG_PROC_FS */
2553
2554 #ifdef CONFIG_COMPAT
2555 static int do_siocgstamp(struct net *net, struct socket *sock,
2556                          unsigned int cmd, void __user *up)
2557 {
2558         mm_segment_t old_fs = get_fs();
2559         struct timeval ktv;
2560         int err;
2561
2562         set_fs(KERNEL_DS);
2563         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2564         set_fs(old_fs);
2565         if (!err)
2566                 err = compat_put_timeval(&ktv, up);
2567
2568         return err;
2569 }
2570
2571 static int do_siocgstampns(struct net *net, struct socket *sock,
2572                            unsigned int cmd, void __user *up)
2573 {
2574         mm_segment_t old_fs = get_fs();
2575         struct timespec kts;
2576         int err;
2577
2578         set_fs(KERNEL_DS);
2579         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2580         set_fs(old_fs);
2581         if (!err)
2582                 err = compat_put_timespec(&kts, up);
2583
2584         return err;
2585 }
2586
2587 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2588 {
2589         struct ifreq __user *uifr;
2590         int err;
2591
2592         uifr = compat_alloc_user_space(sizeof(struct ifreq));
2593         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2594                 return -EFAULT;
2595
2596         err = dev_ioctl(net, SIOCGIFNAME, uifr);
2597         if (err)
2598                 return err;
2599
2600         if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2601                 return -EFAULT;
2602
2603         return 0;
2604 }
2605
2606 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2607 {
2608         struct compat_ifconf ifc32;
2609         struct ifconf ifc;
2610         struct ifconf __user *uifc;
2611         struct compat_ifreq __user *ifr32;
2612         struct ifreq __user *ifr;
2613         unsigned int i, j;
2614         int err;
2615
2616         if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2617                 return -EFAULT;
2618
2619         memset(&ifc, 0, sizeof(ifc));
2620         if (ifc32.ifcbuf == 0) {
2621                 ifc32.ifc_len = 0;
2622                 ifc.ifc_len = 0;
2623                 ifc.ifc_req = NULL;
2624                 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2625         } else {
2626                 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2627                         sizeof(struct ifreq);
2628                 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2629                 ifc.ifc_len = len;
2630                 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2631                 ifr32 = compat_ptr(ifc32.ifcbuf);
2632                 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2633                         if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2634                                 return -EFAULT;
2635                         ifr++;
2636                         ifr32++;
2637                 }
2638         }
2639         if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2640                 return -EFAULT;
2641
2642         err = dev_ioctl(net, SIOCGIFCONF, uifc);
2643         if (err)
2644                 return err;
2645
2646         if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2647                 return -EFAULT;
2648
2649         ifr = ifc.ifc_req;
2650         ifr32 = compat_ptr(ifc32.ifcbuf);
2651         for (i = 0, j = 0;
2652              i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2653              i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2654                 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2655                         return -EFAULT;
2656                 ifr32++;
2657                 ifr++;
2658         }
2659
2660         if (ifc32.ifcbuf == 0) {
2661                 /* Translate from 64-bit structure multiple to
2662                  * a 32-bit one.
2663                  */
2664                 i = ifc.ifc_len;
2665                 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2666                 ifc32.ifc_len = i;
2667         } else {
2668                 ifc32.ifc_len = i;
2669         }
2670         if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2671                 return -EFAULT;
2672
2673         return 0;
2674 }
2675
2676 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2677 {
2678         struct compat_ethtool_rxnfc __user *compat_rxnfc;
2679         bool convert_in = false, convert_out = false;
2680         size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2681         struct ethtool_rxnfc __user *rxnfc;
2682         struct ifreq __user *ifr;
2683         u32 rule_cnt = 0, actual_rule_cnt;
2684         u32 ethcmd;
2685         u32 data;
2686         int ret;
2687
2688         if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2689                 return -EFAULT;
2690
2691         compat_rxnfc = compat_ptr(data);
2692
2693         if (get_user(ethcmd, &compat_rxnfc->cmd))
2694                 return -EFAULT;
2695
2696         /* Most ethtool structures are defined without padding.
2697          * Unfortunately struct ethtool_rxnfc is an exception.
2698          */
2699         switch (ethcmd) {
2700         default:
2701                 break;
2702         case ETHTOOL_GRXCLSRLALL:
2703                 /* Buffer size is variable */
2704                 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2705                         return -EFAULT;
2706                 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2707                         return -ENOMEM;
2708                 buf_size += rule_cnt * sizeof(u32);
2709                 /* fall through */
2710         case ETHTOOL_GRXRINGS:
2711         case ETHTOOL_GRXCLSRLCNT:
2712         case ETHTOOL_GRXCLSRULE:
2713         case ETHTOOL_SRXCLSRLINS:
2714                 convert_out = true;
2715                 /* fall through */
2716         case ETHTOOL_SRXCLSRLDEL:
2717                 buf_size += sizeof(struct ethtool_rxnfc);
2718                 convert_in = true;
2719                 break;
2720         }
2721
2722         ifr = compat_alloc_user_space(buf_size);
2723         rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2724
2725         if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2726                 return -EFAULT;
2727
2728         if (put_user(convert_in ? rxnfc : compat_ptr(data),
2729                      &ifr->ifr_ifru.ifru_data))
2730                 return -EFAULT;
2731
2732         if (convert_in) {
2733                 /* We expect there to be holes between fs.m_ext and
2734                  * fs.ring_cookie and at the end of fs, but nowhere else.
2735                  */
2736                 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2737                              sizeof(compat_rxnfc->fs.m_ext) !=
2738                              offsetof(struct ethtool_rxnfc, fs.m_ext) +
2739                              sizeof(rxnfc->fs.m_ext));
2740                 BUILD_BUG_ON(
2741                         offsetof(struct compat_ethtool_rxnfc, fs.location) -
2742                         offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2743                         offsetof(struct ethtool_rxnfc, fs.location) -
2744                         offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2745
2746                 if (copy_in_user(rxnfc, compat_rxnfc,
2747                                  (void __user *)(&rxnfc->fs.m_ext + 1) -
2748                                  (void __user *)rxnfc) ||
2749                     copy_in_user(&rxnfc->fs.ring_cookie,
2750                                  &compat_rxnfc->fs.ring_cookie,
2751                                  (void __user *)(&rxnfc->fs.location + 1) -
2752                                  (void __user *)&rxnfc->fs.ring_cookie) ||
2753                     copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2754                                  sizeof(rxnfc->rule_cnt)))
2755                         return -EFAULT;
2756         }
2757
2758         ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2759         if (ret)
2760                 return ret;
2761
2762         if (convert_out) {
2763                 if (copy_in_user(compat_rxnfc, rxnfc,
2764                                  (const void __user *)(&rxnfc->fs.m_ext + 1) -
2765                                  (const void __user *)rxnfc) ||
2766                     copy_in_user(&compat_rxnfc->fs.ring_cookie,
2767                                  &rxnfc->fs.ring_cookie,
2768                                  (const void __user *)(&rxnfc->fs.location + 1) -
2769                                  (const void __user *)&rxnfc->fs.ring_cookie) ||
2770                     copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2771                                  sizeof(rxnfc->rule_cnt)))
2772                         return -EFAULT;
2773
2774                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2775                         /* As an optimisation, we only copy the actual
2776                          * number of rules that the underlying
2777                          * function returned.  Since Mallory might
2778                          * change the rule count in user memory, we
2779                          * check that it is less than the rule count
2780                          * originally given (as the user buffer size),
2781                          * which has been range-checked.
2782                          */
2783                         if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2784                                 return -EFAULT;
2785                         if (actual_rule_cnt < rule_cnt)
2786                                 rule_cnt = actual_rule_cnt;
2787                         if (copy_in_user(&compat_rxnfc->rule_locs[0],
2788                                          &rxnfc->rule_locs[0],
2789                                          rule_cnt * sizeof(u32)))
2790                                 return -EFAULT;
2791                 }
2792         }
2793
2794         return 0;
2795 }
2796
2797 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2798 {
2799         void __user *uptr;
2800         compat_uptr_t uptr32;
2801         struct ifreq __user *uifr;
2802
2803         uifr = compat_alloc_user_space(sizeof(*uifr));
2804         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2805                 return -EFAULT;
2806
2807         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2808                 return -EFAULT;
2809
2810         uptr = compat_ptr(uptr32);
2811
2812         if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2813                 return -EFAULT;
2814
2815         return dev_ioctl(net, SIOCWANDEV, uifr);
2816 }
2817
2818 static int bond_ioctl(struct net *net, unsigned int cmd,
2819                          struct compat_ifreq __user *ifr32)
2820 {
2821         struct ifreq kifr;
2822         mm_segment_t old_fs;
2823         int err;
2824
2825         switch (cmd) {
2826         case SIOCBONDENSLAVE:
2827         case SIOCBONDRELEASE:
2828         case SIOCBONDSETHWADDR:
2829         case SIOCBONDCHANGEACTIVE:
2830                 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2831                         return -EFAULT;
2832
2833                 old_fs = get_fs();
2834                 set_fs(KERNEL_DS);
2835                 err = dev_ioctl(net, cmd,
2836                                 (struct ifreq __user __force *) &kifr);
2837                 set_fs(old_fs);
2838
2839                 return err;
2840         default:
2841                 return -ENOIOCTLCMD;
2842         }
2843 }
2844
2845 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2846 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2847                                  struct compat_ifreq __user *u_ifreq32)
2848 {
2849         struct ifreq __user *u_ifreq64;
2850         char tmp_buf[IFNAMSIZ];
2851         void __user *data64;
2852         u32 data32;
2853
2854         if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2855                            IFNAMSIZ))
2856                 return -EFAULT;
2857         if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2858                 return -EFAULT;
2859         data64 = compat_ptr(data32);
2860
2861         u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2862
2863         if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2864                          IFNAMSIZ))
2865                 return -EFAULT;
2866         if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2867                 return -EFAULT;
2868
2869         return dev_ioctl(net, cmd, u_ifreq64);
2870 }
2871
2872 static int dev_ifsioc(struct net *net, struct socket *sock,
2873                          unsigned int cmd, struct compat_ifreq __user *uifr32)
2874 {
2875         struct ifreq __user *uifr;
2876         int err;
2877
2878         uifr = compat_alloc_user_space(sizeof(*uifr));
2879         if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2880                 return -EFAULT;
2881
2882         err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2883
2884         if (!err) {
2885                 switch (cmd) {
2886                 case SIOCGIFFLAGS:
2887                 case SIOCGIFMETRIC:
2888                 case SIOCGIFMTU:
2889                 case SIOCGIFMEM:
2890                 case SIOCGIFHWADDR:
2891                 case SIOCGIFINDEX:
2892                 case SIOCGIFADDR:
2893                 case SIOCGIFBRDADDR:
2894                 case SIOCGIFDSTADDR:
2895                 case SIOCGIFNETMASK:
2896                 case SIOCGIFPFLAGS:
2897                 case SIOCGIFTXQLEN:
2898                 case SIOCGMIIPHY:
2899                 case SIOCGMIIREG:
2900                         if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2901                                 err = -EFAULT;
2902                         break;
2903                 }
2904         }
2905         return err;
2906 }
2907
2908 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2909                         struct compat_ifreq __user *uifr32)
2910 {
2911         struct ifreq ifr;
2912         struct compat_ifmap __user *uifmap32;
2913         mm_segment_t old_fs;
2914         int err;
2915
2916         uifmap32 = &uifr32->ifr_ifru.ifru_map;
2917         err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2918         err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2919         err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2920         err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2921         err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2922         err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2923         err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2924         if (err)
2925                 return -EFAULT;
2926
2927         old_fs = get_fs();
2928         set_fs(KERNEL_DS);
2929         err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2930         set_fs(old_fs);
2931
2932         if (cmd == SIOCGIFMAP && !err) {
2933                 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2934                 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2935                 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2936                 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2937                 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2938                 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2939                 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2940                 if (err)
2941                         err = -EFAULT;
2942         }
2943         return err;
2944 }
2945
2946 struct rtentry32 {
2947         u32             rt_pad1;
2948         struct sockaddr rt_dst;         /* target address               */
2949         struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2950         struct sockaddr rt_genmask;     /* target network mask (IP)     */
2951         unsigned short  rt_flags;
2952         short           rt_pad2;
2953         u32             rt_pad3;
2954         unsigned char   rt_tos;
2955         unsigned char   rt_class;
2956         short           rt_pad4;
2957         short           rt_metric;      /* +1 for binary compatibility! */
2958         /* char * */ u32 rt_dev;        /* forcing the device at add    */
2959         u32             rt_mtu;         /* per route MTU/Window         */
2960         u32             rt_window;      /* Window clamping              */
2961         unsigned short  rt_irtt;        /* Initial RTT                  */
2962 };
2963
2964 struct in6_rtmsg32 {
2965         struct in6_addr         rtmsg_dst;
2966         struct in6_addr         rtmsg_src;
2967         struct in6_addr         rtmsg_gateway;
2968         u32                     rtmsg_type;
2969         u16                     rtmsg_dst_len;
2970         u16                     rtmsg_src_len;
2971         u32                     rtmsg_metric;
2972         u32                     rtmsg_info;
2973         u32                     rtmsg_flags;
2974         s32                     rtmsg_ifindex;
2975 };
2976
2977 static int routing_ioctl(struct net *net, struct socket *sock,
2978                          unsigned int cmd, void __user *argp)
2979 {
2980         int ret;
2981         void *r = NULL;
2982         struct in6_rtmsg r6;
2983         struct rtentry r4;
2984         char devname[16];
2985         u32 rtdev;
2986         mm_segment_t old_fs = get_fs();
2987
2988         if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2989                 struct in6_rtmsg32 __user *ur6 = argp;
2990                 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2991                         3 * sizeof(struct in6_addr));
2992                 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2993                 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2994                 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2995                 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2996                 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2997                 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2998                 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2999
3000                 r = (void *) &r6;
3001         } else { /* ipv4 */
3002                 struct rtentry32 __user *ur4 = argp;
3003                 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3004                                         3 * sizeof(struct sockaddr));
3005                 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3006                 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3007                 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3008                 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3009                 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3010                 ret |= get_user(rtdev, &(ur4->rt_dev));
3011                 if (rtdev) {
3012                         ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3013                         r4.rt_dev = (char __user __force *)devname;
3014                         devname[15] = 0;
3015                 } else
3016                         r4.rt_dev = NULL;
3017
3018                 r = (void *) &r4;
3019         }
3020
3021         if (ret) {
3022                 ret = -EFAULT;
3023                 goto out;
3024         }
3025
3026         set_fs(KERNEL_DS);
3027         ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3028         set_fs(old_fs);
3029
3030 out:
3031         return ret;
3032 }
3033
3034 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3035  * for some operations; this forces use of the newer bridge-utils that
3036  * use compatible ioctls
3037  */
3038 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3039 {
3040         compat_ulong_t tmp;
3041
3042         if (get_user(tmp, argp))
3043                 return -EFAULT;
3044         if (tmp == BRCTL_GET_VERSION)
3045                 return BRCTL_VERSION + 1;
3046         return -EINVAL;
3047 }
3048
3049 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3050                          unsigned int cmd, unsigned long arg)
3051 {
3052         void __user *argp = compat_ptr(arg);
3053         struct sock *sk = sock->sk;
3054         struct net *net = sock_net(sk);
3055
3056         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3057                 return compat_ifr_data_ioctl(net, cmd, argp);
3058
3059         switch (cmd) {
3060         case SIOCSIFBR:
3061         case SIOCGIFBR:
3062                 return old_bridge_ioctl(argp);
3063         case SIOCGIFNAME:
3064                 return dev_ifname32(net, argp);
3065         case SIOCGIFCONF:
3066                 return dev_ifconf(net, argp);
3067         case SIOCETHTOOL:
3068                 return ethtool_ioctl(net, argp);
3069         case SIOCWANDEV:
3070                 return compat_siocwandev(net, argp);
3071         case SIOCGIFMAP:
3072         case SIOCSIFMAP:
3073                 return compat_sioc_ifmap(net, cmd, argp);
3074         case SIOCBONDENSLAVE:
3075         case SIOCBONDRELEASE:
3076         case SIOCBONDSETHWADDR:
3077         case SIOCBONDCHANGEACTIVE:
3078                 return bond_ioctl(net, cmd, argp);
3079         case SIOCADDRT:
3080         case SIOCDELRT:
3081                 return routing_ioctl(net, sock, cmd, argp);
3082         case SIOCGSTAMP:
3083                 return do_siocgstamp(net, sock, cmd, argp);
3084         case SIOCGSTAMPNS:
3085                 return do_siocgstampns(net, sock, cmd, argp);
3086         case SIOCBONDSLAVEINFOQUERY:
3087         case SIOCBONDINFOQUERY:
3088         case SIOCSHWTSTAMP:
3089         case SIOCGHWTSTAMP:
3090                 return compat_ifr_data_ioctl(net, cmd, argp);
3091
3092         case FIOSETOWN:
3093         case SIOCSPGRP:
3094         case FIOGETOWN:
3095         case SIOCGPGRP:
3096         case SIOCBRADDBR:
3097         case SIOCBRDELBR:
3098         case SIOCGIFVLAN:
3099         case SIOCSIFVLAN:
3100         case SIOCADDDLCI:
3101         case SIOCDELDLCI:
3102                 return sock_ioctl(file, cmd, arg);
3103
3104         case SIOCGIFFLAGS:
3105         case SIOCSIFFLAGS:
3106         case SIOCGIFMETRIC:
3107         case SIOCSIFMETRIC:
3108         case SIOCGIFMTU:
3109         case SIOCSIFMTU:
3110         case SIOCGIFMEM:
3111         case SIOCSIFMEM:
3112         case SIOCGIFHWADDR:
3113         case SIOCSIFHWADDR:
3114         case SIOCADDMULTI:
3115         case SIOCDELMULTI:
3116         case SIOCGIFINDEX:
3117         case SIOCGIFADDR:
3118         case SIOCSIFADDR:
3119         case SIOCSIFHWBROADCAST:
3120         case SIOCDIFADDR:
3121         case SIOCGIFBRDADDR:
3122         case SIOCSIFBRDADDR:
3123         case SIOCGIFDSTADDR:
3124         case SIOCSIFDSTADDR:
3125         case SIOCGIFNETMASK:
3126         case SIOCSIFNETMASK:
3127         case SIOCSIFPFLAGS:
3128         case SIOCGIFPFLAGS:
3129         case SIOCGIFTXQLEN:
3130         case SIOCSIFTXQLEN:
3131         case SIOCBRADDIF:
3132         case SIOCBRDELIF:
3133         case SIOCSIFNAME:
3134         case SIOCGMIIPHY:
3135         case SIOCGMIIREG:
3136         case SIOCSMIIREG:
3137                 return dev_ifsioc(net, sock, cmd, argp);
3138
3139         case SIOCSARP:
3140         case SIOCGARP:
3141         case SIOCDARP:
3142         case SIOCATMARK:
3143                 return sock_do_ioctl(net, sock, cmd, arg);
3144         }
3145
3146         return -ENOIOCTLCMD;
3147 }
3148
3149 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3150                               unsigned long arg)
3151 {
3152         struct socket *sock = file->private_data;
3153         int ret = -ENOIOCTLCMD;
3154         struct sock *sk;
3155         struct net *net;
3156
3157         sk = sock->sk;
3158         net = sock_net(sk);
3159
3160         if (sock->ops->compat_ioctl)
3161                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3162
3163         if (ret == -ENOIOCTLCMD &&
3164             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3165                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3166
3167         if (ret == -ENOIOCTLCMD)
3168                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3169
3170         return ret;
3171 }
3172 #endif
3173
3174 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3175 {
3176         return sock->ops->bind(sock, addr, addrlen);
3177 }
3178 EXPORT_SYMBOL(kernel_bind);
3179
3180 int kernel_listen(struct socket *sock, int backlog)
3181 {
3182         return sock->ops->listen(sock, backlog);
3183 }
3184 EXPORT_SYMBOL(kernel_listen);
3185
3186 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3187 {
3188         struct sock *sk = sock->sk;
3189         int err;
3190
3191         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3192                                newsock);
3193         if (err < 0)
3194                 goto done;
3195
3196         err = sock->ops->accept(sock, *newsock, flags);
3197         if (err < 0) {
3198                 sock_release(*newsock);
3199                 *newsock = NULL;
3200                 goto done;
3201         }
3202
3203         (*newsock)->ops = sock->ops;
3204         __module_get((*newsock)->ops->owner);
3205
3206 done:
3207         return err;
3208 }
3209 EXPORT_SYMBOL(kernel_accept);
3210
3211 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3212                    int flags)
3213 {
3214         return sock->ops->connect(sock, addr, addrlen, flags);
3215 }
3216 EXPORT_SYMBOL(kernel_connect);
3217
3218 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3219                          int *addrlen)
3220 {
3221         return sock->ops->getname(sock, addr, addrlen, 0);
3222 }
3223 EXPORT_SYMBOL(kernel_getsockname);
3224
3225 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3226                          int *addrlen)
3227 {
3228         return sock->ops->getname(sock, addr, addrlen, 1);
3229 }
3230 EXPORT_SYMBOL(kernel_getpeername);
3231
3232 int kernel_getsockopt(struct socket *sock, int level, int optname,
3233                         char *optval, int *optlen)
3234 {
3235         mm_segment_t oldfs = get_fs();
3236         char __user *uoptval;
3237         int __user *uoptlen;
3238         int err;
3239
3240         uoptval = (char __user __force *) optval;
3241         uoptlen = (int __user __force *) optlen;
3242
3243         set_fs(KERNEL_DS);
3244         if (level == SOL_SOCKET)
3245                 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3246         else
3247                 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3248                                             uoptlen);
3249         set_fs(oldfs);
3250         return err;
3251 }
3252 EXPORT_SYMBOL(kernel_getsockopt);
3253
3254 int kernel_setsockopt(struct socket *sock, int level, int optname,
3255                         char *optval, unsigned int optlen)
3256 {
3257         mm_segment_t oldfs = get_fs();
3258         char __user *uoptval;
3259         int err;
3260
3261         uoptval = (char __user __force *) optval;
3262
3263         set_fs(KERNEL_DS);
3264         if (level == SOL_SOCKET)
3265                 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3266         else
3267                 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3268                                             optlen);
3269         set_fs(oldfs);
3270         return err;
3271 }
3272 EXPORT_SYMBOL(kernel_setsockopt);
3273
3274 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3275                     size_t size, int flags)
3276 {
3277         if (sock->ops->sendpage)
3278                 return sock->ops->sendpage(sock, page, offset, size, flags);
3279
3280         return sock_no_sendpage(sock, page, offset, size, flags);
3281 }
3282 EXPORT_SYMBOL(kernel_sendpage);
3283
3284 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3285 {
3286         mm_segment_t oldfs = get_fs();
3287         int err;
3288
3289         set_fs(KERNEL_DS);
3290         err = sock->ops->ioctl(sock, cmd, arg);
3291         set_fs(oldfs);
3292
3293         return err;
3294 }
3295 EXPORT_SYMBOL(kernel_sock_ioctl);
3296
3297 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3298 {
3299         return sock->ops->shutdown(sock, how);
3300 }
3301 EXPORT_SYMBOL(kernel_sock_shutdown);